WO2021135852A1 - 一种塑料套管使用寿命的预测方法 - Google Patents

一种塑料套管使用寿命的预测方法 Download PDF

Info

Publication number
WO2021135852A1
WO2021135852A1 PCT/CN2020/134452 CN2020134452W WO2021135852A1 WO 2021135852 A1 WO2021135852 A1 WO 2021135852A1 CN 2020134452 W CN2020134452 W CN 2020134452W WO 2021135852 A1 WO2021135852 A1 WO 2021135852A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
temperature
time
aging
value
Prior art date
Application number
PCT/CN2020/134452
Other languages
English (en)
French (fr)
Inventor
朱世岳
杨君平
陈湘
Original Assignee
富适扣铁路器材(浙江)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富适扣铁路器材(浙江)有限公司 filed Critical 富适扣铁路器材(浙江)有限公司
Publication of WO2021135852A1 publication Critical patent/WO2021135852A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/18Performing tests at high or low temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • G01N3/44Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid the indentors being put under a minor load and a subsequent major load, i.e. Rockwell system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/001Impulsive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0023Bending
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0076Hardness, compressibility or resistance to crushing
    • G01N2203/0078Hardness, compressibility or resistance to crushing using indentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations
    • G01N2203/0218Calculations based on experimental data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0274Tubular or ring-shaped specimens

