WO2021138901A1 - 激活电路、智能电池、无人机及电子设备 - Google Patents

激活电路、智能电池、无人机及电子设备 Download PDF

Info

Publication number
WO2021138901A1
WO2021138901A1 PCT/CN2020/071429 CN2020071429W WO2021138901A1 WO 2021138901 A1 WO2021138901 A1 WO 2021138901A1 CN 2020071429 W CN2020071429 W CN 2020071429W WO 2021138901 A1 WO2021138901 A1 WO 2021138901A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocoupler
input
pin
resistor
activation circuit
Prior art date
Application number
PCT/CN2020/071429
Other languages
English (en)
French (fr)
Inventor
张彩辉
林宋荣
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/071429 priority Critical patent/WO2021138901A1/zh
Publication of WO2021138901A1 publication Critical patent/WO2021138901A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the invention relates to the field of charging technology, in particular to an activation circuit, a smart battery, an unmanned aerial vehicle and electronic equipment.
  • rechargeable batteries have been widely used in electronic products, such as lithium batteries in mobile phones and lithium batteries in drones.
  • the voltage of the battery cell supplies power to the linear regulator through the step-down circuit, and the linear regulator outputs 3.3V100mA system power to supply power for various communication functions.
  • a low-power deep sleep state is usually designed for the battery when it is idle.
  • the battery management system detects that the battery has not been discharged for a long time and the power is extremely low, the battery will enter the deep sleep state.
  • the battery management system will turn off the enable pin of the MCU (Micro Control Unit), turn off the communication IC (Integrated Circuit, integrated circuit), fuel gauge IC and other functional ICs, and only retain some of the functions of the MCU. Therefore, before charging the smart battery, you need to wake up the MCU to restore the battery's communication function.
  • MCU Micro Control Unit
  • IC Integrated Circuit, integrated circuit
  • fuel gauge IC fuel gauge IC
  • Figure 1A is a high-voltage output circuit in a charger, which outputs a high-voltage electrical signal between M and N.
  • the high-voltage electrical signal passes through the battery shown in Figure 1B.
  • the OUT_PACK+ and OUT_PACK- inputs of the high-voltage detection circuit in the high-voltage detection circuit are processed by the comparator to form a wake-up signal PA.
  • the wake-up signal P is input to the interrupt pin of the MCU, causing the level of the interrupt pin to jump, thereby waking up the MCU.
  • the above battery activation scheme requires a high-voltage output circuit and a high-voltage detection circuit on the charger side and the battery side.
  • the circuit is complicated and the battery activation cost is high; on the other hand, the high-voltage signal reduces the battery’s Safety and reliability.
  • the present invention provides an activation circuit, smart batteries, drones and electronic equipment.
  • an embodiment of the present invention provides an activation circuit for activating a smart battery from a deep sleep state, and the activation circuit includes:
  • Photoelectric coupler signal output module
  • the photocoupler includes a first input terminal and a first output terminal;
  • the signal output module includes a second input terminal and a second output terminal;
  • the first output end of the photocoupler is electrically connected to the second input end of the signal output module
  • the photocoupler is used to control the signal output module to send an activation signal through the second output terminal when the voltage signal is received at the first input terminal.
  • an embodiment of the present invention provides a smart battery, including a micro-control unit and any of the aforementioned activation circuits;
  • the signal output module is electrically connected with the interrupt pin of the micro control unit.
  • an embodiment of the present invention provides an unmanned aerial vehicle including the aforementioned smart battery.
  • an embodiment of the present invention provides an electronic device including the aforementioned smart battery.
  • the input voltage signal can be isolated from the output voltage signal, avoiding direct electrical connection, so that when the voltage signal on the input side has a safety risk, no It will affect the activation signal of the signal output module, which can improve the safety and reliability of the activation circuit.
  • the circuit can only be arranged in the battery, without the need to adapt the corresponding circuit on the charger side, the circuit is simpler and the cost is saved.
  • Figure 1A shows a schematic diagram of a high-voltage output circuit in a prior art charger
  • FIG. 1B shows a schematic diagram of a high-voltage detection circuit in a prior art battery
  • Figure 2 shows a schematic diagram of the first activation circuit according to an embodiment of the present invention
  • Fig. 3 shows a schematic diagram of a second activation circuit according to an embodiment of the present invention
  • FIG. 4 shows a schematic diagram of a third activation circuit according to an embodiment of the present invention.
  • Fig. 5 shows a schematic diagram of a fourth activation circuit according to an embodiment of the present invention.
  • Fig. 6 shows a schematic diagram of a fifth activation circuit according to an embodiment of the present invention.
  • FIG. 7 shows a schematic diagram of a sixth activation circuit according to an embodiment of the present invention.
  • FIG. 8 shows a schematic diagram of a seventh activation circuit according to an embodiment of the present invention.
  • Fig. 9 shows a schematic diagram of a smart battery according to an embodiment of the present invention.
  • one embodiment or “an embodiment” mentioned throughout the specification means that a specific feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present invention. Therefore, the appearances of "in one embodiment” or “in an embodiment” in various places throughout the specification do not necessarily refer to the same embodiment. In addition, these specific features, structures or characteristics can be combined in one or more embodiments in any suitable manner.
  • Smart batteries are more and more widely used, and their power consumption has attracted attention from all parties.
  • a deep sleep state is designed for the smart battery.
  • plant protection drones are used more and more widely in modern agriculture.
  • the plant protection drone does not need to work, and it is idle for a long time.
  • the drone’s smart battery can easily enter a deep sleep state when it is not discharged for a long time and the power is low to shut down each
  • the function of the functional IC saves power.
  • the embodiment of the present invention provides the activation circuit described in the following embodiment, which is used to activate the smart battery from the deep sleep state to restore the communication function between the battery and the charger, so that the charging action can be implemented smoothly.
  • an activation circuit which is used to activate a smart battery from a deep sleep state, and the activation circuit includes:
  • Photocoupler 10 signal output module 11;
  • the photocoupler 10 includes a first input terminal 101 and a first output terminal 102; the signal output module 11 includes a second input terminal 111 and a second output terminal 112;
  • the first output terminal 101 of the photocoupler 10 is electrically connected to the second input terminal 111 of the signal output module 11;
  • the photocoupler 10 is used to control the signal output module 11 to send an activation signal through the second output terminal 112 when the first input terminal 101 receives a voltage signal.
  • the activation circuit is a circuit that receives an input voltage signal and generates an activation signal Q according to the input voltage signal.
  • the activation signal Q can be input to the interrupt pin of the MCU. Trigger the interrupt pin to perform interrupt events related to the subsequent circuit functions. For example, in a smart battery, in order to wake the battery from a deep sleep state, the activation signal Q can be input to the battery's MCU, and the battery communication function can be restored by interrupting the execution of the program, thereby starting to charge the battery cell.
  • a photocoupler 10 and a signal output module 11 are included.
