WO2021139136A1 - 一种载能复合气体介质烧结的协同减排方法 - Google Patents

一种载能复合气体介质烧结的协同减排方法 Download PDF

Info

Publication number
WO2021139136A1
WO2021139136A1 PCT/CN2020/105364 CN2020105364W WO2021139136A1 WO 2021139136 A1 WO2021139136 A1 WO 2021139136A1 CN 2020105364 W CN2020105364 W CN 2020105364W WO 2021139136 A1 WO2021139136 A1 WO 2021139136A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
sintering
section
temperature
energy
Prior art date
Application number
PCT/CN2020/105364
Other languages
English (en)
French (fr)
Inventor
甘敏
范晓慧
季志云
汪国靖
周志安
周浩宇
王兆才
陈许玲
黄晓贤
赵元杰
Original Assignee
中南大学
中冶长天国际工程有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学, 中冶长天国际工程有限责任公司 filed Critical 中南大学
Priority to US17/418,276 priority Critical patent/US20220213565A1/en
Publication of WO2021139136A1 publication Critical patent/WO2021139136A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/004Making spongy iron or liquid steel, by direct processes in a continuous way by reduction from ores
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0046Making spongy iron or liquid steel, by direct processes making metallised agglomerates or iron oxide
    • C21B13/0053On a massing grate
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/26Increasing the gas reduction potential of recycled exhaust gases by adding additional fuel in recirculation pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/80Interaction of exhaust gases produced during the manufacture of iron or steel with other processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0034Regulation through control of a heating quantity such as fuel, oxidant or intensity of current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27MINDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
    • F27M2003/00Type of treatment of the charge
    • F27M2003/04Sintering

