WO2021136033A1 - 终端天线阵元间相位差的测试方法、修正方法及测试设备 - Google Patents

终端天线阵元间相位差的测试方法、修正方法及测试设备 Download PDF

Info

Publication number
WO2021136033A1
WO2021136033A1 PCT/CN2020/138590 CN2020138590W WO2021136033A1 WO 2021136033 A1 WO2021136033 A1 WO 2021136033A1 CN 2020138590 W CN2020138590 W CN 2020138590W WO 2021136033 A1 WO2021136033 A1 WO 2021136033A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
array element
polarized
phase
comparison
Prior art date
Application number
PCT/CN2020/138590
Other languages
English (en)
French (fr)
Inventor
丁金义
张春华
徐飞
赵彬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021136033A1 publication Critical patent/WO2021136033A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
    • G01R25/005Circuits for comparing several input signals and for indicating the result of this comparison, e.g. equal, different, greater, smaller, or for passing one of the input signals as output signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • G01R29/105Radiation diagrams of antennas using anechoic chambers; Chambers or open field sites used therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/104Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof of other parameters, e.g. DC offset, delay or propagation times

Definitions

  • This application relates to the field of communications, and in particular relates to a testing method, a correction method and a testing equipment for the phase difference between terminal antenna elements.
  • the 5G terminal millimeter wave signal realizes the beamforming of the millimeter wave signal through the phase difference of each antenna element in the AIP (antenna package) antenna array of the radio frequency front end, thereby directionally improving the gain transmission.
  • the phase difference of each channel of the AIP (antenna package) circuit level can be guaranteed through the simulation design and the automatic testing system of the chip.
  • the antenna is packaged into the antenna package module and the antenna package module is assembled into the terminal machine, the influence of the packaging process, the assembly error of the whole machine, the placement position, the whole machine case and other factors will increase the level of the whole machine.
  • the phase difference between the channels causes the signals sent by the millimeter wave antenna array to reach the far field for beamforming. The large errors between the elements cause deviations in the beam direction and gain and reduce the overall performance of the terminal.
  • the present application provides a test method for the phase difference between the terminal antenna array elements, which is used to solve the problem between the various channels of the terminal product.
  • the phase difference is used to solve the problem between the various channels of the terminal product.
  • this application provides a method for testing the phase difference between terminal antenna elements, including: placing the terminal product in an anechoic chamber, selecting one element of the antenna array in the terminal product as a reference element, and the rest
  • the multiple array elements are comparison array elements; start the terminal product to transmit the first signal and the second signal, the first signal is the A polarization signal transmitted by the reference array element, and the second The signal is the B-polarized signal emitted by the reference array element; with the aid of a test antenna and a vector network analyzer, the phase parameter ⁇ A1 corresponding to the A-polarized signal and the phase parameter ⁇ B1 corresponding to the B-polarized signal are obtained; Normalize the phase parameter ⁇ A1 and the phase parameter ⁇ B1 to make the phase parameter ⁇ A1 equal to the phase parameter ⁇ B1 ; keep the first signal unchanged, and change the first signal
  • the two signals are switched to the B-polarized signal of the comparison array element, and the B-polarized signal of the comparison array element is formed by sequentially switching and transmitting
  • the test method for the phase difference between the terminal antenna array elements provided in this application is aimed at the phase difference between different radio frequency channels in the terminal product.
  • the different antenna array elements in the internally packaged antenna array correspond to different
  • the phase difference between different array elements is detected corresponding to the phase difference between different radio frequency channels when the phase difference of different array elements is tested.
  • the principle of the whole test is to use the test antenna and the vector network to obtain two signals, namely the first signal and the second signal, and obtain the phase difference between different radio frequency channels in the terminal product through different experimental data.
  • the key to the whole test lies in the selection of the first signal and the second signal.
  • the specific test process is divided into two stages: the first stage is to select a reference array element for comparison and use the test antenna and vector
  • the network analyzer test obtains the two polarization signals of the reference array element as the first signal and the second signal.
  • the A polarization signal of the reference array element is the first signal and the B polarization of the reference array element.
  • the signal is the second signal, and then the two polarization signals of the reference array element are normalized to ensure that the phase parameters ⁇ A1 and ⁇ B1 of the two polarization signals remain the same; the second stage is to ensure that the reference array element A
  • the polarization signal is continuously output, the first signal is still the A polarization signal of the reference array element, and the second signal is formed by sequentially switching and transmitting the B polarization signal of the other comparison array elements. At this time, the second signal can be obtained.
  • the terminal product in order to obtain the phase difference value of the terminal device in the A-polarized radio frequency channel more comprehensively, the terminal product needs to be tested on the basis of the above-mentioned speed measurement.
  • the test method includes starting the terminal product to transmit a third signal And the fourth signal, the third signal is the A polarization signal emitted by the reference array element, and the fourth signal is the B polarization signal emitted by the reference array element; acquiring the A polarization
  • the phase parameter ⁇ A1 corresponding to the signal and the phase parameter ⁇ B1 corresponding to the B-polarized signal; the phase parameter ⁇ A1 and the phase parameter ⁇ B1 are normalized so that the phase parameter ⁇ A1 is equal to The phase parameter ⁇ B1 ; keep the fourth signal unchanged, switch the third signal to the A polarization signal of the comparison array element, and the A polarization signal of the comparison array element consists of multiple
  • the comparison array element is sequentially switched and formed; the phase parameter values ⁇ A2 , ⁇ A3
  • ⁇ AN corresponding to the A polarization signal emitted by the comparison array element are obtained; the difference between ⁇ A2 and ⁇ B1 , ⁇ A3 is calculated respectively The difference with ⁇ B1 ...the difference between ⁇ AN and ⁇ B1 to obtain the phase difference between the A-polarized signal of each comparison element and the B-polarized signal of the reference element.
  • the phase difference between the A-polarized signals between different antenna array elements in the terminal equipment can be obtained, that is, the phase difference between the A-polarized radio frequency channels corresponding to different antenna array elements can be obtained.
  • the transmission process of the first signal and the second signal are performed at the same time.
  • the phase parameter ⁇ A1 and phase parameter ⁇ B1 corresponding to the A polarization signal and the B polarization signal emitted by the reference array element it must be ensured that the two signals are performed at the same time to have the meaning of comparison. .
  • the third signal and the fourth signal it is also necessary to ensure that the occurrence process is carried out at the same time, so as to ensure that the normalization processing of the subsequent signals has a comparative significance.
  • the step of "respectively acquiring the phase parameter ⁇ A1 corresponding to the A-polarized signal transmitted by the reference array element and the phase parameter ⁇ B1 corresponding to the transmitted B-polarized signal” includes : Receive the A-polarized signal and B-polarized signal transmitted by the reference array element through the dual-polarization test antenna; connect the dual-polarization test antenna to the two ports of the vector network analyzer to enable the vector network analysis
  • the instrument acquires the A polarization signal and the B polarization signal emitted by the reference array element; according to the A polarization signal and the B polarization signal emitted by the reference array element, the vector network analyzer obtains the corresponding phase parameter ⁇ A1 and the phase parameter ⁇ B1 .
  • the test antenna is specially used to receive the A polarization signal and the B polarization signal sent by the reference array element.
  • the vector network analyzer is used for data analysis to obtain the corresponding phase parameters ⁇ A1 and ⁇ B1 .
  • the S parameter of the vector network analyzer as the phase parameter
  • the A polarization signal and the B polarization signal emitted by the reference array element are converted into corresponding phase parameters ⁇ A1 and the phase parameter ⁇ B1 .
  • the vector network analyzer in the embodiment needs to set the S parameter to obtain the required data. Since this test method needs to obtain the phase parameter value corresponding to the two-way polarization signal, the corresponding S parameter needs to be set as the phase parameter. This facilitates data acquisition.
  • the step of “obtaining the phase parameter values ⁇ B2 , ⁇ B3 ... ⁇ BN corresponding to the B polarization signal emitted by the comparison array element” includes: controlling the reference The array element continuously emits the A polarization signal, and simultaneously controls a plurality of the comparison array elements to sequentially switch and emit the B polarization signal;
  • the phase parameter values corresponding to the B-polarized signals that are sequentially switched and transmitted by the plurality of the comparison array elements are obtained by a vector network analyzer, and are ⁇ B2 , ⁇ B3 ... ⁇ BN .
  • the purpose is to obtain the first signal and the second signal of the second stage, and the second stage
  • the first signal must be consistent with the first signal of the first stage, so it is necessary to control the reference array element to continuously transmit the A polarization signal, and the second signal of the second stage becomes the sequence of the comparison array element to switch and transmit.
  • B-polarized signal so correspondingly, it is necessary to simultaneously control a plurality of the comparison array elements to sequentially switch and transmit B-polarized signals.
