WO2021139051A1 - 采用希尔伯特‑黄变换预测连铸坯鼓肚变形量的方法 - Google Patents
采用希尔伯特‑黄变换预测连铸坯鼓肚变形量的方法 Download PDFInfo
- Publication number
- WO2021139051A1 WO2021139051A1 PCT/CN2020/087522 CN2020087522W WO2021139051A1 WO 2021139051 A1 WO2021139051 A1 WO 2021139051A1 CN 2020087522 W CN2020087522 W CN 2020087522W WO 2021139051 A1 WO2021139051 A1 WO 2021139051A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hilbert
- bulge
- frequency
- bulging
- liquid level
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
- B22D11/18—Controlling or regulating processes or operations for pouring
- B22D11/181—Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
Definitions
- the invention belongs to the technical field of steel metallurgy continuous casting detection, and relates to a method for predicting the bulge deformation of a continuous casting billet by adopting the Hilbert-Huang transform.
- Continuous casting billet bulge is a common type of shape defect in the continuous casting production process, which mainly occurs in the second cold zone. Slight bulge will cause center segregation and center cracks of the slab, and in severe cases, the slab cannot pass through the sector smoothly or even the casting is interrupted, which will cause serious interference to the quality of the slab, the smooth production and the connection of various processes.
- the degree of bulging is usually measured by the thickness difference between the center and the edge of the billet, which is called bulging deformation.
- Zhang Xing and others proposed a calculation method of bulging deformation based on the high temperature creep constitutive equation (Journal of iron and steel research international.DOI:10.1007/s42243-018-0169-1).
- Ji Cheng et al. reported a method for calculating bulge deformation based on finite element simulation (Metallurgical and materials transactions B.DOI: 10.1007/s11663-018-1173-3). The studies that have been carried out around the bulge have mostly focused on elastoplastic analysis, creep formula derivation, and finite element simulation.
- the present invention proposes to perform empirical modal decomposition of the crystallizer level signal, and use the bulging frequency obtained by Hilbert marginal spectrum analysis to determine the liquid level fluctuation component, according to The fluctuation range of the bulge liquid level component predicts the deformation of the continuous casting billet bulge.
- the purpose of the present invention is to propose a method for predicting the deformation of the continuous casting billet by using the Hilbert-Huang transformation, accurately predicting the deformation of the continuous casting billet, and providing on-site guidance for the online control of the continuous casting billet quality.
- a method that uses Hilbert-Huang transform to predict the bulge deformation of continuous casting billet uses Hilbert-Huang transform to perform empirical mode decomposition and Hilbert marginal spectrum analysis of the liquid level signal to obtain the bulge Frequency, use the bulge frequency to determine the bulge liquid level component, and predict the bulge deformation based on its fluctuation range, including the following steps:
- the first step is to collect the crystallizer level signal
- the second step get the bulging frequency
- T represents the sampling time of the liquid level signal.
- the signal calculates the envelope mean value of h 1 (t) m 1(1) (t), and subtracts m 1( from h 1 (t) 1) (t) gives h 1(1) (t):
- h 1(k) (t) h 1(k-1) (t)-m 1(k) (t),t ⁇ [0,T]
- the eigenmode function determination rule is that the following two conditions are met at the same time: i) the number of signal extreme points and zero crossing points are equal or not more than one difference; ii) signal local maximum points and local minimum points The mean value of the upper and lower envelopes formed is zero.
- step 1.1 update r 1 (t) to the signal to be decomposed, and re-execute steps 1.1)-1.3) to obtain the Nth layer eigenmode function C N (t) and residual signal r N ( t):
- r N-1 (t) represents the signal to be decomposed when the Nth layer eigenmode function is obtained.
- N is the number of eigenmode functions
- C i (t) is the eigenmode function of the i-th layer
- r N (t) is the residual signal.
- Determining frequency information mainly includes the following sub-steps:
- a i (t) and ⁇ i (t) represent the instantaneous amplitude and instantaneous frequency of the i-th layer eigenmode function, respectively, and j represents the imaginary sign.
- the frequency f corresponding to D is called the bulging frequency f b .
- the third step is to determine the fluctuation range of the bulging liquid level component
- Mold level layers is calculated intrinsic mode function C 1 (t) ⁇ C N (t) of each marginal spectrum is obtained corresponding to each frequency f i, with the bulging of the same frequency f b f i corresponding
- the eigenmode function is called the bulging liquid level component, and the fluctuation range H is determined, which specifically includes the following steps:
- the fourth step prediction of bulge deformation of continuous casting slab
- W and D respectively represent the width and thickness of the slab, in mm; H represents the fluctuation range of the liquid level component from the bulge, in mm; W L represents the width of the liquid phase in the cavity of the liquid core at the bulge, in mm; L B Indicates the length of the billet with a bulge along the casting direction, and d bulging represents the deformation of the bulge.