  • the photocoupler 10 includes a first input terminal 101 and a first output terminal 102.
  • the first input terminal 101 is used to receive an input voltage signal.
  • the power output terminal can be directly electrically connected to the first input terminal 101.
  • a processing device can be connected between the power supply output terminal and the first input terminal 101 to process and generate an input signal that meets the requirements.
  • the first output terminal 102 of the photocoupler 10 is electrically connected to the second input terminal 111 of the signal output module 11.
  • the voltage signal is the activation signal Q.
  • the activation signal Q can be sent to the interrupt pin of the micro control unit through the second output terminal 112 of the signal output module 11.
  • the activation signal Q corresponds to the default level of the corresponding pin of the micro control unit. The difference will cause the pin level to jump, thereby triggering the execution of the interrupt program in the micro control unit.
  • the charger can convert the AC power at the socket end into DC power.
  • the above activation circuit receives the DC power from the charger, and the activation circuit can be directly connected to the existing charger, without the need for a charger with a specific activation circuit. So the versatility with the charger is higher.
  • the input voltage signal can be isolated from the output voltage signal, avoiding direct electrical connection, so that when the voltage signal on the input side has a safety risk, no It will affect the activation signal of the signal output module, which can improve the safety and reliability of the activation circuit.
  • the circuit can only be arranged in the battery, without the need to adapt the corresponding circuit on the charger side, the circuit is simpler and the cost is saved.
  • the activation circuit further includes:
  • the input voltage processing module includes a third input terminal and a third output terminal;
  • the third output terminal of the input voltage processing module is electrically connected to the first input terminal 101 of the photocoupler 10, and is used to send a voltage signal to the first input terminal 101 of the photocoupler 10;
  • the third input terminal of the input voltage processing module is used to electrically connect with the first power source.
  • an input voltage processing module may also be provided in the activation circuit, and the input voltage processing module includes a third input terminal that receives a voltage signal and a third output terminal that outputs a voltage signal.
  • the third input terminal is used to electrically connect with the first power source, receive the voltage input from the first power source, and output the voltage to the first input terminal 101 of the photocoupler 10 through the third output terminal after processing.
  • the input voltage processing module is used to form an input voltage signal that meets the use requirements of the photocoupler 10.
  • the third input terminal may include positive and negative contacts for electrical connection with the output terminal of the charger. These two contacts are used to electrically connect with the output end of the charger, and respectively connect the positive and negative poles of the charger, so that the DC voltage signal output by the charger side can be processed and input into the photocoupler 11.
  • the input voltage processing module includes a first resistor 12;
  • One end of the first resistor 12 is electrically connected to the first input terminal 101 of the photocoupler 10, and the other end of the first resistor 12 is used to electrically connect to a first power source.
  • the aforementioned input voltage processing module may include a first resistor 12, and one end of the first resistor 12 is electrically connected to the first input terminal 101 of the photocoupler 10. , The other end of the first resistor 12 is used to electrically connect with the first power source. It can also be understood that one end of the first resistor 12 is electrically connected to the photocoupler 10, and the other end is electrically connected to the negative contact.
  • the first resistor 12 can function as a current limiter, so that the magnitude of the current flowing into the photocoupler 10 can be controlled, and the photocoupler 10 can be prevented from being damaged. It can be understood that the first resistor 12 also performs a voltage dividing function in the circuit, and the specific resistance parameter of the first resistor 12 is determined by the working parameters of the power supply and the photocoupler 10, which is not restricted in the embodiment of the present invention.
  • the input voltage processing module includes a voltage converter 13;
  • the input pin of the voltage converter 13 is used to electrically connect with the first power source
  • the output pin of the voltage converter 13 is electrically connected to the first input terminal 101 of the photocoupler 10; wherein, the voltage converter 13 is used to output a voltage signal that conforms to communication control.
  • various communication-related IC chips may be arranged outside the activation circuit, and each of these IC chips has a corresponding operating voltage, for example, some The chip works at a voltage of 5V, and some chips work at a voltage of 5.5V. Therefore, a voltage converter 13 may be provided in the input voltage processing module, and the voltage converter 13 is used to convert the higher voltage of the charger output port into a lower voltage that meets the use of the IC chip.
  • the input pin of the voltage converter 13 is electrically connected to the first power supply, that is, connected to the positive and negative contacts of the input voltage processing module, and receives a voltage input signal.
  • the output pin of the voltage converter 13 can input a working voltage to the IC chip, so that it can work stably when it is not sleeping.
  • the output pin of the voltage converter 13 can be electrically connected to the first input terminal 101 of the photocoupler 10, thereby using the relatively high voltage supplied to the IC chip.
  • the low communication voltage signal triggers the response of the photocoupler 10, reducing potential safety hazards.
  • the output voltage of the voltage conversion chip is not limited in the embodiment of the present invention, as long as it meets the communication control requirement.
  • the input voltage processing module further includes a second resistor 14;
  • the input pin of the voltage converter 13 is used to electrically connect with the first power source
  • the output pin of the voltage converter 13 is electrically connected to one end of the second resistor 14, and the other end of the second resistor 14 is electrically connected to the first input terminal 101 of the photocoupler 10.
  • a second resistor 14 can also be used in conjunction with the voltage converter 13, and the second resistor 14 is connected between the voltage converter 13 and the first input terminal 101 of the photocoupler 10, so that, Limit the current of the converted voltage to prevent possible over-current phenomena from damaging the optocoupler 10
  • the input voltage processing module further includes a Zener diode 15;
  • the first input terminal 101 includes an anode pin A and a cathode pin K, and the Zener diode 15 is connected in series between the anode pin A and the cathode pin K in a forward direction.
  • a light emitting diode is provided on its input side, and the anode pin A and the cathode pin K of the light emitting diode constitute the first input terminal 101 of the photocoupler 10.
  • a Zener diode 15 is connected in series between the positive pin A and the negative pin K of the photocoupler 10, and the Zener diode 15 is connected to the positive pole.
  • the pin A and the negative pin K are connected end to end, and are connected in series in a positive direction. Once there is a reverse current, the Zener diode 15 is in an off state, which is equivalent to disconnecting the transmission path between the charger and the photocoupler 10, thereby protecting the photocoupler 10 from the reverse current.
  • the input voltage processing module further includes a filter circuit 16;
  • the filter circuit 16 is connected in series between the positive pin A and the negative pin K, and the filter circuit 16 is connected in parallel with the Zener diode 15.