  • the local oscillator source of the radio frequency circuit in the terminal product is always in the transmitting state, In order to make the reference phase of the reference array element and the comparison array element the same. If the local oscillator source of the radio frequency circuit in the terminal product is restarted, the initial phase will change, and the normalization method is meaningless. Therefore, in order to ensure that the reference phase of the reference element and the comparison element are the same, you must ensure that the In the process of comparing the array elements in order to switch the transmitted signal, the local oscillator source of the radio frequency circuit in the terminal product is always in the transmitting state.
  • the reference array element continues to emit A polarization signals.
  • the emission time of the polarization signal is the total time T, and the switching period of the comparison array element sequentially switching and transmitting the B polarization signal is time t.
  • the reference array element continues to emit the A polarization signal;
  • the total time T includes N-1 segments of the time t, and the N-1 comparison array elements are switched in order to transmit B-polarized signals. Since the reference array element and other comparison array elements emit signals at the same time, the total transmission time of the two is the same as T.
  • the number is N-1. In order to ensure the accuracy of detection, each comparison The time of the array element is T divided by N-1, that is, time t.
  • this application provides a method for correcting the phase difference between radio frequency channels in a terminal product.
  • the specific steps include: obtaining the phase difference between the terminal antenna array elements according to any of the aforementioned methods for testing the phase difference between the terminal antenna array elements The phase difference value; the phase difference value between the terminal antenna elements is imported into the parameter register of the terminal product; the initial phase of each radio frequency channel in the terminal product is corrected according to the phase difference value between the terminal antenna elements.
  • the phase difference between the terminal antenna elements can be obtained, and the data can be imported into the parameter register of the terminal product for analysis and processing, thereby adjusting the phase shifter in the control circuit In order to realize the correction of the initial phase of each radio frequency channel in the terminal product.
  • the present application also provides a testing equipment for the phase difference between the terminal antenna array elements, which specifically includes: an electric wave anechoic chamber, including a shielding room and a wave-absorbing material, to provide a test environment; a test turntable, to place the tested object
  • a testing equipment for the phase difference between the terminal antenna array elements, which specifically includes: an electric wave anechoic chamber, including a shielding room and a wave-absorbing material, to provide a test environment; a test turntable, to place the tested object
  • a terminal product the terminal product includes a reference array element and a plurality of comparison array elements, the terminal product transmits a first signal and a second signal; a test antenna is used to receive the first signal and the second signal Two-channel signal; vector signal generator, used to control the transmission of antenna element signals in the terminal product; vector network analyzer, including two receivers, the two receivers are independent of each other, and are used to analyze the test antennas separately The received signal is used to obtain the phase difference between the reference element and the comparison element.
  • the test antenna is an H/V dual-polarization test antenna, and the receiving ports of the two receivers are respectively connected to the H-polarized channel and the V-polarized channel.
  • the purpose of using the H/V dual-polarization test antenna is to receive the H-polarized signal and the V-polarized signal emitted by the antenna element in the terminal product.
  • the advantage of letting the antenna element in the terminal product transmit H-polarized signals and V-polarized signals is that H/V polarized signals are easy to control and transmit, and it is convenient for normalization processing and phase parameter comparison.
  • the method for testing the phase difference between the terminal antenna array elements obtaineds the phase difference between the antenna array elements by normalizing and analyzing the signals in the two polarization directions. This operation mode does not require disassembly of the terminal product. It can realize the measurement of the phase difference between the millimeter wave antenna array elements caused by the assembly, placement position, and the housing of the whole machine, which diversifies the measurement methods between the terminal antenna array elements.
  • FIG. 1 is a flowchart of a method for testing the phase difference between terminal antenna elements in an embodiment of the present application
  • FIG. 2 is a scene diagram of a method for testing the phase difference between terminal antenna elements in an embodiment of the present application
  • FIG. 3 is a schematic diagram of the distribution of terminal antenna elements in an embodiment of the present application.
  • Fig. 4 is a diagram of phase parameters of different array elements in an embodiment of the present application.
  • Fig. 5 is a phase parameter diagram of the first signal and the second signal in an embodiment of the present application.
  • FIG. 6 is a flowchart of a method for testing the phase difference between terminal antenna elements in another embodiment of the present application.
  • FIG. 7 is a diagram of phase parameters of different array elements in another embodiment of the present application.
  • Fig. 8 is a phase parameter diagram of the third signal and the fourth signal in another embodiment of the present application.
  • the method for testing the phase difference between the terminal antenna elements provided in this application should be used in the phase detection of the radio frequency channel between the antenna elements in the terminal product.
  • the traditional radio frequency channel detection method it is usually through chip-level design simulation And UDP (User Datagram Protocol User Datagram Protocol) test version realizes measurement by externally irrigating local oscillator and intermediate frequency signals.
  • UDP User Datagram Protocol User Datagram Protocol
  • this application provides a test equipment for the phase difference between the terminal antenna elements, as shown in Figure 2, which specifically includes: an anechoic chamber 10, including a shielding chamber and absorbing materials, to provide a test environment; a test turntable 60. Used to place the terminal product 30 to be tested.
  • the terminal product 30 includes a reference array element and multiple comparison array elements.
  • the terminal product 30 can transmit the first signal and the second signal; the test antenna 40 is used to receive the first signal.
  • a signal and the second signal used to control the transmission of antenna element signals in the terminal product 30; a vector network analyzer 50, including two receivers, which are independent of each other, It is used to analyze the signals received by the test antenna 40 to obtain the phase difference between the reference element and the comparison element.
  • the vector signal generator 20 and the vector network The analyzers 50 are all installed outside the anechoic chamber 10.
  • the test antenna 40 is an H/V dual-polarized test antenna, and the receiving ports of the two receivers are respectively connected to the H-polarized channel and the V-polarized channel.
  • the purpose of using the H/V dual-polarization test antenna is to receive the H-polarized signal and the V-polarized signal emitted by the antenna element in the terminal product.
  • the advantage of letting the antenna element in the terminal product transmit H-polarized signals and V-polarized signals is that H/V polarized signals are easy to control and transmit, and it is convenient for normalization processing and phase parameter comparison.
  • this application also provides a method for testing the phase difference between terminal antenna elements.
  • the test method is mainly divided into two stages, among which steps S110 to S140 are the first stage of the test method.
  • Steps S210 to S230 are the second stage of the test method.
  • the difference between the first stage and the second stage lies in the selection of test data, that is, the data corresponding to the first signal and the second signal are different.
  • steps S110 to S140 are the first stage of the test method.
  • Steps S210 to S230 are the second stage of the test method.
  • the difference between the first stage and the second stage lies in the selection of test data, that is, the data corresponding to the first signal and the second signal are different.
  • test data that is, the data corresponding to the first signal and the second signal are different.
  • the terminal product 30 is placed in the anechoic chamber 10, and one element of the antenna array in the terminal product 10 is selected as a reference element, and the remaining multiple elements are comparison elements.
  • the test is mainly carried out around the terminal product 30.
  • the test is mainly carried out in the anechoic chamber 10, and the terminal product 30 is set in On the test turntable 60 in the anechoic chamber 10, there is also a test antenna 40 placed in the anechoic chamber 10, and a vector signal generator 20 for controlling the signal emitted by the terminal product 30 is set outside the anechoic chamber 10 for receiving and testing
  • the vector network analyzer 50 to which the antenna 40 is connected is also provided outside the anechoic chamber 10.
  • the terminal product 30 and the vector signal generator 20, the receiving test antenna 40 and the vector network analyzer 50 are connected indoors and outdoors through optical fiber waveguides located on the wall of the anechoic chamber 10.
  • the advantage of this design is that the electromagnetic radiation emitted by the interface between the vector network analyzer 50 and the vector signal generator 20 will not cause changes to the electromagnetic environment in the anechoic chamber 10.
  • the array antenna of the tested terminal product 30 includes multiple antenna elements: Patch1, Patch2, Patch3...PatchN.
  • Patch1, Patch2, Patch3, Patch4 are taken as examples here.
  • the problem to be solved by this solution is how to detect the phase difference between the corresponding RF channels of the antenna array elements Patch1, Patch2, Patch3, and Patch4.
  • Yuan 303 compare the array element 304.
  • S120 uses the vector signal generator 20 to control the terminal product 30 to transmit the first signal and the second signal.
  • the first signal is the A polarization signal emitted by the reference array element 301
  • the second signal is the B signal emitted by the reference array element 301. Polarized signal.
  • the vector signal generator 20 is used to control the reference array element 301 to emit the A polarization signal and the B polarization signal, and the A polarization signal emitted by the reference array element 301 is the terminal product 30
  • the first signal transmitted, the B polarization signal is the second signal transmitted by the terminal product 30.
  • the test method needs to detect is the phase difference of the radio frequency channels corresponding to the H-way and V-way polarizations of different antenna elements, so the A polarization signal and the B polarization signal here correspond to the H polarization respectively.