Definitions

  • the present invention relates to a sintering method, in particular to a collaborative emission reduction method using energy-carrying composite gas medium sintering, and specifically relates to a method of dividing a sintered material surface into sections and introducing different sections according to the characteristics and heat requirements of different sections.
  • the energy-carrying gas replaces traditional air to achieve energy saving and emission reduction, which belongs to the field of iron and steel metallurgy sintering technology.
  • the hot-air sintering technology uses the hot waste gas to cool the sintered ore as the energy-carrying heat source, which is extracted by a high-temperature fan and introduced into the hot-air hood after the ignition furnace for sintering, thereby improving the lack of heat in the upper sintering material layer and achieving energy saving and consumption reduction.
  • Gas fuel injection technology is a kind of sintering technology in which gas fuel is added to the middle and upper part of the material layer on the basis of reducing the solid fuel ratio. This technology can well optimize the thermal state of the material layer, improve the mineralization conditions, and realize the Optimizing the fuel structure and improving the quality of the two aspects jointly reduce the solid fuel consumption.
  • the Shougang Jingtang site showed (Study on spraying steam on the sintering surface to improve fuel combustion efficiency [J], Pei Yuandong), spraying appropriate concentration of water vapor in the middle of the sintering layer can improve combustion conditions, increase combustion efficiency, and effectively reduce CO emissions .
  • spraying appropriate concentration of water vapor in the middle of the sintering layer can improve combustion conditions, increase combustion efficiency, and effectively reduce CO emissions .
  • the front of the water vapor injection position will have an adverse effect on the red hot layer, and the back of the injection position will have an adverse effect on the sinter zone, which greatly limits the water vapor
  • the purpose of the present invention is to provide a method for sintering by using an energy-carrying composite gas medium to replace the conventional air in the prior art, which can reduce the consumption of solid fuel to a greater extent and achieve simultaneous implementation. Inhibit the generation of pollutants and degradation of pollutants, so that CO 2 greenhouse gases and CO, NO X , SO X , Dioxin and other pollutants can be effectively coordinated to reduce emissions, forming a whole process of sintering with high efficiency and energy saving and emission reduction. ⁇ The system.
  • the present invention provides a coordinated emission reduction method for energy-carrying composite gas medium sintering.
  • the method is based on the difference in flue gas composition and temperature characteristics and heat requirements in different sections of the sintering machine.
  • the energy-carrying composite gas medium of different composition and heat is respectively introduced into the sintering material surface of different sections in the inner section to replace the traditional air for sintering, so as to reduce energy consumption and emission reduction.
  • the technical scheme of the present invention introduces energy-carrying composite gases of different composition and heat into the sintering fabrics in different areas of the sintering machine, instead of traditional air for sintering, so as to meet the requirements for gas composition and heat of each area and achieve simultaneous sintering.
  • the so-called energy-carrying composite gas is a gas medium that has a certain temperature and contains multiple components. The components include combustible components and combustion-supporting components.
  • the sintering material surface in the sintering machine is divided into an ignition section, a heat preservation section, an intermediate section, a flue gas heating section and a machine tail section in order from the head to the tail.
  • the technical scheme of the present invention divides the sintering material surface in the sintering machine into five regions in sequence according to the flue gas composition and temperature characteristics of different sections and the difference in the heat demand of the corresponding material layer.
  • ignition section low wind box flue gas temperature, high oxygen content, low water content
  • insulation section low wind box flue gas temperature, low SO 2 content, high NO X and CO content, high water content, material layer High heat demand
  • middle section low wind box flue gas temperature, high SO 2 , NO X and CO content, high dioxin content, high water content, medium heat demand of the material layer
  • heating section high wind box flue gas temperature, SO 2 The content is high, the dust content is high, and the heat demand of the material layer is low
  • the tail section the wind box flue gas temperature is high, the oxygen content is high, and the water content is low.
  • the ignition section occupies 1 to 2 bellows area of the sintering machine head.
  • the heat preservation section occupies 1/6 ⁇ 1/4 of the total length of the sintering machine after the ignition section.
  • the middle section is the area from the end of heat preservation to before the flue gas temperature rises (accounting for 1/3 ⁇ 5/12 of the total length of the sintering machine).
  • the flue gas heating section is the area where the flue gas temperature starts to rise to the highest temperature.
  • the tail section of the sintering machine is 2 to 3 bellows areas at the end of the sintering machine.
  • the preferred solution is to introduce different energy-carrying composite gas media in different sections according to the different smoke composition and temperature characteristics and heat requirements of different sections of the sintered fabric, so as to achieve the best sintering state in each section, so as to save energy and save energy. Reduce emissions at the same time reaching the best level.
  • hot exhaust gas is introduced into the sintering surface of the ignition section for ignition; hot exhaust gas and hydrogen-rich gas composite gas are introduced into the sintering surface of the heat preservation section; hydrogen-rich gas and steam composite gas are introduced into the sintering surface of the middle section;
  • the sintered material surface of the gas heating section is introduced into the high-temperature flue gas of the tail section of the machine and the flue gas of the ignition section and/or the heat preservation section.
  • a more preferred solution is to introduce hot exhaust gas with a temperature of 250 to 350°C and an oxygen content (volume percentage content) of not less than 20% in the ignition section for ignition.
  • the use of hot exhaust gas with high oxygen content and higher temperature can effectively increase the theoretical combustion temperature and overcome the influence of the deterioration of the quality of sintered ore caused by insufficient ignition due to the fluctuation of the heating value of the ignition gas.
  • a more preferred solution is to introduce hot exhaust gas with a temperature of 200-300°C and an oxygen content (volume percentage content) of not less than 20% into the sintered material surface of the heat preservation section, and at the same time spray hydrogen-enriched gas by cascade spraying.
  • the two energy-carrying gases can meet the heat demand of the upper part of the cascade to a greater extent, which is beneficial to further reduce the consumption of solid fossil fuels.
  • the hot air can keep the sintered material surface at a certain temperature, which can prevent subsequent water vapor to a certain extent. Condensation sprayed on the sintered material surface.
  • a heat preservation cover is arranged in the heat preservation section, and hot exhaust gas is introduced into the heat preservation cover for heat preservation. At the same time, the step spraying method is used to spray hydrogen-rich gas in the heat preservation cover.
  • a more preferred solution is to spray hydrogen-rich gas on the sintering material surface in the middle section, and at the same time spray water vapor with a temperature of not less than 120°C and a pressure of not less than 0.2MPa by step spraying, which is coupled with the temperature of the flue gas in the middle section.
  • Combustion by spraying gas above the combustion zone can effectively prevent low-temperature water vapor from directly contacting the combustion zone, which is beneficial to advance the water vapor injection interval, improve combustion efficiency to a greater extent, and reduce CO emissions.
  • the temperature of the sintered material surface in the flue gas heating section is not less than 120°C
  • the oxygen content (volume percentage content) is not less than 17%
  • the CO 2 and water vapor content (volume percentage content) are not higher than 4% of the high-temperature flue gas from the tail section of the engine is mixed with the flue gas of the ignition section and/or the insulation section.
  • the characteristics of the flue gas in the flue gas heating section are high flue gas temperature, high SO 2 content, high dust content, and low heat demand of the material layer.
  • a circulating fume hood is installed in the flue gas heating section to circulate the high temperature flue gas in the tail section and the flue gas from the ignition section or the heat preservation section to the heating section circulating fume hood to ensure the gas temperature, oxygen content and CO 2 and CO 2 and If the content of water vapor is insufficient, the air is added to supplement oxygen.
  • a further preferred solution is to spray hydrogen-rich gas in the sintered material surface of the heat preservation section by stepwise spraying, and the volume percentage concentration of the hydrogen-rich gas along the direction of movement of the sintering machine is uniformly reduced from 0.5 to 0.60% to 0.2 to 0.30%.
  • the cascade spraying of the gas adopts a decreasing method, which can meet the actual situation of the increasing heat demand of the material layer from bottom to top due to the self-storage function, which is conducive to homogenization and sintering.
  • the hydrogen-rich fuel gas injected in the heat preservation section is a hydrocarbon gas with a molar molecular weight of not less than 16. Specifically, such as methane, ethane, etc.
