WO2021135677A1 - Control method for automatically switching operation mode of water chilling unit - Google Patents

Control method for automatically switching operation mode of water chilling unit Download PDF

Info

Publication number
WO2021135677A1
WO2021135677A1 PCT/CN2020/128701 CN2020128701W WO2021135677A1 WO 2021135677 A1 WO2021135677 A1 WO 2021135677A1 CN 2020128701 W CN2020128701 W CN 2020128701W WO 2021135677 A1 WO2021135677 A1 WO 2021135677A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
chiller
water
control method
setting value
Prior art date
Application number
PCT/CN2020/128701
Other languages
French (fr)
Chinese (zh)
Inventor
丁善达
陶慧汇
孙辉
牛晓燕
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021135677A1 publication Critical patent/WO2021135677A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits

Abstract

The present invention relates to a control method for automatically switching an operation mode of a water chilling unit. The water chilling unit has a plurality of operation modes and comprises a water tank for providing hot water. The control method comprises: setting up a water temperature set value and a water tank temperature set value of the water chilling unit; according to the water temperature set value and the water tank temperature set value, dividing into a plurality of load demand regions, and selecting, for each load demand region, a corresponding operation mode from the plurality of operation modes; measuring an actual water temperature and an actual water tank temperature of the water chilling unit; and selecting one of the plurality of load demand regions according to the measured actual water temperature and actual water tank temperature, and according to the selected load demand region, automatically switching the water chilling unit to the corresponding operation mode. The control method for automatically selecting the operation mode of the water chilling unit according to an actual load demand change not only achieves the smart control of the water chilling unit, but also further improves the convenience of a user operation.

