WO2021135663A1 - 应用实例确定的方法、装置及系统 - Google Patents

应用实例确定的方法、装置及系统 Download PDF

Info

Publication number
WO2021135663A1
WO2021135663A1 PCT/CN2020/128213 CN2020128213W WO2021135663A1 WO 2021135663 A1 WO2021135663 A1 WO 2021135663A1 CN 2020128213 W CN2020128213 W CN 2020128213W WO 2021135663 A1 WO2021135663 A1 WO 2021135663A1
Authority
WO
WIPO (PCT)
Prior art keywords
edn
terminal
network element
information
ees
Prior art date
Application number
PCT/CN2020/128213
Other languages
English (en)
French (fr)
Inventor
冯江平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010670950.0A external-priority patent/CN113132897A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20910957.8A priority Critical patent/EP4075867A4/en
Publication of WO2021135663A1 publication Critical patent/WO2021135663A1/zh
Priority to US17/852,681 priority patent/US20220329649A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1001Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/51Discovery or management thereof, e.g. service location protocol [SLP] or web services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/20Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/322Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by location data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/248Connectivity information update

Definitions

  • This application relates to the field of communication technology, and in particular to methods, devices and systems for determining application instances.
  • Multi-access Edge Computing provides users with cloud-based computing capabilities at the edge of operator networks close to mobile users. Users can use this capability to deploy applications at the edge of the network. After deploying cloud computing capabilities to the edge of the network, telecommunication services have the advantages of high performance, low latency, and high bandwidth, which can accelerate the distribution and download of various content, services and applications in the network, allowing consumers to enjoy a higher quality network experience .
  • the European Telecommunications Sdandards Institute defines the MEC reference architecture in its specification ETSI GS MEC 003, as shown in Figure 1, the architecture is mainly composed of two parts: MEC Host (MEC Host) and MEC management system.
  • the MEC host includes the MEC platform (MEC Platform), the virtualization infrastructure (Virtualisation infrastructure) and the MEC application (MEC app).
  • the virtualization infrastructure provides the MEC application with virtualized computing, storage and network resources.
  • the MEC application uses virtual machines or The container is deployed on the MEC host.
  • the MEC platform mainly includes service registration and discovery functions, as well as some public services, such as domain name system (domain name system, DNS) servers or DNS proxy services.
  • the MEC management system includes Multi-access edge orchestrator (Multi-access edge orchestrator), MEC platform manager (MEC platform manager), virtualization infrastructure manager (Virtualisation infrastructure manager, VIM), etc.
  • the multi-access edge orchestrator maintains an overall view of all mobile edge hosts, available resources, and available MEC services in the MEC system, and triggers the instantiation and termination of applications.
  • the MEC platform manager is used to manage the MEC platform, manage the life cycle of mobile MEC applications, and manage application flow rules and DNS rules.
  • VIM manages the virtualization resources required by MEC applications.
  • the user application lifecycle management proxy (User app LCM proxy) allows the device application (Device app) to request the MEC system to instantiate and terminate the MEC application.
  • the embodiments of the present application provide a method, device, and system for determining an application instance, which are used to determine the best MEC application instance for a terminal.
  • a method for determining an application instance including: a first network element obtains location information of a terminal; the first network element determines at least one first MEC application instance according to the location information of the terminal; The first network element sends the address information of the at least one first MEC application instance to the terminal.
  • the first network element determines the MEC application instance with the best distance from the terminal based on the obtained position information of the terminal and the corresponding relationship between the maintained location information and the MEC application instance, thereby Reduce the message transmission delay between the MEC application instance and the terminal, and improve the service quality of the business.
  • the first network element receives a first message sent by the terminal, and the first message includes location information of the terminal.
  • the first network element receives a second message sent by a core network control plane function network element, and the second message includes location information of the terminal.
  • the first network element stores address information of at least one MEC application instance and location information of the at least one MEC application instance, and the first network element stores the address information of the at least one MEC application instance according to the location information of the terminal.
  • Determining at least one first MEC application instance includes: the first network element determines the at least one MEC application instance from the at least one MEC application instance according to the location information of the terminal and the location information of the at least one MEC application instance An example of the first MEC application.
  • a method for determining an application instance including: a control plane function network element sends first notification information to a first network element, where the first notification information is used to notify a user of the first network element terminal The surface path changes; the first network element obtains the location information of the terminal; the first network element determines at least one first MEC application instance according to the location information of the terminal; the first network element sends The address information of the at least one first MEC application instance is provided to the terminal.
  • the first network element determines the best after switching to the new UPF through the location information of the terminal (the location of the destination user plane) The application instance of the MEC, thereby reducing the message transmission delay between the MEC application instance and the terminal, and improving the service quality of the business.
  • acquiring, by the first network element, the location information of the terminal includes: the first network element receiving the first notification information, and the first notification information includes the terminal's location information.
  • the method further includes: the first network element receiving the MEC application instance change subscription request message sent by the terminal.
  • a method for determining an application instance including: a first network element obtains information about at least one first EDN from a session management network element or a source EES, and the at least one first EDN is determined according to the location information of the terminal The first network element determines at least one first MEC application instance in the at least one first EDN; the first network element sends the address information of the at least one first MEC application instance to the terminal or the station The source EES.
  • the first network element when a terminal requests an MEC application instance, the first network element requests information of at least one first EDN from the SMF, and then determines at least one first MEC application instance, thereby reducing reports between the MEC application instance and the terminal. File transmission is delayed, which improves the quality of business services.
  • the first network element acquiring information of at least one first EDN from a session management network element or a source EES includes: the first network element sends the session management network element or the session management network element to the The source EES sends a third message, the third message is used to request at least one EDN, and the at least one EDN is deployed with the MEC application instance requested by the terminal; The source EES receives the information of the at least one first EDN.
  • the third message includes information about the candidate EDN, and the candidate EDN is the first network element according to the location information of the terminal and the first network element The information stored in the EDN is determined.
  • the third message includes location information of the terminal.
  • the information of the first EDN includes: a data network application identifier DNAI of the first EDN.
  • the DNAI of the first EDN includes the DNAI of the EES in the first EDN and/or the DNAI of the MEC application example in the first EDN.
  • the method further includes: the first network element sends address information of the EES associated with the at least one first MEC application instance to the terminal or the source EES, and the at least An EES associated with a first MEC application instance is deployed in the at least one first EDN.
  • the information of the first EDN is used to indicate the communication performance of the communication path between the terminal and the first EDN.
  • the information of the first EDN further includes at least one of the following information: the number of user plane network elements between the terminal and the first EDN, the terminal and the The mobile network internal communication delay between the first EDN, the end-to-end communication delay between the terminal and the first EDN, the mobile network internal communication bandwidth between the terminal and the first EDN, Priority information of the communication path between the terminal and the first EDN.
  • the method further includes: the first network element sending priority information of the at least one first MEC application instance to the terminal or the source EES.
  • a method for determining an EES including: a first network element obtains information of at least one first EDN from a session management network element or a source EES, the at least one first EDN is determined according to the location information of the terminal; The first network element determines at least one first EES in the at least one first EDN; the first network element sends address information of the at least one first EES to the terminal or the source EES.
  • the terminal requests EES
  • the first network element requests information of at least one first EDN from the SMF, and then determines the at least one first EES, thereby reducing the messages between the MEC application instance managed by the EES and the terminal Transmission delays improve the quality of business services.
  • the first network element acquiring information of at least one first EDN from a session management network element or a source EES includes: the first network element sends the session management network element or the session management network element to the The source EES sends a third message, the third message is used to request at least one EDN, and the at least one EDN is deployed with the EES requested by the terminal; the first network element receives the information from the session management network element or the source The EES receives the information of the at least one first EDN.
  • the third message includes information about the candidate EDN, and the candidate EDN is the first network element according to the location information of the terminal and the first network element The information stored in the EDN is determined.
  • the third message includes location information of the terminal.
  • the information of the first EDN includes: a data network application identifier DNAI of the first EDN.
  • the DNAI of the first EDN includes the DNAI of the EES in the first EDN and/or the DNAI of the multi-access edge computing MEC application example in the first EDN.
  • the information of the first EDN is used to indicate the communication performance of the communication path between the terminal and the first EDN.
  • the information of the first EDN further includes at least one of the following information: the number of user plane network elements between the terminal and the first EDN, the terminal and the The mobile network internal communication delay between the first EDN, the end-to-end communication delay between the terminal and the first EDN, the mobile network internal communication bandwidth between the terminal and the first EDN, Priority information of the communication path between the terminal and the first EDN.
  • the method further includes: the first network element sending priority information of the at least one first EES to the terminal or the source EES.
  • a communication method including: a session management network element receives a third message from a first network element, the third message is used to request at least one EDN; and the at least one EDN is deployed with an MEC requested by a terminal Application example, or, the at least one EDN is deployed with the EES requested by the terminal; the session management network element sends information about at least one first EDN to the first network element according to the third message; In the case where at least one EDN is deployed with the MEC application instance requested by the terminal, the first EDN is the EDN where the MEC application instance requested by the terminal is deployed; and the EES requested by the terminal is deployed on the at least one EDN In the case of, the first EDN is the EDN in which the EES requested by the terminal is deployed.
  • the first network element when a terminal requests an MEC application instance, the first network element requests information of at least one first EDN from the SMF, and then determines at least one first MEC application instance, thereby reducing the communication between the MEC application instance and the terminal.
  • the message transmission is delayed, which improves the service quality of the business.
  • the first network element requests information of at least one first EDN from SMF, and then determines at least one first EES, thereby reducing the message transmission delay between the MEC application instance managed by EES and the terminal, and improving service quality .
  • the at least one first EDN is determined according to the location information of the terminal and the information of the at least one EDN obtained by the session management network element.
  • the at least one first EDN is determined according to the location information of the terminal and information about the candidate EDN, and the information about the candidate EDN is carried in the third message.
  • the location information of the terminal is carried in the third message.
  • the information of the first EDN includes: a data network application identifier DNAI of the first EDN.
  • the DNAI of the first EDN includes the DNAI of the EES in the first EDN and/or the DNAI of the MEC application example in the first EDN.
  • the information of the first EDN is used to indicate the communication performance of the communication path between the terminal and the first EDN.
  • the information of the first EDN further includes at least one of the following information: the number of user plane network elements between the terminal and the first EDN, the terminal and the The mobile network internal communication delay between the first EDN, the end-to-end communication delay between the terminal and the first EDN, the mobile network internal communication bandwidth between the terminal and the first EDN, Priority information of the communication path between the terminal and the first EDN.
  • a signal sending method which includes: a terminal sending a first message, where the first message includes location information of the terminal; or, the terminal sending an MEC application instance change subscription request.
  • a method for EES determination including: a first network element obtains information of at least one first EDN from a second network element, and the at least one first EDN is based on the location information of the terminal or the information of the terminal At least one of the service information is determined, the second network element is a first session management network element or a NEF or a source EES; the first network element determines at least one first EES according to the information of the at least one first EDN; The first network element sends the address information of the at least one first EES to the terminal or the source EES.
  • the first network element acquiring at least one first EDN information from a second network element includes: the first network element sends a third message to the second network element, so The third message includes at least one of information used to determine the location of the terminal or service information of the terminal; the first network element receives the information of the at least one first EDN from the second network element Information, the first EDN matches at least one of location information of the terminal or service information of the terminal.
  • the information of the first EDN includes: at least one DNAI of the first EDN.
  • the DNAI of the first EDN includes the DNAI of the EES in the first EDN and/or the DNAI of the MEC application example in the first EDN.
  • the information of the first EDN further includes at least one of the following information: the number of user plane network elements between the terminal and the first EDN, the terminal and the The mobile network internal communication delay between the first EDN, the end-to-end communication delay between the terminal and the first EDN, the mobile network internal communication bandwidth between the terminal and the first EDN, Priority information of the communication path between the terminal and the first EDN.
  • the method further includes: the first network element sending priority information of the at least one first EES to the terminal or the source EES.
  • a communication method including: a second network element receives a third message from a first network element, the third message including information for determining the location of the terminal or the service of the terminal At least one of the information, the second network element is a first session management network element or NEF or a source EES; the second network element sends at least one first EDN to the first network element according to the third message Information, the first EDN matches at least one of the location information of the terminal or the service information of the terminal.
  • the second network element sending at least one first EDN information to the first network element according to the third message includes: the second network element according to the terminal's information The location information determines the second session management network element; the second network element sends a request message to the second session management network element, the request message includes at least one of location information or service information, and the location information includes all The location information of the terminal, the service information includes the service information of the terminal; the second network element receives the information of the at least one first EDN from the second session management network element; the second network element Sending the information of the at least one first EDN to the first network element.
  • the second network element is the NEF
  • the second network element sending information of at least one first EDN to the first network element according to the third message includes: The second network element determines the information of the at least one first EDN according to the location information of the terminal and the first correspondence, and the first correspondence includes the correspondence between the location area information and the EDN information; or , The second network element determines the information of the at least one first EDN according to the service information of the terminal and a second correspondence, and the second correspondence includes the correspondence between the service information and the information of the EDN; or The second network element determines the information of the at least one first EDN according to the location information and service information of the terminal and a third correspondence, and the third correspondence includes location area information, EDN information, and service information Correspondence between: the second network element sends the information of the at least one first EDN to the first network element.
  • the information of the first EDN includes: at least one DNAI of the first EDN.
  • the DNAI of the first EDN includes the DNAI of the EES in the first EDN and/or the DNAI of the multi-access edge computing MEC application example in the first EDN.
  • the information of the first EDN further includes at least one of the following information: the number of user plane network elements between the terminal and the first EDN, the terminal and the The mobile network internal communication delay between the first EDN, the end-to-end communication delay between the terminal and the first EDN, the mobile network internal communication bandwidth between the terminal and the first EDN, Priority information of the communication path between the terminal and the first EDN.
  • a communication method which includes: a second session management network element receives a request message from the second network element, the request message includes at least one of location information and service information, and the location information includes terminal information.
  • Location information the service information includes the service information of the terminal, the second network element is the first session management network element or NEF or the source EES; in the case that the request message includes the location information, the The second session management network element determines the information of the at least one first EDN according to the location information and the first correspondence, and the first correspondence includes the correspondence between location area information and EDN information; or, In the case that the request message includes the service information, the second session management network element determines the information of the at least one first EDN according to the service information and the second correspondence, and the second correspondence includes the service The corresponding relationship between the information and the information of the EDN; or, in the case that the request message includes the location information and the service information, the second session management network element is based on the location information and the service information And a third correspondence relationship determines
  • a communication device including: a functional unit for executing any one of the methods provided in any one of the first to ninth aspects above, and the actions performed by the functional unit are implemented by hardware Or implement the corresponding software through hardware.
  • a communication device including a processor and a memory; the memory is used to store computer-executable instructions.
  • the processor executes the computer-executable instructions stored in the memory to make the device Perform any one of the methods provided in any one of the above-mentioned first aspect to the ninth aspect.
  • a terminal device which is used to send a first message, where the first message includes the location information; or to send an MEC application instance change subscription request.
  • a communication device which includes units or means for executing each step in any one of the methods provided in any one of the first to ninth aspects.
  • a communication device including a processor and an interface circuit.
  • the processor is configured to communicate with other devices through the interface circuit and execute any one of the aspects provided in the first to ninth aspects.
  • the processor includes one or more.
  • a communication device including a processor, configured to be connected to a memory, and used to call a program stored in the memory to execute any one of the above-mentioned first aspect to the ninth aspect. Any method.
  • the memory can be located inside the device or outside the device.
  • the processor includes one or more.
  • a computer-readable storage medium stores instructions that, when run on a computer, cause a processor to execute any of the first to ninth aspects. Any method provided by one aspect.
  • a computer program product including instructions, which when run on a computer, causes the computer to execute any one of the methods provided in any one of the first to ninth aspects.
  • a chip system including: a processor, configured to execute any one of the methods provided in any one of the above-mentioned first aspect to the ninth aspect.
  • a communication system including: a control plane functional network element and a first network element; the control plane functional network element is configured to send first notification information to the first network element, and The first notification information is used to notify the first network element that the user plane path of the terminal has changed; the first network element is used to obtain location information of the terminal, and determine at least one first network element based on the location information of the terminal.
  • An MEC application instance the first network element is also used to send address information of the at least one first MEC application instance to the terminal.
  • a twentieth aspect provides a communication system, including: any one or more network elements involved in the first to ninth aspects.
  • Figure 1 is a schematic diagram of the architecture of an MEC system
  • Figure 2 is a schematic diagram of a 5G network architecture based on a service-oriented architecture
  • FIG. 3 is a schematic diagram of an MEC system architecture
  • FIG. 3A is a schematic diagram of another MEC system architecture
  • FIG. 3B is a schematic diagram of another MEC system architecture
  • FIG. 3C is a schematic diagram of another MEC system architecture
  • Figure 4 is a schematic diagram of the relationship between the terminal location and the location of the MEC application instance
  • FIG. 5 is a schematic flowchart of a method for determining an application instance provided by an embodiment of the application
  • FIG. 6 is a schematic flowchart of another method for determining an application example provided by an embodiment of the application.
  • FIG. 6A is a schematic flowchart of another method for determining an application example provided by an embodiment of the application.
  • FIG. 6B is a schematic flowchart of a method for determining EES according to an embodiment of this application.
  • FIG. 6C is a schematic diagram of the positions of EES and EDN CS provided by an embodiment of this application.
  • FIG. 6D is a schematic flowchart of a method for determining EES according to an embodiment of this application.
  • 6E is a schematic flowchart of a method for obtaining EDN information according to an embodiment of the application.
  • 6F is a schematic flowchart of another method for obtaining EDN information according to an embodiment of the application.
  • FIG. 6G is a schematic diagram of the correspondence between DNAI and EDN according to an embodiment of the application.
  • FIG. 6H is a flowchart of a method for determining an EES to provide services for a terminal according to an embodiment of the application
  • FIG. 6I is a flowchart of a method for determining an MEC application instance that provides services for a terminal according to an embodiment of the application;
  • FIG. 7 is a schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of another communication device provided by an embodiment of this application.
  • FIG. 8A is a schematic diagram of another communication device provided by an embodiment of this application.
  • FIG. 8B is a schematic diagram of another communication device provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of another communication device provided by an embodiment of this application.
  • FIG. 2 it is a schematic diagram of the fifth generation (5G) network architecture based on a service-oriented architecture.
  • the 5G network architecture shown in FIG. 2 may include three parts, namely a terminal part (ie, the UE in FIG. 2), a data network (DN), and an operator network part.
  • a terminal part ie, the UE in FIG. 2
  • DN data network
  • operator network part an operator network part.
  • the operator network may include one or more of the following network elements: authentication server function (AUSF) network elements, network exposure function (NEF) network elements, policy control function (policy control) function, PCF) network element, unified data management (UDM) network element, unified data repository (UDR), network storage function (network repository function, NRF) network element, application function (AF) ) Network elements, access and mobility management function (AMF) network elements, session management function (SMF) network elements, radio access network (RAN), and user plane Function (user plane function, UPF) network elements, etc.
  • AUSF authentication server function
  • NEF network exposure function
  • policy control policy control function
  • PCF policy control function
  • UDM unified data management
  • UDR network storage function
  • AF application function
  • AMF access and mobility management function
  • SMF session management function
  • RAN radio access network
  • UPF user plane Function
  • a terminal is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) First class).
  • the terminal can also be called user equipment (UE), terminal device (terminal device), access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication equipment, User agent or user device.
  • the terminal can be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, and an industrial control (industrial control).
  • Wireless terminals wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, smart cities The wireless terminal in the (smart city), the wireless terminal in the smart home (smart home), etc.
  • the aforementioned terminal may establish a connection with the operator's network through an interface (such as N1, etc.) provided by the operator's network, and use services such as data and/or voice provided by the operator's network.
  • the terminal can also access the DN through the operator's network, and use the operator's service deployed on the DN and/or the service provided by a third party.
  • the above-mentioned third party may be a service party other than the operator's network and the terminal, and may provide other data and/or voice services for the terminal.
  • the specific form of expression of the above-mentioned third party can be determined according to actual application scenarios, and is not limited here.
  • RAN is a sub-network of an operator's network, and an implementation system between service nodes and terminals in the operator's network.
  • the terminal To access the operator's network, the terminal first passes through the RAN, and then can be connected to the service node of the operator's network through the RAN.
  • RAN equipment is a type of equipment that provides wireless communication functions for terminals. RAN equipment is also called access network equipment.
  • RAN equipment includes but is not limited to: next-generation base stations (gnodeB, gNB) in 5G, evolved node B (evolved node B, eNB), radio network controller (RNC), node B (node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (BBU) , Transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center, etc.
  • next-generation base stations gnodeB, gNB
  • 5G evolved node B (evolved node B, eNB), radio network controller (RNC), node B (node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (BBU) , Transmission point (transmitting and receiving
  • the AMF network element is responsible for the mobility management of users, including mobility status management, assigning temporary user identities, authenticating and authorizing users, etc.
  • SMF network element with session management, execution of PCF issuing control policies, selection of UPF, terminal internet protocol (IP) address allocation, bearer establishment, modification and release, quality of service (QoS) control And other functions.
  • IP terminal internet protocol
  • the UPF network element supports functions such as interconnecting protocol data unit (PDU) sessions with data networks, packet routing and forwarding, and data packet inspection.
  • PDU protocol data unit
  • the UDM network element is mainly responsible for functions such as management of contract data and user access authorization.
  • UDR storing and retrieving contract data, policy data, and public architecture data, etc.
  • PCF PCF
  • NEF NEF
  • UDR must be able to have different data access authentication mechanisms for different types of data such as subscription data and policy data to ensure the security of data access.
  • the UDR must be able to return a failure response carrying an appropriate reason value for illegal servicing operations or data access requests.
  • NEF network elements mainly support network capability opening functions and open network capabilities and services to the outside world.
  • the third generation partnership project (3GPP) network function (network function, NF) publishes functions and events to other NFs through NEF.
  • the capabilities and events opened by NF can be safely opened to third-party applications.
  • NEF uses the standardized interface (Nudr) of the Unified Data Repository (UDR) to store/retrieve structured data.
  • UDR Unified Data Repository
  • the AF network element is used to provide a certain application layer service to the terminal.
  • the AF provides the service to the terminal, it has requirements for QoS policies and charging policies and needs to notify the network.
  • AF also needs application-related information fed back from the core network.
  • the PCF network element is mainly responsible for policy control functions such as billing, QoS bandwidth guarantee and mobility management, and terminal policy decision-making for sessions and service flow levels.
  • the PCF connected to the AMF and the SMF corresponds to AM PCF (PCF for Access and Mobility Control) and SM PCF (PCF for Session Management), and may not be the same PCF entity in actual deployment scenarios.
  • the NRF network element can be used to provide the network element discovery function, and provide the network element information corresponding to the network element type based on the request of other network elements.
  • NRF also provides network element management services, such as network element registration, update, de-registration, and network element status subscription and push.
  • AUSF network element Mainly responsible for authenticating users to determine whether users or devices are allowed to access the network.
  • a DN is a network located outside the operator's network.
  • the operator's network can access multiple DNs, and multiple services can be deployed on the DN to provide data and/or voice services for terminals.
  • DN is a private network of a smart factory.
  • the sensors installed in the workshop of the smart factory can be terminals.
  • a control server for the sensors is deployed in the DN, and the control server can provide services for the sensors.
  • the sensor can communicate with the control server, obtain instructions from the control server, and transmit the collected sensor data to the control server according to the instructions.
  • the DN is the internal office network of a company.
  • the mobile phone or computer of the company's employee can be a terminal, and the employee's mobile phone or computer can access the information and data resources on the company's internal office network.
  • Nausf, Nnef, Npcf, Nudm, Naf, Namf, Nsmf, N1, N2, N3, N4, and N6 are interface serial numbers.
  • the meaning of these interface serial numbers can refer to the meaning defined in the 3GPP standard protocol, which is not limited here.
  • the aforementioned network elements or functions may be network elements in hardware devices, software functions running on dedicated hardware, or virtualization functions instantiated on a platform (for example, a cloud platform).
  • a platform for example, a cloud platform.
  • the foregoing network element or function may be implemented by one device, or jointly implemented by multiple devices, or may be a functional module in one device, which is not specifically limited in the embodiment of the present application.
  • the mobility management network element, the session management network element, the policy control network element, the application function network element, the access network device, the network opening function network element, and the user plane network element in the embodiments of the present application may be the AMF in FIG. 2 respectively.
  • SMF, PCF, AF, RAN, NEF, UPF and can also be network elements with the above-mentioned AMF, SMF, PCF, AF, RAN, NEF, UPF functions in future communications such as the 6th generation (6G) network This is not limited in the embodiments of this application.
  • the mobility management network element, the session management network element, the policy control network element, the application function network element, the access network device, the network opening function network element, and the user plane network element are respectively the above-mentioned AMF, SMF, PCF, AF, RAN, NEF, UPF are taken as examples for description.
  • FIG. 3 it is a schematic structural diagram of an MEC system provided by an embodiment of this application.
  • the MEC server is deployed between the wireless access network and the core network.
  • the MEC server is the server where the MEC platform is deployed and managed by the MEC platform.
  • the MEC server can connect to cloud data centers and other networks, such as corporate networks.
  • the MEC server uses the wireless access network to provide nearby services and cloud computing functions for the terminal.
  • the MEC server may be established by an operator, an enterprise, a virtual operator, or a service provider.
  • the MEC server can also integrate the UPF in Figure 2.
  • the method provided in the embodiments of the present application can be applied to the following two MEC architectures.
  • the first type the reference architecture of the MEC defined by ETSI in its specification ETSI GS MEC 003.
  • ETSI GS MEC 003 the reference architecture of the MEC defined by ETSI in its specification
  • Figure 1 the reference architecture of the MEC defined by ETSI in its specification
  • Figure 1 refer to the background technology section, and will not be repeated.
  • the second type the reference architecture of the MEC as shown in FIG. 3A or FIG. 3B defined by the 3GPP SA6 working group.
  • the difference between Figure 3B and Figure 3A is that the functions of the edge enabler client (EEC) and the edge data network configuration client (edge data network configuration client, EDN CC) are integrated in Figure 3B.
  • EEC edge enabler client
  • EDN CC edge data network configuration client
  • EDN Edge data network
  • EDN is used to provide edge computing services to terminals, which can include functions such as computing, storage, networking, communication, and routing.
  • it may include an edge computing management platform (for example, an edge enabler server (EES) below) and an edge application instance (for example, an edge application server (EAS)).
  • EDN can be a local data network (local data network, that is, local DN), which means the data network that is the closest physical distance to the user attachment point (that is, the access network device (e.g., base station) that the terminal accesses).
  • a data network can have multiple local data networks.
  • the local data network can be identified by the data network name (DNN) and/or the data network application identifier (DNAI).
  • DNN data network name
  • DNAI data network application identifier
  • DNAI can identify the local data network s position.
  • EDN is the peer-to-peer concept of the central cloud, that is, EDN can be understood as a local data center that can support multiple local data networks, and the data center can also be identified by DNAI.
  • EAS is used to provide application services with edge computing features to application clients, specifically referring to a server application (for example, social media software, augmented reality (AR), virtual reality (VR)) Deploy an instance (instance) running on EDN.
  • An MEC application can deploy one or more EASs in one or more EDNs.
  • EAS deployed and running in different EDNs can be considered as different EASs. They can share a domain name, use the same IP address, or use Different IP addresses.
  • EAS can also be called edge application, application example, edge application example, MEC application, MEC application example, EAS function, etc.
  • Application client The application client is used for application users (users) to obtain application services from the application server.
  • the application client is the client program of the MEC application on the terminal side.
  • the application client can connect to an application server on the cloud to obtain application services, or connect to an EAS deployed and running in one or more EDNs to obtain application services.
  • EES is used to provide some edge computing enabling services for EAS and EEC to better support the deployment of MEC applications at the edge.
  • EES can support EAS registration, authentication and authentication of terminals, and provide application servers for terminals DNS function of IP address information, etc.
  • EES is deployed in EDN.
  • EAS is registered to an EES, or the EAS information is configured on an EES through the management system.
  • the EES is called the EES associated with the EAS, and the EES controls (or manages) the registration (or configuration) in the EES. On the EAS.
  • EEC is the peer entity of EES on the terminal side. EEC is used to register EEC information and application client information with EES, perform security authentication and authentication, obtain the IP address of EAS from EES, and provide edge computing to application clients Enable capabilities, such as returning the EAS IP address to the application client in the EAS discovery service. EEC can also call the service interface provided by EDN CC.
  • EDN CS Edge data network configuration server
  • EDN CS is used to configure EDN information for the terminal, for example, to provide the terminal with EES information in the EDN.
  • EDN CS can have the function of DNS.
  • EAS domain name, EAS IP address, and EES information registered by EAS you can also directly provide EAS information to the terminal, and interact with the DNS server of the MEC application to obtain application server information.
  • EDN CS can accept EES query or EAS query of EDN CC and provide corresponding query results.
  • EDN CS can accept EES registration to obtain EAS domain name, EAS IP address, and EAS registered EES information, which can also be obtained through configuration .
  • EDN CC is the peer entity of EDN CS on the terminal side.
  • EDN CC can obtain EES information from EDN CS.
  • the EAS information can be obtained from EDN CS.
  • EDN CC can also be used to provide edge computing enabling service interfaces to EEC or application clients.
  • the application user signs a service agreement with the MEC application provider to provide services for the application user, and the application user communicates through the connection of the application client and EAS by logging in to the application client on the terminal.
  • the enabling client (for example, EEC, EDN CC) is the middleware layer, which is generally located in the operating system, or located in the middleware between the application client and the operating system.
  • the application client can obtain the edge-enabled service from the enabling client in the form of an application programming interface (API).
  • API application programming interface
  • Edge-1 (EDGE-1) interface The interface between EEC and EES, which can realize EEC registration, security authentication, EAS discovery, and application context migration support.
  • Edge-2 (EDGE-2) interface The interface between EES and 3GPP network, used to interact with 3GPP core network elements, and can be connected to network exposure functions (NEF), policy control functions, PCF) and other network elements.
  • NEF network exposure functions
  • PCF policy control functions
  • Edge-3 (EDGE-3) interface The interface between EAS and EES, which is mainly used for EAS to call services provided by EES, such as event subscription and notification, etc., and EAS is registered to EES.
  • Edge-4 (EDGE-4) interface The interface between EDN CS and EDN CC, which is mainly used for EDN CS to provide EES information to EDN CC, as well as EAS discovery, security authorization, etc.
  • Edge-5 (EDGE-5) interface The interface between the application client and the EEC, which is used by the application client to call the services provided by the EEC, such as EAS discovery, event subscription and notification, and context migration.
  • Edge-6 (EDGE-6) interface The interface between EES and EDN CS, which is mainly used to register EES information with EDN CS, and it also includes the information of EAS registered on EES.
  • Edge-7 (EDGE-7) interface The interface between EAS and 3GPP network, used for interaction with 3GPP core network elements, and can be connected to network elements such as NEF and PCF.
  • Edge-X (EDGE-X) interface The interface between EEC and EDN CC, which can be used for EDN CC to provide EES information (for example, identification, address information) to EEC.
  • EES information for example, identification, address information
  • each functional module in FIG. 3A and FIG. 3B and the interface between each functional module may also have other names, which are not limited in this application.
  • the terminal may communicate with one or more EDNs through a mobile communication network connection.
  • One or more EES is deployed in an EDN, and one EES can manage one or more EAS.
  • EES1 deployed in EDN1 can manage EAS11, EAS12, and EAS13
  • EES2 deployed in EDN2 can manage EAS21 and EAS22.
  • EES3 deployed in EDN3 can manage EAS31, EAS32 and EAS33.
  • EES can store information about each EAS managed by it, including EAS identifiers such as fully qualified domain name (FQDN), and EAS address information, such as URL or IP address.
  • FQDN fully qualified domain name
  • EAS address information such as URL or IP address.
  • the EES deployed in multiple EDNs can be connected to the same EDN CS.
  • the EDN CS can store the address information of each EES connected to it and the information of the EAS managed by each EES, such as the identifier of the managed EAS, and further include management EAS address information.
  • the EDN CS may store the address information of EES1, EES2, and EES3, and also store the identification and address information of the EAS managed by EES1, EES2, and EES3.
  • the EAS of the same MEC application can be deployed in different EDNs.
  • the EAS of MEC application 1 can be EAS11, EAS21, and EAS31
  • the EAS of MEC application 2 can be EAS12, EAS22, and EAS32
  • the EAS of MEC application 3 can be It is EAS13 and EAS33.
  • the EAS registered on the EES is the capability of the EES.
  • the EES capability includes the support of the MEC application 1.
  • EAS will be registered to the EES located in the same EDN as the EAS. Therefore, it can be understood that the EDN that is the best (physically closest, network connection path closest, or network connection path optimal) to the terminal can be Provide the EES and EAS that are closest to the terminal.
  • MEC application instances in the architecture shown in FIG. 1 and the EAS in FIGS. 3A to 3C are collectively referred to as MEC application instances, and the MEC application instance (application instance) is of the same MEC application copy.
  • MEC application instances are deployed on edge nodes (for example, EDN).
  • the same edge node can also deploy multiple MEC application instances to achieve load balancing.
  • the MEC application installed on the terminal is served by a certain MEC application instance of a certain edge node corresponding to the MEC application at a certain moment.
  • MEC application instance 1 located at edge node 1 can be considered as the optimal MEC application instance.
  • the MEC application instance 2 located at the edge node 2 can be considered as the optimal MEC application instance.
  • Fig. 5 is a communication method provided by an embodiment of the application (which may also be referred to as a Schematic diagram of the method for determining MEC application examples.
  • the embodiment shown in FIG. 5 takes the discovery process of the MEC application instance as an example, and includes:
  • the terminal sends a first message to the first network element, where the first message may be an MEC application instance discovery request message.
  • the first network element receives the first message from the terminal.
  • the first network element may be a functional network element of the MEC system management plane, and the specific implementation of step S501 may be a terminal application.
  • the first network element may be EES or EDN CS.
  • the step S501 may be specifically the EEC in the terminal, and when the first network element is the EDN CS, the step S501 may be the EDN CC or the EEC in the terminal.
  • the MEC application instance discovery request message arrives at the first network element from the terminal through the access network device (for example, gNB), the user plane gateway (for example, UPF), etc.
  • the access network device for example, gNB
  • the user plane gateway for example, UPF
  • the MEC application instance discovery request message includes one or more of the following information:
  • the terminal identifier can be a subscription permanent identifier (SUPI), a generic public subscription identifier (GPSI), a media access control (MAC) address, an IP address, and a mobile station international user identification code ( mobile subscriber international ISDN number, MSISDN), or other identifiers.
  • SUPI subscription permanent identifier
  • GPSI generic public subscription identifier
  • MAC media access control
  • IP address IP address
  • MSISDN mobile station international user identification code
  • MSISDN mobile subscriber international ISDN number
  • the identification element (information element) of the MEC application may include one or more identifications of the MEC application.
  • the identifier of an MEC application can be the FQDN of the MEC application, the URL of the MEC application, and so on.
  • the MEC application identifier is used to indicate a request to obtain the address information of the corresponding EAS. For example, if the identifier of the MEC application is the identifier of MEC application 1, it means that the address information of the EAS of MEC application 1 is obtained. If there is no MEC application identifier in the first message, it may indicate that the address information of EAS of all MEC applications is acquired.
  • the information of the application client may be information used to identify the terminal by EAS.
  • the information of the application client can be GPSI, IP address, or an identification formed by a combination of other characters.
  • the information of the application clients can be used to indicate the request to support the EAS corresponding to these application clients.
  • the EEC logo is used to identify EEC.
  • the identification of EEC can be GPSI, IP address, or other combination of characters used to identify EEC.
  • the EEC identifier can be used to authenticate and authorize the terminal and obtain the location information of the terminal (for example, determine the SUPI, GPSI, etc. of the terminal through the EEC identifier, and then determine the location of the terminal).
  • the location information of the terminal may be the coordinates of the location where the terminal is located, the information of the cell where the terminal is located (for example, the identity of the cell), the tracking area information of the tracking area where the terminal is located (for example, the tracking area identifier), and the data network connection of the terminal. Any information that can indicate the location of the terminal, such as the entry point identifier.
  • the location information of the terminal can be used to determine the location of the terminal.
  • the first network element determines at least one first MEC application instance.
  • the first network element needs to first obtain the location information of the terminal, and then determine at least one first MEC application instance according to the location information of the terminal.
  • the first network element obtains the location information of the terminal by receiving the MEC application instance discovery request message.
  • the MEC application instance finds that the request message does not contain the location information of the terminal, another optional method is that the first network element obtains a network function from a telecom operator, such as a 5G core network control plane function network element (for example, NEF), according to The terminal identification obtains the location information of the terminal.
  • NEF provides APIs, the ability to open telecommunication networks.
  • the first network element sends a location query request including the terminal identification to NEF.
  • NEF After receiving the location query request, NEF calls core network network functions such as AMF to obtain location information, and AMF sends the location information of the queried terminal to the caller, namely NEF. , NEF sends a second message to the first network element, where the second message includes location information of the terminal.
  • AMF core network network functions
  • AMF sends the location information of the queried terminal to the caller, namely NEF.
  • NEF sends a second message to the first network element, where the second message includes location information of the terminal.
  • the first network element sends the address information of the at least one first MEC application instance to the terminal.
  • the terminal receives address information of at least one first MEC application instance from the first network element.
  • the first MEC application instance may be the MEC application instance of MEC application 1.
  • the address information of at least one first MEC application instance may be carried in the MEC application instance discovery response message.
  • the address information of an MEC application instance may be the IP address, URL, identification, port number of the MEC application instance, or other address connection information that can be uniquely connected to the MEC application instance, etc.
  • the first MEC application instance may be an optimal MEC application instance determined by the first network element.
  • the terminal may use the first MEC application instance as the MEC application instance that provides the service.
  • the multiple first MEC application instances may be multiple optimal MEC application instances determined by the first network element.
  • the terminal can select the best MEC application instance from it as the MEC application instance that provides the service.
  • the method for the terminal to determine which MEC application instance is the best MEC application instance is not limited in this application.
