WO2021135963A1 - 偏振光转换器及其光源系统 - Google Patents

偏振光转换器及其光源系统 Download PDF

Info

Publication number
WO2021135963A1
WO2021135963A1 PCT/CN2020/137096 CN2020137096W WO2021135963A1 WO 2021135963 A1 WO2021135963 A1 WO 2021135963A1 CN 2020137096 W CN2020137096 W CN 2020137096W WO 2021135963 A1 WO2021135963 A1 WO 2021135963A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
polarization
laser light
laser
fluorescent light
Prior art date
Application number
PCT/CN2020/137096
Other languages
English (en)
French (fr)
Inventor
郭祖强
杜鹏
谢赢雄
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021135963A1 publication Critical patent/WO2021135963A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising

Definitions

  • This application relates to the field of projection technology, in particular to a polarization converter and its light source system.
  • the polarization projection display system Since the polarization projection display system is based on the working mode of polarized light, it needs to use polarizing devices.
  • the traditional illumination light sources are all non-polarized light sources, and directly converting non-polarized light into polarized light will lose at least 50% of energy. For this reason, people propose to use a polarizing device, so that after the unpolarized light passes through the polarizing device, it is first polarized, and then one of the polarization components is converted into another component. In this way, the unpolarized light is output in a certain polarization after passing through the device, and can have more than 80% of the energy of the original unpolarized light.
  • the polarization beam splitting prism PBS can split the incident non-polarized light into two vertical linearly polarized light beams. Among them, P-polarized light is completely passed, S-polarized light is reflected at a 45-degree angle, and the exit direction is at a 90-degree angle with P light, or S-polarized light is completely passed through, P-polarized light is reflected at a 45-degree angle, and the exit direction is the same as S light. At a 90-degree angle.
  • the polarization splitting prism PBS is cemented by a pair of right-angle prisms, and the hypotenuse of one of the prisms is plated with a polarization splitting dielectric film.
  • the polarization conversion system PCS (polarization conversion system) is to glue multiple PBS prisms together, and connect a 1/2 wave plate at each P optical path or S optical path to convert P light into S light or convert S light into P Light, so that the light emitted from the polarization converter PCS has only one polarization state.
  • PCS When it is necessary to emit light of one polarization state, PCS is widely used. Since each prism of the PCS needs to be connected by glue, and the 1/2 wave plate and the prism are also connected by glue.
  • the glue is an organic material and cannot withstand high temperatures. If the temperature is too high, it will accelerate the aging of the glue, which will make the reliability of the PCS worse.
  • This application mainly provides a polarized light converter and its light source system to solve the problem of poor reliability of the polarized light source system in the prior art due to the inability of the connecting glue to withstand high temperatures.
  • one aspect of the present application provides a polarization converter, which includes a plurality of polarization beam splitting prisms and a half-wave plate; the plurality of polarization beam splitting prisms are connected by a first material;
  • a polarization splitting medium film is provided, the polarization splitting medium film reflects the laser light source and converts part of the fluorescent light source into polarized light with the same polarization state of the laser light source, and part of the fluorescent light source is converted into polarized light perpendicular to the polarization state of the laser light source, And reflect the fluorescent light source with the same polarization state as the laser light source, and transmit the fluorescent light source perpendicular to the polarization state of the laser light source; after the fluorescent light source perpendicular to the polarization state of the laser light source transmits the polarization splitting medium film, it passes through all The first material emits; the half-wave plate is connected to the light path of the polarization beam splitter through a second material, and is used
  • the half-wave plate is arranged on the light path of the laser light source and the fluorescent light source with the same polarization state, and is used to convert the polarization state of the laser light source and the fluorescent light source with the same polarization state.
  • the air gap formed between the second material can allow the laser light source and/or the fluorescent light source with the same polarization state as the laser light source to pass.
  • the second material is connected in the width direction or the length direction of the half-wave plate.
  • the half-wave plate is arranged on the light exit path of the fluorescent light source perpendicular to the polarization state of the laser light source for converting the polarization state of the fluorescent light source.
  • the half-wave plate is bonded to the polarization beam splitter prism through the second material
  • the half-wave plate is a coating connected to the light path of the polarization beam splitter prism.
  • the present application provides a light source system including the above-mentioned polarization converter.
  • the light source system further includes a light combining element, and the laser light source and the fluorescent light source are combined by the light combining element and then incident to the polarization converter.
  • the laser light source is one or more of blue laser, ultraviolet laser, red laser, and green laser.
  • the laser light source is a blue laser
  • the fluorescent light source is a yellow fluorescent light
  • the beneficial effect of the present application is that by improving the connection between the half-wave plate and the polarization beam splitting prism in the polarization converter, it can effectively alleviate the colloid between the polarization beam splitting prisms caused by the laser passing through the polarization converter in the prior art. And the problem that the colloid connecting the polarization beam splitter prism and the half-wave plate is overheated, which affects the reliability of the polarization converter and the light source.