Description

用于自动切换冷水机组的运行模式的控制方法Control method for automatically switching operation mode of chiller 技术领域Technical field
本发明涉及控制空调系统的方法,具体地涉及用于自动切换冷水机组的运行模式的控制方法。The present invention relates to a method for controlling an air conditioning system, in particular to a control method for automatically switching the operation mode of a chiller.
背景技术Background technique
冷水机组一般通过水(称为载冷剂)来传导热量,包括但不限于水冷式冷水机组和风冷式冷水机组。冷水机组可以采用蒸气压缩式制冷循环(例如使用螺杆式压缩机或涡旋式压缩机)或吸收式制冷循环。采用蒸气压缩式制冷循环的冷水机组是先用制冷剂(例如氟利昂或其它替代品)给水降温(制冷)或加热(制热)到一定温度(称为“出水温度”或“供水温度”);被降温或加热的水再被输送到中央空调系统的换热盘管里以给空气降温或升温;被降温或升温的空气然后被送入需要制冷或加热的空间(受调节空间),比如办公室等;将热量传递给空气的水被升温或降温到一定温度(称为“回水温度”)后再回到冷水机组以重新被降温或加热,从而开始新的制冷或制热循环。Water chillers generally conduct heat through water (called refrigerant), including but not limited to water-cooled chillers and air-cooled chillers. The chiller can adopt a vapor compression refrigeration cycle (for example, using a screw compressor or a scroll compressor) or an absorption refrigeration cycle. The chiller using the vapor compression refrigeration cycle first uses a refrigerant (such as Freon or other substitutes) to cool (refrigerate) or heat (heat) the water to a certain temperature (called "outlet water temperature" or "water supply temperature"); The cooled or heated water is then sent to the heat exchange coil of the central air conditioning system to cool or warm the air; the cooled or warmed air is then sent to the space that needs cooling or heating (conditioned space), such as an office Etc.; the water that transfers heat to the air is heated or cooled to a certain temperature (called "return water temperature") and then returned to the chiller to be cooled or heated again, thereby starting a new cooling or heating cycle.
冷水机组目前已经得到广泛的应用,例如发展成为中央空调的一种。同时,冷水机组的各种不同的功能也被逐步完善,例如同一冷水机组可以满足制冷、制热、制热水和热回收的多种需求。用户通过遥控器或用户终端上的按键来选择不同的功能模式,例如当用户需要制冷时,就选择制冷模式;当用户需求制热水时,就选择制热水模式;当既需要制冷又需要制热水时,就选择热回收模式。这些功能模式的选择都需要用户通过线控器进行操作,因此无法实现机组的智能控制,并且操作的便捷性也不够。Water chillers have been widely used at present, for example, they have developed into a type of central air-conditioning. At the same time, the various functions of the chiller have been gradually improved. For example, the same chiller can meet multiple requirements for refrigeration, heating, hot water production and heat recovery. The user selects different functional modes through the remote control or the buttons on the user terminal. For example, when the user needs cooling, the cooling mode is selected; when the user needs hot water, the hot water heating mode is selected; when both cooling and cooling are required When making hot water, select the heat recovery mode. The selection of these function modes requires the user to operate through the wire controller, so the intelligent control of the unit cannot be realized, and the convenience of operation is not enough.
相应地,本领域需要一种新的技术方案来解决上述问题。Correspondingly, a new technical solution is needed in this field to solve the above-mentioned problems.
发明内容Summary of the invention
为了解决现有技术中的上述问题,即为了解决现有冷水机组的运行模式无法自动切换的技术问题,本发明提供一种用于自动切换冷水机组的运行模式的控制方法,所述冷水机组具有多种运行模式并且包括提供热水 的水箱,所述控制方法包括:建立所述冷水机组的水温设定值和水箱温度设定值;基于所述水温设定值和水箱温度设定值划分多个负荷需求区,并且从所述多种运行模式中为每个负荷需求区选择一种对应的运行模式;测量所述冷水机组的实际水温和实际水箱温度;基于测量的实际水温和实际水箱温度选择所述多个负荷需求区中的一个,并且根据选择的负荷需求区将所述冷水机组自动切换到所述对应的运行模式。In order to solve the above-mentioned problems in the prior art, that is, to solve the technical problem that the operation mode of the existing chiller cannot be automatically switched, the present invention provides a control method for automatically switching the operation mode of the chiller, the chiller having Multiple operating modes and including a water tank that provides hot water, the control method includes: establishing a water temperature setting value and a water tank temperature setting value of the chiller; dividing more based on the water temperature setting value and the water tank temperature setting value A load demand area, and select a corresponding operation mode for each load demand area from the multiple operation modes; measure the actual water temperature and actual water tank temperature of the chiller; based on the measured actual water temperature and actual water tank temperature Select one of the multiple load demand zones, and automatically switch the chiller to the corresponding operation mode according to the selected load demand zone.
在上述用于自动切换冷水机组的运行模式的控制方法的优选技术方案中,所述控制方法包括预定值回差控制。In the above-mentioned preferred technical solution of the control method for automatically switching the operation mode of the chiller, the control method includes a predetermined value hysteresis control.
在上述用于自动切换冷水机组的运行模式的控制方法的优选技术方案中,所述预定值回差控制包括2摄氏度回差控制。In the above-mentioned preferred technical solution of the control method for automatically switching the operation mode of the chiller, the predetermined value hysteresis control includes 2 degrees Celsius hysteresis control.
在上述用于自动切换冷水机组的运行模式的控制方法的优选技术方案中,所述多种运行模式包括制冷模式、制热模式、制热水模式、热回收模式、制热优先模式和待机模式。In the preferred technical solution of the above-mentioned control method for automatically switching the operation mode of the chiller, the multiple operation modes include a cooling mode, a heating mode, a hot water mode, a heat recovery mode, a heating priority mode, and a standby mode .
在上述用于自动切换冷水机组的运行模式的控制方法的优选技术方案中,所述控制方法包括夏季控制模式和冬季控制模式,在所述夏季控制模式下,建立制冷水温设定值和第一水箱温度设定值,并且基于所述制冷水温设定值和第一水箱温度设定值划分所述多个负荷需求区;在所述冬季控制模式下,建立制热水温设定值和第二水箱温度设定值,并且基于所述制热水温设定值和第二水箱温度设定值划分所述多个负荷需求区。In the preferred technical solution of the control method for automatically switching the operation mode of the chiller, the control method includes a summer control mode and a winter control mode. In the summer control mode, the cooling water temperature set value and the first Water tank temperature setting value, and dividing the multiple load demand zones based on the cooling water temperature setting value and the first water tank temperature setting value; in the winter control mode, establishing the heating water temperature setting value and the second The water tank temperature setting value, and the plurality of load demand zones are divided based on the heating water temperature setting value and the second water tank temperature setting value.
在上述用于自动切换冷水机组的运行模式的控制方法的优选技术方案中,所述制冷水温设定值为12℃,并且所述制热水温设定值为45℃。In the above-mentioned preferred technical solution of the control method for automatically switching the operation mode of the chiller, the set value of the cooling water temperature is 12°C, and the set value of the hot water temperature is 45°C.