  • a filter circuit in order to filter out the clutter signal in the voltage signal output by the charger terminal, a filter circuit can be provided in the input voltage processing module.
  • the filter circuit 16 is connected in series between the positive pin A and the negative pin K of the photocoupler 10, and the filter circuit 16 is connected in parallel with the Zener diode 15. Therefore, through the combination of the filter circuit and the Zener diode, the noise interference can be reduced, and the stability and reliability of the voltage signal input into the photocoupler 10 can be improved.
  • a feasible circuit structure is to connect the filter capacitor C and the filter resistor R in series at the first input terminal 101 of the photocoupler 10, and connect the filter capacitor C and the filter resistor R in parallel to form an RC parallel filter circuit.
  • the high-frequency signal plays a role of attenuation and enhances the anti-interference ability of the activated circuit.
  • the first input terminal 101 of the photocoupler 10 is electrically connected to a first power source.
  • the photoelectric The first input terminal 101 of the coupler 10 is electrically connected to the first power source. It can be understood that the first power source is the power source directly output by the charger.
  • the signal output module 11 includes a ground terminal 111 and a third resistor 112; the first output terminal 102 includes a collector C and an emitter E;
  • the ground terminal 111 is electrically connected to the emitter E;
  • One end of the third resistor 112 is connected to the second power source, and the other end of the third resistor 112 is electrically connected to the collector C, wherein the collector C is used to send an activation signal Q to the micro-control unit.
  • the photocoupler 10 two independent power supplies are required on its input and output sides.
  • the input side of the photocoupler 10 is already equipped to receive electrical signals from the charger. Therefore, the first output terminal 102 of the photocoupler 10 can be connected to another second power source through the third resistor 112.
  • the second power source ensures that the output side of the photocoupler 10 forms a path, and the power source does not exceed the interruption of the micro-control unit.
  • the voltage of the pin can generate an activation signal Q based on the second power supply.
  • the first output terminal 102 includes a collector C and an emitter E.
  • One end of the third resistor 112 is connected to the second power source, and the other end of the third resistor 112 is electrically connected to the collector C.
  • the collector C can be connected to the interrupt of the micro-control unit. Pin.
  • the level transition of the interrupt pin in the embodiment of the present invention can be a high level transition to a low level, or a low level transition to a high level, which depends on the micro-control unit For the pre-definition of the interrupt pin in the embodiment of the present invention, this is not limited.
  • the photocoupler 10 is a triode-type photocoupler
  • the first input terminal 101 of the photocoupler 10 is integrated with a light emitting diode, and the two pins of the light emitting diode are the pins of the first input terminal 101 of the photocoupler;
  • the first output terminal 102 of the photocoupler 10 is integrated with a phototransistor, and the two pins of the phototransistor are the pins of the first output terminal 102 of the photocoupler 10.
  • a triode-type photocoupler with the simplest structure and the lowest cost, such as an LTV-217-C coupler, can be used.
  • This photocoupler is encapsulated with a light-emitting diode and a photosensitive triode.
  • the two pins of the light-emitting diode are used as the pins of the first input terminal 101 of the photocoupler 10.
  • the light-emitting diode realizes electric energy and light. Energy conversion.
  • the two pins of the phototransistor are used as the pins of the first output terminal 102 of the photocoupler 10.
  • the light-emitting diode When the light-emitting diode emits light, the light signal will cause the internal channel of the phototransistor to conduct, that is, the two pins of the phototransistor are conducted. ON, the output circuit behind the photocoupler 10 is turned on. Therefore, the use of a triode-type photocoupler can realize the safe isolation of the input and output of the activation circuit simply and at low cost, and avoid direct electrical connection.
  • the input voltage signal can be isolated from the output voltage signal, avoiding direct electrical connection, so that when the voltage signal on the input side has a safety risk, no It will affect the activation signal of the signal output module, which can improve the safety and reliability of the activation circuit.
  • the circuit can only be arranged in the battery, without the need to adapt the corresponding circuit on the charger side, the circuit is simpler and the cost is saved.
  • the safety and reliability of the activation circuit are further ensured by the Zener diode and the filter circuit.
  • an embodiment of the present invention also provides a smart battery, including a micro-control unit 17 and any of the aforementioned activation circuits;
  • the signal output module 11 is electrically connected to the interrupt pin of the micro control unit 17.
  • the above activation circuit can be used in a smart battery, and the activation signal Q generated by the activation circuit can be used to wake the battery from a deep sleep state.
  • the signal output module 11 can be electrically connected to the interrupt pin of the micro-control unit 17 in the battery. Assuming that in the deep sleep state, the interrupt pin maintains a high level. When the activation signal Q is received, the level jumps to a low level signal.
  • the micro control unit 17 can execute the interrupt program to restore the various functional ICs in the battery.
  • the communication function enables the battery to communicate with the charger protocol, and turns on the charging MOS (Metal Oxide Semiconductor) switch in the battery. After the charger obtains the current and voltage information of the battery, it outputs the corresponding output to the battery cell. The voltage and current value of the charger can directly charge the battery core.
  • MOS Metal Oxide Semiconductor
  • the safety of charging the smart battery can be improved, and the circuit cost of the battery can be reduced.
  • An embodiment of the present invention also provides an unmanned aerial vehicle, which includes: an unmanned aerial vehicle body and the aforementioned smart battery.
  • the embodiment of the present invention also provides a drone including the above-mentioned smart battery.
  • the drone can be an industrial machine, such as a plant protection drone in the agricultural field or a drone in the film and television industry.
  • Aerial photography drones, etc. can also be consumer-grade entertainment drones used by ordinary consumers.
  • the use of the above-mentioned smart batteries in these drones can not only improve user safety, but also help users reduce the cost of battery replacement.
  • An embodiment of the present invention also provides an electronic device, which includes the aforementioned smart battery.
  • the electronic device can be a mobile phone, a tablet computer, a photographing device, a smart wearable device, an entertainment robot, and other devices that require smart batteries.
  • the use of the above-mentioned smart batteries in these electronic devices can not only improve user safety, but also help users reduce the cost of battery replacement.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units.
  • Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • any reference signs placed between parentheses should not be constructed as a limitation to the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of multiple such elements.
  • the invention can be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In the unit claims listing several devices, several of these devices may be embodied in the same hardware item.
  • the use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明实施例提供了一种激活电路、智能电池、无人机及电子设备。激活电路用于将智能电池从深度睡眠状态中激活,激活电路包括光电耦合器,信号输出模块;光电耦合器包括第一输入端和第一输出端;信号输出模块包括第二输入端和第二输出端;光电耦合器的第一输出端与信号输出模块的第二输入端电连接;光电耦合器用于,在第一输入端接收到电压信号的情况下,控制信号输出模块通过第二输出端发出激活信号。本发明实施例可以提升激活电路的安全可靠性。此外,该电路可以只布设于电池中,无需在充电器侧适配相应的电路,电路更为简单,节省成本。