  • FIG. 1 is a schematic diagram of the structure of the polarization converter in the first embodiment provided by the present application
  • FIG. 2 is a schematic diagram of the connection relationship between the polarization beam splitting prism and the half-wave plate in the polarization converter shown in FIG. 1;
  • FIG. 3 is a schematic diagram of the light path of the light source system including the polarization converter shown in FIG. 1;
  • FIG. 4 is a schematic diagram of the structure of the polarization converter in the second embodiment provided by the present application.
  • FIG. 5 is a schematic diagram of the structure of the polarization converter in the third embodiment provided by the present application.
  • FIGS. 1 to 2 are schematic diagrams of the structure of the polarization converter in an embodiment of the application.
  • the polarization converter includes a plurality of polarization beam splitting prisms 21 and a half-wave plate 25, and the plurality of polarization beam splitting prisms 21 are connected together by a first material 23.
  • a polarization splitting medium film 22 is provided at the incident light path of the polarization beam splitting prism 21.
  • the polarization splitting medium film reflects the laser light source incident from the incident light path, and converts a part of the fluorescent light source incident from the incident light path into a The polarized light with the same polarization state of the laser light source is converted into polarized light perpendicular to the polarization state of the laser light source, and then the fluorescent light source with the same polarization state as the laser light source is reflected, and the fluorescent light source with the polarization state perpendicular to the laser light source is transmitted.
  • the laser light source reflected by the polarization splitting medium film 22 and a part of the fluorescent light source with the same polarization state as the laser light source are incident on the reflective film 26, and after being reflected by the reflective film 26, it exits the light exit optical path 2.
  • Part of the fluorescent light source whose polarization state is perpendicular to the laser light source passes through the polarization splitting medium film 22, passes through the first material 23 bonded to each polarization splitting prism 21, and then exits the light exit optical path 1.
  • the half-wave plate 25 is connected to the light exit path of the polarization beam splitting prism 21 through the second material 24 for converting the polarization state of the incident light, and an air gap 241 through which the light source can pass is formed between the second material 24.
  • the air gap 241 through which the light source can pass refers to the size of the air gap to ensure that the light source does not pass through the second material 24 when passing through the air gap 241.
  • the half-wave plate 25 is arranged at the light path 2 for emitting the laser light source and the fluorescent light source with the same polarization state, and the second material 24 is formed between the laser light source and/or the fluorescent light source which can accommodate the laser light source and/or the fluorescent light source.
  • the part of the laser light source with the same polarization state passes through the air gap 241. Since the beam angle of the fluorescent light source is larger than that of the laser light source, when the air gap 241 between the second material 24 can allow the fluorescent light source to pass through, it must also allow the laser light source to pass through. In addition, when the width of the air gap 241 is set to allow only the laser light source to pass, the fluorescent light source has a large optical extension even if it passes through the second material 24 and then exits, it will not greatly affect the reliability of the second material 24.
  • the second material 24 may be connected to the half-wave plate 25 along the width direction of the half-wave plate 25 as shown in FIG. 2.
  • the second material 24 may also be connected to the half-wave plate 25 along the length direction of the half-wave plate 25 (not shown in the figure).
  • the air gap 241 between the second material 24 is relatively large, and the compatibility with the light source is better.
  • the contact area between the half-wave plate 25 and the polarization beam splitting prism 21 is larger, so that the connection between the half wave plate 25 and the polarization beam splitting prism 21 is better.
  • the device has better stability.
  • the half-wave plate 25 in this application can be replaced by two quarter-wave plates to achieve the same function.
  • the laser light source itself is a light source with a polarization state
  • the fluorescent light source is natural light.
  • the fluorescent light source is divided into two polarization states of P polarization state and S polarization state after passing through the PBS. Generally speaking, the light of these two polarization states each occupies half of the light.
  • the laser light source and half of the fluorescent light source are reflected by the polarizing beam splitter 21 and exit from the light exit path 2 after passing through the air gap 241 and the half-wave plate 25, they do not pass through the first connecting the polarizing beam splitting prisms PBS.
  • the material 23 and the second material 24 connecting the PBS and the half-wave plate greatly reduce the chance that the laser light source will generate heat when passing through the first material 23 and the second material 24, and improve the reliability of the polarization converter Sex.
  • FIG. 3 shows a schematic diagram of the light path of the PCS light source system in the embodiment of FIG. 1.
  • the S-polarized laser light source L1 and the fluorescent light source L2 are combined at the light combining element 11 and then enter the polarization beam splitting prism 21 from the incident light path.