在上述用于自动切换冷水机组的运行模式的控制方法的优选技术方案中,所述第一水箱温度设定值为40℃,并且所述第二水箱温度设定值为50℃。In the above-mentioned preferred technical solution of the control method for automatically switching the operation mode of the chiller, the set temperature of the first water tank is 40°C, and the set temperature of the second water tank is 50°C.
在上述用于自动切换冷水机组的运行模式的控制方法的优选技术方案中,在所述夏季控制模式下,所述冷水机组包括制冷模式、制热水模式、热回收模式和待机模式;在所述冬季控制模式下,所述冷水机组包括制热模式、制热水模式、制热优先模式和待机模式。In the preferred technical solution of the control method for automatically switching the operation mode of the chiller, in the summer control mode, the chiller includes a cooling mode, a hot water mode, a heat recovery mode, and a standby mode; In the winter control mode, the chiller includes a heating mode, a hot water mode, a heating priority mode, and a standby mode.
在上述用于自动切换冷水机组的运行模式的控制方法的优选技术方案中,在所述夏季控制模式和冬季控制模式之间能够基于环境温度自动切换或通过手动设置。In the preferred technical solution of the above-mentioned control method for automatically switching the operation mode of the chiller, the summer control mode and the winter control mode can be automatically switched based on the ambient temperature or manually set.
在上述用于自动切换冷水机组的运行模式的控制方法的优选技术方案中,所述多个负荷需求区包括九个负荷需求区。In the above-mentioned preferred technical solution of the control method for automatically switching the operation mode of the chiller, the multiple load demand areas include nine load demand areas.
本领域技术人员能够理解的是,在本发明用于自动切换冷水机组的运行模式的控制方法的技术方案中,首先根据建立的冷水机组的水温设定值和水箱温度设定值划分多个负荷需求区,并且为每个负荷需求区选择一种对应的运行模式。在冷水机组运行或待机时,测量冷水机组的实际水温和实际水箱温度。基于测量的实际水温和实际水箱温度选择多个负荷需求区中的一个,并且根据选择的负荷需求区将冷水机组自动切换到对应的运行模式。这种基于实际负荷需求变化自动选择冷水机组的运行模式的控制方法不仅实现了冷水机组的智能控制,而且进一步地提高了用户操作的便捷性。Those skilled in the art can understand that, in the technical solution of the control method for automatically switching the operation mode of the chiller of the present invention, a plurality of loads are divided according to the established water temperature setting value of the water chiller and the water tank temperature setting value. Demand area, and select a corresponding operating mode for each load demand area. When the chiller is running or in standby, measure the actual water temperature of the chiller and the actual water tank temperature. Select one of multiple load demand zones based on the measured actual water temperature and actual water tank temperature, and automatically switch the chiller to the corresponding operating mode according to the selected load demand zone. This control method that automatically selects the operating mode of the chiller based on actual load demand changes not only realizes the intelligent control of the chiller, but also further improves the convenience of user operations.
优选地,本发明的控制方法采用预定值回差控制,例如2摄氏度回差控制,能够避免冷水机组的水温在临界值附近波动所造成的运行模式之间频繁转化和/或冷水机组的频繁启停的问题。Preferably, the control method of the present invention adopts a predetermined value of hysteresis control, such as 2 degrees Celsius hysteresis control, which can avoid frequent conversion between operating modes caused by fluctuations in the water temperature of the chiller near the critical value and/or frequent startup of the chiller. Stop the problem.
优选地,本发明的控制方法设置夏季控制模式和冬季控制模式能够分别符合用户在某一时间段内的主要需求,例如制冷或制热。Preferably, the summer control mode and the winter control mode set by the control method of the present invention can respectively meet the main needs of the user in a certain period of time, such as cooling or heating.
附图说明Description of the drawings
下面参照附图来描述本发明的优选实施方式,附图中:The preferred embodiments of the present invention are described below with reference to the accompanying drawings, in which:
图1是本发明用于自动切换冷水机组的运行模式的控制方法的流程图;Figure 1 is a flow chart of the control method for automatically switching the operating mode of the chiller according to the present invention;
图2是本发明用于自动切换冷水机组的运行模式的控制方法的夏季控制模式的实施例的流程图;2 is a flowchart of an embodiment of the summer control mode of the control method for automatically switching the operation mode of the chiller of the present invention;
图3是本发明用于自动切换冷水机组的运行模式的控制方法的冬季控制模式的实施例的流程图。Fig. 3 is a flowchart of an embodiment of the winter control mode of the control method for automatically switching the operation mode of the chiller of the present invention.
具体实施方式Detailed ways
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。The preferred embodiments of the present invention will be described below with reference to the drawings. Those skilled in the art should understand that these embodiments are only used to explain the technical principles of the present invention, and are not intended to limit the protection scope of the present invention.
为了解决现有冷水机组的运行模式无法自动切换的技术问题,本发明提供一种用于自动切换冷水机组的运行模式的控制方法。该冷水机组具 有多种运行模式并且包括提供热水的水箱。该控制方法包括:建立冷水机组的水温设定值和水箱温度设定值(步骤S1);基于所述水温设定值和水箱温度设定值划分多个负荷需求区,并且从多种运行模式中为每个负荷需求区选择一种对应的运行模式(步骤S2);测量冷水机组的实际水温和实际水箱温度(步骤S3);基于测量的实际水温和实际水箱温度选择所述多个负荷需求区中的一个,并且根据选择的负荷需求区将所述冷水机组自动切换到所述对应的运行模式(步骤S4)。In order to solve the technical problem that the operation mode of the existing water chiller cannot be automatically switched, the present invention provides a control method for automatically switching the operation mode of the water chiller. The chiller has a variety of operating modes and includes a water tank that provides hot water. The control method includes: establishing the water temperature setting value and the water tank temperature setting value of the chiller (step S1); dividing a plurality of load demand areas based on the water temperature setting value and the water tank temperature setting value, and selecting from multiple operation modes Select a corresponding operating mode for each load demand zone (step S2); measure the actual water temperature and actual water tank temperature of the chiller (step S3); select the multiple load requirements based on the measured actual water temperature and actual water tank temperature According to the selected load demand area, the chiller is automatically switched to the corresponding operating mode (step S4).