  • Signal and V polarization signal That is, the vector signal generator 20 is used to make the reference array element 301 emit H-polarized signals and V-polarized signals at the same time.
  • the A-polarized signal may be a V-polarized signal
  • the B-polarized signal may be a H-polarized signal.
  • step S110 corresponds to the H polarization signal
  • step S230 the result will be the V polarization signal between the antenna elements The phase difference. If you want to obtain the phase difference of the H-polarized signal, you only need to replace the A-polarized signal with the V-polarized signal, and the B-polarized signal with the H-polarized signal.
  • the first signal and the second signal are signals in the sense of a tag, or can be understood as acquisition signals, that is, the H pole emitted by the reference array element 301 in actual operation.
  • the polarization signal or the V polarization signal are real signals, which can be detected by the test antenna 40.
  • the definition of the first signal and the second signal is a label for the signal acquisition process, for the follow-up To detect the needs of data processing, it is necessary to set up tags for collecting signals, the first signal and the second signal. The first signal and the second signal will change with the change of the test process, and the corresponding value will change.
  • the second signal is the B polarization signal (V polarization signal) emitted by the reference array element 301.
  • the first signal at this time still remains the A polarization signal (H polarization signal) emitted by the reference array element 301, and the second signal is adjusted to V polarization for 3 different time periods signal.
  • the H-polarized signal and the V-polarized signal transmitted by the reference array element 301 corresponding to the first signal and the second signal in the process of step S120 are transmitted at the same time.
  • the purpose is, if the phase parameter ⁇ H1 and phase parameter ⁇ V1 corresponding to the H-polarized signal and the V-polarized signal emitted by the reference array element can be normalized, it must be ensured that the two signals are performed at the same time in order to have a comparison. Meaning.
  • S130 uses the test antenna 40 and the vector network analyzer 50 to obtain the phase parameter ⁇ A1 corresponding to the A-polarized signal and the phase parameter ⁇ B1 corresponding to the B-polarized signal.
  • step S130 the process of obtaining the phase parameter ⁇ H1 and the phase parameter ⁇ V1 in step S130 includes:
  • S131 receives the A-polarized signal and B-polarized signal transmitted by the reference array element through the dual-polarized test antenna;
  • S132 connects the dual-polarized test antenna to the two ports of the vector network analyzer to make the vector network
  • the analyzer acquires the A-polarized signal and the B-polarized signal emitted by the reference array element;
  • S133 according to the A-polarized signal and the B-polarized signal emitted by the reference array element, the vector network analyzer obtains the corresponding phase Parameter ⁇ A1 and phase parameter ⁇ B1 .
  • H polarization signal is used instead of A polarization signal
  • V polarization signal is used instead of B polarization signal.
  • the test antenna 40 in the embodiment is an H/V dual-polarized antenna.
  • the H/V dual-polarized antenna is designed to be able to receive the H-pole transmitted by the terminal product through the reference array element 301.
  • Polarization signal and V polarization signal are used instead of the test antenna 40.
  • the test antenna 40 is docked with the vector network analyzer 50, and can transmit the received H-polarized signal and V-polarized signal to the vector network analyzer 50 to facilitate its phase analysis.
  • the S parameter of the vector network analyzer 50 needs to be set as the phase parameter, so that when the test antenna 40 polarizes the H polarization emitted by the reference array element 301 When the signal and the V polarization signal are transmitted to the vector network analyzer 50, the vector network analyzer 50 will obtain the corresponding phase parameter ⁇ H1 and the phase parameter ⁇ V1 according to the already set S parameters.
  • the A-polarized signal and the B-polarized signal emitted by the reference array element 301 correspond to the H-polarized signal and the V-polarized signal, respectively.
  • the H-polarized signal and the V-polarized signal are obtained through the test antenna 40 and then Transmit to the vector network analyzer 50.
  • the H-polarized signal and the V-polarized signal are processed by the vector network analyzer 50 to obtain corresponding phase parameters, that is, the phase parameter ⁇ H1 corresponding to the H-polarized signal and the phase parameter ⁇ V1 corresponding to the V-polarized signal.
  • phase parameter ⁇ A1 and the phase parameter ⁇ B1 are normalized to make the phase parameter ⁇ A1 equal to the phase parameter ⁇ B1 .
  • the phase parameter ⁇ A1 and the phase parameter ⁇ B1 are the phase parameter ⁇ H1 and the phase parameter ⁇ V1 .
  • the phase parameter ⁇ H1 and the phase parameter ⁇ V1 are equal, and the normalization processing of the phase parameter ⁇ H1 and the phase parameter ⁇ V1 is realized.
  • the above steps are the first stage of the method for testing the phase difference between the terminal antenna elements in this embodiment.
  • the H-polarized signal and the V-polarized signal transmitted by the reference array element 301 are normalized.
  • the B-polarized signal of the comparison array element is determined by a plurality of the comparison array elements. Sequence switching launch formation.
  • the vector signal generator 20 needs to be adjusted.
  • the vector signal generator 20 In the first stage, the vector signal generator 20 only controls the reference array element 301 to emit H-polarized signals and V-polarized signals.
  • the vector signal generator 20 controls the reference array element 301 to keep transmitting H-polarized signals. Change, the H polarization signal is the first signal, and then control the comparison array element to transmit the V polarization signal.
  • the V polarization signal of the comparison array element is formed by switching and transmitting multiple comparison array elements in sequence, that is, comparison The array element 302, the comparison array element 303, and the comparison array element 304 sequentially switch to transmit V-polarized signals, and these three V-polarized signals in different time periods form the second signal.
  • the fundamental of the radio frequency circuit in the terminal product is The vibration source is always in the transmitting state, so that the reference phase of the reference array element 301 and the comparison array element (302/303/304) are the same.
  • the initial phase of the equipment is the same. If the local oscillator source of the radio frequency circuit in the terminal product 30 is restarted, the initial phase will change. Therefore, in order to ensure that the reference phases of the reference array element and the comparison array element are the same, it is necessary to ensure that the local oscillator source of the radio frequency circuit in the terminal product is always In the launch state.
  • step S210 in order to more clearly describe in step S210 that "the reference array element continuously emits the A polarization signal, and the comparison array element sequentially switches and emits the B polarization signal", a specific operation process is described below:
  • the first signal is selected based on the H-polarized signal emitted by the reference array element 301, and the emission time is the total time T.
  • the second signal consists of three segments, and the time t of each segment is T/3.
  • the first signal is the H-polarized signal emitted by the reference array element 301
  • the second signal is the V-polarized signal emitted by the comparison array element 302
  • the first signal is the H-polarized signal emitted by the reference array element 301
  • One signal is still the H-polarized signal emitted by the reference array element 301, and the second signal is switched to compare the V-polarized signal emitted by the array element 303
  • the first signal is still the reference array element 301
  • the second signal is switched and compared to the V-polarized signal transmitted by the array element 304.
  • the first signal thus obtained is the H-polarized signal of the reference array element 301 that remains unchanged, and the second signal is the V-polarized signal transmitted by the comparison element 302, the comparison element 303, and the comparison element 304.
  • the combined signal is the H-polarized signal of the reference array element 301 that remains unchanged, and the second signal is the V-polarized signal transmitted by the comparison element 302, the comparison element 303, and the comparison
  • phase parameter values ⁇ V2 , ⁇ V3 and ⁇ V4 corresponding to the V-polarized signals in three different time periods in the second signal can be obtained.
  • S230 separately calculates the difference between ⁇ B2 and ⁇ A1 , the difference between ⁇ B3 and ⁇ A1 ... the difference between ⁇ BN and ⁇ A1 , to obtain the polarization signal of each comparison element B and the reference element respectively The phase difference between the A-polarized signals.
  • the difference between ⁇ V2 and ⁇ H1 , the difference between ⁇ V3 and ⁇ H1 , the difference between ⁇ V4 and ⁇ H1 , and the difference between ⁇ V4 and ⁇ H1 are calculated by the vector network analyzer 50 to obtain the V polarization signal of each comparison element and the reference element respectively The phase difference between the 301 H-polarized signals.
  • the H-polarized signal performed by the reference array element 301 corresponds to the first signal, and the V-polarized signal is used as the second signal.
  • the phase parameter ⁇ H1 and the phase parameter ⁇ V1 of the two signals obtained in the first stage.
  • the control of the vector signal generator 20 on the polarization signal emission of the reference array element 301H remains unchanged, and remains as the first signal.
  • the phase parameter value of the first signal remains the same as that of the first stage. , Which is both the phase parameter ⁇ H1 and the phase parameter ⁇ V1 .
  • the second signal of the second stage changes.
  • the second signal is composed of the comparison array element sequentially switching and transmitting the V-polarized signal.
  • the comparison array element 302, the comparison array element 303, and the comparison array element 304 are sequentially switched and transmitted.
  • V-polarized signal These three V-polarized signals in different time periods form the second signal, and the corresponding phase parameters are ⁇ V2 , ⁇ V3 and ⁇ V4 respectively .
  • phase parameter ⁇ V2 minus ⁇ H1 , ⁇ V3 minus ⁇ H1 , ⁇ V4 minus ⁇ H1 is the phase parameter ⁇ V2 minus ⁇ V1 , ⁇ V3 minus ⁇ V1 , ⁇ V4 minus ⁇ V1 Difference (through the first stage of normalization, the phase parameter ⁇ H1 and the phase parameter ⁇ V1 ).
  • the phase difference between the V-polarized signal of the comparison array element (302/303/304) and the V-polarized signal of the reference array element 301 can be obtained, that is, the difference between the different radio frequency channels of the antenna element in the terminal product can be obtained.
  • the phase difference is, the difference between the different radio frequency channels of the antenna element in the terminal product can be obtained.
  • the phase difference between the V-polarized radio frequency channels of the terminal product antenna element is acquired by the above detection method.
