WO2021135689A1 - 一种便携式多目标通讯装置及通讯方法 - Google Patents

一种便携式多目标通讯装置及通讯方法 Download PDF

Info

Publication number
WO2021135689A1
WO2021135689A1 PCT/CN2020/129218 CN2020129218W WO2021135689A1 WO 2021135689 A1 WO2021135689 A1 WO 2021135689A1 CN 2020129218 W CN2020129218 W CN 2020129218W WO 2021135689 A1 WO2021135689 A1 WO 2021135689A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
entangled
unit
quantum
communication device
Prior art date
Application number
PCT/CN2020/129218
Other languages
English (en)
French (fr)
Inventor
孟濬
祝文君
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2021135689A1 publication Critical patent/WO2021135689A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C23/00Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/026Services making use of location information using location based information parameters using orientation information, e.g. compass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services

Definitions

  • the present invention relates to the field of communication technology, in particular to a portable multi-target communication device and a communication method.
  • Quantum entanglement is a quantum state composed of two or more particles. No matter how far apart these particles are, as long as one particle changes, the other particles will immediately "perceive" and change accordingly.
  • the quantum science experimental satellite Mozi was first successfully realized. After two quantum entangled photons are distributed to a distance of more than 1,200 kilometers apart, they can still maintain their quantum entanglement state; April 25, 2018 , Professor Mika, Aalto University, Finland The leading experimental team successfully quantum entangled two independently vibrating tympanic membranes. Through the superconducting microwave circuit, the two tympanic membranes interacted continuously for about 30 minutes at close to absolute temperature (-273K). This experiment demonstrated a macroscopic view. Quantum entanglement. The nonlocality embodied by quantum entanglement is one of the most amazing phenomena in quantum mechanics.
  • the purpose of the present invention is to provide a portable multi-target communication device with high precision, wide application range, strong portability, and safe information transmission and reception, and to provide a communication method based on the device in view of the shortcomings of the prior art.
  • a portable multi-target communication device which includes a collection unit, a processing unit, a receiving unit and a sending unit;
  • the collection unit is used to collect the acceleration, angle and current position data of the wearer's walking, and record the collection time, and transfer the collected data to the processing unit and the sending unit;
  • the processing unit is used to integrate the data transmitted by the acquisition unit and calculate the walking trajectory from the starting point to the current position;
  • the receiving unit and the sending unit both contain entangled quantum terminals.
  • the receiving unit and the sending unit adopt quantum entanglement communication.
  • the receiving unit in each communication device and the sending unit in other devices are paired with entangled quantum; Entangled quantum is backed up. If the entangled state of the currently used entangled quantum pair is destroyed, the backup entangled quantum pair will be used for communication;
  • the information collected by the collection unit is loaded to the entangled quantum terminal of the sending unit for coupling, it is sent to the receiving unit of other devices, and the receiving unit decouples the coupled information and transfers the received data to the processing unit to obtain (other devices) The location information of the sending unit.
  • the collection unit includes an inertial sensor, a GPS, and a synchronous clock.
  • the inertial sensor includes a gyroscope, an accelerometer, a barometer, and a magnetometer; the synchronous clock is used to record the time corresponding to the data collected by the collection unit, and the collection unit uses To obtain the status information of the wearer and transmit it to the processing unit and the sending unit; the status information includes the angle that the wearer has turned, the acceleration of walking, and the height of the current position.
  • the processing unit includes a main control chip for calculating, analyzing, and processing data received from the collection unit to obtain its own location information, and from the information received by the receiving unit to obtain location information of other devices; when the device can receive GPS When signal, integrate the information of the inertial sensor and record the GPS position trajectory, calculate the walking trajectory from the starting point to the current position, when the GPS signal cannot be received, integrate the information of the inertial sensor, calculate the walking trajectory from the starting point to the current position, the current device’s
  • the location information and the location information of other devices can be obtained from the following calculation formula:
  • the rotation matrix of the communication device It can be expressed as a rotation transformation matrix from the device coordinate system b to the world coordinate system i.
  • the device coordinate system b is an orthogonal coordinate system.
  • the three coordinate axes of x, y, and z are along the roll axis of the inertial sensor.
  • the pitch axis and the yaw axis are determined, and the three coordinate axes of the world coordinate system point to the directions of north, east, and local vertical.
  • Is the rotation matrix of the communication device after the update Is the attitude angle of the communication device, which are the pitch angle, roll angle, and heading angle of the communication device; Is the value of the rotation angular velocity vector of the communication device in the device coordinate system, ⁇ x , ⁇ y , and ⁇ z are the three axial components of the inertial sensor in the communication device; Is the acceleration of the communication device in the relative coordinate system, Is the acceleration of the communication device in the world coordinate system, Is the gravitational acceleration that the communication device receives in this area, Is the apparent acceleration of the communication device; Is the speed information of the communication device obtained by integrating the apparent acceleration once, It is the position information of the communication device obtained by the second integration. t 0 is the time when the position information was calculated last time.
  • the first method is: using a fixed frequency resonance structure to entangle the inertial sensor and GPS with the transmitting unit.
  • the quantum terminal is coupled, and the device with the same frequency and phase is used to cancel the external vibration;
  • the second method is: convert the change of the inertial sensor and GPS motion state into a voltage change, and then use signal conditioning to connect the inertial sensor and GPS with The entangled quantum terminals of the sending unit are coupled.
  • Gyroscope information and accelerometer information correspond to one entangled quantum; GPS information corresponds to one entangled quantum, and a total of two entangled quanta are required;
  • Gyroscope information, accelerometer information, and GPS information respectively correspond to one entangled quantum, and a total of three entangled quanta are required;
  • the three axes of the gyroscope correspond to three entangled quanta
  • the three axes of the accelerometer correspond to three entangled quanta
  • the GPS information corresponds to one entangled quantum, which requires a total of seven entangled quanta.
  • the number of entangled quanta in the sending unit and the number of entangled quanta in the receiving unit can be backed up by m pairs. If the entangled state of the entangled quantum pair between every two communication devices is destroyed, the current entangled quantum pair is abandoned and the backup is used.
  • the number of entangled quantum pairs communicates with each other, and the number of m is determined by the actual use time. The longer the time, the more entangled quantum groups need to be backed up.
  • the receiving unit and the sending unit adopt a quantum entanglement communication method, specifically: when the device moves or rotates, a coupling relationship is established through the entangled quantum terminal of the collecting unit and the sending unit, and the information collected by the collecting unit is loaded into The entangled quantum terminal of the sending unit; pairs of entangled quantum synchronization changes in different devices; the receiving unit also includes a data analysis terminal, and the data analysis terminal of the receiving unit first adopts the decoupling mode corresponding to the coupling mode of the sending unit, Analyze the data, decouple the quantum information and the information collected by the acquisition unit; then amplify the information signal collected by the acquisition unit, demodulate and decode it and pass it to the processing unit, and read the position information of the sending unit .
  • the communication device is also connected to the smart terminal in a wired or wireless manner.
  • the smart terminal is used to receive the information of the receiving unit and the processing unit in the communication device, and perform calculation, analysis and processing, and combine the information of the processing unit with the information of the receiving unit.
  • Information is drawn on the terminal; the smart terminal includes a terminal with a map display function, such as a smart phone, a personal notebook computer, a tablet computer, etc.
  • a communication method between portable multi-target communication devices The steps of the method are as follows:
  • each communication device has its own unique ID, and a quantum entanglement relationship is established between any two devices, and any two devices can communicate with each other; if the current entangled quantum pair suffers Destroy, use the next set of quantum entangled pairs in the backup to communicate; through the entangled quantum pairs to form a communication network, the communication network is used to specify the ID to quickly obtain the status information of the other party;
  • the device couples GPS and inertial sensors with the entangled quantum terminal of the sending unit, and then uses the coupled entangled quantum for data transmission;
  • Each communication device automatically sends and receives data in accordance with the ID sequence at regular intervals. Specifically, it sends its own status information to other ID devices. After sending the information, it accepts the status information of the device and sends The status information of itself and the device is recorded in a time sequence, and after sending and receiving are completed, data is sent and received with the next ID device in sequence until all devices are traversed;
  • the communication device can send and read the status information of the specified ID device according to the specified ID, that is, it has a higher priority than the loop traversal method, but the automatic traversal is still running in the background and will not interrupt the traversal order of;
  • the communication device is connected to the smart terminal, and is used to display the status information of the current device and other ID devices received on the offline map, and to draw the travel path of the current device and other ID devices and the current location on the map, according to
  • the receiving unit in the device reads the status information of the entangled quantum corresponding to GPS to determine whether it can receive GPS signals; when GPS signals can be received, the status information is obtained by both GPS and inertial sensors, and when GPS signals cannot be received, The status information is only obtained by inertial sensors.
  • a communication method between a portable multi-target communication device and a base station is as follows:
  • each communication device has its own unique ID.
  • the base station includes a receiving end and a transmitting end that establish quantum entanglement with the communication device, and each device establishes quantum entanglement with the base station. And ensure that any device and the base station can communicate with each other; if the current entangled quantum pair is destroyed, use the next set of quantum entangled pairs in the backup to communicate; use multiple sets of entangled quantum pairs to form a communication network;
  • the device couples GPS and inertial sensors with the entangled quantum terminal of the sending unit, and then uses the coupled entangled quantum for data transmission;
  • Each communication device will automatically send and receive data with the base station according to the ID sequence at regular intervals, and send its own status information to the base station. After all the communication devices have sent the status information to the base station, the base station will record and then follow the ID sequence. Send and receive data with each communication device in turn, and send the status information of all devices;
  • the communication device is connected to the smart terminal, which is used to display the data information of the current device and the received base station on the offline map, draw the travel path of the current device and other ID devices and the current location on the map, according to the device
  • the receiving unit reads the status information of the entangled quantum corresponding to GPS to determine whether it can receive GPS signals; when GPS signals can be received, the status information is obtained by both GPS and inertial sensors, and when GPS signals cannot be received, status information Only obtained by inertial sensors.
  • the present invention has high timeliness.
  • the line delay of quantum communication is almost zero, and the information efficiency of the quantum channel is fast.
  • the invention has strong anti-interference performance.
  • the information transmission in quantum communication has nothing to do with the media of communication between the two parties, and is not affected by the space environment. It has a wide range of communication and good anti-interference performance. It is suitable for use in harsh environments such as mountains, seas, and air.
  • the collection, calculation, receiving and sending of the present invention are all integrated on a mobile smart device with high convenience.
  • the device can be connected to the terminal, which has high portability and can visualize all usage on an offline map.
  • the travel trajectory of personnel is convenient to determine the location.
  • Figure 1 is a schematic diagram of an application scenario of the present invention
  • Figure 2 is a schematic diagram of the coupling of the inertial sensor and GPS with the transmitting unit in the communication device;
  • Figure 3 is a schematic diagram of a receiving unit in a portable multi-target communication device
  • Figure 4 is a schematic diagram of data transmission in a portable multi-target communication device
  • Figure 5 is a schematic diagram of data transmission between multiple communication devices
  • Figure 6 is a flow chart of communication between multiple communication devices
  • Fig. 7 is a schematic diagram of Embodiment 1 of the present invention.
  • FIG. 8 is a schematic diagram of data transmission between multiple communication devices and a base station
  • Fig. 9 is a flowchart of communication between multiple communication devices and a base station.
  • a portable multi-target communication device includes a collection unit, a processing unit, a receiving unit and a sending unit; the collection unit, processing unit, receiving unit and sending unit are packaged together for easy wearing.
  • the collection unit includes an inertial sensor, GPS, and a synchronized clock.
  • the inertial sensor includes a gyroscope, accelerometer, barometer, and magnetometer; the collection unit is used to obtain status information of the wearer, and transfer it to the processing unit and send The unit; the state information includes the wearer's walking angle, walking acceleration, and the height of the current position; the synchronized clock is used to record the time.
  • the processing unit includes a master chip that is designed and uses integrated electronic technology to calculate, analyze and process the data received from the acquisition unit to obtain its own position information, and to obtain the position information of other devices from the information received by the receiving unit; when the device can When GPS signals are received, the inertial sensor information is integrated and the GPS position trajectory is recorded, and the walking trajectory from the starting point to the current position is calculated. When the GPS signal cannot be received, the inertial sensor information is integrated to calculate the walking trajectory from the starting point to the current position.
  • the location information of the current device and the location information of other devices can be obtained from the following calculation formula:
  • the rotation matrix of the communication device It can be expressed as a rotation transformation matrix from the device coordinate system b to the world coordinate system i.
  • the device coordinate system b is an orthogonal coordinate system.
  • the three coordinate axes of x, y, and z are along the roll axis of the inertial sensor.
  • the pitch axis and the yaw axis are determined, and the three coordinate axes of the world coordinate system point to the directions of north, east, and local vertical.
  • Is the rotation matrix of the communication device after the update Is the attitude angle of the communication device, which are the pitch angle, roll angle, and heading angle of the communication device; Is the value of the rotation angular velocity vector of the communication device in the device coordinate system, ⁇ x , ⁇ y , and ⁇ z are the three axial components of the inertial sensor in the communication device; Is the acceleration of the communication device in the relative coordinate system, Is the acceleration of the communication device in the world coordinate system, Is the gravitational acceleration that the communication device receives in this area, Is the apparent acceleration of the communication device; Is the speed information of the communication device obtained by one integration of the apparent acceleration, It is the position information of the communication device obtained by the second integration. t 0 is the time when the position information was calculated last time.
  • the receiving unit and the sending unit are used for mutual communication between multiple devices and the receiving and sending of data; as shown in Figure 3, the receiving unit includes a power supply terminal, an entangled quantum terminal and a data analysis terminal; as shown in Figure 4, The receiving unit is used to receive the data of the sending unit in other devices, and amplify and analyze the received data through the data analysis terminal for reading; the sending unit includes the power supply terminal and the entangled quantum terminal, and is used to send the data of the current device; As shown in 5, the receiving unit and the sending unit adopt quantum entanglement communication, and the entangled quantum terminals are paired between every two communication devices.
