WO2021136128A1 - 具有天线的触控笔 - Google Patents

具有天线的触控笔 Download PDF

Info

Publication number
WO2021136128A1
WO2021136128A1 PCT/CN2020/139848 CN2020139848W WO2021136128A1 WO 2021136128 A1 WO2021136128 A1 WO 2021136128A1 CN 2020139848 W CN2020139848 W CN 2020139848W WO 2021136128 A1 WO2021136128 A1 WO 2021136128A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
pen
stylus
main body
pen holder
Prior art date
Application number
PCT/CN2020/139848
Other languages
English (en)
French (fr)
Inventor
陈文俊
马宁
李艳波
王克猛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20909794.8A priority Critical patent/EP4075243A4/en
Priority to US17/790,627 priority patent/US20230045649A1/en
Publication of WO2021136128A1 publication Critical patent/WO2021136128A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • This application relates to the field of wireless communication, and in particular, to a stylus with an antenna.
  • the use of stylus is increasing. Due to the small size of the stylus itself and more and more functional integration, the antenna layout space is very limited. How to use the existing metal parts of the stylus to design the antenna, reduce the space occupied by the antenna, reduce the impact of the hand grip, and meet the performance requirements, is a difficult point in the design of the stylus antenna.
  • the embodiment of the present application provides a stylus with an antenna, which can use the existing metal parts of the stylus to design the antenna and reduce the space occupied by the antenna.
  • an embodiment of the present application discloses a stylus, including:
  • a pen holder extends along a longitudinal axis, and the pen holder includes a main body, a pen tip provided at one end of the main body, and a pen head provided at the other end of the main body corresponding to the pen tip;
  • An antenna the antenna is arranged on the main body of the pen holder, and at least a part of the antenna is located outside the pen holder and close to the pen tip and/or the pen head.
  • the antenna includes a loop antenna close to the pen head.
  • the antenna includes a planar inverted F antenna close to the pen head.
  • the antenna includes a metal radiator and a feeding terminal
  • the metal radiator is located outside the pen holder, the feed terminal is located inside the pen holder, and the metal radiator is connected to the feed terminal through a through hole on the main body of the pen holder.
  • the main body of the pen holder includes a metal tube extending along the longitudinal axis, and a part of the metal tube opposite to the metal radiator has an opening.
  • the opening is filled with plastic or glass.
  • the antenna includes a metal pen holder close to the pen head. Setting the pen holder as an antenna can avoid the space occupied when the antenna is set inside the pen holder in the prior art.
  • the part of the pen holder located outside the pen holder is covered with a plastic layer.
  • the main body of the pen holder includes a metal tube extending along the longitudinal axis, and the antenna further includes a slot antenna disposed on the metal tube and close to the pen tip.
  • the antenna near the tip of the pen is in working condition, and when the pen tip is held with the hand for sketching, switch to the slot antenna near the tip of the pen.
  • Working status when the hand is close to the tip of the pen, the antenna near the tip of the pen is in working condition, and when the pen tip is held with the hand for sketching, switch to the slot antenna near the tip of the pen.
  • the dual-antenna setting can ensure that the antenna performance of the stylus is not affected under different usage conditions. For example, the antenna performance will not be affected in a normal handwriting situation or when holding the pen head with your hand for sketching.
  • the antenna is a Bluetooth antenna.
  • an embodiment of the present application discloses a stylus, including:
  • a pen holder the pen holder includes a main body, a pen tip portion provided at one end of the main body, and a pen head provided at the other end of the main body corresponding to the pen tip portion, the main body including a metal tube extending along a longitudinal axis;
  • the antenna includes at least one slot antenna arranged on the metal tube of the main body.
  • the slot antenna is arranged on the metal tube of the pen holder, which can avoid the space occupied when the antenna is arranged inside the pen holder in the prior art.
  • the slot antenna is close to the tip or head of the pen holder.
  • the antenna includes a first slot antenna close to the tip of the pen holder and a second slot antenna close to the head of the pen.
  • the hand In the normal hand mode, the hand is close to the pen tip, and the slot antenna near the pen head is in working condition at this time, and when the pen head is held with the hand for sketching, switch to the slot antenna near the pen tip In working condition.
  • the dual-antenna setting can ensure that the antenna performance of the stylus is not affected under different usage conditions. For example, the antenna performance will not be affected in a normal handwriting situation or when holding the pen head with your hand for sketching.
  • the first slot antenna and the second slot antenna are switched through a transmitting antenna selection system.
  • the antenna is a Bluetooth antenna
  • the slot length of the slot antenna is 40%-60% of the wavelength of the Bluetooth signal emitted by the slot antenna.
  • the shape of the slot antenna is a curve.
  • the slot antenna is U-shaped, Z-shaped, or spiral-shaped.
  • the main body further includes a plastic tube extending along the longitudinal axis, and the plastic tube is sleeved on the outside of the metal tube.
  • Fig. 1 shows a scene diagram of interaction between a stylus and an electronic device according to some embodiments of the present application.
  • Fig. 2A shows a schematic structural diagram of a stylus with a pen clip antenna according to some embodiments of the present application.
  • FIG. 2B shows a schematic structural diagram of a stylus with a pen clip antenna according to some embodiments of the present application.
  • Fig. 3 shows a schematic structural diagram of a stylus with an opening under the pen holder antenna according to some embodiments of the present application.
  • Fig. 4A shows a simulation curve of the antenna performance of the stylus shown in Fig. 2A with and without openings under the pen holder antenna, according to some embodiments of the present application.
  • Fig. 4B shows a simulation curve of the antenna performance of the stylus shown in Fig. 2B with and without openings under the pen holder antenna, according to some embodiments of the present application.
  • Fig. 5 shows a schematic structural diagram of a stylus with an insulating material film provided on the clip antenna according to some embodiments of the present application.
  • 6A to 6C show schematic diagrams of the structure of a stylus with slot antennas of different shapes according to some embodiments of the present application.
  • FIGS. 7A and 7B respectively show the main body 110 of the stylus pen 10 when the slot antenna is linear (current area is 140-S) and U (current area is 140-U) according to some embodiments of the present application. Current distribution on the metal tube.
  • Fig. 8 shows performance simulation graphs of the spiral slot antenna shown in Fig. 6A and the U-shaped slot antenna shown in Fig. 6B according to some embodiments of the present application.
  • 9A to 9C respectively show schematic structural diagrams of three stylus pens with different dual-slot antennas according to some embodiments of the present application.
  • Figures 10A and 10B show the U-shaped slot antenna in the writing mode and the air mouse mode when the U-shaped slot antenna is arranged close to the pen head and close to the pen tip, according to some embodiments of the present application. Performance simulation graph under the.
  • FIG. 10C shows the layout of U-shaped slot antennas both near the pen head and near the pen tip according to some embodiments of the present application, and the antenna with better performance is selected through the transmitting antenna switching technology to work in writing mode and air mouse mode Performance simulation curves in two scenarios.
  • Illustrative embodiments of this application include, but are not limited to, authentication methods and their media and electronic devices.
  • FIG. 1 shows a scene diagram of interaction between a stylus and an electronic device.
  • the electronic device 20 may be any electronic device capable of interacting with the stylus 10, for example, a laptop computer, a tablet computer, a smart phone, a media player, a wearable device, a head-mounted display, a mobile Electronic devices such as e-mail devices, portable game consoles, portable music players, reader devices, personal digital assistants, virtual reality or augmented reality devices, and televisions with one or more processors embedded or coupled in them.
  • the electronic device 20 is a tablet computer as an example.
  • the tablet computer 20 has a display screen 210, and the stylus pen 10 can provide input information to the display screen 210 through contact with the display screen 210, or interact with the display screen 210 through wireless communication technology. For example, writing and drawing on the display screen 210, clicking a function icon on the display screen, and so on.
  • the stylus 10 may include a main body 110, a pen head 120, a pen head 130, an antenna 140, a battery, and a circuit (not shown).
  • the main body 110 extends along the longitudinal axis L.
  • the main body 110 may be cylindrical or a hollow tube of any other shape.
  • the cross section of the hollow tube is square, hexagonal, octagonal, or not. Regular polygons, etc.
  • the main body 110 in the drawings described in the following embodiments is shown as a cylindrical shape, it can be understood that it is only schematic, and it may also have other shapes mentioned above, as long as it is a hollow tube.
  • the main body 110 may include a metal tube or a non-metal tube.
  • the non-metal tube may be a plastic tube, a ceramic tube, or the like.