  • Further testing is needed. As shown in Figure 6, the specific steps include:
  • the terminal product is controlled to transmit the third signal and the fourth signal, the third signal is the A polarization signal transmitted by the reference array element, and the fourth signal is the The B-polarized signal emitted by the reference array element.
  • the detection method in this embodiment is performed after the completion of the first and second phases.
  • the first and second phases are for the phase between the V-polarized radio frequency channels of the terminal product antenna element.
  • the method of this embodiment is divided into the third stage and the fourth stage.
  • the third stage includes steps S310, S320, and S330.
  • the process is mainly for the H polarization signal and V polarization of the reference array element 301
  • the phase parameter of the signal is normalized, that is, the phase parameter ⁇ H1 is equal to the phase parameter ⁇ V1 .
  • step S310 since it undertakes the first stage and the second stage, in order to ensure the unity of the detection data and facilitate subsequent data analysis of the phase difference of the radio frequency channel, there is no need to reselect the reference array element before S310.
  • the reference and comparison elements of the operations in the third and fourth phases still follow the selection of S110 in the first phase, with Patch1 as the reference element 301, and Patch1, Patch2, Patch3, and Patch4 as the comparison matrix. yuan.
  • the operation of step S310 is the same as that of step S120, in which the reference array element 301 in the terminal product 30 is controlled by the quantity signal generator 20 to transmit the A polarization signal and the B polarization signal.
  • the A pole here The polarization signal and the B polarization signal can be respectively selected as the H polarization signal or the V polarization signal.
  • the third and fourth stages The purpose of the stage operation is to test the phase difference between the H-polarized signals of the antenna array elements, so the A-polarized signal at this time is the H-polarized signal, and the B-polarized signal is the V-polarized signal. That is, the third signal is the H-polarized signal emitted by the reference array element 301, and the fourth signal is the V-polarized signal emitted by the reference array element 301.
  • the H-polarized signal and the V-polarized signal transmitted by the reference array element 301 corresponding to the third signal and the fourth signal in the process of step S310 are transmitted at the same time.
  • the purpose is, if the phase parameter ⁇ H1 and phase parameter ⁇ V1 corresponding to the H-polarized signal and the V-polarized signal emitted by the reference array element can be normalized, it must be ensured that the two signals are performed at the same time in order to have a comparison. Meaning.
  • This operation has the same design considerations as step 120 in the first stage.
  • S320 obtains the phase parameter ⁇ A1 corresponding to the A-polarized signal and the phase parameter ⁇ B1 corresponding to the B-polarized signal by using the test antenna 40 and the vector network analyzer 50.
  • the step S320 of the third stage is the same as the step S130 of the first stage, both of which are to obtain the phase parameters ⁇ H1 and the V polarization signal (B polarization signal) corresponding to the H polarization signal (A polarization signal) emitted by the reference array element 301. Signal) corresponds to the phase parameter ⁇ V1 .
  • the purpose of obtaining the phase parameter ⁇ H1 and the phase parameter ⁇ V1 is still for the subsequent normalization process and provide theoretical support for the phase difference comparison in the fourth stage.
  • S330 performs normalization processing on the phase parameter ⁇ A1 and the phase parameter ⁇ B1 to make the phase parameter ⁇ A1 equal to the phase parameter ⁇ B1 .
  • Step S330 is the last step of the third stage. It is a problem of data processing. Specifically, by adjusting XX to ensure that the phase parameter ⁇ H1 and the phase parameter ⁇ V1 are equal, the normalization of the phase parameter ⁇ H1 and the phase parameter ⁇ V1 is realized. deal with.
  • the A polarization signal of the comparison array element is determined by a plurality of the comparison array elements. Sequence switching launch formation.
  • the step S410 of the fourth stage is different from the step S210 of the second stage.
  • the first signal is kept unchanged.
  • the H-polarized signal of the reference array element 301 is kept continuously transmitted as the first signal.
  • One signal replaces the second signal.
  • the fourth signal is kept unchanged, that is, the V polarization signal of the reference array element 301 is kept continuously transmitted as the fourth signal, and the third signal is replaced.
  • the test purpose changes and becomes the phase difference of the H-polarized signal (A-polarized signal) between the antenna elements. Therefore, what remains unchanged at this time is the fourth signal, that is, the V-polarized signal (B-polarized signal) of the reference array element 301, and the converted H-polarized signal (A-polarized signal).
  • step S410 itself will be explained after the above-mentioned difference is explained: in the fourth stage, the vector signal generator 20 is adjusted. In the third stage, the vector signal generator 20 only controls the reference array element 301 to emit H-polarized signals and V-polarized signals. In the fourth stage, the vector signal generator 20 controls the reference array element 301 to keep transmitting V-polarized signals. Change the V polarization signal to the fourth signal, and then control the comparison array element to emit H polarization signal.
  • the H polarization signal of the comparison array element is formed by switching and transmitting multiple comparison array elements in sequence, that is, comparison The array element 302, the comparison array element 303, and the comparison array element 304 sequentially switch to emit H-polarized signals, and these three H-polarized signals in different time periods form the third signal.
  • the reference array element continuously emits H-polarized signals and compares the array elements (in the process of switching the transmitted signals in sequence, the local oscillator source of the radio frequency circuit in the terminal product is always in the transmitting state, so that the reference array The reference phase of the element and the comparison element are the same.
  • the initial phase of the equipment is the same. If the local oscillator source of the radio frequency circuit in the terminal product is restarted , Will cause the initial phase to change, the normalized processing method is meaningless.
  • step S410 in order to more clearly describe in step S410 that "the reference array element continues to emit B-polarized signals, and the comparison array element sequentially switches and emits A-polarized signals", a specific operation process is described below:
  • the fourth signal is the V polarization signal transmitted by the reference array element 301, and the transmission time is the total time T.
  • the third signal is composed of three H-polarized signals emitted by the comparison array element, and the time t of each signal is T/3.
  • the fourth signal is the V-polarized signal emitted by the reference array element 301, and the third signal is the H-polarized signal emitted by the comparison array element 302; in the t-2t process, the first The four signals are still the V-polarized signals emitted by the reference array element 301, and the third signal is switched to compare the H-polarized signals emitted by the array element 303; in the 2t-T process, the fourth signal is still the reference array element 301 For the transmitted V-polarized signal, the third signal is switched and compared to the H-polarized signal transmitted by the array element 304.
  • the fourth signal thus obtained is the V-polarized signal of the reference array element 301 that remains unchanged, and the third signal is the H-polarized signal transmitted by the comparison element 302, the comparison element 303, and the comparison element 304.
  • the combined signal in the 0-t process, the fourth signal is the V-polarized signal emitted by the reference array element 301, and the third signal is the H-polarized signal emitted by
  • step S420 of the fourth stage is the same as the step S220 of the second stage, and both use the test antenna 40 and the vector network analyzer 50 to obtain the phase parameter value.
  • step S420 is to obtain the phase parameter values ⁇ A2 , ⁇ A3 ?? ⁇ AN corresponding to the A-polarized signals in the third signal at three different time periods. Specifically, in this embodiment, it is to obtain three different time periods.
  • the phase parameter values ⁇ H2 , ⁇ H3 and ⁇ H4 corresponding to the H-polarized signal of the segment.
  • S430 calculates the difference between ⁇ A2 and ⁇ B1 , the difference between ⁇ A3 and ⁇ B1 ... the difference between ⁇ AN and ⁇ B1 to obtain the polarization signal of each comparison array element A and the reference array element respectively The phase difference between the B-polarized signals.
  • the last step S430 of the fourth stage is also the process of difference comparison.
  • the vector network analyzer 50 calculates the difference between ⁇ H2 and ⁇ V1 , the difference between ⁇ H3 and ⁇ V1 , and the difference between ⁇ H4 and ⁇ V1 to obtain the respective comparison elements H
  • the phase parameter ⁇ H1 and the phase parameter ⁇ V1 are the same, when the difference between ⁇ H2 and ⁇ V1 is calculated .
  • the phase difference between the H-polarized signals between the antenna elements in the terminal product can be obtained, that is, the phase difference of the corresponding radio frequency channel.
  • the phase difference between the V-polarized signals between the antenna elements in the terminal product can be obtained, and the combination can be used to completely obtain the different polarizations between the antenna elements in the terminal product.
  • the phase difference of the RF channel is not limited to the first and second stages.
  • This application also provides a method for correcting the phase difference between radio frequency channels in a terminal product.
  • the specific steps include: obtaining the phase difference value between the terminal antenna array elements according to the method for testing the phase difference between the terminal antenna array elements in the above embodiment ; Import the phase difference between the terminal antenna elements into the parameter register of the terminal product; correct the initial phase of each radio frequency channel in the terminal product according to the phase difference between the terminal antenna elements.
  • the phase difference between the terminal antenna elements can be obtained, and the data can be imported into the parameter register of the terminal product for analysis and processing, thereby adjusting the phase shifter in the control circuit In order to realize the correction of the initial phase of each radio frequency channel in the terminal product.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请公开一种终端天线阵元间相位差的测试方法,步骤如下:选取基准阵元和比较阵元,先让基准阵元发射第一路信号和第二路信号,获取对应相位参数φ A1和相位参数φ B1并做归一化处理;让基准阵元持续输出第一路信号,获取对应相位参数φ A1,第二路信号由比较阵元按序切换发射,获取对应相位参数φ B2、φ B3…φ BN,计算φ B2与φ A1的差值、φ B3与φ A1的差值…φ BN与φ A1的差值,得到比较阵元B极化信号与基准阵元的A极化信号之间的相位差。本申请终端天线阵元间相位差的测试方法通过归一化处理实现终端产品中天线阵元的相位差测试,避免对终端产品的拆卸。本申请还提供一种终端天线阵元间相位差的修正方法和测试设备。