- the fluctuation range of the liquid level component of the bulge can be used to predict the deformation of the bulge:
- the method for predicting the deformation of the bulge is suitable for the prediction and positioning of the bulge of continuous casting billets such as slabs, square billets, round billets, and shaped billets.
- the beneficial effect of the present invention is that the proposed method adopts the Hilbert-Huang transform to predict the deformation of the continuous casting slab bulge, with the help of the existing signal detection conditions in the continuous casting site, avoiding the harsh continuous casting site Additional sensors and measuring elements are installed, the detection principle is clear, and it is easy to maintain. It realizes the online prediction of the bulge deformation of the continuous casting slab, and provides a reliable means for improving the quality of the casting slab, and promoting the on-line monitoring of the production progress and abnormal process.
- Figure 1 shows the crystallizer level signal
- Figure 2 shows the periodic fluctuation of the crystallizer level signal
- Figure 3 shows the empirical mode decomposition result of the mold level signal
- Figure 4 shows the result of the marginal spectrum of the crystallizer level signal
- Figure 5 shows the marginal spectrum results of the eigenmode function of each layer of the mold level.
- the first step real-time acquisition of crystallizer level signal
- Figure 1 shows the crystallizer level signal with a sampling time of 300s and a sampling frequency of 25Hz.
- the crystallizer liquid level shows obvious regularity, and the periodic fluctuation of the liquid level is shown in Figure 2.
- the second step get the bulging frequency
- T represents the sampling time of the liquid level signal.
- h 1 (t) does not satisfy the eigenmode function judgment rule, that is: the number of extreme points and zero-crossing points of h 1 (t) differs by more than one, and its local maximum and local minimum The mean value of the upper and lower envelopes formed by the value points is not zero;
- h 1(k) (t) h 1(k-1) (t)-m 1(k) (t),t ⁇ [0,300]
- step 1.1 update r 1 (t) to the signal to be decomposed, and re-execute steps 1.1)-1.3), that is, repeat the process of obtaining C 1 (t), and continue to obtain C 2 (t) ⁇ C 12 (t) and residual signal r 12 (t):
