WO2021135960A1 - 偏振分光器件、偏振分光结构和投影设备 - Google Patents

偏振分光器件、偏振分光结构和投影设备 Download PDF

Info

Publication number
WO2021135960A1
WO2021135960A1 PCT/CN2020/137091 CN2020137091W WO2021135960A1 WO 2021135960 A1 WO2021135960 A1 WO 2021135960A1 CN 2020137091 W CN2020137091 W CN 2020137091W WO 2021135960 A1 WO2021135960 A1 WO 2021135960A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
interface
optical element
polarization
splitting
Prior art date
Application number
PCT/CN2020/137091
Other languages
English (en)
French (fr)
Inventor
郭祖强
陈晨
胡飞
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Priority to US17/790,486 priority Critical patent/US20230048432A1/en
Publication of WO2021135960A1 publication Critical patent/WO2021135960A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • G02B27/285Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining comprising arrays of elements, e.g. microprisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/26Stereoscopic photography by simultaneous viewing using polarised or coloured light separating different viewpoint images

Definitions

  • the utility model is designed in the field of optical projection, and specifically relates to a polarization beam splitting device, a polarization beam splitting structure and a projection device.
  • the purpose of the present invention is to provide at least a polarization beam splitting device, a polarization beam splitting structure and a projection device to solve the above-mentioned problems.
  • the utility model has at least the following technical effects: controlling the propagation path of the light, preventing the colloidal substance from being directly irradiated by the light and being damaged, thereby improving the working performance of the polarization beam splitter.
  • a polarization beam splitting device characterized in that it comprises:
  • a first optical element the first optical element includes an incident surface, a polarization splitting interface and a reflection interface, the polarization splitting interface and the reflection interface are arranged correspondingly, wherein,
  • the incident light enters the first optical element through the incident surface, and is split into a first light and a second light through the polarization splitting interface, wherein the first light is reflected by the polarization splitting interface and then enters To the reflective interface, and exit from the first optical element after being reflected by the reflective interface, and the second light to exit from the first optical element after being transmitted through the polarization splitting interface.
  • the polarization splitting interface and the reflective interface are arranged in parallel, and the incident surface is located between the polarization splitting interface and the reflective interface.
  • it further includes a second optical element and a first bonding element, wherein,
  • the second optical element is bonded to the polarization splitting interface of the first optical element via the first bonding element, so that the second light transmitted from the polarization splitting interface enters the second
  • the optical element is guided by the second optical element and then exits, and the first light reflected by the polarization splitting interface can not pass through the first bonding element.
  • the bonding interface between the second optical element and the first optical element is a bonding interface, and an antireflection film is coated on the bonding interface.
  • the first optical element and the second optical element are respectively configured to be composed of a polarization beam splitting prism.
  • the polarization beam splitting device further includes an aperture
  • the second optical element includes the first interface parallel to the incident surface of the first optical element, and the diaphragm is disposed between the first interface of the second optical element and the incident light , Used to block the incident light from entering the second optical element.
  • a polarization beam splitting structure including:
  • the second bonding element where two adjacent polarization beam splitting devices are bonded through the second bonding element, and the reflective interface in the first optical element reflects the first light and then exits , The first light does not pass through the second bonding element.
  • the polarization splitting structure further includes: a plurality of first conversion elements corresponding to the number of the polarization splitting components;
  • the first conversion element is arranged to cover the exit side of the second optical element, and is used to convert the second light emitted by the second optical element into ⁇ Said the first light.
  • the first conversion element is bonded to the exit interface of the second optical element where the second light exits the second light through a third bonding element.
  • the polarization splitting structure further includes a second conversion element
  • the second conversion element covers all the exit sides of the polarization beam splitting component, and is used to convert the first light into the second light.
  • a projection device including:
  • the spread of the first light is controlled by the polarization splitting interface and the reflective interface of the first optical element, so that the first light is guided to propagate inside the first optical element, and does not enter the external bonding material through the first optical element, avoiding glue
  • the bonding material is destroyed by direct light irradiation, thereby improving the working performance of the polarization beam splitting device.
  • Figure 1 is a schematic diagram of an embodiment of the utility model
  • Figure 2 is a schematic diagram of another embodiment of the utility model
  • Fig. 3 is a schematic diagram of another embodiment of the utility model.
  • the first embodiment is mainly used to illustrate the technical solution provided by the first aspect of the present invention. details as follows:
  • the first embodiment provides a polarization beam splitting device, including:
  • the first optical element 1 includes a light incident surface, a polarization splitting interface and a reflection interface, the polarization splitting interface and the reflection interface are arranged correspondingly, wherein,