  • the polarization beam splitting prism 22 is provided with a polarization beam splitter that transmits P polarized light and reflects S polarized light.
  • the dielectric film 22, at this time, the polarization splitting dielectric film 22 reflects the S-polarized laser light source L1, and at the same time divides the fluorescent light source into S-polarized light L22 and P-polarized light L21, and reflects the S-polarized light part L22 in the fluorescent light source , Transmit the P-polarized light portion L21.
  • the S-polarized laser light source L1 and the S-polarized fluorescent light source L22 reflected by the polarization splitting medium film 22 are reflected by the reflective film 26 and then enter the half-wave plate 25 through the air gap 241.
  • the half-wave plate 25 emits the S-polarized laser light source
  • the L1 and S-polarized fluorescent light source L22 is converted into a P-polarized laser light source and a P-polarized fluorescent light source, and then exits from the light exit path 2; the P-polarized fluorescent light source L21 transmitted through the polarization splitting medium film 22 passes through the first material After 23, the light exits from the light exit light path 1.
  • the PCS emits light of the P polarization state.
  • the P-polarized fluorescence emitted from the light-emitting optical path 1 and the P-polarized laser light from the light-emitting optical path 2 are combined with the P-polarized fluorescence to enter the spatial light modulator 30 for modulation, and then enter the lens 40 for imaging.
  • the PCS emits a P-polarized light source.
  • a laser light source with P-polarized state can be used, and the polarization splitting medium film 22 provided on the polarization splitting prism 22 The S polarized light is transmitted and the P polarized light is reflected, and the half-wave plate 25 is arranged on the light path of the laser light source.
  • a laser light source with S polarization is used, the polarization beam splitting prism 22 transmits P polarized light and reflects S polarized light, and the half-wave plate 25 is arranged on the optical path for emitting P-polarized fluorescence. At this time, the half-wave plate 25 can pass through the air gap. It can also be connected to the polarization beam splitter prism in the traditional way.
  • the fluorescent light source L2 in the present application may be a fluorescent light source generated by excitation of the laser light source L1, or may be a fluorescent light source generated in other ways.
  • the laser light source L1 may be one or more of blue laser, ultraviolet laser, red laser, and green laser.
  • the laser light source is a blue laser
  • the fluorescent light source is a yellow fluorescent light.
  • the polarization converter and light source system provided in this application can be used for light source systems with blue lasers and ultraviolet lasers as well as light source systems with lasers of other colors.
  • the wavelengths of blue lasers and ultraviolet-violet light are shorter, they can be used as The optical power density on the colloid of the connecting material is greater, which has a greater impact on the reliability of the device. Therefore, when the technical solution in this application is applied to the scene where the laser light source is a blue laser or an ultraviolet laser, it can produce better results than when it is applied to other laser scenes. Better results.
  • FIG. 4 is a schematic diagram of the structure of the polarization converter in the second embodiment of the application.
  • the half-wave plate 25 is arranged on the light path of the fluorescent light source. That is, according to the needs of the optical path design, the half-wave plate 25 can also be arranged on the light exiting light path of the fluorescent light source perpendicular to the polarization state of the laser light source, that is, the light exiting light path 1. At this time, the polarization state of the fluorescent light source is converted to the same polarization as the laser light source. state.
  • the half-wave plate 25 can be connected to the PBS via an air gap, or can be connected to the PBS in a conventional manner. At this time, the PBS reflects the laser and transmits the fluorescence, and the laser does not pass through the connecting material, thereby reducing the heat generation risk of the PCS and improving the reliability of the device.
  • connection of the half-wave plate with the PBS in a traditional manner means that the half-wave plate and the PBS are connected in a full contact manner with the connecting material, and there is no air gap between the connecting materials.
  • FIG. 5 is a schematic diagram of the structure of the polarization converter in the third embodiment of this application.
  • this embodiment provides a new way of connecting the half-wave plate and the polarization beam splitting prism PBS, that is, the method of coating will have The material with polarization conversion characteristics is plated on the PBS to achieve the function of the half-wave plate 25.
  • the connecting material between the PBS and the coating that achieves polarization conversion it is fundamentally solved that the laser is incident on the half-wave plate 25.
  • the second material 24 of PBS the second material generates heat.
  • the coating with polarization characteristics can be coated on the light path 2 of the laser light source of PBS and the fluorescent light source of the same polarization state, or it can be coated on the light source of the fluorescent light source which is polarized perpendicularly to the laser light source. On the light path 1.
  • the present application improves the structure of the polarization converter so that the laser light source can pass through the colloid of the connecting device when passing through the polarization converter, thereby reducing colloid heating and improving the reliability of the polarization converter and the light source system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种偏振光转换器,包括多个偏振分光棱镜(21)、半波片(25);多个偏振分光棱镜(21)通过第一材料(23)进行连接;偏振分光棱镜(21)的入光光路处设置有偏振分光介质膜(22),偏振分光介质膜(22)反射激光光源,并反射荧光光源中与激光光源偏振态相同的部分、透射荧光光源中与激光光源偏振态垂直的部分;荧光光源中与激光光源偏振态垂直的部分透射偏振分光介质膜后,透过第一材料(23)出射;半波片(25)通过第二材料(24)连接到偏振分光棱镜(21)的出光光路上,用于对入射光的偏振状态进行转换;第二材料(24)之间形成有可容从偏振分光棱镜(21)出光光路出射光源通过的空气隙。可提高器件及光源系统的可靠性。

