WO2021139276A1 - 平台数据库自动化运维方法、装置及计算机可读存储介质 - Google Patents

平台数据库自动化运维方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2021139276A1
WO2021139276A1 PCT/CN2020/119124 CN2020119124W WO2021139276A1 WO 2021139276 A1 WO2021139276 A1 WO 2021139276A1 CN 2020119124 W CN2020119124 W CN 2020119124W WO 2021139276 A1 WO2021139276 A1 WO 2021139276A1
Authority
WO
WIPO (PCT)
Prior art keywords
autocorrelation function
real
data set
time data
platform database
Prior art date
Application number
PCT/CN2020/119124
Other languages
English (en)
French (fr)
Inventor
邹功博
李钊
万书武
李均
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2021139276A1 publication Critical patent/WO2021139276A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/21Design, administration or maintenance of databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3442Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment for planning or managing the needed capacity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3447Performance evaluation by modeling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2201/00Indexing scheme relating to error detection, to error correction, and to monitoring
    • G06F2201/80Database-specific techniques

Definitions

  • This application relates to the field of big data technology, and in particular to a method and device for automated operation and maintenance of a platform database, and a computer-readable storage medium.
  • a method for automated operation and maintenance of a platform database includes:
  • the database quota prediction model is used to identify the platform database that needs space quota from the user's platform database, and the platform database that needs quota is marked and returned to the user, so as to realize the platform database. Automated operation and maintenance.
  • the present application also provides an electronic device that includes a memory and a processor.
  • the memory stores a platform database automated operation and maintenance program that can run on the processor, and the platform database automated operation and maintenance program is The following steps are implemented when the processor is executed:
  • the database quota prediction model is used to identify the platform database that needs space quota from the user's platform database, and the platform database that needs quota is marked and returned to the user, so as to realize the platform database. Automated operation and maintenance.
  • This application also provides a computer-readable storage medium on which a platform database automated operation and maintenance program is stored, and the platform database automated operation and maintenance program can be executed by one or more processors to achieve the following The steps of the described platform database automated operation and maintenance method:
  • the database quota prediction model is used to identify the platform database that needs space quota from the user's platform database, and the platform database that needs quota is marked and returned to the user, so as to realize the platform database. Automated operation and maintenance.
  • This application also provides an automated operation and maintenance device for a platform database, including:
  • the data clustering processing module is used to obtain the real-time data set generated in the user's platform database, perform clustering processing on the real-time data set, and generate a standard data set;
  • the calculation module is used to calculate the autocorrelation function set and the partial autocorrelation function set of the standard data set, and respectively generate the autocorrelation function atlas and the partial correlation function atlas according to the autocorrelation function set and the partial autocorrelation function set ;
  • a model generation module configured to generate a database quota prediction model according to the autocorrelation function atlas and the partial autocorrelation function atlas;
  • the automated operation and maintenance module is used to use the database quota prediction model to identify the platform database that needs space quota from the user's platform database, and to mark the platform database that needs quota and return it to the user, Thus, the automatic operation and maintenance of the platform database is realized.
  • FIG. 1 is a schematic flowchart of a method for automated operation and maintenance of a platform database provided by an embodiment of the application;
  • FIG. 2 is a schematic diagram of the internal structure of an electronic device provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of modules of a platform database automated operation and maintenance device provided by an embodiment of the application.
  • This application provides a method for automated operation and maintenance of a platform database.
  • FIG. 1 it is a schematic flowchart of a method for automated operation and maintenance of a platform database provided by an embodiment of this application.
  • the method can be executed by a device, and the device can be implemented by software and/or hardware.
  • the automated operation and maintenance method of the platform database includes:
  • the user may be an enterprise or an exchange, such as Ping An
  • the user's platform database includes: a trading platform database, an analysis platform database, and a storage platform database. Therefore, this application obtains real-time transaction data sets based on the transaction data generated by Ping An’s trading platform database, obtains real-time analysis data sets based on the analysis data generated by Ping An’s analysis platform database, and obtains real-time analysis data sets based on the storage data generated by Ping An’s storage platform database. Store data sets in real time. Preferably, this application combines the real-time transaction data set, the real-time analysis data set, and the real-time storage data set to form the real-time data set.
  • the storage capacity of the corresponding platform database will change accordingly.
  • the generated real-time transaction data set has an increase of 20,000 Single, the storage capacity of the corresponding trading platform database will be reduced by 2GB. Since Ping An of China continues to generate a large number of real-time data sets every day, it is preferable that this application prioritize clustering the real-time data sets to generate the standard data sets for more convenient data processing. Observation.
  • the clustering process in this application includes: counting the maximum value and minimum value of the real-time data set, and calculating the cluster center value of the real-time data set by using a clustering algorithm according to the maximum value and the minimum value. ; Perform data clustering on the real-time data set according to the cluster center value and using a fuzzy mean algorithm to generate the standard data set.
  • the clustering algorithm includes:
  • k represents the cluster center value
  • D max represents the maximum value in the real-time data set
  • D min represents the minimum value in the real-time data set
  • n represents the total amount of data in the real-time data set
  • X(t) represents The real-time data is concentrated on the real-time data acquired at time t
  • X(t-1) represents the real-time data is concentrated on the real-time data acquired at time t-1.
  • the autocorrelation function refers to a time series function created by the data under stationary conditions to show the convergence between the data
  • the partial autocorrelation function refers to the description A method of stochastic process structural characteristics used to eliminate the influence of intermediate variable data.
  • the calculation method of the autocorrelation function set in this application includes:
  • the p x represents the autocorrelation function of the data x
  • Z x represents the expectation of the data in the autocorrelation function
  • Z t represents the expectation of the data x at time t
  • the present application forms the autocorrelation function atlas according to the combination of regression line segments in the autocorrelation function set, which is used to show the convergence between the real-time data more vividly.
  • calculation method of the partial autocorrelation function set includes:
  • the Re represents the partial autocorrelation function of data j in the real-time data set
  • k represents the total amount of data in the real-time data set.
  • the autoregressive fitting function set of the standard data set is obtained, so as to generate the partial correlation function atlas for more clearly describing the coupling between the real-time data.
  • the autocorrelation function atlas and the partial autocorrelation function atlas are input as parameters into a pre-built time series forecasting model to obtain the trend parameters and seasons of the time series forecasting model
  • the performance parameters are used to construct autoregressive, differential, and moving average periodic functions based on the trend parameters and seasonal parameters, and the database quota prediction model is generated based on the autoregressive, differential, and moving average periodic functions.
  • the time series prediction model in this application is the SARIMAX model, and the SARIMAX model is used to support seasonal time series data prediction.
  • the trend parameters include: trend autoregressive order (represented by lowercase letter p), trend difference order (represented by lowercase letter d), and trend moving average order (represented by lowercase letter q).