Description

终端天线阵元间相位差的测试方法、修正方法及测试设备
本申请要求于2019年12月30日提交中国专利局、申请号为201911400376.0,申请名称为“终端天线阵元间相位差的测试方法、修正方法及测试设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及终端天线阵元间相位差的测试方法、修正方法及测试设备。
背景技术
5G终端毫米波信号是通过射频前端AIP(天线封装)天线阵列中每路天线阵元的相位差来实现毫米波信号的波束成型,从而定向提高增益传输。当毫米波射频前端在芯片级设计和ATE筛片时,可通过仿真设计及芯片自动测试系统检测筛选保障AIP(天线封装)电路级各通道相位差。但当将天线封装进天线封装模组以及将天线封装模组装配到终端整机中,由于封装工艺、整机装配误差、放置位置、整机壳件等因素的影响会加大整机级各通道间的相位差,进而使得毫米波天线阵发送的信号在到达远场进行波束成型时,各阵元间存在的较大误差致使波束的指向和增益出现偏差并造成终端整体性能的降低。
发明内容
为了克服现有技术中终端天线阵元间相位差的测试方法所存在的缺陷,本申请提供一种终端天线阵元间相位差的测试方法,用以解决终端产品整机级的各通道之间的相位差。
第一方面,本申请提供的一种终端天线阵元间相位差的测试方法,包括:将终端产品放置在电波暗室中,选取所述终端产品中天线阵列的一个阵元为基准阵元,其余的多个阵元为比较阵元;启动所述终端产品发射第一路信号和第二路信号,所述第一路信号为所述基准阵元发射的A极化信号,所述第二路信号为所述基准阵元发射的B极化信号;借助测试天线和矢量网络分析仪,获取所述A极化信号对应的相位参数φ A1和所述B极化信号所对应相位参数φ B1;将所述相位参数φ A1和所述相位参数φ B1进行归一化处理,以使所述相位参数φ A1等于所述相位参数φ B1;保持所述第一路信号不变,将所述第二路信号切换为所述比较阵元的B极化信号,所述比较阵元的B极化信号由多个所述比较阵元按序切换发射形成;获取所述比较阵元发射的B极化信号对应相位参数值φ B2、φ B3……φ BN;计算φ B2与φ A1的差值、φ B3与φ A1的差值……φ BN与φ A1的差值,以分别得到各所述比较阵元B极化信号与所述基准阵元的A极化信号之间的相位差。本申请所提供的终端天线阵元间相位差的测试方法针对的是终端产品中不同射频通道之间的相位差,对于终端产品而言,其内部封装的天线阵列中不同天线阵元对应不同的射频通道,测试出不同阵元在工作时的相位差就对应检测出不同射频通道之间的相位差。整个测试的原理是利用测试天线和矢量网络获取两路信号,即第一路信号和第二路信号,通过不同的实验数据得出终端产品中不同射频通道之间的相位差。整个测试的关键在于对第一路信号和第二路信号的选取,具体的测试过程 分为两个阶段:第一个阶段,选取处一个用于比对的基准阵元,利用测试天线和矢量网络分析仪测试获取该基准阵元的两路极化信号作为第一路信号和第二路信号,具体的,基准阵元的A极化信号为第一路信号和基准阵元的B极化信号为第二路信号,接着对基准阵元两路极化信号进行归一化处理,确保两路极化信号的相位参数φ A1和φ B1保持一致;第二阶段,确保基准阵元的A极化信号持续输出,第一路信号依旧为基准阵元的A路极化信号,第二路信号由其他比较阵元按序切换发射B极化信号形成,此时可以得到第二路信号中不同比较阵元的B极化信号,通过处理获取对应的相位参数值φ B2、φ B3……φ BN,分别计算φ B2与φ A1的差值、φ B3与φ A1的差值……φ BN与φ A1的差值,以分别得到各所述比较阵元B极化信号与所述基准阵元的A极化信号之间的相位差,即得到不同阵元对应B极化射频通道的相位差值。
一种实施方式中,为了更全面的获取终端设备在A极化射频通道的相位差值,需要对终端产品在上述测速基础上在进行测试,测试方法包括启动所述终端产品发射第三路信号和第四路信号,所述第三路信号为所述基准阵元发射的A极化信号,所述第四路信号为所述基准阵元发射的B极化信号;获取所述A极化信号对应的相位参数φ A1和所述B极化信号所对应相位参数φ B1;将所述相位参数φ A1和所述相位参数φ B1进行归一化处理,以使所述相位参数φ A1等于所述相位参数φ B1;保持所述第四路信号不变,将所述第三路信号切换为所述比较阵元的A极化信号,所述比较阵元的A极化信号由多个所述比较阵元按序切换发射形成;获取所述比较阵元发射的A极化信号对应相位参数值φ A2、φ A3……φ AN;分别计算φ A2与φ B1的差值、φ A3与φ B1的差值……φ AN与φ B1的差值,以分别得到各所述比较阵元A极化信号与所述基准阵元的B极化信号之间的相位差。通过进一步的测试,可以获取终端设备中不同天线阵元间A极化信号之间的相位差值,即获取不同天线阵元相应的A极化射频通道的相位差值。
结合上述实施方式,在一种可能的实施方式中,第一路信号和所述第二路信号的发射过程是同时进行。为了确保基准阵元发射的A极化信号和B极化信号分别对应的相位参数φ A1和相位参数φ B1能够进行归一化处理,则必须确保两路信号是同时进行,才能有比较的意义。同理,对于第三路信号和第四路信号而言,也必须要保证发生过程同时进行,这样才能确保之后信号进行归一化处理具有对比意义。
结合第一方面,在第一种可能的实施方式中,“分别获取所述基准阵元发射A极化信号对应的相位参数φ A1,发射B极化信号所对应相位参数φ B1”的步骤包括:通过双极化测试天线接收所述基准阵元发射的A极化信号和B极化信号;将所述双极化测试天线接入矢量网络分析仪的两个端口,使所述矢量网络分析仪获取所述基准阵元发射的A极化信号和B极化信号;根据所述基准阵元发射的A极化信号和B极化信号,所述矢量网络分析仪得出对应的相位参数φ A1和相位参数φ B1。测试天线是专门用来接收基准阵元发出的A极化信号和B极化信号,当测试天线接收到两路极化信号后通过矢量网络分析仪进行数据分析获取对应的相位参数φ A1和φ B1
在一种可能的实施方式中,通过将所述矢量网络分析仪的S参数设置为相位参数,以将所述基准阵元发射的A极化信号和B极化信号转化为对应的相位参数φ A1和相位参数φ B1。实施例中的矢量网络分析仪需要将S参数进行设置才能获取需要的数据,由于本测试方式 要获取的是两路极化信号对应的相位参数值,对应就需要将S参数设为相位参数,以此方便数据获取。
结合第一方面,在第一种可能的实施方式中,“获取所述比较阵元发射的B极化信号对应相位参数值φ B2、φ B3……φ BN”的步骤包括:控制所述基准阵元持续发射A极化信号,同时控制多个所述比较阵元按序切换发射B极化信号;
通过矢量网络分析仪获取多个所述比较阵元按序切换发射的B极化信号对应的相位参数值为φ B2、φ B3……φ BN。控制基准阵元持续发射A极化信号,同时控制多个比较阵元按序切换发射B极化信号,目的是为了获取第二阶段的第一路信号和第二路信号,其中第二阶段的第一路信号要和第一阶段的第一路信号保持一致,所以就必须控制基准阵元持续发射A极化信号,而第二阶段的第二路信号变为比较阵元按序切换发射的B极化信号,所以对应的需要同时控制多个所述比较阵元按序切换发射B极化信号。
在一种可能的实施方式中,在所述基准阵元持续发射信号,所述比较阵元按序切换发射信号的过程中,所述终端产品内的射频电路的本振源始终处于发射状态,以使所述基准阵元和所述比较阵元的参考相位相同。如果重启终端产品内的射频电路的本振源,会导致初始相位发生变化,则归一化的处理方式就没有意义,因此为了确保基准阵元和比较阵元的参考相位相同,必须要保证在比较阵元按序切换发射信号的过程中,终端产品内的射频电路的本振源始终处于发射状态。
在一种可能的实施方式中,在“所述基准阵元持续发射A极化信号,所述比较阵元按序切换发射B极化信号”的步骤中,所述基准阵元持续发射A极化信号的发射时间为总时间T,所述比较阵元按序切换发射B极化信号的切换周期为时间t,在总时间T内,所述基准阵元持续发射A极化信号;所述总时间T包括N-1段所述时间t,所述N-1个比较阵元按序切换发射B极化信号。由于基准阵元和其他比较阵元是同时发射信号,所以二者的发射总时间相同都是T,对于比较阵元而言,数量为N-1个,为了确保检测的准确性,每一个比较阵元的时间为T除以N-1,即时间t。
第二方面,本申请提供一种终端产品中射频通道间相位差的修正方法,具体步骤包括:根据前述任一所述的终端天线阵元间相位差的测试方法,获取终端天线阵元间的相位差值;将所述终端天线阵元间的相位差值导入终端产品的参数寄存器中;依据终端天线阵元间的相位差值对终端产品中各射频通道的初始相位进行修正。通过前述的终端天线阵元间相位差的测试方法,可获取终端天线阵元间的相位差值,以此为数据基础导入终端产品得参数寄存器中进行分析处理,从而调整控制电路中移相器的档位,从而实现对终端产品中各射频通道的初始相位进行修正。
第三方面,本申请还提供一种终端天线阵元间相位差的测试设备,具体包括:电波暗室,包括屏蔽室和吸波材料,用于提供测试环境;测试转台,用于放置被检测的终端产品,所述终端产品包括一个基准阵元和多个比较阵元,所述终端产品发射第一路信号和第二路信号;测试天线,用于接收所述第一路信号和所述第二路信号;矢量信号发生器,用于控制终端产品中天线阵元信号的发射;矢量网络分析仪,包括两个接收机,所述两个接收机相互独立,用于分别解析所述测试天线所接收的信号,以得到所述基准阵元和所述比较阵元之间的相位差。
在一个可能的实施方式中,所述测试天线为H/V双极化测试天线,两个所述接收机的接收端口分别与H极化通道和V极化通道连接。采用H/V双极化测试天线的目的在于接收终端产品中天线阵元发射的H极化信号和V极化信号。让终端产品中天线阵元发射H极化信号和V极化信号的优势在于H/V极化信号便于控制和发射,并且方便归一化处理和相位参数比较。
本申请所提供的终端天线阵元间相位差的测试方法通过对两个极化方向的信号进行归一化解析获得各天线阵元之间的相位差,这种操作方式不需要拆卸终端产品,就能够实现对整机装配、放置位置、整机壳件等因素导致的毫米波天线阵元之间相位差的测量,多样化了终端天线阵元间的测量方式。
附图说明
图1是本申请一个实施例中终端天线阵元间相位差的测试方法的流程图;
图2是本申请一个实施例中终端天线阵元间相位差的测试方法的场景图;
图3是本申请一个实施例中终端天线阵元的分布示意图;
图4是本申请一个实施例中不同阵元的相位参数图;
图5是本申请一个实施例中第一路信号和第二路信号的相位参数图;
图6是本申请另一个实施例中终端天线阵元间相位差的测试方法的流程图;
图7是本申请另一个实施例中不同阵元的相位参数图;
图8是本申请另一个实施例中第三路信号和第四路信号的相位参数图。
具体实施方式
下面将结合附图,对本申请的具体实施方式进行清楚地描述。
