WO2021139063A1 - 一种注浆管及地表注浆的隧道加固施工方法 - Google Patents

一种注浆管及地表注浆的隧道加固施工方法 Download PDF

Info

Publication number
WO2021139063A1
WO2021139063A1 PCT/CN2020/090408 CN2020090408W WO2021139063A1 WO 2021139063 A1 WO2021139063 A1 WO 2021139063A1 CN 2020090408 W CN2020090408 W CN 2020090408W WO 2021139063 A1 WO2021139063 A1 WO 2021139063A1
Authority
WO
WIPO (PCT)
Prior art keywords
grouting
sleeve valve
tunnel
pipe
valve tube
Prior art date
Application number
PCT/CN2020/090408
Other languages
English (en)
French (fr)
Inventor
陈昭宇
何开伟
谢财斌
周文
王俊
Original Assignee
中铁二局集团有限公司
中铁二局第四工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁二局集团有限公司, 中铁二局第四工程有限公司 filed Critical 中铁二局集团有限公司
Publication of WO2021139063A1 publication Critical patent/WO2021139063A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/001Improving soil or rock, e.g. by freezing; Injections
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/001Improving soil or rock, e.g. by freezing; Injections
    • E21D9/002Injection methods characterised by the chemical composition used

Definitions

  • the invention relates to the technical field of tunnel construction, in particular to a tunnel reinforcement construction method of grouting pipe and surface grouting.
  • the main reinforcement construction of the tunnel mainly adopts the grouting technique.
  • the grouting technique is an important auxiliary method used in the construction of tunnels and underground engineering to avoid tunnel collapse.
  • this grouting technology can effectively solve the problem of grouting controllability, and it is more suitable no matter how deep the tunnel is.
  • the construction sequence of this advanced grouting technology method in the tunnel is: grouting reinforcement, then excavation , And reserve a section of grouting reinforcement during the excavation process, and then continue grouting reinforcement, and then excavate, and so on.
  • This kind of construction technology can only carry out a single process operation, and the construction efficiency is low, so it seriously affects the construction cycle.
  • Another grouting reinforcement construction method is mainly aimed at weak cofferdams and water-rich formations.
  • the application number of 201810990172.6 discloses a surface-oriented large-diameter deep-hole grouting tunnel construction method, which sets the first to sixth planes. Vertical drilling, and then grouting reinforcement, but this construction method has large defects in use. First, it is only suitable for large apertures. In addition, this technology is inconvenient to use in special formations.
  • the purpose of the present invention is to provide a grouting pipe and grouting pipe in the prior art, in view of the low construction efficiency of the horizontal grouting in the hole, which affects the construction period, and the lack of a wide range of construction technology when using vertical drilling.
  • Grouting reinforcement construction method uses surface construction grouting pipes for surface grouting to strengthen tunnels. It is not only suitable for ultra-deep tunnels, but also for ordinary deep tunnels, and is suitable for a variety of geological structures.
  • a grouting pipe includes a first sleeve valve pipe and a second sleeve valve pipe sheathed on the first sleeve valve pipe.
  • the first sleeve valve pipe includes a grouting section and a non-grouting section.
  • a slurry hole is arranged on the segment, and a third sleeve valve tube is nested at both ends of the slurry hole.
  • a double-layer tube structure including the inner tube and the outer tube is formed, so that the second sleeve valve tube sleeved on the outer layer of the first sleeve valve tube is opposite to the first sleeve valve tube.
  • the valve tube plays a limiting role to prevent the first sleeve valve tube from deforming and expanding due to the pressure of the slurry during the grouting process, which can not only ensure the structural stability of the grouting tube, but also play a role in pressurizing;
  • An overflow hole is set on the grouting section of the first sleeve valve tube, and the third sleeve valve tube is nested at both ends of the overflow hole.
  • the third sleeve valve tube Because the outer diameter of the third sleeve valve tube is larger than that of the first sleeve valve tube, the third sleeve When the valve tube is nested on the first sleeve valve tube, it forms a structure with "protrusions" on both sides and a “sag" in the middle part to protect the overflow hole and ensure the performance of grouting.
  • the grout enters through the first sleeve valve tube After the grouting section, the grout flows out from the overflow hole on the first sleeve valve pipe to realize grouting.
  • the first sleeve valve tube is spliced to increase the length.
  • the ends of the two first sleeve valve tubes The head is butted, the inner hole is connected, and the second sleeve valve tube is used to sleeve the spliced two first sleeve valve tube joints in the tube to realize the growth of the first sleeve valve tube and meet the grouting depth. Therefore, it can be applied to a variety of depths.
  • the tunnel is reinforced by grouting.
  • the grouting section includes a first grouting section and a second grouting section separated by 50-70 cm, and the first grouting section is arranged at a distance of 5 m from the ground to the top of the tunnel vault.
  • the first sleeve valve tube with grouting section is located in the grouting zone of the tunnel. Between the ground and the grouting zone, sleeve valve tubes without grouting section are arranged, sleeve valve tubes without grouting section and with grouting section are arranged.
  • the first sleeve valve tube of the section is spliced, and the second sleeve valve tube jacket is used to connect and fix the splice.
  • the grouting zone extends to 5m above the tunnel vault, and the first grouting section is arranged Ensure the grouting range at the position corresponding to the distance of 5m from the ground to the top of the tunnel vault.
  • first grouting section and the second grouting section are 60 cm apart.
  • the first sleeve valve tube includes a plurality of grouting sections arranged with overflow holes, and the distance between two adjacent grouting sections is 50-70 cm.
  • each grouting section is 60 cm.
  • each said grouting section is provided with an overflow hole, and a plurality of said overflow holes are arranged in a plum blossom pattern.
  • the grouting pipe includes a plurality of first sleeve valve pipe units spliced with each other.
  • a plurality of first sleeve valve tube units are arranged so that the grouting pipe can adapt to tunnels of different depths, and at the same time, it can also adapt to different grouting depths.
  • the first sleeve valve tube, the second sleeve valve tube and the third sleeve valve tube are all seamless steel pipes.
  • the seamless steel pipe is used to ensure that the steel pipe has high strength and avoid the problems that affect the quality of the grouting pipe such as cracking under the grouting pressure.
  • the first sleeve valve tube is a seamless steel tube with a diameter of 50-70 mm and a wall thickness of 4-6 mm
  • the second sleeve valve tube and the third sleeve valve tube are 60-80 mm in diameter and a wall thickness of 3 mm. -5mm seamless steel pipe.
  • first sleeve valve tube is a ⁇ 60 ⁇ 5mm seamless steel tube
  • second sleeve valve tube and the third sleeve valve tube are a ⁇ 70 ⁇ 4mm seamless steel tube.
  • this application also provides a tunnel reinforcement construction method for surface grouting.
  • the method includes the following steps:
  • Step 1 Before construction, take samples in the tunnel for testing to determine the soil parameters
  • Step two level the construction site, measure the line, and process the grouting pipe
  • Step 3 Drill holes and construct casing materials
  • Step 4 grouting in sections, and stop grouting when the final pressure is reached;
  • Step 5 Repeat steps 3 to 4 until the grouting of all holes in the grouting area is completed;
  • Step 6 Check the grouting situation by constructing the exploration hole