  • the number of entangled quanta in the sending unit and the number of entangled quanta in the receiving unit can be backed up by m groups. If every entangled quantum pair between two communication devices is destroyed, Give up using the current entangled quantum pair and use the next set of backup entangled quanta for communication. The number of m is determined by the actual use time. The longer the time, the more the number of backup entangled quantum groups.
  • the inertial sensor and GPS in the acquisition unit establish a coupling relationship with the entangled quantum terminal of the sending unit, and the signals of the inertial sensor and GPS are loaded to the entangled quantum terminal of the sending unit; Pairs of entangled quantum terminals in different devices change synchronously; the data analysis terminal of the receiving unit first adopts a decoupling mode corresponding to the coupling mode of the sending unit to analyze data and decouple quantum information and motion information; Then the motion information signal is amplified, demodulated and decoded, and then read to obtain the status information of the sending unit.
  • the method for establishing a coupling relationship between the inertial sensor and GPS in the acquisition unit and the entangled quantum terminal of the transmitting unit is: adopting a fixed frequency resonance structure to couple the inertial sensor and GPS with the entangled quantum terminal of the transmitting unit, and adopting Devices with the same frequency and phase cancel external vibration; or convert the changes in the motion state of the inertial sensor and GPS into voltage changes, and then couple the inertial sensor and GPS with the entangled quantum terminal of the sending unit through signal conditioning.
  • Gyroscope information and accelerometer information correspond to one entangled quantum; GPS information corresponds to one entangled quantum, and a total of two entangled quanta are required;
  • Gyroscope information, accelerometer information, and GPS information respectively correspond to one entangled quantum, and a total of three entangled quanta are required.
  • the three axes of the gyroscope correspond to three entangled quanta
  • the three axes of the accelerometer correspond to three entangled quanta
  • the GPS information corresponds to one entangled quantum, which requires a total of seven entangled quanta.
  • the communication device is also connected to the smart terminal in a wired or wireless manner.
  • the smart terminal is used to receive the information of the receiving unit and the processing unit in the communication device, and perform calculation, analysis, and processing. It is drawn on the terminal; the smart terminal includes a terminal with a map display function, such as a smart phone, a personal notebook computer, a tablet computer, etc.
  • Communication can be carried out between any two portable multi-target communication devices or between any device and the base station; before communication, a quantum entanglement relationship is established between any two devices or between any device and the base station.
  • information It is transmitted through coupled quantum entanglement; the base station includes a receiving end and a transmitting end that establish a quantum entanglement relationship with the communication device.
  • a method for communicating between portable multi-target communication devices the steps of the method are as follows:
  • each communication device has its own unique ID. Quantum entanglement relationship is established between any two devices, and any two devices can communicate with each other. If the current entangled quantum pair suffers Destroy, use the next set of quantum entangled pairs in the backup to communicate; the entangled quantum pairs form a communication network, which is used to specify the ID to quickly obtain the status information of the other party. At the same time, the security is higher.
  • the device couples GPS and inertial sensors with the entangled quantum terminal of the sending unit, and then uses the coupled entangled quantum for data transmission. Information can be read out quickly with the help of quantum entanglement.
  • Each communication device automatically sends and receives data in accordance with the ID sequence at regular intervals. Specifically, it sends its own status information to other ID devices. After sending the information, it accepts the status information of the device and sends The status information of itself and the device is recorded in a time sequence. After the transmission and reception are completed, data is sent and received with the next ID device in sequence until all devices are traversed.
  • the communication device can send and read the status information of the specified ID device according to the specified ID, that is, it has a higher priority than the loop traversal method, but the automatic traversal is still running in the background and will not interrupt the traversal order of.
  • the communication device is connected to the smart terminal, and is used to display the status information of the current device and other ID devices received on the offline map, and to draw the travel path of the current device and other ID devices and the current location on the map, according to
  • the receiving unit in the device reads the status information of the entangled quantum corresponding to GPS to determine whether it can receive GPS signals; when GPS signals can be received, the status information is obtained by both GPS and inertial sensors, and when GPS signals cannot be received, The status information is only obtained by inertial sensors. Realize real-time and accurate all-round recording.
  • a method for communicating between a portable multi-target communication device and a base station the steps of the method are as follows:
  • each communication device has its own unique ID, and each device establishes a quantum entanglement relationship with the base station, and ensures that any device and the base station can communicate with each other; if the current entangled quantum pair If it is destroyed, use the next set of quantum entangled pairs in the backup to communicate; through multiple sets of entangled quantum pairs to form a communication network.
  • Such a network can reduce the use of quantum entangled pairs, and is more scalable and practical.
  • the device couples GPS and inertial sensors with the entangled quantum terminal of the transmitting unit, and then uses the coupled entangled quantum for data transmission. Information can be read out quickly with the help of quantum entanglement.
  • Each communication device automatically transmits and receives data with the base station according to the ID sequence at regular intervals, and sends its own status information to the base station. After all communication devices send the status information to the base station, the base station records, and then follows the ID sequence Send and receive data with each communication device in turn, and send the status information of all devices.
  • the communication device is connected to the smart terminal, which is used to display the data information of the current device and the received base station on the offline map, draw the travel path of the current device and other ID devices and the current location on the map, according to the device
  • the receiving unit reads the status information of the entangled quantum corresponding to GPS to determine whether it can receive GPS signals; when GPS signals can be received, the status information is obtained by both GPS and inertial sensors, and when GPS signals cannot be received, status information Only obtained by inertial sensors. Realize real-time and accurate all-round recording.
  • the devices of the four persons A, B, C, and D establish a quantum entanglement pairing in pairs, synchronize the clocks in the device, and set the ID of A to 1, the ID of B to 2, and the ID of C to 3.
  • D’s ID is 4, set a fixed delay time, and download offline maps from mobile devices (smartphones, personal laptops, and tablets).
  • A’s device uses the coupled quantum entanglement to transmit information to B through the sending unit, and B receives the status information from A through the receiving unit and decodes it. Zoom in to read it out. After this process is completed, B's device sends status information to A through the sending unit, and A's receiving unit accepts the information from B and reads it.
  • step (2) Delay a certain time, and return to step (2).
  • A wants to see the route trajectory of B, C, and D, and connects to the mobile phone through the device’s wifi or wired way, exports the information stored in the main control chip, and displays it on the offline map of A’s smartphone in a time sequence on.
  • mother A takes two children B and C out to explore and play in a certain scenic spot.
  • the signal communication signal, satellite signal
  • use this device to specify the portable multi-target The use method of the communication device and its communication method.
  • the devices of A, B, and C respectively establish quantum entanglement pairings with the quantum in the nearest base station, and set the clock of the device to synchronize with the clock in the base station.
  • Set A’s ID to 1, B’s ID to 2, C’s ID to 3 set a fixed delay time, and download offline maps from A’s mobile devices (smartphones, personal laptops, and tablets).
  • A's device uses the coupled quantum entanglement to transmit information to the base station through the sending unit, and the base station receives the status information from A through the receiving unit, and Decode, enlarge, read out and record.
  • the base station sends the status information of A, B, and C at the current moment to A through the sending unit, and A receives the information recorded by the base station through the receiving unit.
  • the base station sends status data to B, and the base station sends status data to C.
  • step (2) Delay for a certain time and return to step (2).