  • the method further includes: the first network element sends priority information of the at least one first MEC application instance to The terminal.
  • the terminal can select the MEC application instance with the highest priority as the MEC application instance that provides the service.
  • the terminal can also select other MEC application instances as the MEC application instances that provide services.
  • the first network element determines the MEC application instance that provides services for the terminal according to the obtained location information of the terminal, thereby reducing the message transmission delay between the MEC application instance and the terminal. Improve the quality of business services.
  • the first network element is responsible for the life cycle management of the MEC application, including the selection of the deployment location of the MEC application instance.
  • the first network element stores the information of each MEC application instance, including the MEC application instance identifier, the address of the MEC application instance, the deployment location of the MEC application instance, and the correspondence between these information.
  • the first network element determines at least one first MEC application instance from the MEC application instance according to the location information of the terminal and the location information of the MEC application instance. That is, the first network element determines the distance from the location information identified by the location information of the terminal according to the location information of the terminal.
  • the nearest one or more MEC application instances are used as the first MEC application instance.
  • the number of first MEC application instances to be determined by the first network element may be predefined or preset or stipulated by agreement, which is not limited in this application.
  • MEC application example 1 MEC application example 2
  • MEC application example 3 MEC application example 4
  • MEC application example 5 MEC application example 5
  • the first network element may determine that MEC application instance 3 is at least one first MEC application instance, and if at least one first MEC application instance is three first MECs In the application example, the first network element may determine that MEC application example 3, MEC application example 2, and MEC application example 1 are at least one first MEC application example.
  • FIG. 6 is another communication method (also referred to as another communication method) provided by an embodiment of the application.
  • the embodiment shown in FIG. 6 takes the change process of the MEC application instance as an example. After the MEC application instance shown in FIG. 5 is determined, the method of this embodiment may be executed when the MEC application instance needs to be changed.
  • Figure 6 includes:
  • the first network element subscribes to a user plane path management event (user plane path management event) from a core network control plane functional network element, such as NEF, PCF, or SMF.
  • the first network element may subscribe to the user plane path change notification event by sending a user plane path change subscription request message. After the transmission is completed, the first network element receives the response information sent by the core network control plane functional network element.
  • the first network element may be a network element with a management plane function of the MEC system.
  • the first network element may be EES or EDN CS.
  • the terminal accesses the application network (for example, EDN) through the UPF, and different UPFs access the application network at different locations.
  • EDN application network
  • the core network will switch the user plane path and select the optimal UPF, thereby reducing the access delay between the terminal and the application network and improving the user experience.
  • the process of switching to the new UPF will occur.
  • the user plane path changes.
  • the terminal sends an MEC application instance change subscription request message to the first network element.
  • the MEC application instance change subscription request message includes at least one of terminal identification, MEC application name, MEC application provider name, MEC application version, and other information.
  • the terminal receives the response information sent by the first network element.
  • the step S602 may be specifically a terminal application.
  • the specific implementation of step S602 may be the EEC in the terminal, and in the case where the first network element is the EDN CS, the specific implementation of step S602 may be the EDN CC in the terminal.
  • the core network control plane function network element sends first notification information to the first network element, which is used to notify the first network element that there is a change in the user plane path of the terminal; the first notification information may be user plane path change notification information.
  • the terminal moves to trigger the core network control plane function network element to select the optimal UPF for the terminal that moves to a new location, and when it switches to the new UPF, a user plane switch is performed.
  • the core network control plane function network element sends the user plane path change notification information to the first network element.
  • the user plane path change notification information includes terminal identification (such as the IP address of the terminal or a general public user identification code), source user plane location information, and destination user plane location information. Among them, the user plane location information may be DNAI, and DNAI has a corresponding relationship with the cell.
  • the first network element determines the source MEC application instance information according to the terminal identifier and source user plane location information, determines the target MEC application instance according to the terminal identifier and the target user plane location, and determines a new MEC application instance according to the target user plane location. You can also refer to Step S502 of the embodiment shown in FIG. 5.
  • the first network element can obtain the location information of the destination UPF by receiving the user plane path change notification information. If there are multiple target MEC application instances, select one MEC application instance from them. The selected strategy can be random selection or selection of the instance with the lightest load.
  • the first network element instructs the source MEC application instance and the target MEC application instance to complete the terminal context migration.
  • the determined MEC application instance is the first MEC application instance.
  • the first network element sends response information of the user plane path change notification to the core network control plane function network element, so that the core network control plane network function controls the user plane to complete path switching.
  • the target UPF location information can also be considered as the location of the current terminal, which is a form of the location information of the terminal.
  • the first network element sends the MEC application instance change notification information to the terminal.
  • the MEC application instance change notification information includes target MEC application instance information, such as at least one of MEC application name, MEC application provider name, MEC application version, MEC application instance identifier, and MEC application instance address.
  • target MEC application instance information such as at least one of MEC application name, MEC application provider name, MEC application version, MEC application instance identifier, and MEC application instance address.
  • the terminal subsequently switches to use the new MEC application instance, that is, the target MEC application instance.
  • the current MEC application instance may no longer be the best, and the first network element determines the best one after switching to the new UPF through the location information of the terminal (the location of the destination user plane).
  • the excellent MEC application example reduces the message transmission delay between the MEC application example and the terminal, and improves the service quality of the business.
  • FIG. 6A is a communication method provided by an embodiment of the application (also referred to as an application instance determination ⁇ ) Schematic diagram.
  • the embodiment shown in FIG. 6A takes the discovery process of the MEC application instance as an example, and includes:
  • the terminal sends a first message to the first network element.
  • the first network element receives the first message from the terminal.
  • the first message is used to request the address information of the MEC application instance, and the address information of the MEC application instance is used for the terminal to connect to the MEC application instance.
  • the first message may be an MEC application instance discovery request message.
  • the first network element may be EES or EDN CS.
  • the step S601A may be specifically the EEC in the terminal, and in the case where the first network element is an EDN CS, the step S601A may be the EDN CC or the EEC in the terminal.
  • the MEC application instance discovery request message arrives at the first network element from the terminal through the access network device (for example, gNB), the user plane gateway (for example, UPF), etc.
  • the access network device for example, gNB
  • the user plane gateway for example, UPF
  • the information included in the MEC application instance discovery request message in the embodiment shown in FIG. 6A is similar to the information included in the MEC application instance discovery request message in the embodiment shown in FIG. 5, and will not be repeated here.
  • the first network element obtains information of at least one first EDN from the SMF, and the at least one first EDN is determined according to the location information of the terminal.
  • the first network element determines at least one first MEC application instance in the at least one first EDN.
  • the first network element sends address information of at least one first MEC application instance to the terminal.
  • the first MEC application instance may be the MEC application instance of MEC application 1.
  • the address information of at least one first MEC application instance may be carried in the MEC application instance discovery response message.
  • the address information of an MEC application instance may be the IP address, URL, or other address connection information that can be uniquely connected to the MEC application instance, etc.
  • the method further includes: the first network element sends priority information of the at least one first MEC application instance to the terminal.
  • the terminal can select the MEC application instance with the highest priority as the MEC application instance that provides the service.
  • the terminal can also select other MEC application instances as the MEC application instances that provide services.
  • the first network element when a terminal requests an MEC application instance, the first network element requests information of at least one first EDN from the SMF, and then determines at least one first MEC application instance, thereby reducing the number of messages between the MEC application instance and the terminal Transmission delays improve the quality of business services.
  • step S602A when step S602A is specifically implemented, it includes:
  • the first network element sends a third message to the SMF, and the third message is used to request deployment of at least one EDN of the MEC application instance requested by the terminal.
  • the SMF receives the third message from the first network element.
  • the SMF sends information about at least one first EDN to the first network element according to the third message, where the first EDN is the EDN deployed with the MEC application instance requested by the terminal.
  • the first network element receives the response message of the third message from the SMF.
  • the information of at least one first EDN may be carried in the response message of the third message.
  • the third message may be a user plane management event notification message subscribed by the first network element to the SMF
  • the response message of the third message may be a user plane management event notification sent by the SMF to the first network element.
  • the response message of the third message may be a notification message sent by the SMF to the first network element immediately after receiving the subscription message, and the notification message includes information about the EDN corresponding to the current location of the terminal, such as the current user plane location information DNAI of the terminal.
  • the third message is used to request deployment of at least one EDN of the MEC application instance requested by the terminal, which can be understood as the third request message to request an EDN that meets a specific filter condition, and the specific filter condition describes the MEC application requested by the terminal The conditions that the instance needs to meet.
  • the specific filtering condition may be sent by the terminal to the first network element in a first message, or independently generated by the first network element.
  • the third request message may also carry a filter, which is used to indicate that the request meets the EDN information of the filter.
  • the filter may be the MEC application instance where the MEC application X is deployed, which means that the EDN of the MEC application instance where the MEC application X is deployed is requested.
  • the information of the first EDN is used to indicate the performance of the communication path between the terminal and the first EDN.
  • the information of the first EDN can be further used to indicate: the performance of the communication path between the terminal and the EES in the first EDN, and/or the terminal The performance of the communication path with the MEC application instance in the first EDN.
  • the performance of the communication path may include performance indicators such as the network topology distance of the communication path, the delay of the communication path, and the bandwidth of the communication path.
  • the at least one first EDN and the information of the at least one EDN may be any one of the following:
  • Type 1 At least one first EDN is all EDNs deployed with MEC application instances requested by the terminal, and the information of the first EDN (denoted as the first information of the first EDN) includes any one or more of the following information: The number of UPF between the terminal and the first EDN, the internal communication delay of the mobile network between the terminal and the first EDN, the end-to-end communication delay between the terminal and the first EDN, the difference between the terminal and the first EDN The internal communication bandwidth of the mobile network, the priority information of the communication path between the terminal and the first EDN.
  • the first information of the first EDN may also be considered to include any one or more of the following information: the number of UPFs between the terminal and the EES in the first EDN, and the number of UPFs between the terminal and the EES in the first EDN
  • the first information of the first EDN may also be considered to include any one or more of the following information: the number of UPFs between the terminal and the MEC application instances in the first EDN, the terminal and the MEC applications in the first EDN The internal communication delay of the mobile network between instances, the end-to-end communication delay between the terminal and the MEC application instance in the first EDN, the internal communication bandwidth of the mobile network between the terminal and the MEC application instance in the first EDN, Priority information of the communication path between the terminal and the MEC application instance in the first EDN.
  • the EDN of the MEC application instance requested by the terminal is denoted as the target EDN hereinafter.
  • the third message includes information used to indicate the MEC application corresponding to the MEC application instance requested by the terminal (for example, the identifier of the MEC application).
  • the SMF can determine the MEC application corresponding to the MEC application instance requested by the terminal according to the information, and then determine the EDN of the MEC application instance in which the MEC application is deployed as the target EDN.
  • the SMF does not need to select among all the target EDNs, and only needs to use all the target EDNs as at least one first EDN.
  • the response message of the third message sent by the SMF to the first network element includes priority information of at least one first EDN.
  • Type 2 At least one first EDN is all target EDNs, and the information of one first EDN (denoted as the second information of the first EDN) is the DNAI of the first EDN.
  • the SMF does not need to select among all the target EDNs, and only needs to use all the target EDNs as at least one first EDN.
  • the response message of the third message sent by the SMF to the first network element includes priority information of at least one first EDN.
  • Type 3 At least one first EDN is all target EDNs, and the information of one first EDN is the identifier of the first EDN and the priority information of the first EDN.
  • SMF does not need to select among all target EDNs, but only needs to determine the priority of all target EDNs.
  • Type 4 At least one first EDN is part of the target EDN.
  • the information of a first EDN is the first information of the first EDN.
  • the SMF can select part of the target EDN as at least one first EDN from all the target EDNs.
  • the response message of the third message sent by the SMF to the first network element includes priority information of at least one first EDN.
  • Type 5 At least one EDN is a partial target EDN, and the information of a first EDN is the DNAI of the first EDN.
  • the SMF can select part of the target EDN as at least one first EDN from all target EDNs.
  • the response message of the third message sent by the SMF to the first network element includes priority information of at least one first EDN.
  • the sixth type at least one first EDN is a partial target EDN, and the information of one first EDN is the identifier of the first EDN and the priority information of the first EDN.
  • the SMF can select part of the target EDN as at least one first EDN among all the target EDNs.
  • the SMF selects part of the target EDN as at least one first EDN among all the target EDNs, which can be specifically implemented in any one of the following manners 1 to 3.
  • the SMF may determine, according to the location information of the terminal and the location information of the target EDN, that one or more target EDNs closest to the location of the terminal among all target EDNs are at least one first EDN. Among them, the closer the location to the terminal, the better the communication performance with the terminal.
  • the location information of the terminal may be carried in the third message or the SMF may determine the location information of the terminal according to the identification of the terminal.
  • the location information of the EDN can be determined according to the DNAI of the EDN.
  • the closest location of the target EDN to the terminal means that the network connection distance between the target EDN and the terminal is the closest.
  • all target EDNs may be EDN1, EDN2, and EDN3, and if at least one first EDN is 2 EDN and 3
  • the distance between the EDN and the terminal is EDN2, EDN1, and EDN3 from near to far, and the SMF can determine that EDN2 and EDN1 are at least one first EDN.
  • the SMF may determine, among all the target EDNs, one or more target EDNs with the best communication performance with the terminal as the at least one first EDN according to the first information of the target EDN.
  • the communication performance between an EDN and the terminal can be determined by the number of UPFs between the terminal and the EDN, the internal communication delay of the mobile network between the terminal and the EDN, and the end-to-end communication delay between the terminal and the EDN. Characterization of one or more parameters in the internal communication bandwidth of the mobile network with the EDN and the performance indicators of other communication paths.
  • the at least one first EDN determined by the SMF may also be different according to the difference between the parameters that characterize the communication performance between the EDN and the terminal.
  • the SMF may include all target EDNs The three target EDNs with the smallest end-to-end communication delay with the terminal are used as at least one first EDN.
  • the SMF may determine the at least one first EDN according to the location information of the terminal and the information of the candidate EDN.
  • the SMF may determine the at least one first EDN according to the location information of the terminal, the information of the candidate EDN, and the first information of the candidate or all the EDNs.
  • the candidate EDN may be the target EDN or not the target EDN, which is not limited in this application.
  • the SMF may determine one or more target EDNs with the best communication performance with the terminal among the candidate target EDNs as at least one first EDN. For another example, the SMF can combine one or more target EDNs with the best communication performance with the terminal among the candidate target EDNs, and the non-candidate target EDN with the best communication performance with the terminal. One or more target EDNs are determined to be at least one first EDN.
  • the candidate EDN information is carried in the third message, and the candidate EDN is determined by the first network element according to the location information of the terminal and the EDN information stored in the first network element.
  • the first network element may determine one or more EDN (or target EDN) closest to the terminal as the candidate EDN (or target EDN) according to the location information of the terminal.
  • the first network element may be EDN CS.
  • the SMF may determine the MEC application corresponding to the MEC application instance requested by the terminal according to the information (for example, the identifier of the MEC application) corresponding to the MEC application instance requested by the terminal in the first message, and then determine The EDN of the MEC application instance where the MEC application is deployed is the target EDN.
  • the information for example, the identifier of the MEC application
  • the priority of the at least one first EDN may be determined according to the distance between the at least one first EDN and the terminal, or may be determined according to the distance between the at least one first EDN and the terminal. Communication performance is determined. For example, the SMF may set a higher priority for the first EDN that is closer to the terminal, or set a higher priority for the first EDN that has better communication performance with the terminal.
  • the response message of the third message includes the priority of at least one first EDN
  • step 12 may be implemented by the first network element in part or all of the at least one first EDN.
  • the MEC application instance requested by the terminal in the target EDN is determined to be at least one first MEC application instance.
  • the first network element The priority of the at least one first EDN may be determined according to the information of the at least one first EDN, and then some or all of the MEC application instances requested by the terminal in the first EDN of the at least one first EDN may be determined as the at least one first EDN. MEC application examples.
  • the method for the first network element to determine the priority of at least one first EDN is the same as that of the SMF. For details, please refer to the above and will not be repeated.
  • the first network element may also use other methods to determine the at least one first MEC application instance. For example, after the first network element receives the information of the at least one first EDN, it determines that the load is small in combination with the load of the at least one first EDN. And determine the MEC application instance requested by the terminal in the one or more first EDNs with a smaller load as at least one first MEC application instance.
  • the first network element may also determine the EES associated with the at least one first MEC application instance, and at least one first MEC The EES associated with the application instance is deployed in at least one first EDN.
  • the above method further includes: the first network element sends address information of the EES associated with at least one first MEC application instance to the terminal. After receiving the information, the terminal can first access the EES, and then access the first MEC application instance managed by the EES.
  • FIG. 6B is a communication method provided by an embodiment of the application (also referred to as an EES-determined Method).
  • the embodiment shown in FIG. 6B takes the discovery process of EES as an example, and includes:
  • the terminal sends a first message to the first network element.
  • the first network element receives the first message from the terminal.
  • the first message may be used to request the address information of the EES, and the address information of the EES is used to connect to the EES.
  • the first message may be an EES discovery request message.
  • the first network element may be EDN CS
  • the specific step S601B may be EDN CC or EEC in the terminal.
  • the EES discovery request message arrives at the first network element from the terminal through the access network device (for example, gNB), the user plane gateway (for example, UPF), etc.
  • the access network device for example, gNB
  • the user plane gateway for example, UPF
  • the information included in the EES discovery request message is similar to the MEC application instance discovery request message in the embodiment shown in FIG. 5, except that the information of the MEC application instance in the MEC application instance discovery request message is found in EES
  • the function of the request message is to instruct to obtain the address information of the EES of the MEC application instance indicated by the information for managing the MEC application instance.
  • the first network element obtains information of at least one first EDN from the SMF, and the at least one first EDN is determined according to the location information of the terminal.
  • the first network element determines at least one first EES in the at least one first EDN.
  • the first network element sends address information of at least one first EES to the terminal.
  • the terminal receives address information of at least one first EES from the first network element.
  • the first EES may be the EES that manages the MEC application instance of the MEC application 1.
  • the address information of at least one first EES may be carried in a response message of the first message, and the response message of the first message may be an EES discovery response message.
  • the address information of an EES may be the IP address, URL, or other address connection information that can be uniquely connected to the EES.
  • the method further includes: the first network element sends priority information of the at least one first EES to the terminal.
  • the terminal can select the EES with the highest priority as the EES to provide services.
  • the terminal can also choose other EES as the EES for providing services.
  • the first network element when the terminal requests EES, the first network element requests information of at least one first EDN from SMF, and then determines at least one first EES, thereby reducing the message transmission between the MEC application instance managed by EES and the terminal Delay and improve the quality of business services.
  • step S602B includes in specific implementation:
  • the first network element sends a third message to the SMF, and the third message is used to request deployment of at least one EDN of the EES requested by the terminal.
  • the SMF receives the third message from the first network element.
  • the SMF sends information of at least one first EDN to the first network element according to the third message, where the first EDN is the EDN deployed with the EES requested by the terminal.
  • the first network element receives the response message of the third message from the SMF.
  • the information of at least one first EDN may be carried in the response message of the third message.
  • the third message may be a user plane management event notification message subscribed by the first network element to the SMF
  • the response message of the third message may be a user plane management event notification sent by the SMF to the first network element.
  • the response message of the third message may be a notification message sent by the SMF to the first network element immediately after receiving the subscription message, and the notification message includes information about the EDN corresponding to the current location of the terminal, such as the current user plane location information DNAI of the terminal.
  • the third message is used to request deployment of at least one EDN of the EES requested by the terminal. It can be understood that the third request message is used to request an EDN that meets a specific filter condition.
  • the specific filter condition describes what the EES requested by the terminal needs to meet. conditions of.
  • the specific filtering condition may be sent by the terminal to the first network element in a first message, or independently generated by the first network element.
  • the third request message may also carry a filter, which is used to indicate that the request meets the EDN information of the filter.
  • the filter may be the EES of the MEC application instance that manages the MEC application X, which means the EDN of the EES of the MEC application instance that requests the deployment and management of the MEC application X.
  • the information of the first EDN is used to indicate the communication performance of the communication path between the terminal and the first EDN.
  • the information of the first EDN is used to indicate: the communication performance of the communication path between the terminal and the EES in the first EDN, and/or the terminal and The communication performance of the communication path between the MEC application instances in the first EDN.
  • the performance of the communication path may include performance indicators such as the network topology distance of the communication path, the delay of the communication path, and the bandwidth of the communication path.
  • the at least one first EDN and the information of the at least one EDN may be any one of the following:
  • Type 1 At least one first EDN is all EDN deployed with the EES requested by the terminal, and the information of the first EDN (denoted as the first information of the first EDN) includes any one or more of the following information: the terminal and The number of UPF between the first EDN, the internal communication delay of the mobile network between the terminal and the first EDN, the end-to-end communication delay between the terminal and the first EDN, the mobile network between the terminal and the first EDN Internal communication bandwidth, priority information of the communication path between the terminal and the first EDN.
  • the first information of the first EDN may also be considered to include any one or more of the following information: the number of UPFs between the terminal and the EES in the first EDN, and the number of UPFs between the terminal and the EES in the first EDN
  • the first information of the first EDN may also be considered to include any one or more of the following information: the number of UPFs between the terminal and the MEC application instances in the first EDN, the terminal and the MEC applications in the first EDN The internal communication delay of the mobile network between instances, the end-to-end communication delay between the terminal and the MEC application instance in the first EDN, the internal communication bandwidth of the mobile network between the terminal and the MEC application instance in the first EDN, Priority information of the communication path between the terminal and the MEC application instance in the first EDN.
  • the EDN where the EES requested by the terminal is deployed is recorded as the target EDN in the following.
  • the third message includes information used to indicate the EES requested by the terminal.
  • the SMF can determine the EES requested by the terminal according to this information, and then determine the EDN deployed with the EES as the target EDN.
  • the SMF does not need to select among all the target EDNs, and only needs to use all the target EDNs as at least one first EDN.
  • the response message of the third message sent by the SMF to the first network element includes priority information of at least one first EDN.
  • Type 2 At least one first EDN is all target EDNs, and the information of one first EDN (denoted as the second information of the first EDN) is the DNAI of the first EDN.
  • the SMF does not need to select among all the target EDNs, and only needs to use all the target EDNs as at least one first EDN.
  • the response message of the third message sent by the SMF to the first network element includes priority information of at least one first EDN.
  • Type 3 At least one first EDN is all target EDNs, and the information of one first EDN is the identifier of the first EDN and the priority information of the first EDN.
  • SMF does not need to select among all target EDNs, but only needs to determine the priority of all target EDNs.
  • Type 4 At least one first EDN is part of the target EDN.
  • the information of a first EDN is the first information of the first EDN.
  • the SMF can select part of the target EDN as at least one first EDN from all the target EDNs.
  • the response message of the third message sent by the SMF to the first network element includes priority information of at least one first EDN.
  • Type 5 At least one EDN is a partial target EDN, and the information of a first EDN is the DNAI of the first EDN.
  • the SMF can select part of the target EDN as at least one first EDN from all target EDNs.
  • the response message of the third message sent by the SMF to the first network element includes priority information of at least one first EDN.
  • the sixth type at least one first EDN is a partial target EDN, and the information of one first EDN is the identifier of the first EDN and the priority information of the first EDN.
  • the SMF can select part of the target EDN as at least one first EDN among all the target EDNs.
  • the SMF selects part of the target EDN as at least one first EDN among all the target EDNs, which can be specifically implemented in any one of the following manners 1 to 3.
  • the SMF may determine, according to the location information of the terminal and the location information of the target EDN, that one or more target EDNs closest to the location of the terminal among all target EDNs are at least one first EDN. Among them, the closer the location to the terminal, the better the communication performance with the terminal.
  • the location information of the terminal may be carried in the third message or the SMF may determine the location information of the terminal according to the identification of the terminal.
  • the location information of the EDN can be determined according to the DNAI of the EDN.
  • the closest location of the target EDN to the terminal means that the network connection between the target EDN and the terminal is the closest.
  • all target EDNs may be EDN1, EDN2, and EDN3. If at least one first EDN is 2 EDN, And the distances between the three EDNs and the terminal are EDN2, EDN1, and EDN3 from near to far, and the SMF can determine that EDN2 and EDN1 are at least one first EDN.
  • the SMF may determine, among all the target EDNs, one or more target EDNs with the best communication performance with the terminal as the at least one first EDN according to the first information of the target EDN.
  • the communication performance between an EDN and the terminal can be determined by the number of UPFs between the terminal and the EDN, the internal communication delay of the mobile network between the terminal and the EDN, and the end-to-end communication delay between the terminal and the EDN. Characterization of one or more parameters in the internal communication bandwidth of the mobile network with the EDN and the performance indicators of other communication paths.
  • the at least one first EDN determined by the SMF may also be different according to the difference between the parameters that characterize the communication performance between the EDN and the terminal.
  • the SMF may include all target EDNs The three target EDNs with the smallest end-to-end communication delay with the terminal are used as at least one first EDN.
  • the SMF may determine the at least one first EDN according to the location information of the terminal and the information of the candidate EDN.
  • the SMF may determine the at least one first EDN according to the location information of the terminal, the information of the candidate EDN, and the first information of the candidate or all the EDNs.
  • the candidate EDN may be the target EDN or not the target EDN, which is not limited in this application.
  • the SMF may determine one or more target EDNs with the best communication performance with the terminal among the candidate target EDNs as at least one first EDN. For another example, the SMF can combine one or more target EDNs with the best communication performance with the terminal among the candidate target EDNs, and the non-candidate target EDN with the best communication performance with the terminal. One or more target EDNs are determined to be at least one first EDN.
  • the candidate EDN information is carried in the third message, and the candidate EDN is determined by the first network element according to the location information of the terminal and the EDN information stored in the first network element.
  • the first network element may determine one or more EDN (or target EDN) closest to the terminal as the candidate EDN (or target EDN) according to the location information of the terminal.
  • the first network element may be EDN CS.
  • the SMF may determine the MEC application corresponding to the MEC application instance requested by the terminal according to the information indicating the MEC application corresponding to the MEC application instance requested by the terminal (for example, the identifier of the MEC application) in the first message, and then determine The EDN of the EES where the MEC application instance that manages the MEC application is deployed is the target EDN.
  • the priority of the at least one first EDN may be determined according to the distance between the at least one first EDN and the terminal, or may be determined according to the distance between the at least one first EDN and the terminal. Communication performance is determined. For example, the SMF may set a higher priority for the first EDN that is closer to the terminal, or set a higher priority for the first EDN that has better communication performance with the terminal.
  • step 22 may be implemented by the first network element in part or all of the at least one first EDN.
  • the EES requested by the terminal in the target EDN is determined to be at least one first EES.
  • the first network element The priority of the at least one first EDN may be determined according to the information of the at least one first EDN, and then part or all of the EES requested by the terminal in the first EDN of the at least one first EDN may be determined as the at least one first EES.
  • the method for the first network element to determine the priority of at least one first EDN is the same as that of the SMF. For details, please refer to the above and will not be repeated.
  • the first network element may also use other methods to determine the at least one first EES. For example, after the first network element receives the information of the at least one first EDN, it determines the one with the smaller load in combination with the load of the at least one first EDN. Or multiple first EDNs, and determine the EES requested by the terminal in the one or more first EDNs with a smaller load as at least one first EES.
  • the actions executed by the SMF may also be executed by the network manager, which is not limited in this application.
  • a PLMN#A can set the local exit point DNAI#A1, DNAI#A2, DNAI#A3 at the edge of its network
  • a PLMN#B can set the local exit point DNAI at the edge of its network.
  • DNAI#A1 and DNAI#A2 correspond to EDN#1
  • DNAI#A3 corresponds to EDN#2
  • the (best) service area corresponding to EDN#1 is the area identified by DNAI#A1 and DNAI#A2
  • EDN The (best) service area corresponding to #2 is the area identified by DNAI#A3.
  • DNAI#B1 corresponds to EDN#3
  • DNAI#B2 and DNAI#B3 correspond to EDN#4
  • the (optimal) service area corresponding to EDN#3 is the area identified by DNAI#B1
  • EDN#4 corresponds to The (best) service area is the area identified by DNAI#B2 and DNAI#B3.
  • one EDN can correspond to one or more DNAIs, and the one or more DNAIs can be used by the terminal to access the EDN (specifically, it can be EES or EAS in the EDN).
  • the DNAI of a first EDN in the foregoing embodiment may include at least one DNAI corresponding to the first EDN.
  • the first network element may be an EES that manages other EESs in addition to the EDN CS.
  • EDN CS and EES can be located in the same DN, at this time, EDN CS and EES can be associated with the same SMF (see Figure 6C (a)) , Different SMFs can also be associated (see (b) in Figure 6C). EDN CS and EES may also be located in different DNs (see (c) in Figure 6C). At this time, EDN CS and EES are associated with different SMFs.
  • the terminal can establish a PDU session for accessing the DN to which EES belongs, and the terminal can also establish a PDU session for accessing the DN to which EDN CS belongs.
  • EES and EDN CS are located in the same DN, the terminal can establish a PDU session to access EES and EDN CS: The terminal can also establish two PDU sessions respectively, one for accessing EDN CS and one for accessing EES.
  • the SMF management terminal associated with the EDN CS is used to access the session of the EDN CS.
  • the SMF associated with the EDN CS is generally a centralized (or remote) SMF, or it is understood that the SMF associated with the EDN CS is an SMF close to the EDN CS, or it is understood that the SMF associated with the EDN CS has nothing to do with the current location of the terminal.
  • the SMF management terminal associated with EES is used to access the session of EES.
  • the SMF associated with the EES is generally the SMF closest to the EES, or understood as being close to the current location of the terminal.
  • SMF1 is the SMF associated with EDN CS
  • SMF2 is the SMF associated with EES.
  • EES or EDN CS can communicate with its associated SMF.
  • the present application provides the following communication method (which may also be referred to as an EES determination method), as shown in FIG. 6D ,include:
  • the first network element obtains information about at least one first EDN from the second network element.
  • the at least one first EDN is determined according to at least one of location information of the terminal or service information of the terminal.
  • the second network element is the first SMF or NEF.
  • the first network element may be an EDN CS or an EES that manages other EES.
  • the first SMF may be an SMF associated with the first network element, or may be another SMF capable of communicating with the first network element.
  • step S601D the method further includes the above-mentioned step S601B.
  • step S601B please refer to the above and will not be repeated.
  • step S601D the source EES sends a request of the target EES to the first network element.
  • step S601D may also be triggered under other circumstances or events.
  • the first network element determines at least one first EES according to the information of the at least one first EDN.
  • step S602D refer to S602B above, which will not be repeated.
  • step S603D The first network element sends address information of at least one first EES to the terminal.
  • step S603D refer to S603B above, which will not be repeated.
  • the method further includes: the first network element sends priority information of the at least one first EES to the terminal.
  • the first network element sends priority information of the at least one first EES to the terminal.
  • the first network element when the terminal requests EES, the first network element requests the information of at least one first EDN from the second network element, and then determines at least one first EES, thereby reducing the communication between the MEC application instances managed by EES and the terminal.
  • the message transmission delays and improves the service quality of the business.
  • step S601D includes in specific implementation:
  • the first network element sends a third message to the second network element, where the third message includes at least one of information for determining the location of the terminal or service information of the terminal.
  • the third message is used to request information of at least one EDN, and at least one EDN is deployed with an EES matching the terminal request.
  • the third message is used to request DNAI matching the EDN of at least one of the information in the third message.
  • the second network element receives the third message from the first network element.
  • the second network element sends information of at least one first EDN to the first network element according to the third message.
  • the first network element receives information of at least one first EDN from the second network element.
  • the information of at least one first EDN may be carried in the response message of the third message.
  • the information used to determine the location of the terminal can be directly the location information of the terminal, which can be the network location, for example, the cell information (e.g., cell ID) of the cell where the terminal is located, and the tracking area where the terminal is located ( TA information of tracking area (TA) (for example, tracking area identity (TAI)), or other geographic or administrative location information.
  • the information used to determine the location of the terminal may also be the identification of the terminal (UE ID), the identification of the EEC, or the identification of the application user, etc., and the location information of the terminal can be determined based on these identifications.
  • the location information of the terminal may indicate the current location of the terminal.
  • the service information may include network information and/or application information.
  • the network information may be a data network name (DNN), or DNN and slice information.
  • the slice information may be, for example, a single network slice selection auxiliary information (single network slice).
  • slice selection assistance information, S-NSSAI) the application information includes an application identifier or an application client identifier, and the application identifier may be an application identifier, application triplet information, and so on.
  • the DNN and slice information can be different from the DNN and slice information of the EDN CS corresponding to the session of the current terminal connected to the EDN CS, that is, the information can be the DNN and slice information corresponding to the EES, such as the edge-dedicated DN. DNN.
  • the service information of the terminal can be the service information corresponding to the application installed on the terminal, the service information corresponding to the application that the terminal is running, the service information of the application that the terminal is about to access, the service information of the application that the terminal is interested in, etc.
  • the application can It is a mobile mobile APP, or a web application, etc.
  • the third message may be a terminal network location request (UE network location request) or a DNAI request (DNAI request).
  • the response message of the third message may be a terminal network location response (UE network location response) or a DNAI response (DNAI response), and the third message and its response may be a service-oriented API.
  • UE network location request UE network location request
  • DNAI request DNAI request
  • the third message and its response may be a service-oriented API.
  • the second network element directly determines the location information of the terminal according to the third message. If the third message includes the identification of the terminal, the identification of the EEC, or the identification of the application user, the second The network element determines the location information of the terminal based on these identifiers.
  • the information of the first EDN includes: at least one DNAI corresponding to the first EDN.
  • the information of the first EDN further includes at least one of the following information: the number of user plane network elements between the terminal and the first EDN, the internal communication delay of the mobile network between the terminal and the first EDN, and the communication delay between the terminal and the first EDN.
  • the SMF may include the correspondence between location area (for example, cell, TA) information, EDN information (for example, DNAI), and service information.
  • the SMF includes the cell (or TA).
  • the mapping relationship with DNAI the corresponding relationship between DNAI and business.
  • the second network element may determine the SMF whose service area matches the location area (for example, cell, TA) of the terminal according to the location information of the terminal, and request the SMF to obtain information of at least one first EDN.
  • step 32) includes in specific implementation:
  • the second network element determines the second SMF according to the location information of the terminal. For example, the second network element may determine the location area (e.g., cell, TA) where the terminal is located according to the location information of the terminal, and then determine that the SMF whose service area matches the location area where the terminal is located is the second SMF.
  • the network element requests an SMF whose service area matches the location area where the terminal is located from the NRF.
  • the NRF determines the SMF whose service area matches the location area where the terminal is located, and the NRF returns the service area to the second network element to match the location area where the terminal is located.
  • the second network element obtains the SMF information of the service area matching the location area of the terminal from the NRF, and determines the second SMF according to the information.
  • the second network element sends a request message to the second SMF.
  • the request message includes at least one of location information or service information.
  • the location information includes the location information of the terminal, and the service information includes the service information of the terminal.
  • the second SMF receives the request message from the second network element.
  • the request message is used to obtain EDN information matching at least one of location information or service information.
  • the second SMF determines the information of at least one first EDN according to the location information and the first correspondence, and the first correspondence includes the correspondence between the location area information and the information of the EDN; or,
  • the second SMF determines at least one information of the first EDN according to the service information and the second correspondence, and the second correspondence includes the correspondence between the service information and the EDN information; or,
  • the second SMF determines the information of at least one first EDN according to the location information, service information, and the third correspondence.
  • the third correspondence includes location area information, EDN information, and service. Correspondence between information.
  • the second SMF sends information of at least one first EDN to the second network element.
  • the second network element receives information of at least one first EDN from the second SMF.
  • the second network element sends information of at least one first EDN to the first network element.
  • the location area information in the correspondence (first correspondence or third correspondence) stored in the second SMF may be the location area information served by the second SMF.
  • Step 43) if the request message includes location information, the second SMF uses the information of the EDN corresponding to the location information as the information of the at least one first EDN.
  • the first correspondence is as shown in Table 1, if the location information is cell 1, the second SMF can determine that DNAI1 is information of at least one first EDN. If the location information is cell 2, the second SMF can determine that DNAI2 and DNAI3 are information of at least one first EDN.
  • Step 43) if the request message includes service information, the second SMF uses the information of the EDN corresponding to the service information as the information of the at least one first EDN.
  • the second correspondence is as shown in Table 2, if the service information is DNN1, the second SMF can determine that DNAI1 is information of at least one first EDN. If the service information is DNN2, the second SMF can determine that DNAI2 and DNAI3 are information of at least one first EDN.
  • Step 43) when the request message includes location information and service information, the second SMF uses the information of the EDN corresponding to the location information and the service information as the information of at least one first EDN.
  • the second SMF uses the information of the EDN corresponding to the location information and the service information as the information of at least one first EDN.
  • the third correspondence is shown in Table 3, if the location area is cell 2 and the service information is DNN1, the second SMF can determine that DNAI2 is the information of at least one first EDN.
  • the NEF may include at least two correspondences among location area (for example, cell, TA) information, EDN information (for example, DNAI), and service information.
  • the second network element may For NEF, the second network element may determine the information of at least one first EDN according to at least one of location information or service information of the terminal.
  • step 32) includes in specific implementation:
  • the second network element determines the information of at least one first EDN according to the location information of the terminal and the first correspondence, and the first correspondence includes the correspondence between the location area information and the information of the EDN; or,
  • the second network element determines the information of at least one first EDN according to the service information of the terminal and the second correspondence, and the second correspondence includes the correspondence between the service information and the information of the EDN; or,
  • the second network element determines the information of at least one first EDN according to the location information and service information of the terminal and the third correspondence.