  • Step 7 Tunnel excavation and support.
  • the line is measured, the range of the grouting area, the ground elevation, and the length of the grouting pipe are determined, including determining the length of the grouting section and the length of the non-grouting section, and leveling the construction site at the same time.
  • the grouting material is ordinary Portland cement, sulfoaluminate cement, and water glass.
  • the initial grouting pressure is preferably 2 MPa, and the final pressure is not less than 6 MPa.
  • step 1 sampling test before construction, the soil parameters are determined, so that different drilling techniques, casing materials and grouting techniques are used according to different geological structures. Therefore, it is applicable to a variety of geological structures.
  • the surface grouting adopts the grouting pipe of this application, which is not only suitable for ultra-deep tunnels, but also for ordinary deep tunnels.
  • the surface grouting tunnel reinforcement construction method is applied to a mountain tunnel in a fully weathered granite formation, and the drilling in step 3 adopts a geological drill with a hole diameter of not less than ⁇ 120MM, and a hole depth greater than the designed hole depth by 10cm-15cm.
  • grouting reinforcement is mainly used for weak cofferdams and water-rich stratum.
  • the construction method of this scheme is especially suitable for mountain tunnels in fully weathered granite stratum, and it is suitable for tunnel reinforcement construction with diameter of 120-150mm. .
  • the range of the grouting area in step 5 is 11.5-13.5m on both sides of the tunnel centerline along the cross section of the tunnel, a total of 23-27m, and the longitudinal section of the tunnel is 4.5-5.5m above the tunnel vault. , 1.5-2.5m below the bottom of the tunnel.
  • the range of grouting area is 12.5m on both sides of the tunnel centerline along the cross section of the tunnel, totaling 25m, and the longitudinal section of the tunnel is 5m above the vault of the tunnel and 2m below the bottom of the tunnel.
  • the casing material in the step 3 includes cement and bentonite, and the construction weight ratio of the casing material is water: cement: bentonite (1.4-1.8:0.8-1.2:0.8-1.2).
  • all the holes in the grouting area in the step 5 include the grouting holes in the outer ring and the remaining grouting holes in the outer ring, and the grouting holes in the outer ring are made of water glass-ordinary silicon.
  • Salt cement two-liquid slurry, the volume ratio of the two is (0.8-1.2:0.8-1.2), the internal grouting hole adopts sulphoaluminate cement single-liquid slurry, and the water-cement weight ratio is (0.8-1.2:0.8-1.2) ).
  • the grouting area is divided into the grouting holes in the outer ring and the remaining grouting holes in the outer ring.
  • the two types of holes are grouted with different grouts.
  • the grouting holes in the outer ring are the interface between the grouting area and the outside. Therefore, double-liquid grouting is used, and the inner layer is poured with single-liquid slurry. This method can not only meet the requirements of the pouring process, ensure the stability of the tunnel excavation, but also save a lot of cost.
  • the volume ratio of the water glass-common Portland cement double-liquid slurry used in the outer ring grouting hole is (1:1)
  • the internal grouting hole uses sulphoaluminate cement single-liquid slurry
  • the weight of water ash is Ratio is (1:1)
  • the present invention has the following beneficial effects:
  • the first sleeve valve pipe is spliced to increase the length.
  • the ends of the two first sleeve valve pipes are butted, and the inner holes are connected.
  • Use the second sleeve valve tube to fit the two spliced first sleeve valve pipe joints in the pipe to realize the growth of the first sleeve valve pipe and meet the grouting depth. Therefore, it can be applied to tunnel grouting reinforcement of various depths;
  • the surface grouting tunnel reinforcement construction method of this scheme is adopted.
  • This construction method uses surface construction grouting pipes to strengthen the tunnel surface. It is not only suitable for ultra-deep tunnels, but also for ordinary deep tunnels, and is suitable for various types of tunnels.
  • the applicable geological structure greatly improves the stability of the rock mass, so that construction problems such as collapse and initial support deformation do not occur during the excavation process, the construction speed is greatly accelerated, and the construction safety and construction quality are significantly improved.
  • Fig. 1 is a schematic diagram of the structure of the grouting pipe in the present invention.
  • FIG. 2 is a schematic diagram of a grouting pipe structure in another embodiment in Example 1.
  • FIG. 2 is a schematic diagram of a grouting pipe structure in another embodiment in Example 1.
  • Figure 3 is a schematic diagram of the grouting pipe arranged in the grouting hole in the present invention.
  • Figure 4 is a schematic flow diagram of the construction method of surface grouting reinforcement in the present invention.
  • Figure 5 is a schematic diagram of the range of the grouting area in the surface grouting reinforcement construction method.
  • This embodiment provides a surface grouting pipe used for tunnel reinforcement construction.
  • the grouting tube includes a first sleeve valve tube 1 and a second sleeve valve tube 2 sheathed on the first sleeve valve tube 1.
  • the first sleeve valve tube 1 includes injection
  • the grouting section 101 and the non-grouting section 102, the grouting section 101 is provided with an overflow hole 3, and the two ends of the overflow hole 3 are nested in a third sleeve valve tube 4 with a larger size.
  • the grouting section 101 and the non-grouting section 102 are integrally connected, that is, the two are the same sleeve valve tube.
  • the larger size means that the inner diameter of the third sleeve valve tube 4 is larger than the outer diameter of the first sleeve valve tube 1, so that the third sleeve valve tube 4 can be sheathed on the first sleeve valve tube 1, that is, nested At the two ends of the grouting section 101, that is, the two ends (both sides) of the overflow hole 3.
  • the second sleeve valve tube 2 is sheathed on the first sleeve valve tube 1, thereby forming a double-layered tube structure including an inner tube and an outer tube.
  • the first sleeve valve tube includes two grouting sections 101 for illustration.
  • the grouting section 101 includes a first grouting section 101a and a second grouting section 101b that are 50-70cm apart. Both ends of the grouting section 101a and the second grouting section 101b are nested with the third sleeve valve tube 4, and the non-grouting section 102 is formed between the first grouting section 101a and the second grouting section 101b. 102 is also located in the grouting zone, but there is no overflow hole 3 in this part.
  • the first sleeve valve tube 1 includes a plurality of grouting sections 101 with overflow holes 3, and multiple grouting sections 101 are arranged with overflow holes 3. The sections 101 are 50-70 cm apart, and the positions of the multiple grouting sections 101 correspond to the vertical height of the grouting area when the grouting pipe is vertically grouted on the ground.
  • the grouting pipe further includes a fourth sleeve valve tube 8.
  • the diameter and wall thickness of the fourth sleeve valve tube 8 and the first sleeve valve tube are the same.
  • the four-sleeve valve pipe 8 does not have a grouting section. According to the vertical height of the grouting zone, multiple first sleeve valve pipes 1 are spliced, and the first sleeve valve pipe 1 at one end and the fourth sleeve valve pipe 8 are spliced together.
  • the first sleeve valve tube 1 is located in the grouting zone, and the fourth sleeve valve tube 8 is arranged at the section between the ground and the grouting zone, at the junction of a plurality of the first sleeve valve tubes 1 , And at the junction of the first sleeve valve tube 1 and the fourth sleeve valve tube 8, a second sleeve valve tube 8,, is sheathed.