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Telephone Function (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Navigation (AREA)

Abstract

本发明公开了一种便携式多目标通讯装置及通讯方法,该装置包括采集单元、处理单元、接收单元和发送单元。所述采集单元包括惯性传感器、GPS和同步时钟;处理单元包括主控芯片,用于计算、分析和处理从采集单元接收的信息;接收单元和发送单元用于多个装置之间的相互通讯以及数据的接收和发送;任意两个便携式多目标通讯装置之间或者任意装置和基站之间能够进行通讯;在通讯之前,任意两个装置之间或者任意装置和基站之间建立量子纠缠关系,在通讯的过程中,信息经过耦合的量子纠缠来传递;本发明不受空间环境的影响,通讯范围广,具有完好的抗干扰性能;并且便捷性高,装置与终端相连,能在地图上显示出所有使用人员的行进轨迹,方便确定位置。

Description

一种便携式多目标通讯装置及通讯方法 技术领域
本发明涉及通讯技术领域,尤其涉及一种便携式多目标通讯装置及通讯方法。
背景技术
想在新年第一天看到最美的日出,12名没有专业装备和登山经验的大学生决定登上海拔2434米的雪山赵公山顶峰。因预期不足、体力不支,其中8名大学生被困山上。大学生朝气蓬勃,把登山探险作为一种时尚的社会实践活动,本身并没有错,然而却屡屡出现大学生“驴友”野外被困的报道。这一现象暴露出来的问题不得不引起重视。一方面是缺乏自救的意识和团队互相帮助的经验,而另一方面,现有的通信设备依赖于GPS和无线通信信号,当在山区或者旅游风景区,信号塔信号传输差,信号覆盖范围小等原因,导致登山时携带的设备无法及时与外界保持联系。
量子纠缠是两个或多个粒子共同组成的一种量子状态。无论这些粒子之间相隔多远,只要一个粒子发生变化,另外的粒子也会即刻“感知”,也随之发生变化。2017年6月16日,量子科学实验卫星墨子号首先成功实现,两个量子纠缠光子被分发到相距超过1200公里的距离后,仍可继续保持其量子纠缠的状态;2018年4月25日,芬兰阿尔托大学教授Mika
Figure PCTCN2020129218-appb-000001
领导的实验团队成功地量子纠缠了两个独自震动的鼓膜,通过超导微波电路,在接近绝对温度(-273K)下,两个鼓膜持续进行了约30分钟的互动,这实验演示出宏观的量子纠缠。量子纠缠所体现的非定域性是量子力学最神奇的现象之一。
发明内容
本发明目的在于针对现有技术的不足,提出一种精度高、适用范围广、可移植性强、信息收发安全的便携式多目标通讯的装置,并给出基于该装置的通讯方法。
本发明的目的是通过以下技术方案来实现的:一种便携式多目标通讯装置,该装置包括采集单元、处理单元、接收单元和发送单元;
采集单元用于采集佩戴者行走的加速度、角度以及当前所处的位置数据,并记录采集时间,并将采集的数据传递给处理单元和发送单元;
处理单元用于整合采集单元传输的数据,计算从出发点到当前位置的行走轨迹;
接收单元和发送单元均包含纠缠量子端,接收单元和发送单元采用量子纠缠通讯的方式,每个通讯装置中的接收单元与其他装置中的发送单元之间进行纠缠量子的配对;并对配对的纠缠量子进行备份,若当前使用的纠缠量子对的纠缠态遭到破坏,则使用备份的纠缠量子对 进行通讯;
采集单元采集的信息加载到发送单元的纠缠量子端进行耦合之后,发送给其他装置的接收单元,接收单元对耦合的信息进行解耦,并将接收的数据传递给处理单元,得到(其他装置)发送单元的位置信息。
进一步地,所述采集单元包括惯性传感器、GPS和同步时钟,所述惯性传感器包括陀螺仪、加速度计、气压计、磁力计;同步时钟用于记录采集单元采集的数据对应的时间,采集单元用于获取佩戴者的状态信息,并将其传递给处理单元和发送单元;所述状态信息包括佩戴者转过的角度、行走的加速度以及当前所处的位置高度。
进一步地,所述处理单元包括主控芯片,用于计算、分析和处理从采集单元接收的数据得到自身位置信息,以及从接受单元接受的信息得到其他装置的位置信息;当装置能接受到GPS信号时,整合惯性传感器的信息并记录GPS位置轨迹,计算从出发点到当前位置的行走轨迹,当无法接收GPS信号时,整合惯性传感器的信息,计算从出发点到当前位置的行走轨迹,当前装置的位置信息和其他装置的位置信息都可以从如下的计算公式得到:
Figure PCTCN2020129218-appb-000002
Figure PCTCN2020129218-appb-000003
Figure PCTCN2020129218-appb-000004
Figure PCTCN2020129218-appb-000005
Figure PCTCN2020129218-appb-000006
Figure PCTCN2020129218-appb-000007
Figure PCTCN2020129218-appb-000008
其中,通讯装置的旋转矩阵
Figure PCTCN2020129218-appb-000009
可表示为装置坐标系b到世界坐标系i的旋转变换矩阵,装置坐标系b是一个正交坐标系,x、y和z三个坐标轴轴向分别沿安装有惯性传感器的横滚轴、俯仰轴和偏航轴确定,世界坐标系的三个坐标轴指向北、东和当地垂线方向,
Figure PCTCN2020129218-appb-000010
是更新之后通讯装置的旋转矩阵,
Figure PCTCN2020129218-appb-000011
是通讯装置的姿态角,分别为通讯装置的俯仰角、横滚角、航向角;
Figure PCTCN2020129218-appb-000012
是通讯装置的旋转角速度矢量在装置坐标系系中的值,ω x、ω y、ω z为通讯装置中惯性传感器的三个轴轴向分量;
Figure PCTCN2020129218-appb-000013
是通信装置在相对坐标系中的加速度,
Figure PCTCN2020129218-appb-000014
是通信装置在世界坐标系的加速度,
Figure PCTCN2020129218-appb-000015
是通信装置在该区域受到的引力加速度,
Figure PCTCN2020129218-appb-000016
是通信装置的视加速度;
Figure PCTCN2020129218-appb-000017
是对视加速度一次积分得到的通信装置速度信息,
Figure PCTCN2020129218-appb-000018
是二次积分得到的通信装置位置信息。t 0是上一次进行位置信息计算的时间。
进一步地,采集单元中的惯性传感器和GPS与发送单元的纠缠量子端建立耦合关系有两种方式,第一种方式为:采用某一固定频率的共振结构将惯性传感器和GPS与发送单元的纠缠量子端进行耦合,并采用具有相同频率和相位的设备抵消外部振动;第二种方式为:将惯性传感器和GPS的运动状态的变化转换为电压的变化,再通过信号调理将惯性传感器和GPS与发送单元的纠缠量子端进行耦合。
进一步地,发生耦合时,根据实际精度需要,可采用如下几种耦合对应关系:
(1)陀螺仪信息、加速度计信息与一个纠缠量子对应;GPS信息与一个纠缠量子对应,共需两个纠缠量子;
(2)陀螺仪信息、加速度计信息、GPS信息分别与一个纠缠量子对应,共需三个纠缠量子;
(3)陀螺仪三个轴分别与三个纠缠量子对应,加速度计三个轴分别与三个纠缠量子对应,GPS信息与一个纠缠量子对应,共需七个纠缠量子。
进一步地,发送单元的纠缠量子和接收单元中的纠缠量子数量可以备份m对,若每两个通讯装置之间的纠缠量子对的纠缠态遭到破坏,则放弃使用当前纠缠量子对,使用备份的纠缠量子对进行通讯,m的数量由实际使用时间确定,时间越长,需要备份的纠缠量子数量组数越多。