- Figure 3 shows the empirical mode decomposition results. It can be seen that the mold level signal in Figure 1 is decomposed into components C 1 ⁇ C 12 and residual signal r 12 after empirical mode decomposition.
- a i (t) and ⁇ i (t) represent the instantaneous amplitude and instantaneous frequency of the i-th layer eigenmode function, respectively, and j represents the imaginary sign.
- the frequency corresponding to the second energy peak is 0.049Hz.
- the casting speed V c of the casting machine is 0.75m/min, and the continuous casting slab is in a
- the distance traveled in the cycle is:
- the third step is to determine the fluctuation range of the bulging liquid level component
- the belly fluid level component and the determination of its fluctuation range include the following steps:
- the bulging frequency 0.049 Hz corresponds to the eighth layer eigenmode function, namely C 8 , so the eighth layer eigenmode function C 8 is the bulging liquid level component.
- the fourth step prediction of bulge deformation of continuous casting slab
- the volume change of the molten steel in the slab cavity caused by the bulge is equal to the volume change of the mold liquid level fluctuation, which can be obtained:
- the fluctuation range of the liquid level component of the bulge can be used to predict the deformation of the bulge:
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Algebra (AREA)
- Pure & Applied Mathematics (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Continuous Casting (AREA)
Abstract
采用希尔伯特‑黄变换预测连铸坯鼓肚变形量的方法,属于钢铁冶金连铸检测技术领域。首先,通过以太网直接读取结晶器液面控制系统检测到的液位信号,并同步采集铸机拉速浇铸等工艺参数;其次,采用希尔伯特‑黄变换对液位信号进行经验模态分解和希尔伯特边际谱分析得到结晶器液位信号的各层本征模态函数C 1(t)~C N(t),以及能够对鼓肚进行定位的鼓肚频率;最后,确定鼓肚液位分量的波动幅度,由波动幅度得到鼓肚变形量;该方法借助连铸现场已有的信号检测条件,避免了在恶劣的连铸现场额外安装传感器和测量元件,检测原理清晰,易于维护,实现了连铸坯鼓肚变形量的在线预测,为提升铸坯质量、促进生产顺行及过程异常的在线监测提供了可靠手段。
Description
本发明属于钢铁冶金连铸检测技术领域,涉及一种采用希尔伯特-黄变换预测连铸坯鼓肚变形量的方法。
连铸坯鼓肚是连铸生产过程中常见的一类形状缺陷,主要发生在二冷区。轻微的鼓肚会引起铸坯中心偏析和中心裂纹,严重时则导致铸坯无法顺利通过扇形段甚至浇铸中断,给铸坯质量、生产顺行和各工序的衔接带来严重干扰。
鼓肚程度通常使用铸坯中心与边缘的厚度差来衡量,称为鼓肚变形量。张兴中等人提出了一种基于高温蠕变本构方程推导的鼓肚变形量计算方法(Journal of iron and steel research international.DOI:10.1007/s42243-018-0169-1)。祭程等人报道了一种基于有限元模拟的鼓肚变形量计算方法(Metallurgical and materials transactions B.DOI:10.1007/s11663-018-1173-3)。已开展的围绕鼓肚的研究多侧重于弹塑性分析、蠕变公式推导以及有限元模拟。然而,在实际生产过程中鼓肚的出现具有偶然性、突发性和无规律性,模拟结果与鼓肚变形量实测结果难免出现偏差。因此到目前为止,国内外尚未开发出成熟的鼓肚检测和鼓肚变形量预测方法。
基于鼓肚时结晶器液位的周期性波动特性,本发明提出,对结晶器液位信号进行经验模态分解,利用希尔伯特边际谱分析得到的鼓肚频率确定液位波动分量,根据鼓肚液位分量的波动幅度预测连铸坯鼓肚的变形量。
发明内容
本发明的目的是提出一种采用希尔伯特-黄变换预测连铸坯鼓肚变形量的方法,对鼓肚的变形量进行准确的预测,为连铸坯质量的在线控制提供现场指导。
为达到上述目的,本发明的技术方案如下:
一种采用希尔伯特-黄变换预测连铸坯鼓肚变形量的方法,该方法采用希尔伯特-黄变换对液位信号进行经验模态分解和希尔伯特边际谱分析得到鼓肚频率,利用鼓肚频率确定鼓肚液位分量,根据其波动幅度预测鼓肚变形量,包括以下步骤:
第一步、采集结晶器液位信号
通过以太网直接读取结晶器液面控制系统检测到的液位信号,并同步采集铸机拉速浇铸等工艺参数。
第二步、获取鼓肚频率
获取结晶器液位信号的各层本征模态函数C
1(t)~C
N(t)以及能够对鼓肚进行定位的频率,即 鼓肚频率f
b;
1.希尔伯特-黄变换
(1)对采集到的结晶器液位信号进行经验模态分解,获取液位信号的各层本征模态函数,主要包括以下子步骤:
1.1)以X(t)表示待分解信号,找出其极大值点和极小值点,分别以三次样条函数对极大值点和极小值点进行拟合,得到上包络线S
+(t)和下包络线S
-(t),并计算其包络均值:
其中,T表示液位信号的采样时间。
1.2)从信号X(t)中减去包络均值m
1(t),得到h
1(t):
h
1(t)=X(t)-m
1(t),t∈[0,T]
如果,h
1(t)不满足本征模态函数判定规则,信号计算h
1(t)的包络均值m
1(1)(t),并从h
1(t)中减去m
1(1)(t)得到h
1(1)(t):
h
1(1)(t)=h
1(t)-m
1(1)(t),t∈[0,T]
直至经过k次计算可得到满足本征模态函数判定规则的h
1(k)(t):
h
1(k)(t)=h
1(k-1)(t)-m
1(k)(t),t∈[0,T]
所述本征模态函数判定规则为同时满足以下两个条件:i)信号极值点和过零点的个数相等或相差不超过一个;ii)信号局部极大值点和局部极小值点形成的上、下包络线的均值为零。
1.3)将h
1(k)(t)存储为本征模函数,记为C
1(t),并从X(t)中减去C
1(t),得到残差信号r
1(t):
r
1(t)=X(t)-C
1(t),t∈[0,T]
1.4)返回步骤1.1),将r
1(t)更新为待分解信号,并重新执行步骤1.1)-1.3),得到第N层本征模态函数C
N(t)和残差信号r
N(t):
r
N(t)=r
N-1(t)-C
N(t),t∈[0,T]
其中:r
N-1(t)表示获取第N层本征模态函数时对应的待分解信号。
1.5)如果r
N(t)极值点个数小于M,则分解过程结束,最终得到:
否则,重复执行1.1)-1.5),直到分解过程结束为止。最终,得到了N层本征模态函数 C
1(t)~C
N(t)和残差信号r
N(t)。
其中,N为本征模态函数的数量,C
i(t)为第i层本征模态函数,r
N(t)为残差信号。
(2)对各层本征模态函数进行希尔伯特谱分析,汇总所有本征模态函数的希尔伯特谱并积分,得到结晶器液位信号X(t)的边际谱,最终确定频率信息,主要包括以下子步骤:
2.1)对各层本征模态函数进行希尔伯特谱分析,并得到希尔伯特谱:
其中,a
i(t)、ω
i(t)分别表示第i层本征模态函数的瞬时幅值和瞬时频率,j表示虚数符号。
2.2)汇总所有本征模态函数的希尔伯特谱,得到液位信号的希尔伯特谱:
2.3)对液位信号的希尔伯特谱进行时间积分,得到边际谱:
绘制液位信号X(t)的边际谱图,根据边际谱图获取能量峰值所对应的主要频率f。
2.鼓肚的检测和定位
结合拉速V
c计算连铸坯在X(t)的边际谱的主要频率f对应的周期内行进的距离D:
若某个主要频率f对应的D与铸机扇形段某对导辊的间距一致,可判定出现了鼓肚,则将与D对应的频率f称之为鼓肚频率f
b。
第三步、确定鼓肚液位分量的波动幅度
计算结晶器液位各层本征模态函数C
1(t)~C
N(t)各自的边际谱,获得其各自对应的频率f
i,将与鼓肚频率f
b相同的f
i对应的本征模态函数称之为鼓肚液位分量,并确定其波动幅度H,具体包含以下步骤:
1)对各层本征模态函数进行希尔伯特谱分析,得到其各自对应的希尔伯特谱:
2)对各层本征模态函数的希尔伯特谱进行时间积分,得到其各自对应的边际谱:
绘制各层本征模态函数C
1(t)~C
N(t)的边际谱图,根据其边际谱图获取其各自能量峰值对应的频率f
i。
3)对比鼓肚频率f
b与频率f
i,将与f
b频率相同的f
i对应的本征模态函数C
i(t)称之为液位鼓肚分量,并确定C
i(t)的波动幅度H。
第四步、连铸坯鼓肚变形量的预测
基于由鼓肚引起的结晶器液位波动体积变化等于二冷区铸坯内部的钢液体积变化(基于质量守恒,鼓肚引起的铸坯内腔钢液容积变化等于结晶器液位波动体积变化),可得到:
W·D·H=d
bulging·W
L·L
B×2
式中,W、D分别表示铸坯的宽度、厚度,mm;H表示由鼓肚液位分量的波动幅度,mm;W
L表示鼓肚处液芯内腔的液相宽度,mm;L
B表示沿浇铸方向带有鼓肚的铸坯长度,d
bulging表示鼓肚变形量。
进一步,可利用鼓肚液位分量的波动幅度预测鼓肚变形量:
上述预测鼓肚变形量的方法适用于板坯、方坯、圆坯、异型坯等连铸坯鼓肚的预测和定位。
本发明的有益效果是:所提出的一种采用希尔伯特-黄变换预测连铸坯鼓肚变形量的方法,借助连铸现场已有的信号检测条件,避免了在恶劣的连铸现场额外安装传感器和测量元件,检测原理清晰,易于维护,实现了连铸坯鼓肚变形量的在线预测,为提升铸坯质量、促进生产顺行及过程异常的在线监测提供了可靠手段。
图1为结晶器液位信号;
图2为结晶器液位信号的周期性波动;
图3为结晶器液位信号的经验模态分解结果;
图4为结晶器液位信号的边际谱结果;
图5为结晶器液位各层本征模态函数的边际谱结果。
下面通过具体的实施例,结合附图对本发明作进一步的阐述。
第一步、结晶器液位信号实时采集
通过以太网直接读取铸机塞棒和液位控制系统的结晶器液位信号,并进行后续的分析。图 1所示为采样时间为300s、采样频率为25Hz的结晶器液位信号。铸坯出现鼓肚时,结晶器液位呈现出明显的规律性,液位的周期性波动如图2所示。