  • the third correspondence includes the correspondence between location area information, EDN information, and service information.
  • the second network element sends information of at least one first EDN to the first network element.
  • the NEF may store at least one of the above-mentioned first correspondence, second correspondence, and third correspondence.
  • the location area information in the correspondence relationship stored in the NEF may be all location area information.
  • the specific implementation process of step 51) is similar to the above step 43), except that it is executed by the second network element here.
  • step 32 if the information of at least one first EDN is determined according to the location information of the terminal and the first correspondence, the determined information of the first EDN can be optimized (physically closest to the terminal, network The connection path is the closest, or the network connection path is the best), and fast transmission of data from the terminal is ensured. If the information of at least one first EDN is determined according to the service information of the terminal and the second correspondence, the determined information of the first EDN can meet the service requirements of the terminal. If the information of at least one first EDN is determined according to the location information and service information of the terminal and the third correspondence, the determined information of the first EDN can be optimized and meet the service requirements of the terminal, and the data of the terminal can be guaranteed Fast transmission.
  • EES and EDN CS are located in the same DN. If EDN CS provides service information to SMF, SMF can determine which DNAI should be fed back to EDN CS based on the service information.
  • EES and EDN CS are located in the same DN, and different sessions are used, and the different sessions are managed by different SMFs, when EDN CS requests the corresponding DNAI for the terminal from SMF1, DNAI2 should be the optimal DNAI, but SMF1 may not be able to provide DNAI2.
  • EES and EDN CS are located in different DNs, and different sessions are used. Different sessions are managed by different SMFs.
  • DNAI2 should be optimal DNAI, but SMF1 may not be able to provide DNAI2.
  • NEF or the first SMF sends a request message to the second SMF, so that the second SMF can send the optimal DNAI to the NEF or the first SMF, so that the first network element can obtain the optimal DNAI.
  • the NEF can determine the optimal DNAI by storing the above corresponding relationship, so that the first network element can obtain the optimal DNAI.
  • This application provides a method for determining the DNAI for the terminal irrespective of the session.
  • the platform corresponding to the DNAI supports the service to be accessed by the terminal, and can obtain the optimal DNAI corresponding to the service accessed by the terminal.
  • the first network element obtains at least one first network element.
  • the information flow of EDN is illustrated as an example.
  • the process of the method shown in FIG. 6E includes:
  • the first network element sends a third message to the second network element, where the third message includes at least one of information used to determine the location of the terminal or service information of the terminal.
  • the second network element receives the third message from the first network element.
  • the second network element may determine the location information of the terminal according to the information used to determine the location of the terminal in the third message. For details, please refer to the above description and will not be repeated.
  • the third message may be UE network location request or DNAI request.
  • the second network element determines the second SMF according to the location information of the terminal.
  • step S602E if the second network element includes the topology information of the SMF, the second network element determines, according to the location information of the terminal, that the SMF whose service area matches the location area where the terminal is located is the second SMF.
  • the second network element interacts with the NRF to determine the second SMF. Specifically, the second network element sends an SMF request message (for example, NF request) to the NRF.
  • the SMF request message is used to request information about the SMF whose service area matches the location area where the terminal is located.
  • the SMF request message includes The location information of the terminal may optionally also include an NF type (type), and the NF type is the SMF type.
  • the NRF searches for the second SMF information for the NEF according to the information in the SMF request message and the network information (DNN and slice information), and returns the second SMF information to the NEF.
  • the information of the second SMF may be carried in the SMF request response (for example, NF response (NF response)).
  • the second network element sends a request message to the second SMF, where the request message includes at least one of location information or service information.
  • the second SMF receives the request message from the second network element.
  • the request message may be UE network location request or DNAI request.
  • the second SMF determines the information of at least one first EDN according to the information in the request message and the corresponding relationship (the first corresponding relationship or the second corresponding relationship or the third corresponding relationship).
  • step S604E please refer to the above, which will not be repeated here.
  • the second SMF sends information about at least one first EDN to the second network element.
  • the information of at least one first EDN may be carried in the UE network location response or DNAI response sent by the second SMF to the second network element.
  • the second network element sends information about at least one first EDN to the first network element.
  • the information of at least one first EDN may be carried in a terminal network location response (UE network location response) or DNAI response sent by the second network element to the first network element.
  • UE network location response terminal network location response
  • DNAI response sent by the second network element to the first network element.
  • the second network element is NEF
  • the process of the method shown in FIG. 6F includes:
  • step S601F is the same as step S601E.
  • the second network element determines information about at least one EDN according to at least one of the location information or service information of the terminal, and the corresponding relationship (the first corresponding relationship or the second corresponding relationship or the third corresponding relationship).
  • step S602F For the implementation process of step S602F, refer to the foregoing process, and details are not described herein again.
  • the second network element sends information about at least one first EDN to the first network element.
  • the information of at least one first EDN may be carried in the UE network location response or DNAI response sent by the second network element to the first network element.
  • the actions performed by the NEF in the solutions shown in FIG. 6D, FIG. 6E, and FIG. 6F may also be performed by NRF, UDR, etc., and this application is not limited.
  • FIG. 6A, FIG. 6B, and FIG. 6D can also be applied in scenarios where the location of the terminal changes.
  • the MEC application instance or EES that the terminal accesses needs to be changed in order to reduce the message transmission delay between the MEC application instance and the terminal and improve the quality of service.
  • the EES accessed by the terminal before the location change can be referred to as the source EES.
  • the following describes the implementation differences of the embodiments related to FIG. 6A, FIG. 6B, and FIG. 6D in a scenario where the location of the terminal changes.
  • the remaining parts can be understood with reference to the content in the corresponding embodiments, and will not be repeated. .
  • the first network element may obtain the information of at least one first EDN from the SMF, and may also obtain the information of the at least one first EDN from the source EES.
  • the information of at least one first EDN in the source EES may come from SMF/AMF.
  • the first network element may send the address information of at least one first MEC application instance to the terminal, and may also send the address information of at least one first MEC application instance to the source EES. After the source EES obtains the address information of at least one first MEC application instance, if at least one first MEC application instance is multiple first MEC application instances, the source EES can determine by itself one first MEC application instance as a new one for the terminal.
  • the source EES determines that the first MEC application instance is a new first MEC application instance that provides services for the terminal.
  • the new first MEC application instance that provides services for the terminal may be determined by the first network element, and the first network element sends the new first MEC application instance to the terminal so that the terminal can access the new first MEC application instance .
  • the first network element may also send the priority information of the at least one first MEC application instance to the source EES.
  • the source EES may select the first MEC application instance with the highest priority as the new first MEC application instance that provides services for the terminal.
  • the source EES can also select another first MEC application instance as a new first MEC application instance that provides services for the terminal. If the first network element sends the address information of the at least one first MEC application instance to the source EES, the first network element may also send the address information of the EES associated with the at least one first MEC application instance to the source EES.
  • the source EES can determine the address information of the EES associated with the new first MEC application instance that provides services for the terminal, and send the EES information to the terminal or send the EES information through the first network element To the terminal so that the terminal can access the new first MEC application instance managed by the EES to provide services for the terminal.
  • the first network element obtains at least one first EDN information from the source EES, in step 11) and step 12)
  • the first network element may interact with the source EES to obtain at least one first EDN information, and step 11
  • the SMF in) and step 12) can be replaced with the source EES for understanding, and will not be repeated here.
  • the first network element may be EDN CS.
  • the first network element may obtain the information of at least one first EDN from the SMF, and may also obtain the information of the at least one first EDN from the source EES.
  • the information of at least one first EDN in the source EES may come from SMF/AMF.
  • the first network element may send the address information of the at least one first EES to the terminal, and may also send the address information of the at least one first EES to the source EES.
  • the source EES After the source EES obtains the address information of at least one first EES, if at least one first EES is multiple first EES, the source EES can determine by itself a first EES as the new first EES providing services for the terminal, and The information of the new first EES providing service for the terminal is sent to the terminal or the information of the new first EES providing service for the terminal is sent to the terminal through the first network element, so that the terminal can access the new first EES. If at least one first EES is a first EES, the source EES determines that the first EES is a new first EES that provides services for the terminal.
  • the new first EES that provides services for the terminal may be determined by the first network element, and the first network element sends the new first EES to the terminal so that the terminal can access the new first EES. If the first network element sends the address information of the at least one first EES to the source EES, the first network element may also send the priority information of the at least one first EES to the source EES. In this case, the source EES may select the first EES with the highest priority as the new first EES to provide services for the terminal. Of course, the source EES can also select other first EES as the new first EES that provides services for the terminal.
  • the first network element may interact with the source EES to obtain at least one first EDN information, and step 21
  • the SMF in) and step 22) can be replaced with the source EES for understanding, and will not be repeated here.
  • the first network element may be EDN CS.
  • the second network element may also be the source EES.
  • the first network element may send the address information of at least one first EES to the terminal, and may also send the address information of at least one first EES to the source EES.
  • the source EES obtains the address information of at least one first EES, if at least one first EES is multiple first EES, the source EES can determine by itself a first EES as the new first EES providing services for the terminal, and The information of the new first EES providing service for the terminal is sent to the terminal or the information of the new first EES providing service for the terminal is sent to the terminal through the first network element, so that the terminal can access the new first EES.
  • the source EES determines that the first EES is a new first EES that provides services for the terminal.
  • the new first EES that provides services for the terminal may be determined by the first network element, and the first network element sends the new first EES to the terminal so that the terminal can access the new first EES.
  • the first network element sends the address information of the at least one first EES to the source EES
  • the first network element may also send the priority information of the at least one first EES to the source EES.
  • the source EES may select the first EES with the highest priority as the new first EES to provide services for the terminal.
  • the source EES can also select other first EES as the new first EES that provides services for the terminal.
  • the first network element may be EDN CS.
  • the DNAI of the first EDN includes the DNAI of the EES in the first EDN and/or the DNAI of the MEC application example in the first EDN.
  • the DNAI of EES can be understood as the data traffic correlation (traffic) corresponding to EES.
  • the DNAI of the MEC application instance can be understood to be related to the data flow corresponding to the MEC application instance.
  • FIG. 6H is a process of determining a new EES that provides services for the terminal
  • FIG. 6I is a process of determining a new MEC application instance that provides services for the terminal.
  • EES and EDN CS subscribe to the core network control plane function network element, such as NEF, AMF or SMF, to subscribe to the user plane path change notification event.
  • the process of determining the new EES (denoted as the target EES) that provides services for the terminal includes:
  • the core network control plane functional network element determines at least one DNAI (denoted as N DNAIs).
  • the N DNAIs are determined according to the location of the changed terminal, and may include user plane data of the terminal and EDN CS, user plane data of the terminal and EES, or one or more of the user plane data of the terminal and the MEC application instance.
  • the DNAI corresponding to the item please refer to the above for the specific determination process, which will not be repeated.
  • EDN CS or source EES can be made to obtain N DNAI information.
  • the process of making the source EES obtain the information of N DNAIs can be realized through S602H and S603H (at this time, generally, the user plane data of the terminal and EES can be included in the N DNAIs, or the user plane data of the terminal and the MEC application instance One or more of the corresponding DNAI), or through S604H.
  • N DNAIs can include user plane data of the terminal and EDN CS, user plane data of the terminal and EES, or terminal and MEC application examples One or more of the user plane data corresponding to DNAI).
  • the core network control plane function network element sends a user plane path management event notification to the source MEC application instance, where the notification includes information about N DNAIs.
  • the N DNAIs may be DNAIs corresponding to the source MEC application instance, and further may be understood as DNAIs corresponding to the user plane data of the terminal and the MEC application instance.
  • the source MEC application instance is the MEC application instance accessed by the terminal before the location changes.
  • the core network control plane function network element is AMF or SMF
  • the user plane path management event notification can be sent to the source MEC application instance via the NEF.
  • the source MEC application instance sends N DNAI information to the source EES.
  • the information of the N DNAIs can be carried in an EAS discovery request (EAS discovery request), an EAS subscription request, or an EAS subscription request update message.
  • the core network control plane function network element sends a user plane path management event notification to the source EES, and the notification contains information of N DNAIs.
  • the N DNAIs may include DNAIs of EES and/or MEC application examples, which can be further understood as one or more corresponding DNAIs in user plane data of the terminal and EES and/or user plane data of the terminal and MEC application examples.
  • the core network control plane function network element is AMF or SMF
  • the user plane path management event notification can be sent to the source EES via the NEF.
  • the core network control plane function network element sends a user plane path management event notification to the EDN CS, and the notification includes N DNAI information.
  • the N DNAIs may include one or more DNAIs of EDN CS, EES, and MEC application examples, which can be further understood as user plane data of the terminal and EDN CS, user plane data of the terminal and EES, or terminal and MEC application One or more items in the user plane data of the instance correspond to DNAI.
  • the core network control plane function network element is AMF or SMF
  • the user plane path management event notification can be sent to the EDN CS via the NEF.
  • the DNAI of the EDN CS, the DNAI of the EES, and the DNAI of the MEC application example may be the same or different, and this application is not limited. Under normal circumstances, it can be considered that the DNAI of EES is the same as that of MEC application examples.
  • N in S602H and S603H, the value of N in S604H, and the value of N in S605H can be the same, or It can be different, and this application is not limited.
  • the target EES in the first implementation manner, can be determined by the following S606H to S610H, and in the second implementation manner, the target EES can be determined by the following S611H to S614H.
  • the source EES sends an EES discovery request to the EDN CS, and the EES discovery request carries M DNAIs.
  • the M DNAIs can be N DNAIs obtained from the core network control plane functional network element, or N DNAIs obtained from the source MEC application example, or N DNAIs obtained from the core network control plane functional network element.
  • the DNAI and the N DNAIs obtained from the source MEC application instance may also be different DNAIs among the N DNAIs obtained from the core network control plane functional network element and the N DNAIs obtained from the source MEC application instance.
  • the source EES can polymerize DNAI obtained from different ways to obtain M DNAIs, or directly send the DNAI obtained from the above different ways as M DNAIs to EDN CS.
  • the EES discovery request may also include terminal information (for example, terminal identification, terminal location information), application information (for example, application identification, MEC application instance, or application client (Application client, AC) configuration file ( profile)).
  • terminal information for example, terminal identification, terminal location information
  • application information for example, application identification, MEC application instance, or application client (Application client, AC) configuration file ( profile)).
  • EDN CS determines one or more EES according to the received M DNAIs, terminal information, application information, and DNAI in the stored EES configuration file.
  • the DNAI in the EES configuration file can include the DNAI of the EES and/or the DNAI of the MEC application instance.
  • the MEC application instance is the MEC application instance registered on the EES.
  • the DNAI of the EES and the DNAI of the MEC application instance can be the same, or Can be different.
  • EDN CS can perform matching (select/determine) according to the received M DNAIs, terminal information, application information, and DNAI in the stored EES configuration file, to match the optimal and capable One or more EESs that provide required application services for the terminal.
  • EDN CS determines the target EES in one or more EES.
  • EDN CS can select the best EES from one or more EES (for example, the closest physical distance to the terminal, the closest connection path to the terminal network, or the best connection path to the terminal network) as the target EES .
  • EDN CS can also use some of the better EES among multiple EES as the target EES.
  • EDN CS returns the target EES information to the source EES.
  • interactive operations for context migration can be performed between the source EES and the target EES.
  • the source EES sends an EAS discovery request to the target EES
  • the source EES carries conditions for filtering MEC application instances in the request (such as application client End configuration files, corresponding to the requirements of key performance indicators of the application, etc.)
  • the target EES selects target MEC application instances that meet the filter conditions for the source EES according to the EAS discovery request
  • the target EES sends the selected one or more target MEC application instances to the source EES .
  • the EDN CS sends the information of the target EES to the terminal.
  • the terminal can access the target EES. For example, discover the information of the MEC application instance to the target EES, or send an application context migration request to the target EES.
  • the terminal (specifically, the EEC in the terminal) sends an EES access request message to the EDN CS, and the EES access request message is used to obtain EES access information.
  • the EES access request message may be a service configuration request, a service configuration subscription, an EES subscription request, an EES request message, etc.
  • the EES access request message may include terminal information and application information.
  • S612H is the same as S607H.
  • the M DNAIs in S612H can be N DNAIs obtained through S605H.
  • S613H is the same as S608H.
  • the EDN CS sends an EES access response message to the terminal, and the EES access response message includes the target EES information.
  • the EES access response message may be a service configuration response, a service configuration notification, an EES notification, an EES response message, and so on.
  • the terminal can access the target EES. For example, discover the information of the MEC application instance to the target EES, or send an application context migration request to the target EES.
  • the second implementation manner can also be applied in the initial selection of EES by the terminal.
  • the target EES selects a new MEC application instance (denoted as the target MEC application instance) that provides services for the terminal, and then sends the target MEC application instance to the source EES or the terminal.
  • the process of determining the target MEC application instance includes:
  • S601I is the same as S601H.
  • the source EES or the target EES can obtain the information of N DNAIs.
  • the process of enabling the source EES to obtain N DNAI information can be implemented through S602I and S603I, or through S604I.
  • the process of enabling the target EES to obtain N DNAI information can be implemented through S605I.
  • S602I is the same as S602H.
  • S603I is the same as S603H.
  • S604I is the same as S604H.
  • the core network control plane function network element sends a user plane path management event notification to the target EES, and the notification contains information about N DNAIs.
  • the N DNAIs can be the DNAIs of the EES or MEC application examples, and can be further understood as the user plane data of the terminal and the EES, or one or more DNAIs corresponding to the user plane data of the terminal and the MEC application examples.
  • the core network control plane function network element is AMF or SMF
  • the user plane path management event notification can be sent to the target EES via the NEF.
  • the target EES information may be the source EES notifying the core network control plane functional network element, or the EDN CS notifying the core network control plane functional network element.
  • N in S602I and S603I the value of N in S604I, and the value of N in S605I can be the same, or It can be different, and this application is not limited.
  • the target MEC application instance in the first implementation manner, can be determined through the following S606I to S611I, and in the second implementation manner, the target MEC application instance can be determined through the following S612I to S614I.
  • the source MEC application instance sends an EAS discovery request to the source EES, and the EAS discovery request carries N DNAIs.
  • the N DNAIs may be N DNAIs obtained from the core network control plane functional network element by the source MEC application instance.
  • the source EES sends an EAS discovery request to the target EES, and the EAS discovery request carries M DNAIs.
  • the source EES can obtain the information of the target EES from the EDN CS.
  • the M DNAIs can be N DNAIs obtained from the core network control plane functional network elements, or N DNAIs obtained from the source MEC application examples, and can also include N DNAIs and N DNAIs obtained from the core network control plane functional network elements.
  • the N DNAIs obtained from the source MEC application instance may also be different DNAIs among the N DNAIs obtained from the core network control plane functional network element and the N DNAIs obtained from the source MEC application instance.
  • the source EES can polymerize DNAI obtained from different ways to obtain M DNAIs, or directly send the DNAI obtained from the above different ways as M DNAIs to the target EES.
  • the EAS discovery request may also include terminal information (see above for meaning) and application information (see above for meaning).
  • the source EES can discover the information of the target EES from the EDN CS.
  • the target EES determines the target MEC application instance according to the M DNAIs, terminal information, application information, and DNAI in the stored EES configuration file.
  • the target EES sends an EAS discovery response to the source EES, and the EAS discovery response includes information about the target MEC application instance.
  • the EAS discovery response is the response message of the EAS discovery request sent by the source EES.
  • the source EES sends an EAS discovery response to the source MEC application instance, and the EAS discovery response includes the information of the target MEC application instance.
  • the EAS discovery response is the response message of the EAS discovery request sent by the source MEC application instance.
  • the EAS discovery request sent by the source MEC application instance can also be an EAS subscription request, which is used to subscribe to the information of the target MEC application instance used for application context removal (ACR).
  • the source MEC The response message of the EAS discovery request sent by the application instance may be an EAS notification response.
  • the source MEC application instance sends the information of the target MEC application instance to the terminal.
  • the terminal can access the target MEC application instance.
  • the terminal can switch user plane data from the source MEC application instance to the target MEC application instance.
  • the source EES may also send the information of the target MEC application instance to the terminal.
  • the source EES may carry the information of the target MEC application instance in the notification message sent to the EEC of the application context migration subscription.
  • the EEC may subscribe to the source EES for the application context migration event notification, specifically, subscribe to the target MEC in the application context migration.
  • the EAS discovery request may be an EAS access message or an EAS subscription request message.
  • the EAS discovery request can include terminal information and application information.
  • S613I is the same as S608I.
  • the M DNAIs in S612I can be N DNAIs obtained through S605I.
  • the target EES sends an EAS access response message to the terminal, and the EAS access response message includes the information of the target MEC application instance.
  • the EAS access response message may be an EAS discovery response or an EAS notification.
  • the EDN CS may also be referred to as an edge configuration server (edge configuration server, ECS).
  • ECS edge configuration server
  • each network element described above includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the steps or operations implemented by the terminal, the first network element, and the SMF can also be implemented by components (such as chips or circuits) configured in the terminal, the first network element, and the SMF. .
  • the embodiment of the present application also provides a device for implementing any of the above methods.
  • a device is provided that includes units (or means) for implementing each step performed by the first network element in any of the above methods.
  • FIG. 7 a schematic diagram of a communication device provided by an embodiment of this application.
  • the device is used to implement each step corresponding to the first network element in the foregoing method embodiment.
  • the device 700 includes a sending unit 710, a receiving unit 720, and a processing unit 730.
  • the receiving unit 720 is configured to receive a first message sent by the terminal to the first network element, and the first message may be an MEC application instance discovery request message.
  • the processing unit 730 is configured to determine at least one first MEC application instance, specifically configured to obtain location information of the terminal, and then determine at least one first MEC application instance according to the location information.
  • the first network element obtains the location information of the terminal by receiving the MEC application instance discovery request message; If the MEC application instance finds that the request message does not contain the location information of the terminal, another optional method is that the first network element obtains the network function from the telecom operator, such as the 5G core network control plane network function (for example, NEF), according to the terminal identification Obtain the location information of the terminal.
  • NEF provides APIs, the ability to open telecommunication networks.
  • the first network element sends a location query request including the terminal identifier to NEF.
  • NEF calls core network network functions such as AMF to obtain location information.
  • AMF sends the location information of the queried terminal to the caller, namely NEF.
  • NEF sends a second message to the first network element, where the second message includes location information of the terminal.
  • the sending unit 710 is configured to send an MEC application instance discovery response message to the terminal.
  • the MEC application instance discovery response message includes information about the determined at least one first MEC application instance.
  • each of the above-mentioned units may also be referred to as a module or a circuit, etc., and each of the above-mentioned units may be provided independently, or may be fully or partially integrated.
  • the foregoing sending unit 710 and receiving unit 720 may also be implemented by a transceiver unit, or the sending unit 710 and the receiving unit 720 may also be collectively referred to as a transceiver unit, and may be implemented through a communication interface.
  • the aforementioned processing unit 730 may be implemented by a processor.
  • the aforementioned communication device 700 may further include a storage unit for storing data or instructions (also referred to as codes or programs), and each of the aforementioned units may interact or couple with the storage unit to implement the corresponding method or Features.
  • the processing unit may read data or instructions in the storage unit, so that the communication device implements the method in the foregoing embodiment.
  • the device 800 includes a sending unit 810, a receiving unit 820, and optionally a processing unit. 830.
  • the sending unit 810 can be used to execute the steps related to the control plane function network element or terminal device sending information or messages or requests in the above method embodiment
  • the receiving unit 820 can be used to execute the control plane function network element or the corresponding control plane function network element in the above method embodiment.
  • the terminal device receives information, messages, or responses, and other steps related to reception.
  • the processing unit 830 is configured to process information or related information or messages.
  • the embodiment of the present application also provides a communication system, which may include the first network element in the foregoing method embodiment and the control plane function network element. It may further include an edge node installed with an MEC application instance, or further include a terminal device.
  • FIG. 8A shows a possible structural diagram of the communication device (denoted as the communication device 80A) involved in the above-mentioned embodiment.
  • the communication device 80A includes a processing unit 801A and a communication unit 802A. , May also include a storage unit 803A.
  • the schematic structural diagram shown in FIG. 8A may be used to illustrate the structure of the first network element or SMF involved in the foregoing embodiment.
  • FIG. 8A When the schematic structural diagram shown in FIG. 8A is used to illustrate the structure of the first network element involved in the foregoing embodiment, in an implementation manner:
  • the communication unit 802A is configured to obtain information of at least one first EDN from the SMF or the source EES, the at least one first EDN is determined according to the location information of the terminal;
  • the processing unit 801A is configured to determine at least one first MEC application instance in the at least one first EDN;
  • the communication unit 802A is further configured to send address information of the at least one first MEC application instance to the terminal or the source EES.
  • the communication unit 802A is specifically configured to send a third message to the SMF or the source EES, where the third message is used to request at least one EDN, and the at least one EDN is deployed with the terminal requested by the terminal.
  • MEC application example receiving a response message of the third message from the SMF or the source EES, the response message including the information of the at least one first EDN.
  • the third message includes information about the candidate EDN, and the candidate EDN is the information of the first network element according to the location information of the terminal and the EDN stored in the first network element.
  • the information is ok.
  • the third message includes location information of the terminal.
  • the information of the first EDN includes: DNAI of the first EDN.
  • the DNAI of the first EDN includes the DNAI of the EES in the first EDN and/or the DNAI of the MEC application example in the first EDN.
  • the communication unit 802A is further configured to send address information of the EES associated with the at least one first MEC application instance to the terminal or the source EES.
  • the information of the first EDN is used to indicate the communication performance of the communication path between the terminal and the first EDN.
  • the information of the first EDN further includes at least one of the following information: the number of user plane network elements between the terminal and the first EDN, and the number of network elements between the terminal and the first EDN.
  • the mobile network internal communication delay, the end-to-end communication delay between the terminal and the first EDN, the mobile network internal communication bandwidth between the terminal and the first EDN, the terminal and the first EDN The priority information of the communication path between the first EDN.
  • the communication unit 802A is further configured to send priority information of the at least one first MEC application instance to the terminal or the source EES.
  • the communication unit 802A is configured to obtain information of at least one first EDN from the SMF or the source EES, the at least one first EDN is determined according to the location information of the terminal;
  • the processing unit 801A is configured to determine at least one first EES in the at least one first EDN;
  • the communication unit 802A is further configured to send address information of the at least one first EES to the terminal or the source EES.
  • the communication unit 802A is specifically configured to send a third message to the SMF or the source EES, where the third message is used to request at least one EDN, and the at least one EDN is deployed with the terminal requested by the terminal. EES; receiving a response message of the third message from the SMF or the source EES, the response message including the information of the at least one first EDN.
  • the third message includes information about the candidate EDN, and the candidate EDN is the information of the first network element according to the location information of the terminal and the EDN stored in the first network element.
  • the information is ok.
  • the third message includes location information of the terminal.
  • the information of the first EDN includes: DNAI of the first EDN.
  • the DNAI of the first EDN includes the DNAI of the EES in the first EDN and/or the DNAI of the multi-access edge computing MEC application example in the first EDN.
  • the information of the first EDN is used to indicate the communication performance of the communication path between the terminal and the first EDN.
  • the information of the first EDN further includes at least one of the following information: the number of user plane network elements between the terminal and the first EDN, and the number of network elements between the terminal and the first EDN.
  • the mobile network internal communication delay, the end-to-end communication delay between the terminal and the first EDN, the mobile network internal communication bandwidth between the terminal and the first EDN, the terminal and the first EDN The priority information of the communication path between the first EDN.
  • the communication unit 802A is further configured to send priority information of the at least one first EES to the terminal or the source EES.
  • FIG. 8A When the schematic structural diagram shown in FIG. 8A is used to illustrate the structure of the SMF involved in the foregoing embodiment:
  • the processing unit 801A is configured to receive a third message from the first network element through the communication unit 802A, the third message is used to request at least one EDN; the at least one EDN is deployed with the MEC application instance requested by the terminal, or the At least one EDN is deployed with the EES requested by the terminal;
  • the processing unit 801A is further configured to send a response message of the third message to the first network element according to the third message through the communication unit 802A, where the response message includes information of at least one first EDN;
  • the first EDN is the EDN where the MEC application instance requested by the terminal is deployed; and the terminal is deployed on the at least one EDN
  • the first EDN is an EDN in which the EES requested by the terminal is deployed.
  • the at least one first EDN is determined according to the location information of the terminal and the information of the at least one EDN obtained by the SMF.
  • the at least one first EDN is determined according to the location information of the terminal and information about the candidate EDN, and the information about the candidate EDN is carried in the third message.
  • the location information of the terminal is carried in the third message.
  • the information of the first EDN includes: DNAI of the first EDN.
  • the DNAI of the first EDN includes the DNAI of the EES in the first EDN and/or the DNAI of the MEC application example in the first EDN.
  • the information of the first EDN is used to indicate the communication performance of the communication path between the terminal and the first EDN.
  • the information of the first EDN further includes at least one of the following information: the number of user plane network elements between the terminal and the first EDN, and the number of network elements between the terminal and the first EDN.
  • the mobile network internal communication delay, the end-to-end communication delay between the terminal and the first EDN, the mobile network internal communication bandwidth between the terminal and the first EDN, the terminal and the first EDN The priority information of the communication path between the first EDN.
  • the communication unit may also be referred to as a transceiver unit.
  • the antenna and control circuit with the transceiver function in the communication device 80A can be regarded as the communication unit 802A of the communication device 80A, and the processor with the processing function can be regarded as the processing unit 801A of the communication device 80A.
  • the device for implementing the receiving function in the communication unit 802A may be regarded as a receiving unit, which is used to perform the receiving steps in the embodiment of the present application, and the receiving unit may be a receiver, a receiver, a receiving circuit, and the like.
  • the device for implementing the sending function in the communication unit 802A can be regarded as a sending unit, the sending unit is used to perform the sending steps in the embodiment of the present application, and the sending unit can be a transmitter, a transmitter, a sending circuit, and the like.
  • FIG. 8B shows a schematic diagram of a possible structure of the communication device (denoted as the communication device 80B) involved in the above embodiment.
  • the communication device 80B includes a processing unit 801B and a communication unit 802B. , May also include a storage unit 803B.
  • the schematic structural diagram shown in FIG. 8B may be used to illustrate the structure of the first network element, the second network element, or the second SMF involved in the foregoing embodiment.
  • FIG. 8B When the schematic structural diagram shown in FIG. 8B is used to illustrate the structure of the first network element involved in the foregoing embodiment:
  • the communication unit 802B is configured to obtain information about at least one first EDN from a second network element, the at least one first EDN is determined according to at least one of the location information of the terminal or the service information of the terminal, and the first EDN
  • the second network element is the first session management network element or NEF or source EES;
  • the processing unit 801B is configured to determine at least one first EES according to the information of the at least one first EDN;
  • the communication unit 802B is further configured to send address information of the at least one first EES to the terminal or the source EES.
  • the communication unit 802B is specifically configured to:
  • the information of the first EDN includes: at least one DNAI of the first EDN.
  • the DNAI of the first EDN includes the DNAI of the EES in the first EDN and/or the DNAI of the MEC application example in the first EDN.
  • the information of the first EDN further includes at least one of the following information: the number of user plane network elements between the terminal and the first EDN, and the number of network elements between the terminal and the first EDN.
  • the mobile network internal communication delay, the end-to-end communication delay between the terminal and the first EDN, the mobile network internal communication bandwidth between the terminal and the first EDN, the terminal and the first EDN The priority information of the communication path between the first EDN.
  • the communication unit 802B is further configured to send priority information of the at least one first EES to the terminal or the source EES.
  • FIG. 8B When the schematic structural diagram shown in FIG. 8B is used to illustrate the structure of the second network element involved in the foregoing embodiment:
  • the processing unit 801B is configured to receive a third message from the first network element through the communication unit 802B, and the third message includes information used to determine the location of the terminal or the service information of the terminal.
  • the second network element is a first session management network element or NEF or source EES;
  • the processing unit 801B is further configured to send information of at least one first EDN to the first network element through the communication unit 802B according to the third message, or the location information of the first EDN and the terminal At least one of the service information of the terminal matches.
  • processing unit 801B is specifically configured to:
  • a request message is sent to the second session management network element through the communication unit 802B, the request message includes at least one of location information or service information, the location information includes location information of the terminal, and the service information Contains service information of the terminal;
  • the information of the at least one first EDN is sent to the first network element through the communication unit 802B.
  • the second network element is the NEF
  • the processing unit 801B is specifically configured to:
  • the information of the at least one first EDN is determined according to the service information of the terminal and a second correspondence, where the second correspondence includes the correspondence between the service information and the information of the EDN; or,
  • the information of the at least one first EDN is sent to the first network element through the communication unit 802B.
  • the information of the first EDN includes: at least one DNAI of the first EDN.
  • the DNAI of the first EDN includes the DNAI of the EES in the first EDN and/or the DNAI of the multi-access edge computing MEC application example in the first EDN.
  • the information of the first EDN further includes at least one of the following information: the number of user plane network elements between the terminal and the first EDN, and the number of network elements between the terminal and the first EDN.
  • the mobile network internal communication delay, the end-to-end communication delay between the terminal and the first EDN, the mobile network internal communication bandwidth between the terminal and the first EDN, the terminal and the first EDN The priority information of the communication path between the first EDN.
  • FIG. 8B When the schematic structural diagram shown in FIG. 8B is used to illustrate the structure of the second SMF involved in the foregoing embodiment:
  • the communication unit 802B is configured to receive a request message from a second network element, the request message including at least one of location information and service information, the location information includes location information of the terminal, and the service information includes the terminal ,
  • the second network element is the first session management network element or NEF or source EES;
  • the processing unit 801B is configured to determine the information of the at least one first EDN according to the location information and a first correspondence, and the first correspondence includes Correspondence between location area information and EDN information; or,
  • the processing unit 801B is configured to determine the information of the at least one first EDN according to the service information and a second correspondence, and the second correspondence includes Correspondence between business information and EDN information; or,
  • the processing unit 801B is configured to determine the at least one first EDN according to the location information, the service information, and a third correspondence relationship
  • the third correspondence relationship includes the correspondence relationship between location area information, EDN information, and service information;
  • the communication unit 802B is further configured to send information of the at least one first EDN to the second network element.
  • the communication unit may also be referred to as a transceiver unit.
  • the antenna and control circuit with the transceiver function in the communication device 80B can be regarded as the communication unit 802B of the communication device 80B, and the processor with the processing function can be regarded as the processing unit 801B of the communication device 80B.
  • the device for implementing the receiving function in the communication unit 802B may be regarded as a receiving unit, which is used to perform the receiving steps in the embodiment of the present application, and the receiving unit may be a receiver, a receiver, a receiving circuit, and the like.
  • the device for implementing the sending function in the communication unit 802B can be regarded as a sending unit, the sending unit is used to perform the sending steps in the embodiment of the present application, and the sending unit can be a sender, a sender, a sending circuit, and the like.
  • each unit in the device can be all implemented in the form of software called by processing elements; they can also be all implemented in the form of hardware; part of the units can also be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • each unit can be a separate processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called by a certain processing element of the device and executed Features.
  • all or part of these units can be integrated together or implemented independently.
  • the processing element described here can also become a processor, which can be an integrated circuit with signal processing capabilities.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASICs), or, one or Multiple microprocessors (digital singnal processors, DSPs), or, one or more field programmable gate arrays (Field Programmable Gate Arrays, FPGAs), or a combination of at least two of these integrated circuits.
  • ASICs application specific integrated circuits
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above receiving unit is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit used by the chip to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device for sending signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • a schematic structural diagram of a communication device (for example, a terminal or a first network element or SMF or a second network element or a second SMF) provided by an embodiment of this application is used to implement the communication device in the above embodiment Operation.
  • the communication device includes: a processor 910 and an interface 930, and optionally, a memory 920.
  • the interface 930 is used to implement communication with other devices.
  • the method executed by the communication device in the above embodiment may be implemented by the processor 910 calling a program stored in a memory (which may be the memory 920 in the communication device or an external memory). That is, the device for the communication device may include the processor 910, which calls the program in the memory to execute the method executed by the communication device in the above method embodiment.
  • the processor here may be an integrated circuit with signal processing capability, such as a CPU.
  • the device for the communication device may be realized by one or more integrated circuits configured to implement the above method. For example: one or more ASICs, or, one or more microprocessors DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms. Or, the above implementations can be combined.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the various illustrative logic units and circuits described in the embodiments of this application can be implemented by general-purpose processors, digital signal processors, application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, Discrete gates or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor.
  • the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration. achieve.
  • the aforementioned functions described in this application can be implemented in hardware, software, firmware, or any combination of the three. If implemented in software, these functions can be stored on a computer-readable medium, or transmitted on the computer-readable medium in the form of one or more instructions or codes.
  • Computer-readable media include computer storage media and communication media that facilitate the transfer of computer programs from one place to another. The storage medium can be any available medium that can be accessed by a general-purpose or special computer.
  • Such computer-readable media may include, but are not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other device that can be used to carry or store instructions or data structures and Other program code media that can be read by general-purpose or special computers, or general-purpose or special processors.
  • any connection can be appropriately defined as a computer-readable medium, for example, if the software is from a website, server, or other remote source through a coaxial cable, fiber optic computer, twisted pair, or digital subscriber line (DSL) Or transmitted by wireless means such as infrared, wireless and microwave are also included in the definition of computer-readable media.
  • DSL digital subscriber line
  • the said disks and discs include compressed disks, laser disks, optical discs, digital versatile discs (English: Digital Versatile Disc, abbreviated as: DVD), floppy disks and Blu-ray discs.
  • Disks usually copy data with magnetism.
  • Discs usually use lasers to copy data optically.
  • the combination of the above can also be contained in a computer readable medium.
  • At least one refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one (piece, species) of a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or Multiple.
  • Multiple refers to two or more than two, and other quantifiers are similar.
  • the functions described in this application can be implemented by hardware, software, firmware, or any combination thereof. When implemented by software, these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.