  • the incident light 11 enters the first optical element 1 through the light incident surface, and is split into a first light 12 and a second light 13 through the polarization splitting interface, wherein the first light 12 passes through the The polarization splitting interface is reflected and incident on the reflective interface, and after being reflected by the reflective interface, it exits the first optical element 1, and the second light 13 is transmitted from the first optical element after being transmitted through the polarization splitting interface.
  • the component emerges.
  • the first optical element 1 is a polarization beam splitting prism.
  • the polarization splitting interface and the reflecting interface in the first optical element 1 are the first and second interfaces arranged in parallel, and the light incident surface is the third interface between the polarization splitting interface and the reflecting interface.
  • the fourth interface of the polarization beam splitting prism is the light exit surface.
  • the polarization splitting film 4 coated on the first interface of the polarization splitting prism constitutes a polarization splitting interface
  • the reflective film 5 coated on the second interface of the polarization splitting prism constitutes a reflection interface
  • the first optical element 1 and the second optical element 2 are arranged in parallelograms, and the polarization splitting film 4 and the The reflective film 5 is respectively arranged on two opposite sides of the second optical element 2.
  • the angle between the incident direction of the incident light 11 and the reflective film 5 of the polarization beam splitting film 4 is set to 45 degrees.
  • the angle between the reflection direction of the polarization beam splitting film 4 for the first light 12 and the reflection film 5 is set to 45 degrees.
  • the function of the polarization beam splitting film 4 is to separate light rays with different polarization states in the incident light 11, and in this embodiment, it is preferably set as a polarization beam splitting medium film (PBS film).
  • PBS film polarization beam splitting medium film
  • the function of the polarization splitting film 4 is to separate the incident light 11 into the first light 12 and the second light 13.
  • polarized light includes P light and S light.
  • the second light is set to S light; similarly, if the first light is set to S light, the first light is set to S light.
  • the second light is set to P light.
  • the polarization splitting film 4 is used to transmit P-state polarized light and reflect S-state polarized light, or to reflect P-state polarized light.
  • the polarization beam splitting device further includes a second optical element 2 and a first bonding element 3, wherein the second optical element may be a polarization beam splitting prism.
  • the second optical element 2 is bonded to the polarization splitting interface of the first optical element 1 via the first bonding element 3, so that the second light 13 transmitted from the polarization splitting interface enters The second optical element 2 exits after being guided by the second optical element 2.
  • the first bonding element 3 As a general technician, a well-known common sense in physics—when light illuminates an object, it raises the temperature of the object—is easy to understand. Furthermore, for ease of use, a gelatinous substance is usually selected as the first bonding element 3, which brings about a problem, that is, the first bonding element 3 is unavoidable due to light irradiation which causes the temperature to rise and decompose. Suffered damage.
  • the present utility model proposes an innovative idea to avoid the destruction of the first bonding element 3 by controlling the exit path of the first light 12, specifically to make the incident light 11 first enter the polarization splitter of the second optical element
  • the polarization splitting film will change the light path of the first light 12 so that the first light 12 does not pass through the first bonding element 2, avoiding the colloidal bonding material being directly irradiated by light and being damaged, thereby improving the polarization splitting The performance of the device.
  • the incident light 11 can be set For polarized light. For example, if the incident light 11 is set as the first light 12, then the second light 13 will not appear during the entire operation of the polarization beam splitting device.
  • the main purpose is to control the exit path of the incident light 11 to match the reception of the incident light 11 by a specific optical instrument to realize the operation of the optical instrument.
  • the polarization characteristics of the incident light 11 can be determined based on the light splitting characteristics of the polarization beam splitting film 4. If the polarization beam splitting film transmits P light and reflects S light, the incident light 11 is preferably S light. On the contrary, if The polarization beam splitting film transmits S light and reflects P light. The incident light 11 is preferably P light. The purpose is to not generate the second light 13, and thus no laser (laser light energy is greater, and the damage to the bonding element is also greater. Strong) through the first bonding element 3.
  • the first bonding element 3 As the name implies, its function is to provide an adhesive function. Generally, an adhesive can be used, but the adhesive must have light transmittance. In this embodiment, it is preferably set as an optically transparent adhesive, and more specifically, it is preferably an optical glue.
  • the first light 12 is blocked from entering the first bonding element 3 to avoid light to the first bonding element 3; therefore, in some modified embodiments, By controlling the exit path of the second light 13 to prevent the first bonding element from being damaged, the above-mentioned problem is solved.
  • the bonding interface of the second optical element 2 and the first optical element 1 is a bonding interface, and the bonding interface is coated with an antireflection film 8, the antireflection film 8 is arranged between the second optical element 2 and the first bonding element 3, that is, the polarization beam splitting film 4, the first bonding element 3 and the antireflection film 8 are arranged in order from top to bottom.
  • the function of the anti-reflection film 8 is to guide the second light 13 to the exit path of the second optical element 2, and the existence of the anti-reflection film 8 improves the separation efficiency of the second light 13.