  • water vapor is sprayed on the sintered material surface in the middle section by step spraying, and the volume percentage concentration of water vapor is uniformly increased from 0.3 to 0.4% to 0.7 to 0.9% along the moving direction of the sintering machine.
  • This method can overcome the reduction of the effective amount of water vapor that condenses to the combustion zone due to the long stroke of the water vapor to participate in the reaction.
  • the dioxins are concentrated in the second half of the middle section, and the water vapor is sprayed in cascades, which can further suppress the dioxins.
  • Water vapor is a common workshop water vapor, which can come from the water vapor generated by the self-heating power plant and waste heat recovery boiler of iron and steel enterprises.
  • a more preferred solution is to spray hydrogen-rich gas with a volume percentage concentration of 0.20 ⁇ 0.50% on the surface of the sintered material in the middle section.
  • the hydrogen-rich fuel gas includes at least one of fuel gas such as hydrocarbon gas and hydrogen gas.
  • the hot exhaust gas is a medium and low temperature exhaust gas produced by cooling sinter, or a medium and low temperature exhaust gas produced by burning blast furnace gas or converter gas.
  • the temperature and composition of this hot exhaust gas are common in the prior art.
  • the amount of solid fuel in the material layer can be reduced, and the solid fuel consumption can be reduced by 10% to 20%.
  • the technical scheme of the present invention is based on the different characteristics of the flue gas composition and temperature in different sections of sintering and the different heat requirements, and the energy-carrying composite gas medium is reasonably designed to replace the conventional air for sintering, and the gas composition of the sintering material surface is changed to achieve the optimal
  • the sintered state of the sintering state can achieve the purpose of synergistically reducing energy consumption and emission reduction.
  • hot exhaust gas in the ignition section for ignition can effectively increase the theoretical combustion temperature and overcome the impact of insufficient ignition due to the fluctuation of the heating value of the ignition gas to deteriorate the quality of the sintered ore;
  • hot exhaust gas is introduced in the heat preservation section and synchronized stepwise injection of hydrogen enrichment Gas, under the combined action of the two, can meet the heat demand of the upper part of the cascade to a greater extent, which is beneficial to further reduce the consumption of solid fossil fuel;
  • the middle section is coupled with the injection of hydrogen-rich gas on the basis of the cascade injection of water vapor, and the combustion of the gas above the combustion zone It can effectively prevent low-temperature water vapor from directly contacting the combustion zone, which is beneficial to advance the water vapor injection interval, improve combustion efficiency to a greater extent, and reduce CO emissions.
  • dioxins are released in the second half of the middle section, and water vapor is sprayed in cascades. Plus, it can further inhibit the generation and conversion of dioxins; the high-temperature flue gas of 2 ⁇ 3 wind boxes in the tail section and the flue gas of the ignition section and/or the heat preservation section are circulated to the circulating fume hood of the heating section.
  • part of the flue gas is reused and the NO and CO in the flue gas are simultaneously and effectively degraded, which is conducive to further reducing the emission of flue gas and pollutants.
  • the technical scheme of the present invention introduces corresponding energy-carrying gas, hot exhaust gas, and water vapor according to the flue gas composition (including the characteristics of corresponding pollutant generation and emission), temperature characteristics and heat requirements of different sections of the sintered fabric.
  • the technical scheme of the present invention introduces an energy-carrying composite gas medium into the sintering surface to change the combustion atmosphere of the sintering surface to achieve flaming combustion of solid fuel, promote fuel combustion speed and increase heat utilization rate, and reduce combustion process pollution The production of things.
  • the technical scheme of the present invention combines the tail gas with high temperature, high oxygen content, and low water content with low temperature, high oxygen content, low water content and ignition section flue gas as well as low temperature, low SO 2 content, NO X and
  • the flue gas of the insulation section with high CO content and high water content is combined into an energy-carrying composite gas medium with suitable temperature and water content, and is circulated to the heating section, which can recycle part of the flue gas without affecting the sintering process and the quality of the sinter. Utilize and simultaneously effectively degrade NO and CO in the flue gas, which is beneficial to further reduce the emission of flue gas and pollutants.
  • the use of energy-carrying composite gas sintering collaborative emission reduction technology can reduce CO 2 15 ⁇ 25%, CO 40 ⁇ 50%, NO X 20 ⁇ 40%, SO X 5 ⁇ 20%, two 50 ⁇ 80% of oxin, the emission reduction effect is significant, which greatly reduces the difficulty of end-treatment tasks.
  • Fig. 1 is a schematic diagram of the method for synergistic emission reduction of energy-carrying composite gas sintering according to the present invention.
  • the sintering machine has a total area of 450m 2 and a total of 24 wind boxes.
  • the hot exhaust gas (temperature 250°C, O 2 content 20.90%) of the ring cooler is introduced into the ignition hood of the ignition section (accounting for 2/24 of the length of the sintering machine) on the cloth and sintering trolley. Ignite with hot air. Introduce hot exhaust gas (temperature 200°C, O 2 content 20.90%) into the heat preservation cover of the heat preservation section (accounting for 1/6 of the length of the sintering machine) for heat preservation, and spray natural gas in the heat preservation cover step by step. 0.60% is uniformly reduced to 0.3%.
  • the use of energy-carrying composite gas sintering collaborative emission reduction technology can reduce the coke powder ratio by 10.71%, reduce CO 2 15%, CO 40%, NO X 30%, SO X 7%, and dioxin 50%.
  • the sintering machine has a total area of 450m 2 and a total of 24 wind boxes.
  • the hot exhaust gas of the ring cooler and the hot exhaust gas of the blast furnace gas (temperature 350°C, O 2 content 20.0%) are introduced into the ignition hood of the ignition section (accounting for 1 in the length of the sintering machine) on the cloth and sintering trolley. /24) Hot air ignition is carried out inside. Introduce hot exhaust gas (temperature 300°C, O 2 content 20.0%) into the insulation cover of the insulation section (occupying 1/4 of the length of the sintering machine) for insulation, and spray natural gas into the insulation cover step by step, and the concentration along the length of the sintering machine 0.50% is uniformly reduced to 0.20%.
  • the use of energy-carrying composite gas sintering collaborative emission reduction technology can reduce the coke powder ratio by 10.71%, reduce CO 2 16%, CO 43%, NO X 32%, SO X 8%, and dioxin 55%.
  • the sintering machine has a total area of 450m 2 and a total of 24 wind boxes.
  • the hot exhaust gas of the ring cooling machine and the hot exhaust gas of blast furnace gas combustion (temperature 300°C, O 2 content 20.40%) are introduced into the ignition hood of the ignition section (accounting for the length of the sintering machine) on the cloth and sintering trolley. 2/24) for hot air ignition.
  • Introduce hot exhaust gas (temperature 250°C, O 2 content 20.40%) into the heat preservation cover of the heat preservation section (occupying 1/4 of the length of the sintering machine) for heat preservation, and spray natural gas into the heat preservation cover step by step. 0.60% is uniformly reduced to 0.30%.
  • the flue gas from the tail section of the sintering machine No. 23-24 and the ignition section wind box is circulated to the heating section (No. 17-22 wind box) after dust removal by the sintering machine.
  • the temperature of the gas entering the material surface is 120 °C, O
  • the content of 2 is 17.0%
  • CO 2 is 4%
  • water vapor is 4%.
  • the use of energy-carrying composite gas sintering collaborative emission reduction technology can reduce the coke powder ratio by 16.07%, reduce CO 2 20%, CO 45%, NO X 35%, SO X 10%, and 60 dioxin %.
  • the mixing ratio of 59.36% of iron ore, 4.39% of dolomite, 5.40% of limestone, 3.46% of quicklime, 13.85% of sintering return, 9.23% of blast furnace return, and 4.31% of coke powder (the chemical composition of the sintered ore is TFe56. 19%, R1.80, MgO1.80%, CaO10.88%).
  • the sintering machine has a total area of 450m 2 and a total of 24 wind boxes. After the raw materials are mixed and granulated, the cloth and sintering trolley are ignited by conventional air (the ignition cover occupies 2/24 of the length of the sintering machine), and then the conventional air sintering is carried out.
  • the coke powder ratio at this time is 4.31%.
  • the sintering machine has a total area of 450m 2 and a total of 24 wind boxes.
  • the hot exhaust gas of the ring cooler (temperature 350°C, O 2 content 20.90%) is introduced into the ignition hood of the ignition section (accounting for 2/24 of the length of the sintering machine) on the cloth and sintering trolley. Ignite with hot air, and then perform conventional air sintering. Compared with ordinary sintering, the use of hot air ignition can reduce the coke powder ratio by 0%, reduce CO 2 1.5%, CO 1.5%, NO X 1.5%, SO X 0.5%, and dioxin 1.5%.
  • the sintering machine has a total area of 450m 2 and a total of 24 wind boxes.
  • the cloth and the sintering trolley are ignited with conventional air (the ignition cover occupies 2/24 of the length of the sintering machine), and sprayed into the middle of the sintering machine (the length of the sintering machine is 1/3 ⁇ 3/5) 0.5% water vapor.
  • the coke powder ratio can be reduced by 2.68%, CO 2 4%, CO 8%, NO X 4%, SO X 2%, and dioxin 25%.
  • the sintering machine has a total area of 450m 2 and a total of 24 wind boxes.
  • the cloth and the sintering trolley are ignited by conventional air (the ignition cover occupies 2/24 of the length of the sintering machine), to the front of the sintering machine (1/6 ⁇ 1/2 of the length of the sintering machine) Inject 0.40% natural gas.
  • the coke powder ratio can be reduced by 5.36%, CO 2 8%, CO 9%, NO X 13%, SO X 4%, and dioxin 8%.