Abstract

本申请提供了一种应用实例确定的方法、装置及系统,该方法包括:第一网元获取终端的位置信息,根据终端的位置信息,确定至少一个第一MEC应用实例,并发送至少一个第一MEC应用实例的地址信息给终端,从而降低MEC应用实例和终端之间的报文传输延迟,提高业务服务质量。

Description

应用实例确定的方法、装置及系统
本申请要求于2019年12月31日提交国家知识产权局、申请号为201911413716.3、申请名称为“应用实例确定的方法、装置及系统”,以及于2020年01月06日提交国家知识产权局、申请号为202010011314.7、申请名称为“应用实例确定的方法、装置及系统”,以及于2020年07月13日提交国家知识产权局、申请号为202010670950.0、申请名称为“应用实例确定的方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及应用实例确定的方法、装置及系统。
背景技术
多接入边缘计算(Multi-access Edge Computing,MEC)是在靠近移动用户的运营商网络的边缘为用户提供基于云计算的能力,用户可以采用该能力在网络边缘部署应用。将云计算能力部署到网络边缘后,使得电信服务具备高性能、低延迟与高带宽的优势,能够加速网络中各项内容、服务及应用的分发和下载,让消费者享有更高质量网络体验。
欧洲电信标准化组织(European Telecommunications Sdandards Institute,ETSI)在其规范ETSI GS MEC 003中定义了MEC的参考架构,如图1所示,该架构主要由两部分组成:MEC主机(MEC Host)和MEC管理系统。MEC主机包含MEC平台(MEC Platform)、虚拟化基础设施(Virtualisation infrastructure)和MEC应用(MEC app),虚拟化基础设施为MEC应用提供虚拟化的计算、存储和网络资源,MEC应用以虚拟机或者容器的形式部署在MEC主机上。MEC平台中主要包含了服务注册和发现功能,也包含了一些公共服务,如域名解析系统(domain name system,DNS)服务器或者DNS代理服务等。MEC管理系统包含多接入边缘编排器(Multi-access edge orchestrator)、MEC平台管理器(MEC platform manager)、虚拟化基础设施管理器(Virtualisation infrastructure manager,VIM)等。多接入边缘编排器维护MEC系统中所有的移动边缘主机、可用资源、可用MEC服务的总体视图,触发应用的实例化和终结。MEC平台管理器用于管理MEC平台、管理移动MEC应用的生命周期、管理应用的流规则和DNS规则。VIM管理MEC应用所需的虚拟化资源。用户应用生命周期管理代理(User app LCM proxy)允许设备应用(Device app)请求MEC系统实例化、终结MEC应用。
如何为终端提供最佳MEC应用实例,是有待解决的问题。
发明内容
本申请实施例提供了一种应用实例确定的方法、装置及系统,用于为终端确定最佳的MEC应用实例。
第一方面,提供了一种应用实例确定的方法,包括:第一网元获取终端的位置信息;所述第一网元根据所述终端的位置信息,确定至少一个第一MEC应用实例;所述第一网元发送所述至少一个第一MEC应用实例的地址信息给所述终端。
基于上述方案,当终端请求MEC应用实例时,第一网元通过所维护的位置信息和MEC应用实例的对应关系,根据获得的终端的位置信息,确定和终端距离最佳的MEC应用实 例,从而降低MEC应用实例和终端间的报文传输延迟,提高了业务服务质量。
在一种可能的实现方法中,所述第一网元接收所述终端发送的第一消息,所述第一消息包括所述终端的位置信息。
在一种可能的实现方法中,所述第一网元接收核心网控制面功能网元发送的第二消息,所述第二消息包括所述终端的位置信息。
在一种可能的实现方法中,所述第一网元存储有至少一个MEC应用实例的地址信息以及所述至少一个MEC应用实例的位置信息,所述第一网元根据所述终端的位置信息,确定至少一个第一MEC应用实例,包括:所述第一网元根据所述终端的位置信息和所述至少一个MEC应用实例的位置信息,从所述至少一个MEC应用实例中确定所述至少一个第一MEC应用实例。
第二方面,提供了一种应用实例确定的方法,包括:控制面功能网元向第一网元发送第一通知信息,所述第一通知信息用于通知所述第一网元终端的用户面路径有变化;所述第一网元获取所述终端的位置信息;所述第一网元根据所述终端的位置信息,确定至少一个第一MEC应用实例;所述第一网元发送所述至少一个第一MEC应用实例的地址信息给所述终端。
基于上述方案,当终端因UPF变化时,当前的MEC应用实例可能不再是最佳的,第一网元通过终端的位置信息(目的用户面位置),确定切换到新的UPF后的最佳的应用实例,从而降低MEC应用实例和终端间的报文传输延迟,提高了业务服务质量。
在一种可能的实现方法中,所述第一网元获取所述终端的位置信息,包括:所述第一网元接收所述第一通知信息,所述第一通知信息包括所述终端的位置信息,所述终端的位置信息为目标用户面功能UPF的位置信息。
在一种可能的实现方法中,所述方法还包括:所述第一网元接收所述终端发送的MEC应用实例变化订阅请求消息。
第三方面,提供了一种应用实例确定的方法,包括:第一网元从会话管理网元或源EES获取至少一个第一EDN的信息,所述至少一个第一EDN根据终端的位置信息确定;所述第一网元在所述至少一个第一EDN中确定至少一个第一MEC应用实例;所述第一网元发送所述至少一个第一MEC应用实例的地址信息给所述终端或所述源EES。第三方面提供的方法,当终端请求MEC应用实例时,第一网元向SMF请求至少一个第一EDN的信息,进而确定至少一个第一MEC应用实例,从而降低MEC应用实例和终端间的报文传输延迟,提高业务服务质量。
在一种可能的实现方法中,所述第一网元从会话管理网元或源EES获取至少一个第一EDN的信息,包括:所述第一网元向所述会话管理网元或所述源EES发送第三消息,所述第三消息用于请求至少一个EDN,所述至少一个EDN部署有所述终端请求的MEC应用实例;所述第一网元从所述会话管理网元或所述源EES接收所述至少一个第一EDN的信息。
在一种可能的实现方法中,所述第三消息中包括备选的EDN的信息,所述备选的EDN为所述第一网元根据所述终端的位置信息和所述第一网元中存储的EDN的信息确定的。
在一种可能的实现方法中,所述第三消息中包括所述终端的位置信息。
在一种可能的实现方法中,所述第一EDN的信息包括:所述第一EDN的数据网络应 用标识DNAI。
在一种可能的实现方法中,所述第一EDN的DNAI包括所述第一EDN中的EES的DNAI和/或所述第一EDN中的MEC应用实例的DNAI。
在一种可能的实现方法中,所述方法还包括:所述第一网元发送所述至少一个第一MEC应用实例关联的EES的地址信息给所述终端或所述源EES,所述至少一个第一MEC应用实例关联的EES部署在所述至少一个第一EDN中。
在一种可能的实现方法中,所述第一EDN的信息用于指示所述终端与所述第一EDN之间的通信路径的通信性能。
在一种可能的实现方法中,所述第一EDN的信息还包括以下信息中的至少一个:所述终端与所述第一EDN之间的用户面网元的数目,所述终端与所述第一EDN之间的移动网络内部通信时延、所述终端与所述第一EDN之间的端到端通信时延,所述终端与所述第一EDN之间的移动网络内部通信带宽,所述终端与所述第一EDN之间的通信路径的优先级信息。
在一种可能的实现方法中,所述方法还包括:所述第一网元发送所述至少一个第一MEC应用实例的优先级信息给所述终端或所述源EES。
第四方面,提供了一种EES确定的方法,包括:第一网元从会话管理网元或源EES获取至少一个第一EDN的信息,所述至少一个第一EDN根据终端的位置信息确定;所述第一网元在所述至少一个第一EDN中确定至少一个第一EES;所述第一网元发送所述至少一个第一EES的地址信息给所述终端或所述源EES。第四方面提供的方法,当终端请求EES时,第一网元向SMF请求至少一个第一EDN的信息,进而确定至少一个第一EES,从而降低EES管理的MEC应用实例和终端间的报文传输延迟,提高业务服务质量。
在一种可能的实现方法中,所述第一网元从会话管理网元或源EES获取至少一个第一EDN的信息,包括:所述第一网元向所述会话管理网元或所述源EES发送第三消息,所述第三消息用于请求至少一个EDN,所述至少一个EDN部署有所述终端请求的EES;所述第一网元从所述会话管理网元或所述源EES接收所述至少一个第一EDN的信息。
在一种可能的实现方法中,所述第三消息中包括备选的EDN的信息,所述备选的EDN为所述第一网元根据所述终端的位置信息和所述第一网元中存储的EDN的信息确定的。
在一种可能的实现方法中,所述第三消息中包括所述终端的位置信息。
在一种可能的实现方法中,所述第一EDN的信息包括:所述第一EDN的数据网络应用标识DNAI。
在一种可能的实现方法中,所述第一EDN的DNAI包括所述第一EDN中的EES的DNAI和/或所述第一EDN中的多接入边缘计算MEC应用实例的DNAI。
在一种可能的实现方法中,所述第一EDN的信息用于指示所述终端与所述第一EDN之间的通信路径的通信性能。
在一种可能的实现方法中,所述第一EDN的信息还包括以下信息中的至少一个:所述终端与所述第一EDN之间的用户面网元的数目,所述终端与所述第一EDN之间的移动网络内部通信时延、所述终端与所述第一EDN之间的端到端通信时延,所述终端与所述第一EDN之间的移动网络内部通信带宽,所述终端与所述第一EDN之间的通信路径的优先级信息。
在一种可能的实现方法中,所述方法还包括:所述第一网元发送所述至少一个第一EES的优先级信息给所述终端或所述源EES。
第五方面,提供了一种通信方法,包括:会话管理网元从第一网元接收第三消息,所述第三消息用于请求至少一个EDN;所述至少一个EDN部署有终端请求的MEC应用实例,或者,所述至少一个EDN部署有所述终端请求的EES;所述会话管理网元根据所述第三消息向所述第一网元发送至少一个第一EDN的信息;在所述至少一个EDN部署有所述终端请求的MEC应用实例的情况下,所述第一EDN为部署有所述终端请求的MEC应用实例的EDN;在所述至少一个EDN部署有所述终端请求的EES的情况下,所述第一EDN为部署有所述终端请求的EES的EDN。第五方面提供的通信方法,当终端请求MEC应用实例时,第一网元向SMF请求至少一个第一EDN的信息,进而确定至少一个第一MEC应用实例,从而降低MEC应用实例和终端间的报文传输延迟,提高业务服务质量。当终端请求EES时,第一网元向SMF请求至少一个第一EDN的信息,进而确定至少一个第一EES,从而降低EES管理的MEC应用实例和终端间的报文传输延迟,提高业务服务质量。
在一种可能的实现方法中,所述至少一个第一EDN根据所述终端的位置信息和所述会话管理网元获取的至少一个EDN的信息确定。
在一种可能的实现方法中,所述至少一个第一EDN根据所述终端的位置信息和备选的EDN的信息确定,所述备选的EDN的信息携带在所述第三消息中。
在一种可能的实现方法中,所述终端的位置信息携带在所述第三消息中。
在一种可能的实现方法中,所述第一EDN的信息包括:所述第一EDN的数据网络应用标识DNAI。
在一种可能的实现方法中,所述第一EDN的DNAI包括所述第一EDN中的EES的DNAI和/或所述第一EDN中的MEC应用实例的DNAI。
在一种可能的实现方法中,所述第一EDN的信息用于指示所述终端与所述第一EDN之间的通信路径的通信性能。
在一种可能的实现方法中,所述第一EDN的信息还包括以下信息中的至少一个:所述终端与所述第一EDN之间的用户面网元的数目,所述终端与所述第一EDN之间的移动网络内部通信时延、所述终端与所述第一EDN之间的端到端通信时延,所述终端与所述第一EDN之间的移动网络内部通信带宽,所述终端与所述第一EDN之间的通信路径的优先级信息。
第六方面,提供了一种信号发送方法,包括:终端发送第一消息,所述第一消息包括所述终端的位置信息;或者,终端发送MEC应用实例变化订阅请求。
第七方面,提供了一种EES确定的方法,包括:第一网元从第二网元获取至少一个第一EDN的信息,所述至少一个第一EDN根据终端的位置信息或所述终端的业务信息中的至少一个确定,所述第二网元为第一会话管理网元或NEF或源EES;所述第一网元根据所述至少一个第一EDN的信息确定至少一个第一EES;所述第一网元发送所述至少一个第一EES的地址信息给所述终端或所述源EES。
在一种可能的实现方法中,所述第一网元从第二网元获取至少一个第一EDN的信息,包括:所述第一网元向所述第二网元发送第三消息,所述第三消息中包括用于确定所述终 端的位置的信息或所述终端的业务信息中的至少一个;所述第一网元从所述第二网元接收所述至少一个第一EDN的信息,所述第一EDN与所述终端的位置信息或所述终端的业务信息中的至少一个匹配。
在一种可能的实现方法中,所述第一EDN的信息包括:所述第一EDN的至少一个DNAI。
在一种可能的实现方法中,所述第一EDN的DNAI包括所述第一EDN中的EES的DNAI和/或所述第一EDN中的MEC应用实例的DNAI。
在一种可能的实现方法中,所述第一EDN的信息还包括以下信息中的至少一个:所述终端与所述第一EDN之间的用户面网元的数目,所述终端与所述第一EDN之间的移动网络内部通信时延、所述终端与所述第一EDN之间的端到端通信时延,所述终端与所述第一EDN之间的移动网络内部通信带宽,所述终端与所述第一EDN之间的通信路径的优先级信息。
在一种可能的实现方法中,所述方法还包括:所述第一网元发送所述至少一个第一EES的优先级信息给所述终端或所述源EES。
第八方面,提供了一种通信方法,包括:第二网元从第一网元接收第三消息,所述第三消息中包括用于确定所述终端的位置的信息或所述终端的业务信息中的至少一个,所述第二网元为第一会话管理网元或NEF或源EES;所述第二网元根据所述第三消息向所述第一网元发送至少一个第一EDN的信息,所述第一EDN与所述终端的位置信息或所述终端的业务信息中的至少一个匹配。
在一种可能的实现方法中,所述第二网元根据所述第三消息向所述第一网元发送至少一个第一EDN的信息,包括:所述第二网元根据所述终端的位置信息确定第二会话管理网元;所述第二网元向所述第二会话管理网元发送请求消息,所述请求消息包括位置信息或业务信息中的至少一个,所述位置信息包含所述终端的位置信息,所述业务信息包含所述终端的业务信息;所述第二网元从所述第二会话管理网元接收所述至少一个第一EDN的信息;所述第二网元向所述第一网元发送所述至少一个第一EDN的信息。
在一种可能的实现方法中,所述第二网元为所述NEF,所述第二网元根据所述第三消息向所述第一网元发送至少一个第一EDN的信息,包括:所述第二网元根据所述终端的位置信息和第一对应关系确定所述至少一个第一EDN的信息,所述第一对应关系包括位置区域信息和EDN的信息之间的对应关系;或者,所述第二网元根据所述终端的业务信息和第二对应关系确定所述至少一个第一EDN的信息,所述第二对应关系包括业务信息和EDN的信息之间的对应关系;或者,所述第二网元根据所述终端的位置信息和业务信息以及第三对应关系确定所述至少一个第一EDN的信息,所述第三对应关系包括位置区域信息、EDN的信息和业务信息之间的对应关系;所述第二网元向所述第一网元发送所述至少一个第一EDN的信息。
在一种可能的实现方法中,所述第一EDN的信息包括:所述第一EDN的至少一个DNAI。
在一种可能的实现方法中,所述第一EDN的DNAI包括所述第一EDN中的EES的DNAI和/或所述第一EDN中的多接入边缘计算MEC应用实例的DNAI。
在一种可能的实现方法中,所述第一EDN的信息还包括以下信息中的至少一个:所述终端与所述第一EDN之间的用户面网元的数目,所述终端与所述第一EDN之间的移动网络 内部通信时延、所述终端与所述第一EDN之间的端到端通信时延,所述终端与所述第一EDN之间的移动网络内部通信带宽,所述终端与所述第一EDN之间的通信路径的优先级信息。
第九方面,提供了一种通信方法,包括:第二会话管理网元从第二网元接收请求消息,所述请求消息包括位置信息和业务信息中的至少一个,所述位置信息包含终端的位置信息,所述业务信息包含所述终端的业务信息,所述第二网元为第一会话管理网元或NEF或源EES;在所述请求消息包括所述位置信息的情况下,所述第二会话管理网元根据所述位置信息和第一对应关系确定所述至少一个第一EDN的信息,所述第一对应关系包括位置区域信息和EDN的信息之间的对应关系;或者,在所述请求消息包括所述业务信息的情况下,所述第二会话管理网元根据所述业务信息和第二对应关系确定所述至少一个第一EDN的信息,所述第二对应关系包括业务信息和EDN的信息之间的对应关系;或者,在所述请求消息包括所述位置信息和所述业务信息的情况下,所述第二会话管理网元根据所述位置信息和所述业务信息以及第三对应关系确定所述至少一个第一EDN的信息,所述第三对应关系包括位置区域信息、EDN的信息和业务信息之间的对应关系;所述第二会话管理网元向所述第二网元发送所述至少一个第一EDN的信息。
第十方面,提供了一种通信装置,包括:用于执行上述第一方面至第九方面中的任意一个方面提供的任意一种方法的功能单元,所述功能单元所执行的动作通过硬件实现或通过硬件执行相应的软件实现。
第十一方面,提供了一种通信装置,包括处理器和存储器;该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述第一方面至第九方面中的任意一个方面提供的任意一种方法。
第十二方面,提供了一种终端装置,用于发送第一消息,所述第一消息包括所述位置信息;或者用于发送MEC应用实例变化订阅请求。
第十三方面,提供了一种通信装置,包括用于执行第一方面至第九方面中的任意一个方面提供的任意一种方法中各个步骤的单元或手段(means)。
第十四方面,提供了一种通信装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行第一方面至第九方面中的任意一个方面提供的任意一种方法。该处理器包括一个或多个。
第十五方面,提供了一种通信装置,包括处理器,用于与存储器相连,用于调用所述存储器中存储的程序,以执行上述第一方面至第九方面中的任意一个方面提供的任意一种方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
第十六方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得处理器执行上述第一方面至第九方面中的任意一个方面提供的任意一种方法。
第十七方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第九方面中的任意一个方面提供的任意一种方法。
第十八方面,提供了一种芯片系统,包括:处理器,用于执行上述第一方面至第九方面中的任意一个方面提供的任意一种方法。
第十九方面,提供了一种通信系统,包括:控制面功能网元和第一网元;所述控制面功能网元,用于向所述第一网元发送第一通知信息,所述第一通知信息用于通知所述第一网元终端的用户面路径有变化;所述第一网元,用于获取所述终端的位置信息,根据所述终端的位置信息,确定至少一个第一MEC应用实例;所述第一网元,还用于发送所述至少一个第一MEC应用实例的地址信息给所述终端。
第二十方面,提供了一种通信系统,包括:第一方面至第九方面中涉及到的任意一个或多个网元。
附图说明
图1为一种MEC系统的架构示意图;
图2为基于服务化架构的5G网络架构示意图;
图3为一种MEC系统的架构示意图;
图3A为另一种MEC系统的架构示意图;
图3B为另一种MEC系统的架构示意图;
图3C为另一种MEC系统的架构示意图;
图4为终端位置和MEC应用实例位置关系示意图;
图5为本申请实施例提供的一种应用实例确定的方法的流程示意图;
图6为本申请实施例提供的另一种应用实例确定的方法的流程示意图;
图6A为本申请实施例提供的另一种应用实例确定的方法的流程示意图;
图6B为本申请实施例提供的一种EES确定的方法的流程示意图;
图6C为本申请实施例提供的一种EES与EDN CS的位置示意图;
图6D为本申请实施例提供的一种EES确定的方法的流程示意图;
图6E为本申请实施例提供的一种获取EDN的信息的方法的流程示意图;
图6F为本申请实施例提供的又一种获取EDN的信息的方法的流程示意图;
图6G为本申请实施例提供的一种DNAI与EDN的对应关系示意图;
图6H为本申请实施例提供的一种确定为终端提供服务的EES的方法的流程图;
图6I为本申请实施例提供的一种确定为终端提供服务的MEC应用实例的方法的流程图;
图7为本申请实施例提供的一种通信装置示意图;
图8为本申请实施例提供的又一种通信装置示意图;
图8A为本申请实施例提供的又一种通信装置示意图;
图8B为本申请实施例提供的又一种通信装置示意图;
图9为本申请实施例提供的又一种通信装置示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
如图2所示,为基于服务化架构的第五代(5th generation,5G)网络架构示意图。图2所示的5G网络架构中可包括三部分,分别是终端部分(即图2中的UE)、数据网络(data  network,DN)和运营商网络部分。下面对其中的部分网元的功能进行简单介绍说明。
其中,运营商网络可包括以下网元中的一个或多个:鉴权服务器功能(authentication server function,AUSF)网元、网络开放功能(network exposure function,NEF)网元、策略控制功能(policy control function,PCF)网元、统一数据管理(unified data management,UDM)网元、统一数据库(unified data repository,UDR)、网络存储功能(network repository function,NRF)网元、应用功能(application function,AF)网元、接入与移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、无线接入网(radio access network,RAN)以及用户面功能(user plane function,UPF)网元等。上述运营商网络中,除无线接入网部分之外的部分可以称为核心网络部分。
终端是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端还可以称为用户设备(user equipment,UE)、终端设备(terminal device)、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
上述终端可通过运营商网络提供的接口(例如N1等)与运营商网络建立连接,使用运营商网络提供的数据和/或语音等服务。终端还可通过运营商网络访问DN,使用DN上部署的运营商业务,和/或第三方提供的业务。其中,上述第三方可为运营商网络和终端之外的服务方,可为终端提供其他数据和/或语音等服务。其中,上述第三方的具体表现形式,具体可根据实际应用场景确定,在此不做限制。
RAN是运营商网络的子网络,是运营商网络中业务节点与终端之间的实施系统。终端要接入运营商网络,首先是经过RAN,进而可通过RAN与运营商网络的业务节点连接。RAN设备,是一种为终端提供无线通信功能的设备,RAN设备也称为接入网设备。RAN设备包括但不限于:5G中的下一代基站(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。
AMF网元,负责用户的移动性管理,包括移动状态管理,分配用户临时身份标识,认证和授权用户等。
SMF网元,具有会话管理、PCF下发控制策略的执行、UPF的选择、终端互联网协议(internet protocol,IP)地址分配、承载的建立、修改和释放,服务质量(Quality of Service,QoS)控制等功能。
UPF网元,支持将协议数据单元(protocol data unit,PDU)会话与数据网络互连、分组路由和转发、数据包检测等功能。
UDM网元,主要负责管理签约数据、用户接入授权等功能。
UDR,存储和检索签约数据、策略数据和公共架构数据等。供UDM、PCF和NEF获取相关数据。UDR要能够针对不同类型的数据如签约数据、策略数据有不同的数据接入鉴权机制,以保证数据接入的安全性。UDR对于非法的服务化操作或者数据接入请求要能够返回携带合适原因值的失败响应。
NEF网元,主要支持网络能力开放功能,对外开放网络能力和服务。第三代合作伙伴计划(3rd generation partnership project,3GPP)网络功能(network function,NF)通过NEF向其他NF发布功能和事件。NF开放的能力和事件可以安全地开放给第三方应用。NEF使用统一数据存储库(UDR)的标准化接口(Nudr)将结构化数据进行存储/检索。将AF的交换信息与内部网络功能的交换信息进行翻译。
AF网元,用于向终端提供某种应用层服务,AF在向终端提供服务时,对QoS策略和计费策略有要求,且需要通知网络。同时,AF也需要核心网反馈的应用相关的信息。
PCF网元,主要负责针对会话、业务流级别进行计费、QoS带宽保障及移动性管理、终端策略决策等策略控制功能。该架构中,AMF与SMF所连接的PCF分别对应AM PCF(PCF for Access and Mobility Control)和SM PCF(PCF for Session Management),在实际部署场景中可能不是同一个PCF实体。
NRF网元,可用于提供网元发现功能,基于其他网元的请求,提供网元类型对应的网元信息。NRF还提供网元管理服务,如网元注册、更新、去注册以及网元状态订阅和推送等。
AUSF网元:主要负责对用户进行鉴权,以确定是否允许用户或设备接入网络。
DN,是位于运营商网络之外的网络,运营商网络可以接入多个DN,DN上可部署多种业务,可为终端提供数据和/或语音等服务。例如,DN是某智能工厂的私有网络,智能工厂安装在车间的传感器可为终端,DN中部署了传感器的控制服务器,控制服务器可为传感器提供服务。传感器可与控制服务器通信,获取控制服务器的指令,根据指令将采集的传感器数据传送给控制服务器等。又例如,DN是某公司的内部办公网络,该公司员工的手机或者电脑可为终端,员工的手机或者电脑可以访问公司内部办公网络上的信息、数据资源等。
图2中Nausf、Nnef、Npcf、Nudm、Naf、Namf、Nsmf、N1、N2、N3、N4,以及N6为接口序列号。这些接口序列号的含义可参见3GPP标准协议中定义的含义,在此不做限制。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。可选的,上述网元或者功能可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。
本申请实施例中的移动性管理网元、会话管理网元、策略控制网元、应用功能网元、接入网设备、网络开放功能网元、用户面网元分别可以是图2中的AMF、SMF、PCF、AF、RAN、NEF、UPF,也可以是未来通信如第六代(6th generation,6G)网络中具有上述AMF、 SMF、PCF、AF、RAN、NEF、UPF的功能的网元,本申请实施例对此不限定。为方便说明,本申请实施例以移动性管理网元、会话管理网元、策略控制网元、应用功能网元、接入网设备、网络开放功能网元、用户面网元分别为上述AMF、SMF、PCF、AF、RAN、NEF、UPF为例进行说明。
如图3所示,为本申请实施例提供的一种MEC系统的架构示意图。其中,MEC服务器部署于无线接入网和核心网之间。MEC服务器即为部署了MEC平台及接受MEC平台管理的服务器。并且,MEC服务器可以连接云数据中心以及其他网络,例如企业网。从而,MEC服务器利用无线接入网为终端就近提供服务和云端计算功能。在本申请实施例中,所述MEC服务器可由运营商、企业、虚拟运营商或者服务提供商建立。该MEC服务器也可集成图2中的UPF。
本申请实施例提供的方法可以应用于以下2种MEC架构中。
第一种:ETSI在其规范ETSI GS MEC 003中定义的MEC的参考架构,具体可参见图1,关于图1的具体描述可参见背景技术部分,不再赘述。
第二种:3GPP SA6工作组定义的如图3A或图3B所示的MEC的参考架构。其中,图3B与图3A的区别仅在于,图3B中将边缘使能客户端(edge enabler client,EEC)和边缘数据网络配置客户端(edge data network configuration client,EDN CC)的功能集成在一起,形成了一个具备EDN CC和EEC功能的使能客户端(图3B中记为使能客户端)。以下对图3A和图3B中的各个功能模块以及各个功能模块之间的接口作简单介绍。
边缘数据网络(edge data network,EDN):EDN用于向终端提供边缘计算服务,可以包含计算、存储、网络、通信、路由等功能。一般可以包含边缘计算管理平台(例如,下文中的边缘使能服务器(edge enabler server,EES))和边缘应用实例(例如,边缘应用服务器(edge application server,EAS))。在一种理解中,EDN可以是本地数据网络(local data network,即local DN),表示离用户附着点(即终端接入的接入网设备(例如,基站))物理距离最近的数据网络的接入点。一个数据网络可以有多个本地数据网络,本地数据网络可以使用数据网络名称(data network name,DNN)和/或数据网络应用标识(data network application identify,DNAI)来标识,DNAI可以标识本地数据网络的位置。在另一种理解中,EDN是中心云的对等概念,即EDN可以理解为一个本地的数据中心,可以支持多个本地数据网络,数据中心也可以使用DNAI来标识。
EAS:EAS用于向应用客户端提供具备边缘计算特征的应用服务,具体是指一个服务器应用程序(例如,社交媒体软件、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR))部署运行在EDN的实例(instance)。一个MEC应用可在一个或多个EDN中部署一个或多个EAS,部署运行在不同的EDN中的EAS可以认为是不同的EAS,它们可以共享一个域名,可以使用相同的IP地址,也可以使用不同的IP地址。EAS也可以称为边缘应用、应用实例、边缘应用实例、MEC应用、MEC应用实例、EAS功能等。
应用客户端:应用客户端用于应用用户(user)从应用服务器获取应用业务。应用客户端是MEC应用在终端侧的客户端程序,应用客户端可以连接到云上的应用服务器获取应用业务,也可以连接到部署运行在一个或多个EDN中的EAS以获取应用业务。
EES:EES用于为EAS和EEC提供一些边缘计算使能服务,以便更好的支持MEC应用在边缘的部署,EES可以支持EAS的注册,对终端的认证和鉴权,为终端提供应用服务器 的IP地址信息的DNS功能等。EES部署在EDN中。一般情况下,EAS注册到一个EES上,或者,通过管理系统将EAS的信息配置在一个EES上,该EES称为该EAS关联的EES,EES控制(或管理)注册(或配置)在该EES上的EAS。
EEC:EEC为EES在终端侧的对等实体,EEC用于向EES注册EEC的信息及应用客户端的信息、执行安全认证和鉴权、从EES获取EAS的IP地址、向应用客户端提供边缘计算使能能力,如EAS发现服务中将EAS的IP地址返回给应用客户端。EEC还可以调用EDN CC的提供的服务接口。
边缘数据网络配置服务器(edge data network configuration server,EDN CS):EDN CS用于向终端配置EDN的信息,例如,向终端提供EDN中的EES的信息,进一步的,EDN CS可以具备DNS的功能,拥有EAS域名、EAS的IP地址、EAS注册的EES的信息,还可以直接向终端提供EAS的信息,以及和MEC应用的DNS服务器交互获取应用服务器的信息。EDN CS可以接受EDN CC的EES查询或者EAS查询并提供对应的查询结果,EDN CS可以接受EES的注册从而获取EAS域名、EAS的IP地址、EAS注册的EES的信息,这些信息也可以通过配置获取。
EDN CC:EDN CC是EDN CS在终端侧的对等实体。EDN CC可以从EDN CS获取EES的信息。进一步还可以从EDN CS获取EAS的信息。EDN CC还可以用于向EEC或应用客户端提供边缘计算使能服务接口。
其中,应用用户与MEC应用的提供商签订服务协议,从而为应用用户提供服务,而应用用户通过登录终端上的应用客户端,通过应用客户端与EAS的连接进行通信。使能客户端(例如,EEC、EDN CC)为中间件层,一般位于操作系统中,或者位于应用客户端与操作系统的中间件(middleware)。应用客户端可以以应用编程接口(application program interface,API)的方式从使能客户端获取边缘使能服务。
边缘-1(EDGE-1)接口:EEC和EES之间的接口,可以实现EEC的注册、安全认证、EAS的发现,应用上下文的迁移支持。
边缘-2(EDGE-2)接口:EES和3GPP网络的接口,用于与3GPP核心网网元的交互,可以对接如网络开放功能(network exposure function,NEF),策略控制功能(policy control function,PCF)等网元。
边缘-3(EDGE-3)接口:EAS和EES之间的接口,主要用于EAS调用EES提供的服务,如事件订阅和通知等,EAS注册到EES等。
边缘-4(EDGE-4)接口:EDN CS和EDN CC之间的接口,主要用于EDN CS向EDN CC提供EES的信息,以及EAS的发现,安全授权等。
边缘-5(EDGE-5)接口:应用客户端和EEC之间的接口,用于应用客户端调用EEC提供的服务,如EAS发现,事件订阅和通知,上下文迁移等。
边缘-6(EDGE-6)接口:EES与EDN CS之间的接口,主要用于EES向EDN CS注册EES的信息,其中还包括EES上注册的EAS的信息。
边缘-7(EDGE-7)接口:EAS和3GPP网络之间的接口,用于与3GPP核心网网元的交互,可以对接如NEF,PCF等网元。
边缘-X(EDGE-X)接口:EEC和EDN CC之间的接口,可以用于EDN CC向EEC提供EES的信息(例如,标识、地址信息)。
需要说明的是,图3A和图3B中的各个功能模块以及各个功能模块之间的接口也可以有其他名称,本申请不作限制。
参见图3C,在实际应用场景中,终端可以通过移动通信网络连接与一个或多个EDN通信。一个EDN中部署一个或多个EES,其中一个EES可以管理一个或多个EAS,例如在图3C中,EDN1中部署的EES1可以管理EAS11、EAS12和EAS13,EDN2中部署的EES2可以管理EAS21和EAS22,EDN3中部署的EES3可以管理EAS31、EAS32和EAS33。EES中可以存储有其管理的每个EAS的信息,包括EAS的标识如全限定域名(fully qualified domain name,FQDN),EAS的地址信息,例如URL或IP地址。
多个EDN中部署的EES可以连接同一个EDN CS,EDN CS中可以存储有与其连接的每个EES的地址信息以及每个EES管理的EAS的信息,如管理的EAS的标识,进一步还包括管理的EAS的地址信息。例如在图3C中,EDN CS中可以存储有EES1、EES2和EES3的地址信息,还存储有EES1、EES2和EES3管理的EAS的标识以及地址信息。
不同的EDN中可以部署相同MEC应用的EAS,例如在图3C中,MEC应用1的EAS可以为EAS11、EAS21和EAS31,MEC应用2的EAS可以为EAS12、EAS22和EAS32,MEC应用3的EAS可以为EAS13和EAS33。判断多个EAS是否为同一个MEC应用的不同EAS时,可以通过EAS确定。
在一种理解中,可以认为注册在EES上的EAS是EES的能力,例如,MEC应用1的EAS注册在EES上就可以认为EES的能力包含支持MEC应用1。由于一般情况下,EAS会注册到与该EAS位于同一个EDN中的EES,因此,可以理解的是,离终端最优(物理最近、网络连接路径最近、或网络连接路径最优)的EDN可以提供距离终端最近的EES和EAS。
本申请实施例中,为了方便描述,将图1所示的架构中的MEC应用实例和图3A至图3C中的EAS统称为MEC应用实例,MEC应用实例(application instance)是同一个MEC应用的拷贝。MEC应用实例部署在边缘节点(例如,EDN)。同一个边缘节点也可以部署多个MEC应用实例以实现负载均衡。终端上所安装的MEC应用,在某个时刻由某个边缘节点的对应该MEC应用的某个MEC应用实例为其提供服务。通常来说,MEC应用实例所部属的边缘节点的位置离终端的位置越近,MEC应用实例和终端间的报文传输延迟就越小,服务质量就越高。如图4所示,当终端在位置1时,位于边缘节点1的MEC应用实例1可以认为是最优的MEC应用实例。当终端移动到位置2时,位于边缘节点2的MEC应用实例2可以认为是最优的MEC应用实例。目前没有为终端的MEC应用提供最佳MEC应用实例的方法。
基于图2所示的网络架构,和图1、图3、图3A、图3B以及图3C所示的MEC架构,图5为本申请实施例提供的一种通信方法(也可以称为一种MEC应用实例确定的方法)的示意图。图5所示的实施例以MEC应用实例的发现过程为例,包括:
S501、终端向第一网元发送第一消息,该第一消息可以为MEC应用实例发现请求消息。相应的,第一网元从终端接收第一消息。
在图1所示的MEC架构中,第一网元可以为MEC系统管理面功能网元,执行步骤S501的具体可以为终端应用。
在图3A、图3B和图3C所示的MEC架构中,第一网元可以为EES或EDN CS。在 第一网元为EES的情况下,执行步骤S501的具体可以为终端中的EEC,在第一网元为EDN CS的情况下,执行步骤S501的具体可以为终端中的EDN CC或EEC。
其中,该MEC应用实例发现请求消息从终端,通过接入网设备(例如,gNB)、用户面网关(例如,UPF)等到达第一网元。
MEC应用实例发现请求消息中包括以下信息中的一种或多种:
(1)、终端标识
终端标识可以为永久签约标识(subscription permanent identifier,SUPI)、通用公共标识(generic public subscription identifier,GPSI)、媒体接入控制(media access control,MAC)地址、IP地址、移动台国际用户识别码(mobile subscriber international ISDN number,MSISDN),或者其他标识。终端标识可以用于确定终端的位置。
(2)MEC应用名称
(3)MEC应用提供商名称
(4)MEC应用版本
(5)MEC应用的标识
MEC应用的标识信元(information element)可以包括一个或多个MEC应用的标识。一个MEC应用的标识可以为MEC应用的FQDN、MEC应用的URL等。其中,MEC应用的标识用于表示请求获取对应的EAS的地址信息。例如,若MEC应用的标识为MEC应用1的标识,则表示获取MEC应用1的EAS的地址信息。如果第一消息中没有MEC应用的标识,则可以表示获取全部MEC应用的EAS的地址信息。
(6)应用客户端的信息
应用客户端的信息可以为用于EAS识别终端的信息。应用客户端的信息可以为GPSI、IP地址、或由其他字符组合形成的标识。应用客户端的信息可以用于表示请求支持这些应用客户端对应的EAS。
(7)EEC的标识
EEC的标识用于标识EEC。EEC的标识可以为GPSI、IP地址、或者其他用于识别EEC的字符组合。EEC的标识可以用于对终端进行认证授权及获取终端的位置信息(例如,通过EEC的标识确定终端的SUPI、GPSI等,进而确定终端的位置)。
(8)终端的位置信息
终端的位置信息可以为终端所在位置的坐标、终端所处的小区的信息(例如,小区的标识)、终端所处的追踪区的追踪区信息(例如,追踪区标识)、终端的数据网络接入点标识等任何可以表示终端位置的信息。终端的位置信息可以用于确定终端的位置。
S502、第一网元确定至少一个第一MEC应用实例。
步骤S502在具体实现时,第一网元需要先获取终端的位置信息,然后根据终端的位置信息,确定至少一个第一MEC应用实例。
可选的,如果第一网元收到的MEC应用实例发现请求消息包含终端的位置信息,则认为第一网元通过接收MEC应用实例发现请求消息来获取终端的位置信息。若MEC应用实例发现请求消息不包含终端的位置信息,则另一可选的方法为,第一网元从电信运营商网络功能,如5G核心网控制面功能网元(例如,NEF),根据终端标识获取终端的位置信息。NEF提供了API,开放电信网络的能力。第一网元向NEF发送包括终端标识的位置查 询请求,NEF收到位置查询请求后,调用核心网的网络功能如AMF得到位置信息,AMF将所查询的终端的位置信息发送给调用方即NEF,NEF发送第二消息给第一网元,该第二消息包括终端的位置信息。
S503、第一网元发送所述至少一个第一MEC应用实例的地址信息给所述终端。相应的,终端从第一网元接收至少一个第一MEC应用实例的地址信息。
示例性的,若终端请求MEC应用1的MEC应用实例,第一MEC应用实例可以为MEC应用1的MEC应用实例。
其中,至少一个第一MEC应用实例的地址信息可以携带在MEC应用实例发现应答消息中。
其中,一个MEC应用实例的地址信息可以是该MEC应用实例的IP地址、URL、标识、端口号或其他可以唯一连接到该MEC应用实例的地址连接信息等。
若至少一个第一MEC应用实例为一个第一MEC应用实例,则该第一MEC应用实例可以为第一网元确定的最优的MEC应用实例。该情况下,终端可以将该第一MEC应用实例作为提供服务的MEC应用实例。
若至少一个第一MEC应用实例为多个第一MEC应用实例,则多个第一MEC应用实例可以为第一网元确定的最优的多个MEC应用实例。该情况下,终端可以从中选择最佳的MEC应用实例作为提供服务的MEC应用实例。终端判断哪个MEC应用实例为最佳的MEC应用实例的方法本申请不作限制。
可选的,在至少一个第一MEC应用实例为多个第一MEC应用实例的情况下,该方法还包括:所述第一网元发送所述至少一个第一MEC应用实例的优先级信息给所述终端。该情况下,终端可以从中选择优先级最高的MEC应用实例作为提供服务的MEC应用实例。当然,终端也可以选择其他MEC应用实例作为提供服务的MEC应用实例。