Description

激活电路、智能电池、无人机及电子设备 技术领域
本发明涉及充电技术领域,特别是一种激活电路、智能电池、无人机及电子设备。
背景技术
随着材料科学与电子技术的发展进步,充电电池在电子产品中得到了广泛的应用,比如,手机中的锂电池、无人机中的锂电池等。当电池正常工作时,电芯的电压通过降压电路为线性稳压器供电,线性稳压器输出3.3V100mA系统电源,为各种通信功能供电。目前,为了提高电池的使用寿命,通常针对电池闲置使用时设计了低功耗的深度睡眠状态,当电池管理系统监测到电池较长时间未放电且电量极低时,电池将进入深度睡眠状态,在深度睡眠状态,电池管理系统会关闭MCU(Micro Control Unit,微控制单元)的使能脚,关闭通信IC(Integrated Circuit,集成电路)、电量计IC等功能IC,只保留MCU的部分功能。因而,在为智能电池进行充电之前,需要先唤醒MCU,恢复电池的通信功能。
现有的一种电池激活方案如图1A和图1B所示,图1A为充电器中的高压输出电路,在M和N之间输出高压电信号,该高压电信号通过图1B所示的电池中的高压侦测电路的OUT_PACK+和OUT_PACK-输入,经过比较器的处理形成唤醒信号PA,该唤醒信号P输入至MCU的中断引脚,引起中断引脚的电平跳变,从而唤醒MCU。
可见,上述电池激活方案,需要在充电器一侧与电池一侧份分别设置高压输出电路和高压侦测电路,一方面,电路复杂、电池激活成本高;另一方面,高压信号降低了电池的安全可靠性。
发明内容
有鉴于此,为了解决现有的智能电池中,电路复杂、电池激活成本高及高压激活电池的安全可靠性差的问题,本发明提供了一种激活电路、智能电池、无人机及电子设备。
第一方面,本发明实施例提供了一种激活电路,用于将智能电池从深度睡眠状态中激活,所述激活电路包括:
光电耦合器,信号输出模块;
所述光电耦合器包括第一输入端和第一输出端;所述信号输出模块包括第二输入端和第二输出端;
所述光电耦合器的第一输出端与所述信号输出模块的第二输入端电连接;
所述光电耦合器用于,在所述第一输入端接收到电压信号的情况下,控制所述信号输出模块通过所述第二输出端发出激活信号。
第二方面,本发明实施例提供了一种智能电池,包括微控制单元和前述任一种激活电路;
所述信号输出模块与所述微控制单元的中断引脚电连接。
第三方面,本发明实施例提供了一种无人机,所述无人机包括前述的智能电池。
第四方面,本发明实施例提供了一种电子设备,所述电子设备包括前述的智能电池。
本发明实施例所述的激活电路至少包括以下优点;
本发明实施例中,通过提供一种使用光电耦合器进行隔离的电路,可将输入电压信号与输出的电压信号隔离,避免直接的电气连接,从而当输入侧的电压信号存在安全风险时,不会影响到信号输出模块的激活信号,可以提升激活电路的安全可靠性。此外,该电路可以只布设于电池中,无需在充电器侧适配相应的电路,电路更为简单,节省成本。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A示出了现有技术充电器中的一种高压输出电路的示意图;
图1B示出了现有技术电池中的一种高压侦测电路的示意图;
图2示出了本发明实施例所述的第一种激活电路的示意图;
图3示出了本发明实施例所述的第二种激活电路的示意图;
图4示出了本发明实施例所述的第三种激活电路的示意图;
图5示出了本发明实施例所述的第四种激活电路的示意图;
图6示出了本发明实施例所述的第五种激活电路的示意图;
图7示出了本发明实施例所述的第六种激活电路的示意图;
图8示出了本发明实施例所述的第七种激活电路的示意图;
图9示出了本发明实施例所述的智能电池的示意图。
具体实施例
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
智能电池应用越来越广泛,其功耗问题受到各方的关注。通常,为了降低智能电池闲置时的功耗,为智能电池设计有深度睡眠状态。以较常见的农业领域为例,植保无人机在现代农业中使用越来越广泛。然而,农闲季节时,植保无人机无需作业,其长时间处于闲置状态,相应地,无人机的智能电池很容易在长时间不放电且电量较低时自动进入深度睡眠状态,以关闭各个功能IC的功能节省电量。当农忙季节需要使用植保无人机进行作业时,需要先对智能电池充电,保证续航能力。因而,本发明实施例提供了如下实施例所述的激活电路,用于将智能电池从深度睡眠状态中激活,以恢复电池与充电器之间的通信功能,从而使充电动作能够顺利实施。
参照图2,示出了本发明实施例的一种激活电路,用于将智能电池从深度睡眠状态中激活,所述激活电路包括:
光电耦合器10,信号输出模块11;
所述光电耦合器10包括第一输入端101和第一输出端102;所述信 号输出模块11包括第二输入端111和第二输出端112;
所述光电耦合器10的第一输出端101与所述信号输出模块11的第二输入端111电连接;
所述光电耦合器10用于,在所述第一输入端101接收到电压信号的情况下,控制所述信号输出模块11通过所述第二输出端112发出激活信号。
具体而言,如图2所示,在本发明实施例中,激活电路为通过接收输入电压信号,根据输入电压信号生成激活信号Q的电路,该激活信号Q可以输入给MCU的中断引脚,触发中断引脚执行与后级电路功能相关的中断事件。例如,在智能电池中,为将电池从深度睡眠状态中唤醒,可以将该激活信号Q输入给电池的MCU,通过中断程序的执行,恢复电池通信功能,从而开始为电芯充电。