  • the seasonal parameters include: seasonal regression parameters (represented by capital letter P), seasonal difference order (represented by capital letter D), seasonal moving average order (represented by capital letter Q), and a single seasonal The number of time steps (indicated by the lowercase letter m).
  • the database quota prediction model is compiled through the Python language, and time task scheduling is set to continuously update the trend parameters and seasonal parameters, thereby continuously enhancing the prediction ability of the database quota prediction model .
  • the platform database will be insufficient in memory.
  • the database quota prediction model it is possible to efficiently identify which platform databases need quota processing, that is, to perform quota processing on the platform database. Carry out expansion, and give a reasonable expansion size suggestion.
  • this application uses the above-mentioned Python language to mark the platform database that is about to store full data during compilation, that is, mark red processing, and display the status of the platform database storage space in the form of a list, so as to realize the automated operation of the platform database. Dimensions can be used to help users better control data resources.
  • the application also provides an electronic device.
  • FIG. 2 it is a schematic diagram of the internal structure of an electronic device provided by an embodiment of this application.
  • the electronic device 1 may be a PC (Personal Computer, personal computer), or a terminal device such as a smart phone, a tablet computer, or a portable computer, or a server.
  • the electronic device 1 at least includes a memory 11, a processor 12, a communication bus 13, and a network interface 14.
  • the memory 11 includes at least one type of readable storage medium, and the readable storage medium includes flash memory, hard disk, multimedia card, card-type memory (for example, SD or DX memory, etc.), magnetic memory, magnetic disk, optical disk, and the like.
  • the memory 11 may be an internal storage unit of the electronic device 1 in some embodiments, such as a hard disk of the electronic device 1.
  • the memory 11 may also be an external storage device of the electronic device 1, such as a plug-in hard disk equipped on the electronic device 1, a smart memory card (SmartMediaCard, SMC), a Secure Digital (SD) card, and a flash memory. Card (FlashCard) etc.
  • the memory 11 may also include both an internal storage unit of the electronic device 1 and an external storage device.
  • the memory 11 can be used not only to store application software and various data installed in the electronic device 1, such as the code of the platform database automated operation and maintenance program 01, etc., but also to temporarily store data that has been output or will be output.
  • the processor 12 may be a central processing unit (CPU), controller, microcontroller, microprocessor, or other data processing chip, for running program codes or processing data stored in the memory 11, For example, the implementation of platform database automatic operation and maintenance program 01, etc.
  • CPU central processing unit
  • controller microcontroller
  • microprocessor or other data processing chip, for running program codes or processing data stored in the memory 11, For example, the implementation of platform database automatic operation and maintenance program 01, etc.
  • the communication bus 13 is used to realize the connection and communication between these components.
  • the network interface 14 may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface), and is usually used to establish a communication connection between the device 1 and other electronic devices.
  • the device 1 may also include a user interface.
  • the user interface may include a display (Display) and an input unit such as a keyboard (Keyboard).
  • the optional user interface may also include a standard wired interface and a wireless interface.
  • the display may be an LED display, a liquid crystal display, a touch liquid crystal display, an OLED (Organic Light-Emitting Diode, organic light emitting diode) touch device, etc.
  • the display can also be appropriately called a display screen or a display unit, which is used to display the information processed in the electronic device 1 and to display a visualized user interface.
  • Figure 2 only shows the electronic device 1 with the components 11-14 and the platform database automated operation and maintenance program 01. Those skilled in the art can understand that the structure shown in Figure 1 does not constitute a limitation on the electronic device 1. Including fewer or more components than shown, or combining some components, or different component arrangements.
  • the platform database automated operation and maintenance program 01 is stored in the memory 11; when the processor 12 executes the platform database automated operation and maintenance program 01 stored in the memory 11, the following steps are implemented:
  • Step 1 Acquire the real-time data set generated in the user's platform database, perform clustering processing on the real-time data set, and generate a standard data set.
  • the user may be an enterprise or an exchange, such as Ping An
  • the user's platform database includes: a trading platform database, an analysis platform database, and a storage platform database. Therefore, this application obtains real-time transaction data sets based on the transaction data generated by Ping An’s trading platform database, obtains real-time analysis data sets based on the analysis data generated by Ping An’s analysis platform database, and obtains real-time analysis data sets based on the storage data generated by Ping An’s storage platform database. Store data sets in real time. Preferably, this application combines the real-time transaction data set, the real-time analysis data set, and the real-time storage data set to form the real-time data set.
  • the storage capacity of the corresponding platform database will change accordingly.
  • the generated real-time transaction data set has an increase of 20,000 Single, the storage capacity of the corresponding trading platform database will be reduced by 2GB. Since Ping An of China continues to generate a large number of real-time data sets every day, it is preferable that this application prioritize clustering the real-time data sets to generate the standard data sets for more convenient data processing. Observation.
  • the clustering process in this application includes: counting the maximum value and minimum value of the real-time data set, and calculating the cluster center value of the real-time data set by using a clustering algorithm according to the maximum value and the minimum value. ; Perform data clustering on the real-time data set according to the cluster center value and using a fuzzy mean algorithm to generate the standard data set.
  • the clustering algorithm includes:
  • k represents the cluster center value
  • D max represents the maximum value in the real-time data set
  • D min represents the minimum value in the real-time data set
  • n represents the total amount of data in the real-time data set
  • X(t) represents The real-time data is concentrated on the real-time data acquired at time t
  • X(t-1) represents the real-time data is concentrated on the real-time data acquired at time t-1.
  • Step 2 Calculate the autocorrelation function set and the partial autocorrelation function set of the standard data set, and generate the autocorrelation function atlas and the partial correlation function atlas respectively according to the autocorrelation function set and the partial autocorrelation function set.
  • the autocorrelation function refers to a time series function created by the data under stationary conditions to show the convergence between the data
  • the partial autocorrelation function refers to the description A method of stochastic process structural characteristics used to eliminate the influence of intermediate variable data.
  • the calculation method of the autocorrelation function set in this application includes:
  • the p x represents the autocorrelation function of the data x
  • Z x represents the expectation of the data in the autocorrelation function
  • Z t represents the expectation of the data x at time t
  • the present application forms the autocorrelation function atlas according to the combination of regression line segments in the autocorrelation function set, which is used to show the convergence between the real-time data more vividly.
  • calculation method of the partial autocorrelation function set includes:
  • the Re represents the partial autocorrelation function of data j in the real-time data set
  • k represents the total amount of data in the real-time data set.
  • the autoregressive fitting function set of the standard data set is obtained, thereby generating the partial correlation function atlas for more clearly describing the coupling between the real-time data.
  • Step 3 Generate a database quota prediction model according to the autocorrelation function atlas and the partial autocorrelation function atlas.
  • the autocorrelation function atlas and the partial autocorrelation function atlas are input as parameters into a pre-built time series forecasting model to obtain the trend parameters and seasons of the time series forecasting model
  • the performance parameters are used to construct autoregressive, differential, and moving average periodic functions based on the trend parameters and seasonal parameters, and the database quota prediction model is generated based on the autoregressive, differential, and moving average periodic functions.