本申请实施例中,当终端请求MEC应用实例时,第一网元根据获得的终端的位置信息,确定为终端提供服务的MEC应用实例,从而降低MEC应用实例和终端间的报文传输延迟,提高业务服务质量。
具体的,第一网元负责MEC应用的生命周期管理,包括MEC应用实例部署位置的选择。第一网元保存每个MEC应用实例的信息,包括MEC应用实例标识、MEC应用实例的地址、MEC应用实例的部署位置,以及这些信息之间的对应关系。第一网元根据终端的位置信息,和MEC应用实例的位置信息,从MEC应用实例中确定至少一个第一MEC应用实例,即第一网元根据终端的位置信息确定距离该位置信息所标识的位置最近的一个或多个MEC应用实例作为第一MEC应用实例。第一网元要确定的第一MEC应用实例的个数可以为预定义的或预设的或协议规定的,本申请不作限制。
示例性的,若终端请求MEC应用1的MEC应用实例,终端可以访问的MEC应用1的MEC应用实例共有5个,记为MEC应用实例1、MEC应用实例2、MEC应用实例3、MEC应用实例4和MEC应用实例5,它们与终端之间的距离从近至远分别为:MEC应用实例3、MEC应用实例2、MEC应用实例1、MEC应用实例4和MEC应用实例5。若至少一个第一MEC应用实例为一个第一MEC应用实例时,第一网元可以确定MEC应用实例3为至少一个第一MEC应用实例,若至少一个第一MEC应用实例为3个第一MEC应用实例时,第一网元可以确定MEC应用实例3、MEC应用实例2和MEC应用实例1为 至少一个第一MEC应用实例。
基于图2所示的网络架构,和图1、图3、图3A、图3B以及图3C所示的MEC架构,图6为本申请实施例提供的另一种通信方法(也可以称为另一种MEC应用实例确定的方法)的示意图。图6所示的实施例以MEC应用实例的变化流程为例,也可在图5所示的MEC应用实例确定后,当MEC应用实例需要变更时执行本实施例的方法。图6所示的包括:
S601、第一网元向核心网控制面功能网元,如NEF、PCF、或者SMF,订阅用户面路径变化通知事件(user plane path management event)。第一网元可通过发送用户面路径变化订阅请求消息来订阅用户面路径变化通知事件。第一网元在发送完成后,接收核心网控制面功能网元发送的应答信息。
在图1所示的MEC架构中,第一网元可以为MEC系统管理面功能网元。在图3A、图3B和图3C所示的MEC架构中,第一网元可以为EES或EDN CS。
其中,终端通过UPF接入应用网络(例如,EDN),不同的UPF接入不同位置的应用网络。当终端在不同位置移动时核心网会进行用户面路径的切换,会选择最优的UPF,从而降低终端和应用网络间的访问时延、提升用户体验,切换到新的UPF的过程,会发生用户面路径变化。
S602、终端向第一网元发送MEC应用实例变化订阅请求消息。MEC应用实例变化订阅请求消息中包括终端标识、MEC应用名称、MEC应用提供商名称、MEC应用版本等信息中的至少一种。发送完成后,终端接收第一网元发送的应答信息。
在第一网元为MEC系统管理面功能网元的情况下,执行步骤S602的具体可以为终端应用。在第一网元为EES的情况下,执行步骤S602的具体可以为终端中的EEC,在第一网元为EDN CS的情况下,执行步骤S602的具体可以为终端中的EDN CC。
S603、核心网控制面功能网元向第一网元发送第一通知信息,用于通知第一网元终端的用户面路径有变化;第一通知信息可以是用户面路径变化通知信息。具体的,终端因移动触发核心网控制面功能网元为移动到新位置的终端选择最优的UPF,当切换到新的UPF,会进行用户面切换。核心网控制面功能网元向第一网元发送用户面路径变化通知信息。该用户面路径变化通知信息中包含终端标识(如终端的IP地址或者通用公共用户识别码)、源用户面位置信息、目的用户面位置信息。其中,用户面位置信息可以是DNAI,DNAI和小区具有对应关系。
S604、第一网元根据终端标识和源用户面位置信息确定源MEC应用实例信息,根据终端标识和目的用户面位置确定目的MEC应用实例,根据目的用户面位置确定新的MEC应用实例也可参考图5所示实施例的步骤S502。其中第一网元可通过接收用户面路径变化通知信息获取到目的UPF的位置信息。如果有多个目的MEC应用实例,则从中选择一个MEC应用实例,选择的策略可以是随机选择或者选择负载最轻的实例。确定新的MEC应用实例后,第一网元指示源MEC应用实例和目的MEC应用实例完成终端上下文的迁移。所确定的MEC应用实例为第一MEC应用实例。
第一网元向核心网控制面功能网元发送用户面路径变化通知的应答信息,使得核心网控制面网络功能控制用户面完成路径的切换。
在本实施例中,目的UPF位置信息也可以认为是当前终端的位置,是终端的位置信息 的一种形式。
S605、第一网元向终端发送MEC应用实例变化通知信息。MEC应用实例变化通知信息中包含目的MEC应用实例信息,如MEC应用名称,MEC应用提供商名称、MEC应用版本、MEC应用实例标识、MEC应用实例地址中的至少一种。终端在收到MEC应用实例变化通知信息后可以向第一网元发送应答信息。
终端后续切换到使用新的MEC应用实例,即目的MEC应用实例。
本实施例中,当终端因UPF变化时,当前的MEC应用实例可能不再是最佳的,第一网元通过终端的位置信息(目的用户面位置),确定切换到新的UPF后的最佳的MEC应用实例,使得降低MEC应用实例和终端间的报文传输延迟,提高了业务服务质量。
基于图2所示的网络架构,和图3、图3A、图3B以及图3C所示的MEC架构,图6A为本申请实施例提供的一种通信方法(也可以称为一种应用实例确定的方法)的示意图。图6A所示的实施例以MEC应用实例的发现过程为例,包括:
S601A、终端向第一网元发送第一消息。相应的,第一网元从终端接收第一消息。
其中,第一消息用于请求MEC应用实例的地址信息,MEC应用实例的地址信息用于终端连接到该MEC应用实例。第一消息可以为MEC应用实例发现请求消息。
在图3A、图3B和图3C所示的MEC架构中,第一网元可以为EES或EDN CS。在第一网元为EES的情况下,执行步骤S601A的具体可以为终端中的EEC,在第一网元为EDN CS的情况下,执行步骤S601A的具体可以为终端中的EDN CC或EEC。
其中,该MEC应用实例发现请求消息从终端,通过接入网设备(例如,gNB)、用户面网关(例如,UPF)等到达第一网元。
图6A所示的实施例中的MEC应用实例发现请求消息中包括的信息与上述图5所示的实施例中的MEC应用实例发现请求消息中包含的信息类似,不再赘述。
S602A、第一网元从SMF获取至少一个第一EDN的信息,至少一个第一EDN根据终端的位置信息确定。
S603A、第一网元在至少一个第一EDN中确定至少一个第一MEC应用实例。
S604A、第一网元发送至少一个第一MEC应用实例的地址信息给终端。
示例性的,若终端请求MEC应用1的MEC应用实例,第一MEC应用实例可以为MEC应用1的MEC应用实例。
其中,至少一个第一MEC应用实例的地址信息可以携带在MEC应用实例发现应答消息中。
其中,一个MEC应用实例的地址信息可以是该MEC应用实例的IP地址、URL或其他可以唯一连接到该MEC应用实例的地址连接信息等。
可选的,在至少一个第一MEC应用实例为多个第一MEC应用实例的情况下,该方法还包括:第一网元发送至少一个第一MEC应用实例的优先级信息给终端。该情况下,终端可以从中选择优先级最高的MEC应用实例作为提供服务的MEC应用实例。当然,终端也可以选择其他MEC应用实例作为提供服务的MEC应用实例。
本申请实施例中,当终端请求MEC应用实例时,第一网元向SMF请求至少一个第一EDN的信息,进而确定至少一个第一MEC应用实例,从而降低MEC应用实例和终端间的报文传输延迟,提高业务服务质量。
可选的,步骤S602A在具体实现时,包括:
11)第一网元向SMF发送第三消息,第三消息用于请求部署有终端请求的MEC应用实例的至少一个EDN。相应的,SMF从第一网元接收第三消息。
12)SMF根据第三消息向第一网元发送至少一个第一EDN的信息,第一EDN为部署有终端请求的MEC应用实例的EDN。相应的,第一网元从SMF接收第三消息的响应消息。
其中,至少一个第一EDN的信息可以携带在第三消息的响应消息中。
示例性的,第三消息可以为第一网元向SMF订阅的用户面管理事件通知消息,第三消息的响应消息可以为SMF向第一网元发送的用户面管理事件通知。其中,第三消息的响应消息可以是SMF在收到订阅消息后立即向第一网元发送的通知消息,该通知消息包含终端当前位置对应的EDN的信息,如终端当前用户面位置信息DNAI。
其中,第三消息用于请求部署有终端请求的MEC应用实例的至少一个EDN,可以理解为第三请求消息用于请求满足特定过滤条件的EDN,该特定过滤条件描述了终端所请求的MEC应用实例所需要满足的条件。该特定过滤条件可以是由终端在第一消息发送给第一网元,或者由第一网元独立生成。示例性的,第三请求消息中还可以携带过滤器(filter),用于指示请求满足过滤器的EDN信息。例如过滤器可以为部署了MEC应用X的MEC应用实例,则表示请求部署了MEC应用X的MEC应用实例的EDN。
可选的,第一EDN的信息用于指示终端与第一EDN之间的通信路径的性能。其中,由于EES和MEC应用实例部署在EDN中,因此,也可以认为第一EDN的信息可以进一步用于指示:终端与第一EDN中的EES之间的通信路径的性能,和/或,终端与第一EDN中的MEC应用实例之间的通信路径的性能。
其中,通信路径的性能可以包含通信路径的网络拓扑距离、通信路径的时延、通信路径的带宽等性能指标。
其中,至少一个第一EDN以及至少一个EDN的信息可以为以下中的任意一种:
第1种:至少一个第一EDN为全部的部署有终端请求的MEC应用实例的EDN,第一EDN的信息(记为第一EDN的第一信息)包括以下信息中的任意一个或多个:终端与第一EDN之间的UPF的数目,终端与第一EDN之间的移动网络内部通信时延、终端与第一EDN之间的端到端通信时延,终端与第一EDN之间的移动网络内部通信带宽,终端与第一EDN之间的通信路径的优先级信息。
具体的,第一EDN的第一信息也可以认为是包括以下信息中的任意一个或多个:终端与第一EDN中的EES之间的UPF的数目,终端与第一EDN中的EES之间的移动网络内部通信时延、终端与第一EDN中的EES之间的端到端通信时延,终端与第一EDN中的EES之间的移动网络内部通信带宽,终端与第一EDN中的EES之间的通信路径的优先级信息。或者,第一EDN的第一信息也可以认为是包括以下信息中的任意一个或多个:终端与第一EDN中的MEC应用实例之间的UPF的数目,终端与第一EDN中的MEC应用实例之间的移动网络内部通信时延、终端与第一EDN中的MEC应用实例之间的端到端通信时延,终端与第一EDN中的MEC应用实例之间的移动网络内部通信带宽,终端与第一EDN中的MEC应用实例之间的通信路径的优先级信息。
为了方便描述,下文中将部署有终端请求的MEC应用实例的EDN记为目标EDN。可选的,第三消息中包括用于指示终端请求的MEC应用实例对应的MEC应用的信息(例如, MEC应用的标识)。SMF可以根据该信息确定终端请求的MEC应用实例对应的MEC应用,进而确定部署有该MEC应用的MEC应用实例的EDN为目标EDN。
在第1种中,SMF不需要在全部的目标EDN中进行选择,只需要将全部的目标EDN作为至少一个第一EDN即可。
在第1种中,可选的,SMF向第一网元发送的第三消息的响应消息中包括至少一个第一EDN的优先级信息。
第2种:至少一个第一EDN为全部的目标EDN,一个第一EDN的信息(记为第一EDN的第二信息)为该第一EDN的DNAI。
在第2种中,SMF不需要在全部的目标EDN中进行选择,只需要将全部的目标EDN作为至少一个第一EDN即可。
在第2种中,可选的,SMF向第一网元发送的第三消息的响应消息中包括至少一个第一EDN的优先级信息。
第3种:至少一个第一EDN为全部的目标EDN,一个第一EDN的信息为该第一EDN的标识以及该第一EDN的优先级信息。
在第3种中,SMF不需要在全部的目标EDN中进行选择,只需要确定全部的目标EDN的优先级即可。
第4种:至少一个第一EDN为部分目标EDN。一个第一EDN的信息为第一EDN的第一信息。
在第4种中,SMF可以在全部的目标EDN中选择部分目标EDN作为至少一个第一EDN。
在第4种中,可选的,SMF向第一网元发送的第三消息的响应消息中包括至少一个第一EDN的优先级信息。
第5种:至少一个EDN为部分目标EDN,一个第一EDN的信息为该第一EDN的DNAI。
在第5种中,SMF可以在全部的目标EDN中选择部分目标EDN作为至少一个第一EDN。
在第5种中,可选的,SMF向第一网元发送的第三消息的响应消息中包括至少一个第一EDN的优先级信息。
第6种:至少一个第一EDN为部分目标EDN,一个第一EDN的信息为该第一EDN的标识以及该第一EDN的优先级信息。
在第6种中,SMF可以在全部的目标EDN中选择部分目标EDN作为至少一个第一EDN。
其中,在第4种至第6种中,SMF在全部的目标EDN中选择部分目标EDN作为至少一个第一EDN具体可以通过以下方式1至方式3中的任意一种方式实现。
方式1
SMF可以根据终端的位置信息和目标EDN的位置信息确定全部的目标EDN中距离终端的位置最近的一个或多个目标EDN为至少一个第一EDN。其中,距离终端的位置越近认为与终端之间的通信性能越好。
其中,终端的位置信息可以携带在第三消息中或者SMF根据终端的标识确定终端的位置信息。EDN的位置信息可以根据EDN的DNAI确定。目标EDN与终端的位置最近是指目标EDN与终端的网络连接距离最近。
示例性的,基于图3C所示的示例,若终端请求MEC应用1的MEC应用实例,则全部的目标EDN可以为EDN1、EDN2和EDN3,若至少一个第一EDN为2个EDN、且3个EDN与终 端之间的距离从近至远为EDN2、EDN1、EDN3,则SMF可以确定EDN2和EDN1为至少一个第一EDN。
方式2
SMF可以根据目标EDN的第一信息确定全部的目标EDN中的、与终端之间的通信性能最好的一个或多个目标EDN作为至少一个第一EDN。
其中,一个EDN与终端之间的通信性能可以通过终端与EDN之间的UPF的数目,终端与EDN之间的移动网络内部通信时延、终端与EDN之间的端到端通信时延,终端与EDN之间的移动网络内部通信带宽以及其他通信路径的性能指标中的一个或多个参数表征。
根据EDN与终端之间的表征通信性能的参数的不同,SMF确定的至少一个第一EDN可能也不同。示例性的,若EDN与终端之间的通信性能通过终端与EDN之间的端到端通信时延表征,若至少一个第一EDN为3个第一EDN,则SMF可以将全部的目标EDN中的、与终端之间的端到端通信时延最小的3个目标EDN作为至少一个第一EDN。
方式3
SMF可以根据终端的位置信息、备选的EDN的信息确定至少一个第一EDN。
具体的,SMF可以根据终端的位置信息、备选的EDN的信息以及备选的或全部的EDN的第一信息确定至少一个第一EDN。其中,备选的EDN可以为目标EDN,也可以不是目标EDN,本申请不作限制。
例如,若备选的EDN为备选的目标EDN,SMF可以将备选的目标EDN中的、与终端之间的通信性能最好的一个或多个目标EDN确定为至少一个第一EDN。再例如,SMF可以将备选的目标EDN中的、与终端之间的通信性能最好的一个或多个目标EDN、以及非备选的目标EDN中的、与终端之间的通信性能最好的一个或多个目标EDN确定为至少一个第一EDN。
可选的,备选的EDN的信息携带在第三消息中,备选的EDN为第一网元根据终端的位置信息和第一网元中存储的EDN的信息确定的。其中,备选的EDN可以有一个或多个。第一网元可以根据终端的位置信息将距离终端最近的一个或多个EDN(或目标EDN)确定为备选的EDN(或目标EDN)。该情况下,第一网元可以为EDN CS。可选的,SMF可以根据第一消息中的用于指示终端请求的MEC应用实例对应的MEC应用的信息(例如,MEC应用的标识),确定终端请求的MEC应用实例对应的MEC应用,进而确定部署有该MEC应用的MEC应用实例的EDN为目标EDN。
在第1种至第6种中,可选的,至少一个第一EDN的优先级可以根据至少一个第一EDN与终端之间的距离确定,也可以根据至少一个第一EDN与终端之间的通信性能确定。例如,SMF可以将距离终端越近的第一EDN设定的优先级越高,或者,将与终端之间的通信性能越好的第一EDN设定的优先级越高。
需要说明的是,在第三消息的响应消息中包括至少一个第一EDN的优先级的情况下,步骤12)在具体实现时,第一网元可以将至少一个第一EDN中的部分或全部的目标EDN中的终端所请求的MEC应用实例确定为至少一个第一MEC应用实例。在上述第1种、第2种、第4种和第5种中,若第三消息的响应消息中不包括至少一个第一EDN的优先级,步骤12)在具体实现时,第一网元可以根据至少一个第一EDN的信息确定至少一个第一EDN的优先级,再将至少一个第一EDN中的部分或全部的第一EDN中的终端所请求的MEC应用实例确 定为至少一个第一MEC应用实例。
其中,第一网元确定至少一个第一EDN的优先级的方法与SMF相同,具体可参见上文,不再赘述。
当然,第一网元也可以采用其他方法确定至少一个第一MEC应用实例,例如,第一网元在接收到至少一个第一EDN的信息之后,结合至少一个第一EDN的负载确定负载较小的一个或多个第一EDN,并将负载较小的一个或多个第一EDN中的终端所请求的MEC应用实例确定为至少一个第一MEC应用实例。
本实施例中,若第一网元为EDN CS,则第一网元在确定至少一个第一MEC应用实例之后,还可以确定与至少一个第一MEC应用实例关联的EES,至少一个第一MEC应用实例关联的EES部署在至少一个第一EDN中。该情况下,可选的,上述方法还包括:第一网元发送至少一个第一MEC应用实例关联的EES的地址信息给终端。终端接收到该信息后,可以首先访问EES,进而访问该EES管理的第一MEC应用实例。
基于图2所示的网络架构,和图3、图3A、图3B以及图3C所示的MEC架构,图6B为本申请实施例提供的一种通信方法(也可以称为一种EES确定的方法)的示意图。图6B所示的实施例以EES的发现过程为例,包括:
S601B、终端向第一网元发送第一消息。相应的,第一网元从终端接收第一消息。
其中,该第一消息可以用于请求EES的地址信息,EES的地址信息用于连接到该EES。第一消息可以为EES发现请求消息。
其中,第一网元可以为EDN CS,执行步骤S601B的具体可以为终端中的EDN CC或EEC。
其中,该EES发现请求消息从终端,通过接入网设备(例如,gNB)、用户面网关(例如,UPF)等到达第一网元。
EES发现请求消息中包括的信息与上述图5所示的实施例中的MEC应用实例发现请求消息类似,所不同的地方仅在于,MEC应用实例发现请求消息中的MEC应用实例的信息在EES发现请求消息中的作用是指示获取管理MEC应用实例的信息指示的MEC应用实例的EES的地址信息。
S602B、第一网元从SMF获取至少一个第一EDN的信息,至少一个第一EDN根据终端的位置信息确定。
S603B、第一网元在至少一个第一EDN中确定至少一个第一EES。
S604B、第一网元发送至少一个第一EES的地址信息给终端。相应的,终端从第一网元接收至少一个第一EES的地址信息。
示例性的,若终端请求管理MEC应用1的MEC应用实例的EES,则第一EES可以为管理MEC应用1的MEC应用实例的EES。
其中,至少一个第一EES的地址信息可以携带在第一消息的响应消息中,第一消息的响应消息可以是EES发现应答消息中。
其中,一个EES的地址信息可以是该EES的IP地址、URL或其他可以唯一连接到该EES的地址连接信息等。
可选的,在至少一个第一EES为多个第一EES的情况下,该方法还包括:第一网元发送至少一个第一EES的优先级信息给终端。该情况下,终端可以从中选择优先级最高的 EES作为提供服务的EES。当然,终端也可以选择其他EES作为提供服务的EES。
本申请实施例中,当终端请求EES时,第一网元向SMF请求至少一个第一EDN的信息,进而确定至少一个第一EES,从而降低EES管理的MEC应用实例和终端间的报文传输延迟,提高业务服务质量。
可选的,步骤S602B在具体实现时包括:
21)第一网元向SMF发送第三消息,第三消息用于请求部署有终端请求的EES的至少一个EDN。相应的,SMF从第一网元接收第三消息。
22)SMF根据第三消息向第一网元发送至少一个第一EDN的信息,第一EDN为部署有终端请求的EES的EDN。相应的,第一网元从SMF接收第三消息的响应消息。
其中,至少一个第一EDN的信息可以携带在第三消息的响应消息中。
示例性的,第三消息可以为第一网元向SMF订阅的用户面管理事件通知消息,第三消息的响应消息可以为SMF向第一网元发送的用户面管理事件通知。其中,第三消息的响应消息可以是SMF在收到订阅消息后立即向第一网元发送的通知消息,该通知消息包含终端当前位置对应的EDN的信息,如终端当前用户面位置信息DNAI。
其中,第三消息用于请求部署有终端请求的EES的至少一个EDN,可以理解为第三请求消息用于请求满足特定过滤条件的EDN,该特定过滤条件描述了终端所请求的EES所需要满足的条件。该特定过滤条件可以是由终端在第一消息发送给第一网元,或者由第一网元独立生成。示例性的,第三请求消息中还可以携带过滤器(filter),用于指示请求满足过滤器的EDN信息。例如过滤器可以为管理MEC应用X的MEC应用实例的EES,则表示请求部署了、管理MEC应用X的MEC应用实例的EES的EDN。
可选的,第一EDN的信息用于指示终端与第一EDN之间的通信路径的通信性能。其中,由于EES和MEC应用实例部署在EDN中,因此,也可以认为第一EDN的信息用于指示:终端与第一EDN中的EES之间的通信路径的通信性能,和/或,终端与第一EDN中的MEC应用实例之间的通信路径的通信性能。
其中,通信路径的性能可以包含通信路径的网络拓扑距离、通信路径的时延、通信路径的带宽等性能指标。
其中,至少一个第一EDN以及至少一个EDN的信息可以为以下中的任意一种:
第1种:至少一个第一EDN为全部的部署有终端请求的EES的EDN,第一EDN的信息(记为第一EDN的第一信息)包括以下信息中的任意一个或多个:终端与第一EDN之间的UPF的数目,终端与第一EDN之间的移动网络内部通信时延、终端与第一EDN之间的端到端通信时延,终端与第一EDN之间的移动网络内部通信带宽,终端与第一EDN之间的通信路径的优先级信息。
具体的,第一EDN的第一信息也可以认为是包括以下信息中的任意一个或多个:终端与第一EDN中的EES之间的UPF的数目,终端与第一EDN中的EES之间的移动网络内部通信时延、终端与第一EDN中的EES之间的端到端通信时延,终端与第一EDN中的EES之间的移动网络内部通信带宽,终端与第一EDN中的EES之间的通信路径的优先级信息。或者,第一EDN的第一信息也可以认为是包括以下信息中的任意一个或多个:终端与第一EDN中的MEC应用实例之间的UPF的数目,终端与第一EDN中的MEC应用实例之间的移动网络内部通信时延、终端与第一EDN中的MEC应用实例之间的端到端通信时延,终端与第一EDN 中的MEC应用实例之间的移动网络内部通信带宽,终端与第一EDN中的MEC应用实例之间的通信路径的优先级信息。
为了方便描述,下文中将部署有终端请求的EES的EDN记为目标EDN。可选的,第三消息中包括用于指示终端请求的EES的信息。SMF可以根据该信息确定终端请求的EES,进而确定部署有该EES的EDN为目标EDN。
在第1种中,SMF不需要在全部的目标EDN中进行选择,只需要将全部的目标EDN作为至少一个第一EDN即可。
在第1种中,可选的,SMF向第一网元发送的第三消息的响应消息中包括至少一个第一EDN的优先级信息。
第2种:至少一个第一EDN为全部的目标EDN,一个第一EDN的信息(记为第一EDN的第二信息)为该第一EDN的DNAI。
在第2种中,SMF不需要在全部的目标EDN中进行选择,只需要将全部的目标EDN作为至少一个第一EDN即可。
在第2种中,可选的,SMF向第一网元发送的第三消息的响应消息中包括至少一个第一EDN的优先级信息。
第3种:至少一个第一EDN为全部的目标EDN,一个第一EDN的信息为该第一EDN的标识以及该第一EDN的优先级信息。
在第3种中,SMF不需要在全部的目标EDN中进行选择,只需要确定全部的目标EDN的优先级即可。
第4种:至少一个第一EDN为部分目标EDN。一个第一EDN的信息为第一EDN的第一信息。
在第4种中,SMF可以在全部的目标EDN中选择部分目标EDN作为至少一个第一EDN。
在第4种中,可选的,SMF向第一网元发送的第三消息的响应消息中包括至少一个第一EDN的优先级信息。
第5种:至少一个EDN为部分目标EDN,一个第一EDN的信息为该第一EDN的DNAI。
在第5种中,SMF可以在全部的目标EDN中选择部分目标EDN作为至少一个第一EDN。
在第5种中,可选的,SMF向第一网元发送的第三消息的响应消息中包括至少一个第一EDN的优先级信息。
第6种:至少一个第一EDN为部分目标EDN,一个第一EDN的信息为该第一EDN的标识以及该第一EDN的优先级信息。
在第6种中,SMF可以在全部的目标EDN中选择部分目标EDN作为至少一个第一EDN。
其中,在第4种至第6种中,SMF在全部的目标EDN中选择部分目标EDN作为至少一个第一EDN具体可以通过以下方式1至方式3中的任意一种方式实现。
方式1
SMF可以根据终端的位置信息和目标EDN的位置信息确定全部的目标EDN中距离终端的位置最近的一个或多个目标EDN为至少一个第一EDN。其中,距离终端的位置越近认为与终端之间的通信性能越好。
其中,终端的位置信息可以携带在第三消息中或者SMF根据终端的标识确定终端的位置信息。EDN的位置信息可以根据EDN的DNAI确定。目标EDN与终端的位置最近是指目 标EDN与终端的网络连接距离最近。
示例性的,基于图3C所示的示例,若终端请求管理MEC应用1的MEC应用实例的EES,则全部的目标EDN可以为EDN1、EDN2和EDN3,若至少一个第一EDN为2个EDN、且3个EDN与终端之间的距离从近至远为EDN2、EDN1、EDN3,则SMF可以确定EDN2和EDN1为至少一个第一EDN。
方式2
SMF可以根据目标EDN的第一信息确定全部的目标EDN中的、与终端之间的通信性能最好的一个或多个目标EDN作为至少一个第一EDN。
其中,一个EDN与终端之间的通信性能可以通过终端与EDN之间的UPF的数目,终端与EDN之间的移动网络内部通信时延、终端与EDN之间的端到端通信时延,终端与EDN之间的移动网络内部通信带宽以及其他通信路径的性能指标中的一个或多个参数表征。
根据EDN与终端之间的表征通信性能的参数的不同,SMF确定的至少一个第一EDN可能也不同。示例性的,若EDN与终端之间的通信性能通过终端与EDN之间的端到端通信时延表征,若至少一个第一EDN为3个第一EDN,则SMF可以将全部的目标EDN中的、与终端之间的端到端通信时延最小的3个目标EDN作为至少一个第一EDN。
方式3
SMF可以根据终端的位置信息、备选的EDN的信息确定至少一个第一EDN。
具体的,SMF可以根据终端的位置信息、备选的EDN的信息以及备选的或全部的EDN的第一信息确定至少一个第一EDN。其中,备选的EDN可以为目标EDN,也可以不是目标EDN,本申请不作限制。
例如,若备选的EDN为备选的目标EDN,SMF可以将备选的目标EDN中的、与终端之间的通信性能最好的一个或多个目标EDN确定为至少一个第一EDN。再例如,SMF可以将备选的目标EDN中的、与终端之间的通信性能最好的一个或多个目标EDN、以及非备选的目标EDN中的、与终端之间的通信性能最好的一个或多个目标EDN确定为至少一个第一EDN。
可选的,备选的EDN的信息携带在第三消息中,备选的EDN为第一网元根据终端的位置信息和第一网元中存储的EDN的信息确定的。其中,备选的EDN可以有一个或多个。第一网元可以根据终端的位置信息将距离终端最近的一个或多个EDN(或目标EDN)确定为备选的EDN(或目标EDN)。该情况下,第一网元可以为EDN CS。可选的,SMF可以根据第一消息中的用于指示终端请求的MEC应用实例对应的MEC应用的信息(例如,MEC应用的标识),确定终端请求的MEC应用实例对应的MEC应用,进而确定部署有管理该MEC应用的MEC应用实例的EES的EDN为目标EDN。
在第1种至第6种中,可选的,至少一个第一EDN的优先级可以根据至少一个第一EDN与终端之间的距离确定,也可以根据至少一个第一EDN与终端之间的通信性能确定。例如,SMF可以将距离终端越近的第一EDN设定的优先级越高,或者,将与终端之间的通信性能越好的第一EDN设定的优先级越高。
需要说明的是,在第三消息的响应消息中包括至少一个第一EDN的优先级的情况下,步骤22)在具体实现时,第一网元可以将至少一个第一EDN中的部分或全部的目标EDN中的终端所请求的EES确定为至少一个第一EES。在上述第1种、第2种、第4种和第5种中, 若第三消息的响应消息中不包括至少一个第一EDN的优先级,步骤22)在具体实现时,第一网元可以根据至少一个第一EDN的信息确定至少一个第一EDN的优先级,再将至少一个第一EDN中的部分或全部的第一EDN中的终端所请求的EES确定为至少一个第一EES。
其中,第一网元确定至少一个第一EDN的优先级的方法与SMF相同,具体可参见上文,不再赘述。
当然,第一网元也可以采用其他方法确定至少一个第一EES,例如,第一网元在接收到至少一个第一EDN的信息之后,结合至少一个第一EDN的负载确定负载较小的一个或多个第一EDN,并将负载较小的一个或多个第一EDN中的终端所请求的EES确定为至少一个第一EES。
在图6A以及图6B所示的实施例中,SMF执行的动作也可以由网管执行,本申请不作限制。
需要说明的是,如图6G所示,一个PLMN#A可以在其网络边缘设置本地出口点DNAI#A1,DNAI#A2,DNAI#A3,一个PLMN#B可以在其网络边缘设置本地出口点DNAI#B1,DNAI#B2,DNAI#B3。其中DNAI#A1与DNAI#A2对应EDN#1,DNAI#A3对应于EDN#2,也可以理解为EDN#1对应的(最佳)服务区域为DNAI#A1与DNAI#A2标识的区域,EDN#2对应的(最佳)服务区域为DNAI#A3标识的区域。其中DNAI#B1对应于EDN#3,DNAI#B2与DNAI#B3对应EDN#4,也可以理解为EDN#3对应的(最佳)服务区域为DNAI#B1标识的区域,EDN#4对应的(最佳)服务区域为DNAI#B2和DNAI#B3标识的区域。
需要说明的是,一个EDN可以对应一个或多个DNAI,该一个或多个DNAI均可以用于终端访问该EDN(具体可以为EDN中的EES或EAS等)。上述实施例中的一个第一EDN的DNAI可以包括该第一EDN对应的至少一个DNAI。
上述图6B所示的方案中,第一网元除了可以为EDN CS之外,还可以为管理其他EES的EES。
参见图6C中的(a)或图6C中的(b),EDN CS和EES可以位于同一个DN中,此时,EDN CS和EES可以关联同一个SMF(参见图6C中的(a)),也可以关联不同的SMF(参见图6C中的(b))。EDN CS和EES也可以位于不同的DN中(参见图6C中的(c)),此时,EDN CS和EES关联不同的SMF。
终端可以建立用于访问EES所属DN的PDU会话,终端也可以建立用于访问EDN CS所属的DN的PDU会话,当EES和EDN CS位于同一个DN中时,终端可以建立一个PDU会话访问EES和EDN CS;终端也可以分别建立两个PDU会话,一个用于访问EDN CS,一个用于访问EES。与EDN CS关联的SMF管理终端用于访问EDN CS的会话。与EDN CS关联的SMF一般为集中的(或者说远端的)SMF,或理解该与EDN CS关联的SMF为靠近EDN CS的SMF,或理解EDN CS关联的SMF与终端的当前位置无关。与EES关联的SMF管理终端用于访问EES的会话。与EES关联的SMF一般为与EES距离最近的SMF,或者理解为其靠近终端当前的位置。如图6C中的(b)或图6C中的(c),SMF1为与EDN CS关联的SMF,SMF2为与EES关联的SMF。一般情况下,EES或EDN CS可以与和其关联的SMF通信。
基于图6C中的(a)、图6C中的(b)或图6C中的(c),本申请提供了以下通信方法 (也可以称为一种EES确定的方法),如图6D所示,包括:
S601D、第一网元从第二网元获取至少一个第一EDN的信息。其中,至少一个第一EDN根据终端的位置信息或终端的业务信息中的至少一个确定。
其中,第二网元为第一SMF或NEF。第一网元可以为EDN CS或管理其他EES的EES。第一SMF可以为与第一网元关联的SMF,也可以为其他能够与第一网元通信的SMF。
一种情况下,可选的,在步骤S601D之前,该方法还包括上述步骤S601B,关于步骤S601B的相关描述,参见上文,不再赘述。在另一种情况下,可选的,在步骤S601D之前,源EES向第一网元发送了目标EES的请求。当然,也可以是在其他情况或事件下,触发的步骤S601D。
S602D、第一网元根据至少一个第一EDN的信息确定至少一个第一EES。步骤S602D的相关描述参见上文中的S602B,不再赘述。
S603D、第一网元发送至少一个第一EES的地址信息给终端。步骤S603D的相关描述参见上文中的S603B,不再赘述。
关于第一EES以及第一EES的地址信息的相关描述可参见上文,不再赘述。
可选的,在至少一个第一EES为多个第一EES的情况下,该方法还包括:第一网元发送至少一个第一EES的优先级信息给终端。关于该可选方法的描述可参见上述图6B所示的方案中的相关描述,不再赘述。
本申请实施例中,当终端请求EES时,第一网元向第二网元请求至少一个第一EDN的信息,进而确定至少一个第一EES,从而降低EES管理的MEC应用实例和终端间的报文传输延迟,提高业务服务质量。
可选的,上述步骤S601D在具体实现时包括:
31)第一网元向第二网元发送第三消息,第三消息中包括用于确定终端的位置的信息或终端的业务信息中的至少一个。第三消息用于请求至少一个EDN的信息,至少一个EDN部署有匹配终端请求的EES。具体地,还可以理解第三消息用于请求匹配第三消息中的信息的至少一个的EDN的DNAI。第二网元从第一网元接收第三消息。
32)第二网元根据第三消息向第一网元发送至少一个第一EDN的信息。相应的,第一网元从第二网元接收至少一个第一EDN的信息。其中,至少一个第一EDN的信息可以携带在第三消息的响应消息中。
其中,用于确定终端的位置的信息可以直接为终端的位置信息,可以是网络位置例如,终端所处的小区的小区信息(例如,小区标识(cell ID)),终端所处的跟踪区(tracking area,TA)的TA信息(例如,跟踪区标识(tracking area identity,TAI)),或其他地理或行政位置信息。用于确定终端的位置的信息也可以为终端的标识(UE ID),EEC的标识,或者应用用户的标识等,根据这些标识可以确定出终端的位置信息。终端的位置信息可以指示终端当前所处的位置。
业务信息可以包括网络信息和/或应用信息,网络信息可以是数据网络名称(data network name,DNN),或,DNN和切片信息,其中,切片信息例如可以为单网络切片选择辅助信息(single network slice selection assistance information,S-NSSAI),应用信息包括应用的标识或应用客户端的标识,应用的标识可以是应用标识符,应用三元组信息等。其中,DNN和切片信息可以和当前终端连接到EDN CS的会话对应的EDN CS的DNN和切 片信息不同,即该信息可以是EES对应的DNN和切片信息,如边缘专用(Edge-dedicated)DN的DNN。其中终端的业务信息可以是安装在终端上的应用对应的业务信息、终端正在启动运行的应用对应的业务信息、终端即将访问的应用的业务信息、终端感兴趣的应用的业务信息等,应用可以是移动移动APP,或者Web应用等。
示例性的,第三消息可以为终端网络位置请求(UE network location request)或DNAI请求(DNAI request)。第三消息的响应消息可以为终端网络位置响应(UE network location response)或DNAI响应(DNAI response),第三消息及其响应可以是服务化的API。关于第三消息的其他描述可参见上述图6B所示的方案中的相关描述,不再赘述。
若第三消息包括终端的位置信息,则第二网元根据第三消息直接确定终端的位置信息,若第三消息中包括终端的标识,EEC的标识,或者应用用户的标识等时,第二网元根据这些标识确定出终端的位置信息。
可选的,第一EDN的信息包括:第一EDN对应的至少一个DNAI。可选的,第一EDN的信息还包括以下信息中的至少一个:终端与第一EDN之间的用户面网元的数目,终端与第一EDN之间的移动网络内部通信时延、终端与第一EDN之间的端到端通信时延,终端与第一EDN之间的移动网络内部通信带宽,终端与第一EDN之间的通信路径的优先级信息。关于第一EDN的信息的其他描述可参见上述图6B所示的方案中的相关描述,不再赘述。
关于确定至少一个第一EES的描述可参见上述图6B所示的方案中的相关描述,不再赘述。
在第一种情况下,SMF中可以包括位置区域(例如,小区,TA)信息、EDN的信息(例如,DNAI)和业务信息中的至少两个的对应关系,例如SMF包含小区(或TA)和DNAI的映射关系,DNAI和业务的对应关系。此时,第二网元可以根据终端的位置信息确定服务区域与终端所处的位置区域(例如,小区,TA)匹配的SMF,并向该SMF请求获取至少一个第一EDN的信息。
在第一种情况下,可选的,上述步骤32)在具体实现时包括:
41)第二网元根据终端的位置信息确定第二SMF。例如,第二网元可以根据终端的位置信息确定终端所处的位置区域(例如,小区,TA),再确定服务区域与终端所处的位置区域匹配的SMF为第二SMF,再例如第二网元向NRF请求服务区域与终端所处的位置区域匹配的SMF,NRF确定服务区域与终端所处的位置区域匹配的SMF,NRF向第二网元返回服务区域与终端所处的位置区域匹配的SMF的信息,第二网元从NRF获取服务区域与终端所处的位置区域匹配的SMF的信息,并根据该信息确定第二SMF。
42)第二网元向第二SMF发送请求消息,请求消息包括位置信息或业务信息中的至少一个,该位置信息包含所述终端的位置信息,该业务信息包含所述终端的业务信息。相应的,第二SMF从第二网元接收请求消息。请求消息用于获取匹配位置信息或业务信息中的至少一个的EDN的信息。
43)在请求消息包括位置信息的情况下,第二SMF根据位置信息和第一对应关系确定至少一个第一EDN的信息,第一对应关系包括位置区域信息和EDN的信息之间的对应关系;或者,
在请求消息包括业务信息的情况下,第二SMF根据业务信息和第二对应关系确定至少 一个第一EDN的信息,第二对应关系包括业务信息和EDN的信息之间的对应关系;或者,
在请求消息包括位置信息和业务信息的情况下,第二SMF根据位置信息和业务信息以及第三对应关系确定至少一个第一EDN的信息,第三对应关系包括位置区域信息、EDN的信息和业务信息之间的对应关系。
44)第二SMF向第二网元发送至少一个第一EDN的信息。相应的,第二网元从第二SMF接收至少一个第一EDN的信息。
45)第二网元向第一网元发送至少一个第一EDN的信息。
其中,第二SMF所存储的对应关系(第一对应关系或第三对应关系)中的位置区域信息可以为第二SMF所服务的位置区域的信息。
步骤43)在具体实现时,在请求消息包括位置信息的情况下,第二SMF将与位置信息对应的EDN的信息作为至少一个第一EDN的信息。示例性的,假设第一对应关系如表1所示,若位置信息为小区1,则第二SMF可以确定DNAI1为至少一个第一EDN的信息。若位置信息为小区2,则第二SMF可以确定DNAI2和DNAI3为至少一个第一EDN的信息。
表1
Figure PCTCN2020128213-appb-000001
步骤43)在具体实现时,在请求消息包括业务信息的情况下,第二SMF将与业务信息对应的EDN的信息作为至少一个第一EDN的信息。示例性的,假设第二对应关系如表2所示,若业务信息为DNN1,则第二SMF可以确定DNAI1为至少一个第一EDN的信息。若业务信息为DNN2,则第二SMF可以确定DNAI2和DNAI3为至少一个第一EDN的信息。
表2
Figure PCTCN2020128213-appb-000002
步骤43)在具体实现时,在请求消息包括位置信息和业务信息的情况下,第二SMF将与位置信息和业务信息同时对应的EDN的信息作为至少一个第一EDN的信息。示例性的,假设第三对应关系如表3所示,若位置区域为小区2,业务信息为DNN1,则第二SMF可以确定DNAI2为至少一个第一EDN的信息。
表3
Figure PCTCN2020128213-appb-000003
在第二种情况下,NEF中可以包括位置区域(例如,小区,TA)信息、EDN的信息(例如,DNAI)和业务信息中的至少两个的对应关系,此时,第二网元可以为NEF,第二网元 可以根据终端的位置信息或业务信息中的至少一个确定至少一个第一EDN的信息。
在第二种情况下,可选的,上述步骤32)在具体实现时包括:
51)第二网元根据终端的位置信息和第一对应关系确定至少一个第一EDN的信息,第一对应关系包括位置区域信息和EDN的信息之间的对应关系;或者,
第二网元根据终端的业务信息和第二对应关系确定至少一个第一EDN的信息,第二对应关系包括业务信息和EDN的信息之间的对应关系;或者,
第二网元根据终端的位置信息和业务信息以及第三对应关系确定至少一个第一EDN的信息,第三对应关系包括位置区域信息、EDN的信息和业务信息之间的对应关系。
52)第二网元向第一网元发送至少一个第一EDN的信息。
其中,NEF中可以存储有上述第一对应关系、第二对应关系和第三对应关系中的至少一个。NEF中存储的对应关系中的位置区域信息可以为全部的位置区域的信息。步骤51)的具体实现过程与上述步骤43)类似,不同之处仅在于此处由第二网元执行。
关于上述步骤32)的具体实现中,若根据终端的位置信息和第一对应关系确定至少一个第一EDN的信息,可以使得确定的第一EDN的信息为最优的(与终端物理最近、网络连接路径最近、或网络连接路径最优),并且,保证终端的数据的快速传输。若根据终端的业务信息和第二对应关系确定至少一个第一EDN的信息,可以使得确定的第一EDN的信息满足终端的业务需求。若根据终端的位置信息和业务信息以及第三对应关系确定至少一个第一EDN的信息,可以使得确定的第一EDN的信息为最优的且满足终端的业务需求,并且,保证终端的数据的快速传输。