Description

偏振光转换器及其光源系统 技术领域
本申请涉及投影技术领域,特别是涉及一种偏振光转换器及其光源系统。
背景技术
由于偏振投影显示系统是基于偏振光的工作模式,因此需要使用偏振器件。而传统的照明光源均为非偏振光源,直接将非偏振光转变成偏振光将损失至少50%以上的能量。为此人们提出使用起偏器件,使得非偏振光经过起偏器件之后,先偏振,再将其中的一个偏振分量转换为另外一种分量。这样非偏振光经过该器件后就以某种偏振的方式输出,而且可以具有原来非偏振光的80%以上的能量。
常用的起偏器件有PBS和PCS。偏振分光棱镜PBS能把入射的非偏振光分成两束垂直的线偏光。其中,P偏振光完全通过,S偏振光以45度角被反射,出射方向与P光成90度角,或者S偏振光完全通过,P偏振光以45度角被反射,出射方向与S光成90度角。偏振分光棱镜PBS由一对直角棱镜胶合而成,其中一个棱镜的斜边上镀有偏振分光介质膜。偏振光转换器PCS(polarization conversion system)是将多个PBS棱镜胶合在一起,并在各个P光路或S光路处连接1/2波片,将P光转换成S光或将S光转换为P光,从而使得从偏振光转换器PCS出射的光只有一种偏振态。
对于需要出射一种偏振态的光时,PCS使用较为广泛。由于PCS各个棱镜之间需要使用胶进行连接,且1/2波片与棱镜之间也使用胶连接。胶为有机材料不能耐受高温,温度过高时会加快胶的老化,从而会使得PCS的可靠性变差。
发明内容
本申请主要提供一种偏振光转换器及其光源系统,以解决现有技术中的偏振光源系统因连接胶不耐受高温导致系统可靠性变差的问题。
为解决上述技术问题,本申请一方面,提供一种偏振光转换器,包括多个偏振分光棱镜、半波片;所述多个偏振分光棱镜通过第一材料进行连接;所述偏振分光棱镜上设置有偏振分光介质膜,所述偏振分光介质膜反射激光光源,将荧光光源一部分转换为与所述激光光源偏振态相同的偏振光、一部分转换为与所述激光光源偏振态垂直的偏振光,并反射与所述激光光源偏振态相同的荧光光源、透射与所述激光光源偏振态垂直的荧光光源;所述与激光光源偏振态垂直的荧光光源透射所述偏振分光介质膜后,透过所述第一材料出射;所述半波片通过第二材料连接到所述偏振分光棱镜的出光光路上,用于对入射光的偏振状态进行转换;所述第二材料之间形成有可容光源通过的空气隙。
一种实施例中,所述半波片设置在所述激光光源及与其偏振态相同的荧光光源的出光光路上,用于对所述激光光源及与其偏振态相同的荧光光源的偏振态进行转换;所述第二材料之间形成的空气隙可容所述激光光源和/或与所述激光光源偏振态相同的荧光光源通过。
具体地,所述第二材料连接在所述半波片的宽度方向或长度方向上。
另一种实施例中,所述半波片设置在所述与激光光源偏振态垂直的荧光光源的出光光路上,用于对荧光光源的偏振状态进行转换。
不同于上述半波片通过第二材料粘结偏振分光棱镜的方案,在另一种实施例中,所述半波片为连接在所述偏振分光棱镜出光光路上的镀膜。
另一方面,本申请提供一种光源系统,包括上述的偏振光转换器。
所述光源系统还包括合光元件,所述激光光源与所述荧光光源通过所述合光元件合光后入射至所述偏振光转换器。
具体地,所述激光光源为蓝色激光、紫外激光、红色激光、绿色激光中的一种或多种。
一种实施方式中,所述激光光源为蓝色激光,所述荧光光源为黄荧光。
本申请的有益效果是:通过对偏振光转换器中半波片与偏振分光棱镜的连接方式进行改进,可有效地缓解现有技术中激光经过偏振光转换器时导致连接偏振分光棱镜间的胶体以及连接偏振分光棱镜与半波片间的胶体过热而影响偏振光转换器及光源可靠性的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本申请提供的第一实施例中偏振光转换器的结构示意图;