  • this embodiment further controls the incident path of the incident light 11 to improve the accuracy of the light splitting operation. For this reason, the following improvements are made:
  • the first optical element 1 is also used to provide an incident path for the incident light 11, the polarization beam splitting device further includes an aperture 6, and the second optical element 2 includes the incident light from the first optical element 1.
  • the first interface with parallel planes, the aperture 6 is arranged between the first interface of the second optical element 2 and the incident light, and is used to block the incident light 11 from entering the second optical element 2.
  • the first interface of the second optical element 2 is flush with the light incident surface of the first optical element 1.
  • the second embodiment is mainly used to illustrate the technical solution provided by the second aspect of the present invention.
  • the second aspect provides a number of technical solutions, and the second embodiment will clarify these technical solutions and the combination of the various technical solutions in turn. details as follows:
  • the second embodiment provides a polarization splitting structure, including:
  • the light-transmitting second bonding element 7 is bonded between two adjacent polarization beam splitting devices through the second bonding element 7.
  • This embodiment includes multiple polarization beam splitting devices, which can realize polarization beam splitting for multiple incident light sources 11.
  • the functions of the second bonding element 7 are similar to those of the first bonding element 3. Therefore, for the selection of the second bonding element 7, reference may be made to the introduction of the first bonding element 3 in the first embodiment.
  • the polarization splitting film 4 in order to better separate the first light 12 from the second light 13, can be set to allow the second light 13 to pass through, and to block the first light 12 from passing through and reflect the second light.
  • the polarization beam splitting structure further includes a plurality of first conversion elements 9 corresponding to the number of the polarization beam splitting devices; wherein, in each of the polarization beam splitting devices, the first conversion element 9 is arranged to cover the first The exit side of the second transmission element 2 is used to transform the second light 13 into the first light 12.
  • the first conversion element 9 is used to rotate the polarized light so as to change the polarization of the light.
  • the first transformation element 9 is preferably a half glass slide.
  • the first conversion element 9 is bonded to the light exit side of the second transmission element 2 through the third bonding element 10, wherein the third bonding element may be glue.
  • the polarization beam splitting structure further includes a second conversion element 14; wherein, the second conversion element 14 covers all the exit sides of the polarization beam splitting component, and is used to convert the first light into the second light beam. Light.
  • the second conversion element 14 is arranged on the exit side of the entire polarization beam splitting structure, and is used to convert the first light 12 emitted by the first optical element 1 and the second optical element 2 into the second light 13. Whether to provide the second conversion element 14 is set according to the polarization characteristics of the light beam required in the actual optical path.
  • the second conversion element has a similar function to the first conversion element 9, and can be designed with reference to the first conversion element 9, preferably a half glass slide.
  • the third embodiment is mainly to illustrate the technical solution of the third aspect of the present invention.
  • the technical solution of the third aspect is mainly designed for the possible applications of the utility model. For example as follows:
  • LCD projection display In the field of projection display technology, according to the different types of spatial light modulators used in projection display, it can be divided into LCD projection display, LCOS projection display, and DLP projection display.
  • the transmissive LCD display device and the reflective silicon-based LCOS display device need to work under polarized light, and the white light source is natural light in a non-polarized state, and these two display devices cannot be directly illuminated. Therefore, in the application of the aforementioned two display devices to natural light, it is necessary to use a polarizing device to convert the natural light into polarized light.
  • the spatial light modulator of the DLP projection display system is not required to be polarized light. Nevertheless, DLP projection display systems still have some problems related to polarized light when realizing certain working functions. For example, when using 3D technology for display, it is necessary to polarize the light. The problem here is that if the light emitted from the lens of the DLP projection device undergoes polarization conversion, half of the light will be lost; and if the light can be polarized in the light source, the modulated light emitted from the spatial light modulator is Polarized light can improve the light utilization efficiency in the 3D display system, and can simplify the structure of the 3D projection device. In addition, when polarized light passes through the light splitting and combining prism, its spectrum has a narrower transition interval, which can improve the utilization efficiency of broad-spectrum light (such as fluorescence) and improve the energy efficiency of the entire projection equipment.
  • broad-spectrum light such as fluorescence
  • the light sources incident on the spatial light modulator generally include laser and fluorescent light.
  • fluorescent light does not have a specific polarization direction and needs to be polarized and split before it can be applied to the above scenes.
  • the laser its polarization state can be well controlled. When it is applied to the above-mentioned scenarios, it is not necessary to perform polarization splitting work on the light source, and the polarization state of the laser can be directly selected.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种偏振分光器件,包括:第一光学元件(1),第一光学元件(1)包括入光面、偏振分光界面和反射界面,偏振分光界面和反射界面对应设置,其中,入射光(11)经入光面入射至第一光学元件(1),并经偏振分光界面分束成第一光线(12)和第二光线(13),其中,第一光线(12)经偏振分光界面反射后入射至反射界面,并经反射界面反射后从第一光学元件(1)出射,第二光线(12)经偏振分光界面透射后自第一光学元件(1)出射。通过控制光的传播路径,避免胶物质被光直接照射而被破坏,从而提升偏振分光器件的工作性能。