参见图6C,在图6C的(a)中,EES和EDN CS位于同一个DN中,如果EDN CS向SMF提供业务信息,SMF可以根据业务信息,判断应该向EDN CS反馈哪个DNAI。在图6C中的(b)中,EES和EDN CS位于同一个DN中,且使用不同的会话,并且不同的会话由不同的SMF管理时,当EDN CS向SMF1为终端请求对应的DNAI时,DNAI2应当为最优的DNAI,但SMF1可能无法提供DNAI2。在图6C中的(c)中,EES和EDN CS位于不同DN中,且使用不同的会话,不同的会话由不同的SMF管理,当EDN CS向SMF1为终端请求DNAI时,DNAI2应当为最优的DNAI,但SMF1可能无法提供DNAI2。上述关于步骤32)的具体实现中,NEF或第一SMF通过向第二SMF发送请求消息,使得第二SMF可以将最优的DNAI发送给NEF或第一SMF,从而使得第一网元获取最优的DNAI。或者,NEF通过存储上述对应关系,可以确定最优的DNAI,从而使得第一网元获取最优的DNAI。
另外,若终端请求获取EES时还没有具体的业务,此时,还没有对应EES或EES管理的EAS对应的会话,通过现有AF请求(AF request)订阅用户面路径管理事件(UP path management event NOTI)的机制获无法取到对应的DNAI。本申请提供了一种与会话无关的为终端确定DNAI的方法,该DNAI对应的平台支持终端要访问的业务,可以获取终端访问业务对应的最优DNAI。
为了使得上述图6D所示的方法更加的清楚,以下通过图6E和图6F分别对上述第一种情况和第二种情况下,图6D所示方法中的第一网元获取至少一个第一EDN的信息的流程作示例性说明。
在第一种情况下,参见图6E,图6E所示方法的流程包括:
S601E、第一网元向第二网元发送第三消息,第三消息中包括用于确定终端的位置的 信息或终端的业务信息中的至少一个。相应的,第二网元从第一网元接收第三消息。
第二网元在接收到第三消息之后,可以根据第三消息中的用于确定终端的位置的信息确定终端的位置信息,具体可参见上文中的描述,不再赘述。
其中,第三消息可以为UE network location request或DNAI request。
S602E、第二网元根据终端的位置信息确定第二SMF。
步骤S602E在具体实现时,若第二网元中包括有SMF的拓扑信息,则第二网元根据终端的位置信息确定服务区域与终端所处的位置区域匹配的SMF为第二SMF。
若第二网元中不包括SMF的拓扑信息,第二网元和NRF交互确定第二SMF。具体的,第二网元向NRF发送SMF请求消息(例如,NF请求(NF request)),SMF请求消息用于请求服务区域与终端所处的位置区域匹配的SMF的信息,SMF请求消息中包括终端的位置信息,可选的,还包括NF类型(type),该NF类型即SMF类型。NRF根据SMF请求消息中的信息以及网络信息(DNN和切片信息)为NEF查找第二SMF的信息,并向NEF返回第二SMF的信息。第二SMF的信息可以携带在SMF请求响应(例如,NF响应(NF response))中。
S603E、第二网元向第二SMF发送请求消息,请求消息中包括位置信息或业务信息中的至少一个。相应的,第二SMF从第二网元接收请求消息。
示例性的,请求消息可以为UE network location request或DNAI request。
S604E、第二SMF根据请求消息中的信息和对应关系(第一对应关系或第二对应关系或第三对应关系)确定至少一个第一EDN的信息。
步骤S604E的相关描述可参见上文,不再赘述。
S605E、第二SMF向第二网元发送至少一个第一EDN的信息。
示例性的,至少一个第一EDN的信息可以携带在第二SMF向第二网元发送的UE network location response或DNAI response中。
S606E、第二网元向第一网元发送至少一个第一EDN的信息。
示例性的,至少一个第一EDN的信息可以携带在第二网元向第一网元发送的终端网络位置响应(UE network location response)或DNAI response中。
在第二种情况下,参见图6F,第二网元为NEF,图6F所示方法的流程包括:
S601F、与步骤S601E相同。
S602F、第二网元根据终端的位置信息或业务信息中的至少一个,以及对应关系(第一对应关系或第二对应关系或第三对应关系)确定至少一个EDN的信息。
步骤S602F的实现过程可参见上述过程,不再赘述。
S603F、第二网元向第一网元发送至少一个第一EDN的信息。
示例性的,至少一个第一EDN的信息可以携带在第二网元向第一网元发送的UE network location response或DNAI response中。上述图6D、图6E和图6F所示的方案中的NEF执行的动作还可以由NRF、UDR等执行,本申请不作限制。
上述与图6A、图6B以及图6D相关的实施例,也可以应用在终端的位置发生变化的场景中。终端的位置发生变化时,终端接入的MEC应用实例或EES需要发生变更,以便降低MEC应用实例和终端间的报文传输延迟,提高业务服务质量。该情况下,终端在位置发生变化前访问的EES可以称为源EES。以下对终端的位置发生变化的场景下,与图6A、图6B以及图6D相关的实施例在实现时的不同之处进行介绍,其余部分可参照相应 实施例中的内容进行理解,不再赘述。
在与图6A相关的实施例中,在S602A中,第一网元可以从SMF获取至少一个第一EDN的信息,也可以从源EES获取至少一个第一EDN的信息。源EES中的至少一个第一EDN的信息可以来自于SMF/AMF。在S604A中,第一网元可以将至少一个第一MEC应用实例的地址信息发送给终端,也可以将至少一个第一MEC应用实例的地址信息发送给源EES。源EES获取到至少一个第一MEC应用实例的地址信息后,若至少一个第一MEC应用实例为多个第一MEC应用实例,源EES可以自行确定一个第一MEC应用实例作为新的为终端提供服务的第一MEC应用实例,并将新的为终端提供服务的第一MEC应用实例的信息发送给终端或通过第一网元将新的为终端提供服务的第一MEC应用实例的信息发送给终端,以便终端访问新的第一MEC应用实例。若至少一个第一MEC应用实例为一个第一MEC应用实例,则源EES确定该第一MEC应用实例为新的为终端提供服务的第一MEC应用实例。此时,新的为终端提供服务的第一MEC应用实例可以为第一网元确定的,第一网元将新的第一MEC应用实例发送给终端,以便终端访问新的第一MEC应用实例。若第一网元将至少一个第一MEC应用实例的地址信息发送给源EES,则第一网元还可以将至少一个第一MEC应用实例的优先级信息给源EES。该情况下,源EES可以从中选择优先级最高的第一MEC应用实例作为新的为终端提供服务的第一MEC应用实例。当然,源EES也可以选择其他第一MEC应用实例作为新的为终端提供服务的第一MEC应用实例。若第一网元将至少一个第一MEC应用实例的地址信息发送给源EES,第一网元还可以发送至少一个第一MEC应用实例关联的EES的地址信息给源EES。源EES接收到该信息之后,可以确定新的为终端提供服务的第一MEC应用实例关联的EES的地址信息,并将该EES的信息发送给终端或通过第一网元将该EES的信息发送给终端,以便终端访问该EES管理的新的为终端提供服务的第一MEC应用实例。在第一网元从源EES获取至少一个第一EDN的信息的情况下,步骤11)和步骤12)中,第一网元可以和源EES交互获取至少一个第一EDN的信息,将步骤11)和步骤12)中的SMF替换为源EES进行理解即可,不再赘述。其中,第一网元可以为EDN CS。
在与图6B相关的实施例中,在S602B中,第一网元可以从SMF获取至少一个第一EDN的信息,也可以从源EES获取至少一个第一EDN的信息。源EES中的至少一个第一EDN的信息可以来自于SMF/AMF。在S604B中,第一网元可以将至少一个第一EES的地址信息发送给终端,也可以将至少一个第一EES的地址信息发送给源EES。源EES获取到至少一个第一EES的地址信息后,若至少一个第一EES为多个第一EES,源EES可以自行确定一个第一EES作为新的为终端提供服务的第一EES,并将新的为终端提供服务的第一EES的信息发送给终端或通过第一网元将新的为终端提供服务的第一EES的信息发送给终端,以便终端访问新的第一EES。若至少一个第一EES为一个第一EES,则源EES确定该第一EES为新的为终端提供服务的第一EES。此时,新的为终端提供服务的第一EES可以为第一网元确定的,第一网元将新的第一EES发送给终端,以便终端访问新的第一EES。若第一网元将至少一个第一EES的地址信息发送给源EES,则第一网元还可以将至少一个第一EES的优先级信息给源EES。该情况下,源EES可以从中选择优先级最高的第一EES作为新的为终端提供服务的第一EES。当然,源EES也可以选择其他第一EES作为新的为终端提供服务的第一EES。在第一网元从源EES获取至少一个第一EDN 的信息的情况下,步骤21)和步骤22)中,第一网元可以和源EES交互获取至少一个第一EDN的信息,将步骤21)和步骤22)中的SMF替换为源EES进行理解即可,不再赘述。其中,第一网元可以为EDN CS。
在与图6D相关的实施例中,第二网元还可以为源EES。在S603D中,第一网元可以将至少一个第一EES的地址信息发送给终端,也可以将至少一个第一EES的地址信息发送给源EES。源EES获取到至少一个第一EES的地址信息后,若至少一个第一EES为多个第一EES,源EES可以自行确定一个第一EES作为新的为终端提供服务的第一EES,并将新的为终端提供服务的第一EES的信息发送给终端或通过第一网元将新的为终端提供服务的第一EES的信息发送给终端,以便终端访问新的第一EES。若至少一个第一EES为一个第一EES,则源EES确定该第一EES为新的为终端提供服务的第一EES。此时,新的为终端提供服务的第一EES可以为第一网元确定的,第一网元将新的第一EES发送给终端,以便终端访问新的第一EES。若第一网元将至少一个第一EES的地址信息发送给源EES,则第一网元还可以将至少一个第一EES的优先级信息给源EES。该情况下,源EES可以从中选择优先级最高的第一EES作为新的为终端提供服务的第一EES。当然,源EES也可以选择其他第一EES作为新的为终端提供服务的第一EES。其中,第一网元可以为EDN CS。
上述各个实施例中SMF执行的动作也可以由AMF执行。在上述各个实施例中,第一EDN的DNAI包括第一EDN中的EES的DNAI和/或第一EDN中的MEC应用实例的DNAI。其中,EES的DNAI可以理解为与EES对应的数据流量相关(traffic)。MEC应用实例的DNAI可以理解为与MEC应用实例对应的数据流量相关。
为了方便理解,以下对终端的位置发生变化的场景下,本申请实施例提供的方法做示例性说明。其中,图6H为确定新的为终端提供服务的EES的过程,图6I为确定新的为终端提供服务的MEC应用实例的过程。
参见图6H,假设MEC应用实例、EES和EDN CS向核心网控制面功能网元,例如,NEF、AMF或SMF,订阅了用户面路径变化通知事件,该过程可参见与图6相关的实施例中的描述,不再赘述。该情况下,确定新的为终端提供服务的EES(记为目标EES)的过程包括:
S601H、当终端的位置发生变化时,核心网控制面功能网元确定至少一个DNAI(记为N个DNAI)。其中,N个DNAI根据变化后的终端的位置确定,可以包含终端和EDN CS的用户面数据、终端和EES的用户面数据,或,终端和MEC应用实例的用户面数据中的一项或多项对应的DNAI,具体的确定过程可参见上文,不再赘述。
在S601H之后,可以使得EDN CS或源EES获取N个DNAI的信息。其中,使得源EES获取N个DNAI的信息的过程可以通过S602H和S603H实现(此时一般,N个DNAI中可以包含终端和EES的用户面数据,或,终端和MEC应用实例的用户面数据中的一项或多项对应的DNAI),或者,通过S604H实现。使得EDN CS获取N个DNAI的信息的过程可以通过S605H实现(此时一般,N个DNAI中可以包含终端和EDN CS的用户面数据、终端和EES的用户面数据,或,终端和MEC应用实例的用户面数据中的一项或多项对应的DNAI)。
S602H、核心网控制面功能网元向源MEC应用实例发送用户面路径管理事件通知, 该通知中包括N个DNAI的信息。该N个DNAI可以为该源MEC应用实例对应的DNAI,进一步可以理解为终端与该MEC应用实例的用户面数据对应的DNAI。源MEC应用实例为终端在位置发生变化之前访问的MEC应用实例。当核心网控制面功能网元为AMF或SMF时,用户面路径管理事件通知可以经由NEF发送给源MEC应用实例。
S603H、源MEC应用实例向源EES发送N个DNAI的信息。
其中,N个DNAI的信息可以携带在EAS发现请求(EAS discover request)、EAS订阅请求或EAS订阅请求更新消息中。
S604H、核心网控制面功能网元向源EES发送用户面路径管理事件通知,该通知中包含N个DNAI的信息。该N个DNAI可以包括EES和/或MEC应用实例的DNAI,进一步可以理解为终端和EES的用户面数据和/或终端和MEC应用实例的用户面数据中的一项或多项对应的DNAI。当核心网控制面功能网元为AMF或SMF时,用户面路径管理事件通知可以经由NEF发送给源EES。
S605H、核心网控制面功能网元向EDN CS发送用户面路径管理事件通知,该通知中包含N个DNAI的信息。该N个DNAI可以包括EDN CS、EES和MEC应用实例中的一个或多个的DNAI,进一步可以理解为终端和EDN CS的用户面数据、终端和EES的用户面数据,或,终端和MEC应用实例的用户面数据中的一项或多项对应的DNAI。当核心网控制面功能网元为AMF或SMF时,用户面路径管理事件通知可以经由NEF发送给EDN CS。
需要说明的是,当终端的位置相同时,EDN CS的DNAI、EES的DNAI和MEC应用实例的DNAI可以相同,也可以不同,本申请不做限定。通常情况下,可以认为EES的DNAI和MEC应用实例的DNAI相同。
需要说明的是,由于N个DNAI在不同的实现下的含义不同,因此,上述S602H和S603H中的N的取值、S604H中的N的取值和S605H中的N的取值可以相同,也可以不同,本申请不作限制。
在图6H所示的实施例下,在第一种实现方式中,可以通过以下S606H至S610H确定目标EES,在第二种实现方式中,可以通过以下S611H至S614H确定目标EES。
S606H、源EES向EDN CS发送EES发现请求,EES发现请求中携带M个DNAI。
其中,M个DNAI可以为从核心网控制面功能网元获取的N个DNAI,也可以为从源MEC应用实例获取的N个DNAI,也可以包括从核心网控制面功能网元获取的N个DNAI和从源MEC应用实例获取的N个DNAI,还可以为从核心网控制面功能网元获取的N个DNAI和从源MEC应用实例获取的N个DNAI中的不同的DNAI。其中源EES可以将从不同途径获取的DNAI做聚合去重得到M个DNAI,也可以直接将上述不同途径获取的DNAI作为M个DNAI发送给EDN CS。
EES发现请求中还可以包括终端的信息(例如,终端的标识、终端的位置信息)、应用的信息(例如,应用的标识、MEC应用实例或应用客户端(Application client,AC)的配置文件(profile))。
S607H、EDN CS根据接收到的M个DNAI、终端的信息、应用的信息,以及存储的EES配置文件中的DNAI等信息确定一个或多个EES。
其中,EES配置文件中的DNAI可以包含EES的DNAI和/或MEC应用实例的DNAI, 该MEC应用实例为注册到该EES上的MEC应用实例,EES的DNAI和MEC应用实例的DNAI可以相同,也可以不同。
S607H在具体实现时,EDN CS可以根据接收到的M个DNAI、终端的信息、应用的信息,以及存储的EES配置文件中的DNAI进行匹配(select/determine),匹配出最优的、并且能够为终端提供所需应用服务的一个或多个EES。
S608H、EDN CS在一个或多个EES中确定目标EES。
S608H在具体实现时,EDN CS可以在一个或多个EES中选择最优的(例如,距离终端物理距离最近、距离终端网络连接路径最近、或距离终端网络连接路径最优)的EES作为目标EES。EDN CS也可以将多个EES中的部分较优EES作为目标EES。
S609H、EDN CS向源EES返回目标EES的信息。
S609H之后,源EES和目标EES之间可以进行用于上下文迁移的交互操作,例如源EES向目标EES发送EAS发现请求,源EES在该请求中携带用于过滤MEC应用实例的条件(如应用客户端的配置文件,对应应用的关键性能指标的需求等),目标EES根据EAS发现请求为源EES选择符合过滤条件的目标MEC应用实例,目标EES向源EES发送选择的一个或多个目标MEC应用实例。
S610H、可选地,EDN CS向终端发送目标EES的信息。
S610H之后,终端可以访问目标EES。例如向目标EES发现MEC应用实例的信息,或者向目标EES发送应用上下文迁移请求等。
S611H、可选地,终端(具体可以为终端中的EEC)向EDN CS发送EES接入请求消息,EES接入请求消息用于获取EES的接入信息。
EES接入请求消息可以为服务配置请求、服务配置订阅、EES订阅请求、EES请求消息等。EES接入请求消息中可以包括终端的信息,应用的信息。
S612H、与S607H相同。S612H中的M个DNAI可以为通过S605H获取的N个DNAI。
S613H、与S608H相同。
S614H、EDN CS向终端发送EES接入响应消息,EES接入响应消息中包括目标EES的信息。
其中,EES接入响应消息可以为服务配置响应、服务配置通知、EES通知、EES响应消息等。S614H之后,终端可以访问目标EES。例如向目标EES发现MEC应用实例的信息,或者向目标EES发送应用上下文迁移请求等。
其中,第二种实现方式也可以应用在终端初始选择EES的过程中。
参见图6I,假设MEC应用实例、EES和EDN CS向核心网控制面功能网元,例如,NEF、AMF或SMF,订阅了用户面路径变化通知事件,该过程可参见与图6相关的实施例中的描述,不再赘述。图6I所示的实施例中,由目标EES选择新的为终端提供服务的MEC应用实例(记为目标MEC应用实例),然后将目标MEC应用实例发送给源EES或终端。具体的,确定目标MEC应用实例的过程包括:
S601I、与S601H相同。
在S601I之后,可以使得源EES或目标EES获取N个DNAI的信息。其中,使得源EES获取N个DNAI的信息的过程可以通过S602I和S603I实现,或者,通过S604I实现。使得目标EES获取N个DNAI的信息的过程可以通过S605I实现。
S602I、与S602H相同。
S603I、与S603H相同。
S604I、与S604H相同。
S605I、核心网控制面功能网元向目标EES发送用户面路径管理事件通知,该通知中包含N个DNAI的信息。该N个DNAI可以为EES或MEC应用实例的DNAI,进一步可以理解为终端和EES的用户面数据,或,终端和MEC应用实例的用户面数据中的一项或多项对应的DNAI。当核心网控制面功能网元为AMF或SMF时,用户面路径管理事件通知可以经由NEF发送给目标EES。
其中,目标EES的信息可以为源EES告知核心网控制面功能网元,也可以是EDN CS告知核心网控制面功能网元的。
需要说明的是,由于N个DNAI在不同的实现下的含义不同,因此,上述S602I和S603I中的N的取值、S604I中的N的取值和S605I中的N的取值可以相同,也可以不同,本申请不作限制。
在图6I所示的实施例下,在第一种实现方式中,可以通过以下S606I至S611I确定目标MEC应用实例,在第二种实现方式中,可以通过以下S612I至S614I确定目标MEC应用实例。
S606I、源MEC应用实例向源EES发送EAS发现请求,EAS发现请求中携带N个DNAI。N个DNAI可以为源MEC应用实例从核心网控制面功能网元获取的N个DNAI。
S607I、源EES向目标EES发送EAS发现请求,EAS发现请求中携带M个DNAI。
其中,源EES可以从EDN CS获取到目标EES的信息。M个DNAI可以为从核心网控制面功能网元获取的N个DNAI,也可以为从源MEC应用实例获取的N个DNAI,也可以包括从核心网控制面功能网元获取的N个DNAI和从源MEC应用实例获取的N个DNAI,还可以为从核心网控制面功能网元获取的N个DNAI和从源MEC应用实例获取的N个DNAI中的不同的DNAI。其中源EES可以将从不同途径获取的DNAI做聚合去重得到M个DNAI,也可以直接将上述不同途径获取的DNAI作为M个DNAI发送给目标EES。
EAS发现请求中还可以包括终端的信息(含义参见上文)、应用的信息(含义参见上文)。
其中在S607I之前源EES可以从EDN CS发现目标EES的信息。
S608I、目标EES根据M个DNAI、终端的信息、应用的信息,以及存储的EES配置文件中的DNAI等信息确定目标MEC应用实例。
S609I、目标EES向源EES发送EAS发现响应,EAS发现响应中包括目标MEC应用实例的信息。该EAS发现响应为源EES发送的EAS发现请求的响应消息。
S610I、源EES向源MEC应用实例发送EAS发现响应,EAS发现响应中包括目标MEC应用实例的信息。该EAS发现响应为源MEC应用实例发送的EAS发现请求的响应消息。
需要说明的是,源MEC应用实例发送的EAS发现请求也可以为EAS订阅请求,用于订阅用于应用上下文迁移(application context removal,ACR)的目标MEC应用实例的信息,该情况下,源MEC应用实例发送的EAS发现请求的响应消息可以为EAS通知响应。
S611I、源MEC应用实例向终端发送目标MEC应用实例的信息。后续过程中,终端 可以访问目标MEC应用实例。例如终端可以将用户面数据从源MEC应用实例切换到目标MEC应用实例。
在另一种可能的实现方式中,也可以是源EES向终端发送目标MEC应用实例的信息。例如源EES可以在向EEC发送应用上下文迁移订阅的通知消息中携带目标MEC应用实例的信息,此时EEC可以在之前向源EES订阅应用上下文迁移事件通知,具体地,订阅应用上下文迁移中目标MEC应用实例的信息。S612I、终端(具体可以为终端中的EEC)向目标EES发送EAS发现请求,EAS发现请求用于获取MEC应用实例的接入信息。
其中,EAS发现请求可以为EAS接入消息、EAS订阅请求消息。EAS发现请求中可以包括终端的信息,应用的信息。
S613I、与S608I相同。S612I中的M个DNAI可以为通过S605I获取的N个DNAI。
S614I、目标EES向终端发送EAS接入响应消息,EAS接入响应消息中包括目标MEC应用实例的信息。其中,EAS接入响应消息可以为EAS发现响应、EAS通知。
在上述实施例中,EDN CS也可以称为边缘配置服务器(edge configuration server,ECS)。
上述主要从各个网元之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,上述实现各网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
可以理解的是,上述各个方法实施例中,对应由终端、第一网元、SMF实现的步骤或者操作,也可以由配置于终端、第一网元、SMF的部件(例如芯片或者电路)实现。
本申请实施例还提供用于实现以上任一种方法的装置,例如,提供一种装置包括用以实现以上任一种方法中第一网元所执行的各个步骤的单元(或手段)。
参考图7,为本申请实施例提供的一种通信装置的示意图。该装置用于实现上述方法实施例中对应第一网元所执行的各个步骤,如图7所示,该装置700包括发送单元710、接收单元720和处理单元730。
接收单元720,用于接收终端向第一网元发送的第一消息,第一消息可以为MEC应用实例发现请求消息。
处理单元730,用于确定至少一个第一MEC应用实例,具体用于获取终端的位置信息,然后根据所述位置信息,确定至少一个第一MEC应用实例。
在一种可能的实现方法中,如果第一网元收到的MEC应用实例发现请求消息包含终端的位置信息,则认为第一网元通过接收MEC应用实例发现请求消息来获取终端的位置信息;MEC应用实例发现请求消息不包含终端的位置信息,则另一可选的方法为,第一网元从电信运营商网络功能,如5G核心网控制面网络功能(例如,NEF),根据终端标识获取终端的位置信息。NEF提供了API,开放电信网络的能力。第一网元向NEF发送包括终端标识的位置查询请求,NEF收到位置查询请求后,调用核心网的网络功能如AMF得到位置信息,AMF将所查询的终端的位置信息发送给调用方即NEF,NEF发送第二消息给第一网元,该第二消息包括终端的位置信息。
发送单元710,用于向终端发送MEC应用实例发现应答消息。所述MEC应用实例发现应答消息中包括所确定的至少一个第一MEC应用实例的信息。
可以理解的是,上述各个单元也可以称为模块或者电路等,并且上述各个单元可以独立设置,也可以全部或者部分集成。
一些可能的实现方式中,上述发送单元710和接收单元720也可以通过收发单元实现,或者说发送单元710和接收单元720也可以统称为收发单元,可以通过通信接口实现。上述处理单元730可以通过处理器实现。
可选的,上述通信装置700还可以包括存储单元,该存储单元用于存储数据或者指令(也可以称为代码或者程序),上述各个单元可以和存储单元交互或者耦合,以实现对应的方法或者功能。例如,处理单元可以读取存储单元中的数据或者指令,使得通信装置实现上述实施例中的方法。
参考图8,为本申请实施例提供的一种通信装置的示意图。该装置用于实现上述方法实施例中对应控制面功能网元或终端装置所执行的各个步骤,如图8所示,该装置800包括发送单元810、接收单元820,可选的还包括处理单元830。发送单元810可用于执行上述方法实施例中对应控制面功能网元或终端装置发送信息或消息或请求等发送相关的步骤,接收单元820可用于执行上述方法实施例中对应控制面功能网元或终端装置接收信息或消息或应答等接收相关的步骤。可选的,处理单元830用于对信息进行处理或相关信息或消息。
本申请实施例还提供了一种通信系统,该通信系统可包括上述方法实施例中的第一网元,控制面功能网元。还可以进一步包括安装有MEC应用实例的边缘节点,或者进一步包括终端装置。
在采用集成的单元的情况下,图8A示出了上述实施例中所涉及的通信装置(记为通信装置80A)的一种可能的结构示意图,该通信装置80A包括处理单元801A和通信单元802A,还可以包括存储单元803A。图8A所示的结构示意图可以用于示意上述实施例中所涉及的第一网元或SMF的结构。
当图8A所示的结构示意图用于示意上述实施例中所涉及的第一网元的结构时,在一种实现方式中:
通信单元802A,用于从SMF或源EES获取至少一个第一EDN的信息,所述至少一个第一EDN根据终端的位置信息确定;
处理单元801A,用于在所述至少一个第一EDN中确定至少一个第一MEC应用实例;
通信单元802A,还用于发送所述至少一个第一MEC应用实例的地址信息给所述终端或所述源EES。
可选的,通信单元802A,具体用于:向所述SMF或所述源EES发送第三消息,所述第三消息用于请求至少一个EDN,所述至少一个EDN部署有所述终端请求的MEC应用实例;从所述SMF或所述源EES接收所述第三消息的响应消息,所述响应消息中包括所述至少一个第一EDN的信息。
可选的,所述第三消息中包括备选的EDN的信息,所述备选的EDN为所述第一网元根据所述终端的位置信息和所述第一网元中存储的EDN的信息确定的。
可选的,所述第三消息中包括所述终端的位置信息。
可选的,所述第一EDN的信息包括:所述第一EDN的DNAI。
可选的,所述第一EDN的DNAI包括所述第一EDN中的EES的DNAI和/或所述第一EDN中的MEC应用实例的DNAI。
可选的,通信单元802A,还用于发送所述至少一个第一MEC应用实例关联的EES的地址信息给所述终端或所述源EES。
可选的,所述第一EDN的信息用于指示所述终端与所述第一EDN之间的通信路径的通信性能。
可选的,所述第一EDN的信息还包括以下信息中的至少一个:所述终端与所述第一EDN之间的用户面网元的数目,所述终端与所述第一EDN之间的移动网络内部通信时延、所述终端与所述第一EDN之间的端到端通信时延,所述终端与所述第一EDN之间的移动网络内部通信带宽,所述终端与所述第一EDN之间的通信路径的优先级信息。
可选的,通信单元802A,还用于发送所述至少一个第一MEC应用实例的优先级信息给所述终端或所述源EES。
在另一种实现方式中:
通信单元802A,用于从SMF或源EES获取至少一个第一EDN的信息,所述至少一个第一EDN根据终端的位置信息确定;
处理单元801A,用于在所述至少一个第一EDN中确定至少一个第一EES;
通信单元802A,还用于发送所述至少一个第一EES的地址信息给所述终端或所述源EES。
可选的,通信单元802A,具体用于:向所述SMF或所述源EES发送第三消息,所述第三消息用于请求至少一个EDN,所述至少一个EDN部署有所述终端请求的EES;从所述SMF或所述源EES接收所述第三消息的响应消息,所述响应消息中包括所述至少一个第一EDN的信息。
可选的,所述第三消息中包括备选的EDN的信息,所述备选的EDN为所述第一网元根据所述终端的位置信息和所述第一网元中存储的EDN的信息确定的。
可选的,所述第三消息中包括所述终端的位置信息。
可选的,所述第一EDN的信息包括:所述第一EDN的DNAI。
可选的,所述第一EDN的DNAI包括所述第一EDN中的EES的DNAI和/或所述第一EDN中的多接入边缘计算MEC应用实例的DNAI。
可选的,所述第一EDN的信息用于指示所述终端与所述第一EDN之间的通信路径的通信性能。
可选的,所述第一EDN的信息还包括以下信息中的至少一个:所述终端与所述第一EDN之间的用户面网元的数目,所述终端与所述第一EDN之间的移动网络内部通信时延、所述终端与所述第一EDN之间的端到端通信时延,所述终端与所述第一EDN之间的移动网络内部通信带宽,所述终端与所述第一EDN之间的通信路径的优先级信息。
可选的,通信单元802A,还用于发送所述至少一个第一EES的优先级信息给所述终端或所述源EES。
当图8A所示的结构示意图用于示意上述实施例中所涉及的SMF的结构时:
处理单元801A,用于通过通信单元802A从第一网元接收第三消息,所述第三消息用于 请求至少一个EDN;所述至少一个EDN部署有终端请求的MEC应用实例,或者,所述至少一个EDN部署有所述终端请求的EES;
处理单元801A,还用于通过通信单元802A根据所述第三消息向所述第一网元发送所述第三消息的响应消息,所述响应消息中包括至少一个第一EDN的信息;
在所述至少一个EDN部署有所述终端请求的MEC应用实例的情况下,所述第一EDN为部署有所述终端请求的MEC应用实例的EDN;在所述至少一个EDN部署有所述终端请求的EES的情况下,所述第一EDN为部署有所述终端请求的EES的EDN。
可选的,所述至少一个第一EDN根据所述终端的位置信息和所述SMF获取的至少一个EDN的信息确定。
可选的,所述至少一个第一EDN根据所述终端的位置信息和备选的EDN的信息确定,所述备选的EDN的信息携带在所述第三消息中。
可选的,所述终端的位置信息携带在所述第三消息中。
可选的,所述第一EDN的信息包括:所述第一EDN的DNAI。
可选的,所述第一EDN的DNAI包括所述第一EDN中的EES的DNAI和/或所述第一EDN中的MEC应用实例的DNAI。
可选的,所述第一EDN的信息用于指示所述终端与所述第一EDN之间的通信路径的通信性能。
可选的,所述第一EDN的信息还包括以下信息中的至少一个:所述终端与所述第一EDN之间的用户面网元的数目,所述终端与所述第一EDN之间的移动网络内部通信时延、所述终端与所述第一EDN之间的端到端通信时延,所述终端与所述第一EDN之间的移动网络内部通信带宽,所述终端与所述第一EDN之间的通信路径的优先级信息。
其中,通信单元也可以称为收发单元。通信装置80A中的具有收发功能的天线和控制电路可以视为通信装置80A的通信单元802A,具有处理功能的处理器可以视为通信装置80A的处理单元801A。可选的,通信单元802A中用于实现接收功能的器件可以视为接收单元,接收单元用于执行本申请实施例中的接收的步骤,接收单元可以为接收机、接收器、接收电路等。通信单元802A中用于实现发送功能的器件可以视为发送单元,发送单元用于执行本申请实施例中的发送的步骤,发送单元可以为发送机、发送器、发送电路等。
在采用集成的单元的情况下,图8B示出了上述实施例中所涉及的通信装置(记为通信装置80B)的一种可能的结构示意图,该通信装置80B包括处理单元801B和通信单元802B,还可以包括存储单元803B。图8B所示的结构示意图可以用于示意上述实施例中所涉及的第一网元、第二网元或第二SMF的结构。
当图8B所示的结构示意图用于示意上述实施例中所涉及的第一网元的结构时:
所述通信单元802B,用于从第二网元获取至少一个第一EDN的信息,所述至少一个第一EDN根据终端的位置信息或所述终端的业务信息中的至少一个确定,所述第二网元为第一会话管理网元或NEF或源EES;
所述处理单元801B,用于根据所述至少一个第一EDN的信息确定至少一个第一EES;
所述通信单元802B,还用于发送所述至少一个第一EES的地址信息给所述终端或所述源EES。
可选的,所述通信单元802B,具体用于:
向所述第二网元发送第三消息,所述第三消息中包括用于确定所述终端的位置的信息或所述终端的业务信息中的至少一个;
从所述第二网元接收所述至少一个第一EDN的信息,所述第一EDN与所述终端的位置信息或所述终端的业务信息中的至少一个匹配。
可选的,所述第一EDN的信息包括:所述第一EDN的至少一个DNAI。
可选的,所述第一EDN的DNAI包括所述第一EDN中的EES的DNAI和/或所述第一EDN中的MEC应用实例的DNAI。
可选的,所述第一EDN的信息还包括以下信息中的至少一个:所述终端与所述第一EDN之间的用户面网元的数目,所述终端与所述第一EDN之间的移动网络内部通信时延、所述终端与所述第一EDN之间的端到端通信时延,所述终端与所述第一EDN之间的移动网络内部通信带宽,所述终端与所述第一EDN之间的通信路径的优先级信息。
可选的,所述通信单元802B,还用于发送所述至少一个第一EES的优先级信息给所述终端或所述源EES。
当图8B所示的结构示意图用于示意上述实施例中所涉及的第二网元的结构时:
所述处理单元801B,用于通过所述通信单元802B从第一网元接收第三消息,所述第三消息中包括用于确定所述终端的位置的信息或所述终端的业务信息中的至少一个,所述第二网元为第一会话管理网元或NEF或源EES;
所述处理单元801B,还用于根据所述第三消息通过所述通信单元802B向所述第一网元发送至少一个第一EDN的信息,所述第一EDN与所述终端的位置信息或所述终端的业务信息中的至少一个匹配。
可选的,所述处理单元801B,具体用于:
根据所述终端的位置信息确定第二会话管理网元;
通过所述通信单元802B向所述第二会话管理网元发送请求消息,所述请求消息包括位置信息或业务信息中的至少一个,所述位置信息包含所述终端的位置信息,所述业务信息包含所述终端的业务信息;
通过所述通信单元802B从所述第二会话管理网元接收所述至少一个第一EDN的信息;
通过所述通信单元802B向所述第一网元发送所述至少一个第一EDN的信息。
可选的,所述第二网元为所述NEF,所述处理单元801B,具体用于:
根据所述终端的位置信息和第一对应关系确定所述至少一个第一EDN的信息,所述第一对应关系包括位置区域信息和EDN的信息之间的对应关系;或者,
根据所述终端的业务信息和第二对应关系确定所述至少一个第一EDN的信息,所述第二对应关系包括业务信息和EDN的信息之间的对应关系;或者,
根据所述终端的位置信息和业务信息以及第三对应关系确定所述至少一个第一EDN的信息,所述第三对应关系包括位置区域信息、EDN的信息和业务信息之间的对应关系;
通过所述通信单元802B向所述第一网元发送所述至少一个第一EDN的信息。
可选的,所述第一EDN的信息包括:所述第一EDN的至少一个DNAI。
可选的,所述第一EDN的DNAI包括所述第一EDN中的EES的DNAI和/或所述第一EDN中的多接入边缘计算MEC应用实例的DNAI。
可选的,所述第一EDN的信息还包括以下信息中的至少一个:所述终端与所述第一 EDN之间的用户面网元的数目,所述终端与所述第一EDN之间的移动网络内部通信时延、所述终端与所述第一EDN之间的端到端通信时延,所述终端与所述第一EDN之间的移动网络内部通信带宽,所述终端与所述第一EDN之间的通信路径的优先级信息。
当图8B所示的结构示意图用于示意上述实施例中所涉及的第二SMF的结构时:
所述通信单元802B,用于从第二网元接收请求消息,所述请求消息包括位置信息和业务信息中的至少一个,所述位置信息包含终端的位置信息,所述业务信息包含所述终端的业务信息,所述第二网元为第一会话管理网元或NEF或源EES;
在所述请求消息包括所述位置信息的情况下,所述处理单元801B,用于根据所述位置信息和第一对应关系确定所述至少一个第一EDN的信息,所述第一对应关系包括位置区域信息和EDN的信息之间的对应关系;或者,
在所述请求消息包括所述业务信息的情况下,所述处理单元801B,用于根据所述业务信息和第二对应关系确定所述至少一个第一EDN的信息,所述第二对应关系包括业务信息和EDN的信息之间的对应关系;或者,
在所述请求消息包括所述位置信息和所述业务信息的情况下,所述处理单元801B,用于根据所述位置信息和所述业务信息以及第三对应关系确定所述至少一个第一EDN的信息,所述第三对应关系包括位置区域信息、EDN的信息和业务信息之间的对应关系;
所述通信单元802B,还用于向所述第二网元发送所述至少一个第一EDN的信息。
其中,通信单元也可以称为收发单元。通信装置80B中的具有收发功能的天线和控制电路可以视为通信装置80B的通信单元802B,具有处理功能的处理器可以视为通信装置80B的处理单元801B。可选的,通信单元802B中用于实现接收功能的器件可以视为接收单元,接收单元用于执行本申请实施例中的接收的步骤,接收单元可以为接收机、接收器、接收电路等。通信单元802B中用于实现发送功能的器件可以视为发送单元,发送单元用于执行本申请实施例中的发送的步骤,发送单元可以为发送机、发送器、发送电路等。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元(例如接收单元)是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元(例如发送单元)是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
参考图9,为本申请实施例提供的一种通信装置(如可以是终端或第一网元或SMF或第二网元或第二SMF)的结构示意图,用于实现以上实施例中通信装置的操作。如图9所示,该通信装置包括:处理器910和接口930,可选的,还包括存储器920。该接口930用于实现与其他设备进行通信。
以上实施例中通信装置执行的方法可以通过处理器910调用存储器(可以是通信装置中的存储器920,也可以是外部存储器)中存储的程序来实现。即,用于通信装置的装置可以包括处理器910,该处理器910通过调用存储器中的程序,以执行以上方法实施例中的通信装置执行的方法。这里的处理器可以是一种具有信号的处理能力的集成电路,例如CPU。用于通信装置的装置可以通过配置成实施以上方法的一个或多个集成电路来实现。例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。或者,可以结合以上实现方式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
在一个或多个示例性的设计中,本申请所描述的上述功能可以在硬件、软件、固件或这三者的任意组合来实现。如果在软件中实现,这些功能可以存储与电脑可读的媒介上,或以一个或多个指令或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑存储媒介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存储媒介可以是任何通 用或特殊电脑可以接入访问的可用媒体。例如,这样的电脑可读媒体可以包括但不限于RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁性存储装置,或其它任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊电脑、或通用或特殊处理器读取形式的程序代码的媒介。此外,任何连接都可以被适当地定义为电脑可读媒介,例如,如果软件是从一个网站站点、服务器或其它远程资源通过一个同轴电缆、光纤电脑、双绞线、数字用户线(DSL)或以例如红外、无线和微波等无线方式传输的也被包含在所定义的电脑可读媒介中。所述的碟片(disk)和磁盘(disc)包括压缩磁盘、镭射盘、光盘、数字通用光盘(英文:Digital Versatile Disc,简称:DVD)、软盘和蓝光光盘,磁盘通常以磁性复制数据,而碟片通常以激光进行光学复制数据。上述的组合也可以包含在电脑可读媒介中。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。“多个”是指两个或两个以上,其它量词与之类似。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。本申请说明书的上述描述可以使得本领域技术任何可以利用或实现本申请的内容,任何基于所公开内容的修改都应该被认为是本领域显而易见的,本申请所描述的基本原则可以应用到其它变形中而不偏离本申请的发明本质和范围。因此,本申请所公开的内容不仅仅局限于所描述的实施例和设计,还可以扩展到与本申请原则和所公开的新特征一致的最大范围。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (40)