Abstract

本发明公开了一种载能复合气体烧结协同减排的方法,将烧结料面从烧结机的机头到机尾依次分成点火段、保温段、中间段、烟气升温段和机尾段,根据不同区段烟气组成和温度特征以及热量需求,在点火段导入热废气进行点火,在保温段导入热废气并同步梯级喷加富氢燃气,中间段在喷加富氢燃气的基础上耦合梯级喷加水蒸汽,将机尾段高温烟气与点火段和/或保温段的烟气循环至升温段。采用载能复合气体烧结协同减排的方法后,能够同步实现烧结过程固体化石燃料更大程度降耗和抑制污染物生成/分解生成污染物,相对常规空气烧结,可实现减排CO215~25%、CO40~50%、NOX20~40%、SOX5~20%、二恶英50~80%。

Description

一种载能复合气体介质烧结的协同减排方法 技术领域
本发明涉及一种烧结方法,特别涉及一种利用载能复合气体介质烧结的协同减排方法,具体涉及一种将烧结料面划分区段,并根据不同区段特征及热量需求,分别导入不同的载能气体替代传统的空气,以实现节能减排的方法,属于钢铁冶金烧结技术领域。
背景技术
高能耗和高污染是制约传统工业可持续性发展的重要因素,钢铁工业体现尤为明显。钢铁工业前端工序——铁矿烧结,因其能耗高、污染负荷大,给钢铁工业绿色制造带来严峻的挑战。传统烧结过程中一般采用焦炭、无烟煤等固体化石燃料作为热量来源,且其占比高达烧结能耗的75%~80%。化石能源的消耗正是烧结烟气中CO 2、SO X产生的重要来源以及NO产生的主要来源。此外,由于固体燃料燃烧不完全,导致10~15%的碳转化为CO,即浪费了能源又造成了环境污染。因而,降低固体化石燃料消耗和控制燃烧气氛、抑制污染物生成及污染物有效降解,是烧结过程污染物控制的主要手段。
近年来,烧结装备大型化水平不断得到提高,以及原燃料优化、高碱度烧结、偏析布料、高料层烧结、低温烧结、小球烧结、燃料分布优化、烧结热风点火助燃、混合料预热等节能措施广泛地应用,均有效地降低了烧结固体燃耗水平。为进一步有效降低固体燃耗水平,企业及科研院所在优化供能结构方面进行了新技术的开发。生物质由于低氮、低硫且可实现碳循环被视为一种清洁燃料,其应用到烧结过程部分替代固体化石燃料,能够有效减少NO X、SO X、CO X排放。热风烧结技术以冷却烧结矿的热废气作为载能热源,将其用高温风机抽出并引入到点火炉后的热风罩内进行烧结,以此改善上部烧结料层热量不足,实现节能降耗。气体燃料喷吹技术是一种在降低固体燃料配比的基础上同时在料层中上部补入气体燃料的烧结技术,该技术能够很好地优化料层热状态,改善成矿条件,实现从优化燃料结构和提质两方面共同降低固体燃耗。
而针对控制烧结燃烧气氛、抑制污染物生成及污染物有效降解方面,水蒸汽喷吹工艺和烟气循环工艺则是相应技术代表。
首钢京唐现场表明(烧结料面喷洒蒸汽提高燃料燃烧效率研究[J],裴元东),在烧结料层中部区间喷入适宜浓度水蒸汽,能够改善燃烧条件,提高燃烧效率,有效降低CO的排放。但在实际应用过程中,水蒸汽喷吹位置靠前,将对红热层产生不利影响,而喷吹位置靠后,则会对烧结矿带产生不利影响,如此,极大程度限制了水蒸汽喷吹节能减排效果。
为了回收烧结烟气中的热量,并协同考虑烟气污染物的产生与排放,20世纪末国外开始在将烧结过程中产生部分烟气返回到烧结机循环利用方面进行技术开发。目前,国内外有5种典型工业化烟气循环工艺,日本新日铁开发的区域性废气循环工艺、荷兰艾默伊登开发的EOS工艺、德国HKM开发的LEEP工艺、奥钢联公司开发的EPOSINT工艺以及我国宝钢开发的烧结废气余热循环工艺。应用过程中,除烟气排放量减小外,高温烟气进入料层带来更多的热量,燃料配比可适当减少,利于污染物进一步减量排放。此外,文献研究表明:烟气在循环过程中,NO能够得到还原,且抑制固体燃料中N元素向NO X的转化(Elimination Behaviors of NOx in the Sintering Process with Flue Gas Recirculation[J],xiaohui Fan),而烟气中二恶英在通过燃烧层时则能够被热分解以及CO发生二次燃烧(铁矿烧结烟气循环中SO 2和NO X过程控制与节能减排的协同优化[D],于恒),但不论是EOS工艺的一段式循环,LEEP工艺和EPOSINT工艺的两段式循环,亦或是区域性废气循环工艺和废气余热循环工艺的三段式循环,由于循环烟气中氧含量低和/或水含量高和/或SO 2含量高等不同程度地给烧结过程及烧结矿质量带来了一定的影响。
技术问题
针对现有技术存在的缺陷,本发明的目的是在于提供一种利用载能复合气体介质来取代现有技术中常规空气来进行烧结的方法,该方法能够更大程度降低固体燃料消耗并同步实现抑制污染物生成、污染物降解,使CO 2温室气体及CO、NO X、SO X、二恶英(Dioxin)等多种污染物得到有效的协同减排,形成一个烧结全程整体高效节能减排的体系。
技术解决方案
为了实现上述技术目的,本发明提供了一种载能复合气体介质烧结的协同减排方法,该方法是依据烧结机内不同区段烟气成分和温度特征及对热量需求的不同,在烧结机内不同区域段的烧结料面分别导入不同组成和热量的载能复合气体介质,取代传统空气进行烧结,以实现降低能耗和减排。
本发明技术方案通过在烧结机内不同区域的烧结面料导入不同组成和热量的载能复合气体,代替传统空气进行烧结,以满足各区域段对气体组成和热量的需求,使其达到同步实现烧结过程固体化石燃料更大程度降耗,以及抑制污染物生成或分解生成污染物的目的,相对常规的空气烧结,可实现减排CO 215~25%、CO40~50%、NO X20~40%、SO X5~20%、二恶英50~80%。所谓载能复合气体是具有一定的温度,且含有多种组分的气体介质,组分包括可燃组分及助燃组分等。
优选的方案,将烧结机内的烧结料面从机头至机尾依次划分为点火段、保温段、中间段、烟气升温段和机尾段。本发明技术方案将烧结机内的烧结料面根据不同区段烟气成分及温度特征和对应料层热量需求的差异,依次划分为五个区域。具体来说主要包括:点火段:风箱烟气温度低、氧含量高、水含量低;保温段:风箱烟气温度低、SO 2含量低、NO X和CO含量高、水含量高,料层热量需求高;中间段:风箱烟气温度低、SO 2、NO X和CO含量高、二恶英含量高,水含量高,料层热量需求中等;升温段:风箱烟气温度高、SO 2含量高,粉尘含量高,料层热量需求低;机尾段:风箱烟气温度高、氧含量高、水含量低。更具体来说,点火段占烧结机机头1~2个风箱区域。保温段在点火段之后占烧结机总长的1/6~1/4区域。中间段为保温结束至烟气升温前的区域(占烧结机总长的1/3~5/12)。烟气升温段为烟气温度开始上升至烟气达到最高温的区域。机尾段为烧结机末尾2~3个风箱区域。