Description

偏振分光器件、偏振分光结构和投影设备 技术领域
本实用新设计光学投影领域,具体涉及偏振分光器件、偏振分光结构和投影设备。
背景技术
在光学投影领域,经常需要通过偏振分光器件将入射光分离成偏振光,以满足光学仪器的需求。偏振分光器件中因各元件之间的连接需要通过胶物质来实现。在光的照射下,胶物质会因为温度过高而加速老化,从而使得偏振分光器件的性能变差。
实用新型内容
本实用新型的目的在于,至少提供一种偏振分光器件、偏振分光结构和投影设备,以解决上述问题。本实用新型至少具备以下技术效果:控制光的传播路径,避免胶物质被光直接照射而被破坏,从而提升偏振分光器件的工作性能。
一种偏振分光器件,其特征在于,包括:
第一光学元件,所述第一光学元件包括入射面、偏振分光界面和反射界面,所述偏振分光界面和所述反射界面对应设置,其中,
入射光经所述入射面入射至所述第一光学元件,并经所述偏振分光界面分束成第一光线和第二光线,其中,所述第一光线经所述偏振分光界面反射后入射至所述反射界面,并经所述反射界面反射后从所述第一光学元件出射,所述第二光线经所述偏振分光界面透射后自所述第一光学元件出射。
在一个实施例中,所述偏振分光界面和所述反射界面平行设置,所述入射面位于所述偏振分光界面和所述反射界面之间。
在一个实施例中,还包括第二光学元件和第一粘结元件,其中,
所述第二光学元件经所述第一粘结元件与所述第一光学元件的所述偏振分光界面粘合,以使从所述偏振分光界面透射的所述第二光线进入所述第二光学元件,并经所述第二光学元件引导后出射,且所述偏振分光界面反射的所述第一光线能 够不经过所述第一粘结元件。
在一个实施例中,所述第二光学元件与所述第一光学元件粘合的界面为粘合界面,所述粘合界面上涂覆有增透膜。
在一个实施例中,所述第一光学元件与所述第二光学元件分别设置为由偏振分光棱镜构成。
在一个实施例中,所述偏振分光器件还包括光阑;
所述第二光学元件包括与所述第一光学元件的所述入射面平行的所述第一界面,所述光阑设置在所述第二光学元件的第一界面与所述入射光之间,用于阻挡所述入射光进入所述第二光学元件。
一种偏振分光结构,包括:
多个上述所述的偏振分光器件;以及
第二粘结元件,相邻的两个所述偏振分光器件之间通过所述第二粘结元件粘接,所述第一光学元件中的所述反射界面将所述第一光线反射后出射,所述第一光线不经过所述第二粘结元件。
在一个实施例中,所述偏振分光结构还包括:与所述偏振分光组件数量对应的多个第一转化元件;
其中,在每个所述偏振分光组件中,所述第一转化元件设置为覆盖所述第二光学元件的出射侧,用于将所述第二光学元件出射的所述第二光线转化为所述第一光线。
在一个实施例中,所述第一转化元件通过第三粘结元件粘结在所述第二光学元件出射所述第二光线的出射界面。
在一个实施例中,所述偏振分光结构还包括第二转化元件;
其中,所述第二转化元件覆盖所有所述偏振分光组件的出射侧,用于将所述第一光线转化为所述第二光线。
一种投影设备,包括:
上述所述的偏振分光器件,或者上述所述的偏振分光结构。
本实用新型的实施例至少具备以下有益效果:
通过第一光学元件的偏振分光界面和反光界面控制第一光线的传播,使得引 导第一光线在第一光学元件内部传播,不透过第一光学元件入射到外部的粘结材料中,避免胶质粘结材料被光直接照射而被破坏,从而提升偏振分光器件的工作性能。
附图说明
图1为本实用新型的实施例的其中一个示意图;
图2为本实用新型的实施例的另一个的示意图;
图3为本实用新型的实施例的又一个的示意图。
具体实施方式
以下结合附图对本实用新型的具体实施方式进行进一步的说明。
第一实施例
第一实施例主要用于说明本实用新型第一方面提供的技术方案。具体如下:
如图1所示,第一实施例提供了一种偏振分光器件,包括:
第一光学元件1,所述第一光学元件包括入光面、偏振分光界面和反射界面,所述偏振分光界面和所述反射界面对应设置,其中,
入射光11经所述入光面入射至所述第一光学元件1,并经所述偏振分光界面分束成第一光线12和第二光线13,其中,所述第一光线12经所述偏振分光界面反射后入射至所述反射界面,并经所述反射界面反射后从所述第一光学元件1出射,所述第二光线13经所述偏振分光界面透射后自所述第一光学元件出射。