  • the time series prediction model in this application is the SARIMAX model, and the SARIMAX model is used to support seasonal time series data prediction.
  • the trend parameters include: trend autoregressive order (represented by lowercase letter p), trend difference order (represented by lowercase letter d), and trend moving average order (represented by lowercase letter q).
  • the seasonal parameters include: seasonal regression parameters (represented by capital letter P), seasonal difference order (represented by capital letter D), seasonal moving average order (represented by capital letter Q), and a single seasonal The number of time steps (indicated by the lowercase letter m).
  • the database quota prediction model is compiled through the Python language, and time task scheduling is set to continuously update the trend parameters and seasonal parameters, thereby continuously enhancing the prediction ability of the database quota prediction model .
  • Step 4 Use the database quota prediction model to identify the platform database that needs space quota from the user's platform database, and mark the platform database that needs quota and return it to the user, so as to realize the Automated operation and maintenance of platform database.
  • the platform database will be insufficient in memory.
  • the database quota prediction model it is possible to efficiently identify which platform databases need quota processing, that is, to perform quota processing on the platform database. Carry out expansion, and give a reasonable expansion size suggestion.
  • this application uses the above-mentioned Python language to mark the platform database that is about to store full data during compilation, that is, mark red processing, and display the status of the platform database storage space in the form of a list, so as to realize the automated operation of the platform database. Dimensions can be used to help users better control data resources.
  • the platform database automated operation and maintenance program can also be divided into one or more modules, and the one or more modules are stored in the memory 11 and run by one or more processors (in this embodiment). For example, it is executed by the processor 12) to complete the application.
  • the module referred to in the application refers to a series of computer program instruction segments capable of completing specific functions, and is used to describe the execution process of the platform database automated operation and maintenance program in the electronic device.
  • FIG. 3 this is a schematic diagram of program modules in an embodiment of the platform database automated operation and maintenance device of this application.
  • the platform database automated operation and maintenance device can be divided into data clustering processing modules 10,
  • the calculation module 20, the model generation module 30, and the automated operation and maintenance module 40 are illustratively:
  • the data clustering processing module 10 is configured to obtain a real-time data set generated in a user's platform database, perform clustering processing on the real-time data set, and generate a standard data set.
  • the calculation module 20 is configured to: calculate the autocorrelation function set and the partial autocorrelation function set of the standard data set, and respectively generate an autocorrelation function atlas and the partial correlation function set according to the autocorrelation function set and the partial autocorrelation function set Function atlas.
  • the model generation module 30 is configured to generate a database quota prediction model according to the autocorrelation function atlas and the partial autocorrelation function atlas.