  • the grouting pipe is formed by splicing several first sleeve valve pipes 1 according to the depth of the grouting area to form the required length. In Figure 1, only two first sleeve valve pipes 1 are schematically drawn.
  • the length from the ground to the grouting area is arranged by the length of the fourth sleeve tube 8, or a plurality of the sleeve valve tubes 8 are spliced so that the total length corresponds to the depth from the ground to the grouting area.
  • the ends of the two first sleeve valve tubes 1 are butted, and the inner holes are connected, and the second sleeve valve tube 2 fits the joints of the two spliced first sleeve valve tubes 1 into the tube.
  • the second sleeve valve tube 2 is used for outsourcing socket connection at the same joints. It is worth noting that , On the first sleeve pipe 1, the non-grouting section without overflow holes can also be wrapped with a second sleeve valve tube. Similarly, all non-grouting sections can also use one or more second sleeve valve tubes. Outsourcing connection.
  • the fourth sleeve valve tube may not be connected, and the first sleeve valve tube 1 may be directly used for grouting, or multiple first sleeve valve tubes 1 may be connected for grouting.
  • the first sleeve valve tube 1 is located in the grouting zone of the tunnel, and the fourth sleeve valve tube 8 is located in the non-grouting zone between the ground and the grouting zone. Normally, the grouting zone extends 4-6m above the tunnel vault.
  • the first sleeve valve tube at the right end in Figure 1 is regarded as one or more fourth sleeve valve tubes (determined according to the depth from the ground to the grouting zone), that is, the first grouting section 101a is set on the tunnel vault 4-6m above.
  • first grouting section 101a and the second grouting section 101b are 60 cm apart.
  • each grouting section 101 is provided with an overflow hole 3, and the multi-stage grouting section also has a plurality of overflow holes, and a plurality of the overflow holes 3 It is a plum-shaped arrangement.
  • each grouting section 101 may be provided with multiple overflow holes, and the multiple overflow holes on each grouting section may also be arranged uniformly or symmetrically.
  • the first sleeve valve tube 1, the second sleeve valve tube 2 and the third sleeve valve tube 4 are all seamless steel pipes.
  • the first sleeve valve tube 1 is a seamless steel tube of ⁇ 60 ⁇ 5mm.
  • Steel pipes, the second sleeve valve tube 2 and the third sleeve valve tube 4 are seamless steel pipes of ⁇ 70 ⁇ 4mm, and the fourth sleeve valve tube 8 is seamless steel pipes of ⁇ 60 ⁇ 5mm.
  • the diameter and thickness of the first sleeve valve tube 1, the second sleeve valve tube 2, the third sleeve valve tube 4 and the fourth sleeve valve tube 8 can also be adjusted appropriately, but it should be noted that the outer diameter of the first sleeve valve tube should be smaller than The inner diameter of the second sleeve valve tube and the third sleeve valve tube, so as to ensure that the second sleeve valve tube and the third sleeve valve tube can be sheathed on the first sleeve valve tube, and the wall thickness of the sleeve valve tube should be selected with the grouting pressure Match the size to prevent the sleeve valve tube from deforming and affecting the quality of grouting.
  • the fourth sleeve valve tube with the same diameter and wall thickness as the first sleeve valve tube should have an outer diameter smaller than the inner diameter of the second sleeve valve tube .
  • the distance between the first sleeve valve tube 1 and the fourth sleeve valve tube 8 and the second sleeve valve tube 2 is A gap is formed, and the gap is sealed and caulked with filling materials such as sealing tape.
  • the third sleeve valve tube 4 is connected to the grouting section 101, it should be bound firmly, and tape can be used for binding.
  • the third sleeve valve tube 4 is firmly tied at 5 cm on the left and right sides of the overflow hole 3, the length of the third sleeve valve tube 4 is 1 cm, and the length of the grouting section 101 provided with the overflow hole 3 It is roughly about 10cm in length.
  • This embodiment provides a surface grouting reinforcement construction method for a mountain tunnel in a fully weathered granite formation. As shown in Figure 4, when the grouting pipe as described in Example 1 is used for surface grouting construction, the following steps are included :
  • Step 1 sample and test the soil in the area to be grouted in the tunnel to determine the soil parameters, mainly including compaction, porosity, and moisture content;
  • Step 2 Level the construction site and measure the line. These two construction processes can be carried out at the same time. When the line is measured, the grouting area is clarified and the ground elevation is performed. After the construction site is leveled, the review is carried out. After the requirements are met, the subsequent step three is entered. Drilling holes that do not meet the design requirements should continue to be leveled. During this step, grouting pipes should be made at the same time, and the length of the grouting pipe should be determined, including the production of the first sleeve valve tube, the second sleeve valve tube and the third sleeve valve tube , And connect;
  • Step 3 Use a geological drill to drill holes and prepare construction casing materials. After drilling, check the drilling depth until the design requirements are met, and then lower the casing materials, as shown in Figure 3 at the position of casing material 7;
  • Step 4 Prepare slurry and perform segmental grouting, and stop grouting when the final pressure is reached;
  • Step 5 Repeat steps 3 to 4 until the grouting of all holes in the grouting area is completed;
  • Step 6 Check the grouting situation by constructing the exploration hole
  • Step 7 Tunnel excavation and support.
  • the crack treatment is mainly for grouting and filling the cracks on the surface, and the access road repair is convenient for later construction.
  • the segmented grouting is to first grouting at the bottom of the hole, and then upwards until the grouting is completed.
  • the grouting material is ordinary Portland cement, sulfoaluminate cement, and water glass.
  • the grouting pressure should be 2MPa, and the final pressure should not be less than 6MPa.
  • the hole diameter is not less than ⁇ 120mm, and the hole depth is greater than the designed hole depth by 10 cm to 15 cm.
  • the grouting area range 6 in step 5 includes the direction along the cross section of the tunnel 5 and the direction along the longitudinal section of the tunnel 5.
  • the grouting range along the cross section of the tunnel 5 is 11.5-13.5m on each side of the tunnel centerline. A total of 23-27m, the grouting range along the longitudinal section of tunnel 5 is 4.5-5.5m above the tunnel vault and 1.5-2.5m below the tunnel bottom.
  • the grouting area 6 is determined to be 12.5m on both sides of the tunnel center line along the tunnel cross section, totaling 25m, and the longitudinal section of the tunnel is 5m above the tunnel vault and 2m below the tunnel bottom.
  • the holes in the grouting area can be grouted with different slurries, and the holes in the grouting area can be divided into the grouting holes in the outer ring and the remaining grouting holes in the outer ring.
  • the grout hole, the grouting hole of the outer ring adopts water glass-ordinary Portland cement double liquid grout, the volume ratio of the two is (0.8-1.2:0.8-1.2), preferably water glass: ordinary Portland cement
  • the volume mixing ratio is (1:1)
  • the internal grouting hole adopts sulphoaluminate cement single-liquid slurry
  • the weight ratio of water to cement is (0.8-1.2:0.8-1.2), preferably (1:1).
  • the grouting situation should be checked to ensure the effect, and the tunnel excavation and support should be carried out after the design requirements are met.