在该激活电路中,包括光电耦合器10和信号输出模块11。光电耦合器10包括第一输入端101和第一输出端102。第一输入端101用于接收输入电压信号,当存在与光电耦合器10性能参数匹配的电源时,可直接将电源输出端与第一输入端101电连接。当不存在与光电耦合器10性能参数匹配的电源时,可在电源输出端与第一输入端101之间连接处理器件,以处理生成满足要求的输入信号。光电耦合器10的第一输出端102与信号输出模块11的第二输入端111电连接,在第一输入端101接收到电压信号的情况下,在第一输出端102会产生相应的电压信号,该电压信号即激活信号Q,激活信号Q通过信号输出模块11的第二输出端112可以发送给微控制单元的中断引脚,该激活信号Q与微控制单元对应引脚的默认电平高低不同,会引起该引脚电平跳变,从而,触发微控制单元内中断程序的执行。
需要说明的是,充电器可将插座端的交流电转换为直流电,上述激活电路接收来自充电器的直流电,激活电路可直接与现有充电器连接,无需与设置有特定激活电路的充电器配合使用,因而与充电器的通用性更高。
本发明实施例中,通过提供一种使用光电耦合器进行隔离的电路,可将输入电压信号与输出的电压信号隔离,避免直接的电气连接,从而当输入侧的电压信号存在安全风险时,不会影响到信号输出模块的激活信号,可以提升激活电路的安全可靠性。此外,该电路可以只布设于电 池中,无需在充电器侧适配相应的电路,电路更为简单,节省成本。
可选地,所述激活电路还包括:
输入电压处理模块;所述输入电压处理模块包括第三输入端和第三输出端;
所述输入电压处理模块的第三输出端与所述光电耦合器10的第一输入端101电连接,用于向所述光电耦合器10的第一输入端101发送电压信号;
所述输入电压处理模块的第三输入端用于与第一电源电连接。
具体而言,还可以在激活电路设置输入电压处理模块,该输入电压处理模块包括接收电压信号的第三输入端以及输出电压信号的第三输出端。第三输入端用于与第一电源电连接,接收来自第一电源输入的电压,经过处理后,通过第三输出端输出至光电耦合器10的第一输入端101。从而,利用输入电压处理模块形成满足光电耦合器10使用需求的输入电压信号。
可以理解的是,上述输入电压处理模块在硬件结构层面,第三输入端可以包括用于与充电器的输出端电连接的正负极触点。这两个触点用于与充电器的输出端电连接,分别对应连接充电器的正负极,从而,可将充电器侧输出的直流电压信号经过处理输入进光电耦合器11中。
可选地,参照图3,所述输入电压处理模块包括第一电阻12;
所述第一电阻12的一端与所述光电耦合器10的第一输入端101电连接,所述第一电阻12的另一端用于与第一电源电连接。
具体而言,如图3所示,作为一种可能的实施方式,上述的输入电压处理模块可以包括第一电阻12,第一电阻12的一端与光电耦合器10的第一输入端101电连接,第一电阻12的另一端用于与第一电源电连接。也可理解为第一电阻12一端与光电耦合器10电连接,另一端与负极触点电连接。该第一电阻12可以起到限流作用,从而可以控制流入光电耦合器10的电流的大小,避免损坏光电耦合器10。可以理解的是,该第一电阻12在电路中还承担分压功能,第一电阻12的具体阻值参数由电源与光电耦合器10的工作参数决定,本发明实施例对此不做约束。
可选地,参照图4,所述输入电压处理模块包括电压转换器13;
所述电压转换器13的输入引脚用于与所述第一电源电连接;
所述电压转换器13的输出引脚与所述光电耦合器10的第一输入端 101电连接;其中,所述电压转换器13用于输出符合通信控制的电压信号。
具体而言,如图4所示,在上述激活电路的实际应用中,可能在激活电路之外布设有各种与通信相关的IC芯片,这些IC芯片各自存在对应的工作电压,比如,有的芯片在5V电压下工作,有的芯片在5.5V电压下工作。因而,可以在输入电压处理模块中设置电压转换器13,该电压转换器13用于将充电器输出端口的较高的电压转换为满足IC芯片使用的较低电压。该电压转换器13的输入引脚与用于与所述第一电源电连接电连接,也即连接在输入电压处理模块的正负极触点上,接收电压输入信号。电压转换器13的输出引脚可以向IC芯片输入工作电压,使其在未休眠的时候稳定工作。为了降低直接使用充电器输出端口高电压可能对激活电路造成的损坏,可将电压转换器13的输出引脚与光电耦合器10的第一输入端101电连接,从而,利用供给IC芯片的较低的通信电压信号触发光电耦合器10的响应,降低安全隐患。需要说明的是,本发明实施例中对电压转换芯片的输出电压不做限定,其满足通信控制需求即可。
可选地,参照图5,所述输入电压处理模块还包括第二电阻14;
所述电压转换器13的输入引脚用于与所述第一电源电连接;
所述电压转换器13的输出引脚与所述第二电阻14的一端电连接,所述第二电阻14的另一端与所述光电耦合器10的第一输入端101电连接。
具体而言,如图5所示,还可以配合电压转换器13使用第二电阻14,将第二电阻14连接在电压转换器13与光电耦合器10的第一输入端101之间,从而,对经过转换后的电压限流,防止可能出现的过流现象损毁光电耦合器10
可选地,参照图6,所述输入电压处理模块还包括稳压二极管15;
所述第一输入端101包括正极引脚A以及负极引脚K,所述稳压二极管15正向串联在所述正极引脚A与所述负极引脚K之间。
具体而言,如图6所示,对于光电耦合器10而言,其输入侧设置有发光二极管,发光二极管的正极引脚A和负极引脚K构成光电耦合器10的第一输入端101。为了避免意外的反向电流对光电耦合器10的输入侧造成损坏,在光电耦合器10的正极引脚A与负极引脚K之间串联有稳压 二极管15,该稳压二极管15与正极引脚A、负极引脚K之间之间首尾相接,正向串联。一旦存在反向电流,稳压二极管15便处于截止状态,相当于断开充电器与光电耦合器10之间的传输路径,从而保护光电耦合器10免受反向电流的损坏。
可选地,参照图7,所述输入电压处理模块还包括滤波电路16;
所述滤波电路16串联在所述正极引脚A与所述负极引脚K之间,且所述滤波电路16与所述稳压二极管15并联。