  • the automatic operation and maintenance module 40 is configured to: use the database quota prediction model to identify the platform database that needs space quota from the user's platform database, and mark the platform database that needs to be quota before returning To users, so as to realize the automatic operation and maintenance of the platform database.
  • an embodiment of the present application also proposes a computer-readable storage medium, the computer-readable storage medium stores a platform database automated operation and maintenance program, and the platform database automated operation and maintenance program can be executed by one or more processors To achieve the following operations:
  • the database quota prediction model is used to identify the platform database that needs space quota from the user's platform database, and the platform database that needs quota is marked and returned to the user, so as to realize the platform database. Automated operation and maintenance.
  • the computer-readable storage medium may be non-volatile or volatile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Data Mining & Analysis (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

一种平台数据库自动化运维方法,包括:基于用户的平台数据库,获取所述平台数据库中产生的实时数据集,对所述实时数据集进行聚类处理,生成标准数据集(S1);计算所述标准数据集的自相关函数集和偏自相关函数集后得到自相关函数图集与偏相关函数图集(S2);根据所述自相关函数图集和所述偏自相关函数图集,生成数据库配额预测模型(S3);利用所述数据库配额预测模型从所述平台数据库中识别出需要进行空间配额的平台数据库,对需要进行配额的所述平台数据库进行标记处理后返回给用户,实现所述平台数据库的自动化运维(S4)。该方法实现了平台数据库自动化运维。

Description

平台数据库自动化运维方法、装置及计算机可读存储介质
本申请要求于2020年01月10日提交中国专利局、申请号为202010034180.0,发明名称为“平台数据库自动化运维方法、装置及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及大数据技术领域,尤其涉及一种平台数据库自动化运维方法、装置及计算机可读存储介质。
背景技术
在当下数据量爆炸式增长的互联网时代,数据量与日俱增,这对平台数据库的管理及运维带来巨大的挑战,尤其是伴随着业务量横向扩张,数据仓库的空间和数量也会随之增加,许多业务平台更是同时拥有多个数据仓库。发明人意识到,在数据仓库空间不足时,目前通常需要运维人员手动执行扩容配置,目前行业内一般都是通过运维人员的主观判断“随意”给定扩容大小,这种方式会存在两个弊端:1、平台数据库数量庞大,人工维护较为繁琐;2、扩容空间或大或小,配置太大会浪费资源,配置太小则后期还要重新配置,增加了不少工作量。
发明内容
本申请提供的一种平台数据库自动化运维方法,包括:
获取用户的平台数据库中所产生的实时数据集,对所述实时数据集进行聚类处理,生成标准数据集;
计算所述标准数据集的自相关函数集和偏自相关函数集,并根据所述自相关函数集和偏自相关函数集分别生成自相关函数图集与偏相关函数图集;
根据所述自相关函数图集和所述偏自相关函数图集,生成数据库配额预测模型;
利用所述数据库配额预测模型从所述用户的平台数据库中识别出需要进行空间配额的平台数据库,并对需要进行配额的所述平台数据库进行标记处理后返回给用户,从而实现所述平台数据库的自动化运维。
本申请还提供一种电子设备,该电子设备包括存储器和处理器,所述存储器中存储有可在所述处理器上运行的平台数据库自动化运维程序,所述平台数据库自动化运维程序被所述处理器执行时实现如下步骤:
获取用户的平台数据库中所产生的实时数据集,对所述实时数据集进行聚类处理,生成标准数据集;
计算所述标准数据集的自相关函数集和偏自相关函数集,并根据所述自相关函数集和偏自相关函数集分别生成自相关函数图集与偏相关函数图集;
根据所述自相关函数图集和所述偏自相关函数图集,生成数据库配额预测模型;
利用所述数据库配额预测模型从所述用户的平台数据库中识别出需要进行空间配额的平台数据库,并对需要进行配额的所述平台数据库进行标记处理后返回给用户,从而实现所述平台数据库的自动化运维。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有平台数据库自动化运维程序,所述平台数据库自动化运维程序可被一个或者多个处理器执行,以实现如下所述的平台数据库自动化运维方法的步骤:
获取用户的平台数据库中所产生的实时数据集,对所述实时数据集进行聚类处理,生成标准数据集;
计算所述标准数据集的自相关函数集和偏自相关函数集,并根据所述自相关函数集和偏自相关函数集分别生成自相关函数图集与偏相关函数图集;
根据所述自相关函数图集和所述偏自相关函数图集,生成数据库配额预测模型;
利用所述数据库配额预测模型从所述用户的平台数据库中识别出需要进行空间配额的平台数据库,并对需要进行配额的所述平台数据库进行标记处理后返回给用户,从而实现所述平台数据库的自动化运维。
本申请还提供一种平台数据库自动化运维装置,包括:
数据聚类处理模块,用于获取用户的平台数据库中所产生的实时数据集,对所述实时数据集进行聚类处理,生成标准数据集;
计算模块,用于计算所述标准数据集的自相关函数集和偏自相关函数集,并根据所述自相关函数集和偏自相关函数集分别生成自相关函数图集与偏相关函数图集;
模型生成模块,用于根据所述自相关函数图集和所述偏自相关函数图集,生成数据库配额预测模型;
自动化运维模块,用于利用所述数据库配额预测模型从所述用户的平台数据库中识别出需要进行空间配额的平台数据库,并对需要进行配额的所述平台数据库进行标记处理后返回给用户,从而实现所述平台数据库的自动化运维。
附图说明
图1为本申请一实施例提供的平台数据库自动化运维方法的流程示意图;
图2为本申请一实施例提供的电子设备的内部结构示意图;
图3为本申请一实施例提供的平台数据库自动化运维装置的模块示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供一种平台数据库自动化运维方法。参照图1所示,为本申请一实施例提供的平台数据库自动化运维方法的流程示意图。该方法可以由一个装置执行,该装置可以由软件和/或硬件实现。
在本实施例中,平台数据库自动化运维方法包括:
S1、获取用户的平台数据库中所产生的实时数据集,对所述实时数据集进行聚类处理,生成标准数据集。
本申请较佳实施例中,所述用户可以为一个企业或一个交易所,例如中国平安,所述用户的平台数据库包括:交易平台数据库、分析平台数据库以及储存平台数据库。于是,本申请根据中国平安的交易平台数据库产生的交易数据得到实时交易数据集,根据中国平安的分析平台数据库产生的分析数据得到实时分析数据集,根据中国平安的存储平台数据库产生的存储数据得到实时存储数据集。较佳地,本申请将所述实时交易数据集、实时分析数据集以及实时存储数据集组合形成所述实时数据集。
应该理解,根据产生的所述实时交易数据集、实时分析数据集以及实时存储数据集,对应的平台数据库的存储容量会发生相应变化,例如,产生的所述实时交易数据集增长量为2万单,则对应的交易平台数据库存储容量会减少2GB的容量。由于中国平安每天都在不断的产生大量的实时数据集,于是,较佳地,本申请优先对所述实时数据集进行聚类处理,生成所述标准数据集,用于更加方便的对数据进行观测。