  1. 一种应用实例确定的方法,其特征在于,包括:
    第一网元获取终端的位置信息;
    所述第一网元根据所述终端的位置信息,确定至少一个第一多接入边缘计算MEC应用实例;
    所述第一网元发送所述至少一个第一MEC应用实例的地址信息给所述终端。
  2. 根据权利要求1所述的方法,其特征在于,所述第一网元获取终端的位置信息,包括:
    所述第一网元接收所述终端发送的第一消息,所述第一消息包括所述终端的位置信息;或者,
    所述第一网元接收核心网控制面功能网元发送的第二消息,所述第二消息包括所述终端的位置信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一网元存储有至少一个MEC应用实例的地址信息以及所述至少一个MEC应用实例的位置信息,所述第一网元根据所述终端的位置信息,确定至少一个第一MEC应用实例,包括:
    所述第一网元根据所述终端的位置信息和所述至少一个MEC应用实例的位置信息,从所述至少一个MEC应用实例中确定所述至少一个第一MEC应用实例。
  4. 一种应用实例确定的方法,其特征在于,包括:
    控制面功能网元向第一网元发送第一通知信息,所述第一通知信息用于通知所述第一网元终端的用户面路径有变化;
    所述第一网元获取所述终端的位置信息;
    所述第一网元根据所述终端的位置信息,确定至少一个第一多接入边缘计算MEC应用实例;
    所述第一网元发送所述至少一个第一MEC应用实例的地址信息给所述终端。
  5. 根据权利要求4所述的方法,其特征在于,所述第一网元获取所述终端的位置信息,包括:
    所述第一网元接收所述第一通知信息,所述第一通知信息包括所述终端的位置信息,所述终端的位置信息为目标用户面功能UPF的位置信息。
  6. 根据权利要求4或5所述的方法,其特征在于,所述方法还包括:
    所述第一网元接收所述终端发送的MEC应用实例变化订阅请求消息。
  7. 根据权利要求4至6任一项所述的方法,其特征在于,所述第一网元存储有至少一个MEC应用实例的地址信息以及所述至少一个MEC应用实例的位置信息,所述第一网元根据所述终端的位置信息,确定至少一个第一MEC应用实例,包括:
    所述第一网元根据所述终端的位置信息和所述至少一个MEC应用实例的位置信息,从所述至少一个MEC应用实例中确定所述至少一个第一MEC应用实例。
  8. 一种通信系统,其特征在于,包括:控制面功能网元和第一网元;
    所述控制面功能网元,用于向所述第一网元发送第一通知信息,所述第一通知信息用于通知所述第一网元终端的用户面路径有变化;
    所述第一网元,用于获取所述终端的位置信息,根据所述终端的位置信息,确定至少 一个第一多接入边缘计算MEC应用实例;
    所述第一网元,还用于发送所述至少一个第一MEC应用实例的地址信息给所述终端。
  9. 根据权利要求8所述的系统,其特征在于,
    所述第一网元,具体用于接收所述第一通知信息,所述第一通知信息包括所述终端的位置信息,所述终端的位置信息为目标用户面功能UPF的位置信息。
  10. 根据权利要求8或9所述的系统,其特征在于,
    所述第一网元,还用于接收所述终端发送的MEC应用实例变化订阅请求消息。
  11. 根据权利要求8至10任一项所述的系统,其特征在于,所述第一网元存储有至少一个MEC应用实例的地址信息以及所述至少一个MEC应用实例的位置信息;
    所述第一网元,具体用于根据所述终端的位置信息和所述至少一个MEC应用实例的位置信息,从所述至少一个MEC应用实例中确定所述至少一个第一MEC应用实例。
  12. 一种应用实例确定的方法,其特征在于,包括:
    第一网元从会话管理网元或源边缘使能服务器EES获取至少一个第一边缘数据网络EDN的信息,所述至少一个第一EDN根据终端的位置信息确定;
    所述第一网元在所述至少一个第一EDN中确定至少一个第一多接入边缘计算MEC应用实例;
    所述第一网元发送所述至少一个第一MEC应用实例的地址信息给所述终端或所述源EES。
  13. 根据权利要求12所述的方法,其特征在于,所述第一网元从会话管理网元或源EES获取至少一个第一EDN的信息,包括:
    所述第一网元向所述会话管理网元或所述源EES发送第三消息,所述第三消息用于请求至少一个EDN,所述至少一个EDN部署有所述终端请求的MEC应用实例;
    所述第一网元从所述会话管理网元或所述源EES接收所述至少一个第一EDN的信息。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一EDN的信息包括:所述第一EDN的数据网络应用标识DNAI。
  15. 根据权利要求14所述的方法,其特征在于,所述第一EDN的DNAI包括所述第一EDN中的EES的DNAI和/或所述第一EDN中的MEC应用实例的DNAI。
  16. 根据权利要求12-15任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网元发送所述至少一个第一MEC应用实例关联的EES的地址信息给所述终端或所述源EES,所述至少一个第一MEC应用实例关联的EES部署在所述至少一个第一EDN中。
  17. 根据权利要求12-16任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网元发送所述至少一个第一MEC应用实例的优先级信息给所述终端或所述源EES。
  18. 一种边缘使能服务器EES确定的方法,其特征在于,包括:
    第一网元从会话管理网元或源EES获取至少一个第一边缘数据网络EDN的信息,所述至少一个第一EDN根据终端的位置信息确定;
    所述第一网元在所述至少一个第一EDN中确定至少一个第一EES;
    所述第一网元发送所述至少一个第一EES的地址信息给所述终端或所述源EES。
  19. 根据权利要求18所述的方法,其特征在于,所述第一网元从会话管理网元或源EES获取至少一个第一EDN的信息,包括:
    所述第一网元向所述会话管理网元或所述源EES发送第三消息,所述第三消息用于请求至少一个EDN,所述至少一个EDN部署有所述终端请求的EES;
    所述第一网元从所述会话管理网元或所述源EES接收所述至少一个第一EDN的信息。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第一EDN的信息包括:所述第一EDN的数据网络应用标识DNAI。
  21. 根据权利要求20所述的方法,其特征在于,所述第一EDN的DNAI包括所述第一EDN中的EES的DNAI和/或所述第一EDN中的多接入边缘计算MEC应用实例的DNAI。
  22. 根据权利要求18-21任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网元发送所述至少一个第一EES的优先级信息给所述终端或所述源EES。
  23. 一种通信方法,其特征在于,包括:
    会话管理网元从第一网元接收第三消息,所述第三消息用于请求至少一个边缘数据网络EDN;所述至少一个EDN部署有终端请求的多接入边缘计算MEC应用实例,或者,所述至少一个EDN部署有所述终端请求的边缘使能服务器EES;
    所述会话管理网元根据所述第三消息向所述第一网元发送至少一个第一EDN的信息;
    在所述至少一个EDN部署有所述终端请求的MEC应用实例的情况下,所述第一EDN为部署有所述终端请求的MEC应用实例的EDN;在所述至少一个EDN部署有所述终端请求的EES的情况下,所述第一EDN为部署有所述终端请求的EES的EDN。
  24. 根据权利要求23所述的方法,其特征在于,所述至少一个第一EDN根据所述终端的位置信息和所述会话管理网元获取的至少一个EDN的信息确定。
  25. 根据权利要求23或24所述的方法,其特征在于,所述第一EDN的信息包括:所述第一EDN的数据网络应用标识DNAI。
  26. 根据权利要求25所述的方法,其特征在于,所述第一EDN的DNAI包括所述第一EDN中的EES的DNAI和/或所述第一EDN中的MEC应用实例的DNAI。
  27. 一种边缘使能服务器EES确定的方法,其特征在于,包括:
    第一网元从第二网元获取至少一个第一边缘数据网络EDN的信息,所述至少一个第一EDN根据终端的位置信息或所述终端的业务信息中的至少一个确定,所述第二网元为第一会话管理网元或网络开放功能NEF或源EES;
    所述第一网元根据所述至少一个第一EDN的信息确定至少一个第一EES;
    所述第一网元发送所述至少一个第一EES的地址信息给所述终端或所述源EES。
  28. 根据权利要求27所述的方法,其特征在于,所述第一网元从第二网元获取至少一个第一EDN的信息,包括:
    所述第一网元向所述第二网元发送第三消息,所述第三消息中包括用于确定所述终端的位置的信息或所述终端的业务信息中的至少一个;
    所述第一网元从所述第二网元接收所述至少一个第一EDN的信息,所述第一EDN与所述终端的位置信息或所述终端的业务信息中的至少一个匹配。
  29. 根据权利要求27或28所述的方法,其特征在于,所述第一EDN的信息包括:所述第一EDN的至少一个数据网络应用标识DNAI。
  30. 根据权利要求29所述的方法,其特征在于,所述第一EDN的DNAI包括所述第一EDN中的EES的DNAI和/或所述第一EDN中的MEC应用实例的DNAI。
  31. 根据权利要求27-30任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网元发送所述至少一个第一EES的优先级信息给所述终端或所述源EES。
  32. 一种通信方法,其特征在于,包括:
    第二网元从第一网元接收第三消息,所述第三消息中包括用于确定终端的位置的信息或所述终端的业务信息中的至少一个,所述第二网元为第一会话管理网元或网络开放功能NEF或源边缘使能服务器EES;
    所述第二网元根据所述第三消息向所述第一网元发送至少一个第一边缘数据网络EDN的信息,所述第一EDN与所述终端的位置信息或所述终端的业务信息中的至少一个匹配。
  33. 根据权利要求32所述的方法,其特征在于,所述第二网元根据所述第三消息向所述第一网元发送至少一个第一EDN的信息,包括:
    所述第二网元根据所述终端的位置信息确定第二会话管理网元;
    所述第二网元向所述第二会话管理网元发送请求消息,所述请求消息包括位置信息或业务信息中的至少一个,所述位置信息包含所述终端的位置信息,所述业务信息包含所述终端的业务信息;
    所述第二网元从所述第二会话管理网元接收所述至少一个第一EDN的信息;
    所述第二网元向所述第一网元发送所述至少一个第一EDN的信息。
  34. 根据权利要求32所述的方法,其特征在于,所述第二网元为所述NEF,所述第二网元根据所述第三消息向所述第一网元发送至少一个第一EDN的信息,包括:
    所述第二网元根据所述终端的位置信息和第一对应关系确定所述至少一个第一EDN的信息,所述第一对应关系包括位置区域信息和EDN的信息之间的对应关系;或者,
    所述第二网元根据所述终端的业务信息和第二对应关系确定所述至少一个第一EDN的信息,所述第二对应关系包括业务信息和EDN的信息之间的对应关系;或者,
    所述第二网元根据所述终端的位置信息和业务信息以及第三对应关系确定所述至少一个第一EDN的信息,所述第三对应关系包括位置区域信息、EDN的信息和业务信息之间的对应关系;
    所述第二网元向所述第一网元发送所述至少一个第一EDN的信息。
  35. 根据权利要求32-34任一项所述的方法,其特征在于,所述第一EDN的信息包括:所述第一EDN的至少一个数据网络应用标识DNAI。
  36. 根据权利要求35所述的方法,其特征在于,所述第一EDN的DNAI包括所述第一EDN中的EES的DNAI和/或所述第一EDN中的多接入边缘计算MEC应用实例的DNAI。
  37. 一种通信装置,其特征在于,包括:用于执行如权利要求1-3任一项所述方法的功能单元,或者,用于执行如权利要求4-7任一项所述方法的功能单元,或者,用于执行如权利要求12-17任一项所述方法的功能单元,或者,用于执行如权利要求18-22任一项所述方法的功能单元,或者,用于执行如权利要求23-26任一项所述方法的功能单元,或者,用于执行如权利要求27-31任一项所述方法的功能单元,或者,用于执行如权利要求32-36任一项所述方法的功能单元;
    其中,所述功能单元所执行的动作通过硬件实现或通过硬件执行相应的软件实现。
  38. 一种通信装置,其特征在于,包括:处理器;
    所述处理器与存储器连接,所述存储器用于存储计算机执行指令,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述通信装置实现如权利要求1-3任一项所述的方法,或者,实现如权利要求4-7任一项所述的方法,或者,实现如权利要求12-17任一项所述的方法,或者,实现如权利要求18-22任一项所述的方法,或者,实现如权利要求23-26任一项所述的方法,或者,实现如权利要求27-31任一项所述方法,或者,实现如权利要求32-36任一项所述方法。
  39. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-3任一项所述的方法,或者,执行如权利要求4-7任一项所述的方法,或者,执行如权利要求12-17任一项所述的方法,或者,执行如权利要求18-22任一项所述的方法,或者,执行如权利要求23-26任一项所述的方法,或者,执行如权利要求27-31任一项所述方法,或者,执行如权利要求32-36任一项所述方法。
  40. 一种包含指令的计算机程序产品,其特征在于,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-3任一项所述的方法,或者,执行如权利要求4-7任一项所述的方法,或者,执行如权利要求12-17任一项所述的方法,或者,执行如权利要求18-22任一项所述的方法,或者,执行如权利要求23-26任一项所述的方法,或者,执行如权利要求27-31任一项所述方法,或者,执行如权利要求32-36任一项所述方法。
PCT/CN2020/128213 2019-12-31 2020-11-11 应用实例确定的方法、装置及系统 WO2021135663A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20910957.8A EP4075867A4 (en) 2019-12-31 2020-11-11 USE CASE DETERMINATION METHOD, DEVICE AND SYSTEM
US17/852,681 US20220329649A1 (en) 2019-12-31 2022-06-29 Method for determining application instance, apparatus, and system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201911413716.3 2019-12-31
CN201911413716 2019-12-31
CN202010011314 2020-01-06
CN202010011314.7 2020-01-06
CN202010670950.0A CN113132897A (zh) 2019-12-31 2020-07-13 应用实例确定的方法、装置及系统
CN202010670950.0 2020-07-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/852,681 Continuation US20220329649A1 (en) 2019-12-31 2022-06-29 Method for determining application instance, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2021135663A1 true WO2021135663A1 (zh) 2021-07-08