  • the main body 110 may have only one metal tube.
  • the main body 110 may be a metal tube formed by spot welding, screws, conductive cloth, or conductive glue.
  • the main body 110 includes a metal tube and a plastic tube sheathed outside the metal tube.
  • the main body 110 includes a metal tube and a plastic tube sleeved inside the metal tube.
  • the main body 110 includes a metal tube and a plastic tube sheathed inside and outside the metal tube.
  • the above-mentioned plastic tube can also be made of other materials, for example, it can be a ceramic tube. It can be understood that, in the present application, the material of the metal tube of the antenna 140 and the main body 110 may be aluminum, copper, aluminum alloy, magnesium alloy, stainless steel, or the like.
  • the tip portion 130 of the stylus 10 is provided at one end of the main body 110.
  • the tip portion 130 may be provided with a conductive elastic member, and the conductive elastic member may be detected by the capacitive touch sensor in the display 210 of the tablet computer 20 .
  • the pen tip portion 130 may be provided with an active electronic device, and the signal generated by the active electronic device can be detected by the capacitive touch sensor in the display screen 210 of the tablet computer 20.
  • the pen tip portion 130 may further include a force sensor, where the force sensor may be used to measure the force of the user pressing the stylus pen 10. It can be understood that the pen tip 130 may also be provided with other elements, which are not limited here.
  • the main body 110 of the stylus 10 is provided with a pen head 120 on the other end corresponding to the pen tip 130.
  • the pen head 120 may also include at least one of a conductive elastic member, an active electronic device, and a force sensor.
  • the pen head 120 may also include buttons and input/output components.
  • the input and output component is a USB interface, which is used to charge the stylus 10.
  • a detachable cap may also be provided on the pen head 120.
  • the battery is used to power the stylus 10, for example, in some embodiments, the battery can be charged through the above-mentioned USB interface.
  • the circuit may include a control circuit, a radio frequency circuit, etc., and these circuits may be integrated in a hardware entity (such as a chip, a PCB (Printed Circuit Board, printed circuit board)), or may be a separate hardware entity.
  • the control circuit can be used to run software related to the stylus 10 to process signals received by the stylus 10 or generate signals that the stylus 10 needs to output.
  • the control circuit can also be used with other stylus pen 10 Circuit communication, for example, communicates via Bluetooth, NFC (Near Field Communication), etc.
  • the radio frequency circuit can be used to implement wireless communication between the stylus 10 and external devices.
  • the radio frequency circuit can be connected to the antenna 140 to receive wireless signals such as Bluetooth signals received by the antenna 140, or to transmit to the antenna 140 signals that need to be transmitted through the antenna 140. Wireless signals such as Bluetooth signals.
  • the antenna of the stylus 10 is a Bluetooth antenna. It can be understood that the antenna structure of the present application is also applicable to antennas of other wireless communication types, and there is no limitation here.
  • the antenna 140 of the stylus 10 can be implemented in various ways. For example, part or all of the antenna 140 is arranged outside the main body 110 of the pen holder, or the antenna 140 is arranged on the metal tube of the main body 110, which is realized in the form of a slot antenna.
  • FIGS. 1 and 2A show a stylus 10 with a pen clip antenna 140.
  • the antenna 140 is a loop antenna, and is provided on the main body 110 in the form of a pen clip of the stylus 10 (hereinafter also referred to as a pen clip antenna).
  • FIG. 2B shows another stylus 10 with a pen clip antenna 140.
  • the antenna 140 of the stylus 10 is a PIFA (planar inverted F-antenna, plane inverted F) antenna, and is arranged on the main body 110 in the form of a pen clip (hereinafter also referred to as a pen clip antenna).
  • PIFA plane inverted F-antenna, plane inverted F
  • the clip antenna 140 shown in FIGS. 2A and 2B may include a metal radiator located outside the pen barrel and a feeding terminal located inside the pen barrel.
  • the metal radiator passes through the through hole on the main body 110 and is connected to the feeding terminal.
  • the control circuit of the stylus 10 is a PCB motherboard.
  • the PCB motherboard is located near the antenna.
  • the metal part of the pen holder antenna bent inside the pen holder can be directly elastically connected to the shrapnel on the PCB board, and then through the micro The ribbon wire is connected to the RF chip.
  • the PCB main board is far away from the antenna, and the feed terminal (metal part) of the pen holder antenna bent to the inside of the pen holder is elastically connected to the small board through the elastic sheet, and then through Cable (radio frequency coaxial cable) or LCP ( The Liquid-crystal polymers/MPI (Modified Polyimide) wire is connected to the PCB board.
  • the PCB motherboard is far away from the antenna, and the pen holder antenna is bent to the feed terminal (metal part) inside the pen holder.
  • the cable or LCP/MPI line is directly connected to the Cable or LCP/MPI line by spot welding or screws.
  • the other end of the /MPI line is connected to the PCB motherboard.
  • the metal radiator may also extend into the main body 110 and be connected to the circuit board or chip inside the main body 110 through the feeding terminal.
  • the metal radiator and the feeding terminal are both located outside the pen holder, and the coaxial cable or cable line is connected to the feeding terminal from the outside of the pen holder and then connected to the circuit inside the pen holder.
  • the shape of the pen holder antenna 140 is not limited to the shape shown in FIGS. 2A and 2B.
  • the pen holder may be circular, elliptical, wave-shaped, polygonal, cartoon character, and so on.
  • the clip antenna 140 shown in FIGS. 2A and 2B is a Loop type antenna or a PIFA type antenna
  • the clip antenna 140 may also be another type of antenna, for example, a monopole.
  • an opening 150 is provided on the main body 110 corresponding to the pen tip antenna 140.
  • the opening 150 may be filled with a non-metallic material, for example, made of plastic or glass fiber. Filling to ensure the structural strength of the entire stylus 10.
  • the simulation software is the three-dimensional electromagnetic field simulation software CST, and the simulation results are calculated by a time domain solver.
  • the abscissa of FIG. 4A represents the frequency in GHz
  • the ordinate represents S11 (ie S1,1 shown in the figure, and S1,1 is also used in the following figures to represent the S11 parameter) and the magnitude of the total efficiency Value in dB.
  • the total efficiency of the loop type pen holder antenna 140 after the opening 150 is about 1dB higher than the total efficiency of the loop type pen holder antenna 140 without the opening 150, and the loop type after setting the opening 150
  • the bandwidth (S11 ⁇ -5dB) of the pen clip antenna 140 is increased by more than 60% compared with the bandwidth of the loop type pen clip antenna 140 without openings, which indicates that the antenna performance of the loop type pen clip antenna 140 is significantly improved after the opening 150 is provided.
  • the simulation software is the three-dimensional electromagnetic field simulation software CST, and the simulation results are calculated by a time domain solver.
  • the abscissa of FIG. 4B represents the frequency in GHz, and the ordinate represents the magnitude of S11 and the total efficiency in dB.
  • the total efficiency of the PIFA type pen holder antenna 140 after the opening 150 is approximately the same as the peak efficiency of the PIFA type pen holder antenna 140 without the opening 150, but the PIFA type pen after setting the opening 150
  • the bandwidth (S11 ⁇ -5dB) of the clip antenna 140 is more than 30% higher than the bandwidth of the PIFA type pen clip antenna 140 without an opening. This indicates that the antenna performance of the PIFA type pen holder antenna 140 is improved after the opening 150 is provided.
  • providing an opening in the main body of the stylus 10 can improve the performance of the pen holder antenna 140.
  • the antenna 140 in order to reduce the influence of the user's hand on the antenna 140 during use, is covered with a layer of insulating material.
  • a metal encapsulation process is used to cover the antenna 140.
  • the outside is covered with a layer of plastic material.
  • the antenna 140 described in the above figures is provided in the form of a pen holder on the outside of the main body 110 of the pen holder, in other embodiments, the antenna 140 of other shapes can also be provided, and it is not necessarily used as a pen.
  • the clip for example, a part or all of the antenna 140 is only provided on the outside of the pen barrel, close to the pen head 120 or close to the pen holder 130.
  • the metal tube, plastic tube, etc. of the main body 110 of the stylus pen 10 may be integrally formed to improve the structural strength of the stylus pen 10. It can also be segmented, using solder joint technology, screws, conductive cloth or conductive glue to achieve overall electrical connection, which is not limited here.
  • the antenna that can be used for the stylus pen 10 may also be a slot antenna provided on the metal tube of the main body 110 of the stylus pen 10.
  • the slot antenna in order to reduce the possibility of the slot antenna being blocked by the hand when in use, the slot antenna is arranged close to the pen head 120 or the pen tip 130, and in order to minimize the length of the slot antenna on the longitudinal axis, the The slot antenna is set as a curve around the metal tube.
  • the metal pipe can be divided into multiple sections, and the entire electrical connection is realized by spot welding, screws, conductive cloth, or conductive glue.
  • the metal pipe can also be integrally formed.