优选的方案,根据烧结面料不同区段烟气成分和温度特征及热量需求的不同,分别在不同区域段导入不同的载能复合气体介质,以实现各区域段达到最佳烧结状态,使得节能和减排同时达到最佳水平。具体来说,在点火段烧结料面导入热废气进行点火;在保温段烧结料面导入热废气和富氢燃气复合气体;在中间段烧结料面导入富氢燃气和水蒸汽复合气体;在烟气升温段烧结料面导入机尾段高温烟气与点火段和/或保温段烟气。
    较优选的方案,在点火段导入温度为250~350℃,氧含量(体积百分比含量)不低于20%的热废气进行点火。利用高含氧量及温度较高的热废气能够有效提高理论燃烧温度,克服因点火煤气热值波动致使点火不充分带来的烧结矿产质量恶化的影响。
较优选的方案,在保温段烧结料面导入温度为200~300℃,氧含量(体积百分比含量)不低于20%的热废气,同时采用梯级喷加的方式喷加富氢燃气。两种载能气体共同作用下能够更大程度满足梯级式上部热量需求,利于进一步降低固体化石燃料消耗,此外,热风能够使烧结料面持有一定温度,这在一定程度上能够防止后续水蒸汽喷吹在烧结料面的冷凝。在保温段设置保温罩,向保温罩内导入热废气进行保温,同时在保温罩内采用梯级喷加的方式喷加富氢燃气。
较优选的方案,在中间段烧结料面喷加富氢燃气,同时采用梯级喷加的方式喷加温度不低于120℃、压力不低于0.2MPa的水蒸汽,耦合了中间段烟气温度低、SO 2、NO X、CO含量高、二恶英高,水含量高的特点。通过喷加燃气在燃烧带上方的燃烧能够有效防止低温水蒸汽直接与燃烧带接触,利于水蒸汽喷吹区间提前,更大程度提高燃烧效率,减小CO排放。
较优选的方案,在烟气升温段烧结料面导入温度不低于120℃,氧含量(体积百分比含量)不低于17%,CO 2和水蒸汽的含量(体积百分比含量)均不高于4%的由机尾段高温烟气与点火段和/或保温段烟气混合气体。烟气升温段烟气的特点是烟气温度高、SO 2含量高,粉尘含量高,料层热量需求低,通过利用机尾段和点火段或保温段的烟气循环,能够实现在不影响烧结过程及烧结矿质量的基础上对部分烟气再利用且同步有效降解烟气中NO和CO,利于烟气及污染物进一步减量化排放。在烟气升温段设置循环烟罩,将机尾段高温烟气和点火段或保温段的烟气循环至升温段循环烟罩,确保进入升温段料面的气体温度、氧含量及CO 2和水蒸汽的含量,如氧含量不足,则兑入空气补充氧。
进一步优选的方案,在保温段烧结料面采用梯级喷加的方式喷加富氢燃气,富氢燃气体积百分比浓度沿烧结机运动方向从0.5~0.60%均匀降低至0.2~0.30%。燃气采用递减方式的梯级喷加,能够更大程度满足料层由于自蓄热作用从下到上热需求量递增的实际情况,利于均质化烧结。
进一步优选的方案,所述在保温段喷吹的富氢燃气为摩尔分子量不低于16的烃类气体。具体如甲烷、乙烷等。
进一步优选的方案,在中间段烧结料面采用梯级喷加的方式喷加水蒸汽,水蒸汽体积百分比浓度沿烧结机运动方向从0.3~0.4%均匀提升至0.7~0.9%。该方法能够克服水蒸汽因行程过长发生冷凝到达燃烧带参与反应的有效水蒸汽量减小,此外,二恶英在中间段后半区域集中释放,水蒸汽梯级喷加,能够进一步抑制二恶英的生成与转化。水蒸气为常见的车间水蒸气,可以来自于钢铁企业自热电厂、余热回收利用锅炉产生的水蒸汽。
较优选的方案,在中间段烧结料面喷加体积百分比浓度为0.20~0.50%的富氢燃气。
较优选的方案,所述富氢燃气包括烃类气体、氢气等燃气中的至少一种。
较优选的方案,所述热废气为烧结矿冷却产生的中低温废气,或者为高炉煤气或转炉煤气燃烧产生的中低温废气。这种热废气的温度和组成都是现有技术中常见的。
优选的方案,通过在烧结每段料面分别导入相应的载能复合气体介质后,可以降低料层中固体燃料的配加量,固体燃料消耗量减少10%~20%。
本发明技术方案针对烧结不同区段烟气成分及温度等特征和热量需求不同,通过合理设计载能复合气体介质取代常规空气来进行烧结,形成烧结料面气体组成均发生改变,以达到最理想的烧结状态,达到协同降低能耗和减排的目的。在点火段导入热废气进行点火,能够有效提高理论燃烧温度,克服因点火煤气热值波动致使点火不充分带来的烧结矿产质量恶化的影响;在保温段导入热废气并同步梯级喷加富氢燃气,二者共同作用下能够更大程度满足梯级式上部热量需求,利于进一步降低固体化石燃料消耗;中间段在喷加富氢燃气的基础上耦合梯级喷加水蒸汽,燃气在燃烧带上方的燃烧能够有效防止低温水蒸汽直接与燃烧带接触,利于水蒸汽喷吹区间提前,更大程度提高燃烧效率,减小CO排放,此外,二恶英在中间段后半区域集中释放,水蒸汽梯级喷加,能够进一步抑制二恶英的生成与转化;将机尾段2~3个风箱的高温烟气与点火段和/或保温段的烟气循环至升温段的循环烟罩,能够实现在不影响烧结过程及烧结矿质量的基础上对部分烟气再利用且同步有效降解烟气中NO和CO,利于烟气及污染物进一步减量化排放。
有益效果
相对现有技术,本发明的技术方案带来的有益技术效果。
1)本发明技术方案根据烧结面料不同区段的烟气组成(包括相应污染物生成与排放的特征)和温度特征以及热量需求不同,针对性地导入相应的载能燃气、热废气、水蒸汽和燃气等组合气体,通过载能介质和气体介质的耦合以及各区段的耦合作用,达到最佳的烧结状态,实现协同节能减排。
2)本发明技术方案通过在烧结料面导入载能复合气体介质,以改变烧结料面的燃烧气氛,实现固体燃料的有焰燃烧,并促进燃料燃烧速度和提高热量利用率,减少燃烧过程污染物的产生。
3)本发明技术方案通过将尾部的温度高、氧含量高、水含量低的烟气与温度低、氧含量高、水含量低点火段烟气以及温度低、SO 2含量低、NO X和CO含量高、水含量高的保温段烟气组合成温度、水含量适宜的载能复合气体介质,循环至升温段,能够实现在不影响烧结过程及烧结矿质量的基础上对部分烟气再利用且同步有效降解烟气中NO和CO,利于烟气及污染物进一步减量化排放。
4)与常规烧结相比,采用载能复合气体烧结协同减排技术,可实现减排CO 215~25%、CO40~50%、NO X20~40%、SO X5~20%、二恶英50~80%,减排效果显著,极大程度地减小了末端治理任务难度。
附图说明
图1为本发明载能复合气体烧结协同减排的方法示意图。
图1中:1为点火罩;2为保温罩;3为循环烟罩;4为给料槽;5为蓖条;6为烟囱;7为除尘器Ⅰ;8为风箱;9为除尘器Ⅱ。
本发明的最佳实施方式
在此处键入本发明的最佳实施方式描述段落。
本发明的实施方式
下面实例是对本发明的进一步说明,而不是限制发明的范围。
实施例1。