较佳地,本申请中所述聚类处理包括:统计所述实时数据集中最大值和最小值,根据 所述最大值和最小值,利用聚类算法计算所述实时数据集的聚类中心值;根据所述聚类中心值及利用模糊均值算法对所述实时数据集进行数据聚类,从而生成所述标准数据集。其中,所述聚类算法包括:
Figure PCTCN2020119124-appb-000001
其中,k表示聚类中心值,D max表示所述实时数据集中的最大值,D min表示所述实时数据集中的最小值,n表示所述实时数据集的数据总量,X(t)表示所述实时数据集中在t时刻获取的实时数据,X(t-1)表示所述实时数据集中在t-1时刻获取的实时数据。
S2、计算所述标准数据集的自相关函数集和偏自相关函数集,并根据所述自相关函数集和偏自相关函数集分别生成自相关函数图集与偏相关函数图集。
本申请较佳实施中,所述自相关函数指的是数据在平稳条件下所创建的一种时间序列函数,用于展示出数据之间的收敛性,所述偏自相关函数指的是描述随机过程结构特征的一种方法,用于排除中间变量数据带来的影响。
较佳地,本申请中所述自相关函数集的计算方法包括:
Figure PCTCN2020119124-appb-000002
其中,所述p x表示数据x的自相关函数,Z x表示自相关函数中数据的期望,Z t表示数据x在t时刻的期望,
Figure PCTCN2020119124-appb-000003
表示自相关函数的期望。进一步地,本申请根据所述自相关函数集中的回归线段组合形成所述自相关函数图集,用于更加形象的展示出所述实时数据之间的收敛性。
进一步地,所述偏自相关函数集的计算方法包括:
Figure PCTCN2020119124-appb-000004
其中,所述
Figure PCTCN2020119124-appb-000005
表示实时数据集中数据j的偏自相关函数,k表示实时数据集中数据的总量。根据所述偏自相关函数的计算方法的得到上述标准数据集的自回归拟合函数集,从而生成所述偏相关函数图集,用于更加清晰的描述所述实时数据之间的耦合性。
S3、根据所述自相关函数图集和所述偏自相关函数图集,生成数据库配额预测模型。
本申请较佳实施例中,将所述自相关函数图集以及所述偏自相关函数图集作为参数输入至预先构建的时间序列预测模型中,得到所述时间序列预测模型的趋势参数和季节性参数,根据所述趋势参数和季节性参数构建自回归、差分以及移动平均的周期函数,并根据所述自回归、差分以及移动平均的周期函数生成所述数据库配额预测模型。其中,本申请中所述时间序列预测模型为SARIMAX模型,所述SARIMAX模型用于支持季节性时间序列的数据预测。所述趋势参数包括:趋势自回归阶数(用小写字母p表示)、趋势差分阶数(用小写字母d表示)以及趋势移动平均阶数(用小写字母q表示)。所述季节性参数包括:季节性回归参数(用大写字母P表示)、季节性差分阶数(用大写字母D表示)、季节性移动平均阶数(用大写字母Q)表示以及单个季节性的时间步数(用小写字母m表示)。进一步地,本申请中通过Python语言对所述数据库配额预测模型进行编译,并设置时间任务调度对所述趋势参数和季节性参数进行不断的更新,从而不断增强所述数据库配额预测模型的预测能力。
S4、利用所述数据库配额预测模型从所述用户的平台数据库中识别出需要进行空间配 额的平台数据库,并对需要进行配额的所述平台数据库进行标记处理后返回给用户,从而实现所述平台数据库的自动化运维。
本申请较佳实施例中,由于数据的不断更新,会导致平台数据库内存不足的情况产生,根据所述数据库配额预测模型可以高效的识别出哪些平台数据库需要进行配额处理,即对所述平台数据库进行扩容,并给出合理的扩容大小的建议。详细地,本申请通过上述Python语言在编译时,对即将存储数据满额的平台数据库进行标记声明,即标红处理,并以列表的形式展现平台数据库存储空间的状态,从而实现平台数据库的自动化运维,可以用于帮助用户更好的把控数据资源。
本申请还提供一种电子设备。参照图2所示,为本申请一实施例提供的电子设备的内部结构示意图。
在本实施例中,所述电子设备1可以是PC(PersonalComputer,个人电脑),或者是智能手机、平板电脑、便携计算机等终端设备,也可以是一种服务器等。该电子设备1至少包括存储器11、处理器12,通信总线13,以及网络接口14。
其中,存储器11至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、磁性存储器、磁盘、光盘等。存储器11在一些实施例中可以是电子设备1的内部存储单元,例如该电子设备1的硬盘。存储器11在另一些实施例中也可以是电子设备1的外部存储设备,例如电子设备1上配备的插接式硬盘,智能存储卡(SmartMediaCard,SMC),安全数字(SecureDigital,SD)卡,闪存卡(FlashCard)等。进一步地,存储器11还可以既包括电子设备1的内部存储单元也包括外部存储设备。存储器11不仅可以用于存储安装于电子设备1的应用软件及各类数据,例如平台数据库自动化运维程序01的代码等,还可以用于暂时地存储已经输出或者将要输出的数据。
处理器12在一些实施例中可以是一中央处理器(CentralProcessingUnit,CPU)、控制器、微控制器、微处理器或其他数据处理芯片,用于运行存储器11中存储的程序代码或处理数据,例如执行平台数据库自动化运维程序01等。
通信总线13用于实现这些组件之间的连接通信。
网络接口14可选的可以包括标准的有线接口、无线接口(如WI-FI接口),通常用于在该装置1与其他电子设备之间建立通信连接。
可选地,该装置1还可以包括用户接口,用户接口可以包括显示器(Display)、输入单元比如键盘(Keyboard),可选的用户接口还可以包括标准的有线接口、无线接口。可选地,在一些实施例中,显示器可以是LED显示器、液晶显示器、触控式液晶显示器以及OLED(OrganicLight-EmittingDiode,有机发光二极管)触摸器等。其中,显示器也可以适当的称为显示屏或显示单元,用于显示在电子设备1中处理的信息以及用于显示可视化的用户界面。
图2仅示出了具有组件11-14以及平台数据库自动化运维程序01的电子设备1,本领域技术人员可以理解的是,图1示出的结构并不构成对电子设备1的限定,可以包括比图示更少或者更多的部件,或者组合某些部件,或者不同的部件布置。
在图2所示的电子设备1实施例中,存储器11中存储有平台数据库自动化运维程序01;处理器12执行存储器11中存储的平台数据库自动化运维程序01时实现如下步骤:
步骤一、获取用户的平台数据库中所产生的实时数据集,对所述实时数据集进行聚类处理,生成标准数据集。
本申请较佳实施例中,所述用户可以为一个企业或一个交易所,例如中国平安,所述用户的平台数据库包括:交易平台数据库、分析平台数据库以及储存平台数据库。于是,本申请根据中国平安的交易平台数据库产生的交易数据得到实时交易数据集,根据中国平 安的分析平台数据库产生的分析数据得到实时分析数据集,根据中国平安的存储平台数据库产生的存储数据得到实时存储数据集。较佳地,本申请将所述实时交易数据集、实时分析数据集以及实时存储数据集组合形成所述实时数据集。
应该理解,根据产生的所述实时交易数据集、实时分析数据集以及实时存储数据集,对应的平台数据库的存储容量会发生相应变化,例如,产生的所述实时交易数据集增长量为2万单,则对应的交易平台数据库存储容量会减少2GB的容量。由于中国平安每天都在不断的产生大量的实时数据集,于是,较佳地,本申请优先对所述实时数据集进行聚类处理,生成所述标准数据集,用于更加方便的对数据进行观测。
较佳地,本申请中所述聚类处理包括:统计所述实时数据集中最大值和最小值,根据所述最大值和最小值,利用聚类算法计算所述实时数据集的聚类中心值;根据所述聚类中心值及利用模糊均值算法对所述实时数据集进行数据聚类,从而生成所述标准数据集。其中,所述聚类算法包括:
Figure PCTCN2020119124-appb-000006
其中,k表示聚类中心值,D max表示所述实时数据集中的最大值,D min表示所述实时数据集中的最小值,n表示所述实时数据集的数据总量,X(t)表示所述实时数据集中在t时刻获取的实时数据,X(t-1)表示所述实时数据集中在t-1时刻获取的实时数据。
步骤二、计算所述标准数据集的自相关函数集和偏自相关函数集,并根据所述自相关函数集和偏自相关函数集分别生成自相关函数图集与偏相关函数图集。
本申请较佳实施中,所述自相关函数指的是数据在平稳条件下所创建的一种时间序列函数,用于展示出数据之间的收敛性,所述偏自相关函数指的是描述随机过程结构特征的一种方法,用于排除中间变量数据带来的影响。
较佳地,本申请中所述自相关函数集的计算方法包括:
Figure PCTCN2020119124-appb-000007
其中,所述p x表示数据x的自相关函数,Z x表示自相关函数中数据的期望,Z t表示数据x在t时刻的期望,