Definitions

  • the invention belongs to the technical field of plastic sleeves, and relates to a method for predicting the service life of a plastic sleeve.
  • Plastic bushings are widely used, and will gradually deteriorate in long-term storage, and eventually lose their use value; accurate prediction of its service life with scientific methods is of vital practical significance for its safe and reliable use; actual storage methods are used to determine its storage Period, the advantages are simple and easy to implement, reliable data, but it takes a long time, far from meeting the needs of screening formulas and identifying material properties.
  • Chinese Patent Publication Number: CN106323848B, Authorized Announcement Date: 2018-11-02 discloses a method for predicting the expected service life of a metal pipeline composite anticorrosive coating. The method includes the following steps:
  • the metal pipes to be tested are made into samples and buried in the test pit.
  • the number of parallel samples of the same sample buried in the soil of the same typical area is 6;
  • A Determine the expected service life of the composite anticorrosive coating of the tested sample as A .
  • the prediction method in the above-mentioned patent documents is mainly applied to the expected service life of the composite anticorrosive coating of metal pipes, and cannot be suitable for plastic casing; moreover, the method requires six years, takes too long, and is not widely used and convenient enough. The accuracy is not high enough.
  • the present invention provides a method for predicting the service life of plastic sleeves.
  • the technical problem to be solved by the present invention is: how to provide a precise, reliable and short time-consuming method for the service life of plastic sleeves. Forecasting method.
  • a method for predicting the service life of a plastic sleeve which is characterized in that the predicting method includes the following steps:
  • the aging test temperature in this technical solution selects the test temperature suitable for evaluating the performance of the plastic casing material, conducts the aging test at at least 3 temperatures, and obtains the service life with the required accuracy through the extrapolation method, so
  • the minimum temperature should be selected so that the time required to reach the critical value is at least 1000h.
  • the maximum temperature selected should be such that the time to reach the critical value is not less than 100h.
  • hot air aging test is used to quickly estimate the indoor storage period of plastic sleeve material based on changes in the physical and mechanical properties of the plastic sleeve material; the change in the selected performance of the plastic sleeve is measured and achieved through hot air aging.
  • the hardness (Rockwell) value is measured according to the GB/T3398.2 standard, the tensile strength value is measured according to the GB/T1447 standard, the tensile strength test is carried out according to the GB/T1447 standard, and the bending strength value is measured according to the GB/9341 standard, and the measurement is not notched impact
  • the strength value shall be carried out according to the GB/T1043 standard.
  • the data measured by the above methods are more accurate and reliable.
  • step b In the method for predicting the service life of the plastic sleeve, in the step b, two sets of data are made for each test, and the time t(h) when the average change rate of each performance index of the test items reaches 50% is recorded.
  • the observation period should be encrypted to ensure the accuracy and reliability of the time t(h).
  • step a take 5 unnotched impact plastic casing splines to test, test the initial value of the unnotched impact strength, and record the test results and take the average value;
  • the unnotched impact strength is selected as the critical value, which is 50% of the original measured value, as the service life of the plastic sleeve.
  • the criterion of the limit since the sample still maintains a certain unnotched impact strength when it fails at high temperature and is not lower than the index value, the unnotched impact strength is selected as the critical value, which is 50% of the original measured value, as the service life of the plastic sleeve.
  • step a take the 5 type I splines with the hardness to be tested, conduct the tensile strength test, record the data and take the average value, and obtain the tensile test.
  • the service life of the plastic casing can be obtained by recording the ultimate failure force through the pull-out test.