具体而言,如图7所示,为了滤除充电器端输出的电压信号中的杂波信号,可在输入电压处理模块中设置滤波电路。该滤波电路16串联在光电耦合器10的正极引脚A与负极引脚K之间之间,且滤波电路16与稳压二极管15并联。从而,经过滤波电路与稳压二极管的结合,可以减少杂波干扰,提升输入进光电耦合器10的电压信号的稳定可靠性。
对于滤波电路16,一种可行的电路结构为在光电耦合器10的第一输入端101串联滤波电容C和滤波电阻R,将滤波电容C和滤波电阻R并联,从而组成RC并联滤波电路,对高频信号起到衰减作用,提升激活电路的抗干扰能力。
可选地,参照图8,所述光电耦合器10的第一输入端101与第一电源电连接。
具体而言,如图8所示,除了通过输入电压处理模块对输入电压处理后输送给光电耦合器10,当充电器一侧能够直接输出满足光电耦合器10使用的输入电压时,可将光电耦合器10的第一输入端101与第一电源电连接。可以理解的是,该第一电源即充电器直接输出的电源。
可选地,参照图6,所述信号输出模块11包括接地端111和第三电阻112;所述第一输出端102包括集电极C和发射极E;
所述接地端111与所述发射极E电连接;
所述第三电阻112的一端连接第二电源,所述第三电阻112的另一端与所述集电极C电连接,其中,所述集电极C用于向微控制单元发出激活信号Q。
具体而言,如图6所示,对于光电耦合器10而言,需要在其输入和输出侧分别使用两个独立的电源,光电耦合器10的输入侧已经具备了接收来自充电器的电信号的能力,因而,光电耦合器10第一输出端102可以通过第三电阻112连接另一第二电源,该第二电源保证光电耦合器10 的输出侧形成通路,其电源不超过微控制单元中断引脚的电压,并可基于该第二电源产生激活信号Q。
第一输出端102包括集电极C和发射极E,第三电阻112的一端连接第二电源,第三电阻112的另一端与集电极C电连接,集电极C可以连接至微控制单元的中断引脚。当第一输出端102存在输出信号时,即集电极C上具有电压信号,该电压信号可作为激活信号Q,该激活信号Q可传输至微控制单元的中断引脚,引起中断引脚的电平跳变。
可以理解的是,本发明实施例中中断引脚的电平跳变,可以为高电平跳变为低电平,也可以为低电平跳变为高电平,其取决于微控制单元中对于该中断引脚的预先定义,本发明实施例中对此不做限制。
可选地,参照图6,所述光电耦合器10为三极管型光电耦合器;
所述光电耦合器10的第一输入端101集成有发光二极管,所述发光二极管的两个引脚为所述光电耦合器的第一输入端101的引脚;
所述光电耦合器10的第一输出端102集成有光敏三极管,所述光敏三极管的两个引脚为所述光电耦合器10的第一输出端102的引脚。
具体而言,如图6所示,对于光电耦合器10,可以使用结构最简单的成本最低的三极管型光电耦合器,比如:LTV-217-C耦合器。这种光电耦合器内部封装了一个发光二极管和光敏三极管,发光二极管的两个引脚作为光电耦合器10的第一输入端101的引脚,当有电信号输入时,发光二极管实现电能与光能的转换。光敏三极管的两个引脚作为光电耦合器10的第一输出端102的引脚,当发光二极管发光时,光信号会引起光敏三极管内部沟道的导通,即将光敏三极管的两个引脚导通,实现光电耦合器10后面输出电路的导通。因而,使用三极管型光电耦合器可以简单低成本的实现激活电路输入与输出的安全隔离,避免直接电气连接。
本发明实施例中,通过提供一种使用光电耦合器进行隔离的电路,可将输入电压信号与输出的电压信号隔离,避免直接的电气连接,从而当输入侧的电压信号存在安全风险时,不会影响到信号输出模块的激活信号,可以提升激活电路的安全可靠性。此外,该电路可以只布设于电池中,无需在充电器侧适配相应的电路,电路更为简单,节省成本。此外,还通过稳压二极管、滤波电路进一步保证了激活电路的安全可靠性。
参照图9,本发明实施例还提供了一种智能电池,包括微控制单元17和前述的任一种激活电路;
所述信号输出模块11与所述微控制单元17的中断引脚电连接。
具体而言,如图9所示,上述激活电路可以用于智能电池中,激活电路所产生的激活信号Q可以用于将电池从深度睡眠状态中唤醒。相应的,可以将信号输出模块11与电池中微控制单元17的中断引脚电连接。假设在深度睡眠状态时,中断引脚保持高电平,当接收到该激活信号Q时,电平跳变为低电平信号,微控制单元17可以执行中断程序,恢复电池中各个功能IC的通信功能,使电池能够与充电器协议通信,并打开电池中的充电MOS(Metal Oxide Semiconductor,金属氧化物半导体场效应晶体管)开关,充电器获得当前电池的电流电压信息后,向电芯输出对应的电压电流值,实现充电器直接对电芯充电。
通过在智能电池中应用上述激活电路,可提升智能电池充电的安全性,并且降低电池的电路成本。
本发明实施例还提供了一种无人机,所述无人机包括:无人机本体以及前述的智能电池。
具体而言,本发明实施例还提供了一种包括上述智能电池在内的无人机,需要说明的是,该无人机可以为行业机器,比如农业领域的植保无人机或影视行业的航拍无人机等,还可以为普通消费者使用的消费级娱乐无人机。在这些无人机中使用上述智能电池,除了提升用户使用安全性,还可以帮助用户减少更换电池的成本。
本发明实施例还提供了一种电子设备,所述电子设备包括前述的智能电池。
需要说明的是,该电子设备可以为手机、平板电脑、拍摄设备、、智能穿戴设备、娱乐机器人等需要使用智能电池的设备。在这些电子设备中使用上述智能电池,除了提升用户使用安全性,还可以帮助用户减少更换电池的成本。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本发明的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (14)