  • the outermost layer of the metal tube can also be provided with a plastic tube as a shell, so that the slot antenna does not affect the appearance of the product.
  • FIGS. 6A to 6C show the stylus 10 with the slot antenna 140 of different shapes.
  • Fig. 6A is a spiral-shaped slot antenna
  • Fig. 6B is a U-shaped slot antenna
  • Fig. 6C is a Z-shaped slot antenna.
  • the shape of the slot antenna 140 is not limited to the three shapes shown in FIGS. 6A to 6C, and may be any curved shape.
  • it can be S-shaped and wave-shaped.
  • the slot antenna 140 can be fed through coupling or directly.
  • the length of the slot antenna needs to be set close to 1/2 wavelength (about 60 mm) of Bluetooth.
  • the diameter of the stylus is 8-9mm, and the length is more than 120mm.
  • 7A and 7B respectively show the current distribution on the metal tube of the main body 110 of the stylus pen 10 when the slot antenna is linear (current area is 140-S) and U-shaped (current area is 140-U).
  • current area is 140-S
  • U-shaped current area is 140-U
  • the slot antenna When the slot antenna is U-shaped, the lateral current on the pen holder is excited. Since the length of the pen holder is usually more than 120mm, which is greater than the ⁇ /2 wavelength of Bluetooth (about 60mm), better antenna performance can be obtained. Therefore, in this application, the slot antenna is set in a curved shape on the metal tube of the main body 110 of the stylus 10, and the overall length is 40% to 60% of the Bluetooth wavelength, so as to obtain better Bluetooth antenna performance and reduce The length of the small slot antenna in the direction of the longitudinal axis reduces the possibility of the slot antenna being held by the hand during use.
  • FIG. 8 shows the performance simulation curves of the return loss S11 and the total efficiency (Tot.Efficiency) of the spiral slot antenna shown in FIG. 6A and the U-shaped slot antenna shown in FIG. 6B in the case of direct feeding.
  • the software used in the simulation test is the three-dimensional electromagnetic field simulation software CST, and the simulation results are calculated by a time domain solver.
  • the abscissa of FIG. 8 represents the frequency, in GHz, and the ordinate represents the magnitude of S11 and the total efficiency, in the unit of dB.
  • the total efficiency value of the spiral slot antenna and the U-shaped slot antenna are relatively close.
  • the slot antenna adopts intermediate feeding it needs to use matching device to tune.
  • Use side feeding to select the appropriate feeding position (the distance between the feeding point and the end is about 5 ⁇ 7mm) without matching devices to get better resonance. It can be seen from S11 that by feeding power at the 1/3 position of the helical antenna, dual resonance can be obtained, which has a wider bandwidth than the U-shaped antenna.
  • the user can write in a normal writing posture (the position where the user holds the pen is close to the nib 130, hereinafter referred to as handwriting mode), or hold the pen head 120 for sketching (hereinafter referred to as empty mouse Mode) and other operations.
  • handwriting mode if the antenna 140 is set close to the pen tip 130, there will be a problem that the antenna is held by the hand and affect the antenna performance.
  • the air mouse mode if the antenna 140 is set close to the pen head 120, the pen The head is generally held by the hands, which also affects the antenna performance.
  • the stylus 10A shows that when the U-shaped slot antenna 140 is set close to the pen head 120 (hereinafter referred to as the pen head antenna), the stylus 10 is in the handwriting mode, the air mouse mode, and the free space mode.
  • the handwriting mode refers to the user holding the place close to the tip portion 130 of the stylus 10 when using it
  • the air mouse mode refers to the free space mode when the user holding the place close to the tip portion 120 of the stylus 10 when using it.
  • the simulation software is the three-dimensional electromagnetic field software CST, and the simulation results are calculated using a time domain solver.
  • the abscissa of FIG. 10A represents the frequency in GHz, and the ordinate represents the magnitude of S11, the total efficiency and the radiation efficiency, and the unit is dB.
  • the amplitude of S11 in the three modes is basically the same, but due to the absorption effect of electromagnetic waves by the human body, the radiation of the U-shaped slot antenna 140 in the air-mouse mode of the pen antenna The efficiency is about 10.5dB lower than the radiation efficiency of the antenna 140 in the free-space mode.
  • the total efficiency of the U-slot antenna 140 in the pen-head antenna air-mouse mode is about 10.1dB lower than the total efficiency of the antenna 140 in the pen-head antenna free-space mode;
  • the radiation efficiency of the U-shaped slot antenna 140 in the antenna handwriting mode is only about 3.5dB lower than the radiation efficiency of the antenna 140 in the pen-head antenna free-space mode.
  • the total efficiency of the U-shaped slot antenna 140 in the pen-head antenna handwriting mode is higher than that in the pen-head antenna free-space mode.
  • the total efficiency of the lower antenna 140 is about 3.5 dB lower. It can be seen that for the U-shaped slot antenna 140 arranged close to the pen head 120, the overall efficiency and radiation efficiency of the antenna are reduced in the air-mouse mode of the pen antenna, and the antenna performance is reduced.
  • the simulation software is the three-dimensional electromagnetic field simulation software CST, and the simulation results are calculated by a time domain solver.
  • the abscissa of FIG. 10B represents the frequency in GHz, and the ordinate represents the magnitude of S11, the total efficiency and the radiation efficiency, and the unit is dB.
  • the S11 of the U-shaped slot antenna 140 in the pen tip antenna handwriting mode is about 8.5dB higher than the S11 of the antenna 140 in the pen tip antenna free space mode.
  • the total efficiency of the lower U-shaped slot antenna 140 is about 9dB lower than the total efficiency of the antenna 140 in the pen-tip antenna free-space mode.
  • the radiation efficiency of the U-shaped slot antenna 140 in the pen-tip antenna handwriting mode is higher than that of the antenna 140 in the pen-tip antenna free-space mode.
  • the efficiency is about 8.5dB lower; the S11 of the U-shaped slot antenna 140 in the pen-tip antenna air-mouse mode is about 6dB lower than the S11 of the antenna 140 in the free-space mode of the pen-point antenna.
  • the total efficiency of the antenna 140 in the free space mode of the pen tip antenna is about 1 dB lower than that of the pen tip antenna.
  • the radiation efficiency of the U-shaped slot antenna 140 in the air mouse mode of the pen tip antenna is only about 1 dB lower than the radiation efficiency of the antenna 140 in the free space mode of the pen tip antenna. It can be seen that for the U-shaped slot antenna 140 disposed near the pen tip 130, in the handwriting mode, the overall efficiency and radiation efficiency of the antenna are reduced, and the antenna performance is reduced.
  • antennas are respectively provided at the pen head 120 and the pen tip 130 near the barrel of the stylus pen 10.
  • the two antennas can be switched through the Transmitting Antenna Selection System (TAS).
  • TAS Transmitting Antenna Selection System
  • the clip antenna disclosed in the foregoing embodiments may be provided near the tip 120 of the stylus pen 10
  • the slot antenna disclosed in the foregoing embodiments may be provided near the tip portion 130 of the stylus pen.
  • slot antennas may be provided near the pen head 120 of the stylus 10 and near the tip 130 of the stylus, and the shape of the slot antenna may also be various curves.
  • FIG. 9A to 9C respectively show three types of stylus 10 with dual-slot antennas.
  • the stylus 10 shown in FIG. 9A is provided with a U-shaped slot antenna 140A and a U-shaped slot antenna 140B near the pen head 120 and near the pen tip 130, respectively.
  • the stylus 10 shown in FIG. 9B is respectively provided with a helical antenna 140C and a helical antenna 140D near the pen head 120 and near the pen tip 130.
  • FIG. 10C shows that when U-shaped slot antennas 140A (also called pen tip antennas) and 140B (also called pen tip antennas) are arranged close to the pen head 120 and the pen tip 130, respectively, the stylus 10 is in the handwriting mode and the air mouse mode. And in the free space mode, the return loss S11 parameter, the total efficiency (Tot.Efficiency) and the radiation efficiency (Rad.Efficiency) performance simulation curve of the U-shaped slot antenna in the working state. Among them, the free space mode means that the stylus is not used.
  • the software used in the simulation is the three-dimensional electromagnetic field software CST, and the simulation results are calculated using a time domain solver.
  • the abscissa of FIG. 10C represents the frequency in GHz, and the ordinate represents the magnitude of S11, the total efficiency and the radiation efficiency, and the unit is dB.
  • the S11 of the U-shaped slot antenna 140A in the handwriting mode is roughly the same as the S11 of the U-shaped slot antenna 140A in the free space mode, and the U-shaped slot antenna in the handwriting mode
  • the total efficiency of 140A is about 3.5dB lower than that of U-slot antenna 140A in free space mode.
  • the radiation efficiency of U-slot antenna 140A in handwriting mode is about 3.5dB lower than that of U-slot antenna 140A in free space mode. 3.5dB.
  • the S11 of the U-shaped slot antenna 140B in the air mouse mode is about 7 dB lower than the S11 of the U-shaped slot antenna 140B in the free space mode.
  • the radiation efficiency of the U-shaped slot antenna 140B in the air mouse mode is about 1dB lower than that of the U-shaped slot antenna 140B in the free space mode.
  • the total efficiency of the U-shaped slot antenna 140B in the air mouse mode is higher than that of the U-shaped slot in the free space mode.
  • the overall efficiency of the antenna 140B is about 1.5 dB lower.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Support Of Aerials (AREA)