进一步地,所述接收单元和发送单元采用量子纠缠通讯的方式,具体为:当装置发生移动、旋转时,通过采集单元与发送单元的纠缠量子端建立耦合关系,将采集单元采集的信息加载到发送单元的纠缠量子端;不同装置中成对的纠缠量子同步变化;接收单元中还包括数据解析端,所述接收单元的数据解析端首先采用与发送单元的耦合方式相对应的解耦方式,进行数据的解析,将量子信息和采集单元采集的信息进行解耦;然后对采集单元采集的信息信号进行放大,并将其解调和解码后传递给处理单元,读取得到发送单元的位置信息。
进一步地,通讯装置还与智能终端通过有线或无线的方式相连,智能终端用于接收通讯装置中接收单元和处理单元的信息,并进行计算、分析和处理,将处理单元的信息和接收单元的信息在终端上绘制出来;所述智能终端包括具有显示地图功能的终端,如智能手机、个人笔记本电脑、平板电脑等。
一种便携式多目标通讯装置之间的通讯方法,该方法的步骤具体如下:
(1)多个通讯装置中,每个通讯装置都有自己唯一的ID,任意两个装置之间建立量子纠缠关系,并保证任意两个装置之间可以相互通讯;若当前纠缠量子对遭到破坏,使用备份中的下一组量子纠缠对进行通讯;通过相互纠缠的量子对构成通讯网络,该通讯网络用于指定ID快速得到对方的状态信息;
(2)装置将GPS和惯性传感器与发送单元的纠缠量子端进行耦合,然后用耦合的纠缠量子进行数据传送;
(3)每个通讯装置之间每隔一定时间按照ID顺序自动互相进行数据收发,具体为,向其他ID装置发送自身的状态信息,在发送完信息之后,接受该装置的状态信息,并将自身和该装置的状态信息按照时间序列进行记录,发送和接收完成后,依次与下一ID装置进行数据收发,直到遍历所有装置;
(4)通讯装置能够根据指定的ID,发送并读取指定ID装置的状态信息,即相对于循环遍历的方式,有更高的优先级,但自动遍历仍在后台运行,不会打断遍历的顺序;
(5)通讯装置和智能终端相连,用于将当前装置和接收的其它ID装置的状态信息在离线地图上显示,绘制出当前装置和其他ID装置的行进路径以及当前在地图上的位置,根据装置中接收单元读取与GPS相对应的纠缠量子的状态信息,来判断是否可以接收GPS信号;当能接收GPS信号时,状态信息是由GPS和惯性传感器共同获得,当不能接收GPS信号时,状态信息只由惯性传感器获得。
一种便携式多目标通讯装置与基站之间的通讯方法,该方法的步骤具体如下:
(1)多个通讯装置中,每个通讯装置都有自己唯一的ID,基站中包含与通讯装置之间建立量子纠缠关系的接收端和发送端,每个装置均与基站之间建立量子纠缠关系,并保证任意装置和基站之间可以相互通讯;若当前纠缠量子对遭到破坏,使用备份中的下一组量子纠缠对进行通讯;通过多组相互纠缠的量子对构成通讯网络;
(2)装置将GPS和惯性传感器与发送单元的纠缠量子端进行耦合,然后用耦合的纠缠量子进行数据传送;
(3)每个通讯装置每隔一定时间按照ID顺序自动与基站进行数据收发,向基站发送自己的状态信息,当所有的通讯装置都向基站发送状态信息之后,基站进行记录,然后按照ID 顺序依次与每个通讯装置进行数据收发,发送所有装置的状态信息;
(4)通讯装置和智能终端相连,用于将当前装置和接收的基站的数据信息在离线地图上显示,绘制出当前装置和其他ID装置的行进路径以及当前在地图上的位置,根据装置中接收单元读取与GPS相对应的纠缠量子的状态信息,来判断是否可以接收GPS信号;当能接收GPS信号时,状态信息是由GPS和惯性传感器共同获得,当不能接收GPS信号时,状态信息只由惯性传感器获得。
本发明的有益效果:
(1)本发明时效性高。量子通讯的线路时延近乎为零,量子信道的信息效率传输速度快。
(2)本发明抗干扰性能强。量子通讯中的信息传输与通讯双方之间的传播媒介无关,不受空间环境的影响,通讯范围广,具有完好的抗干扰性能,适合山区、海域、空中等恶劣环境使用。
(3)本发明保密性能好。由于量子信息一经检测就会产生不可还原的改变,如果量子信息在传输中途被窃取,接收者必定能发现。适用于对保密性要求较高的场合。
(4)本发明采集、计算、接受发送都集成在一个移动的智能装置上,便捷性高,同时可以将装置与终端相连,具有较高的可移植性,能在离线地图上可视化出所有使用人员的行进轨迹,方便确定位置。
附图说明
图1为本发明的一种应用场景示意图;
图2为通讯装置中惯性传感器和GPS与发送单元耦合示意图;
图3为一种便携式多目标通讯装置中接收单元示意图;
图4为一种便携式多目标通讯装置中数据传输示意图;
图5为多个通讯装置之间数据传输示意图;
图6为多个通讯装置之间进行通讯的流程图;
图7为本发明实施例1的示意图;
图8为多个通讯装置与基站之间数据传输示意图;
图9为多个通讯装置与基站之间进行通讯的流程图。
具体实施方式
以下结合附图对本发明具体实施方式作进一步详细说明。
如图1所示,一种便携式多目标通讯装置,该装置包括采集单元、处理单元、接收单元和发送单元;所述采集单元、处理单元、接收单元和发送单元封装在一起,便于佩戴。
所述采集单元包括惯性传感器、GPS和同步时钟,所述惯性传感器包括陀螺仪、加速度 计、气压计、磁力计;采集单元用于获取佩戴者的状态信息,并将其传递给处理单元和发送单元;所述状态信息包括佩戴者行走的转角、行走的加速度以及当前所处的位置高度;同步时钟用于记录时间。
处理单元包括经过设计并采用集成电子工艺的主控芯片,用于计算、分析和处理从采集单元接收的数据得到自身位置信息,以及从接受单元接受的信息得到其他装置的位置信息;当装置能接受到GPS信号时,整合惯性传感器的信息并记录GPS位置轨迹,计算从出发点到当前位置的行走轨迹,当无法接收GPS信号时,整合惯性传感器的信息,计算从出发点到当前位置的行走轨迹。当前装置的位置信息和其他装置的位置信息都可以从如下的计算公式得到:
Figure PCTCN2020129218-appb-000019
Figure PCTCN2020129218-appb-000020
Figure PCTCN2020129218-appb-000021
Figure PCTCN2020129218-appb-000022
Figure PCTCN2020129218-appb-000023
Figure PCTCN2020129218-appb-000024
Figure PCTCN2020129218-appb-000025
其中,通讯装置的旋转矩阵
Figure PCTCN2020129218-appb-000026
可表示为装置坐标系b到世界坐标系i的旋转变换矩阵,装置坐标系b是一个正交坐标系,x、y和z三个坐标轴轴向分别沿安装有惯性传感器的横滚轴、俯仰轴和偏航轴确定,世界坐标系的三个坐标轴指向北、东和当地垂线方向,
Figure PCTCN2020129218-appb-000027
是更新之后通讯装置的旋转矩阵,
Figure PCTCN2020129218-appb-000028
是通讯装置的姿态角,分别为通讯装置的俯仰角、横滚角、航向角;
Figure PCTCN2020129218-appb-000029
是通讯装置的旋转角速度矢量在装置坐标系系中的值,ω x、ω y、ω z为通讯装置中惯性传感器的三个轴轴向分量;
Figure PCTCN2020129218-appb-000030
是通信装置在相对坐标系中的 加速度,
Figure PCTCN2020129218-appb-000031
是通信装置在世界坐标系的加速度,
Figure PCTCN2020129218-appb-000032
是通信装置在该区域受到的引力加速度,
Figure PCTCN2020129218-appb-000033
是通信装置的视加速度;
Figure PCTCN2020129218-appb-000034
是对视加速度一次积分得到的通信装置速度信息,
Figure PCTCN2020129218-appb-000035
是二次积分得到的通信装置位置信息。t 0是上一次进行位置信息计算的时间。
接收单元和发送单元用于多个装置之间的相互通讯以及数据的接收和发送;如图3所示,所述接收单元包括供电端、纠缠量子端和数据解析端;如图4所示,接收单元用于接收其他装置中发送单元的数据,并通过数据解析端将接收的数据放大解析以便读取;所述发送单元包含供电端和纠缠量子端,用于发送当前装置的数据;如图5所示,接收单元和发送单元采用量子纠缠通讯的方式,每两个通讯装置之间进行纠缠量子端的配对。