图2是图1中所示偏振光转换器中偏振分光棱镜与半波片连接关系示意图;
图3是包括图1中所示偏振光转换器的光源系统的光路示意图;
图4是本申请提供的第二实施例中偏振光转换器的结构示意图;
图5是本申请提供的第三实施例中偏振光转换器的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其他实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是, 本文所描述的实施例可以与其他实施例相结合。
请参考图1至图2,其中所示为本申请一种实施例中偏振光转换器的结构示意图。在本实施例中,偏振光转换器包括多个偏振分光棱镜21、半波片25,该多个偏振光分光棱镜21通过第一材料23连接在一起。
在偏振分光棱镜21的入光光路处设置有偏振分光介质膜22,该偏振分光介质膜反射从入光光路入射进来的激光光源,并将从入光光路入射进来的荧光光源的一部分转换为与激光光源偏振态相同的偏振光、一部分转换为与激光光源偏振态垂直的偏振光,然后反射与激光光源偏振态相同的荧光光源、透射与激光光源偏振态垂直的荧光光源。
被偏振分光介质膜22反射的激光光源及偏振态与激光光源相同的部分荧光光源入射至反射膜26,经反射膜26反射后从出光光路2中出射。偏振态与激光光源垂直的部分荧光光源透射过偏振分光介质膜22后,透过粘结各偏振分光棱镜21的第一材料23后从出光光路1出射。
半波片25通过第二材料24连接到偏振分光棱镜21的出光光路上,用于对入射光的偏振态进行转换,第二材料24之间形成有可容光源通过的空气隙241。需要说明的是,此处可容光源通过的空气隙241指的是空气隙的大小能保证光源通过空气隙241时不经过第二材料24。
在本实施例中,半波片25设置在用于出射激光光源及与其偏振态相同的荧光光源的出光光路2处,第二材料24之间形成有可容激光光源和/或荧光光源中与激光光源偏振态相同的部分通过的空气隙241。由于荧光光源光束角比激光光源大,因此,当第二材料24之间的空气隙241可容荧光光源通过时必定也可容激光光源通过。另外,当空气隙241设置的宽度只容激光光源通过时,由于荧光光源光学扩展量较大即使通过第二材料24后出射也不会对第二材料24的可靠性造成较大影响。
当第二材料24之间设置有空气隙241时,第二材料24可以沿半波片25的宽度方向与半波片25连接如图2中所示。第二材料24也可以沿半波片25的长度方向与半波片25连接(图中未示出)。当第二材料24沿半波片25的宽度方向与半波片25连接时,第二材料24之间的空气隙241比较大,对光源的兼容性较好。当第二材料24沿半波片25的 长度方向与半波片25连接时,半波片25与偏振分光棱镜21的接触面积较大使得半波片25与偏振分光棱镜21之间的连接更牢固,器件稳固性较好。
本申请中的半波片25可以采用2个1/4波片代替,实现相同的功能。
需要说明的是,激光光源本身为具有偏振态的光源,而荧光光源为自然光。荧光光源经过PBS后被分为P偏振态和S偏振态两种偏振态的光,一般而言,这两种偏振态的光各占一半。
在本实施例中,由于激光光源和一半的荧光光源都被偏振分光棱镜21反射后经空气隙241、半波片25后从出光光路2出射,并未经过连接各偏振分光棱镜PBS的第一材料23以及连接PBS与半波片的第二材料24,较大程度地减少了激光光源穿过第一材料23及第二材料24时使其产热的机会,提高了偏振光转换器的可靠性。
请参考图3,其中所示为采用图1实施例中PCS光源系统的光路示意图。