Abstract

一种触控笔(10),涉及无线通信领域。触控笔(10)包括:笔筒,笔筒沿纵向轴线延伸,并且笔筒包括主体(110)、设置在主体(110)一端的笔尖部(130)和设置在主体(110)另一端与笔尖部(130)对应的笔头部(120);天线(140),天线(140)设置在笔筒的主体(110)上,并且天线(140)的至少一部分位于笔筒的外部,并靠近笔尖部(130)和/或笔头部(120)。触控笔(10)能够利用已有的金属部件设计天线(140),减小天线占用空间。触控笔(10)通过在手写笔上设计双天线,利用天线切换技术解决用户使用过程中手握导致手写笔时延增加的问题,提升用户体验。

Description

具有天线的触控笔
本申请要求2020年01月02日递交的申请号为202010001940.8、发明名称为“具有天线的触控笔”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,特别地,涉及一种具有天线的触控笔。
背景技术
触控笔作为平板电脑和手机的重要配件之一,使用场景日益增多。由于触控笔本身尺寸较小,且功能集成越来越多,天线布局空间十分受限。如何利用触控笔已有金属部件来设计天线,减小天线占用空间,同时减小手握影响,满足性能需求,是触控笔天线设计过程中的难点。
发明内容
本申请实施例提供了一种具有天线的触控笔,能够利用触控笔已有的金属部件设计天线,减小天线占用空间。
第一方面,本申请的实施例公开了一种触控笔,包括:
笔筒,所述笔筒沿纵向轴线延伸,并且所述笔筒包括主体、设置在所述主体一端的笔尖部和设置在所述主体另一端与所述笔尖部对应的笔头部;
天线,所述天线设置在所述笔筒的主体上,并且所述天线的至少一部分位于所述笔筒的外部,并靠近所述笔尖部和/或所述笔头部。
在上述第一方面的一种可能实现中,所述天线包括靠近所述笔头部的环形天线。
在上述第一方面的一种可能实现中,所述天线包括靠近所述笔头部的平面倒置F天线。
在上述第一方面的一种可能实现中,所述天线包括金属辐射体和馈电端子;
所述金属辐射体位于所述笔筒的外部,所述馈电端子位于所述笔筒的内部,并且所述金属辐射体通过所述笔筒的主体上的通孔与所述馈电端子连接。
在上述第一方面的一种可能实现中,所述笔筒的主体包括沿所述纵向轴线延伸的金属管,并且所述金属管上与所述金属辐射体相对的部分具有开口。通过在金属管上设置开口,能够明显提升天线的性能。
在上述第一方面的一种可能实现中,所述开口处填充有塑胶或者玻璃。
在上述第一方面的一种可能实现中,所述天线包括靠近所述笔头部的金属笔夹。将笔夹设置为天线,能够避免现有技术中将天线设置在笔筒内部时占用的空间。
在上述第一方面的一种可能实现中,所述笔夹位于所述笔筒外部的部分包覆有塑胶层。
在上述第一方面的一种可能实现中,所述笔筒的主体包括沿所述纵向轴线延伸的金属管,所述天线还包括设置在所述金属管上并靠近所述笔尖部的缝隙天线。在正常手下模式下,手靠近笔尖部,此时使得靠近笔头部的天线处于工作状态,而在用手握住笔头部进行素描的情况下,切换到靠近所述笔尖部的缝隙天线处于工作状态。
采用双天线设置,可以保证触控笔在不同使用情况下天线性能不受影响,例如,正常手写情况或者用手握住笔头部进行素描时,天线性能不受影响。
在上述第一方面的一种可能实现中,所述天线为蓝牙天线。
第二方面,本申请的实施例公开了一种触控笔,包括:
笔筒,所述笔筒包括主体、设置在所述主体一端的笔尖部和设置在所述主体另一端与所述笔尖部对应的笔头部,所述主体包括沿纵向轴线延伸的金属管;
天线,所述天线包括设置在所述主体的金属管上的至少一个缝隙天线。在笔筒的金属管上设置缝隙天线,能够避免现有技术中将天线设置在笔筒内部时占用的空间。
在上述第二方面的一种可能实现中,所述缝隙天线靠近所述笔筒的笔尖部或者笔头部。
在上述第二方面的一种可能实现中,所述天线包括靠近所述笔筒的笔尖部的第一缝隙天线和靠近所述笔头部的第二缝隙天线。在正常手下模式下,手靠近笔尖部,此时使得靠近笔头部的缝隙天线处于工作状态,而在用手握住笔头部进行素描的情况下,切换到靠近所述笔尖部的缝隙天线处于工作状态。
采用双天线设置,可以保证触控笔在不同使用情况下天线性能不受影响,例如,正常手写情况或者用手握住笔头部进行素描时,天线性能不受影响。
在上述第二方面的一种可能实现中,所述第一缝隙天线和第二缝隙天线通过发射天线选择系统进行切换工作。
在上述第二方面的一种可能实现中,其特征在于,所述天线为蓝牙天线,并且所述缝隙天线的缝隙长度为所述缝隙天线发射的蓝牙信号的波长的40%~60%。
在上述第二方面的一种可能实现中,所述缝隙天线的形状为曲线。
在上述第二方面的一种可能实现中,所述缝隙天线为U型、Z型、或者螺旋线型。
在上述第二方面的一种可能实现中,所述主体还包括沿纵向轴线延伸的塑胶管,所述塑胶管套在所述金属管的外部。
附图说明
图1根据本申请的一些实施例,示出了一种触控笔与电子设备进行交互的场景图。
图2A根据本申请的一些实施例,示出了一种具有笔夹天线的触控笔的结构示意图。
图2B根据本申请的一些实施例,示出了一种具有笔夹天线的触控笔的结构示意图。
图3根据本申请的一些实施例,示出了一种在笔夹天线下方设置开口的触控笔的结构示意图。
图4A根据本申请的一些实施例,示出了图2A所示的触控笔在笔夹天线下方设置开口和不设置开口的情况下,天线性能的仿真曲线。
图4B根据本申请的一些实施例,示出了图2B所示的触控笔在笔夹天线下方设置开口和不设置开口的情况下,天线性能的仿真曲线。
图5根据本申请的一些实施例,示出了在笔夹天线上设置有绝缘材料膜的触控笔的结构示意图。
图6A至图6C根据本申请的一些实施例,示出了具有不同形状的缝隙天线的触控笔的结构示意图。
图7A和图7B根据本申请的一些实施例,分别示出了缝隙天线为直线形(电流区域为140-S)和U(电流区域为140-U)型时,触控笔10的主体110的金属管上的电流分布。
图8根据本申请的一些实施例,示出了图6A所示的螺旋型缝隙天线和图6B所示的U型缝隙天线的性能仿真曲线图。
图9A至图9C根据本申请的一些实施例,分别示出了具有不同双缝隙天线的三种触控笔的结构示意图。
图10A和图10B根据本申请的一些实施例,示出了将U型缝隙天线分别设置在靠近笔头部和靠近笔尖部的情况下,U型缝隙天线在书写模式和空鼠模式两种场景下的性能仿真曲线图。
图10C根据本申请的一些实施例,示出了在靠近笔头部和靠近笔尖部均布局U型缝隙天线,并通过发射天线切换技术选择性能较优的天线工作,在书写模式和空鼠模式两种场景下的性能仿真曲线图。
具体实施例
本申请的说明性实施例包括但不限于认证方法及其介质和电子设备。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
根据本申请的一些实施例,图1示出了一种触控笔与电子设备进行交互的场景图。如图1所示,电子设备20可以是能够与触控笔10交互的任何电子设备,例如,膝上型计算机、平板电脑、智能手机、媒体播放器、可穿戴设备、头戴式显示器、移动电子邮件设备、便携式游戏机、便携式音乐播放器、阅读器设备、个人数字助理、虚拟现实或者增强现实设备、其中嵌入或耦接有一个或多个处理器的电视机等电子设备。
在下面的描述中,以电子设备20为平板电脑为例进行说明。
如图1所示,平板电脑20具有显示屏210,触控笔10可以通过与显示屏210的接触向显示屏210提供输入信息,或者通过无线通信技术与显示屏210交互。例如,在显示屏210上写字绘图、点击显示屏上的功能图标等。
在一些实施例中,触控笔10可以包括主体110、笔头部120、笔头部130、天线140、电池以及电路(未示出)。主体110沿着纵向轴线L延伸,主体110可以是圆筒状的,也可以是其他任意形状的中空管,例如,中空管的横截面为正方形、六边形、八边形、或者不规则的多边形等。虽然下文各实施例所描述的附图中主体110均示出为圆筒状,但是可以理解,其仅仅是示意性的,也可以是上面提到的其他形状,只要是中空管即可。
此外,主体110可以包括金属管,也可以包括非金属管,例如,非金属管可以是塑胶 管、陶瓷管等。在一些实施例中,主体110可以是仅具有一个金属管。例如,主体110可以是多段金属结构通过点焊、螺钉、导电布或者导电胶粘贴拼合成的金属管。在另外一些实施例中,主体110包括金属管和套在金属管外部的塑胶管。在另外一些实施例中,主体110包括金属管和套在金属管的内部的塑胶管。在另外一些实施例中,主体110包括金属管、以及套在金属管的内部和外部的塑胶管。上述的塑胶管也可以是其他材质的,例如可以是陶瓷管。可以理解,在本申请中,天线140和主体110的金属管的材质可以是铝、铜、铝合金、镁合金、不锈钢材料等。