在一种或多种实施例中,多种运行模式包括制冷模式、制热模式、制热水模式、热回收模式、制热优先模式和待机模式。“制冷模式”通常是指室外空调机组进行制冷运转并将冷量传输给水系统,进而通过该水系统实现用户室内侧的制冷需求的运行模式。“制热模式”通常是指室外空调机组进行制热运转并将热量传输给水系统,进而通过该水系统实现用户室内侧的制热需求的运行模式。“制热水模式”通常是指室外空调机组进行制热运转并将热量传输给水系统,然后将热水储存在水箱当中,以便实现用户室内侧的制热水需求的运行模式。“热回收模式”通常是指室外空调机组同时进行制冷和制热水运转并将制冷散发的热量传输给制热水侧的水系统,然后热水被储存在水箱当中,以便实现用户室内侧的同时制冷和制热水需求的运行模式。“待机模式”通常是指冷水机组处于通电但停止工作的状态。“制热优先模式”通常是指在同时存在制热和制热水需求的情况下首先满足制热需求的模式,即冷水机组默认制热优先,因此冷水机组先进入制热模式。In one or more embodiments, the multiple operation modes include cooling mode, heating mode, hot water heating mode, heat recovery mode, heating priority mode, and standby mode. The "cooling mode" generally refers to an operation mode in which the outdoor air-conditioning unit performs cooling operation and transfers the cold energy to the water system, and then realizes the user's indoor cooling demand through the water system. The "heating mode" usually refers to the operation mode in which the outdoor air-conditioning unit performs heating operation and transfers heat to the water system, and then realizes the heating demand of the user's indoor side through the water system. "Hot water mode" usually refers to the operation mode in which the outdoor air conditioning unit performs heating operation and transfers the heat to the water system, and then stores the hot water in the water tank to achieve the hot water demand of the user indoors. "Heat recovery mode" usually means that the outdoor air conditioning unit performs cooling and hot water operation at the same time and transfers the heat emitted by the cooling to the water system on the hot water side, and then the hot water is stored in the water tank to achieve the indoor side of the user. Simultaneous cooling and hot water demand operation mode. "Standby mode" usually refers to the state where the chiller is energized but stopped. "Heating priority mode" usually refers to the mode that first meets the heating demand when there are both heating and hot water demand. That is, the chiller has heating priority by default, so the chiller enters the heating mode first.
在本文中所提及的“水温设定值”一般是指冷水机组的回水温度的设定值。相应地,实际水温也是指冷水机组的实际回水温度。替代地,根据实际需要,水温设定值也可以是冷水机组的供水温度的设定值。在这种情况下,实际水温也应该是实际的供水温度。The "set value of water temperature" mentioned in this article generally refers to the set value of the return water temperature of the chiller. Correspondingly, the actual water temperature also refers to the actual return water temperature of the chiller. Alternatively, according to actual needs, the water temperature set value may also be the set value of the water supply temperature of the chiller. In this case, the actual water temperature should also be the actual water supply temperature.
在本文中所提交的冷水机组可以是采用蒸气压缩式制冷循环的冷水机组(例如螺杆式冷水机组或涡旋式冷水机组),也可以是采用吸收式制冷循环的冷水机组(例如溴化锂吸收式冷水机组),但是不限于这些类型的冷水机组。另外,这些冷水机组都配有储存和提供热水的水箱。The chillers submitted in this article can be chillers using vapor compression refrigeration cycles (such as screw chillers or scroll chillers), or chillers using absorption refrigeration cycles (such as lithium bromide absorption chillers). Chillers), but not limited to these types of chillers. In addition, these chillers are equipped with water tanks for storing and supplying hot water.
在本文中提及的操作步骤除非有明确的说明,在操作顺序上没有先后的要求,例如有些操作步骤可以同时实施。Unless there are clear instructions for the operation steps mentioned in this article, there is no requirement on the order of operations. For example, some operation steps can be implemented at the same time.
图1是本发明用于自动切换冷水机组的运行模式的控制方法的流程图。如图1所示,针对具有多种运行模式和提供热水的水箱的冷水机组,在步骤S1中,该控制方法首先建立冷水机组的水温设定值和水箱温度设定值。在步骤S2中,该控制方法基于建立的水温设定值和水箱温度设定值将用户的负荷需求分为多个负荷需求区,并且从多种运行模式中为每个负荷需求区选择一种对应的运行模式。当冷水机组在运行或待机时,通过步骤S3测量冷水机组的实际水温和实际水箱温度。最后,在步骤S4中,基于测量的实际水温和实际水箱温度从多个负荷需求区中选择一个负荷需求区,并且根据选择的负荷需求区将冷水机组自动切换到对应的运行模式。Fig. 1 is a flowchart of a control method for automatically switching the operation mode of a chiller according to the present invention. As shown in Figure 1, for a chiller with multiple operating modes and a water tank that provides hot water, in step S1, the control method first establishes the water temperature setting value of the chiller and the water tank temperature setting value. In step S2, the control method divides the user's load demand into multiple load demand areas based on the established water temperature set value and water tank temperature set value, and selects one for each load demand area from multiple operating modes Corresponding operating mode. When the chiller is running or on standby, the actual water temperature of the chiller and the actual water tank temperature are measured through step S3. Finally, in step S4, a load demand zone is selected from multiple load demand zones based on the measured actual water temperature and actual water tank temperature, and the chiller is automatically switched to the corresponding operating mode according to the selected load demand zone.
在一种或多种实施例中,本发明的控制方法包括夏季控制模式和冬季控制模式。在夏季控制模式下,冷水机组可以包括制冷模式、制热水模式、热回收模式和待机模式,并且可以基于负荷需求在这些模式之间进行自动转换。在冬季控制模式下,冷水机组可以包括制热模式、制热水模式、制热优先模式和待机模式,并且可以基于负荷需求在这些模式之间进行自动转换。在夏季控制模式和冬季控制模式之间的转换可以基于外界环境温度进行自动切换或进行手动设置。In one or more embodiments, the control method of the present invention includes a summer control mode and a winter control mode. In the summer control mode, the chiller can include cooling mode, hot water mode, heat recovery mode and standby mode, and can automatically switch between these modes based on load demand. In the winter control mode, the chiller can include heating mode, hot water mode, heating priority mode and standby mode, and can automatically switch between these modes based on load demand. The conversion between the summer control mode and the winter control mode can be automatically switched based on the outside environment temperature or manually set.
在一种或多种实施例中,夏季控制模式和冬季控制模式均采用预定值回差控制。该预定值回差控制是针对水温设定值和水箱温度设定值进行的回差控制。所述的预定值例如可以为2摄氏度。替代地,预定值也可以采用低于2摄氏度或高于2摄氏度的预定值。这种回差控制能够增加冷水机组的稳定性,避免冷水机组的频繁启停。例如,在制冷模式下,当冷水机组不采用回差控制时,假如水温设定值为10℃,那么当冷水机组的水温低于10℃时,该冷水机组马上就会停机;当室内负荷较大时,水温会很快升至10℃以上,冷水机组因此又马上开启,从而造成冷水机组的频繁起停。当冷水机组有2摄氏度的回差时,当水温设定值为10℃时,那么冷水机组在水温低于10℃-2℃即8℃时,冷水机组停机;当冷水机组停机后,水温会不断上升,当达到10℃+2℃即12℃时,冷水机组才启动。因此该回差控制方法能够有效降低冷水机组的启停次数,降低能耗,并且延长相应部件的使用寿命。In one or more embodiments, both the summer control mode and the winter control mode adopt predetermined value hysteresis control. The predetermined value hysteresis control is the hysteresis control for the water temperature setting value and the water tank temperature setting value. The predetermined value may be, for example, 2 degrees Celsius. Alternatively, the predetermined value may also be a predetermined value lower than 2 degrees Celsius or higher than 2 degrees Celsius. This return difference control can increase the stability of the chiller and avoid frequent start and stop of the chiller. For example, in the cooling mode, when the chiller does not adopt the differential control, if the water temperature is set to 10℃, then when the water temperature of the chiller is lower than 10℃, the chiller will stop immediately; when the indoor load is high When it is large, the water temperature will quickly rise above 10°C, and the chiller will be turned on immediately, causing frequent start and stop of the chiller. When the chiller has a return difference of 2 degrees Celsius, when the water temperature is set to 10°C, the chiller will shut down when the water temperature is lower than 10°C-2°C, that is, 8°C; when the chiller is shut down, the water temperature will change It keeps rising, when it reaches 10℃+2℃, that is, 12℃, the chiller will start. Therefore, the hysteresis control method can effectively reduce the number of start and stop of the chiller, reduce energy consumption, and extend the service life of the corresponding components.