为了防止实际使用过程中量子的纠缠态遭到破坏,发送单元的纠缠量子和接受单元中的纠缠量子数量可以备份m组,假若每两个通讯装置之间的纠缠量子对纠缠态遭到破坏,放弃使用当前纠缠量子对,使用下一组备份的纠缠量子进行通讯,m的数量由实际使用时间确定,时间越长,备份的纠缠量子数量组数越多。
如图2所示,当装置发生移动、旋转时,通过采集单元中的惯性传感器和GPS与发送单元的纠缠量子端建立耦合关系,将惯性传感器和GPS的信号加载到发送单元的纠缠量子端;不同装置中成对的纠缠量子端同步变化;所述接收单元的数据解析端首先采用与发送单元的耦合方式相对应的解耦方式,进行数据的解析,将量子信息和运动信息进行解耦;然后对运动信息信号进行放大,并将其解调和解码后读取得到发送单元的状态信息。
所述采集单元中的惯性传感器和GPS与发送单元的纠缠量子端建立耦合关系的方式为:采用某一固定频率的共振结构将惯性传感器和GPS与发送单元的纠缠量子端进行耦合,并采用具有相同频率和相位的设备抵消外部振动;或者将惯性传感器和GPS的运动状态的变化转换为电压的变化,再通过信号调理将惯性传感器和GPS与发送单元的纠缠量子端进行耦合。
发生耦合时,根据实际精度需要,可采用如下几种耦合对应关系:
(1)陀螺仪信息、加速度计信息与一个纠缠量子对应;GPS信息与一个纠缠量子对应,共需两个纠缠量子;
(2)陀螺仪信息、加速度计信息、GPS信息分别与一个纠缠量子对应,共需三个纠缠量子。
(3)陀螺仪三个轴分别与三个纠缠量子对应,加速度计三个轴分别与三个纠缠量子对应,GPS信息与一个纠缠量子对应,共需七个纠缠量子。
该通讯装置还与智能终端通过有线或无线的方式相连,智能终端用于接收通讯装置中接收单元和处理单元的信息,并进行计算、分析和处理,将处理单元的信息和接收单元的信息 在终端上绘制出来;所述智能终端包括具有显示地图功能的终端,如智能手机、个人笔记本电脑、平板电脑等。
任意两个便携式多目标通讯装置之间或者任意装置和基站之间能够进行通讯;在通讯之前,任意两个装置之间或者任意装置和基站之间建立量子纠缠关系,在通讯的过程中,信息经过耦合的量子纠缠来传递;所述基站中包含与通讯装置之间建立量子纠缠关系的接收端和发送端。
如图6所示,一种便携式多目标通讯装置之间进行通讯的方法,该方法的步骤具体如下:
(1)多个通讯装置中,每个通讯装置都有自己唯一的ID,任意两个装置之间建立量子纠缠关系,并保证任意两个装置之间可以相互通讯,若当前纠缠量子对遭到破坏,使用备份中的下一组量子纠缠对进行通讯;通过相互纠缠的量子对构成通讯网络,该通讯网络用于指定ID快速得到对方的状态信息。同时安全性更高。
(2)装置将GPS和惯性传感器与发送单元的纠缠量子端进行耦合,然后用耦合的纠缠量子进行数据传送。信息可以在量子纠缠的帮助下,可以被快速读取出来。
(3)每个通讯装置之间每隔一定时间按照ID顺序自动互相进行数据收发,具体为,向其他ID装置发送自身的状态信息,在发送完信息之后,接受该装置的状态信息,并将自身和该装置的状态信息按照时间序列进行记录,发送和接收完成后,依次与下一ID装置进行数据收发,直到遍历所有装置。
(4)通讯装置能够根据指定的ID,发送并读取指定ID装置的状态信息,即相对于循环遍历的方式,有更高的优先级,但自动遍历仍在后台运行,不会打断遍历的顺序。
(5)通讯装置和智能终端相连,用于将当前装置和接收的其它ID装置的状态信息在离线地图上显示,绘制出当前装置和其他ID装置的行进路径以及当前在地图上的位置,根据装置中接收单元读取与GPS相对应的纠缠量子的状态信息,来判断是否可以接收GPS信号;当能接收GPS信号时,状态信息是由GPS和惯性传感器共同获得,当不能接收GPS信号时,状态信息只由惯性传感器获得。实现实时准确的全方位记录。
如图8和图9所示,一种便携式多目标通讯装置与基站之间进行通讯的方法,该方法的步骤具体如下:
(1)多个通讯装置中,每个通讯装置都有自己唯一的ID,每个装置均与基站之间建立量子纠缠关系,并保证任意装置和基站之间可以相互通讯;若当前纠缠量子对遭到破坏,使用备份中的下一组量子纠缠对进行通讯;通过多组相互纠缠的量子对构成通讯网络。这样的网络能减少量子纠缠对的使用,更具有扩展性和实用性。
(2)装置将GPS和惯性传感器与发送单元的纠缠量子端进行耦合,然后用耦合的纠缠量 子进行数据传送。信息可以在量子纠缠的帮助下,可以被快速读取出来。
(3)每个通讯装置每隔一定时间按照ID顺序自动与基站进行数据收发,向基站发送自己的状态信息,当所有的通讯装置都向基站发送状态信息之后,基站进行记录,然后按照ID顺序依次与每个通讯装置进行数据收发,发送所有装置的状态信息。
(4)通讯装置和智能终端相连,用于将当前装置和接收的基站的数据信息在离线地图上显示,绘制出当前装置和其他ID装置的行进路径以及当前在地图上的位置,根据装置中接收单元读取与GPS相对应的纠缠量子的状态信息,来判断是否可以接收GPS信号;当能接收GPS信号时,状态信息是由GPS和惯性传感器共同获得,当不能接收GPS信号时,状态信息只由惯性传感器获得。实现实时准确的全方位记录。
实施例1:
如图7所示,下面以一队(分别有A、B、C、D四人)分头进山区考古勘察为例,具体说明便携式多目标通讯的装置的使用方法及其通讯方法。
(1)分头出发勘察前,A、B、C、D四人的装置两两建立量子纠缠配对,同步装置中的时钟,设置A的ID为1,B的ID为2,C的ID为3,D的ID为4,设置固定延时时间,可移动设备(智能手机、个人笔记本电脑、平板电脑)中下载离线地图。
(2)A、B、C、D四人分头勘察,延时时间到时,A的装置利用耦合的量子纠缠通过发送单元向B传送信息,B通过接收单元接收来自A的状态信息,并解码放大读取出来。这一过程完成后,B的装置通过发送单元向A发送状态信息,A的接受单元接受来自B的信息并读取。
(3)按照(2)当中的步骤,之后的顺序依次是:A与C发送接受数据,A与D发送接受数据,B与C发送接受数据,B与D发送接收数据,C与D发送接收数据。
(4)延时一定时间,重新回到步骤(2)当中。
(5)假设B想快速得到D当前的位置,可通过接收单元直接读取D的信息,不对发送数据的顺序造成影响。
(6)假设A想要看到B、C、D行走的路线轨迹,通过装置的wifi或有线方式与手机相连,导出主控芯片当中存储的信息,按照时间序列显示在A的智能手机离线地图上。
(7)当A、B、C、D四人勘察任务完成后,中止通信。
实施例2:
下面以母亲A携带两个孩子B和C外出到某风景区探险玩耍,为了防止孩子走丢,在风景区信号(通信信号,卫星信号)不好的情况下,使用该装置具体说明便携式多目标通讯的装置的使用方法及其通讯方法。
(1)A、B、C外出到某风景区探险玩耍前,A、B、C三人的装置分别与周围最近的基站中的量子建立量子纠缠配对,设置装置的时钟和基站中的时钟同步,设置A的ID为1,B的ID为2,C的ID为3,设置固定延时时间,A的可移动设备(智能手机、个人笔记本电脑、平板电脑)中下载离线地图。
(2)A、B、C三人进入到风景区玩耍,延时时间到时,A的装置利用耦合的量子纠缠通过发送单元向基站传送信息,基站通过接收单元接收来自A的状态信息,并解码放大读取出来并记录。
(3)按照(2)当中的步骤,之后的顺序依次是:B向基站发送接受数据,C向基站发送接受数据。
(4)基站通过发送单元向A发送A、B、C在当前时刻的状态信息,A通过接受单元接受来自基站记录的信息。
(5)按照(4)当中的步骤,之后的顺序依次是:基站向B发送状态数据,基站向C发送状态数据。
(6)延时一定时间,重新回到步骤(2)当中。
(7)假设A想要看到B、C行走的路线轨迹,通过装置的wifi或有线方式与手机相连,导出主控芯片当中存储的信息,按照时间序列显示在A的智能手机离线地图上。
(8)当A、B、C三人游玩结束后,中止通信。
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (3)