本申请提供的一种终端天线阵元间相位差的测试方法应于在对终端产品中天线阵元间射频通道的相位检测,在传统的射频通道检测方法中,通常是通过芯片级的设计仿真和UDP(User Datagram Protocol用户数据报协议)测试版上通过外灌本振、中频信号实现测量,这对于测量环境和测量操作要求都比较高,并且对于一些不适用外灌本振和中频信号的终端产品而言,将无法实现测量操作。
针对上述问题,本申请提供了一种终端天线阵元间相位差的测试设备,如图2所示,具体包括:电波暗室10,包括屏蔽室和吸波材料,用于提供测试环境;测试转台60,用于放置被检测的终端产品30,终端产品30包括一个基准阵元和多个比较阵元,终端产品30可以发射第一路信号和第二路信号;测试天线40,用于接收第一路信号和所述第二路信号;矢量信号发生器20,用于控制终端产品30中天线阵元信号的发射;矢量网络分析仪50,包括两个接收机,两个接收机相互独立,用于分别解析测试天线40所接收的信号,以得到基准阵元和比较阵元之间的相位差。
需要说明的是,为了确保矢量网络分析仪50和矢量信号发生器20接口发出的电磁辐射不会对电波暗室10内的电磁环境造成改变,如图2所示,矢量信号发生器20和矢量网络分析仪50都设在电波暗室10的外部。
在一个具体的实施例中,测试天线40为H/V双极化测试天线,两个接收机的接收端口 分别与H极化通道和V极化通道连接。采用H/V双极化测试天线的目的在于接收终端产品中天线阵元发射的H极化信号和V极化信号。让终端产品中天线阵元发射H极化信号和V极化信号的优势在于H/V极化信号便于控制和发射,并且方便归一化处理和相位参数比较。
另一方面,本申请还提供一种终端天线阵元间相位差的测试方法,如图1所示,该测试方法主要分为两个阶段,其中步骤S110到步骤S140为测试方法的第一阶段,步骤S210到步骤S230为测试方法的第二阶段。第一阶段和第二阶段的区别在于测试数据的选取不同,即第一路信号和第二路信号所对应的数据不同,具体内容请参看下文的描述。
在一个具体的实施例中,请一并参阅图1至图3,终端天线阵元间相位差的测试方法的具体流程如下:
S110将终端产品30放置在电波暗室10中,选取终端产品10中天线阵列的一个阵元为基准阵元,其余的多个阵元为比较阵元。
为了便于对整个检测方法的理解,下面以一个具体实施例的测试场景进行描述,如图2所示,测试主要围绕终端产品30展开,测试主要在电波暗室10中进行,终端产品30被设于在电波暗室10中的测试转台60上,同样放置在电波暗室10中的还有测试天线40,用于控制终端产品30发射信号的矢量信号发生器20设置在电波暗室10的外部,与接收测试天线40相连的矢量网络分析仪50也设电波暗室10的外部。具体的,终端产品30和矢量信号发生器20之间、接收测试天线40和矢量网络分析仪50之间通过位于电波暗室10墙上光纤波导管进行室内和室外的连接。这样设计的好处在于矢量网络分析仪50和矢量信号发生器20的接口发出的电磁辐射不会对电波暗室10内的电磁环境造成改变。
如图3所示,被测试终端产品30的阵列天线包括多个天线阵元:Patch1、Patch2、Patch3……PatchN,为了实施例方案的描述需要,这里仅以Patch1、Patch2、Patch3、Patch4为例。本方案所要解决的问题的就是如何检测出天线阵元Patch1、Patch2、Patch3、Patch4对应射频通道之间的相位差值。作为测试方案第一阶段的第一步,需要在这四个天线阵元中选取天线阵元Patch1为基准阵元301,其余的天线阵元Patch2、Patch3、Patch4分别为比较阵元302、比较阵元303、比较阵元304。
S120借助矢量信号发生器20控制终端产品30发射第一路信号和第二路信号,第一路信号为基准阵元301发射的A极化信号,第二路信号为基准阵元301发射的B极化信号。
具体的,在将选取好基准阵元301以后,利用矢量信号发生器20控制基准阵元301发射A极化信号和B极化信号,基准阵元301发射的A极化信号即为终端产品30发射的第一路信号,B极化信号即为终端产品30发射的第二路信号。
在实际的操作过程中,测试方法所要检测的是不同天线阵元H路和V路极化所对应射频通道的相位差值,所以这里的A极化信号和B极化信号分别对应H极化信号和V极化信号。即利用矢量信号发生器20让基准阵元301同时发射H极化信号和V极化信号。在其他的具体实施例中,A极化信号可以为V极化信号,B极化信号可以为H极化信号,这些选择对于测量方法并没有本质影响,只是对射频通道的选取有关。具体说明就是如果此处以A极化信号对应H极化信号,B极化信号对应V极化信号,那么经过步骤S110至步骤S230的所有操作,得出的将是天线阵元间V极化信号的相位差。如果想得到H极化信号的相位差,只需要让A极化信号替换为V极化信号,B极化信号替换为H极化信号即可。
需要说明的是,在具体的实施例中,第一路信号和第二路信号是一个标签意义上的信号,或者可以理解为采集信号,即在实际操作中由基准阵元301发射的H极化信号或V极化信号都是真实的信号,是可以被测试天线40所能接收检测到的,而对第一路信号和第二路信号的定义是一种信号采集过程的标签,为了后续检测数据处理的需要,需要设置采集信号的标签,第一路信号和第二路信号。这个第一路信号和第二路信号会伴随着测试过程的变化对应取值发生变化,正如现在第一阶段的步骤S120提到的第一路信号为基准阵元301发射的A极化信号(H极化信号),第二路信号为基准阵元301发射的B极化信号(V极化信号)。但是到了后面的步骤S210,此时的第一路信号依旧保持为基准阵元301发射的A极化信号(H极化信号),而第二路信号调整为3个不同时间段的V极化信号。
同时,这里还需要明确一点,实施例中第一路信号和第二路信号在步骤S120过程中对应的基准阵元301发射的H极化信号和V极化信号是同时发射的,这样处理的目的在于,如果基准阵元发射的H极化信号和V极化信号分别对应的相位参数φ H1和相位参数φ V1能够进行归一化处理,则必须确保两路信号是同时进行,才能有比较的意义。
S130借助测试天线40和矢量网络分析仪50,获取A极化信号对应的相位参数φ A1和B极化信号所对应相位参数φ B1
具体而言,步骤S130在获取相位参数φ H1和相位参数φ V1的过程包括:
S131通过双极化测试天线接收所述基准阵元发射的A极化信号和B极化信号;S132将所述双极化测试天线接入矢量网络分析仪的两个端口,使所述矢量网络分析仪获取所述基准阵元发射的A极化信号和B极化信号;S133根据所述基准阵元发射的A极化信号和B极化信号,所述矢量网络分析仪得出对应的相位参数φ A1和相位参数φ B1
为了便于理解,在具体实施例中以H极化信号代替A极化信号,V极化信号代替B极化信号描述。如图2和图3所示,实施例中的测试天线40为H/V双极化天线,H/V双极化天线的设计就是为了能够接收终端产品通过基准阵元301所发射的H极化信号和V极化信号。同时,测试天线40与矢量网络分析仪50对接,能够将接收到的H极化信号和V极化信号传输给矢量网络分析仪50,便于其进行相位分析。
需要说明的是,在实施例中为了确保最终获取的是相位差值,需要将矢量网络分析仪50的S参数设置为相位参数,这样当测试天线40将基准阵元301所发射的H极化信号和V极化信号传输给矢量网络分析仪50时,矢量网络分析仪50就会根据已经设置好的S参数获取对应的相位参数φ H1和相位参数φ V1
在本实施例中,由基准阵元301发射的A极化信号和B极化信号分别对应H极化信号和V极化信号,该H极化信号和V极化信号经由测试天线40获取然后传输给矢量网络分析仪50。通过矢量网络分析仪50对H极化信号和V极化信号进行处理,获取对应的相位参数,即H极化信号对应的相位参数φ H1和V极化信号所对应相位参数φ V1
S140将所述相位参数φ A1和所述相位参数φ B1进行归一化处理,以使所述相位参数φ A1等于所述相位参数φ B1
此时的相位参数φ A1和相位参数φ B1即为相位参数φ H1和相位参数φ V1,通过调整基准阵元301发射的A极化信号和B极化信号对应射频通道的移相器,确保相位参数φ H1和相位参数φ V1相等,实现了对相位参数φ H1和相位参数φ V1的归一化处理。
上述步骤是本实施例中终端天线阵元间相位差的测试方法的第一阶段,在第一阶段主要是针对基准阵元301发射的H极化信号和V极化信号进行归一化处理,使其所对应的相位参数φ H1和相位参数φ V1相同。
S210保持所述第一路信号不变,将所述第二路信号切换为所述比较阵元的B极化信号,所述比较阵元的B极化信号由多个所述比较阵元按序切换发射形成。
第二阶段开始,需要对矢量信号发生器20进行调整。在第一阶段中,矢量信号发生器20只是控制基准阵元301发射H极化信号和V极化信号,在第二阶段,矢量信号发生器20控制基准阵元301保持发射H极化信号不变,该H极化信号为第一路信号,然后控制比较阵元发射V极化信号,需要说明的是比较阵元的V极化信号由多个比较阵元按序切换发射形成,即比较阵元302、比较阵元303和比较阵元304依次切换发射V极化信号,这3个不同时间段的V极化信号形成第二路信号。
在具体实施例中,需要说明的是,在基准阵元301持续发射H极化信号,比较阵元(302/303/304)按序切换发射信号的过程中,终端产品内的射频电路的本振源始终处于发射状态,以使基准阵元301和比较阵元(302/303/304)的参考相位相同。为了确保第一阶段和第二阶段做差值比较的合理性,就必须要保证设备的初始相位相同,如果重启终端产品30内射频电路的本振源,会导致初始相位发生变化,则归一化的处理方式就没有意义,因此为了确保基准阵元和比较阵元的参考相位相同,必须要保证在比较阵元按序切换发射信号的过程中,终端产品内的射频电路的本振源始终处于发射状态。
具体的,为了更清楚的描述步骤S210中“基准阵元持续发射A极化信号,所述比较阵元按序切换发射B极化信号”,下面以一个具体操作过程进行说明:
如图4和图5所示,在第二阶段开始,第一路信号依据选取的是基准阵元301发射的H极化信号,发射时间为总时间T。在这个总时间T内,第二路信号则有三段信号组成,每一段信号的时间t为T/3。即在0-t的过程中,第一路信号为基准阵元301发射的H极化信号,第二路信号为比较阵元302发射的V极化信号;在t-2t的过程中,第一路信号依旧为基准阵元301发射的H极化信号,第二路信号切换比较阵元303发射的V极化信号;在2t-T的过程中,第一路信号依旧为基准阵元301发射的H极化信号,第二路信号切换比较阵元304发射的V极化信号。由此获取的第一路信号是保持不变的基准阵元301的H极化信号,第二路信号是由比较阵元302、比较阵元303、比较阵元304切换发射的V极化信号组合而成的信号。