图2是本发明用于自动切换冷水机组的运行模式的夏季控制模式的实施例的流程图。在一种或多种实施例中,在夏季控制模式中,冷水机组具有多个运行模式:制冷模式、制热水模式、热回收模式和待机模式。如图 2所示,在该实施例中,用于自动切换冷水机组的运行模式的控制方法首先建立冷水机组的制冷水温设定值和第一水箱温度设定值(步骤S1’)。在步骤S2’中,基于制冷水温设定值和第一水箱温度设定值划分多个负荷需求区,并且从多个运行模式中为每个负荷需求区选择一个对应的运行模式。在步骤S3中,在冷水机组运行或待机的情况下,测量冷水机组的实际水温和实际水箱温度。最后,在步骤S4中,基于测量的实际水温和实际水箱温度选择多个负荷需求区中的一个,并且根据选择的负荷需求区将冷水机组自动切换到对应的运行模式。Fig. 2 is a flowchart of an embodiment of the summer control mode for automatically switching the operation mode of the chiller according to the present invention. In one or more embodiments, in the summer control mode, the chiller has multiple operation modes: cooling mode, hot water heating mode, heat recovery mode, and standby mode. As shown in Fig. 2, in this embodiment, the control method for automatically switching the operation mode of the chiller first establishes the set value of the chilled water temperature of the chiller and the set value of the first water tank temperature (step S1'). In step S2', multiple load demand zones are divided based on the cooling water temperature set value and the first water tank temperature set value, and a corresponding operating mode is selected for each load demand zone from the multiple operating modes. In step S3, when the chiller is running or on standby, the actual water temperature of the chiller and the actual water tank temperature are measured. Finally, in step S4, one of the multiple load demand zones is selected based on the measured actual water temperature and the actual water tank temperature, and the chiller is automatically switched to the corresponding operation mode according to the selected load demand zone.
在一种或多种实施例中,在夏季控制模式中,基于制冷水温设定值和第一水箱温度设定值可以划分出九个负荷需求区。例如,如下表1所示,以冷水机组的水温为纵坐标,并且以水箱温度为横坐标,通过第一水箱温度设定值、制冷水温设定值和2摄氏度的回差,可以将负荷需求分为九个负荷需求区(形成九宫格):A1、A2、A3、B1、B2、B3、C1、C2、C3。例如,当冷水机组的实际水温高于制冷水温设定值+2,而实际水箱温度低于第一水箱温度设定值-2时,实际的负荷需求就会落入A1的区域中。因此实际水温和实际水箱温度的变化代表了实际负荷需求的变化,从而使实际负荷需求落入不同的负荷需求区。在一种或多种实施例中,第一水箱温度设定值可以为40℃,而制冷水温设定值可以为12℃。替代地,在其它实施例中,第一水箱温度设定值和制冷水温设定值也可以分别采用其它适合的数值。替代地,在其它实施例中,负荷需求区不限于九个,而是根据实际需要可以少于或多于九个。In one or more embodiments, in the summer control mode, nine load demand zones can be divided based on the set value of the cooling water temperature and the set value of the first water tank temperature. For example, as shown in Table 1 below, taking the water temperature of the chiller unit as the ordinate and the water tank temperature as the abscissa, through the first water tank temperature setting value, the cooling water temperature setting value and the return difference of 2 degrees Celsius, the load demand can be calculated Divided into nine load demand areas (form a nine-square grid): A1, A2, A3, B1, B2, B3, C1, C2, C3. For example, when the actual water temperature of the chiller is higher than the cooling water temperature set value +2, and the actual water tank temperature is lower than the first water tank temperature set value -2, the actual load demand will fall into the area of A1. Therefore, the actual water temperature and the actual water tank temperature change represent the actual load demand change, so that the actual load demand falls into different load demand areas. In one or more embodiments, the first water tank temperature setting value may be 40°C, and the cooling water temperature setting value may be 12°C. Alternatively, in other embodiments, the first water tank temperature setting value and the cooling water temperature setting value may also adopt other suitable values respectively. Alternatively, in other embodiments, the load demand area is not limited to nine, but can be less than or more than nine according to actual needs.
表1:Table 1:
Figure PCTCN2020128701-appb-000001
Figure PCTCN2020128701-appb-000001
Figure PCTCN2020128701-appb-000002
Figure PCTCN2020128701-appb-000002
针对上述九个负荷需求区的每一个,可以选择对应的运行模式。例如,如下表2所示,在负荷需求区A1内,由于实际水温高同时实际水箱温度又低的情形,同时存在制冷和供热水的需求,因此为A1区选择了热回收模式。换言之,当冷水机组的实际水温高于制冷水温设定值+2,同时实际水箱温度低于第一水箱温度设定值-2时,冷水机组将自动切换到热回收模式。继续参考表2,负荷需求区A2和A3都对应制冷模式,负荷需求区B1和C1对应制热水模式,负荷需求区B2、B3、C2、和C3则都对应待机模式。For each of the above nine load demand zones, the corresponding operating mode can be selected. For example, as shown in Table 2 below, in the load demand area A1, because the actual water temperature is high and the actual water tank temperature is low, there is a demand for cooling and hot water at the same time, so the heat recovery mode is selected for the A1 area. In other words, when the actual water temperature of the chiller is higher than the cooling water temperature set value +2, and the actual water tank temperature is lower than the first water tank temperature set value-2, the chiller will automatically switch to the heat recovery mode. Continuing to refer to Table 2, load demand zones A2 and A3 correspond to cooling modes, load demand zones B1 and C1 correspond to hot water mode, and load demand zones B2, B3, C2, and C3 all correspond to standby mode.
表2:Table 2:
“1”表示需要运行;“0”表示不需要运行"1" means need to run; "0" means no need to run
所处区域Area 制冷需求标记Refrigeration demand mark 热水需求标记Hot water demand mark 冷水机组的运行模式Operation mode of chiller
A1A1 11 11 热回收Heat recovery
A2A2 11 00 制冷Refrigeration
A3A3 11 00 制冷Refrigeration
B1B1 00 11 制热水Hot water
B2B2 00 00 待机Standby
B3B3 00 00 待机Standby
C1C1 00 11 制热水Hot water
C2C2 00 00 待机Standby
C3C3 00 00 待机Standby