  • the above-mentioned three different temperature values are also used for the aging test. According to the TB/T 3395 standard, each test takes 5 pieces of D2 embedded casing for ultimate pull-out test, and records the final failure force value. Record the time when the average value of the ultimate pull-out resistance of the D2 embedded casing reaches 50% or 110KN. Calculate the service life of the plastic sleeve according to the measurement of the time-temperature limit of GB/T 7142-2002 after long-term thermal exposure of plastics.
  • the present invention uses hot air aging to determine the change in the selected performance of the plastic sleeve and the time to reach the specified critical value, and uses the Arrhenius equation to calculate the service life of the plastic sleeve. Scientific and reliable theoretical basis and accurate prediction results, and it takes less time.
  • Figure 1 is a corresponding graph of the unnotched impact strength performance retention rate y (%) vs. the aging time x (h) in Example 1.
  • Fig. 2 is the logarithm logt of the critical value time-the reciprocal 1/T of the absolute temperature of the test temperature in the first embodiment.
  • Fig. 3 is a corresponding graph of the tensile strength performance retention rate y (%) vs. the aging time x (h) in the second embodiment.
  • Fig. 4 is a graph showing the relationship between log t of the critical value time and the reciprocal 1/T of the absolute temperature of the test temperature in the second embodiment.
  • This embodiment provides a method for predicting the service life of a plastic sleeve, which is characterized in that the predicting method includes the following steps:
  • step a and step b if the hardness (Rockwell) value is measured, take 5 I-type splines, measure 5 points per piece, and record the data to take the average value; if the tensile strength value is measured, then Take 5 I-type specimens with hardness to test, record the data and take the average value; if the bending strength value is determined, take 5 bend specimens for the test, and the test results are averaged and recorded; if the test is not notched impact For the strength value, take 5 unnotched impact splines for testing, record the test results and take the average value.
  • the hardness (Rockwell) value if the hardness (Rockwell) value is measured, take 5 I-type splines, measure 5 points per piece, and record the data to take the average value; if the tensile strength value is measured, then Take 5 I-type specimens with hardness to test, record the data and take the average value; if the bending strength value is determined, take 5 bend specimens for the test, and the test results
  • the hardness (Rockwell) value is measured according to the GB/T3398.2 standard, the tensile strength value is measured according to the GB/T1447 standard, the tensile strength test is carried out according to the GB/T1447 standard, and the bending strength value is measured according to the GB/9341 standard, and the measurement is not notched impact
  • the strength value shall be carried out according to the GB/T1043 standard.
  • the data measured by the above methods are more accurate and reliable.
  • step b select the following 4 different aging temperatures:
  • the aging test temperature in this embodiment selects the test temperature suitable for evaluating the performance of the plastic casing material.
  • the aging test is carried out at at least 3 temperatures, the service life is obtained with the required accuracy by the extrapolation method, and the hot air aging test is used , According to the change of the physical and mechanical properties of the plastic casing material, the storage period of the plastic casing material in the room can be quickly estimated; the change of the selected performance of the plastic casing and the time to reach the specified critical value are measured by hot air aging, and the use of A
  • the Lenius equation diagram to estimate the service life of plastic casing has scientific and reliable theoretical basis and accurate prediction results, and it takes less time.
  • the unnotched impact strength is used as a reference basis for estimating the service life of the plastic sleeve.
  • This embodiment is roughly the same as the first embodiment, but the difference is that in this embodiment, the tensile strength is selected as the critical value when the tensile strength drops to 50% of the original measured value, which is used as the evaluation performance to estimate the service life of the casing.
  • the relationship between the log t of the corresponding critical value time and the reciprocal 1/T of the absolute temperature of the test temperature can be obtained from this.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

一种塑料套管使用寿命的预测方法,包括以下步骤:a、取样:选取若干组塑料套管料的样条,测定其硬度(洛氏)或拉伸强度或弯曲强度或无缺口冲击强度的初始值;b、老化测定:在70℃~200℃的区间范围内选取至少3个不同温度T(K),将上述样条分组分别放入选取的至少3个不同温度的老化房进行老化试验,记录上述试验项点各性能指标值的变化率达到50%的时间点t(h),该时间点t(h)为临界值时间;c、分析计算:利用阿累尼乌斯方程和外推法推算出塑料套管在常温下的贮存寿命。该预测方法准确可靠,花费时间少。