按照混匀铁矿59.81%、白云石4.42%、石灰石5.38%、生石灰3.46%、烧结返矿13.85%、高炉返矿9.23%、焦粉3.85%的质量比配料(获得烧结矿化学成分为TFe56.26%、R1.80、MgO1.80%、 CaO10.83%)。烧结机总面积为450m 2,共计24个风箱。原料经混匀制粒后,布与烧结台车上,将环冷机热废气(温度250℃,O 2含量20.90%)引入到点火段的点火罩(占烧结机长度2/24)内进行热风点火。向保温段的保温罩(占烧结机长度1/6)内导入热废气(温度200℃,O 2含量20.90%)进行保温,并在保温罩内梯级喷加天然气,沿烧结机长度方向浓度从0.60%均匀降低至0.3%。向中间段(占烧结机长度5/12)喷入0.3%天然气,并梯级喷入水蒸汽(温度120℃、压力0.2MPa),沿烧结机长度方向浓度从0.40%均匀提升至0.90%。分别从烧结机机尾段23~24号风箱与点火段、保温段风箱引出烟气经除尘器Ⅱ除尘后循环至升温段(17~22号风箱)循环烟罩,进入料面气体温度为150℃、O 2含量17.80%、CO 2为3.5%、水蒸汽为4.0%。与普通空气烧结相比,采用载能复合气体烧结协同减排技术,可减小焦粉配比10.71%,减少CO 215%、CO40%、NO X30%、SO X7%、二恶英50%。
实施例2。
按照混匀铁矿59.81%、白云石4.42%、石灰石5.38%、生石灰3.46%、烧结返矿13.85%、高炉返矿9.23%、焦粉3.85%的质量比配料(获得烧结矿化学成分为TFe56.26%、R1.80、MgO1.80%、CaO10.83%)。烧结机总面积为450m 2,共计24个风箱。原料经混匀制粒后,布与烧结台车上,将环冷机热废气和高炉煤气热废气(温度350℃,O 2含量20.0%)引入到点火段的点火罩(占烧结机长度1/24)内进行热风点火。向保温段的保温罩(占烧结机长度1/4)内导入热废气(温度300℃,O 2含量20.0%)进行保温,并在保温罩内梯级喷加天然气,沿烧结机长度方向浓度从0.50%均匀降低至0.20%。向中间段(占烧结机长度1/3)喷入0.2%天然气,并梯级喷入水蒸汽(温度134℃、压力0.3MPa),沿烧结机长度方向浓度从0.30%均匀提升至0.70%。分别从烧结机机尾段22~24号风箱与点火段、保温段风箱引出烟气经除尘器Ⅱ除尘后循环至升温段(16~21号风箱)循环烟罩,进入料面气体温度为160℃、O 2含量18.0%、CO 2为3.3%、水蒸汽为3.6%。与普通空气烧结相比,采用载能复合气体烧结协同减排技术,可减小焦粉配比10.71%,减少CO 216%、CO43%、NO X32%、SO X8%、二恶英55%。
实施例3。
按照混匀铁矿60.03%、白云石4.44%、石灰石5.37%、生石灰3.46%、烧结返矿13.85%、高炉返矿9.23%、焦粉3.62%的质量比配料(获得烧结矿化学成分为TFe56.29%、R1.80、MgO1.80%、 CaO10.81%)。烧结机总面积为450m 2,共计24个风箱。原料经混匀制粒后,布与烧结台车上,将环冷机热废气和高炉煤气燃烧热废气(温度300℃,O 2含量20.40%)引入到点火段的点火罩(占烧结机长度2/24)内进行热风点火。向保温段的保温罩(占烧结机长度1/4)内导入热废气(温度250℃,O 2含量20.40%)进行保温,并在保温罩内梯级喷加天然气,沿烧结机长度方向浓度从0.60%均匀降低至0.30%。向中间段(占烧结机长度1/3)喷入0.50%天然气和氢气混合气体(体积5:1),并梯级喷入水蒸汽(温度144℃、压力0.4MPa),沿烧结机长度方向浓度从0.30%均匀提升至0.80%。分别从烧结机机尾段23~24号风箱与点火段风箱引出烟气经除尘器Ⅱ除尘后循环至升温段(17~22号风箱)循环烟罩,进入料面气体温度为120℃、O 2含量17.0%、CO 2为4%、水蒸汽为4%。与普通烧结相比,采用载能复合气体烧结协同减排技术,可减小焦粉配比16.07%,减少CO 220%、CO45%、NO X35%、SO X10%、二恶英60%。
对比例1。
按照混匀铁矿59.36%、白云石4.39%、石灰石5.40%、生石灰3.46%、烧结返矿13.85%、高炉返矿9.23%、焦粉4.31%的质量比配料(获得烧结矿化学成分为TFe56.19%、R1.80、MgO1.80%、 CaO10.88%)。烧结机总面积为450m 2,共计24个风箱。原料经混匀制粒后,布与烧结台车上,经常规空气点火(点火罩占烧结机长度2/24)后进行常规空气烧结。此时的焦粉配比为4.31%。
对比例2。
按照混匀铁矿59.36%、白云石4.39%、石灰石5.40%、生石灰3.46%、烧结返矿13.85%、高炉返矿9.23%、焦粉4.31%的质量比配料(获得烧结矿化学成分为TFe56.19%、R1.80、MgO1.80%、 CaO10.88%)。烧结机总面积为450m 2,共计24个风箱。原料经混匀制粒后,布与烧结台车上,将环冷机热废气(温度350℃,O 2含量20.90%)引入到点火段的点火罩(占烧结机长度2/24)内进行热风点火,然后进行常规空气烧结。与普通烧结相比,采用热风点火,可减小焦粉配比0%,减少CO 21.5%、CO1.5%、NO X1.5%、SO X0.5%、二恶英1.5%。
对比例3。
按照混匀铁矿59.48%、白云石4.40%、石灰石5.39%、生石灰3.46%、烧结返矿13.85%、高炉返矿9.23%、焦粉4.19%的质量比配料(获得烧结矿化学成分为TFe56.21%、R1.80、MgO1.80%、 CaO10.87%)。烧结机总面积为450m 2,共计24个风箱。原料经混匀制粒后,布与烧结台车上,采用常规空气点火(点火罩占烧结机长度2/24),向烧结机中部(烧结机长度1/3~3/5处)喷入0.5%水蒸汽。与普通烧结相比,喷吹水蒸汽后,可减小焦粉配比2.68%,减少CO 24%、CO8%、NO X4%、SO X2%、二恶英25%。
对比例4。
按照混匀铁矿59.59%、白云石4.41%、石灰石5.39%、生石灰3.46%、烧结返矿13.85%、高炉返矿9.23%、焦粉4.08%的质量比配料(获得烧结矿化学成分为TFe56.22%、R1.80、MgO1.80%、 CaO10.86%)。烧结机总面积为450m 2,共计24个风箱。原料经混匀制粒后,布与烧结台车上,采用常规空气点火(点火罩占烧结机长度2/24),向烧结机中前部(烧结机长度1/6~1/2处)喷入0.40%天然气。与普通烧结相比,喷吹天然气后,可减小焦粉配比5.36%,减少CO 28%、CO9%、NO X13%、SO X4%、二恶英8%。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (10)