Abstract

一种注浆管及地表注浆的隧道(5)加固施工方法,注浆管包括第一袖阀管(1)、第二袖阀管(2)和第三袖阀管(4),各袖阀管套接连接,并通过袖阀管上的溢浆孔(3)进行注浆;采用该注浆管进行地表注浆的隧道(5)加固施工方法,包括步骤①对隧道(5)内土体取样试验并确定土体参数;②测量放线及平整施工场地;③钻孔和制备套壳料(7);④分段完成全部注浆孔的注浆;该施工方法通过地表施工注浆管进行地表注浆加固隧道(5),不仅适用于超深隧道(5),而且也适用于普通深度隧道(5),并且对多种地质结构适用。

Description

一种注浆管及地表注浆的隧道加固施工方法 技术领域
本发明涉及隧道施工技术领域,特别涉及一种注浆管及地表注浆的隧道加固施工方法。
背景技术
随着国内高铁施工蓬勃发展,施工规模日益庞大,隧道施工技术日益成熟。目前隧道主要的加固施工主要采取注浆工艺加固,注浆工艺是隧道及地下工程施工中为避免隧道塌陷而采用的重要辅助方法,传统注浆工艺中,大多数以洞内水平方向超前注浆为主,这种注浆工艺能有效解决注浆可控性问题,而且不论隧道多深,都比较适用,但是这种洞内超前注浆工艺方法的施工顺序为:注浆加固,然后开挖,并且在开挖过程中预留一段注浆加固地段,然后继续注浆加固,再开挖,如此循环。这种施工工艺只能进行单工序作业,施工效率低下,因此严重影响施工周期。
另外一种注浆加固施工方法主要针对软弱围堰和富水地层,如申请号为201810990172.6号公开的一种地表定向大口径深孔注浆的隧道施工方法,其设定第一至第六平面垂直钻孔,然后注浆加固,但是这种施工方法在使用上存在较大缺陷,首先是只适用于大孔径,另外该技术在特殊地层中不便使用。
发明内容
本发明的目的在于:针对现有技术中采用洞内水平注浆存在施工效率低下进而影响施工周期,以及采用垂直钻孔时没有适用范围广的施工工艺的缺点,提供一种注浆管及注浆加固施工方法,该施工方法通过地表施工注浆管进行地表注浆加固隧道,不仅适用于超深隧道,而且也适用于普通深度隧道,并且对多种地质结构适用。
为了实现上述发明目的,本发明提供了以下技术方案:
一种注浆管,包括第一袖阀管和外套在该第一袖阀管上的第二袖阀管,所述第一袖阀管包括注浆段和非注浆段,所述注浆段上设置有溢浆孔,且该溢浆孔两端嵌套有第三袖阀管。
通过在第一袖阀管上外套第二袖阀管,从而形成包括内管和外管的双层管结构,使得套设在第一袖阀管外层的第二袖阀管对第一袖阀管起到限定作用,避免在注浆过程中,第一袖阀管因受到浆液的压力发生形变膨胀,不仅可以保证注浆管的结构稳定,而且起到增压作用;在作为内管的第一袖阀管的注浆段上设置溢浆孔,且该溢浆孔两端嵌套第三袖阀管,由于第三袖阀管外径大于第一袖阀管,因此将第三袖阀管嵌套在第一袖阀管上时,形成两侧 “突起”,中间部位“下陷”的结构形式,起到保护溢浆孔,确保注浆性能,当浆液通过第一袖阀管进入注浆段后,浆液从第一袖阀管上的溢浆孔流出,实现注浆。
由于在第一袖阀管外套设第二袖阀管,因此,当注浆深度较大时,第一袖阀管采用拼接的方式增加长度,在拼接处,两根第一袖阀管的端头对接,内孔连通,利用第二袖阀管将拼接的两根第一袖阀管接头套合在管内,实现第一袖阀管增长,满足注浆深度,因此,能适用于多种深度的隧道注浆加固。
优选的,所述注浆段包括相距50-70cm的第一注浆段和第二注浆段,所述第一注浆段布置在地面到隧道拱顶上方5m的距离位置处。
带有注浆段的第一袖阀管位于隧道注浆区,地面到注浆区之间布置有不带注浆段的袖阀管,不带注浆段的袖阀管与带有注浆段的第一袖阀管拼接,在拼接处采用第二袖阀管外套连接固定,为了保证注浆后隧道加固的质量,注浆区延伸至隧道拱顶上方5m,将第一注浆段布置在地面到隧道拱顶上方5m距离对应的位置处,保证注浆范围。
进一步地,所述第一注浆段和第二注浆段相距60cm。
优选的,所述第一袖阀管包括多个布置有溢浆孔的注浆段,相邻两个注浆段相距50-70cm。
设置多个注浆段,且相邻两个注浆段之间的距离为50-70cm,能保证注浆均匀,大大提升岩体稳定性,保证开挖过程中不发生垮塌、初支变形等施工问题。
进一步地,每个注浆段之间的距离为60cm。
优选的,每个所述注浆段上设置有溢浆孔,多个所述溢浆孔为梅花型布置形式。
采用这种布置形式的溢浆孔,保证注浆均匀,提高施工安全和施工质量。
优选的,该注浆管包括多个相互拼接的第一袖阀管单元。设置多个第一袖阀管单元,使得该注浆管能适应不同深度的隧道,同时也能适应不同的注浆深度。
优选的,所述第一袖阀管、第二袖阀管和第三袖阀管均为无缝钢管。采用无缝钢管,保证钢管具有较高的强度,避免在注浆压力条件下发生开裂等影响注浆管质量的问题。
优选的,所述第一袖阀管为直径50-70mm、壁厚为4-6mm的无缝钢管,所述第二袖阀管和第三袖阀管为直径60-80mm、壁厚为3-5mm的无缝钢管。
进一步地,所述第一袖阀管为φ60×5mm无缝钢管,所述第二袖阀管和第三袖阀管为φ70×4mm无缝钢管。
对应地,本申请还提供了一种地表注浆的隧道加固施工方法,在采用如上述所述的注浆管进行地表注浆施工时,包括以下步骤:
步骤一、施工前,于隧道内进行取样进行试验,确定土体参数;
步骤二、平整施工场地,测量放线,加工注浆管;
步骤三、钻孔,施工套壳料;
步骤四、分段注浆,达到终压压力时停止注浆;
步骤五、重复步骤三~步骤四,直至完成注浆区域范围内所有孔的注浆;
步骤六、施工探孔检查注浆情况;
步骤七、隧道开挖、支护。
所述步骤一中施工之前,首先需对待注浆区域进行取样,明确其土体参数,主要包括压实度、孔隙率和含水率等。
所述步骤二中测量放线,明确注浆区域范围,地面标高,并确定注浆管长度,包括确定注浆段的长度和非注浆段的长度,同时平整施工场地。
所述步骤四中注浆时,注浆材料采用普通硅酸盐水泥、硫铝酸盐水泥、水玻璃,初始注浆压力宜采用2MPa,终压压力不小于6MPa。
通过步骤一施工前进行取样试验,确定土体参数,从而根据不同的地质结构采用不用的钻孔工艺、套壳料及注浆工艺,因此,对多种地质结构均适用,此外,该地表注浆的隧道加固施工方法采用本申请的注浆管,不仅适用于超深隧道,而且适用于普通深度隧道。
隧道施工采用本方案的施工方法后岩体稳定性大大提升,开挖过程中不发生垮塌、初支变形等施工问题,施工速度大大加快,施工安全及施工质量显著提升。
优选的,该地表注浆的隧道加固施工方法应用于全风化花岗岩地层山岭隧道,所述步骤三中钻孔采用地质钻机,孔径不小于Φ120MM,孔深大于设计孔深10cm~15cm。
现有技术中主要对软弱围堰和富水地层进行注浆加固施工,采用本方案的施工方法,尤其适用于全风化花岗岩地层山岭隧道,而且适用于孔径在120-150mm的隧道加固施工过程中。
优选的,所述步骤五中的注浆区域范围为沿隧道横断面注浆范围为隧道中线两侧各11.5-13.5m,合计23-27m,沿隧道纵断面为隧道拱顶上方4.5-5.5m,隧道隧底下方1.5-2.5m。
进一步地,注浆区域范围为沿隧道横断面注浆范围为隧道中线两侧各12.5m,合计25m,沿隧道纵断面为隧道拱顶上方5m,隧道隧底下方2m。
优选的,所述步骤三中的套壳料包括、水泥和膨润土,所述套壳料施工重量配合比水:水泥:膨润土为(1.4-1.8:0.8-1.2:0.8-1.2)。
进一步地,套壳料经现场试验及室内试验后确定,套壳料施工重量配合比为水:水泥:膨润土=1.6:1:1。
优选的,所述步骤五中的注浆区域范围所有孔包括外层圈的注浆孔,以及外层圈内的剩余注浆孔,所述外层圈的注浆孔采用水玻璃—普通硅酸盐水泥双液浆,两者体积配合比为(0.8-1.2:0.8-1.2),内部注浆孔采用硫铝酸盐水泥单液浆,水灰重量比为(0.8-1.2:0.8-1.2)。
将注浆区域范围分为外层圈注浆孔和外层圈内的剩余注浆孔并对两类孔采用不同浆液注浆,外层圈注浆孔为注浆区域与外侧的分界面,因此采用双液浆注浆,内层采用单液浆浇筑,这种方式既能满足浇筑工艺要求,保证隧道开挖稳定,还节约了较大成本。
进一步地,外层圈注浆孔采用的水玻璃—普通硅酸盐水泥双液浆的体积配合比为(1:1),内部注浆孔采用硫铝酸盐水泥单液浆,水灰重量比为(1:1)
与现有技术相比,本发明的有益效果:
1、采用本技术方案的注浆管,当注浆深度较大时,第一袖阀管采用拼接的方式增加长度,在拼接处,两段第一袖阀管的端头对接,内孔连通,利用第二袖阀管将拼接的两段第一袖阀管接头套合在管内,实现第一袖阀管增长,满足注浆深度,因此,能适用于多种深度的隧道注浆加固;
2、采用本方案的地表注浆的隧道加固施工方法,该施工方法通过地表施工注浆管进行地表注浆加固隧道,不仅适用于超深隧道,而且也适用于普通深度隧道,并且对多种地质结构适用,大大提升了岩体稳定性,使得开挖过程中不发生垮塌、初支变形等施工问题,施工速度大大加快,施工安全及施工质量显著提升。
附图说明:
图1为本发明中注浆管的结构示意图。
图2为实施例1中另一种实施方式的注浆管结构示意图。
图3为本发明中注浆管布置在注浆孔中的示意图。
图4为本发明中地表注浆加固施工方法的流程示意图。
图5为地表注浆加固施工方法中注浆区域范围的示意图。
图中标记:1-第一袖阀管,101-注浆段,101a-第一注浆段,101b-第二注浆段,102-非注浆段,2-第二袖阀管,3-溢浆孔,4-第三袖阀管,5-隧道,6-注浆区域范围,7-套壳料,8-第四袖阀管。
具体实施方式
下面结合试验例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
实施例1
本实施例提供了一种用于隧道加固施工的地表注浆管。
如图1-图3所示,注浆管,包括第一袖阀管1,以及外套在该第一袖阀管1上的第二袖阀管2,所述第一袖阀管1包括注浆段101和非注浆段102,所述注浆段101上设置有溢浆孔3,且该溢浆孔3两端嵌套有尺寸较大的第三袖阀管4内,本实施例中,所述注浆段101和非注浆段102一体式连接,也就是两者为同一根袖阀管。
所述尺寸较大是指第三袖阀管4的内径大于第一袖阀管1的外径,使得第三袖阀管4能外包式套在第一袖阀管1上,也就是嵌套在注浆段101两端,也就是溢浆孔3的两端(两侧)。