触控笔10的笔尖部130设置在主体110的一端,在一些实施例中,笔尖部130可以设置导电弹性构件,导电弹性构件可以被平板电脑20的显示屏210中的电容式触摸传感器检测到。在一些实施例中,笔尖部130可以设置有源电子器件,该有源电子器件产生的信号能够可以被平板电脑20的显示屏210中的电容式触摸传感器检测到。在一些实施例中,笔尖部130还可以包括力传感器,其中力传感器可以用来测量用户按压触控笔10的用力大小。可以理解,笔尖部130还可以设置其他元件,在此不做限制。
在触控笔10的主体110在与笔尖部130对应的另一端上设置有笔头部120。在一些实施例中,笔头部120可以也包括导电弹性构件、有源电子器件、力传感器中的至少一种。在一些实施例中,笔头部120还可以包括按钮、输入输出部件。例如,输入输出部件为USB接口,用于为触控笔10充电。在一些实施例中,笔头部120上还可以设置有可拆卸的盖帽。
电池用于给触控笔10供电,例如,在一些实施例中,可以通过上述USB接口为电池充电。
电路可以包括控制电路、射频电路等,这些电路可以是集成在一个硬件实体(如芯片、PCB(Printed Circuit Board,印刷电路板))中,也可以是单独的硬件实体。其中,控制电路可以用于运行与触控笔10相关的软件,以处理触控笔10接收到的信号或者生成触控笔10需要输出的信号,控制电路还可以与触控笔10中的其他电路通信,例如,通过蓝牙、NFC(Near Field Communication,近场通信)等进行通信。射频电路可以用于实现触控笔10与外部设备的无线通信,射频电路可以与天线140连接,以接收天线140接收到的如蓝牙信号等无线信号,或者向天线140发送需要通过天线140传输的如蓝牙信号等无线信号。
下面以触控笔10的天线为蓝牙天线进行说明,可以理解,本申请的天线结构也适用于其他无线通信类别的天线,在此不做限制。
触控笔10的天线140可以以各种方式实现。例如,将天线140的一部分或者全部设置在笔筒的主体110外部,或者将天线140设置在主体110的金属管上,以缝隙天线的形式实现。
笔夹天线
根据本申请的实施例,图1和2A示出了一种具有笔夹天线140的触控笔10。具体地,天线140为环形(Loop)天线,并且,以触控笔10的笔夹的形式(下文也称笔夹天线)设置在主体110上。
图2B示出了另一种具有笔夹天线140的触控笔10。具体地,触控笔10的天线140是PIFA(planar inverted F-antenna,平面倒置F)型天线,并以笔夹的形式(下文也称笔夹天线)设置在主体110上。
可以理解,图2A和2B所示的笔夹天线140可以包括位于笔筒外部的金属辐射体和位于笔筒内部的馈电端子。金属辐射体穿过主体110上的通孔与馈电端子连接。例如,在一些实施例中,触控笔10的控制电路为PCB主板,PCB主板位于天线附近,笔夹天线弯折到笔筒内部的金属部分可以直接与PCB板上的弹片弹接,再通过微带线连接到射频芯片。在一些实施例中,PCB主板距离天线较远,笔夹天线弯折到笔筒内部的馈电端子(金属部分)通过弹片弹接到小板上,再通过Cable(射频同轴电缆)或者LCP(Liquid-crystal polymers,液晶聚合物)/MPI(Modified Polyimide,改性聚酰亚胺)线连接到PCB板。在一些实施例中,PCB主板距离天线较远,笔夹天线弯折到笔筒内部的馈电端子(金属部分)通过点焊工艺或者螺钉等方式直接与Cable或者LCP/MPI线连接,Cable或者LCP/MPI线的另一端连接到PCB主板上。
此外,可以理解,在其他实施例中,金属辐射体也可以伸入主体110内部,通过馈电端子与主体110内部的电路板或者芯片连接。或者,金属辐射体与馈电端子均位于笔筒的外部,同轴电缆或者Cable线从笔筒外部连接馈电端子后与笔筒内部的电路连接。
此外,可以理解,笔夹天线140的形状不限于图2A和2B所示的形状,例如,笔夹可以是圆形、椭圆形、波浪形、多边形、卡通人物等等。
此外,可以理解,虽然图2A和2B示出的笔夹天线140为Loop型天线或者PIFA型天线,但是,在其他实施例中,笔夹天线140也可以是其他类型的天线,例如,单极天线、IFA天线或者Patch天线(贴片天线)。
此外,在一些实施例中,为了提高天线性能,如图3所示,在主体110上对应笔尖天线140的部分设置开口150,开口150可以由非金属材料填充,例如,由塑胶或者玻璃纤维来填充,以保证整个触控笔10的结构强度。
下面结合图4A和4B对图2A和2B所示的触控笔10在设置开口和不设置开口的情况下,笔夹天线140的性能做具体说明。
图4A示出了图2A所示的触控笔10在设置开口150和不设置开口150的情况下,Loop型笔夹天线140的回波损耗S11参数和总效率(Tot.Efficiency)的性能仿真曲线图。其中,仿真软件为三维电磁场仿真软件CST,仿真结果采用时域求解器计算得到。
具体地,图4A的横坐标表示频率,单位为GHz,纵坐标表示S11(即图中所示的S1,1,下文中各附图中也用S1,1表示S11参数)和总效率的幅度值,单位为dB。在工作频段范围2.4GHz~2.5GHz内,设置开口150后Loop型笔夹天线140的总效率比未设置开口150的Loop型笔夹天线140的总效率高1dB左右,同时设置开口150后Loop型笔夹天线140的带宽(S11<-5dB)比未设置开口的Loop型笔夹天线140的带宽提升60%以上,从而表明设置开口150后Loop型笔夹天线140的天线性能明显得到了提升。
图4B示出了图2B所示的触控笔10在设置开口和不设置开口的情况下,笔夹天线140的回波损耗S11参数和总效率(System Tot.Efficiency)的性能仿真曲线图。其中,仿真软件为三维电磁场仿真软件CST,仿真结果采用时域求解器计算得到。
具体地,图4B的横坐标表示频率,单位为GHz,纵坐标表示S11和总效率的幅度值,单位为dB。在工作频段范围2.4GHz~2.5GHz内,设置开口150后PIFA型笔夹天线140的总效率与未设置开口150的PIFA型笔夹天线140的峰值效率大致相同,但是设置开口150后PIFA型笔夹天线140的带宽(S11<-5dB)比未设置开口的PIFA型笔夹天线140的 带宽提升30%以上。从而表明设置开口150后PIFA型笔夹天线140的天线性能得到了提升。
综上所述,在触控笔10的主体设设置开口,能够提升笔夹天线140的性能。
此外,在一些实施例中,如图5所示,为了在使用时减少用户的手对天线140的影响,在天线140的外部包覆有一层绝缘材料,例如,采用金属包胶工艺在天线140外部包覆一层塑胶材料。
此外,可以理解,虽然上述附图中描述的天线140以笔夹的形式设置在笔筒的主体110的外部,但是,在其他实施例中,也可以设置其他形状的天线140,并不一定作为笔夹,例如,天线140的一部分或者全部仅仅设置在笔筒的外部,靠近笔头部120或者靠近笔夹部130。
在上述实施例中,触控笔10的主体110的金属管、塑胶管等可以是一体成型的,以提高触控笔10的结构强度。也可以是分段的,使用焊点工艺、螺钉、导电布或者导电胶等方法实现整体电连接,在此不做限制。
缝隙天线
如上所述,能用于触控笔10的天线还可以是设置在触控笔10的主体110的金属管上的缝隙天线。在本申请中,为了降低在使用时缝隙天线被手遮挡的可能性,将缝隙天线设置在靠近笔头部120或者笔尖部130处,并且为了尽量减小缝隙天线在纵向轴线上的长度,将缝隙天线设置为绕金属管的曲线。此外,在一些实施例中,金属管可以分为多段,使用点焊、螺钉、导电布或导电胶等方法实现整体电连接,金属管也可以一体成型。在一些实施例中,金属管最外层也可以设置塑胶管作为外壳,从而使得缝隙天线不影响产品的外观。
根据本申请的一些实施例,图6A至图6C示出了具有不同形状的缝隙天线140的触控笔10。其中,图6A为螺旋线型的缝隙天线,图6B为U型缝隙天线,图6C为Z字型的缝隙天线。
可以理解,缝隙天线140的形状并不限于图6A至图6C中的三种形状,可以是任意的曲线形状。例如,可以是S型,波浪形。
缝隙天线140可以选择通过耦合进行馈电,也可以直接馈电。对于在PCB上方的缝隙天线,可以直接采用弹片馈电;缝隙天线离PCB较远时,可以使用Cable或者LCP/MPI进行射频信号的传输,通过螺钉或点焊来进行天线与射频线的电连接。