Description

一种塑料套管使用寿命的预测方法 技术领域
本发明属于塑料套管技术领域,涉及一种塑料套管使用寿命的预测方法。
背景技术
塑料套管使用广泛,在长期贮存中会逐渐变质,最终失去使用价值;用科学的方法准确预测其使用寿命对其安全可靠的使用有着至关重要的现实意义;用实际贮存的方法确定其贮存期,优点是简单易行,数据可靠,但要经历很长时间,远不能满足筛选配方和鉴定材料性能好坏的需要。
中国专利(公开号:CN106323848B,授权公告日:2018-11-02)公开了一种金属管道复合防腐涂层预期使用寿命的预测方法,该方法包括下述步骤:
(一)选取典型地区的土壤作为金属管道埋设的实验场所,并在选取的典型地区的土壤内挖掘埋设试样的试坑;
(二)将待测的金属管道制成试样埋设在所述试坑内,同一典型地区的土壤内同种试样埋设平行样数量为6个;
(三)按照预定的开挖年限1年、2年、4年、6年将上述试样挖出,并将试样表面的泥土清除;
(四)将试样干燥,然后计算统计试样表面红色腐蚀区域占试样总表面积的比例S1及试样表面有机涂层剥落露出下面锌层区域占试样总表面积的比例S2;
(五)将试样表面的腐蚀产物去除干净,观察试样的金属基体表面有无腐蚀坑,如果有,测量腐蚀坑的深度,当腐蚀坑的深度小于0.3mm时,进行下述步骤;
(六)以腐蚀年限为横坐标,复合涂层的当量腐蚀面积为S,则S=S1+0.5S2,以S为纵坐标,计算拟合出涂层腐蚀面积的一元二次方程式Y=aX+bX+c,确定方程式的各个项的系数,利用方程式预测涂层当量腐蚀面积达到100%时的年限,此处假设为A,确定所测试试样复合防腐涂层的预期使用寿命年限为A。
上述专利文献中的预测方法主要运用于金属管道复合防腐涂层预期使用寿命,不能适合于塑料套管;而且该方法需要六年时间,花费时间太长,使用不够广泛和方便,另外该预测方法的精准度不够高。
发明内容
本发明针对现有的技术存在的上述问题,提供一种塑料套管使用寿命的预测方法,本发明所要解决的技术问题是:如何针对塑料套管的使用寿命提供一种精准可靠且花费时间短的预测方法。
本发明的目的可通过下列技术方案来实现:
一种塑料套管使用寿命的预测方法,其特征在于,该预测方法包括以下步骤:
a、取样:选取若干组塑料套管料的样条,测定其硬度(洛氏)或拉伸强度或弯曲强度或无缺口冲击强度的初始值;
b、老化测定:在70℃~200℃的区间范围内选取至少3个不同温度T(K),将上述样条分组分别放入选取的至少3个不同温度的老化房进行老化试验,每个温度条件下选取至少5个时间节点按照步骤a中的方法多次测定与步骤a中对应的样条硬度(洛氏)或拉伸强度或弯曲强度或无缺口冲击强度的数值,并记录上述试验项点各性能指标值的变化率达到50%的时间点t(h),该时间点t(h)为临界值时间;
c、分析计算:利用阿累尼乌斯方程形成临界值时间的对数 log t与测试温度的绝对温度的倒数1/T之间的关系图和线性方程式;利用外推法并根据上述线性方程式推算出塑料套管在常温下的贮存寿命。
其原理如下:本技术方案中的老化试验温度选择适合于评价塑料套管材料性能的试验温度,在至少3个温度下进行老化试验,通过外推法以需要的精确度求得使用寿命,所选择的最低温度应使达到临界值所需的时间至少为1000h,同样的,所选择的最高温度应使达到临界值的时间不小于100h。本技术方案中利用热空气老化试验,根据塑料套管材料的物理机械性能等的变化来快速估算塑料套管材料在室内的贮存期;通过热空气老化测定塑料套管选定性能的变化及达到指定临界值的时间,并利用阿累尼乌斯方程图来推算塑料套管的使用寿命,具有科学可靠的理论依据和精准的预测结果,而且所花费的时间少。
在上述的塑料套管使用寿命的预测方法中,所述步骤a和步骤b中,若测定其硬度(洛氏)值,则取5根I型样条,每件测5个点,记录数据取平均值;若测定拉伸强度值,则取打完硬度的5根I型样条进行试验,记录数据并取平均值;若测定弯曲强度值,则取5根弯曲样条进行试验,试验结果取平均值并记录;若测定无缺口冲击强度值,则取5根无缺口冲击样条进行试验,记录试验结果取平均值。测硬度(洛氏)值时按GB/T3398.2标准进行,测拉伸强度值时按GB/T1447标准进行拉伸强度试验,测弯曲强度值时按GB/9341标准进行,测无缺口冲击强度值时按GB/T1043标准进行。通过上述方法测出的各项数据更加精准可靠。
在上述的塑料套管使用寿命的预测方法中,所述步骤b中,选取以下4个不同的老化温度:
①、选取温度110℃(绝对温度383.15K),该温度下分别选取0h、1560h(65d)、2016h(84d)、2496h(104d)、2592h(108d)、 2712h(113d)共6个时间节点进行测量;
②、选取温度125℃(绝对温度398.15K),该温度下分别选取0h、1008h(42d)、1560h(65d)、1632h(68d)、1704h(71d)、1776h(74d)共6个时间节点进行测量;
③、选取温度150℃(绝对温度423.15K),该温度下分别选取0h、96h(4d)、168h(7d)、240h(10d)、312h(13d)、360h(15d)共6个时间节点进行测量;
④、选取温度90℃(绝对温度363.15K),该温度下分别选取0h、1008h(42d)、3000h(125d)、5016h(209d)、5088h(212d)、5160h(215d)共6个时间节点进行测量。
在上述的塑料套管使用寿命的预测方法中,所述步骤b中,每个试验做2组数据,记录上述试验项点各性能指标平均值的变化率达到50%的时间t(h),最长时间t(h)≥1000h,最短时间t(h)≥100h。进一步的,在某一项性能指标变化率接近于50%时应加密观测周期,从而保证时间t(h)的精准可靠性。