  1. 一种载能复合气体介质烧结的协同减排方法,其特征在于:依据烧结机内不同区段烟气成分和温度特征及对热量需求的不同,在烧结机内不同区域段的烧结料面分别导入不同组成和热量的载能复合气体介质,取代传统空气进行烧结,以实现降低能耗和减排。
  2. 根据权利要求1所述的一种载能复合气体介质烧结的协同减排方法,其特征在于:将烧结机内的烧结料面从机头至机尾依次划分为点火段、保温段、中间段、烟气升温段和机尾段。
  3. 根据权利要求2所述的一种载能复合气体介质烧结的协同减排方法,其特征在于:
    所述点火段占烧结机机头1~2个风箱区域;
    所述保温段占烧结机总长的1/6~1/4区域;
    所述中间段为保温结束至烟气升温前的区域;
    所述烟气升温段为烟气温度开始上升至烟气达到最高温的区域;
    所述机尾段为烧结机末尾2~3个风箱区域。
  4. 根据权利要求1~3任一项所述的一种载能复合气体介质烧结的协同减排方法,其特征在于:
    在点火段烧结料面导入热废气进行点火;
    在保温段烧结料面导入热废气和富氢燃气复合气体;
    在中间段烧结料面导入富氢燃气和水蒸汽复合气体;
    在烟气升温段烧结料面导入机尾段高温烟气与点火段和/或保温段烟气。
  5. 根据权利要求4所述的一种载能复合气体介质烧结的协同减排方法,其特征在于:
    在点火段烧结料面导入温度为250~350℃,氧含量不低于20%的热废气;
    在保温段烧结料面导入温度为200~300℃,氧含量不低于20%的热废气,同时采用梯级喷加的方式喷加富氢燃气;
    在中间段烧结料面喷加富氢燃气,同时采用梯级喷加的方式喷加温度不低于120℃、压力不低于0.2MPa的水蒸汽;
    在烟气升温段烧结料面导入温度不低于120℃,氧含量不低于17%,CO 2和水蒸汽的含量均不高于4%的由机尾段高温烟气与点火段和/或保温段烟气组成的混合气体。
  6. 根据权利要求5所述的一种载能复合气体介质烧结的协同减排方法,其特征在于:在保温段烧结料面采用梯级喷加的方式喷加富氢燃气,富氢燃气体积百分比浓度沿烧结机运行方向从0.50~0.6%均匀降低至0.2%~0.30%。
  7. 根据权利要求6所述的一种载能复合气体介质烧结的协同减排方法,其特征在于:所述富氢燃气为摩尔分子量不低于16的烃类气体。
  8. 根据权利要求5所述的一种载能复合气体介质烧结的协同减排方法,其特征在于:在中间段烧结料面采用梯级喷加的方式喷加水蒸汽,水蒸汽体积百分比浓度沿烧结机运行方向从0.3~0.4%均匀提升至0.7~0.9%;且在中间段烧结料面喷加体积百分比浓度为0.2~0.5%的富氢燃气。
  9. 根据权利要求8所述的一种载能复合气体介质烧结的协同减排方法,其特征在于:所述富氢燃气为含烃类气体和/或氢气的燃气。
  10. 根据权利要求5所述的一种载能复合气体介质烧结的协同减排方法,其特征在于:所述热废气为烧结矿冷却产生的中低温废气,或者为高炉煤气或转炉煤气燃烧产生的中低温废气。
PCT/CN2020/105364 2020-01-09 2020-07-29 一种载能复合气体介质烧结的协同减排方法 WO2021139136A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/418,276 US20220213565A1 (en) 2020-01-09 2020-07-29 Cooperative emission reduction method for sintering using energy-carrying composite gas medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010020485.6 2020-01-09
CN202010020485.6A CN113091453B (zh) 2020-01-09 2020-01-09 一种载能复合气体介质烧结的协同减排方法