  1. 一种激活电路,用于将智能电池从深度睡眠状态中激活,其特征在于,所述激活电路包括:
    光电耦合器,信号输出模块;
    所述光电耦合器包括第一输入端和第一输出端;所述信号输出模块包括第二输入端和第二输出端;
    所述光电耦合器的第一输出端与所述信号输出模块的第二输入端电连接;
    所述光电耦合器用于,在所述第一输入端接收到电压信号的情况下,控制所述信号输出模块通过所述第二输出端发出激活信号。
  2. 根据权利要求1所述的激活电路,其特征在于,还包括:
    输入电压处理模块;所述输入电压处理模块包括第三输入端和第三输出端;
    所述输入电压处理模块的第三输出端与所述光电耦合器的第一输入端电连接,用于向所述光电耦合器的第一输入端发送电压信号;
    所述输入电压处理模块的第三输入端用于与第一电源电连接。
  3. 根据权利要求2所述的激活电路,其特征在于,
    所述输入电压处理模块包括第一电阻;
    所述第一电阻的一端与所述光电耦合器的第一输入端电连接,所述第一电阻的另一端用于与第一电源电连接。
  4. 根据权利要求2所述的激活电路,其特征在于,
    所述输入电压处理模块包括电压转换器;
    所述电压转换器的输入引脚用于与所述第一电源电连接;
    所述电压转换器的输出引脚与所述光电耦合器的第一输入端电连接;其中,所述电压转换器用于输出符合通信控制的电压信号。
  5. 根据权利要求4所述的激活电路,其特征在于,
    所述输入电压处理模块还包括第二电阻;
    所述电压转换器的输入引脚用于与所述第一电源电连接;
    所述电压转换器的输出引脚与所述第二电阻的一端电连接,所述第二电阻的另一端与所述光电耦合器的第一输入端电连接。
  6. 根据权利要求3至5任一项所述的激活电路,其特征在于,
    所述输入电压处理模块还包括稳压二极管;
    所述第一输入端包括正极引脚以及负极引脚,所述稳压二极管正向串联在所述正极引脚与所述负极引脚之间。
  7. 根据权利要求3至6任一项所述的激活电路,其特征在于,
    所述输入电压处理模块还包括滤波电路;
    所述滤波电路串联在所述正极引脚与所述负极引脚之间,且所述滤波电路与所述稳压二极管并联。
  8. 根据权利要求7所述的激活电路,其特征在于,
    所述滤波电路包括滤波电容和滤波电阻;
    所述滤波电容和所述滤波电阻均串联在所述正极引脚与所述负极引脚之间,所述滤波电容和所述滤波电阻并联。
  9. 根据权利要求1所述的激活电路,其特征在于,
    所述光电耦合器的第一输入端与第一电源电连接。
  10. 根据权利要求1所述的激活电路,其特征在于,
    所述信号输出模块包括接地端和第三电阻;所述第一输出端包括集电极和发射极;
    所述接地端与所述发射极电连接;
    所述第三电阻的一端连接第二电源,所述第三电阻的另一端与所述集电极电连接,其中,所述集电极用于向微控制单元发出激活信号。
  11. 根据权利要求1所述的激活电路,其特征在于,
    所述光电耦合器为三极管型光电耦合器;
    所述光电耦合器的第一输入端集成有发光二极管,所述发光二极管的两个引脚为所述光电耦合器的第一输入端的引脚;
    所述光电耦合器的第一输出端集成有光敏三极管,所述光敏三极管的两个引脚为所述光电耦合器的第一输出端的引脚。
  12. 一种智能电池,其特征在于,包括微控制单元和权利要求1至11任一项所述的激活电路;
    所述信号输出模块与所述微控制单元的中断引脚电连接。
  13. 一种无人机,其特征在于,所述无人机包括:无人机本体以及权利要求12所述的智能电池。
  14. 一种电子设备,其特征在于,所述电子设备包括权利要求12所述的智能电池。
PCT/CN2020/071429 2020-01-10 2020-01-10 激活电路、智能电池、无人机及电子设备 WO2021138901A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/071429 WO2021138901A1 (zh) 2020-01-10 2020-01-10 激活电路、智能电池、无人机及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/071429 WO2021138901A1 (zh) 2020-01-10 2020-01-10 激活电路、智能电池、无人机及电子设备