S220获取所述比较阵元发射的B极化信号对应相位参数值φ B2、φ B3……φ BN
同样利用测试天线40和矢量网络分析仪50,可以获取第二路信号中3个不同时间段的V极化信号所对应的相位参数值φ V2、φ V3和φ V4
S230分别计算φ B2与φ A1的差值、φ B3与φ A1的差值……φ BN与φ A1的差值,以分别得到各所述比较阵元B极化信号与所述基准阵元的A极化信号之间的相位差。
通过矢量网络分析仪50计算出φ V2与φ H1的差值、φ V3与φ H1的差值、φ V4与φ H1的差值,以分别得到各比较阵元V极化信号与基准阵元301的H极化信号之间的相位差。
由于在第一阶段中基准阵元301进行的H极化信号对应第一路信号,V极化信号作为第二路信号,通过对H极化信号和V极化信号进行归一化处理,所以第一阶段得到的两路 信号的相位参数φ H1和相位参数φ V1。而进入第二阶段后,矢量信号发生器20对基准阵元301H极化信号发射的控制不变,依旧作为第一路信号,此时第一路信号的相位参数值保持与第一阶段的相同,既为相位参数φ H1也为相位参数φ V1。但是第二阶段的第二路信号发生变化,第二路信号由比较阵元依次切换发射V极化信号组成,具体的是由比较阵元302、比较阵元303和比较阵元304依次切换发射V极化信号,这3个不同时间段的V极化信号形成第二路信号,其所对应的相位参数分别为φ V2、φ V3和φ V4。为了得到不同阵元之间V极化信号的相位差值,需要找一个基准,而这个基准值就是一直没有变化的第一路信号,即基准阵元301的H极化信号,则此时用相位参数φ V2减去φ H1、φ V3减去φ H1、φ V4减去φ H1得到的差值就是相位参数φ V2减去φ V1、φ V3减去φ V1、φ V4减去φ V1的差值(通过第一阶段的归一化处理,相位参数φ H1和相位参数φ V1)。由此就可以得到比较阵元(302/303/304)的V极化信号与基准阵元301的V极化信号之间的相位差,即可以获得终端产品中天线阵元不同射频通道之间的相位差。
在一个具体的实施方式中,通过上述的检测方法获取的是终端产品天线阵元V极化射频通道之间的相位差,为了获取终端产品天线阵元H极化射频通道之间的相位差,还需要进一步进行检测。如图6所示,具体的步骤包括:
S310借助矢量信号发生器控制所述终端产品发射第三路信号和第四路信号,所述第三路信号为所述基准阵元发射的A极化信号,所述第四路信号为所述基准阵元发射的B极化信号。
需要说明的是,本实施例中的检测方法是在完成第一阶段和第二阶段以后所进行的,第一阶段和第二阶段是针对终端产品天线阵元V极化射频通道之间的相位差进行检测;本实施例的方法分为第三阶段和第四阶段,其中第三阶段包括步骤S310、S320、S330,其过程主要是为了对基准阵元301的H极化信号和V极化信号的相位参数进行归一化处理,即相位参数φ H1等于所述相位参数φ V1
对于步骤S310而言,由于其承接的是第一阶段和第二阶段,为了保证检测数据的统一,便于之后射频通道相位差的数据分析,在S310之前不需要重新选取基准阵元。换言之,第三阶段和第四阶段中进行操作的基准阵元和比较阵元依旧遵循第一阶段中S110的选取,依旧以Patch1作为基准阵元301,以Patch1、Patch2、Patch3、Patch4作为比较阵元。步骤S310的操作同步骤S120步骤相同,都是借助量信号发生器20控制终端产品30中的基准阵元301发射A极化信号和B极化信号,在具体实施例中,此处的A极化信号和B极化信号可以分别选择H极化信号或V极化信号。但是为了保持测试数据的连贯性(第一阶段和第二阶段已经测试出天线阵元件V极化信号间的相位差),所以作为第一阶段和第二阶段的延续,第三阶段和第四阶段的操作目的在于测试出天线阵元件H极化信号间的相位差,所以此时的A极化信号为H极化信号,B极化信号为V极化信号。即第三路信号为基准阵元301发射的H极化信号,第四路信号为基准阵元301发射的V极化信号。
同时,这里还需要明确一点,实施例中第三路信号和第四路信号在步骤S310过程中对应的基准阵元301发射的H极化信号和V极化信号是同时发射的,这样处理的目的在于,如果基准阵元发射的H极化信号和V极化信号分别对应的相位参数φ H1和相位参数φ V1能够进行归一化处理,则必须确保两路信号是同时进行,才能有比较的意义。这一操作和第一 阶段中的步骤120具有相同的设计考量。
S320借助测试天线40和矢量网络分析仪50,获取所述A极化信号对应的相位参数φ A1和所述B极化信号所对应相位参数φ B1
第三阶段的步骤S320与第一阶段的步骤S130相同,都是为了获取基准阵元301发射的H极化信号(A极化信号)对应的相位参数φ H1和V极化信号(B极化信号)对应的相位参数φ V1。获取相位参数φ H1和相位参数φ V1的目的依旧是为了之后的归一化处理,为第四阶段的相位差比较提供理论支持。
S330将所述相位参数φ A1和所述相位参数φ B1进行归一化处理,以使所述相位参数φ A1等于所述相位参数φ B1
步骤S330是第三阶段的最后一步,是数据处理的问题,具体的就是通过调整XX确保相位参数φ H1和相位参数φ V1相等,实现了对相位参数φ H1和相位参数φ V1的归一化处理。
S410保持所述第四路信号不变,将所述第三路信号切换为所述比较阵元的A极化信号,所述比较阵元的A极化信号由多个所述比较阵元按序切换发射形成。
第四阶段的步骤S410不同于第二阶段的步骤S210,在第二阶段的步骤S210中,保持的是第一路信号不变,换言之是保持基准阵元301的H极化信号持续发射为第一路信号,对第二路信号进行了替换。但是在第四阶段的步骤S410中,是保持了第四路信号不变,即保持基准阵元301的V极化信号持续发射为第四路信号,对第三路信号进行了替换。首先明确二者区别的关键,正如前文提到的,第一阶段和第二阶段的目的在于获取天线阵元间V极化信号(B极化信号)的相位差,所以到了第三阶段和第四阶段,测试目的发生变化,变成获取天线阵元间H极化信号(A极化信号)的相位差。因此此时不变的是第四路信号,即基准阵元301的V极化信号(B极化信号),变换的是H极化信号(A极化信号)。
阐述上述不同之后再对步骤S410本身进行说明:在第四阶段,对矢量信号发生器20进行调整。在第三阶段中,矢量信号发生器20只是控制基准阵元301发射H极化信号和V极化信号,在第四阶段,矢量信号发生器20控制基准阵元301保持发射V极化信号不变,该V极化信号为第四路信号,然后控制比较阵元发射H极化信号,需要说明的是比较阵元的H极化信号由多个比较阵元按序切换发射形成,即比较阵元302、比较阵元303和比较阵元304依次切换发射H极化信号,这3个不同时间段的H极化信号形成第三路信号。
同时还需要说明的是,在基准阵元持续发射H极化信号,比较阵元(按序切换发射信号的过程中,终端产品内的射频电路的本振源始终处于发射状态,以使基准阵元和比较阵元的参考相位相同。为了确保第三阶段和第四阶段相位参数做差值比较的合理性,就必须要保证设备的初始相位相同,如果重启终端产品内射频电路的本振源,会导致初始相位发生变化,则归一化的处理方式就没有意义,因此为了确保基准阵元和比较阵元的参考相位相同,必须要保证在比较阵元按序切换发射信号的过程中,终端产品内的射频电路的本振源始终处于发射状态。
具体的,为了更清楚的描述步骤S410中“基准阵元持续发射B极化信号,所述比较阵元按序切换发射A极化信号”,下面以一个具体操作过程进行说明:
如图7和图8所示,在第四阶段开始,第四路信号选取的是基准阵元301发射的V极化信号,发射时间为总时间T。在这个总时间T内,第三路信号则由比较阵元发射的三段H 极化信号组成,每一段信号的时间t为T/3。即在0-t的过程中,第四路信号为基准阵元301发射的V极化信号,第三路信号为比较阵元302发射的H极化信号;在t-2t的过程中,第四路信号依旧为基准阵元301发射的V极化信号,第三路信号切换比较阵元303发射的H极化信号;在2t-T的过程中,第四路信号依旧为基准阵元301发射的V极化信号,第三路信号切换比较阵元304发射的H极化信号。由此获取的第四路信号是保持不变的基准阵元301的V极化信号,第三路信号是由比较阵元302、比较阵元303、比较阵元304切换发射的H极化信号组合而成的信号。
S420获取所述比较阵元发射的A极化信号对应相位参数值φ A2、φ A3……φ AN
第四阶段的步骤S420通第二阶段的步骤S220相同,都是利用测试天线40和矢量网络分析仪50,获取相位参数值。不同之处在于步骤S420是获取第三路信号中3个不同时间段的A极化信号对应相位参数值φ A2、φ A3……φ AN,具体到本实施例中,就是获取3个不同时间段的H极化信号所对应的相位参数值φ H2、φ H3和φ H4
S430分别计算φ A2与φ B1的差值、φ A3与φ B1的差值……φ AN与φ B1的差值,以分别得到各所述比较阵元A极化信号与所述基准阵元的B极化信号之间的相位差。
第四阶段的最后一步S430也是差值比较的过程,通过计算φ A2与φ B1的差值、φ A3与φ B1的差值……φ AN与φ B1的差值,以分别得到各所述比较阵元A极化信号与所述基准阵元的B极化信号之间的相位差。具体的本实施例中就是通过矢量网络分析仪50计算出φ H2与φ V1的差值、φ H3与φ V1的差值、φ H4与φ V1的差值,以分别得到各比较阵元H极化信号与基准阵元301的V极化信号之间的相位差。
由于在第三阶段对基准阵元301的H极化信号和V极化信号进行了归一化处理,即相位参数φ H1和相位参数φ V1相同,当计算出φ H2与φ V1的差值、φ H3与φ V1的差值、φ H4与φ V1的差值,同时就是得到了φ H2与φ H1的差值、φ H3与φ H1的差值、φ H4与φ H1的差值,这就是归一化处理的目的,同时也是在第四阶段是保持基准阵元301的V极化信号持续不变输出的原因。
通过第三阶段和第四阶段的处理,可以得到终端产品中天线阵元间H极化信号间的相位差,即对应射频通道的相位差。而在第一阶段和第二阶段中得到的是终端产品中天线阵元间V极化信号间的相位差,结合起来就可以完整的获取终端产品中天线阵元间在不同极化情况下各个射频通道的相位差值。
本申请还提供了一种终端产品中射频通道间相位差的修正方法,具体步骤包括:根据上述实施例中的终端天线阵元间相位差的测试方法,获取终端天线阵元间的相位差值;将终端天线阵元间的相位差值导入终端产品的参数寄存器中;依据终端天线阵元间的相位差值对终端产品中各射频通道的初始相位进行修正。通过前述的终端天线阵元间相位差的测试方法,可获取终端天线阵元间的相位差值,以此为数据基础导入终端产品得参数寄存器中进行分析处理,从而调整控制电路中移相器的档位,从而实现对终端产品中各射频通道的初始相位进行修正。