Publications (1)

Publication Number Publication Date
WO2021139136A1 true WO2021139136A1 (zh) 2021-07-15

Family

ID=76664051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105364 WO2021139136A1 (zh) 2020-01-09 2020-07-29 一种载能复合气体介质烧结的协同减排方法

Country Status (3)

Country Link
US (1) US20220213565A1 (zh)
CN (1) CN113091453B (zh)
WO (1) WO2021139136A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114935264A (zh) * 2022-05-20 2022-08-23 中南大学 一种基于生物质炭-富氢燃气耦合喷吹的低碳烧结方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113652544B (zh) * 2021-07-29 2023-03-28 钢铁研究总院 一种低碳烧结系统及工艺方法
CN115218652A (zh) * 2021-09-07 2022-10-21 中冶长天国际工程有限责任公司 一种多段液体燃料补热耦合热风烧结方法及其装置
CN115164580A (zh) * 2022-01-05 2022-10-11 中冶长天国际工程有限责任公司 一种三相复合供热式低碳烧结装置及其方法
CN114427793B (zh) * 2022-01-11 2023-01-17 北京科技大学 一种交替式连续循环的烧结减污降碳系统
CN114622090B (zh) * 2022-03-14 2023-12-19 中冶赛迪工程技术股份有限公司 一种料面氢氧复合喷吹的高配比磁精粉烧结方法
CN115323165B (zh) * 2022-06-08 2023-11-10 中南大学 一种富氢燃气和含金属铁固废耦合供热的烧结碳减排方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4536211A (en) * 1982-05-18 1985-08-20 Sumitomo Metal Industries, Ltd. Waste gas circulation method and system for sintering apparatus
US20030110891A1 (en) * 2000-05-22 2003-06-19 Bernard Vanderheyden Iron ore reduction method and installation therefor
CN104034175A (zh) * 2014-06-11 2014-09-10 中冶北方(大连)工程技术有限公司 一种节能减排型烧结工艺
CN106595327A (zh) * 2017-01-10 2017-04-26 中钢集团鞍山热能研究院有限公司 一种联动式烧结矿余热回收综合利用工艺及系统
CN207066129U (zh) * 2017-04-14 2018-03-02 中冶长天国际工程有限责任公司 一种自适应区域调节式喷吹装置
CN109668444A (zh) * 2018-12-26 2019-04-23 中天钢铁集团有限公司 一种烧结烟气循环方法和装置
CN110564952A (zh) * 2019-09-09 2019-12-13 中南大学 一种烧结节能减排的氢系燃气分级喷吹方法
CN110592370A (zh) * 2019-09-09 2019-12-20 中南大学 一种基于多类燃气耦合喷吹的低碳低排放烧结方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100896579B1 (ko) * 2002-12-23 2009-05-07 주식회사 포스코 소결기의 배기가스 배출장치
CN104748567B (zh) * 2015-03-27 2017-02-22 中国科学院过程工程研究所 一种烧结烟气余热分级循环利用和污染物减排工艺及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4536211A (en) * 1982-05-18 1985-08-20 Sumitomo Metal Industries, Ltd. Waste gas circulation method and system for sintering apparatus
US20030110891A1 (en) * 2000-05-22 2003-06-19 Bernard Vanderheyden Iron ore reduction method and installation therefor
CN104034175A (zh) * 2014-06-11 2014-09-10 中冶北方(大连)工程技术有限公司 一种节能减排型烧结工艺
CN106595327A (zh) * 2017-01-10 2017-04-26 中钢集团鞍山热能研究院有限公司 一种联动式烧结矿余热回收综合利用工艺及系统
CN207066129U (zh) * 2017-04-14 2018-03-02 中冶长天国际工程有限责任公司 一种自适应区域调节式喷吹装置
CN109668444A (zh) * 2018-12-26 2019-04-23 中天钢铁集团有限公司 一种烧结烟气循环方法和装置
CN110564952A (zh) * 2019-09-09 2019-12-13 中南大学 一种烧结节能减排的氢系燃气分级喷吹方法
CN110592370A (zh) * 2019-09-09 2019-12-20 中南大学 一种基于多类燃气耦合喷吹的低碳低排放烧结方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114935264A (zh) * 2022-05-20 2022-08-23 中南大学 一种基于生物质炭-富氢燃气耦合喷吹的低碳烧结方法

Also Published As

Publication number Publication date
US20220213565A1 (en) 2022-07-07
CN113091453B (zh) 2022-03-04
CN113091453A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2021139136A1 (zh) 一种载能复合气体介质烧结的协同减排方法
US20170108275A1 (en) Process and system for waste heat grading cyclic utilization and pollutant emission reduction of sintering flue gas
CN110451822B (zh) 一种产物气循环煅烧石灰石与二氧化碳资源化回收工艺
CN113267053B (zh) 一种全氧燃烧循环预热生产水泥熟料的系统及方法
CN112608049B (zh) 一种循环预热的低能耗碳富集水泥生产系统及方法
CN212293338U (zh) 一种适用于水泥窑的二氧化碳纯化捕集的系统
CN210922156U (zh) 一种水泥预分解窑系统
CN113606946B (zh) 一种水泥窑尾烟气的二氧化碳捕集系统及减排方法
CN112654828A (zh) 一种水泥预分解窑系统及制备水泥熟料的方法
CN111569623A (zh) 烧结烟气内外循环系统与循环方法
CN102628401A (zh) 一种煤基燃料近零排放发电系统及方法
CN112500001A (zh) 一种低能耗碳富集水泥生产系统及生产水泥熟料的方法
CN113028376A (zh) 一种氨的化学链燃烧发电系统和方法
CN115654914A (zh) 利用替代燃料全氧燃烧耦合碳捕集的水泥生产方法
CN115768734A (zh) 一种水泥窑系统及制备水泥熟料的方法
CN115159876B (zh) 一种低能耗碳捕集水泥熟料生产系统及制备水泥熟料方法
CN217939696U (zh) 一种水泥工业二氧化碳富集系统
CN114635035B (zh) 一种基于多组分气体介质和废弃生物质耦合供热的无固体化石燃料的烧结方法
CN114854983B (zh) 一种基于超高料层烧结过程燃料高效燃烧的烧结碳减排方法
CN115820954A (zh) 一种高炉喷吹co2-生物质炭钢化联产碳减排系统及应用过程
CN113106250B (zh) 一种多组分气体介质复合喷吹的低能耗低排放烧结方法
CN101492256A (zh) 利用回转窑将电石炉炉气直接燃烧生产石灰的方法
CN115867515A (zh) 一种全氧燃烧生产水泥熟料的系统及方法
CN216639546U (zh) 具有高炉烟气回用和增氧助燃烟气循环利用碳零排放系统
AU2021103750A4 (en) Process and system of energy conservation and emission reduction in sintering process by selective recycling of the flue gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912902

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20912902

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20912902

Country of ref document: EP

Kind code of ref document: A1