优选的,第一光学元件1为偏振分光棱镜。如图1所示,第一光学元件1中的偏振分光界面和反射界面为平行设置的第一界面和第二界面,入光面为位于偏振分光界面和反射界面之间的第三界面,该偏振分光棱镜的第四界面为出光面。
优选的,涂覆在偏振分光棱镜的第一界面上的偏振分光膜4构成偏振分光界面,涂覆在偏振分光棱镜的第二界面上的反射膜5构成反射界面。
为了使对第一光线12与第二光线13的出射路径的控制更加便捷,将所述第一光学元件1与所述第二光学元件2设置为平行四边形,所述偏振分光膜4与所述反射膜5分别设置在所述第二光学元件2相对的两侧。
再一次,为了更方便地实现对第一光线12与第二光线13的出射路径的控制。 将入射光11的入射方向与所述偏振分光膜4的反射膜5之间的夹角设置为45度。将所述偏振分光膜4对所述第一光线12的反射方向与所述反射膜5之间的夹角设置为45度。
偏振分光膜4的作用是为了分离入射光11中偏振态不同的光线,本实施例中优选地设置为偏振分光介质膜(PBS膜)。
在本实施例中,偏振分光膜4的作用就是将入射光11分离成第一光线12与第二光线13。一般,偏振光包括P光和S光,在本实施例中,如果第一光线设定为P光,第二光线设定为S光;同样的,如果第一光线设定为S光,第二光线设定为P光。偏振分光膜4用于透射P态偏振光反射S态偏振光,或用于反射P态偏振光。
进一步的,如图1所示,偏振分光器件还包括第二光学元件2和第一粘结元件3,其中,第二光学元件可以是偏振分光棱镜。
所述第二光学元件2经所述第一粘结元件3与所述第一光学元件1的所述偏振分光界面粘合,以使从所述偏振分光界面透射的所述第二光线13进入所述第二光学元件2,并经所述第二光学元件2引导后出射。
作为一般的技术人员,一个众所周知的物理学常识——当光照射物体时会提升该物体的温度——是容易被理解的。再者,为方便使用,通常选取胶状物质作为第一粘结元件3,由此带来一个问题,即第一粘结元件3因光照射——导致温度升高并分解——而不可避免的遭受破坏。
鉴于以上问题,本实用新型提出了通过控制第一光线12的出射路径来避免第一粘结元件3被破坏的创新思想,具体为使所述入射光11先入射到第二光学元件的偏振分光膜4上,该偏振分光膜将改变第一光线12的光路径,使得第一光线12不经过第一粘结元件2,避免胶质粘结材料被光直接照射而被破坏,从而提升偏振分光器件的工作性能。
需要说明的是,在某些变形的实施方式中——因入射光11的偏振性质与种类相关,某些入射光11的偏振状态比较容易控制(例如激光)——可以将入射光11设定为偏振光。例如将入射光11设定为第一光线12,那么,在偏振分光器件的全部工作过程中,将不会出现第二光线13。在这些变形的实施方式中,主要是为了控制入射光11的出射路径,以配合特定光学仪器对入射光11的接收,实现该光 学仪器的运转。
入射光为激光时,入射光11的偏振特性,可基于偏振分光膜4的分光特征而确定,若偏振分光膜透射P光,反射S光,则入射光11优选为S光,相反的,若偏振分光膜透射S光,反射P光,则入射光11优选为P光,目的是不产生第二光线13,也就没有激光(激光的光能量较大,对粘结元件的损坏能力也较强)穿过第一粘结元件3。
而对于第一粘结元件3来说,顾名思义,其作用是提供粘接功能,一般可以采用粘接剂,但是粘接剂必须具备透光性。本实施例中优选地设置为光学透明胶粘剂,更具体地,优选为光学胶水。
需要说明的是,在本实施例中,是通过阻挡第一光线12进入第一粘结元件3来避免对第一粘结元件3的光照的;因此,在一些变形的实施方式中,也可以通过控制第二光线13的出射路径来避免第一粘结元件被破坏,从而解决上述问题。
进一步的,参考图2,所述第二光学元件2与所述第一光学元件1粘合的界面为粘合界面,所述粘合界面上涂覆有增透膜8,所述增透膜8设置在第二光学元件2与所述第一粘结元件3之间,即所述偏振分光膜4、所述第一粘结元件3和所述增透膜8自上而下依次设置。增透膜8的作用是将所述第二光线13引导至第二光学元件2的出射路径,增透膜8的存在提高对所述第二光线13的分离效率。
在以上诸方案的基础上,本实施例针对入射光11的入射路径进行了进一步地控制,以提高分光工作的精确性,为此作出了如下改进:
所述第一光学元件1还用于为入射光11提供入射路径,所述偏振分光器件还包括光阑6,所述第二光学元件2包括与所述第一光学元件1的所述入光面平行的所述第一界面,所述光阑6设置在所述第二光学元件2的第一界面与所述入射光之间,用于阻挡所述入射光11进入所述第二光学元件2。