在上述的塑料套管使用寿命的预测方法中,所述步骤a中,取5根无缺口冲击的塑料套管样条进行试验,测试无缺口冲击强度的初始值,记录试验结果取平均值;所述步骤b中,根据样品选取3个老化试验温度(110℃、125℃、150℃)相应的无缺口冲击强度随时间变化的测试结果,作出无缺口冲击强度性能保持率%--老化时间h对应图,无缺口冲击强度性能保持率y(%)--老化时间x(h)的关系式为:当老化试验温度为110℃时,y=2E-05x 2-0.0954x+99.628;当老化试验温度为125℃时,y=5E-05x 2-0.1508x+99.676;当老化试验温度为150℃时,y=0.0017x 2-0.8432x+89.881;由此得出临界值时间的对数y′(logt)--测试温度的绝对温度的倒数x′(1/T)关系为:y′=4.3218x′-8.4578;由该公式得出常温下临界值时间-即塑料套管的使用寿命。
本技术方案中由于样品在高温下失效时仍保持一定的无缺口冲击强度并且不低于指标值,所以选取无缺口冲击强度下降到原始实测值的50%为临界值,作为塑料套管使用寿命极限的评判标准。
在上述的塑料套管使用寿命的预测方法中,所述步骤a中,取打完硬度的5根I型样条进行试验,进行拉伸强度试验,记录数据并取平均值,得出拉伸强度的初始值;所述步骤b中,根据样品选取3个老化试验温度(110℃、125℃、150℃)相应的拉伸强度随时间变化的测试结果,作出拉伸强度性能保持率%--老化时间h对应图,拉伸强度性能保持率y(%)--老化时间x(h)的关系式为:当老化试验温度为110℃时,y=2E-05x 2-0.0954x+99.622;当老化试验温度为125℃时,y=5E-05x 2-0.151x+99.679;当老化试验温度为150℃时,y=0.0017x 2-0.8411x+89.869;由此得出临界值时间的对数y′(logt)--测试温度的绝对温度的倒数x′(1/T)关系为:y′=4.3695x′-8.5436;由该公式得出常温下临界值时间-即塑料套管的使用寿命。
在上述的塑料套管使用寿命的预测方法中,作为第三种方案,还可以通过抗拔试验,记录最终破坏的力值得出塑料套管的使用寿命。也选用上述三种不同的温度值进行老化试验,按TB/T 3395标准,每次试验取5件D2预埋套管进行极限抗拔试验,记录最终破坏的力值。记录D2预埋套管极限抗拔力平均值的变化率达到50%或110KN时的时间。根据GB/T 7142-2002塑料长期热暴露后时间-温度极限的测定来计算塑料套管的使用寿命。
与现有技术相比,本发明中通过热空气老化测定塑料套管选定性能的变化及达到指定临界值的时间,并利用阿累尼乌斯方程图来推算塑料套管的使用寿命,具有科学可靠的理论依据和精准的预测结果,而且所花费的时间少。
附图说明
图1是实施例一中无缺口冲击强度性能保持率y(%)--老化时间x(h)的对应图。
图2是实施例一中临界值时间的对数logt--测试温度的绝对温度的倒数1/T关系图。
图3是实施例二中拉伸强度性能保持率y(%)--老化时间x(h)的对应图。
图4是实施例二中临界值时间的对数logt--测试温度的绝对温度的倒数1/T关系图。
具体实施方式
以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例一
本实施例提供一种塑料套管使用寿命的预测方法,其特征在于,该预测方法包括以下步骤:
a、取样:选取若干组塑料套管料的样条,测定其硬度(洛氏)或拉伸强度或弯曲强度或无缺口冲击强度的初始值;
b、老化测定:在70℃~200℃的区间范围内选取至少3个不同温度T(K),将上述样条分组分别放入选取的至少3个不同温度的老化房进行老化试验,每个温度条件下选取至少5个时间节点按照步骤a中的方法多次测定与步骤a中对应的样条硬度(洛氏)或拉伸强度或弯曲强度或无缺口冲击强度的数值,并记录上述试验项点各性能指标值的变化率达到50%的时间点t(h),该时间点t(h)为临界值时间;
c、分析计算:利用阿累尼乌斯方程形成临界值时间的对数log t与测试温度的绝对温度的倒数1/T之间的关系图和线性方程式;利用外推法并根据上述线性方程式推算出塑料套管在常温 下的贮存寿命。
进一步的,步骤a和步骤b中,若测定其硬度(洛氏)值,则取5根I型样条,每件测5个点,记录数据取平均值;若测定拉伸强度值,则取打完硬度的5根I型样条进行试验,记录数据并取平均值;若测定弯曲强度值,则取5根弯曲样条进行试验,试验结果取平均值并记录;若测定无缺口冲击强度值,则取5根无缺口冲击样条进行试验,记录试验结果取平均值。测硬度(洛氏)值时按GB/T3398.2标准进行,测拉伸强度值时按GB/T1447标准进行拉伸强度试验,测弯曲强度值时按GB/9341标准进行,测无缺口冲击强度值时按GB/T1043标准进行。通过上述方法测出的各项数据更加精准可靠。
步骤b中,选取以下4个不同的老化温度:
①、选取温度110℃(绝对温度383.15K),该温度下分别选取0h、1560h(65d)、2016h(84d)、2496h(104d)、2592h(108d)、2712h(113d)共6个时间节点进行测量;
②、选取温度125℃(绝对温度398.15K),该温度下分别选取0h、1008h(42d)、1560h(65d)、1632h(68d)、1704h(71d)、1776h(74d)共6个时间节点进行测量;
③、选取温度150℃(绝对温度423.15K),该温度下分别选取0h、96h(4d)、168h(7d)、240h(10d)、312h(13d)、360h(15d)共6个时间节点进行测量;