第二袖阀管2外套在第一袖阀管1上,从而形成包括内管和外管的双层管结构。
如图1所示,以第一袖阀管包括两段注浆段101进行说明,注浆段101包括相距50-70cm的第一注浆段101a和第二注浆段101b,所述第一注浆段101a和第二注浆段101b两端均嵌套有第三袖阀管4,第一注浆段101a和第二注浆段101b之间为非注浆段102,非注浆段102同样位于注浆区,只是该部分没有布置溢浆孔3,在实际使用过程中,第一袖阀管1包括多个布置有溢浆孔3的注浆段101,多个所述注浆段101相距50-70cm,多个注浆段101的位置与注浆管在地面垂直注浆时注浆区域的垂直高度相对应。
作为其中的一种实施方式,如图2所示,注浆管还包括第四袖阀管8,所述第四袖阀管8与第一袖阀管的直径与壁厚相同,区别时第四袖阀管8不带注浆段,根据注浆区的垂直高度,拼接多根第一袖阀管1,同时其中一端的第一袖阀管1与拼接第四袖阀管8,多根所述第一袖阀管1位于注浆区,所述第四袖阀管8布置在地面与注浆区之间的这段位置处,在多根所述第一袖阀管1的连接处,以及在第一袖阀管1和第四袖阀管8的连接处,均外套有第二袖阀管8,,。所述注浆管根据注浆区域的深度由若干根第一袖阀管1拼接形成,从而形成需要的长度,图1中仅示意性地画出了两条第一袖阀管1,同时根据地面到注浆区域的长度布置第四袖管8的长度,或拼接多根所述袖阀管8使其总长度与地面到注浆区域的深度对应。
在拼接第一袖阀管1时,两根第一袖阀管1的端头对接,内孔连通,第二袖阀管2将拼接的两根第一袖阀管1接头套合在管内,在拼接第一袖阀管1和第四袖阀管8,或者拼 接多根第四袖阀管8时,同样接头处均对应采用第二袖阀管2进行外包式套接,值得说明的是,在第一袖管1上,没有开设有溢浆孔的非注浆段也可以外包一段第二袖阀管,同理,所有非注浆段也可以采用一条或多条第二袖阀管进行外包连接。
当隧道深度较浅时,也可以不连接第四袖阀管,直接采用第一袖阀管1进行注浆,或者连接多根第一袖阀管1进行注浆。
第一袖阀管1位于隧道注浆区,第四袖阀管8位于地面到注浆区之间的非注浆区,通常情况下,注浆区延伸至隧道拱顶上方4-6m,如果将图1中右端的第一袖阀管视为一根或多根第四袖阀管(根据地面到注浆区的深度确定)时,也就是将第一注浆段101a设置在隧道拱顶上方4-6m的位置处。
作为其中一种优选的实施方式,所述第一注浆段101a和第二注浆段101b相距60cm。
作为其中的一种实施方式,如图3所示,每个所述注浆段101设置有溢浆孔3,多段注浆段也就具有多个溢浆孔,多个所述溢浆孔3为梅花型布置形式。
另一种实施方式为:也可以在每个注浆段101上设置多个溢浆孔,并且也可以将每个注浆段上的多个溢浆孔均匀布置,或对称布置。
本实施例中,所述第一袖阀管1、第二袖阀管2和第三袖阀管4均为无缝钢管,具体地,所述第一袖阀管1为φ60×5mm无缝钢管,所述第二袖阀管2和第三袖阀管4为φ70×4mm无缝钢管,同时将第四袖阀管8采用φ60×5mm无缝钢管。
也可以对第一袖阀管1、第二袖阀管2、第三袖阀管4和第四袖阀管8的直径和厚度适当调节,但是应当注意第一袖阀管的外径应当小于第二袖阀管和第三袖阀管的内径,从而保证第二袖阀管和第三袖阀管能外套在第一袖阀管上,并且袖阀管的壁厚选择要与注浆压力大小匹配,防止发生袖阀管变形从而影响注浆的质量问题,同样地,与第一袖阀管直径壁厚相同的第四袖阀管,其外径也应当小于第二袖阀管的内径。
所述第二袖阀管2外套在第一袖阀管1和第四袖阀管8上时,第一袖阀管1和第四袖阀管8分别与第二袖阀管2之间的形成间隙,间隙采用密封胶带等填充材料密封填缝,第三袖阀管4与注浆段101连接时,应当绑扎牢固,可采用胶布进行绑扎,。
本实施例中,第三袖阀管4采用在溢浆孔3左右两侧各5cm处绑扎牢固,第三袖阀管4的长度为1cm,设置有溢浆孔3的注浆段101的长度大致在10cm左右的长度。
实施例2
本实施例提供了一种全风化花岗岩地层山岭隧道的地表注浆加固施工方法,如图4所示,在 采用如实施例1中所述的注浆管进行地表注浆施工时,包括以下步骤:
步骤一、施工前,对隧道内待注浆区域的土体进行取样、试验,确定土体参数,主要包括压实度、孔隙率和含水率等;
步骤二、平整施工场地,测量放线,这两个施工过程可以同时进行,测量放线时明确注浆区域范围,并进行地面标高,施工场地平整后进行复核,满足要求后进入后序步骤三钻孔,不满足设计要求时,应当继续平整,在开展此步骤时,同时制作注浆管,确定注浆管长度,包括制作第一袖阀管、第二袖阀管及第三袖阀管,并进行连接;
步骤三、采用地质钻机钻孔,同时制备施工套壳料,钻孔完成后应当检查钻孔深度直至满足设计要求,然后下放套壳料,如图3中套壳料7的位置;
步骤四、制备浆液并进行分段注浆,达到终压压力时停止注浆;
步骤五、重复步骤三~步骤四,直至完成注浆区域范围内所有孔的注浆;
步骤六、施工探孔检查注浆情况;
步骤七、隧道开挖、支护。