优选的,第二光学元件2的第一界面与所述第一光学元件1的入光面平齐。
第二实施例
如图2和图3所示,第二实施例主要用于说明本实用新型第二方面提供的技术方案。第二方面提供了多个技术方案,下文将通过第二实施例依次阐明这些技术方案以及各技术方案之间的组合方案。具体如下:
在第一实施例的基础上,第二实施例提供了一种偏振分光结构,包括:
多个第一实施例中所述的偏振分光器件;以及
有透光性的第二粘结元件7,相邻的两个所述偏振分光器件之间通过所述第二粘结元件7粘接。
本实施例中包括多个偏振分光器件,能够实现对多个入射光11源的偏振分光工作。
需要说明的是,第二粘结元件7与第一粘结元件3的作用功能类似,因此,关于第二粘结元件7的选用可以参照第一实施例中第一粘结元件3的介绍。
在某些具体的实施方式中,为了更好地将第一光线12与第二光线13分离,可以将偏振分光膜4设置为容许第二光线13通过,以及阻挡第一光线12通过并反射第一光线12。由于第一光学元件1的反射界面的存在,使得经偏振分光膜5反射的第一光线12直接经反射界面的反射膜5反射,从而避免了第一光线12进入到第二粘结元件7中。也就是,第一光线12即不进入第一粘结元件3也不进入第二粘结元件7。
进一步的,偏振分光结构还包括与所述偏振分光器件数量对应的多个第一转化元件9;其中,在每个所述偏振分光器件中,所述第一转化元件9设置为覆盖所述第二传输元件2的出射侧,用于将所述第二光线13转化为所述第一光线12。
需要说明的是,第一转化元件9用于对偏振光进行旋转,从而改变光线的偏正态。本实施例中,第一转化元件9优选为半玻片。
优选的,第一转换元件9通过第三粘结元件10粘结在第二传输元件2出光侧,其中,第三粘结元件可以是胶水。
进一步的,所述偏振分光结构还包括第二转化元件14;其中,所述第二转化元件14覆盖所有所述偏振分光组件的出射侧,用于将所述第一光线转化为所述第二光线。
其中,所述第二转化元件14设置在整个偏振分光结构的出射侧,用于将第一光学元件1和第二光学元件2出射的所述第一光线12转化为所述第二光线13。是否设置第二转化元件14根据实际光路中需要的光束的偏振特性进行设定。
同样的,所述第二转化元件与所述第一转化元件9的功能作用类似,可以参照第一转化元件9设计,优选为半玻片。
第三实施例
第三实施例主要是为了说明本实用新型第三方面的技术方案。
第三实施例提供了一种投影设备,包含
第一实施例中所述的偏振分光器件;或者
第二实施例中所述的偏振分光结构。
第三方面的技术方案主要是针对本实用新型可能出现的应用设计的。例如如下所述:
在投影显示技术领域中,按照投影显示使用的空间光调制器的不同类别可以分为LCD投影显示、LCOS投影显示以及DLP投影显示等。
其中,透射式LCD显示器件和反射式硅基LCOS显示器件需要在偏振光下才能工作,而白光光源为非偏振态的自然光,不能直接照明这两种显示器件。所以在前述两种显示器件对自然光的应用中,需要借助起偏器件将自然光转变为偏振光。
与前述两种显示器件不同的是,DLP投影显示系统的空间光调制器没有要求为偏振光。尽管如此,DLP投影显示系统在实现某些工作机能时,仍然存在一些与偏振光相关的问题。例如在应用3D技术进行显示时,就需要对光进行偏振转化。这里存在的问题是,如果从DLP投影设备的镜头出射的光进行偏振转换,会损失掉一半的光;而如果能在光源中对光进行起偏,使从空间光调制器出射的调制光为偏振光,则可以提高3D显示系统中的光利用效率,并且可以简化3D放映设备的结构。另外,偏振光在透过分光合光棱镜时,其光谱具有更窄的过渡区间,可以提高宽谱光(比如荧光)的利用效率,提高投影设备整机的能效。
入射到空间光调制器的光源一般包括激光与荧光两种,其中,荧光并没有特定的偏振方向,需要对其进行偏振分光后,才能应用到上述场景中。而激光,则可以对其偏振态进行良好的控制,将其应用到上述场景中时,可以不必对光源进行偏振分光工作,直接选取偏振态的激光。具体的技术方案可以参照第一实施例、第二实施例以及第三实施例。
以上具体实施方式对本实用新型进行了详细的说明,但这些并非构成对本实 用新型的限制。本实用新型的保护范围并不以上述实施方式为限,但凡本领域普通技术人员根据本实用新型所揭示内容所作的等效修饰或变化,皆应纳入权利要求书中记载的保护范围内。