S偏振态的激光光源L1与荧光光源L2在合光元件11处合光后从入光光路入射至偏振分光棱镜21,偏振分光棱镜22上设置有透射P偏振光、反射S偏振光的偏振分光介质膜22,此时偏振分光介质膜22对S偏振的激光光源L1进行反射,同时将荧光光源分为S偏振光L22与P偏振光L21,并对荧光光源中的S偏振光部分L22进行反射,对P偏振光部分L21进行透射。经偏振分光介质膜22反射的S偏振的激光光源L1和S偏振的荧光光源L22再经反射膜26反射后再经过空气隙241入射到半波片25,半波片25将S偏振的激光光源L1和S偏振的荧光光源L22转换为P偏振态的激光光源和P偏振态的荧光光源后从出光光路2中出射;经偏振分光介质膜22透射的P偏振的荧光光源L21穿过第一材料23后从出光光路1出射。从而使得PCS出射P偏振态的光。
从出光光路1出射的P偏振态荧光与从出光光路2出射的P偏振态激光与P偏振态荧光合光后进入空间光调制器30进行调制,然后进入镜头40成像。
在上述实施方式中,PCS出射的为P偏振态的光源,当光源系统需 要S偏振态的光源时,可采用具有P偏振态的激光光源,而偏振分光棱镜22上设置的偏振分光介质膜22透射S偏振光、反射P偏振光,将半波片25设置在激光光源的出光光路上。或者采用S偏振态的激光光源,偏振分光棱镜22透射P偏振光、反射S偏振光,而将半波片25设置在出射P偏振荧光的光路上,此时的半波片25可以通过空气隙的方式与偏振分光棱镜连接也可以采用传统的方式与偏振分光棱镜连接的方式。
需要说明的是,本申请中的荧光光源L2可以是由激光光源L1激发产生的荧光光源,也可以是以其他方式产生的荧光光源。激光光源L1可以为蓝色激光、紫外激光、红色激光、绿色激光中的一种或多种。在一种实施方式中,激光光源为蓝色激光,荧光光源为黄荧光。本申请提供的偏振转换器及光源系统既可以用于激光为蓝激光、紫外激光的光源系统也可以用于激光为其他颜色的光源系统,但是由于蓝激光、紫外紫光波长更短,照射到作为连接材料的胶体上时光功率密度更大,对器件的可靠性影响更大,因此,将本申请中的技术方案应用于激光光源为蓝激光、紫外激光的场景时能产生比应用于其他激光场景更好的效果。
请参考图4,为本申请第二实施例中偏振光转换器的结构示意图。本实施例与第一实施例的主要区别点在于,将半波片25设置在了荧光光源的出光光路上。即,根据光路设计需要也可以将半波片25设置在与激光光源偏振态垂直的荧光光源的出光光路,即出光光路1上,此时将荧光光源的偏振态转换为与激光光源相同的偏振态。在本实施例中,半波片25可以通过空气隙的方式与PBS连接,也可以采用传统的方式与PBS连接。此时,PBS反射激光透射荧光,激光不会穿过连接材料,从而降低了PCS的产热风险,提高了器件的可靠性。
半波片以传统的方式与PBS连接指的是,半波片与PBS之间以连接材料全接触的方式连接,连接材料之间不设置空气隙。
请参考图5,为本申请第三实施例中偏振光转换器的结构示意图。不同于上述实施例半波片25通过第二材料24与偏振分光棱镜21连接的方式,本实施例提供一种新的半波片与偏振分光棱镜PBS连接的方式,即采用镀膜的方式将具有偏振转换特性的材料镀在PBS上实现半波 片25的作用,此时,由于PBS与实现偏振转换的镀膜之间没有作为连接材料的胶体,从而根本上解决了激光入射入连接半波片25与PBS的第二材料24时导致第二材料发热的问题。
需要说明的是,与上述实施例相同的是,具有偏振特性的镀膜可以镀在PBS的激光光源与同偏振态的荧光光源的出光光路2上也可以镀在与激光光源垂直偏振的荧光光源的出光光路1上。
本申请通过对偏振光转换器的结构进行改进,使得激光光源在经过偏振光转换器时能够不经过连接器件的胶体,从而减少胶体发热,提高偏振光转换器及光源系统的可靠性。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种偏振光转换器,其特征在于,包括多个偏振分光棱镜、半波片;所述多个偏振分光棱镜通过第一材料连接;