第二步、获取鼓肚频率
1.结晶器液位信号希尔伯特-黄变换
(1)对采集到的结晶器液位信号进行经验模态分解,获取液位信号的各层本征模态函数,主要包括以下子步骤:
1.1)以X(t)表示待分解的液位信号,找出其极大值点和极小值点,分别以三次样条函数对极大值点和极小值点进行拟合,得到上包络线S
+(t)和下包络线S
-(t),并计算其包络均值:
其中,T表示液位信号的采样时间。
1.2)从信号X(t)中减去包络均值m
1(t),得到h
1(t):
h
1(t)=X(t)-m
1(t),t∈[0,300]
经验证h
1(t)并不满足本征模态函数判定规则,即:h
1(t)的极值点和过零点的个数相差超过一个,且其局部极大值点和局部极小值点形成的上、下包络线的均值不为零;
则计算h
1(t)的包络均值m
1(1)(t),并从h
1(t)中减去m
1(1)(t)得到h
1(1)(t):
h
1(1)(t)=h
1(t)-m
1(1)(t),t∈[0,300]
直至经过k次计算后得到了满足本征模态函数判定规则的h
1(k)(t):
h
1(k)(t)=h
1(k-1)(t)-m
1(k)(t),t∈[0,300]
1.3)将h
1(k)(t)存储为本征模函数,记为C
1(t),并从X(t)中减去C
1(t),得到残差信号r
1(t):
r
1(t)=X(t)-C
1(t),t∈[0,300]
1.4)返回步骤1.1),将r
1(t)更新为待分解信号,并重新执行步骤1.1)-1.3),即重复执行得到C
1(t)的过程,持续得到了C
2(t)~C
12(t)及残差信号r
12(t):
r
12(t)=r
11(t)-C
12(t),t∈[0,300]
1.5)由于r
12(t)极值点个数小于2,所以分解过程结束,最终得到12层本征模态函数和残差信号:
图3为经验模态分解结果,可以看出,图1中的结晶器液位信号经经验模态分解得到了分量C
1~C
12以及残差信号r
12。
(2)对各层本征模态函数进行希尔伯特谱分析,汇总所有本征模态函数的希尔伯特谱并 积分,得到结晶器液位信号的边际谱,以确定频率信息,主要包括以下子步骤:
2.1)对各层本征模态函数进行希尔伯特谱分析,并得到希尔伯特谱:
其中,a
i(t)、ω
i(t)分别表示第i层本征模态函数的瞬时幅值和瞬时频率,j表示虚数符号。
2.2)汇总本征模态函数C
1~C
12的希尔伯特谱,得到液位信号的希尔伯特谱:
2.3)对液位信号的希尔伯特谱进行时间积分,得到边际谱:
汇总所有分量的希尔伯特谱并对时间进行积分,得到图1中结晶器液位信号的边际谱,如图4所示。可以看出,在频率为0.049Hz和0.270Hz处具有明显的能量峰值,需对这两个频率作进一步分析。
2.连铸坯鼓肚的检测和定位
图4中,能量最高处对应的频率为0.270Hz,计算该频率对应的周期,即取频率的倒数,为3.7s,此时铸机的拉速V
c为0.75m/min,则连铸坯在一个周期内行进的距离为:
对照表1中列出的铸机扇形段辊间距可知,该距离与所有辊间距均无法匹配,因此上述频率对于鼓肚的定位并无用处。
第二个能量峰值对应的频率为0.049Hz,计算该频率对应的周期,即取频率的倒数,为20.4s,此时铸机的拉速V
c为0.75m/min,则连铸坯在一个周期内行进的距离为:
对照表1中列出的铸机扇形段辊间距,该距离与0号段的总辊18号~段内辊17号的辊间距几乎完全相同,因此,可以判定连铸坯鼓肚出现在0号扇形段内,位置在18号辊附近,该结果与现场人员对连铸坯鼓肚的实时追踪结果一致。
表1连铸机扇形段辊列数据
由上述可知,频率0.049Hz实现了鼓肚发生位置的准确预测。因此,鼓肚频率f
b=0.049Hz。
第三步、确定鼓肚液位分量的波动幅度
计算结晶器液位各层本征模态函数C
1(t)~C
12(t)各自的边际谱,获得其各自对应的频率,将频率为0.049Hz的本征模态函数称之为鼓肚液位分量,并确定其波动幅度,具体包含以下步骤:
(1)对各层本征模态函数进行希尔伯特谱分析,得到各自的希尔伯特谱:
(2)对各层本征模态函数的希尔伯特谱进行时间积分,得到其各自对应的边际谱:
绘制各层本征模态函数的边际谱图,根据其边际谱图获取各层本征模态函数对应的频率, 如图5所示。
(3)从图5中可以看出,鼓肚频率0.049Hz对应第8层本征模态函数,即C
8,因此第8层本征模态函数C
8为鼓肚液位分量。结合图3,C
8中波谷的最低值为-1.68mm,波峰的最高值为1.85mm,因此,可确定鼓肚液位分量C
8的波动幅度为H=3.53mm。
第四步、连铸坯鼓肚变形量的预测
基于质量守恒,鼓肚引起的铸坯内腔钢液容积变化等于结晶器液位波动体积变化,可得到:
W·D·H=d
bulging·W
L·L
B×2
进一步,可利用鼓肚液位分量的波动幅度预测鼓肚变形量:
式中各参数的数值如表2所示
表2结晶器及铸坯相关参数
将表2中各参数的数值带入上式:
最终,计算得到鼓肚变形量为0.148mm。
以上所述实施例仅表达本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。
Claims (3)