Claims (11)

  1. 一种偏振分光器件,其特征在于,包括:
    第一光学元件,所述第一光学元件包括入光面、偏振分光界面和反射界面,所述偏振分光界面和所述反射界面对应设置,其中,
    入射光经所述入光面入射至所述第一光学元件,并经所述偏振分光界面分束成第一光线和第二光线,其中,所述第一光线经所述偏振分光界面反射后入射至所述反射界面,并经所述反射界面反射后从所述第一光学元件出射,所述第二光线经所述偏振分光界面透射后自所述第一光学元件出射。
  2. 根据权利要求1所述的分光器件,其特征在于,所述偏振分光界面和所述反射界面平行设置,所述入光面位于所述偏振分光界面和所述反射界面之间。
  3. 根据权利要求1所述的分光器件,其特征在于,还包括第二光学元件和第一粘结元件,其中,
    所述第二光学元件通过所述第一粘结元件与所述第一光学元件的所述偏振分光界面粘合,以使从所述偏振分光界面透射的所述第二光线进入所述第二光学元件,并经所述第二光学元件引导后出射,且所述偏振分光界面反射的所述第一光线能够不经过所述第一粘结元件。
  4. 根据权利要求3所述的偏振分光器件,其特征在于,所述第二光学元件与所述第一光学元件粘合的界面为粘合界面,所述粘合界面上涂覆有增透膜。
  5. 根据权利要求3所述的偏振分光器件,其特征在于,所述第一光学元件与所述第二光学元件分别设置为由偏振分光棱镜构成。
  6. 根据权利要求3所述的偏振分光器件,其特征在于,所述偏振分光器件还包括光阑;
    所述第二光学元件包括与所述第一光学元件的所述入光面平行的所述第一界面,所述光阑设置在所述第二光学元件的第一界面与所述入射光之间,用于阻挡所述入射光进入所述第二光学元件。
  7. 一种偏振分光结构,其特征在于,包括:
    多个权利要求3-6任一所述的偏振分光器件;以及
    第二粘结元件,相邻的两个所述偏振分光器件之间通过所述第二粘结元件粘 接,所述第一光学元件中的所述反射界面将所述第一光线反射后出射,所述第一光线不经过所述第二粘结元件。
  8. 根据权利要求7所述的偏振分光结构,其特征在于,所述偏振分光结构还包括与所述偏振分光组件数量对应的多个第一转化元件;
    其中,在每个所述偏振分光组件中,所述第一转化元件设置为覆盖所述第二光学元件的出射侧,用于将所述第二光学元件出射的所述第二光线转化为所述第一光线。
  9. 根据权利要求8所述的偏振分光结构,其特征在于,所述第一转化元件通过第三粘结元件粘结在所述第二光学元件出射所述第二光线的出射界面。
  10. 根据权利要求8所述的偏振分光结构,其特征在于,所述偏振分光结构还包括第二转化元件;
    其中,所述第二转化元件覆盖所有所述偏振分光组件的出射侧,用于将所述第一光线转化为所述第二光线。
  11. 一种投影设备,其特征在于,包括:
    权利要求1-6所述的偏振分光器件,或者所述7-10所述的偏振分光结构。
PCT/CN2020/137091 2019-12-31 2020-12-17 偏振分光器件、偏振分光结构和投影设备 WO2021135960A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/790,486 US20230048432A1 (en) 2019-12-31 2020-12-17 Polarization splitting device, polarization splitting structure and projection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201922476554.X 2019-12-31
CN201922476554.XU CN211506152U (zh) 2019-12-31 2019-12-31 偏振分光器件、偏振分光结构和投影设备