    所述偏振分光棱镜上设置有偏振分光介质膜,所述偏振分光介质膜反射激光光源,将荧光光源一部分转换为与所述激光光源偏振态相同的偏振光、一部分转换为与所述激光光源偏振态垂直的偏振光,并反射与所述激光光源偏振态相同的荧光光源、透射与所述激光光源偏振态垂直的荧光光源;
    所述与激光光源偏振态垂直的荧光光源透射所述偏振分光介质膜后,透过所述第一材料出射;
    所述半波片通过第二材料连接到所述偏振分光棱镜的出光光路上,用于对偏振光的偏振状态进行转换;所述第二材料之间形成有可容光源通过的空气隙。
  2. 如权利要求1所述的偏振光转换器,其特征在于,所述半波片设置在所述激光光源及与其偏振态相同的荧光光源的出光光路上,用于对所述激光光源及与其偏振态相同的荧光光源的偏振态进行转换;所述第二材料之间形成的空气隙可容所述激光光源和/或与所述激光光源偏振态相同的荧光光源通过。
  3. 如权利要求2所述的偏振光转换器,其特征在于,所述第二材料沿所述半波片的宽度方向或长度方向与所述半波片连接。
  4. 一种偏振光转换器,其特征在于,包括多个偏振分光棱镜、半波片;所述多个偏振分光棱镜通过第一材料连接;
    所述偏振分光棱镜上设置有偏振分光介质膜,所述偏振分光介质膜反射激光光源,将荧光光源一部分转换为与所述激光光源偏振态相同的偏振光、一部分转换为与所述激光光源偏振态垂直的偏振光,并反射与 所述激光光源偏振态相同的荧光光源、透射与所述激光光源偏振态垂直的荧光光源;
    所述与激光光源偏振态垂直的荧光光源透射所述偏振分光介质膜后,透过所述第一材料出射;
    所述半波片为镀在所述偏振分光棱镜出光光路上的镀膜。
  5. 如权利要求1或4所述的偏振光转换器,其特征在于,所述半波片设置在所述激光光源及与其偏振态相同的荧光光源的出光光路上或者设置在所述与激光光源偏振态垂直的荧光光源的出光光路上。
  6. 一种偏振光转换器,其特征在于,包括多个偏振分光棱镜、半波片;所述多个偏振分光棱镜通过第一材料进行连接;
    所述偏振分光棱镜上设置有偏振分光介质膜,所述偏振分光介质膜反射激光光源,将荧光光源一部分转换为与所述激光光源偏振态相同的偏振光、一部分转换为与所述激光光源偏振态垂直的偏振光,并反射与所述激光光源偏振态相同的荧光光源、透射与所述激光光源偏振态垂直的荧光光源;
    所述半波片通过第二材料连接在所述与激光光源偏振态垂直的荧光光源的出光光路上,用于对所述与激光光源偏振态垂直的荧光光源的偏振状态进行转换。
  7. 一种光源系统,其特征在于,包括如权利要求1-6任一项所述的偏振光转换器。
  8. 如权利要求7所述的光源系统,其特征在于,所述光源系统还包括合光元件,所述激光光源与所述荧光光源通过所述合光元件合光后入射至所述偏振光转换器。
  9. 如权利要求8所述的光源系统,其特征在于,所述激光光源为蓝色激光、紫外激光、红色激光、绿色激光中的一种或多种。
  10. 如权利要求9所述的光源系统,其特征在于,所述激光光源为蓝色激光,所述荧光光源为黄荧光。
PCT/CN2020/137096 2019-12-31 2020-12-17 偏振光转换器及其光源系统 WO2021135963A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201922481406.7 2019-12-31
CN201922481406.7U CN211718628U (zh) 2019-12-31 2019-12-31 偏振光转换器及其光源系统