- 一种采用希尔伯特-黄变换预测连铸坯鼓肚变形量的方法,其特征在于,该方法采首先用希尔伯特-黄变换对液位信号进行经验模态分解和希尔伯特边际谱分析得到鼓肚频率,利用鼓肚频率确定鼓肚液位分量,根据其波动幅度预测鼓肚变形量,包括以下步骤:第一步、采集结晶器液位信号通过以太网直接读取结晶器液面控制系统检测到的液位信号,并同步采集铸机拉速浇铸工艺参数;第二步、获取鼓肚频率获取结晶器液位信号的各层本征模态函数C 1(t)~C N(t)以及能够对鼓肚进行定位的频率,即鼓肚频率f b;第三步、确定鼓肚液位分量的波动幅度计算结晶器液位各层本征模态函数C 1(t)~C N(t)各自的边际谱,获得其各自对应的频率f i,将与鼓肚频率f b相同的f i对应的本征模态函数称之为鼓肚液位分量,并确定其波动幅度H,具体包含以下步骤:1)对各层本征模态函数进行希尔伯特谱分析,得到其各自对应的希尔伯特谱:其中,a i(t)、ω i(t)分别表示第i层本征模态函数的瞬时幅值和瞬时频率,j表示虚数符号,N表示本征模态函数的层数,t为时间;2)对各层本征模态函数的希尔伯特谱进行时间积分,得到其各自对应的边际谱:绘制各层本征模态函数C 1(t)~C N(t)的边际谱图,根据其边际谱图获取其各自能量峰值对应的频率f i;3)对比鼓肚频率f b与频率f i,将与f b频率相同的f i对应的本征模态函数C i(t)称之为液位鼓肚分量,并确定C i(t)的波动幅度H;第四步、连铸坯鼓肚变形量的预测基于由鼓肚引起的结晶器液位波动体积变化等于二冷区铸坯内部的钢液体积变化,可得到:W·D·H=d bulging·W L·L B×2式中,W、D分别表示铸坯的宽度、厚度,mm;H表示由鼓肚液位分量的波动幅度,mm;W L表示鼓肚处液芯内腔的液相宽度,mm;L B表示沿浇铸方向带有鼓肚的铸坯长度,d bulging表 示鼓肚变形量;利用鼓肚液位分量的波动幅度预测鼓肚变形量:
- 根据权利要求1所述的一种采用希尔伯特-黄变换预测连铸坯鼓肚变形量的方法,其特征在于,所述的第二步包括以下子步骤:1.希尔伯特-黄变换(1)对采集到的结晶器液位信号进行经验模态分解,获取液位信号的各层本征模态函数,主要包括以下子步骤:1.1)以X(t)表示待分解信号,找出其极大值点和极小值点,分别以三次样条函数对极大值点和极小值点进行拟合,得到上包络线S +(t)和下包络线S -(t),并计算其包络均值:其中,T表示液位信号的采样时间;1.2)从信号X(t)中减去包络均值m 1(t),得到h 1(t):h 1(t)=X(t)-m 1(t),t∈[0,T]如果,h 1(t)不满足本征模态函数判定规则,信号计算h 1(t)的包络均值m 1(1)(t),并从h 1(t)中减去m 1(1)(t)得到h 1(1)(t):h 1(1)(t)=h 1(t)-m 1(1)(t),t∈[0,T]直至经过k次计算可得到满足本征模态函数判定规则的h 1(k)(t):h 1(k)(t)=h 1(k-1)(t)-m 1(k)(t),t∈[0,T]所述本征模态函数判定规则为同时满足以下两个条件:i)信号极值点和过零点的个数相等或相差不超过一个;ii)信号局部极大值点和局部极小值点形成的上、下包络线的均值为零;1.3)将h 1(k)(t)存储为本征模函数,记为C 1(t),并从X(t)中减去C 1(t),得到残差信号r 1(t):r 1(t)=X(t)-C 1(t),t∈[0,T]1.4)返回步骤1.1),将r 1(t)更新为待分解信号,并重新执行步骤1.1)-1.3),得到第N层本征模态函数C N(t)和残差信号r N(t):r N(t)=r N-1(t)-C N(t),t∈[0,T]其中:r N-1(t)表示获取第N层本征模态函数时对应的待分解信号;1.5)如果r N(t)极值点个数小于M,则分解过程结束,最终得到:否则,重复执行1.1)-1.5),直到分解过程结束为止;最终,得到了N层本征模态函数C 1(t)~C N(t)和残差信号r N(t);其中,N为本征模态函数的数量,C i(t)为第i层本征模态函数,r N(t)为残差信号;(2)对各层本征模态函数进行希尔伯特谱分析,汇总所有本征模态函数的希尔伯特谱并积分,得到结晶器液位信号X(t)的边际谱,最终确定频率信息,主要包括以下子步骤:2.1)对各层本征模态函数进行希尔伯特谱分析,并得到希尔伯特谱:其中,a i(t)、ω i(t)分别表示第i层本征模态函数的瞬时幅值和瞬时频率,j表示虚数符号;2.2)汇总所有本征模态函数的希尔伯特谱,得到液位信号的希尔伯特谱:2.3)对液位信号的希尔伯特谱进行时间积分,得到边际谱:绘制液位信号X(t)的边际谱图,根据边际谱图获取能量峰值所对应的主要频率f;2.鼓肚的检测和定位结合拉速V c计算连铸坯在X(t)的边际谱的主要频率f对应的周期内行进的距离D:若某个主要频率f对应的D与铸机扇形段某对导辊的间距一致,可判定出现了鼓肚,则将与D对应的频率f称之为鼓肚频率f b。
- 根据权利要求1所述的一种采用希尔伯特-黄变换预测连铸坯鼓肚变形量的方法,其特征在于,所述鼓肚预测方法适用于板坯、方坯、圆坯、异型坯或其他连铸坯鼓肚的检测和定位。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010028569.4A CN111259307B (zh) | 2020-01-11 | 2020-01-11 | 一种采用希尔伯特-黄变换预测连铸坯鼓肚变形量的方法 |
CN202010028569.4 | 2020-01-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021139051A1 true WO2021139051A1 (zh) | 2021-07-15 |
Family
ID=70950406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/087522 WO2021139051A1 (zh) | 2020-01-11 | 2020-04-28 | 采用希尔伯特‑黄变换预测连铸坯鼓肚变形量的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111259307B (zh) |