Figure PCTCN2020119124-appb-000008
表示自相关函数的期望。进一步地,本申请根据所述自相关函数集中的回归线段组合形成所述自相关函数图集,用于更加形象的展示出所述实时数据之间的收敛性。
进一步地,所述偏自相关函数集的计算方法包括:
Figure PCTCN2020119124-appb-000009
其中,所述
Figure PCTCN2020119124-appb-000010
表示实时数据集中数据j的偏自相关函数,k表示实时数据集中数据的总量。根据所述偏自相关函数的计算方法的得到上述标准数据集的自回归拟合函数集,从而生成所述偏相关函数图集,用于更加清晰的描述所述实时数据之间的耦合性。
步骤三、根据所述自相关函数图集和所述偏自相关函数图集,生成数据库配额预测模型。
本申请较佳实施例中,将所述自相关函数图集以及所述偏自相关函数图集作为参数输入至预先构建的时间序列预测模型中,得到所述时间序列预测模型的趋势参数和季节性参数,根据所述趋势参数和季节性参数构建自回归、差分以及移动平均的周期函数,并根据所述自回归、差分以及移动平均的周期函数生成所述数据库配额预测模型。其中,本申请 中所述时间序列预测模型为SARIMAX模型,所述SARIMAX模型用于支持季节性时间序列的数据预测。所述趋势参数包括:趋势自回归阶数(用小写字母p表示)、趋势差分阶数(用小写字母d表示)以及趋势移动平均阶数(用小写字母q表示)。所述季节性参数包括:季节性回归参数(用大写字母P表示)、季节性差分阶数(用大写字母D表示)、季节性移动平均阶数(用大写字母Q)表示以及单个季节性的时间步数(用小写字母m表示)。进一步地,本申请中通过Python语言对所述数据库配额预测模型进行编译,并设置时间任务调度对所述趋势参数和季节性参数进行不断的更新,从而不断增强所述数据库配额预测模型的预测能力。
步骤四、利用所述数据库配额预测模型从所述用户的平台数据库中识别出需要进行空间配额的平台数据库,并对需要进行配额的所述平台数据库进行标记处理后返回给用户,从而实现所述平台数据库的自动化运维。
本申请较佳实施例中,由于数据的不断更新,会导致平台数据库内存不足的情况产生,根据所述数据库配额预测模型可以高效的识别出哪些平台数据库需要进行配额处理,即对所述平台数据库进行扩容,并给出合理的扩容大小的建议。详细地,本申请通过上述Python语言在编译时,对即将存储数据满额的平台数据库进行标记声明,即标红处理,并以列表的形式展现平台数据库存储空间的状态,从而实现平台数据库的自动化运维,可以用于帮助用户更好的把控数据资源。
可选地,在其他实施例中,平台数据库自动化运维程序还可以被分割为一个或者多个模块,一个或者多个模块被存储于存储器11中,并由一个或多个处理器(本实施例为处理器12)所执行以完成本申请,本申请所称的模块是指能够完成特定功能的一系列计算机程序指令段,用于描述平台数据库自动化运维程序在电子设备中的执行过程。
例如,参照图3所示,为本申请平台数据库自动化运维装置一实施例中的程序模块示意图,该实施例中,所述平台数据库自动化运维装置可以被分割为数据聚类处理模块10、计算模块20、模型生成模块30以及自动化运维模块40,示例性地:
所述数据聚类处理模块10用于:获取用户的平台数据库中所产生的实时数据集,对所述实时数据集进行聚类处理,生成标准数据集。
所述计算模块20用于:计算所述标准数据集的自相关函数集和偏自相关函数集,并根据所述自相关函数集和偏自相关函数集分别生成自相关函数图集与偏相关函数图集。
所述模型生成模块30用于:根据所述自相关函数图集和所述偏自相关函数图集,生成数据库配额预测模型。
所述自动化运维模块40用于:利用所述数据库配额预测模型从所述用户的平台数据库中识别出需要进行空间配额的平台数据库,并对需要进行配额的所述平台数据库进行标记处理后返回给用户,从而实现所述平台数据库的自动化运维。
上述数据聚类处理模块10、计算模块20、模型生成模块30以及自动化运维模块40等程序模块被执行时所实现的功能或操作步骤与上述实施例大体相同,在此不再赘述。
此外,本申请实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有平台数据库自动化运维程序,所述平台数据库自动化运维程序可被一个或多个处理器执行,以实现如下操作:
获取用户的平台数据库中所产生的实时数据集,对所述实时数据集进行聚类处理,生成标准数据集;
计算所述标准数据集的自相关函数集和偏自相关函数集,并根据所述自相关函数集和偏自相关函数集分别生成自相关函数图集与偏相关函数图集;
根据所述自相关函数图集和所述偏自相关函数图集,生成数据库配额预测模型;
利用所述数据库配额预测模型从所述用户的平台数据库中识别出需要进行空间配额的平台数据库,并对需要进行配额的所述平台数据库进行标记处理后返回给用户,从而实现所述平台数据库的自动化运维。
所述计算机可读存储介质可以是非易失性,也可以是易失性。
本申请计算机可读存储介质具体实施方式与上述平台数据库自动化运维装置和方法各实施例基本相同,在此不作累述。
需要说明的是,上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。并且本文中的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、装置、物品或者方法不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、装置、物品或者方法所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、装置、物品或者方法中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种平台数据库自动化运维方法,所述方法包括:
    获取用户的平台数据库所产生的实时数据集,对所述实时数据集进行聚类处理,生成标准数据集;
    计算所述标准数据集的自相关函数集和偏自相关函数集,并根据所述自相关函数集和偏自相关函数集分别生成自相关函数图集与偏相关函数图集;
    根据所述自相关函数图集和所述偏自相关函数图集,生成数据库配额预测模型;
    利用所述数据库配额预测模型从所述用户的平台数据库中识别出需要进行空间配额的平台数据库,并对需要进行配额的所述平台数据库进行标记处理后返回给用户,从而实现所述平台数据库的自动化运维。
  2. 如权利要求1所述的平台数据库自动化运维方法,其中,所述对所述实时数据集进行聚类处理,生成标准数据集,包括:
    统计所述实时数据集中的最大值和最小值,根据所述最大值和最小值利用聚类算法计算所述实时数据集的聚类中心值;
    根据所述聚类中心值及利用模糊均值算法对所述实时数据集进行数据聚类,从而生成所述标准数据集。
  3. 如权利要求2所述的平台数据库自动化运维方法,其中,所述聚类算法包括:
    Figure PCTCN2020119124-appb-100001
    其中,k表示聚类中心值,D max表示所述实时数据集中的最大值,D min表示所述实时数据集中的最小值,n表示所述实时数据集的数据总量,X(t)表示所述实时数据集中在t时刻获取的实时数据,X(t-1)表示所述实时数据集中在t-1时刻获取的实时数据。
  4. 如权利要求1所述的平台数据库自动化运维方法,其中,所述自相关函数集的计算方法包括:
    Figure PCTCN2020119124-appb-100002
    其中,所述p x表示实时数据集中数据x的自相关函数,Z x表示数据x的期望,Z t表示数据x在t时刻的期望,
    Figure PCTCN2020119124-appb-100003
    表示自相关函数的期望;
    所述偏自相关函数集的计算方法包括:
    Figure PCTCN2020119124-appb-100004
    其中,所述
    Figure PCTCN2020119124-appb-100005
    表示实时数据集中数据j的偏自相关函数,k表示实时数据集中数据的总量。
  5. 如权利要求1至4中任意一项所述的平台数据库自动化运维方法,其中,所述根据所述自相关函数图集和所述偏自相关函数图集,生成数据库配额预测模型,包括:
    将所述自相关函数图集以及所述偏自相关函数图集作为参数输入至预先构建的时间序列预测模型中,得到所述时间序列预测模型的趋势参数和季节性参数,根据所述趋势参数和季节性参数构建自回归、差分以及移动平均的周期函数,并根据所述自回归、差分以及移动平均的周期函数生成所述数据库配额预测模型。
  6. 如权利要求1所述的平台数据库自动化运维方法,其中,所述对需要进行配额的所述平台数据库进行标记处理后返回给用户,从而实现所述平台数据库的自动化运维,包括:
    通过Python语言在编译时,对即将存储数据满额的平台数据库进行标记声明,即标红处理,并以列表的形式展现平台数据库存储空间的状态,从而实现平台数据库的自动化运维。
  7. 一种电子设备,所述电子设备包括存储器和处理器,所述存储器上存储有可在所 述处理器上运行的平台数据库自动化运维程序,所述平台数据库自动化运维程序被所述处理器执行时实现如下步骤:
    获取用户的平台数据库所产生的实时数据集,对所述实时数据集进行聚类处理,生成标准数据集;
    计算所述标准数据集的自相关函数集和偏自相关函数集,并根据所述自相关函数集和偏自相关函数集分别生成自相关函数图集与偏相关函数图集;
    根据所述自相关函数图集和所述偏自相关函数图集,生成数据库配额预测模型;
    利用所述数据库配额预测模型从所述用户的平台数据库中识别出需要进行空间配额的平台数据库,并对需要进行配额的所述平台数据库进行标记处理后返回给用户,从而实现所述平台数据库的自动化运维。
  8. 如权利要求7所述的电子设备,其中,所述对所述实时数据集进行聚类处理,生成标准数据集,包括:
    统计所述实时数据集中的最大值和最小值,根据所述最大值和最小值利用聚类算法计算所述实时数据集的聚类中心值;
    根据所述聚类中心值及利用模糊均值算法对所述实时数据集进行数据聚类,从而生成所述标准数据集。
  9. 如权利要求8所述的电子设备,其中,所述聚类算法包括:
    Figure PCTCN2020119124-appb-100006
    其中,k表示聚类中心值,D max表示所述实时数据集中的最大值,D min表示所述实时数据集中的最小值,n表示所述实时数据集的数据总量,X(t)表示所述实时数据集中在t时刻获取的实时数据,X(t-1)表示所述实时数据集中在t-1时刻获取的实时数据。
  10. 如权利要求7所述的电子设备,其中,所述自相关函数集的计算方法包括:
    Figure PCTCN2020119124-appb-100007
    其中,所述p x表示实时数据集中数据x的自相关函数,Z x表示数据x的期望,Z t表示数据x在t时刻的期望,
    Figure PCTCN2020119124-appb-100008
    表示自相关函数的期望;
    所述偏自相关函数集的计算方法包括:
    Figure PCTCN2020119124-appb-100009
    其中,所述
    Figure PCTCN2020119124-appb-100010
    表示实时数据集中数据j的偏自相关函数,k表示实时数据集中数据的总量。
  11. 如权利要求7至10中任意一项所述的电子设备,其中,所述根据所述自相关函数图集和所述偏自相关函数图集,生成数据库配额预测模型,包括:
    将所述自相关函数图集以及所述偏自相关函数图集作为参数输入至预先构建的时间序列预测模型中,得到所述时间序列预测模型的趋势参数和季节性参数,根据所述趋势参数和季节性参数构建自回归、差分以及移动平均的周期函数,并根据所述自回归、差分以及移动平均的周期函数生成所述数据库配额预测模型。
  12. 如权利要求7所述的电子设备,其中,所述对需要进行配额的所述平台数据库进行标记处理后返回给用户,从而实现所述平台数据库的自动化运维,包括:
    通过Python语言在编译时,对即将存储数据满额的平台数据库进行标记声明,即标红处理,并以列表的形式展现平台数据库存储空间的状态,从而实现平台数据库的自动化运维。
  13. 一种计算机可读存储介质,所述计算机可读存储介质上存储有平台数据库自动化运维程序,所述平台数据库自动化运维程序可被一个或者多个处理器执行,以实现如下所述的平台数据库自动化运维方法的步骤:
    获取用户的平台数据库所产生的实时数据集,对所述实时数据集进行聚类处理,生成标准数据集;
    计算所述标准数据集的自相关函数集和偏自相关函数集,并根据所述自相关函数集和偏自相关函数集分别生成自相关函数图集与偏相关函数图集;
    根据所述自相关函数图集和所述偏自相关函数图集,生成数据库配额预测模型;
    利用所述数据库配额预测模型从所述用户的平台数据库中识别出需要进行空间配额的平台数据库,并对需要进行配额的所述平台数据库进行标记处理后返回给用户,从而实现所述平台数据库的自动化运维。
  14. 如权利要求13所述的计算机可读存储介质,其中,所述对所述实时数据集进行聚类处理,生成标准数据集,包括:
    统计所述实时数据集中的最大值和最小值,根据所述最大值和最小值利用聚类算法计算所述实时数据集的聚类中心值;
    根据所述聚类中心值及利用模糊均值算法对所述实时数据集进行数据聚类,从而生成所述标准数据集。
  15. 如权利要求14所述的计算机可读存储介质,其中,所述聚类算法包括:
    Figure PCTCN2020119124-appb-100011
    其中,k表示聚类中心值,D max表示所述实时数据集中的最大值,D min表示所述实时数据集中的最小值,n表示所述实时数据集的数据总量,X(t)表示所述实时数据集中在t时刻获取的实时数据,X(t-1)表示所述实时数据集中在t-1时刻获取的实时数据。
  16. 如权利要求13所述的计算机可读存储介质,其中,所述自相关函数集的计算方法包括:
    Figure PCTCN2020119124-appb-100012
    其中,所述p x表示实时数据集中数据x的自相关函数,Z x表示数据x的期望,Z t表示数据x在t时刻的期望,
    Figure PCTCN2020119124-appb-100013
    表示自相关函数的期望;
    所述偏自相关函数集的计算方法包括:
    Figure PCTCN2020119124-appb-100014
    其中,所述
    Figure PCTCN2020119124-appb-100015
    表示实时数据集中数据j的偏自相关函数,k表示实时数据集中数据的总量。
  17. 如权利要求13至16中任意一项所述的计算机可读存储介质,其中,所述根据所述自相关函数图集和所述偏自相关函数图集,生成数据库配额预测模型,包括:
    将所述自相关函数图集以及所述偏自相关函数图集作为参数输入至预先构建的时间序列预测模型中,得到所述时间序列预测模型的趋势参数和季节性参数,根据所述趋势参数和季节性参数构建自回归、差分以及移动平均的周期函数,并根据所述自回归、差分以及移动平均的周期函数生成所述数据库配额预测模型。
  18. 如权利要求13所述的计算机可读存储介质,其中,所述对需要进行配额的所述平台数据库进行标记处理后返回给用户,从而实现所述平台数据库的自动化运维,包括:
    通过Python语言在编译时,对即将存储数据满额的平台数据库进行标记声明,即标红处理,并以列表的形式展现平台数据库存储空间的状态,从而实现平台数据库的自动化运维。
  19. 一种平台数据库自动化运维装置,所述平台数据库自动化运维装置包括:
    数据聚类处理模块,用于获取用户的平台数据库中所产生的实时数据集,对所述实时数据集进行聚类处理,生成标准数据集;
    计算模块,用于计算所述标准数据集的自相关函数集和偏自相关函数集,并根据所述 自相关函数集和偏自相关函数集分别生成自相关函数图集与偏相关函数图集;
    模型生成模块,用于根据所述自相关函数图集和所述偏自相关函数图集,生成数据库配额预测模型;
    自动化运维模块,用于利用所述数据库配额预测模型从所述用户的平台数据库中识别出需要进行空间配额的平台数据库,并对需要进行配额的所述平台数据库进行标记处理后返回给用户,从而实现所述平台数据库的自动化运维。
  20. 如权利要求19所述的平台数据库自动化运维装置,其中,所述自相关函数集的计算方法包括:
    Figure PCTCN2020119124-appb-100016
    其中,所述p x表示实时数据集中数据x的自相关函数,Z x表示数据x的期望,Z t表示数据x在t时刻的期望,
    Figure PCTCN2020119124-appb-100017
    表示自相关函数的期望;
    所述偏自相关函数集的计算方法包括:
    Figure PCTCN2020119124-appb-100018
    其中,所述
    Figure PCTCN2020119124-appb-100019
    表示实时数据集中数据j的偏自相关函数,k表示实时数据集中数据的总量。
PCT/CN2020/119124 2020-01-10 2020-09-29 平台数据库自动化运维方法、装置及计算机可读存储介质 WO2021139276A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010034180.0A CN111241066B (zh) 2020-01-10 2020-01-10 平台数据库自动化运维方法、装置及计算机可读存储介质