④、选取温度90℃(绝对温度363.15K),该温度下分别选取0h、1008h(42d)、3000h(125d)、5016h(209d)、5088h(212d)、5160h(215d)共6个时间节点进行测量。
每个试验做2组数据,记录上述试验项点各性能指标平均值的变化率达到50%的时间t(h),最长时间t(h)≥1000h,最短时间t(h)≥100h,在某一项性能指标变化率接近于50%时应加密观测周期,从而保证时间t(h)的精准可靠性。
本实施例中的老化试验温度选择适合于评价塑料套管材料性能的试验温度,在至少3个温度下进行老化试验,通过外推法以需要的精确度求得使用寿命,利用热空气老化试验,根据塑料套管材料的物理机械性能等的变化来快速估算塑料套管材料在室内的贮存期;通过热空气老化测定塑料套管选定性能的变化及达到指定临界值的时间,并利用阿累尼乌斯方程图来推算塑料套管的使用寿命,具有科学可靠的理论依据和精准的预测结果,而且所花费的时间少。
具体来说,作为优选,本实施例中利用无缺口冲击强度作为评价性能推算塑料套管的使用寿命参考依据。
取5根无缺口冲击的塑料套管样条进行试验,测试无缺口冲击强度的初始值,记录试验结果取平均值;根据样品选取3个老化试验温度,分别为110℃、125℃和150℃,在这三种老化温度情况下做相应的无缺口冲击强度随时间变化的测试,如图1所示,根据测试结果作出无缺口冲击强度性能保持率%--老化时间h对应图,无缺口冲击强度性能保持率y(%)--老化时间x(h)的关系式为:当老化试验温度为110℃时,y=2E-05x 2-0.0954x+99.628;当老化试验温度为125℃时,y=5E-05x 2-0.1508x+99.676;当老化试验温度为150℃时,y=0.0017x 2-0.8432x+89.881;由图1可以得出相应温度下样品无缺口冲击强度保持率50%时的临界时间,见表1:
试验温度(绝对温度T) 1/T*1000 t(h) logt
110℃(383.15K) 2.609943886 594.24 2.773961882
125℃(398.15K) 2.511616225 299.58 2.476512816
150℃(423.15K) 2.36322817 52.95 1.723865964
表1无缺口冲击强度性能保持率50%时的临界时间
无缺口冲击在相应的测试温度达到临界值时间的对数logt与相应的测试温度的绝对温度的倒数1/T,见表2:
Figure PCTCN2020134452-appb-000001
Figure PCTCN2020134452-appb-000002
表2达到临界值时间的对数logt与相应的测试温度的绝对温度的倒数1/T
如图2所示,由此得出临界值时间的对数y′(logt)--测试温度的绝对温度的倒数x′(1/T)关系为:y′=4.3218x′-8.4578;由该公式得出常温下(23℃)临界值时间-即塑料套管的使用寿命为15.24年,见表3:
T 1/T Year h
110℃ 383.15 2.609943886 0.06 505
125℃ 398.15 2.511616225 0.03 266
150℃ 423.15 2.36322817 0.01 101
23℃ 296.15 3.376667229 15.24 131400
表3
实施例二
本实施例与实施例一大致相同,不同之处在于,本实施例中选取拉伸强度强度下降到原始实测值的50%为临界值,以此作为评价性能推算套管使用寿命。
取打完硬度的5根I型样条进行试验,进行拉伸强度试验,记录数据并取平均值,得出拉伸强度的初始值;根据样品选取3个老化试验温度(110℃、125℃、150℃)相应的拉伸强度随时间变化的测试结果,作出拉伸强度性能保持率%--老化时间h对应图,如图3所示,拉伸强度性能保持率y(%)--老化时间x(h)的关系式为:当老化试验温度为110℃时,y=2E-05x 2-0.0954x+99.622;当老化试验温度为125℃时,y=5E-05x 2-0.151x+99.679;当老化试验温度为150℃时,y=0.0017x 2-0.8411x+89.869;由图3可以得出相应温度下样品拉伸强度保持率50%时的临界时间,见表4:
试验温度 1/T*1000 t(h) Log t
110℃(383.15K) 2.609943886 594.15 2.773896101
125℃(398.15K) 2.511616225 375.75 2.574898989
150℃(423.15K) 2.36322817 53.1 1.725094521
表4拉伸强度性能保持率50%时的临界时间
拉伸强度在相应的测试温度达到临界值时间的对数log t与相应的测试温度的绝对温度的倒数1/T,见表5:
Figure PCTCN2020134452-appb-000003
表5达到临界值时间的对数log t与相应的测试温度的绝对温度的倒数1/T
如图4所示,由此可得相应的临界值时间的对数log t对测试温度的绝对温度的倒数1/T的关系图。临界值时间的对数y′(logt)--测试温度的绝对温度的倒数x′(1/T)关系为:y′=4.3695x′-8.5436;由该公式得出常温(23℃)下临界值时间-即塑料套管的使用寿命为46.58年;见表6:
T 1/T Year h
110℃ 383.15 2.609943886 0.08 725
125℃ 398.15 2.511616225 0.03 270
150℃ 423.15 2.36322817 0.01 61
23℃ 296.15 3.376667229 46.58 408040
表6
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (6)