Publications (1)

Publication Number Publication Date
WO2021138901A1 true WO2021138901A1 (zh) 2021-07-15

Family

ID=76788425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071429 WO2021138901A1 (zh) 2020-01-10 2020-01-10 激活电路、智能电池、无人机及电子设备

Country Status (1)

Country Link
WO (1) WO2021138901A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9269991B2 (en) * 2013-01-10 2016-02-23 Lapis Semiconductor Co., Ltd. Battery monitoring system and battery monitoring device
US20160056731A1 (en) * 2007-02-26 2016-02-25 Black & Decker Inc. Portable Power Supply
CN108194681A (zh) * 2018-01-19 2018-06-22 常州电站辅机股份有限公司 电动执行机构的唤醒系统
CN108206556A (zh) * 2016-12-16 2018-06-26 东莞市德尔能新能源股份有限公司 Bms充电系统及其充电方法
CN108736550A (zh) * 2018-07-29 2018-11-02 无锡海潮新能源科技有限公司 一种用于电池采样集成芯片的唤醒电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160056731A1 (en) * 2007-02-26 2016-02-25 Black & Decker Inc. Portable Power Supply
US9269991B2 (en) * 2013-01-10 2016-02-23 Lapis Semiconductor Co., Ltd. Battery monitoring system and battery monitoring device
CN108206556A (zh) * 2016-12-16 2018-06-26 东莞市德尔能新能源股份有限公司 Bms充电系统及其充电方法
CN108194681A (zh) * 2018-01-19 2018-06-22 常州电站辅机股份有限公司 电动执行机构的唤醒系统
CN108736550A (zh) * 2018-07-29 2018-11-02 无锡海潮新能源科技有限公司 一种用于电池采样集成芯片的唤醒电路

Similar Documents

Publication Publication Date Title
TWI539720B (zh) 具有低功耗狀態自動喚醒功能的動力電池組管理系統
US9509160B2 (en) Fast charging terminal
US11889863B2 (en) Voltage output circuit and electronic cigarette
WO2020156141A1 (zh) 充电电路及电子设备
CA3139406A1 (en) Smart connection device, jump starter, and battery clamp
CN201766243U (zh) 通用序列总线集线器
CN202014087U (zh) 便携式系统锂电池充电保护电路
CN206547012U (zh) 充电电路及电子设备
CN201821132U (zh) 一种供电系统及电子产品
TW201509043A (zh) 保護電路及具有該保護電路之電子裝置
WO2021258367A1 (zh) 控制电路、电池管理系统及电化学装置
WO2021138901A1 (zh) 激活电路、智能电池、无人机及电子设备
US11128149B2 (en) Charging apparatus
CN209730867U (zh) 一种防电池过放电路
US8947019B2 (en) Handheld device and power supply circuit thereof
CN202652057U (zh) 一种用于集成电路快速启动的供电电路
US20200026676A1 (en) Usb expansion function device
CN206370678U (zh) 一种计算机usb接口输出电压检测保护电路
WO2023184067A1 (zh) 供电电路、电池管理系统、电池包和电子装置
CN104578382A (zh) 给视频摄像头供电的小型ups电源
CN204441935U (zh) 一种usb智能充电电路及充电装置
CN110311429A (zh) 低功耗电源管理系统及管理方法
CN220962271U (zh) 一体式充电系统与热拔插PH2.0接口的集成Arduino主板
CN219875118U (zh) 一种用于智能开关的充电输出控制电路
CN203368086U (zh) 电池充电装置及应用其的移动设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912343

Country of ref document: EP

Kind code of ref document: A1