CN202010034180.0 2020-01-10

Publications (1)

Publication Number Publication Date
WO2021139276A1 true WO2021139276A1 (zh) 2021-07-15

Family

ID=70864527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119124 WO2021139276A1 (zh) 2020-01-10 2020-09-29 平台数据库自动化运维方法、装置及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN111241066B (zh)
WO (1) WO2021139276A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111241066B (zh) * 2020-01-10 2024-06-25 平安科技(深圳)有限公司 平台数据库自动化运维方法、装置及计算机可读存储介质
CN112200377A (zh) * 2020-10-16 2021-01-08 国能日新科技股份有限公司 基于sarimax模型的光伏中长期发电量预报方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105550323A (zh) * 2015-12-15 2016-05-04 北京国电通网络技术有限公司 一种分布式数据库负载均衡预测方法和预测分析器
CN107610464A (zh) * 2017-08-11 2018-01-19 河海大学 一种基于高斯混合时间序列模型的轨迹预测方法
US20190334786A1 (en) * 2018-04-30 2019-10-31 Hewlett Packard Enterprise Development Lp Predicting Workload Patterns in a Data Storage Network
CN111241066A (zh) * 2020-01-10 2020-06-05 平安科技(深圳)有限公司 平台数据库自动化运维方法、装置及计算机可读存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106250306B (zh) * 2016-08-18 2019-05-17 电子科技大学 一种适用于企业级运维自动化平台的性能预测方法
CN107241384B (zh) * 2017-05-03 2020-11-03 复旦大学 一种基于多云架构的内容分发服务资源优化调度方法
CN110278102A (zh) * 2018-03-15 2019-09-24 勤智数码科技股份有限公司 一种it自动化运维系统和方法
CN109587713B (zh) * 2018-12-05 2022-01-11 广州数锐智能科技有限公司 一种基于arima模型的网络指标预测方法、装置及存储介质
CN109766234A (zh) * 2018-12-11 2019-05-17 国网甘肃省电力公司信息通信公司 基于时间序列模型的磁盘存储容量预测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105550323A (zh) * 2015-12-15 2016-05-04 北京国电通网络技术有限公司 一种分布式数据库负载均衡预测方法和预测分析器
CN107610464A (zh) * 2017-08-11 2018-01-19 河海大学 一种基于高斯混合时间序列模型的轨迹预测方法
US20190334786A1 (en) * 2018-04-30 2019-10-31 Hewlett Packard Enterprise Development Lp Predicting Workload Patterns in a Data Storage Network
CN111241066A (zh) * 2020-01-10 2020-06-05 平安科技(深圳)有限公司 平台数据库自动化运维方法、装置及计算机可读存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIANG, JIONGCONG: "Research and Application of Clothing Sales Forecasting System Based on Time Series", INFORMATION SCIENCE AND TECHNOLOGY, CHINESE MASTER’S THESES FULL-TEXT DATABASE, 15 October 2015 (2015-10-15), pages 1 - 74, XP055827516, ISSN: 1674-0246 *
WANG, PENGFEI: "An Optimization Algorithm for Fuzzy Time Series Model Based on Autocorrelation Function", BASIC SCIENCES, CHINA MASTER’S THESES FULL-TEXT DATABASE, 15 February 2016 (2016-02-15), pages 1 - 48, XP055827519, ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN111241066B (zh) 2024-06-25
CN111241066A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
WO2020233307A1 (zh) 任务数据处理方法、装置、计算机设备及存储介质
US20210081725A1 (en) Method, apparatus, server, and user terminal for constructing data processing model
WO2021139276A1 (zh) 平台数据库自动化运维方法、装置及计算机可读存储介质
CN109816321A (zh) 一种服务管理方法、装置、设备和计算机可读存储介质
CN109522923B (zh) 客户地址聚合方法、装置及计算机可读存储介质
WO2019056793A1 (zh) 简历识别装置、方法及计算机可读存储介质
WO2021217659A1 (zh) 多源异构数据的处理方法、计算机设备、存储介质
CN109471857A (zh) 基于sql语句的数据修改方法、装置及存储介质
WO2020248365A1 (zh) 智能分配模型训练内存方法、装置及计算机可读存储介质
US20210133657A1 (en) Task adjustment method, device, equipment and non-volatile storage medium
WO2021068565A1 (zh) 表格智能查询方法、装置、电子设备及计算机可读存储介质
CN112507098B (zh) 问题处理方法、装置、电子设备、存储介质及程序产品
WO2020164204A1 (zh) 文本模板识别方法、装置及计算机可读存储介质
WO2021143055A1 (zh) 智能化的数据优化方法、装置、电子设备及存储介质
US11010393B2 (en) Library search apparatus, library search system, and library search method
CN115221337A (zh) 数据编织处理方法、装置、电子设备及可读存储介质
CN110764745B (zh) 变量的传输和收集方法、装置及计算机可读存储介质
CN116450723A (zh) 数据提取方法、装置、计算机设备及存储介质
CN111339064A (zh) 数据倾斜矫正方法、装置及计算机可读存储介质
CN115905371A (zh) 数据趋势分析方法、装置、设备及计算机可读存储介质
TW202006617A (zh) 雲端自助分析平台與其分析方法
CN111309821B (zh) 基于图数据库的任务调度方法、装置及电子设备
WO2021042528A1 (zh) Noe4j图数据库的更新维护方法、装置及计算机可读存储介质
CN114971284A (zh) 案件分配方法、装置及计算机设备
CN110991162A (zh) 基于浏览器的自然语言处理方法及装置、设备、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911744

Country of ref document: EP

Kind code of ref document: A1