图3是本发明用于自动切换冷水机组的运行模式的冬季控制模式的实施例的流程图。在一种或多种实施例中,在冬季控制模式中,冷水机组同样具有多个运行模式:制热模式、制热水模式、制热优先模式和待机模式。如图3所示,在该实施例中,用于自动切换冷水机组的运行模式的控制方法首先建立冷水机组的制热水温设定值和第二水箱温度设定值(步骤S1”)。在步骤S2”中,基于制热水温设定值和第二水箱温度设定值划分多个负荷需求区,并且从多个运行模式中为每个负荷需求区选择一个对应的运行模式。在步骤S3中,在冷水机组运行或待机的情况下,测量冷水机组的实际水温和实际水箱温度。最后,在步骤S4中,基于测量的实际水温和实际水箱温度选 择多个负荷需求区中的一个,并且根据选择的负荷需求区将冷水机组自动切换到对应的运行模式。Fig. 3 is a flowchart of an embodiment of the winter control mode for automatically switching the operation mode of the chiller according to the present invention. In one or more embodiments, in the winter control mode, the chiller also has multiple operation modes: a heating mode, a hot water mode, a heating priority mode, and a standby mode. As shown in Fig. 3, in this embodiment, the control method for automatically switching the operating mode of the chiller first establishes the hot water temperature setting value of the chiller unit and the second water tank temperature setting value (step S1"). In step S2", a plurality of load demand areas are divided based on the heating water temperature setting value and the second water tank temperature setting value, and a corresponding operation mode is selected for each load demand area from the plurality of operation modes. In step S3, when the chiller is running or on standby, the actual water temperature of the chiller and the actual water tank temperature are measured. Finally, in step S4, one of multiple load demand zones is selected based on the measured actual water temperature and actual water tank temperature, and the chiller is automatically switched to the corresponding operating mode according to the selected load demand zone.
在一种或多种实施例中,在冬季控制模式中,基于制热水温设定值和第二水箱温度设定值也可以划分出九个负荷需求区。例如,如下表3所示,以冷水机组的水温为纵坐标,并且以水箱的温度为横坐标,通过第二水箱温度设定值、制热水温设定值和2摄氏度的回差,可以将负荷需求分为九个负荷需求区(形成九宫格):A1、A2、A3、B1、B2、B3、C1、C2、C3。例如,当冷水机组的实际水温高于制热水温设定值+2,而实际水箱温度低于第二水箱温度设定值-2时,实际的负荷需求就会落入A1的区域中。在一种或多种实施例中,第二水箱温度设定值可以为50℃,而制热水温设定值可以为45℃。替代地,在其它实施例中,根据实际需要,第二水箱温度设定值和制热水温设定值也可以分别采用其它适合的数值。In one or more embodiments, in the winter control mode, nine load demand zones can also be divided based on the heating water temperature setting value and the second water tank temperature setting value. For example, as shown in Table 3 below, taking the water temperature of the chiller unit as the ordinate and the temperature of the water tank as the abscissa, through the second water tank temperature setting value, the heating water temperature setting value and the return difference of 2 degrees Celsius, you can Load demand is divided into nine load demand areas (form a nine-square grid): A1, A2, A3, B1, B2, B3, C1, C2, C3. For example, when the actual water temperature of the chiller is higher than the hot water temperature setting value +2, and the actual water tank temperature is lower than the second water tank temperature setting value -2, the actual load demand will fall into the area of A1. In one or more embodiments, the second water tank temperature setting value may be 50°C, and the hot water temperature setting value may be 45°C. Alternatively, in other embodiments, according to actual needs, the second water tank temperature setting value and the hot water temperature setting value may also adopt other suitable values, respectively.
表3:table 3:
Figure PCTCN2020128701-appb-000003
Figure PCTCN2020128701-appb-000003
针对冬季控制模式的九个负荷需求区的每一个,同样可以选择对应的运行模式。例如,如下表4所示,在负荷需求区A1内,由于实际水温高同时实际水箱温度又低的情形,不存在制热的需求,但存在供热水的需求,因此为A1区选择了制热水模式。换言之,在冬季,当冷水机组的实际水温高于制热水温设定值+2,同时实际水箱温度低于第二水箱温度设定值-2时,冷水机组将自动切换到制热水模式。类似地,负荷需求区B1也对应制热水模式。 继续参考表4,负荷需求区A2、A3、B2、B3都对应待机模式,负荷需求区C1对应制热优先模式,而负荷需求区C2和C3则都对应制热模式。For each of the nine load demand zones in the winter control mode, the corresponding operating mode can also be selected. For example, as shown in Table 4 below, in the load demand zone A1, because the actual water temperature is high and the actual water tank temperature is low, there is no need for heating, but there is a demand for hot water, so the system is selected for zone A1. Hot water mode. In other words, in winter, when the actual water temperature of the chiller is higher than the hot water temperature setting +2, and the actual water tank temperature is lower than the second water tank temperature setting -2, the chiller will automatically switch to the hot water mode. Similarly, the load demand zone B1 also corresponds to the hot water heating mode. Continuing to refer to Table 4, the load demand areas A2, A3, B2, and B3 all correspond to the standby mode, the load demand area C1 corresponds to the heating priority mode, and the load demand areas C2 and C3 both correspond to the heating mode.
表4:Table 4:
“1”表示需要运行;“0”表示不需要运行"1" means need to run; "0" means no need to run
负荷需求区Load demand area 制热需求标记Heating demand mark 制热水需求标记Hot water demand mark 冷水机组运行模式Chiller operating mode
A1A1 00 11 制热水Hot water
A2A2 00 00 待机Standby
A3A3 00 00 待机Standby
B1B1 00 11 制热水Hot water
B2B2 00 00 待机Standby
B3B3 00 00 待机Standby
C1C1 11 11 制热优先Heating priority
C2C2 11 00 制热Heating
C3C3 11 00 制热Heating
通过在夏季和冬季控制模式下的运行模式自动转化,本发明的控制方法可实现冷水机组的智能化操作,而无需人为通过手动操作进行运行模式转换,因此有效提高了冷水机组的便捷性。冷水机组在夏季时,可以自动进入到热回收模式(例如全热回收),还能实现对冷水机组在制冷时散发出的热量的回收利用,因此降低了冷水机组的能耗,实现了冷水机组的节能性。本发明的控制方法通过回差控制,又有效避免了冷水机组在水温处于临界值附近时的频繁启停,减少了部件的频繁动作,并且增加了冷水机组的使用寿命。Through the automatic conversion of the operation mode in the summer and winter control modes, the control method of the present invention can realize the intelligent operation of the chiller without manual operation of the operation mode conversion, thus effectively improving the convenience of the chiller. In summer, the chiller can automatically enter the heat recovery mode (such as full heat recovery), and can also realize the recovery and utilization of the heat emitted by the chiller during cooling, thus reducing the energy consumption of the chiller and realizing the chiller Energy saving. The control method of the present invention effectively avoids the frequent start and stop of the chiller when the water temperature is near the critical value through the hysteresis control, reduces the frequent actions of components, and increases the service life of the chiller.
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。So far, the technical solutions of the present invention have been described in conjunction with the preferred embodiments shown in the drawings. However, it is easy for those skilled in the art to understand that the protection scope of the present invention is obviously not limited to these specific embodiments. Without departing from the principle of the present invention, those skilled in the art can make equivalent changes or substitutions to the relevant technical features, and the technical solutions after these changes or substitutions will fall within the protection scope of the present invention.