  1. 一种塑料套管使用寿命的预测方法,其特征在于,该预测方法包括以下步骤:
    a、取样:选取若干组塑料套管料的样条,测定其硬度(洛氏)或拉伸强度或弯曲强度或无缺口冲击强度的初始值;
    b、老化测定:在70℃~200℃的区间范围内选取至少3个不同温度T(K),将上述样条分组分别放入选取的至少3个不同温度的老化房进行老化试验,每个温度条件下选取至少5个时间节点按照步骤a中的方法多次测定与步骤a中对应的样条硬度(洛氏)或拉伸强度或弯曲强度或无缺口冲击强度的数值,并记录上述试验项点各性能指标值的变化率达到50%的时间点t(h),该时间点t(h)为临界值时间;
    c、分析计算:利用阿累尼乌斯方程形成临界值时间的对数log t与测试温度的绝对温度的倒数1/T之间的关系图和线性方程式;利用外推法并根据上述线性方程式推算出塑料套管在常温下的贮存寿命。
  2. 根据权利要求1所述的塑料套管使用寿命的预测方法,其特征在于,所述步骤a和步骤b中,若测定其硬度(洛氏)值,则取5根I型样条,每件测5个点,记录数据取平均值;若测定拉伸强度值,则取打完硬度的5根I型样条进行试验,记录数据并取平均值;若测定弯曲强度值,则取5根弯曲样条进行试验,试验结果取平均值并记录;若测定无缺口冲击强度值,则取5根无缺口冲击样条进行试验,记录试验结果取平均值。测硬度(洛氏)值时按GB/T3398.2标准进行,测拉伸强度值时按GB/T1447标准进行拉伸强度试验,测弯曲强度值时按GB/9341标准进行,测无缺口冲击强度值时按GB/T1043标准进行。
  3. 根据权利要求2所述的塑料套管使用寿命的预测方法,其特征在于,所述步骤b中,选取以下4个不同的老化温度:
    ①、选取温度110℃(绝对温度383.15K),该温度下分别选 取0h、1560h(65d)、2016h(84d)、2496h(104d)、2592h(108d)、2712h(113d)共6个时间节点进行测量;
    ②、选取温度125℃(绝对温度398.15K),该温度下分别选取0h、1008h(42d)、1560h(65d)、1632h(68d)、1704h(71d)、1776h(74d)共6个时间节点进行测量;
    ③、选取温度150℃(绝对温度423.15K),该温度下分别选取0h、96h(4d)、168h(7d)、240h(10d)、312h(13d)、360h(15d)共6个时间节点进行测量;
    ④、选取温度90℃(绝对温度363.15K),该温度下分别选取0h、1008h(42d)、3000h(125d)、5016h(209d)、5088h(212d)、5160h(215d)共6个时间节点进行测量。
  4. 根据权利要求3所述的塑料套管使用寿命的预测方法,其特征在于,所述步骤b中,每个试验做2组数据,记录上述试验项点各性能指标平均值的变化率达到50%的时间t(h),最长时间t(h)≥1000h,最短时间t(h)≥100h。
  5. 根据权利要求1所述的塑料套管使用寿命的预测方法,其特征在于,所述步骤a中,取5根无缺口冲击的塑料套管样条进行试验,测试无缺口冲击强度的初始值,记录试验结果取平均值;所述步骤b中,根据样品选取3个老化试验温度(110℃、125℃、150℃)相应的无缺口冲击强度随时间变化的测试结果,作出无缺口冲击强度性能保持率%--老化时间h对应图,无缺口冲击强度性能保持率y(%)--老化时间x(h)的关系式为:当老化试验温度为110℃时,y=2E-05x 2-0.0954x+99.628;当老化试验温度为125℃时,y=5E-05x 2-0.1508x+99.676;当老化试验温度为150℃时,y=0.0017x 2-0.8432x+89.881;由此得出临界值时间的对数y′(logt)--测试温度的绝对温度的倒数x′(1/T)关系为:y′=4.3218x′-8.4578;由该公式得出常温下临界值时间-即塑料套管的使用寿命。
  6. 根据权利要求1所述的塑料套管使用寿命的预测方法,其特征在于,所述步骤a中,取打完硬度的5根I型样条进行试验,进行拉伸强度试验,记录数据并取平均值,得出拉伸强度的初始值;所述步骤b中,根据样品选取3个老化试验温度(110℃、125℃、150℃)相应的拉伸强度随时间变化的测试结果,作出拉伸强度性能保持率%--老化时间h对应图,拉伸强度性能保持率y(%)--老化时间x(h)的关系式为:当老化试验温度为110℃时,y=2E-05x 2-0.0954x+99.622;当老化试验温度为125℃时,y=5E-05x 2-0.151x+99.679;当老化试验温度为150℃时,y=0.0017x 2-0.8411x+89.869;由此得出临界值时间的对数y′(logt)--测试温度的绝对温度的倒数x′(1/T)关系为:y′=4.3695x′-8.5436;由该公式得出常温下临界值时间-即塑料套管的使用寿命。
PCT/CN2020/134452 2019-12-30 2020-12-08 一种塑料套管使用寿命的预测方法 WO2021135852A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911394802.4 2019-12-30
CN201911394802.4A CN111122343A (zh) 2019-12-30 2019-12-30 一种塑料套管使用寿命的预测方法