在测量放线及平整场地钱,还包括对施工区域的裂缝处理和便道修整,裂缝处理主要针对地表存在的裂缝进行注浆填缝,便道修整方便后期施工。
所述步骤四中注浆时,所述分段注浆为先对孔底部注浆,逐次向上直至完成注浆,注浆材料采用普通硅酸盐水泥、硫铝酸盐水泥、水玻璃,初始注浆压力宜采用2MPa,终压压力不小于6MPa。
作为其中一种优选的实施方式,步骤三钻孔时,孔径不小于Φ120mm,孔深大于设计孔深10cm~15cm。
如图5所示,步骤五中的注浆区域范围6包括沿隧道5横断面方向和沿隧道5纵断面方向,沿隧道5横断面的注浆范围为隧道中线两侧各11.5-13.5m,合计23-27m,沿隧道5纵断面的注浆范围为隧道拱顶上方4.5-5.5m,隧道隧底下方1.5-2.5m。
本实施例中,注浆区域范围6确定为沿隧道横断面注浆范围为隧道中线两侧各12.5m,合计25m,沿隧道纵断面为隧道拱顶上方5m,隧道隧底下方2m。
在制备施工套壳料时,套壳料包括水泥和膨润土,其施工重量配合比水:水泥:膨润土为(1.4-1.8:0.8-1.2:0.8-1.2),优选配合比为水:水泥:膨润土=1.6:1:1。
从结构稳定性及成本考量,可对注浆区域分为内的孔采用不同的浆液进行注浆,将注浆区域范围的孔分为外层圈的注浆孔和外层圈内的剩余注浆孔,所述外层圈的注浆孔采用水玻璃—普通硅酸盐水泥双液浆,两者体积配合比为(0.8-1.2:0.8-1.2),优选水玻璃:普通 硅酸盐水泥体积配合比(1:1),内部注浆孔采用硫铝酸盐水泥单液浆,水灰重量比为(0.8-1.2:0.8-1.2),优选(1:1)。
完成注浆后应该检查注浆情况,确保效果,满足设计要求后进行隧道开挖、支护。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种注浆管,其特征在于,包括第一袖阀管(1)和外套在该第一袖阀管(1)上的第二袖阀管(2),所述第一袖阀管(1)包括注浆段(101)和非注浆段(102),所述注浆段(101)上设置有溢浆孔(3),且该溢浆孔(3)两端嵌套有第三袖阀管(4)。
  2. 根据权利要求1所述的注浆管,其特征在于,所述第一袖阀管(1)包括多个布置有溢浆孔(3)的注浆段(101),相邻两个所述注浆段(101)相距50-70cm。
  3. 根据权利要求2所述的注浆管,其特征在于,多个所述溢浆孔(3)为梅花型布置形式。
  4. 根据权利要求3所述的注浆管,其特征在于,该注浆管包括多个相互拼接的第一袖阀管单元。
  5. 根据权利要求4所述的注浆管,其特征在于,所述第一袖阀管(1)为直径50-70mm、壁厚为4-6mm的无缝钢管,所述第二袖阀管(2)和第三袖阀管(4)为直径60-80mm、壁厚为3-5mm的无缝钢管。
  6. 一种地表注浆的隧道加固施工方法,其特征在于,在采用如权利要求1-5之一所述的注浆管进行地表注浆施工时,包括以下步骤:
    步骤一、施工前,于隧道内进行取样进行试验,确定土体参数;
    步骤二、平整施工场地,测量放线,加工注浆管;
    步骤三、钻孔,施工套壳料(7);
    步骤四、分段注浆,达到终压压力时停止注浆;
    步骤五、重复步骤三~步骤四,直至完成注浆区域范围内所有孔的注浆;
    步骤六、施工探孔、检查注浆情况;
    步骤七、隧道开挖、支护。
  7. 根据权利要求6所述的地表注浆的隧道加固施工方法,其特征在于,该地表注浆的隧道加固施工方法应用于全风化花岗岩地层山岭隧道,所述步骤三中钻孔采用地质钻机,孔径不小于Φ120mm,孔深大于设计孔深10cm~15cm。
  8. 根据权利要求6所述的地表注浆的隧道加固施工方法,其特征在于,所述步骤五中的注浆区域范围为沿隧道横断面注浆范围为隧道中线两侧各11.5-13.5m,合计23-27m,沿隧道纵断面为隧道拱顶上方4.5-5.5m,隧道隧底下方1.5-2.5m。
  9. 根据权利要求7所述的地表注浆的隧道加固施工方法,其特征在于,所述步骤三中的套壳料包括、水泥和膨润土,所述套壳料施工重量配合比水:水泥:膨润土为(1.4-1.8:0.8-1.2:0.8-1.2)。
  10. 根据权利要求6-9之一所述的地表注浆的隧道加固施工方法,其特征在于,所述步骤五 中的注浆区域范围所有孔包括外层圈的注浆孔,以及外层圈内的剩余注浆孔,所述外层圈的注浆孔采用水玻璃—普通硅酸盐水泥双液浆,两者体积配合比为(0.8-1.2:0.8-1.2),内部注浆孔采用硫铝酸盐水泥单液浆,水灰重量比为(0.8-1.2:0.8-1.2)。
PCT/CN2020/090408 2020-01-09 2020-05-15 一种注浆管及地表注浆的隧道加固施工方法 WO2021139063A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010023223.5A CN111140238A (zh) 2020-01-09 2020-01-09 一种注浆管及地表注浆的隧道加固施工方法
CN202010023223.5 2020-01-09