  1. 一种便携式多目标通讯装置,其特征在于,该装置包括采集单元、处理单元、接收单元和发送单元;
    采集单元用于采集佩戴者行走的加速度、角度以及当前所处的位置数据,并记录采集时间,并将采集的数据传递给处理单元和发送单元;具体为:所述采集单元包括惯性传感器、GPS和同步时钟,所述惯性传感器包括陀螺仪、加速度计、气压计、磁力计;同步时钟用于记录采集单元采集的数据对应的时间,采集单元用于获取佩戴者的状态信息,并将其传递给处理单元和发送单元;所述状态信息包括佩戴者转过的角度、行走的加速度以及当前所处的位置高度;
    处理单元用于整合采集单元传输的数据,计算从出发点到当前位置的行走轨迹;所述处理单元包括主控芯片,用于计算、分析和处理从采集单元接收的数据得到自身位置信息,以及从接受单元接受的信息得到其他装置的位置信息;当装置能接受到GPS信号时,整合惯性传感器的信息并记录GPS位置轨迹,计算从出发点到当前位置的行走轨迹,当无法接收GPS信号时,整合惯性传感器的信息,计算从出发点到当前位置的行走轨迹;当前装置的位置信息和其他装置的位置信息都可以从如下的计算公式得到:
    Figure PCTCN2020129218-appb-100001
    Figure PCTCN2020129218-appb-100002
    Figure PCTCN2020129218-appb-100003
    Figure PCTCN2020129218-appb-100004
    Figure PCTCN2020129218-appb-100005
    Figure PCTCN2020129218-appb-100006
    Figure PCTCN2020129218-appb-100007
    其中,通讯装置的旋转矩阵
    Figure PCTCN2020129218-appb-100008
    可表示为装置坐标系b到世界坐标系i的旋转变换矩阵,装置坐标系b是一个正交坐标系,x、y和z三个坐标轴轴向分别沿安装有惯性传感器的横滚轴、俯仰轴和偏航轴确定,世界坐标系的三个坐标轴指向北、东和当地垂线方向,
    Figure PCTCN2020129218-appb-100009
    是更新之后通讯装置的旋转矩阵,
    Figure PCTCN2020129218-appb-100010
    是通讯装置的姿态角,分别为通讯装置的俯仰角、横滚角、航向角;
    Figure PCTCN2020129218-appb-100011
    是通讯装置的旋转角速度矢量在装置坐标系系中的值,ω x、ω y、ω z为通讯装置中惯性传感器的三个轴轴向分量;
    Figure PCTCN2020129218-appb-100012
    是通信装置在相对坐标系中的加速度,
    Figure PCTCN2020129218-appb-100013
    是通信装置在世界坐标系的加速度,
    Figure PCTCN2020129218-appb-100014
    是通信装置在该区域受到的引力加速度,
    Figure PCTCN2020129218-appb-100015
    是通信装置的视加速度;
    Figure PCTCN2020129218-appb-100016
    是对视加速度一次积分得到的通信装置速度信息,
    Figure PCTCN2020129218-appb-100017
    是二次积分得到的通信装置位置信息。t 0是上一次进行位置信息计算的时间;
    接收单元和发送单元均包含纠缠量子端,接收单元和发送单元采用量子纠缠通讯的方式,具体为:当装置发生移动、旋转时,通过采集单元与发送单元的纠缠量子端建立耦合关系,将采集单元采集的信息加载到发送单元的纠缠量子端;采集单元中的惯性传感器和GPS与发送单元的纠缠量子端建立耦合关系有两种方式,第一种方式为:采用某一固定频率的共振结构将惯性传感器和GPS与发送单元的纠缠量子端进行耦合,并采用具有相同频率和相位的设备抵消外部振动;第二种方式为:将惯性传感器和GPS的运动状态的变化转换为电压的变化,再通过信号调理将惯性传感器和GPS与发送单元的纠缠量子端进行耦合;
    发生耦合时,根据实际精度需要,可采用如下几种耦合对应关系:
    (1)陀螺仪信息、加速度计信息与一个纠缠量子对应;GPS信息与一个纠缠量子对应,共需两个纠缠量子;
    (2)陀螺仪信息、加速度计信息、GPS信息分别与一个纠缠量子对应,共需三个纠缠量子;
    (3)陀螺仪三个轴分别与三个纠缠量子对应,加速度计三个轴分别与三个纠缠量子对应,GPS信息与一个纠缠量子对应,共需七个纠缠量子;
    不同装置中成对的纠缠量子同步变化;接收单元中还包括数据解析端,所述接收单元的数据解析端首先采用与发送单元的耦合方式相对应的解耦方式,进行数据的解析,将量子信息和采集单元采集的信息进行解耦;然后对采集单元采集的信息信号进行放大,并将其解调和解码后传递给处理单元,读取得到发送单元的位置信息;
    每个通讯装置中的接收单元与其他装置中的发送单元之间进行纠缠量子的配对;并对配对的纠缠量子进行备份,若当前使用的纠缠量子对的纠缠态遭到破坏,则使用备份的纠缠量 子对进行通讯;具体为:发送单元的纠缠量子和接收单元中的纠缠量子数量可以备份m对,若每两个通讯装置之间的纠缠量子对的纠缠态遭到破坏,则放弃使用当前纠缠量子对,使用备份的纠缠量子对进行通讯,m的数量由实际使用时间确定,时间越长,需要备份的纠缠量子数量组数越多。
    采集单元采集的信息加载到发送单元的纠缠量子端进行耦合之后,发送给其他装置的接收单元,接收单元对耦合的信息进行解耦,并将接收的数据传递给处理单元,得到(其他装置)发送单元的位置信息。
    该通讯装置还与智能终端通过有线或无线的方式相连,智能终端用于接收通讯装置中接收单元和处理单元的信息,并进行计算、分析和处理,将处理单元的信息和接收单元的信息在终端上绘制出来;所述智能终端包括具有显示地图功能的终端,如智能手机、个人笔记本电脑、平板电脑等。
  2. 一种权利要求1所述的便携式多目标通讯装置之间的通讯方法,其特征在于,该方法的步骤具体如下:
    (1)多个通讯装置中,每个通讯装置都有自己唯一的ID,任意两个装置之间建立量子纠缠关系,并保证任意两个装置之间可以相互通讯;若当前纠缠量子对遭到破坏,使用备份中的下一组量子纠缠对进行通讯;通过相互纠缠的量子对构成通讯网络,该通讯网络用于指定ID快速得到对方的状态信息;
    (2)装置将GPS和惯性传感器与发送单元的纠缠量子端进行耦合,然后用耦合的纠缠量子进行数据传送;
    (3)每个通讯装置之间每隔一定时间按照ID顺序自动互相进行数据收发,具体为,向其他ID装置发送自身的状态信息,在发送完信息之后,接受该装置的状态信息,并将自身和该装置的状态信息按照时间序列进行记录,发送和接收完成后,依次与下一ID装置进行数据收发,直到遍历所有装置;
    (4)通讯装置能够根据指定的ID,发送并读取指定ID装置的状态信息,即相对于循环遍历的方式,有更高的优先级,但自动遍历仍在后台运行,不会打断遍历的顺序;
    (5)通讯装置和智能终端相连,用于将当前装置和接收的其它ID装置的状态信息在离线地图上显示,绘制出当前装置和其他ID装置的行进路径以及当前在地图上的位置,根据装置中接收单元读取与GPS相对应的纠缠量子的状态信息,来判断是否可以接收GPS信号;当能接收GPS信号时,状态信息是由GPS和惯性传感器共同获得,当不能接收GPS信号时,状态信息只由惯性传感器获得。
  3. 一种权利要求1所述的便携式多目标通讯装置与基站之间的通讯方法,其特征在于, 该方法的步骤具体如下:
    (1)多个通讯装置中,每个通讯装置都有自己唯一的ID,基站中包含与通讯装置之间建立量子纠缠关系的接收端和发送端,每个装置均与基站之间建立量子纠缠关系,并保证任意装置和基站之间可以相互通讯;若当前纠缠量子对遭到破坏,使用备份中的下一组量子纠缠对进行通讯;通过多组相互纠缠的量子对构成通讯网络;
    (2)装置将GPS和惯性传感器与发送单元的纠缠量子端进行耦合,然后用耦合的纠缠量子进行数据传送;
    (3)每个通讯装置每隔一定时间按照ID顺序自动与基站进行数据收发,向基站发送自己的状态信息,当所有的通讯装置都向基站发送状态信息之后,基站进行记录,然后按照ID顺序依次与每个通讯装置进行数据收发,发送所有装置的状态信息;
    (4)通讯装置和智能终端相连,用于将当前装置和接收的基站的数据信息在离线地图上显示,绘制出当前装置和其他ID装置的行进路径以及当前在地图上的位置,根据装置中接收单元读取与GPS相对应的纠缠量子的状态信息,来判断是否可以接收GPS信号;当能接收GPS信号时,状态信息是由GPS和惯性传感器共同获得,当不能接收GPS信号时,状态信息只由惯性传感器获得。
PCT/CN2020/129218 2019-12-31 2020-11-17 一种便携式多目标通讯装置及通讯方法 WO2021135689A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911418119.XA CN111147152A (zh) 2019-12-31 2019-12-31 一种便携式多目标通讯装置及通讯方法
CN201911418119.X 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021135689A1 true WO2021135689A1 (zh) 2021-07-08