Claims (10)

  1. 一种用于自动切换冷水机组的运行模式的控制方法,其特征在于,所述冷水机组具有多种运行模式并且包括提供热水的水箱,所述控制方法包括:A control method for automatically switching the operation mode of a water chiller, characterized in that the water chiller has multiple operation modes and includes a water tank for providing hot water, and the control method includes:
    建立所述冷水机组的水温设定值和水箱温度设定值;Establishing the water temperature setting value and the water tank temperature setting value of the chiller;
    基于所述水温设定值和水箱温度设定值划分多个负荷需求区,并且从所述多种运行模式中为每个负荷需求区选择一种对应的运行模式;Dividing a plurality of load demand areas based on the water temperature setting value and the water tank temperature setting value, and selecting a corresponding operation mode for each load demand area from the multiple operation modes;
    测量所述冷水机组的实际水温和实际水箱温度;Measuring the actual water temperature and the actual water tank temperature of the chiller;
    基于测量的实际水温和实际水箱温度选择所述多个负荷需求区中的一个,并且根据选择的负荷需求区将所述冷水机组自动切换到所述对应的运行模式。One of the multiple load demand zones is selected based on the measured actual water temperature and the actual water tank temperature, and the chiller is automatically switched to the corresponding operation mode according to the selected load demand zone.
  2. 根据权利要求1所述的用于自动切换冷水机组的运行模式的控制方法,其特征在于,所述控制方法包括预定值回差控制。The control method for automatically switching the operating mode of the chiller according to claim 1, wherein the control method includes a predetermined value hysteresis control.
  3. 根据权利要求2所述的用于自动切换冷水机组的运行模式的控制方法,其特征在于,所述预定值回差控制包括2摄氏度回差控制。The control method for automatically switching the operation mode of the chiller according to claim 2, wherein the predetermined value hysteresis control includes 2 degrees Celsius hysteresis control.
  4. 根据权利要求1或2所述的用于自动切换冷水机组的运行模式的控制方法,其特征在于,所述多种运行模式包括制冷模式、制热模式、制热水模式、热回收模式、制热优先模式和待机模式。The control method for automatically switching the operation mode of the chiller according to claim 1 or 2, wherein the multiple operation modes include cooling mode, heating mode, hot water mode, heat recovery mode, and heating mode. Thermal priority mode and standby mode.
  5. 根据权利要求1或2所述的用于自动切换冷水机组的运行模式的控制方法,其特征在于,所述控制方法包括夏季控制模式和冬季控制模式,在所述夏季控制模式下,建立制冷水温设定值和第一水箱温度设定值,并且基于所述制冷水温设定值和第一水箱温度设定值划分所述多个负荷需求区;在所述冬季控制模式下,建立制热水温设定值和第二水箱温度设定值,并且基于所述制热水温设定值和第二水箱温度设定值划分所述多个负荷需求区。The control method for automatically switching the operation mode of the chiller according to claim 1 or 2, wherein the control method includes a summer control mode and a winter control mode, and the cooling water temperature is established in the summer control mode. Setting value and a first water tank temperature setting value, and dividing the multiple load demand areas based on the cooling water temperature setting value and the first water tank temperature setting value; in the winter control mode, establishing a heating water temperature Setting value and a second water tank temperature setting value, and dividing the plurality of load demand areas based on the heating water temperature setting value and the second water tank temperature setting value.
  6. 根据权利要求5所述的用于自动切换冷水机组的运行模式的控制方法,其特征在于,所述制冷水温设定值为12℃,并且所述制热水温设定值为45℃。The control method for automatically switching the operation mode of the chiller according to claim 5, wherein the set value of the cooling water temperature is 12°C, and the set value of the heating water temperature is 45°C.
  7. 根据权利要求5所述的用于自动切换冷水机组的运行模式的控制方法,其特征在于,所述第一水箱温度设定值为40℃,并且所述第二水箱温度设定值为50℃。The control method for automatically switching the operating mode of a chiller according to claim 5, wherein the first water tank temperature setting value is 40°C, and the second water tank temperature setting value is 50°C .
  8. 根据权利要求5所述的用于自动切换冷水机组的运行模式的控制方法,其特征在于,在所述夏季控制模式下,所述冷水机组包括制冷模式、制热水模式、热回收模式和待机模式;在所述冬季控制模式下,所述冷水机组包括制热模式、制热水模式、制热优先模式和待机模式。The control method for automatically switching the operating mode of the chiller according to claim 5, wherein, in the summer control mode, the chiller includes a cooling mode, a hot water mode, a heat recovery mode, and a standby mode. Mode; in the winter control mode, the chiller includes a heating mode, a hot water mode, a heating priority mode, and a standby mode.
  9. 根据权利要求5所述的用于自动切换冷水机组的运行模式的控制方法,其特征在于,在所述夏季控制模式和冬季控制模式之间能够基于环境温度自动切换或通过手动设置。The control method for automatically switching the operation mode of the chiller according to claim 5, wherein the control mode between the summer control mode and the winter control mode can be automatically switched based on the ambient temperature or manually set.
  10. 根据权利要求1或2所述的用于自动切换冷水机组的运行模式的控制方法,所述多个负荷需求区包括九个负荷需求区。According to the control method for automatically switching the operation mode of the chiller according to claim 1 or 2, the plurality of load demand zones includes nine load demand zones.
PCT/CN2020/128701 2019-12-30 2020-11-13 Control method for automatically switching operation mode of water chilling unit WO2021135677A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911388853.6A CN113124531A (en) 2019-12-30 2019-12-30 Control method for automatically switching operation modes of water chilling unit
CN201911388853.6 2019-12-30