Publications (1)

Publication Number Publication Date
WO2021139063A1 true WO2021139063A1 (zh) 2021-07-15

Family

ID=70524266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090408 WO2021139063A1 (zh) 2020-01-09 2020-05-15 一种注浆管及地表注浆的隧道加固施工方法

Country Status (2)

Country Link
CN (1) CN111140238A (zh)
WO (1) WO2021139063A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111140238A (zh) * 2020-01-09 2020-05-12 中铁二局集团有限公司 一种注浆管及地表注浆的隧道加固施工方法
CN111852515A (zh) * 2020-08-31 2020-10-30 中铁十六局集团有限公司 一种隧道地层预加固综合注浆方法
CN112127897A (zh) * 2020-09-22 2020-12-25 中铁十局集团西北工程有限公司 超深孔地表大口径定向注浆工法
CN113217020B (zh) * 2021-04-09 2022-07-05 中铁六局集团有限公司 山体袖阀管加固施工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145398A (ja) * 1998-09-11 2000-05-26 Bridgestone Corp 地山の固結、補強に用いる注入管
CN204112308U (zh) * 2014-09-24 2015-01-21 中建一局集团建设发展有限公司 一种基于大卵石、高渗透系数地层的简易袖阀注浆装置
CN205677636U (zh) * 2016-06-22 2016-11-09 中铁二局集团有限公司 一种袖阀管组件及注浆装置
CN207597388U (zh) * 2017-10-16 2018-07-10 广州地铁设计研究院有限公司 注浆袖阀管
CN109630155A (zh) * 2019-01-24 2019-04-16 宁波用躬科技有限公司 一种不同断面类型的上下交叉隧道施工方法
CN110630273A (zh) * 2019-10-17 2019-12-31 中铁二局集团有限公司 一种全风化花岗岩地层偏压浅埋隧道施工方法
CN111140238A (zh) * 2020-01-09 2020-05-12 中铁二局集团有限公司 一种注浆管及地表注浆的隧道加固施工方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145398A (ja) * 1998-09-11 2000-05-26 Bridgestone Corp 地山の固結、補強に用いる注入管
CN204112308U (zh) * 2014-09-24 2015-01-21 中建一局集团建设发展有限公司 一种基于大卵石、高渗透系数地层的简易袖阀注浆装置
CN205677636U (zh) * 2016-06-22 2016-11-09 中铁二局集团有限公司 一种袖阀管组件及注浆装置
CN207597388U (zh) * 2017-10-16 2018-07-10 广州地铁设计研究院有限公司 注浆袖阀管
CN109630155A (zh) * 2019-01-24 2019-04-16 宁波用躬科技有限公司 一种不同断面类型的上下交叉隧道施工方法
CN110630273A (zh) * 2019-10-17 2019-12-31 中铁二局集团有限公司 一种全风化花岗岩地层偏压浅埋隧道施工方法
CN111140238A (zh) * 2020-01-09 2020-05-12 中铁二局集团有限公司 一种注浆管及地表注浆的隧道加固施工方法

Also Published As

Publication number Publication date
CN111140238A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2021139063A1 (zh) 一种注浆管及地表注浆的隧道加固施工方法
CN101994513B (zh) 上半断面完成全断面帷幕注浆隧道施工方法
Liu et al. Structural responses and treatments of shield tunnel due to leakage: A case study
CN102943466B (zh) 微型钢管混凝土桩穿透路基层加固软弱地基施工工法
CN105240024B (zh) 一种平行盾构法扩建施工地铁车站的方法
CN107119669A (zh) 用于盾构在富水砂层中侧穿房屋的预注浆加固地基方法
CN110924976B (zh) 围岩外圈注浆加固方法
CN109611102B (zh) 一种冷开挖下穿立交桥施工方法
CN108252719B (zh) 一种城市浅埋隧道下穿软流塑状红黏土层施工方法
CN110566223B (zh) 一种深埋pba地铁车站断面设计方法
CN103741963A (zh) 一种工业厂房基础加固方法
LU505665B1 (en) Composite pile foundation structure of steel pipe-concrete branch piles and construction method thereof
CN107201909A (zh) 膨胀土隧道支护结构及方法
CN111501771B (zh) 多椭圆环形组合撑在深大淤泥基坑工程的应用方法
CN111254933B (zh) 袖阀管岩溶注浆施工方法
CN114233385A (zh) 一种斜井井筒突泥涌水的治理方法
CN106837382A (zh) 一种地铁隧道围岩地面预注浆加固工艺
CN106758759A (zh) 一种用于深水裸岩河床的栈桥桩基及其锚固方法
CN105604163A (zh) 污水管道内部堵漏外部注浆施工方法
CN204040021U (zh) 城市地下工程暗挖导洞内大直径桩施工设备系统
CN114541408B (zh) 地下车站端头井前上部含风井结构及其下穿施工方法
CN206477240U (zh) 一种用于深水裸岩河床的栈桥桩基
CN205224019U (zh) 钢筋纤维水泥土桩
Wang et al. Study on the mechanism and rapid treatment method of leakage disease at the junction between the shaft and shield tunnel
Yang et al. Monitoring and controlling on surface settlement in sand and gravel strata caused by subway station construction applying pipe-roof pre-construction method (PPM)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911344

Country of ref document: EP

Kind code of ref document: A1