此外,可以理解,为了使缝隙天线有效支撑蓝牙谐振模式,需要将缝隙天线的长度设置为接近蓝牙的1/2波长(约60mm左右)。一般触控笔的直径为8~9mm,长度为120mm以上。图7A和图7B分别示出了缝隙天线为直线形(电流区域为140-S)和U型(电流区域为140-U)时,触控笔10的主体110的金属管上的电流分布。如图7A所示,当缝隙天线为直线时,激励的是笔筒的纵向电流,由于笔筒的宽度(8~9mm)远小于蓝牙的λ/2波长,因此无法有效支撑蓝牙谐振模式。而当缝隙天线为U型时,激励的是笔筒上的横向电流,由于笔筒长度通常在120mm以上,大于蓝牙的λ/2波长(约60mm左右),可以获得较好的天线性能。故在本申请中,将缝隙天线在触控笔10的主体110的金属管上设置为曲线形状,总体长度为蓝牙波长的40%~60%,从而能够获得较好的蓝牙天线性能,并减小缝隙天线在纵向轴线方向上的长度,降低使用时缝隙天线被手握住的可能性。
下面结合图8对图6A所示的螺旋型缝隙天线和图6B所示的U型缝隙天线的性能做 具体说明。
图8示出了图6A所示的螺旋型缝隙天线和图6B所示的U型缝隙天线在直接馈电的情况下的回波损耗S11和总效率(Tot.Efficiency)的性能仿真曲线图。其中,仿真测试所用的软件为三维电磁场仿真软件CST,仿真结果采用时域求解器计算得到。
具体地,图8的横坐标表示频率,单位为GHz,纵坐标表示S11和总效率的幅度值,单位为dB。在工作频段范围2.4GHz~2.5GHz内,螺旋型缝隙天线和U型缝隙天线的总效率值比较接近。缝隙天线采用中间馈电时需要使用匹配器件调谐,采用边馈选择合适的馈电位置(馈点距离末端5~7mm左右)无需匹配器件即可得到较好的谐振。从S11可以看出,在螺旋天线的1/3位置处馈电,可以得到双谐振,相对U型天线具有更宽的带宽。
双天线
在使用触控笔10时,用户可以采用正常的书写姿势进行书写(用户握笔位置靠近笔尖部130,下文称为手写模式),也可以握住笔头部120进行素描(下文称为空鼠模式)等操作。在手写模式下,如果天线140被设置为靠近笔尖部130,则会有天线被手握而影响天线性能的问题,而在空鼠模式下,如果天线140被设置为靠近笔头部120,笔头部一般会被手握住,也会影响天线性能。
下面结合图10A和图10B,说明将U型缝隙天线140分别设置在靠近笔头部120和靠近笔尖部130的情况下,U型缝隙天线140在各书写模式下的性能。
图10A示出了将U型缝隙天线140设置在靠近笔头部120(下文称笔头天线)时,触控笔10在手写模式、空鼠模式以及自由空间模式下,U型缝隙天线140的回波损耗S11参数、总效率(Tot.Efficiency)以及辐射效率(Rad.Efficiency)的性能仿真曲线图。其中,手写模式是指用户在使用时手握的地方靠近触控笔10的笔尖部130,空鼠模式是指用户在使用时手握的地方靠近触控笔10的笔端部120,自由空间模式是指在手写笔未被使用的情况下进行的测试。仿真软件为三维电磁场软件CST,仿真结果采用时域求解器计算得到。
具体地,图10A的横坐标表示频率,单位为GHz,纵坐标表示S11、总效率以及辐射效率的幅度值,单位为dB。如图10A所示,在工作频段范围2.4GHz~2.5GHz内,三种模式下的S11的幅度基本相同,但是由于人体对电磁波的吸收效应,笔头天线空鼠模式下U型缝隙天线140的辐射效率比自由空间模式下天线140的辐射效率低了约10.5dB,笔头天线空鼠模式下U型缝隙天线140的总效率比笔头天线自由空间模式下天线140的总效率低了约10.1dB;笔头天线手写模式下U型缝隙天线140的辐射效率比笔头天线自由空间模式下天线140的辐射效率仅低了约3.5dB,笔头天线手写模式下U型缝隙天线140的总效率比笔头天线自由空间模式下天线140的总效率低了约3.5dB。可见,对于设置在靠近笔头部120的U型缝隙天线140,在笔头天线空鼠模式下天线的总效率和辐射效率降低,天线性能下降。
图10B示出了将U型缝隙天线140设置在靠近笔尖部130(下文称笔尖天线)时,触控笔10在手写模式、空鼠模式以及自由空间模式下,U型缝隙天线140的的回波损耗S11参数、总效率(Tot.Efficiency)以及辐射效率(Rad.Efficiency)的性能仿真曲线图。其中,仿真软件为三维电磁场仿真软件CST,仿真结果采用时域求解器计算得到。
具体地,图10B的横坐标表示频率,单位为GHz,纵坐标表示S11、总效率以及辐射效率的幅度值,单位为dB。如图10B所示,在工作频段范围2.4GHz~2.5GHz内,笔尖天 线手写模式下U型缝隙天线140的S11比笔尖天线自由空间模式下天线140的S11约高了8.5dB,笔尖天线手写模式下U型缝隙天线140的总效率比笔尖天线自由空间模式下天线140的总效率低了约9dB,笔尖天线手写模式下U型缝隙天线140的辐射效率比笔尖天线自由空间模式下天线140的辐射效率低了约8.5dB;笔尖天线空鼠模式下U型缝隙天线140的S11比笔尖天线自由空间模式下天线140的S11低了约6dB,笔尖天线空鼠模式下U型缝隙天线140的总效率比笔尖天线自由空间模式下天线140的总效率低了约1dB,笔尖天线空鼠模式下U型缝隙天线140的辐射效率比笔尖天线自由空间模式下天线140的辐射效率仅低了约1dB。可见,对于设置在靠近笔尖部130的U型缝隙天线140,在手写模式下,天线的总效率和辐射效率降低,天线性能下降。
为了解决该问题,在本申请的一些实施例中,在靠近触控笔10笔筒的笔头部120和笔尖部130出分别设置天线。两处的天线可以通过发射天线选择系统(TAS)实现切换。例如,当用户的手遮挡靠近笔尖部130的天线时,使得靠近笔头部120的天线处于工作状态,而当用户的手遮挡靠近笔头部120的天线时,使得靠近笔尖部130的天线处于工作状态。
在一些实施例中,可以在靠近触控笔10的笔头部120处设置上述实施例公开的笔夹天线,在靠近触控笔的笔尖部130处设置上述实施例公开的缝隙天线。
在一些实施例中,可以在靠近触控笔10的笔头部120处和靠近触控笔的笔尖部130处均设置缝隙天线,缝隙天线的形状也可以是各种曲线。
图9A至图9C分别示出了三种具有双缝隙天线的触控笔10。其中,图9A所示的触控笔10在靠近笔头部120处和靠近笔尖部130处,分别设置有U型缝隙天线140A和U型缝隙天线140B。图9B所示的触控笔10在靠近笔头部120处和靠近笔尖部130处,分别设置有螺旋型天线140C和螺旋型天线140D。
下面结合图10C说明图9A所示的双U型缝隙天线在各手握场景下的性能问题。
图10C示出了将U型缝隙天线140A(也称笔头天线)和140B(也称笔尖天线)分别设置在靠近笔头部120和笔尖部130时,触控笔10在手写模式、空鼠模式以及自由空间模式下,处于工作状态的U型缝隙天线的回波损耗S11参数、总效率(Tot.Efficiency)以及辐射效率(Rad.Efficiency)的性能仿真曲线图。其中,自由空间模式是指手写笔未被使用。仿真所用的软件为三维电磁场软件CST,仿真结果采用时域求解器计算得到。
具体地,图10C的横坐标表示频率,单位为GHz,纵坐标表示S11、总效率以及辐射效率的幅度值,单位为dB。如图10C所示,在工作频段范围2.4GHz~2.5GHz内,手写模式下U型缝隙天线140A的S11与自由空间模式下U型缝隙天线140A的S11幅度大致相同,手写模式下U型缝隙天线140A的总效率比自由空间模式下U型缝隙天线140A的总效率低了约3.5dB,手写模式下U型缝隙天线140A的辐射效率比自由空间模式下U型缝隙天线140A的辐射效率低了约3.5dB。空鼠模式下U型缝隙天线140B的S11比自由空间模式下U型缝隙天线140B的S11低了约7dB。空鼠模式下U型缝隙天线140B的辐射效率比自由空间模式下U型缝隙天线140B的辐射效率低了约1dB,空鼠模式下U型缝隙天线140B的总效率比自由空间模式下U型缝隙天线140B的总效率低了约1.5dB。
结合针对12A至12C的分析可以看出,在触控笔10上设置了双U型缝隙天线后,通过在手写模式下切换为靠近笔头部120的U型缝隙天线140A工作,在空鼠模式下切换为 靠近笔尖部130的U型缝隙天线140B工作,整个天线140的性能明显提高。
在附图中,可以以特定布置和/或顺序示出一些结构或方法特征。然而,应该理解,可能不需要这样的特定布置和/或排序。而是,在一些实施例中,这些特征可以以不同于说明性附图中所示的方式和/或顺序来布置。另外,在特定图中包括结构或方法特征并不意味着暗示在所有实施例中都需要这样的特征,并且在一些实施例中,可以不包括这些特征或者可以与其他特征组合。
需要说明的是,在本专利的示例和说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
虽然通过参照本申请的某些优选实施例,已经对本申请进行了图示和描述,但本领域的普通技术人员应该明白,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (18)