Family

ID=70522926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129218 WO2021135689A1 (zh) 2019-12-31 2020-11-17 一种便携式多目标通讯装置及通讯方法

Country Status (2)

Country Link
CN (1) CN111147152A (zh)
WO (1) WO2021135689A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111147152A (zh) * 2019-12-31 2020-05-12 浙江大学 一种便携式多目标通讯装置及通讯方法
CN113566814B (zh) * 2021-09-26 2021-12-14 易迅通科技有限公司 一种载具量子通信导航系统
CN115551054A (zh) * 2022-08-23 2022-12-30 安徽省极光智能科技有限公司 一种基于量子的c-ran接入方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104101341A (zh) * 2013-04-02 2014-10-15 广州三星通信技术研究有限公司 移动终端间的定位方法及采用该方法的移动终端
CN108306691A (zh) * 2017-01-11 2018-07-20 邓晓波 一种实时量子通讯方法
CN108376468A (zh) * 2017-01-29 2018-08-07 董沛 质空关联量子遥控通讯技术
CN111147152A (zh) * 2019-12-31 2020-05-12 浙江大学 一种便携式多目标通讯装置及通讯方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104101341A (zh) * 2013-04-02 2014-10-15 广州三星通信技术研究有限公司 移动终端间的定位方法及采用该方法的移动终端
CN108306691A (zh) * 2017-01-11 2018-07-20 邓晓波 一种实时量子通讯方法
CN108376468A (zh) * 2017-01-29 2018-08-07 董沛 质空关联量子遥控通讯技术
CN111147152A (zh) * 2019-12-31 2020-05-12 浙江大学 一种便携式多目标通讯装置及通讯方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI XI-HAN: "Quantum secure direct communication", ACTA PHYSICA SINICA, vol. 64, no. 16, 1 January 2015 (2015-01-01), pages 160307, XP055828225, ISSN: 1000-3290, DOI: 10.7498/aps.64.160307 *

Also Published As

Publication number Publication date
CN111147152A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2021135689A1 (zh) 一种便携式多目标通讯装置及通讯方法
CN110017765B (zh) 一种混合定位滑坡形变监测系统
CN105849579B (zh) 目标设备的定位方法和移动终端
CN106197473A (zh) 设备的活动行为识别方法及装置
CN105527643B (zh) 移动终端的定位方法和移动终端
CN103994767A (zh) 一种救援人员室内协同定位装置及方法
CN110285809B (zh) 一种室内外一体化的组合定位装置
CN102519456A (zh) 地铁线路导航方法及移动终端
CN204989490U (zh) 一种基于gps与超声波的小型无人机室内外无缝集成定位系统
CN104197930A (zh) 一种基于惯性制导和射频识别的室内定位装置及方法
CN114838701B (zh) 一种获取姿态信息的方法及电子设备
CN102469500A (zh) 一种基于无线传感技术的移动定位服务方法
US11743687B2 (en) Method and system for determining and tracking an indoor position of an object
CN105783920A (zh) 一种室内外定位方法及定位系统、定位用脚环
CN104266648A (zh) Android平台MARG传感器的室内定位系统
US20180367658A1 (en) Communication device to transmit data with reduced power consumption
CN208968561U (zh) 一种基于自组网的室内惯导定位人员位置监控系统
CN106896375A (zh) 一种野外救援系统
CN110166545B (zh) 基于航空惯性稳定平台的远距离无线监控系统及设计方法
CN109387200A (zh) 一种基于自组网的室内惯导定位人员位置监控系统
CN206876184U (zh) 一种基于rssi和惯性导航的室内定位装置
TW201923375A (zh) 用於跟蹤和確定物體位置的方法和系統
Wang et al. Application of Low Cost Integrated Navigation System in Precision Agriculture.
CN207036121U (zh) 一种基于wifi/惯性定位的室内定位装置
CN102594847A (zh) 一体化gnss cors服务器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910152

Country of ref document: EP

Kind code of ref document: A1