WO (1) | WO2021139051A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117358892A (zh) * | 2023-12-05 | 2024-01-09 | 济南东方结晶器有限公司 | 用于结晶器铜管的形变监测预警方法及系统 |
CN117420346A (zh) * | 2023-12-19 | 2024-01-19 | 东莞市兴开泰电子科技有限公司 | 一种电路保护板过流值检测方法及系统 |
CN117644189A (zh) * | 2024-01-30 | 2024-03-05 | 北京科技大学 | 一种采用离散小波变换监测连铸过程中铸坯鼓肚的方法 |
CN118332478A (zh) * | 2024-06-13 | 2024-07-12 | 国网山东省电力公司嘉祥县供电公司 | 基于改进eemd算法的光伏功率短期分段预测方法及系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115106499B (zh) * | 2022-06-30 | 2024-02-20 | 北京科技大学 | 一种结晶器液面异常波动判别方法及系统 |
CN116117094B (zh) * | 2022-09-30 | 2024-09-20 | 中冶赛迪信息技术(重庆)有限公司 | 连铸结晶器液面波动补偿控制方法、装置、设备及介质 |
CN117609773B (zh) * | 2024-01-24 | 2024-07-23 | 江苏南京地质工程勘察院 | 柔性变形测量元件拉扭状态类型识别方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006068747A (ja) * | 2004-08-31 | 2006-03-16 | Jfe Steel Kk | 連続鋳造鋳型内におけるバルジング性湯面変動の防止方法 |
KR20140025893A (ko) * | 2012-08-23 | 2014-03-05 | 주식회사 포스코 | 벌징 감지 모듈 및 이를 이용한 벌징 감지 방법 |
CN104275448A (zh) * | 2014-10-27 | 2015-01-14 | 大连理工大学 | 一种包晶钢连铸板坯鼓肚在线检测方法 |
CN107414048A (zh) * | 2017-08-14 | 2017-12-01 | 中冶赛迪工程技术股份有限公司 | 一种连铸坯扇形段在线变形补偿的方法 |
CN110405173A (zh) * | 2019-08-12 | 2019-11-05 | 大连理工大学 | 一种采用希尔伯特-黄变换检测和定位连铸坯鼓肚的方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107070568B (zh) * | 2017-04-28 | 2021-01-26 | 广东工业大学 | 一种基于希尔伯特黄变换的频谱感知方法 |
-
2020
- 2020-01-11 CN CN202010028569.4A patent/CN111259307B/zh active Active
- 2020-04-28 WO PCT/CN2020/087522 patent/WO2021139051A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006068747A (ja) * | 2004-08-31 | 2006-03-16 | Jfe Steel Kk | 連続鋳造鋳型内におけるバルジング性湯面変動の防止方法 |
KR20140025893A (ko) * | 2012-08-23 | 2014-03-05 | 주식회사 포스코 | 벌징 감지 모듈 및 이를 이용한 벌징 감지 방법 |
CN104275448A (zh) * | 2014-10-27 | 2015-01-14 | 大连理工大学 | 一种包晶钢连铸板坯鼓肚在线检测方法 |
CN107414048A (zh) * | 2017-08-14 | 2017-12-01 | 中冶赛迪工程技术股份有限公司 | 一种连铸坯扇形段在线变形补偿的方法 |
CN110405173A (zh) * | 2019-08-12 | 2019-11-05 | 大连理工大学 | 一种采用希尔伯特-黄变换检测和定位连铸坯鼓肚的方法 |
Non-Patent Citations (2)
Title |
---|
CHENHUI WU, CHENG JI , MIAOYONG ZHU: "Numerical Simulation of Bulging Deformation for Wide-Thick Slab Under Uneven Cooling Conditions", METALLURGICAL AND MATERIALS TRANSACTIONS B, vol. 49, no. 3, 22 February 2018 (2018-02-22), pages 1346 - 1359, XP036493588, ISSN: 1073-5615, DOI: 10.1007/s11663-018-1173-3 * |
U-SOK YOON, IN-WAN BANG, J. H. RHEE, SEONG-YEON KIM, JOO-DONG LEE, KYU HWAN OH: "Analysis of Mold Level Hunching by Unsteady Bulging during Thin Slab Casting", ISIJ INTERNATIONAL, vol. 42, no. 10, 15 October 2002 (2002-10-15), pages 1103 - 1111, XP055827989, ISSN: 0915-1559, DOI: 10.2355/isijinternational.42.1103 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117358892A (zh) * | 2023-12-05 | 2024-01-09 | 济南东方结晶器有限公司 | 用于结晶器铜管的形变监测预警方法及系统 |