  1. 一种触控笔,其特征在于,包括:
    笔筒,所述笔筒沿纵向轴线延伸,并且所述笔筒包括主体、设置在所述主体一端的笔尖部和设置在所述主体另一端与所述笔尖部对应的笔头部;
    天线,所述天线设置在所述笔筒的主体上,并且所述天线的至少一部分位于所述笔筒的外部,并靠近所述笔尖部和/或所述笔头部。
  2. 根据权利要求1所述的触控笔,其特征在于,所述天线包括靠近所述笔头部的环形天线。
  3. 根据权利要求1所述的触控笔,其特征在于,所述天线包括靠近所述笔头部的平面倒置F天线。
  4. 根据权利要求2或3所述的触控笔,其特征在于,所述天线包括金属辐射体和馈电端子;
    所述金属辐射体位于所述笔筒的外部,所述馈电端子位于所述笔筒的内部,并且所述金属辐射体通过所述笔筒的主体上的通孔与所述馈电端子连接。
  5. 根据权利要求4所述的触控笔,其特征在于,所述笔筒的主体包括沿所述纵向轴线延伸的金属管,并且所述金属管上与所述金属辐射体相对的部分具有开口。
  6. 根据权利要求5所述的触控笔,其特征在于,所述开口处填充有塑胶或者玻璃纤维。
  7. 根据权利要求1至6中任一项所述的触控笔,其特征在于,所述天线包括靠近所述笔头部的金属笔夹。
  8. 根据权利要求7所述的触控笔,其特征在于,所述笔夹位于所述笔筒外部的部分包覆有塑胶层。
  9. 根据权利要求2或3所述的触控笔,其特征在于,所述笔筒的主体包括沿所述纵向轴线延伸的金属管,所述天线还包括设置在所述金属管上的缝隙天线。
  10. 根据权利要求1至9中任一项所述的触控笔,其特征在于,所述天线为蓝牙天线。
  11. 一种触控笔,其特征在于,包括:
    笔筒,所述笔筒包括主体、设置在所述主体一端的笔尖部和设置在所述主体另一端与所述笔尖部对应的笔头部,所述主体包括沿纵向轴线延伸的金属管;
    天线,所述天线包括设置在所述主体的金属管上的至少一个缝隙天线。
  12. 根据权利要求11所述的触控笔,其特征在于,所述缝隙天线靠近所述笔筒的笔尖部或者笔头部。
  13. 根据权利要求11所述的触控笔,其特征在于,所述天线包括靠近所述笔筒的笔尖部的第一缝隙天线和靠近所述笔头部的第二缝隙天线。
  14. 根据权利要求13所述的触控笔,其特征在于,所述第一缝隙天线和第二缝隙天线通过发射天线选择系统进行切换。
  15. 根据权利要求11至14中任一项所述的触控笔,其特征在于,所述天线为蓝牙天线,并且所述缝隙天线的缝隙长度为所述缝隙天线发射的蓝牙信号的波长的40%~60%。
  16. 根据权利要求15所述的触控笔,其特征在于,所述缝隙天线的形状为曲线。
  17. 根据权利要求16所述的触控笔,其特征在于,所述缝隙天线为U型、Z型、或 者螺旋线型。
  18. 根据权利要求11所述的触控笔,其特征在于,所述主体还包括沿纵向轴线延伸的塑胶管,所述塑胶管套在所述金属管的外部。
PCT/CN2020/139848 2020-01-02 2020-12-28 具有天线的触控笔 WO2021136128A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20909794.8A EP4075243A4 (en) 2020-01-02 2020-12-28 PIN WITH ANTENNA
US17/790,627 US20230045649A1 (en) 2020-01-02 2020-12-28 Stylus Pen with Antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010001940.8A CN113064498B (zh) 2020-01-02 2020-01-02 具有天线的触控笔
CN202010001940.8 2020-01-02