Publications (1)

Publication Number Publication Date
WO2021135677A1 true WO2021135677A1 (en) 2021-07-08

Family

ID=76686454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128701 WO2021135677A1 (en) 2019-12-30 2020-11-13 Control method for automatically switching operation mode of water chilling unit

Country Status (2)

Country Link
CN (1) CN113124531A (en)
WO (1) WO2021135677A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113639493A (en) * 2021-08-13 2021-11-12 广东纽恩泰新能源科技发展有限公司 Module control method of low-temperature air source heat pump system
CN114017300A (en) * 2021-11-12 2022-02-08 广州发展南沙电力有限公司 Intelligent group control method and system for air compressor unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414542A (en) * 1987-07-08 1989-01-18 Hitachi Ltd Operation controlling method for cold water system for air conditioning operation
CN203518315U (en) * 2013-10-11 2014-04-02 劳特斯空调(江苏)有限公司 Water-cooling multifunctional heat pump water chilling unit
CN105042968A (en) * 2015-06-11 2015-11-11 广州市设计院 Control method for high-efficiency operation of multi-compressor energy-step-utilization water-heating unit of water-to-water heat pump
CN105546757A (en) * 2016-01-05 2016-05-04 珠海格力电器股份有限公司 Group control method and system for water chilling units

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060010893A1 (en) * 2004-07-13 2006-01-19 Daniel Dominguez Chiller system with low capacity controller and method of operating same
JP4647469B2 (en) * 2005-11-24 2011-03-09 新日本空調株式会社 Operation method of air conditioning equipment
CN102116515B (en) * 2009-12-31 2013-04-10 珠海格力电器股份有限公司 Intelligent control method of refrigerating and heating recovery mode of air conditioning unit
US9644876B2 (en) * 2012-03-15 2017-05-09 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN102818408B (en) * 2012-09-07 2015-04-01 青岛奥利凯中央空调有限公司 Heat recovery control method of air cooling module
CN104251533B (en) * 2013-06-26 2017-02-08 珠海格力电器股份有限公司 Heat recycling type air conditioning unit and composite running mode control method thereof
CN108507125B (en) * 2018-01-23 2020-12-18 青岛海尔空调电子有限公司 Air conditioning unit compound mode control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414542A (en) * 1987-07-08 1989-01-18 Hitachi Ltd Operation controlling method for cold water system for air conditioning operation
CN203518315U (en) * 2013-10-11 2014-04-02 劳特斯空调(江苏)有限公司 Water-cooling multifunctional heat pump water chilling unit
CN105042968A (en) * 2015-06-11 2015-11-11 广州市设计院 Control method for high-efficiency operation of multi-compressor energy-step-utilization water-heating unit of water-to-water heat pump
CN105546757A (en) * 2016-01-05 2016-05-04 珠海格力电器股份有限公司 Group control method and system for water chilling units

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113639493A (en) * 2021-08-13 2021-11-12 广东纽恩泰新能源科技发展有限公司 Module control method of low-temperature air source heat pump system
CN113639493B (en) * 2021-08-13 2023-04-14 广东纽恩泰新能源科技发展有限公司 Module control method of low-temperature air source heat pump system
CN114017300A (en) * 2021-11-12 2022-02-08 广州发展南沙电力有限公司 Intelligent group control method and system for air compressor unit
CN114017300B (en) * 2021-11-12 2024-04-19 广州发展南沙电力有限公司 Intelligent group control method and system for air compressor unit

Also Published As

Publication number Publication date
CN113124531A (en) 2021-07-16

Similar Documents

Publication Publication Date Title
US10101054B2 (en) Variable refrigerant flow air conditioning system with dual control over temperature and humidity and control method thereof
WO2021135677A1 (en) Control method for automatically switching operation mode of water chilling unit
CN108507125B (en) Air conditioning unit compound mode control method
WO2023040249A1 (en) Air conditioning system and control method therefor
CN111207485B (en) Anti-freezing control method and device, storage medium and water multi-connected system
CN109945366B (en) Water multi-connected unit control method, air conditioning water machine system and control method thereof
CN101986050A (en) Method for controlling air-conditioner in variable volume modular unit
CN110793135A (en) Floor heating and air conditioning integrated machine
CN109140719A (en) A method of control air conditioning exhausting temperature
CN114279101A (en) Four-pipe system, control method and device and air conditioner
JP2013036678A (en) Air conditioning device
KR100542919B1 (en) A heat pump using the heating and conditioning systems
WO2023169536A1 (en) Air conditioner and power quantity control method therefor
CN113692189B (en) Machine room air conditioner, control method and device thereof, and storage medium
CN111623548A (en) Air conditioning system and control method
WO2021129224A1 (en) Control method for automatically adjusting set water temperature of water cooling unit
WO2020151113A1 (en) Control method and control device for indirect evaporation cooling outdoor fan
JP2012247118A (en) Air-cooled heat pump chiller
CN110895013B (en) Control method and device of water multi-connected system, storage medium and water multi-connected system
CN113375290B (en) Air conditioner and control method thereof
CN210624718U (en) Air conditioning system
KR20140112681A (en) Method of controlling an air conditioner
CN203687247U (en) Partitioned temperature-controlled air-conditioner system
CN110986319A (en) Energy-saving control method for air conditioner
KR20130080737A (en) Air conditioner and home-leave driving method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909221

Country of ref document: EP

Kind code of ref document: A1