Publications (1)

Publication Number Publication Date
WO2021135852A1 true WO2021135852A1 (zh) 2021-07-08

Family

ID=70505031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134452 WO2021135852A1 (zh) 2019-12-30 2020-12-08 一种塑料套管使用寿命的预测方法

Country Status (2)

Country Link
CN (1) CN111122343A (zh)
WO (1) WO2021135852A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111122343A (zh) * 2019-12-30 2020-05-08 富适扣铁路器材(浙江)有限公司 一种塑料套管使用寿命的预测方法
CN112560237B (zh) * 2020-12-03 2023-05-09 中国市政工程华北设计研究总院有限公司 一种燃气胶管的寿命快速测试方法及其测试系统
CN112798507A (zh) * 2020-12-10 2021-05-14 中国船舶重工集团公司第七二五研究所 一种水下声学材料服役寿命预测方法
CN117589663B (zh) * 2024-01-18 2024-03-19 西南石油大学 一种用于油气田非金属管道的剩余寿命预测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158085A (zh) * 2015-10-26 2015-12-16 洛阳轴研科技股份有限公司 一种复合聚酰亚胺保持架储存寿命的预测方法
CN106124746A (zh) * 2016-06-15 2016-11-16 北京航空航天大学 一种基于失效物理的退化数据有效性分析方法
CN109490077A (zh) * 2018-12-19 2019-03-19 北京强度环境研究所 一种喷管橡胶堵盖加速贮存试验及寿命评估和验证方法
KR20190126970A (ko) * 2018-05-03 2019-11-13 주식회사 엘지화학 폴리머 소재의 물성 예측 방법
CN111122343A (zh) * 2019-12-30 2020-05-08 富适扣铁路器材(浙江)有限公司 一种塑料套管使用寿命的预测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158085A (zh) * 2015-10-26 2015-12-16 洛阳轴研科技股份有限公司 一种复合聚酰亚胺保持架储存寿命的预测方法
CN106124746A (zh) * 2016-06-15 2016-11-16 北京航空航天大学 一种基于失效物理的退化数据有效性分析方法
KR20190126970A (ko) * 2018-05-03 2019-11-13 주식회사 엘지화학 폴리머 소재의 물성 예측 방법
CN109490077A (zh) * 2018-12-19 2019-03-19 北京强度环境研究所 一种喷管橡胶堵盖加速贮存试验及寿命评估和验证方法
CN111122343A (zh) * 2019-12-30 2020-05-08 富适扣铁路器材(浙江)有限公司 一种塑料套管使用寿命的预测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI YANG: "Thermal analysis method to quickly evaluate the service life of food contact materials", MASTER THESIS, TIANJIN POLYTECHNIC UNIVERSITY, CN, 1 January 2018 (2018-01-01), CN, XP055826890, ISSN: 1674-0246 *
LI YING: "Life Prediction Methods of Polypropylene Materials", TECHNOLOGY WIND, no. 7, 1 January 2019 (2019-01-01), pages 136 - 136, XP055826891, ISSN: 1671-7341, DOI: 10.19392 /j.cnki.1671-7341.201919126 *
MAODONG LI, GUOHUA CHEN, BO YANG, YI YANG, XIAOZHI HUANG, GUOJIA HUANG: "Effect of Thermal Ageing on Properties of PE Pipes under Constant Internal Pressure", PLASTICS, BEIJING SULIAO YANJIUSUO, CN, vol. 48, no. 2, 1 January 2019 (2019-01-01), CN, pages 127 - 131, XP055826889, ISSN: 1001-9456 *

Also Published As

Publication number Publication date
CN111122343A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2021135852A1 (zh) 一种塑料套管使用寿命的预测方法
CN103063528B (zh) 一种高温构件剩余寿命现场快速测评方法
JP6825846B2 (ja) 保全支援装置、保全支援用プログラム、及び保全支援方法
CN111859658B (zh) 一种产品贮存寿命与可靠性评估方法
Evangelisti et al. Comparison between heat-flow meter and Air-Surface Temperature Ratio techniques for assembled panels thermal characterization
Alavi et al. A comprehensive model for predicting thermal cracking events in asphalt pavements
CN111551464A (zh) 一种测试油气输送用非金属材料老化性能的加速试验方法
CN111474109B (zh) 一种预测油气环境下热塑性塑料服役寿命试验方法
JP6413058B2 (ja) コンクリート構造物のはく落予測診断方法
Jyrkama et al. Statistical analysis and modelling of in-reactor diametral creep of Zr-2.5 Nb pressure tubes
Elizalde et al. Improving the detectability and confirmation of hidden surface corrosion on metal sheets using active infrared thermography
CN107016247B (zh) 一种确定试样干摩擦面温度场的方法
Schula et al. Fracture strength of glass, engineering testing methods and estimation of characteristic values
Xia et al. Surface residual stress detection method for aero-engine blades based on active thermal deformation excitation
US10634629B2 (en) Techniques for using oxide thickness measurements for predicting crack formation and growth history in high-temperature metallic components
He et al. Parameter estimation in multiaxial fatigue short crack growth model using hierarchical Bayesian linear regression
Aristide et al. , Assessment of the thermal conductivity of local building materials using Lee’s disc and hot strip devices
Parvez et al. Fuzzy C-based Automatic Defect Detection using Barker Coded Thermal Wave Imaging
Yuzevych et al. Diagnostics of temperature regime of technological environments of underground pipelines in the monitoring system of oil and gas enterprises for providing of safe exploitation
CN109506807B (zh) 一种稳态条件下的高温结构内部温度及壁厚同时测量方法
Ismon et al. Pitting hole evaluation by active infrared thermography in stainless steel 304
CN110907287A (zh) 一种复合材料电缆桥架寿命评估方法
CN111177863A (zh) 一种针对机械磨损过程随机特征的退化寿命预估方法
RU2316760C2 (ru) Способ теплового неразрушающего контроля многослойных объектов
Zhuravel’ Computer Analysis of the Distribution of Grain Sizes in the Structure of 12Kh1MF Steel After Operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909589

Country of ref document: EP

Kind code of ref document: A1