Publications (1)

Publication Number Publication Date
WO2021135960A1 true WO2021135960A1 (zh) 2021-07-08

Family

ID=72397622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137091 WO2021135960A1 (zh) 2019-12-31 2020-12-17 偏振分光器件、偏振分光结构和投影设备

Country Status (3)

Country Link
US (1) US20230048432A1 (zh)
CN (1) CN211506152U (zh)
WO (1) WO2021135960A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211506152U (zh) * 2019-12-31 2020-09-15 深圳光峰科技股份有限公司 偏振分光器件、偏振分光结构和投影设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128241A (ja) * 2003-10-23 2005-05-19 Enplas Corp 偏光変換素子
CN101539668A (zh) * 2008-03-21 2009-09-23 中国科学院西安光学精密机械研究所 分光棱镜
US20120268718A1 (en) * 2011-04-20 2012-10-25 Seiko Epson Corporation Polarization conversion element, polarization converting unit, and projecting apparatus
CN105681592A (zh) * 2016-03-28 2016-06-15 联想(北京)有限公司 成像装置、成像方法和电子设备
CN209148986U (zh) * 2018-11-30 2019-07-23 福州高意光学有限公司 在wss中实现偏振转化的光学器件、偏振转化器、wss结构
CN211506152U (zh) * 2019-12-31 2020-09-15 深圳光峰科技股份有限公司 偏振分光器件、偏振分光结构和投影设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128241A (ja) * 2003-10-23 2005-05-19 Enplas Corp 偏光変換素子
CN101539668A (zh) * 2008-03-21 2009-09-23 中国科学院西安光学精密机械研究所 分光棱镜
US20120268718A1 (en) * 2011-04-20 2012-10-25 Seiko Epson Corporation Polarization conversion element, polarization converting unit, and projecting apparatus
CN105681592A (zh) * 2016-03-28 2016-06-15 联想(北京)有限公司 成像装置、成像方法和电子设备
CN209148986U (zh) * 2018-11-30 2019-07-23 福州高意光学有限公司 在wss中实现偏振转化的光学器件、偏振转化器、wss结构
CN211506152U (zh) * 2019-12-31 2020-09-15 深圳光峰科技股份有限公司 偏振分光器件、偏振分光结构和投影设备

Also Published As

Publication number Publication date
CN211506152U (zh) 2020-09-15
US20230048432A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
JP3226588U (ja) コンパクトなコリメーティング画像プロジェクターを備える光学システム
US10386563B2 (en) Illuminator for a wearable display
JP7402543B2 (ja) ダイクロイックビームスプリッタカラーコンバイナを有する光学デバイスおよび光学システム
JP2021103317A5 (zh)
JP6023775B2 (ja) 表示モジュールおよび導光装置
KR20230079479A (ko) Loe를 통한 lcos 조명
JP2019512108A5 (zh)
KR101747286B1 (ko) 디스플레이 모듈
JPH03103840A (ja) 投射装置
JPH02239219A (ja) 液晶表示システム用照明系
JPH03122631A (ja) 偏光光源及び投写型表示装置
JPH0527088B2 (zh)
CN109445111B (zh) 光学设备
WO2021135960A1 (zh) 偏振分光器件、偏振分光结构和投影设备
US9645477B2 (en) Polarization LED module, and lighting device and projector having the same
TW202006408A (zh) 光學裝置及其製造方法
JP7447890B2 (ja) 投射型表示装置
KR100474918B1 (ko) 편광 변환 장치
WO2021063144A1 (zh) 一种光学引擎系统及投影系统
CN218240562U (zh) 一种光学系统及近眼显示设备
CN216310513U (zh) 照明系统及投影装置
JP2020021540A (ja) 光源装置およびプロジェクター
JP2006525542A (ja) 投射システム
TWI841254B (zh) 光學裝置
CN207502841U (zh) 立体图像显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908861

Country of ref document: EP

Kind code of ref document: A1