Claims (11)

  1. 一种终端天线阵元间相位差的测试方法,其特征在于,包括:
    将终端产品放置在电波暗室中,选取所述终端产品中天线阵列的一个阵元为基准阵元,其余的多个阵元为比较阵元;
    借助矢量信号发生器控制所述终端产品发射第一路信号和第二路信号,所述第一路信号为所述基准阵元发射的A极化信号,所述第二路信号为所述基准阵元发射的B极化信号;
    借助测试天线和矢量网络分析仪,获取所述A极化信号对应的相位参数φ A1和所述B极化信号所对应相位参数φ B1
    将所述相位参数φ A1和所述相位参数φ B1进行归一化处理,以使所述相位参数φ A1等于所述相位参数φ B1
    保持所述第一路信号不变,将所述第二路信号切换为所述比较阵元的B极化信号,所述比较阵元的B极化信号由多个所述比较阵元按序切换发射形成;
    获取所述比较阵元发射的B极化信号对应相位参数值φ B2、φ B3……φ BN
    分别计算φ B2与φ A1的差值、φ B3与φ A1的差值……φ BN与φ A1的差值,以分别得到各所述比较阵元B极化信号与所述基准阵元的A极化信号之间的相位差。
  2. 如权利要求1所述的终端天线阵元间相位差的测试方法,其特征在于,分别得到各所述比较阵元B极化信号与所述基准阵元的A极化信号之间的相位差之后的步骤还包括:
    启动所述终端产品发射第三路信号和第四路信号,所述第三路信号为所述基准阵元发射的A极化信号,所述第四路信号为所述基准阵元发射的B极化信号;
    获取所述A极化信号对应的相位参数φ A1和所述B极化信号所对应相位参数φ B1
    将所述相位参数φ A1和所述相位参数φ B1进行归一化处理,以使所述相位参数φ A1等于所述相位参数φ B1
    保持所述第四路信号不变,将所述第三路信号切换为所述比较阵元的A极化信号,所述比较阵元的A极化信号由多个所述比较阵元按序切换发射形成;
    获取所述比较阵元发射的A极化信号对应相位参数值φ A2、φ A3……φ AN
    分别计算φ A2与φ B1的差值、φ A3与φ B1的差值……φ AN与φ B1的差值,以分别得到各所述比较阵元A极化信号与所述基准阵元的B极化信号之间的相位差。
  3. 如权利要求1所述的终端天线阵元间相位差的测试方法,其特征在于,所述第一路信号和所述第二路信号的发射过程是同时进行。
  4. 如权利要求1所述的终端天线阵元间相位差的测试方法,其特征在于,分别获取所述基准阵元发射A极化信号对应的相位参数φ A1,发射B极化信号所对应相位参数φ B1的步骤包括:
    通过双极化测试天线接收所述基准阵元发射的A极化信号和B极化信号;
    将所述双极化测试天线接入矢量网络分析仪的两个端口,使所述矢量网络分析仪获取所述基准阵元发射的A极化信号和B极化信号;
    根据所述基准阵元发射的A极化信号和B极化信号,所述矢量网络分析仪得出对应的 相位参数φ A1和相位参数φ B1
  5. 如权利要求4所述的终端天线阵元间相位差的测试方法,其特征在于,通过将所述矢量网络分析仪的S参数设置为相位参数,以将所述基准阵元发射的A极化信号和B极化信号转化为对应的相位参数φ A1和相位参数φ B1
  6. 如权利要求1所述的终端天线阵元间相位差的测试方法,其特征在于,获取所述比较阵元发射的B极化信号对应相位参数值φ B2、φ B3……φ BN的步骤包括:
    控制所述基准阵元持续发射A极化信号,同时控制多个所述比较阵元按序切换发射B极化信号;
    通过矢量网络分析仪获取多个所述比较阵元按序切换发射的B极化信号对应的相位参数值:φ B2、φ B3……φ BN
  7. 如权利要求6所述的终端天线阵元间相位差的测试方法,其特征在于,在所述基准阵元持续发射信号,所述比较阵元按序切换发射信号的过程中,所述终端产品内的射频电路的本振源始终处于发射状态,以使所述基准阵元和所述比较阵元的参考相位相同。
  8. 如权利要求6所述的终端天线阵元间相位差的测试方法,其特征在于,在所述基准阵元持续发射A极化信号,所述比较阵元按序切换发射B极化信号的步骤中,所述基准阵元持续发射A极化信号的发射时间为总时间T,所述比较阵元按序切换发射B极化信号的切换周期为时间t,在总时间T内,所述基准阵元持续发射A极化信号;所述总时间T包括N-1段所述时间t,所述N-1个比较阵元按序切换发射B极化信号。
  9. 一种终端产品中射频通道间相位差的修正方法,其特征在于,包括:
    根据权利要求1-8中任一所述的终端天线阵元间相位差的测试方法,获取终端天线阵元间的相位差值;
    将所述终端天线阵元间的相位差值导入终端产品的参数寄存器中;
    依据终端天线阵元间的相位差值对终端产品中各射频通道的初始相位进行修正。
  10. 一种终端天线阵元间相位差的测试设备,其特征在于,所述测试设备包括:
    电波暗室,包括屏蔽室和吸波材料,用于提供测试环境;
    测试转台,用于放置被检测的终端产品,所述终端产品包括一个基准阵元和多个比较阵元,所述终端产品发射第一路信号和第二路信号;
    测试天线,用于接收所述第一路信号和所述第二路信号;
    矢量信号发生器,用于控制终端产品中天线阵元信号的发射;
    矢量网络分析仪,包括两个接收机,所述两个接收机相互独立,用于分别解析所述测试天线所接收的信号,以得到所述基准阵元和所述比较阵元之间的相位差。
  11. 如权利要求10所述的测试设备,其特征在于,所述测试天线为H/V双极化测试天线,两个所述接收机的接收端口分别与H极化通道和V极化通道连接。
PCT/CN2020/138590 2019-12-30 2020-12-23 终端天线阵元间相位差的测试方法、修正方法及测试设备 WO2021136033A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911400376.0A CN113132025B (zh) 2019-12-30 2019-12-30 终端天线阵元间相位差的测试方法、修正方法及测试设备
CN201911400376.0 2019-12-30

Publications (1)

Publication Number Publication Date
WO2021136033A1 true WO2021136033A1 (zh) 2021-07-08

Family

ID=76687031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138590 WO2021136033A1 (zh) 2019-12-30 2020-12-23 终端天线阵元间相位差的测试方法、修正方法及测试设备

Country Status (2)

Country Link
CN (1) CN113132025B (zh)
WO (1) WO2021136033A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115733563A (zh) * 2022-08-29 2023-03-03 电子科技大学 一种大规模可扩展相控阵天线的在线相位校准方法
CN116346248A (zh) * 2023-03-22 2023-06-27 深圳市中天迅通信技术股份有限公司 Uwb天线的评估方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106342224B (zh) * 2010-09-14 2013-11-20 中国航空工业集团公司雷华电子技术研究所 一种天线幅度相位方向图的测量方法
CN106872932A (zh) * 2017-01-24 2017-06-20 四川九洲电器集团有限责任公司 一种进行相位校准的系统及方法
US20180109336A1 (en) * 2016-04-22 2018-04-19 Blue Danube Systems, Inc. Antenna element self-test and monitoring
CN108234036A (zh) * 2016-12-14 2018-06-29 深圳市通用测试系统有限公司 Mimo无线终端的无线性能测试方法
CN109342834A (zh) * 2018-09-29 2019-02-15 北京小米移动软件有限公司 一种终端天线的测试装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2976840B1 (en) * 2013-03-20 2018-02-28 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement for phase calibration of transmit and/or receive paths of an antenna array
CN104954083B (zh) * 2015-06-16 2018-05-29 上海华为技术有限公司 一种天线阵列校准的方法、装置及系统
US10826177B2 (en) * 2018-02-27 2020-11-03 Apple Inc. Electronic devices having phased antenna arrays for performing proximity detection operations
CN109239741B (zh) * 2018-09-30 2023-03-28 西南电子技术研究所(中国电子科技集团公司第十研究所) 导航卫星多阵元天线自动校准测试系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106342224B (zh) * 2010-09-14 2013-11-20 中国航空工业集团公司雷华电子技术研究所 一种天线幅度相位方向图的测量方法
US20180109336A1 (en) * 2016-04-22 2018-04-19 Blue Danube Systems, Inc. Antenna element self-test and monitoring
CN108234036A (zh) * 2016-12-14 2018-06-29 深圳市通用测试系统有限公司 Mimo无线终端的无线性能测试方法
CN106872932A (zh) * 2017-01-24 2017-06-20 四川九洲电器集团有限责任公司 一种进行相位校准的系统及方法
CN109342834A (zh) * 2018-09-29 2019-02-15 北京小米移动软件有限公司 一种终端天线的测试装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115733563A (zh) * 2022-08-29 2023-03-03 电子科技大学 一种大规模可扩展相控阵天线的在线相位校准方法
CN116346248A (zh) * 2023-03-22 2023-06-27 深圳市中天迅通信技术股份有限公司 Uwb天线的评估方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN113132025B (zh) 2022-06-14
CN113132025A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
CN107026695B (zh) 测试校准包括数字接口的多入多出天线阵列的系统和方法
WO2021136033A1 (zh) 终端天线阵元间相位差的测试方法、修正方法及测试设备
CN110572191B (zh) 有源天线系统收发器近场测试系统和方法
US20210136867A1 (en) System and method for test and/or calibration of multi-channel rf communication devices
US10684318B1 (en) System and method for testing analog beamforming device
US11962357B2 (en) Method and system for testing wireless performance of wireless terminal
US9967041B1 (en) Multi-antenna noise power measuring method and apparatus
GB2539783A (en) System and method for test and/or calibration of multi-channel RF communication devices
US6965241B1 (en) Automated electronic calibration apparatus
TWI784709B (zh) 用於測試天線陣列之近場測試裝置及其相關的近場測試網格與方法
US11044027B2 (en) Wireless transmission performance test system and method thereof
CN112698113A (zh) 接收通道的幅度校准方法、装置和网络设备
CN109449600A (zh) 电控切换多极化喇叭天线
CN112615681B (zh) 发射通道的幅度校准方法、装置和网络设备
KR20200090255A (ko) 무선 단말의 수신기의 무선 성능을 측정하는 방법, 장치 및 컴퓨터 판독가능 저장 매체
CN111382587A (zh) 射频读写器、测试信号的选择方法及存储介质
CN209313012U (zh) 电控切换多极化喇叭天线
CN210075247U (zh) 无线射频设备的功率校准装置
CN112187378A (zh) 一种数字多波束阵列发射多通道一致性标校设备及方法
CN112615680B (zh) 发射通道的相位校准方法、装置和网络设备
Fiorelli et al. On the simulation and validation of the Intrinsic Cross-Polarization Ratio for antenna arrays devoted to low frequency radio astronomy
CN117169609B (zh) 一种天线极化特性的测量系统和测量方法
KR102591192B1 (ko) 시스템 성능 안정화를 위한 신호 보상 피드백 회로 및 알고리즘이 적용된 rf 시스템 및 그 동작 방법
US20240019471A1 (en) Calibration system and calibration method for a vector network analyzer with a remote vector analyzer frontend
RU2729915C1 (ru) СПОСОБ ВЫСОКОЧАСТОТНЫХ ИСПЫТАНИЙ СПУТНИКОВЫХ РЕТРАНСЛЯТОРОВ Q/Ka - ДИАПАЗОНА

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908941

Country of ref document: EP

Kind code of ref document: A1