Publications (1)

Publication Number Publication Date
WO2021135963A1 true WO2021135963A1 (zh) 2021-07-08

Family

ID=72821688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137096 WO2021135963A1 (zh) 2019-12-31 2020-12-17 偏振光转换器及其光源系统

Country Status (2)

Country Link
CN (1) CN211718628U (zh)
WO (1) WO2021135963A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211718628U (zh) * 2019-12-31 2020-10-20 深圳光峰科技股份有限公司 偏振光转换器及其光源系统
CN116068694B (zh) * 2023-03-23 2023-05-30 北京深光科技有限公司 一种基于微纳结构的偏光转换元器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202886822U (zh) * 2012-08-31 2013-04-17 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN105278224A (zh) * 2014-05-30 2016-01-27 深圳市绎立锐光科技开发有限公司 发光装置、投影显示系统和三维投影方法
US20160097936A1 (en) * 2013-06-27 2016-04-07 Dexerials Corporation Polarization conversion element, polarization-conversion-element manufacturing method, light-source unit, and optical device
CN108490720A (zh) * 2018-04-27 2018-09-04 深圳市安华光电技术有限公司 一种带空气间隙的粘合棱镜组件和投影光机
CN209148986U (zh) * 2018-11-30 2019-07-23 福州高意光学有限公司 在wss中实现偏振转化的光学器件、偏振转化器、wss结构
CN211718628U (zh) * 2019-12-31 2020-10-20 深圳光峰科技股份有限公司 偏振光转换器及其光源系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202886822U (zh) * 2012-08-31 2013-04-17 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
US20160097936A1 (en) * 2013-06-27 2016-04-07 Dexerials Corporation Polarization conversion element, polarization-conversion-element manufacturing method, light-source unit, and optical device
CN105278224A (zh) * 2014-05-30 2016-01-27 深圳市绎立锐光科技开发有限公司 发光装置、投影显示系统和三维投影方法
CN108490720A (zh) * 2018-04-27 2018-09-04 深圳市安华光电技术有限公司 一种带空气间隙的粘合棱镜组件和投影光机
CN209148986U (zh) * 2018-11-30 2019-07-23 福州高意光学有限公司 在wss中实现偏振转化的光学器件、偏振转化器、wss结构
CN211718628U (zh) * 2019-12-31 2020-10-20 深圳光峰科技股份有限公司 偏振光转换器及其光源系统

Also Published As

Publication number Publication date
CN211718628U (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
US8485667B2 (en) Optical element and colored light combiner using same
US20090310042A1 (en) Illumination system and method with efficient polarization recovery
WO2021135963A1 (zh) 偏振光转换器及其光源系统
US20110149547A1 (en) Optical element and color combiner
KR20100099747A (ko) 광 조합기
KR20110086163A (ko) 편광 변환 컬러 결합기
JPH03122631A (ja) 偏光光源及び投写型表示装置
US8654444B2 (en) Polarization converting color combiner
JP2012155342A (ja) 多数の光源のエテンデュー効率のよい合波
US10599025B2 (en) Light source device and projector
WO2021135961A1 (zh) 光源装置和投影设备
CN111736415A (zh) 一种混合光源装置以及投影显示设备
TWI503617B (zh) 雷射投影設備
WO2022037196A1 (zh) 一种三色光源设备和投影显示设备
WO2022048324A1 (zh) 一种混合光源系统及投影设备
WO2021135962A1 (zh) 光源装置
KR100716959B1 (ko) 광원 어셈블리 및 이를 채용한 프로젝션 디스플레이장치
CN112114486A (zh) 一种激光照明装置、激光投影装置
JP2016184114A (ja) 照明装置及びプロジェクター
WO2021037239A1 (zh) 一种投影光学系统
WO2021184924A1 (zh) 光源系统和投影设备
US12007677B2 (en) Optical engine unit and projection system
CN216696973U (zh) 一种分合光器件及投影装置
WO2021063144A1 (zh) 一种光学引擎系统及投影系统
TWI614562B (zh) 雷射投影機的光源裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911005

Country of ref document: EP

Kind code of ref document: A1