Publications (1)

Publication Number Publication Date
WO2021136128A1 true WO2021136128A1 (zh) 2021-07-08

Family

ID=76558173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139848 WO2021136128A1 (zh) 2020-01-02 2020-12-28 具有天线的触控笔

Country Status (4)

Country Link
US (1) US20230045649A1 (zh)
EP (1) EP4075243A4 (zh)
CN (1) CN113064498B (zh)
WO (1) WO2021136128A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150116291A1 (en) * 2013-10-25 2015-04-30 Livescribe Inc. Antenna assembly for an electronic pen
CN104750267A (zh) * 2013-12-31 2015-07-01 富泰华工业(深圳)有限公司 电子设备及其具有fm天线的手写笔
CN206411627U (zh) * 2015-07-06 2017-08-15 苹果公司 具有天线的计算机触控笔
CN209447134U (zh) * 2019-04-30 2019-09-27 东莞市乐鑫光电科技有限公司 一种双天线电容触控笔
CN209859110U (zh) * 2019-07-09 2019-12-27 未来创建(深圳)科技有限公司 一种带有笔挂天线的电磁笔

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6529139B1 (en) * 1997-11-17 2003-03-04 3M Innovative Properties Company Toy having enclosed antenna
US7391383B2 (en) * 2002-12-16 2008-06-24 Next-Rf, Inc. Chiral polarization ultrawideband slot antenna
JP2007513490A (ja) * 2003-10-16 2007-05-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コイル構成体
JP3924291B2 (ja) * 2004-01-05 2007-06-06 アルプス電気株式会社 スロットアンテナ
WO2008122831A1 (en) * 2007-04-10 2008-10-16 Nokia Corporation An antenna arrangement and antenna housing
CN201130359Y (zh) * 2007-12-11 2008-10-08 盛腾企业股份有限公司 具天线的触控笔结构
US8779999B2 (en) * 2011-09-30 2014-07-15 Google Inc. Antennas for computers with conductive chassis
US9312600B2 (en) * 2012-03-06 2016-04-12 Asustek Computer Inc. Stylus and antenna thereof
TWI603229B (zh) * 2012-03-06 2017-10-21 華碩電腦股份有限公司 觸控筆
US9268379B2 (en) * 2012-07-27 2016-02-23 Hewlett-Packard Development Company, L.P. Stylus and holder device associated therewith
CN203178932U (zh) * 2013-04-24 2013-09-04 刘建生 无线数码笔
US20170110787A1 (en) * 2015-10-14 2017-04-20 Apple Inc. Electronic Devices With Millimeter Wave Antennas And Metal Housings
WO2017214930A1 (zh) * 2016-06-16 2017-12-21 华为技术有限公司 可穿戴设备与移动终端之间通信的方法和装置
CN106325554B (zh) * 2016-08-18 2023-04-07 汉王科技股份有限公司 电容笔及制造方法、笔尖组件和触控装置
WO2020014020A1 (en) * 2018-07-13 2020-01-16 Fitbit, Inc. Integrated ecg electrode and antenna radiator
US20200280120A1 (en) * 2019-03-01 2020-09-03 Microsoft Technology Licensing, Llc High Frequency Antenna Integration in Electronic Devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150116291A1 (en) * 2013-10-25 2015-04-30 Livescribe Inc. Antenna assembly for an electronic pen
CN104750267A (zh) * 2013-12-31 2015-07-01 富泰华工业(深圳)有限公司 电子设备及其具有fm天线的手写笔
CN206411627U (zh) * 2015-07-06 2017-08-15 苹果公司 具有天线的计算机触控笔
CN209447134U (zh) * 2019-04-30 2019-09-27 东莞市乐鑫光电科技有限公司 一种双天线电容触控笔
CN209859110U (zh) * 2019-07-09 2019-12-27 未来创建(深圳)科技有限公司 一种带有笔挂天线的电磁笔

Also Published As

Publication number Publication date
CN113064498B (zh) 2023-08-22
EP4075243A1 (en) 2022-10-19
US20230045649A1 (en) 2023-02-09
EP4075243A4 (en) 2023-05-10
CN113064498A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
US6622031B1 (en) Antenna flip-up on removal of stylus for handheld device
TW432198B (en) The static capacitor type strain detector with the used same
US8723842B2 (en) Position pointing device and hand-held electronic appliance
EP3613099B1 (en) Instrument with conductive housing
US7656355B2 (en) Stylus arranged with antenna and portable wireless communication device having the same
US20160357223A1 (en) Case including metal for an electronic device and electronic device having the same
US20190265808A1 (en) Computer Stylus Having Integrated Antenna and Sensor Structures
US7646348B2 (en) Grounded self-complementary antenna for electronic device
CN204668449U (zh) 用于电子设备的天线及电子设备
TW201228102A (en) Antenna module
WO2021136128A1 (zh) 具有天线的触控笔
WO2021128552A1 (zh) 一种 mimo 天线装置及移动终端
CN110168807A (zh) 一种天线组件及终端
TW200913381A (en) Dual band antenna
JP4875176B2 (ja) アンテナ及びカプラ
JP5178748B2 (ja) コーナーの作られたアンテナ配置付きモデムカード
CN109687098B (zh) 一种天线和移动终端
US20220006172A1 (en) NFC Antenna and Electronic Apparatus
TWM311143U (en) Wideband antenna
WO2018068344A1 (zh) 一种天线装置及移动终端
US20020094779A1 (en) Wireless communication apparatus with built-in terminal hub
CN106997772A (zh) 移动硬盘
US8253687B2 (en) Slim mouse
TWI603229B (zh) 觸控筆
US8421687B2 (en) Wireless mouse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909794

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020909794

Country of ref document: EP

Effective date: 20220712

NENP Non-entry into the national phase

Ref country code: DE