CN117358892B (zh) * | 2023-12-05 | 2024-03-08 | 济南东方结晶器有限公司 | 用于结晶器铜管的形变监测预警方法及系统 |
CN117420346A (zh) * | 2023-12-19 | 2024-01-19 | 东莞市兴开泰电子科技有限公司 | 一种电路保护板过流值检测方法及系统 |
CN117420346B (zh) * | 2023-12-19 | 2024-02-27 | 东莞市兴开泰电子科技有限公司 | 一种电路保护板过流值检测方法及系统 |
CN117644189A (zh) * | 2024-01-30 | 2024-03-05 | 北京科技大学 | 一种采用离散小波变换监测连铸过程中铸坯鼓肚的方法 |
CN117644189B (zh) * | 2024-01-30 | 2024-04-05 | 北京科技大学 | 一种采用离散小波变换监测连铸过程中铸坯鼓肚的方法 |
CN118332478A (zh) * | 2024-06-13 | 2024-07-12 | 国网山东省电力公司嘉祥县供电公司 | 基于改进eemd算法的光伏功率短期分段预测方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN111259307A (zh) | 2020-06-09 |
CN111259307B (zh) | 2022-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021139051A1 (zh) | 采用希尔伯特‑黄变换预测连铸坯鼓肚变形量的方法 | |
CN104493121B (zh) | 一种大方坯连铸生产过程的凝固末端位置在线检测方法 | |
CN105328155B (zh) | 一种基于改进神经网络的漏钢可视化特征预报方法 | |
JP3386051B2 (ja) | 連続鋳造における溶鋼の流動パターン推定方法、鋳型銅板の温度計測装置、連続鋳造鋳片の表面欠陥判定方法、溶鋼流動検知方法、鋳型内抜熱の不均一度評価方法、溶鋼流動制御方法、鋼の連続鋳造における品質管理方法、鋼の連続鋳造方法、溶鋼流速の推定方法 | |
US11105758B2 (en) | Prediction method for mold breakout based on feature vectors and hierarchical clustering | |
CN110568010B (zh) | 一种板坯连铸内部裂纹在线预测及定位的方法 | |
CN102019377B (zh) | 一种结晶器内钢液流动状态的检测装置及方法 | |
CN102151814B (zh) | 连铸生产中的粘结报警方法和系统 | |
CN104181196B (zh) | 一种连铸坯表面纵裂纹在线检测方法 | |
CN102527971A (zh) | 一种铸坯内裂缺陷的在线预报方法 | |
CN104275448A (zh) | 一种包晶钢连铸板坯鼓肚在线检测方法 | |
CN103386472B (zh) | 一种连铸结晶器出口坯壳安全厚度的获取方法及装置 | |
CN112207245A (zh) | 一种连铸过程高低频数据与切割铸坯号匹配的方法 | |
Thomas | On-line detection of quality problems in continuous casting of steel | |
JP2003181609A (ja) | 連続鋳造における溶鋼の流動パターン推定・制御方法およびそのための装置 | |
CN102029368A (zh) | 一种在线检测连铸坯二冷区固液相分数及凝固末端的方法 | |
JP4105839B2 (ja) | 連続鋳造における鋳型内鋳造異常検出方法 | |
JP4802718B2 (ja) | 連続鋳造鋳片における表層欠陥発生危険部位の予測方法および連続鋳造鋳片の製造方法 | |
CN117548639A (zh) | 一种厚板坯连铸生产的过程监控方法 | |
JP3230513B2 (ja) | 連続鋳造用鋳型内における溶鋼流速の推定方法、鋼の連続鋳造における品質管理方法及び鋼の連続鋳造方法 | |
Hu et al. | Molten steel level measurement in tundish with heat transfer analysis | |
CN116900267A (zh) | 一种弧形连铸机冶金长度测量方法及装置 | |
CN110405173B (zh) | 一种采用希尔伯特-黄变换检测和定位连铸坯鼓肚的方法 | |
CN115401178B (zh) | 一种改善齿轮钢内部质量的压下工艺确定方法 | |
JP5145746B2 (ja) | 連続鋳造鋳片の製造方法、連続鋳造機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20912372 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20912372 Country of ref document: EP Kind code of ref document: A1 |