Family

ID=76686433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128213 WO2021135663A1 (zh) 2019-12-31 2020-11-11 应用实例确定的方法、装置及系统

Country Status (3)

Country Link
US (1) US20220329649A1 (zh)
EP (1) EP4075867A4 (zh)
WO (1) WO2021135663A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023141753A1 (zh) * 2022-01-25 2023-08-03 Oppo广东移动通信有限公司 传输层安全性协议的建立方法及装置
WO2023141827A1 (en) * 2022-01-26 2023-08-03 Huawei Technologies Co., Ltd. Area of interest-specific information for mulit-access edge computing
US11843524B2 (en) 2019-10-25 2023-12-12 Verizon Patent And Licensing Inc. Method and system for selection and orchestration of multi-access edge computing resources

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023521621A (ja) * 2020-04-03 2023-05-25 インターデイジタル パテント ホールディングス インコーポレイテッド エッジネットワーク管理サーバの発見のための方法、装置、及びシステム
WO2022045841A1 (en) * 2020-08-27 2022-03-03 Samsung Electronics Co., Ltd. Method and apparatus of supervised learning approach for reducing latency during context switchover in 5g mec
GB2603575A (en) * 2020-10-07 2022-08-10 Samsung Electronics Co Ltd Improvements in and relating to communication path selection in an edge environment
US11665097B2 (en) * 2021-04-27 2023-05-30 Verizon Patent And Licensing Inc. Methods and systems for differentiating MEC flows using IP header signaling
US11895504B2 (en) * 2021-09-03 2024-02-06 Cisco Technology, Inc. Federated multi-access edge computing availability notifications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632813A (zh) * 2018-05-21 2018-10-09 北京邮电大学 移动边缘计算的移动性管理方法及系统
CN109218455A (zh) * 2017-06-30 2019-01-15 华为技术有限公司 一种应用实例地址的转换方法和装置
US20190020657A1 (en) * 2017-07-13 2019-01-17 Dell Products, Lp Method and apparatus for optimizing mobile edge computing for nomadic computing capabilities as a service
CN110167088A (zh) * 2019-05-29 2019-08-23 中国联合网络通信集团有限公司 一种会话的管理方法及装置
CN110381131A (zh) * 2019-07-15 2019-10-25 北京奇艺世纪科技有限公司 Mec节点标识的实现方法、移动终端、服务器和存储介质

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7403980B2 (en) * 2000-11-08 2008-07-22 Sri International Methods and apparatus for scalable, distributed management of virtual private networks
WO2002039306A1 (en) * 2000-11-09 2002-05-16 Sri International Systems and methods for negotiated resource utilization
EP1396132B1 (en) * 2001-04-18 2006-12-20 International Business Machines Corporation Method and computer system for selecting an edge server computer
JP4988143B2 (ja) * 2001-06-15 2012-08-01 アドバンスト・ネットワーク・テクノロジー・ラボラトリーズ・ピーティーイー・リミテッド コンピュータネットワーク
US7519683B2 (en) * 2004-04-26 2009-04-14 International Business Machines Corporation Dynamic media content for collaborators with client locations in dynamic client contexts
US20090113024A1 (en) * 2005-06-22 2009-04-30 Snigdha Verma Multicase Downloading Using Path Information
US8135840B2 (en) * 2008-11-20 2012-03-13 At&T Intellectual Property I, Lp Systems and methods for directing content requests to servers
US20150046591A1 (en) * 2013-08-09 2015-02-12 Zhongwen Zhu Dynamic edge server allocation
JP6825296B2 (ja) * 2016-10-11 2021-02-03 富士通株式会社 エッジサーバ,及びその暗号化通信制御方法
CN109275160B (zh) * 2017-07-17 2020-07-07 华为技术有限公司 数据分流方法、设备及系统
KR102412288B1 (ko) * 2017-08-14 2022-06-23 삼성전자 주식회사 제 3자 응용 서버에서 단말의 무선 연결 타입 변경을 확인하는 방법
CN109548082B (zh) * 2017-09-21 2021-03-30 华为技术有限公司 业务重定向方法及装置
US10104039B1 (en) * 2017-09-28 2018-10-16 Cloudflare, Inc. Establishing and using a tunnel from an origin server in a distributed edge compute and routing service
CN111052849B (zh) * 2017-09-28 2022-05-17 中兴通讯股份有限公司 移动网络交互代理的方法和设备
US10791366B2 (en) * 2017-11-30 2020-09-29 Hulu, LLC Fast channel change in a video delivery network
US10904947B2 (en) * 2018-05-16 2021-01-26 Huawei Technologies Co., Ltd. Message and system for application function influence on traffic routing
CN110535896B (zh) * 2018-05-25 2022-03-18 中兴通讯股份有限公司 一种边缘计算应用迁移的方法和装置
US11399257B2 (en) * 2019-08-16 2022-07-26 Cisco Technology, Inc. Methods to preemptively autoconfigure a mobile network to respond to external emergencies
US11277305B2 (en) * 2019-10-09 2022-03-15 Qualcomm Incorporated Edge discovery techniques in wireless communications systems
US11563828B2 (en) * 2019-10-31 2023-01-24 Qualcomm Incorporated Edge computing platform capability discovery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109218455A (zh) * 2017-06-30 2019-01-15 华为技术有限公司 一种应用实例地址的转换方法和装置
US20190020657A1 (en) * 2017-07-13 2019-01-17 Dell Products, Lp Method and apparatus for optimizing mobile edge computing for nomadic computing capabilities as a service
CN108632813A (zh) * 2018-05-21 2018-10-09 北京邮电大学 移动边缘计算的移动性管理方法及系统
CN110167088A (zh) * 2019-05-29 2019-08-23 中国联合网络通信集团有限公司 一种会话的管理方法及装置
CN110381131A (zh) * 2019-07-15 2019-10-25 北京奇艺世纪科技有限公司 Mec节点标识的实现方法、移动终端、服务器和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4075867A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11843524B2 (en) 2019-10-25 2023-12-12 Verizon Patent And Licensing Inc. Method and system for selection and orchestration of multi-access edge computing resources
WO2023141753A1 (zh) * 2022-01-25 2023-08-03 Oppo广东移动通信有限公司 传输层安全性协议的建立方法及装置
WO2023141827A1 (en) * 2022-01-26 2023-08-03 Huawei Technologies Co., Ltd. Area of interest-specific information for mulit-access edge computing

Also Published As

Publication number Publication date
US20220329649A1 (en) 2022-10-13
EP4075867A1 (en) 2022-10-19
EP4075867A4 (en) 2023-01-25

Similar Documents

Publication Publication Date Title
WO2021135663A1 (zh) 应用实例确定的方法、装置及系统
CN109842906B (zh) 一种通信的方法、装置及系统
EP3886404B1 (en) Domain name server allocation method and device
WO2020224463A1 (zh) 一种数据分析方法及装置
CN113132897A (zh) 应用实例确定的方法、装置及系统
US11729137B2 (en) Method and device for edge application server discovery
US20230171618A1 (en) Communication method and apparatus
EP4016961A1 (en) Information obtaining method and device
US20240073798A1 (en) Method and device for managing identifier of ue in edge computing service
US11489769B2 (en) Virtualized radio access network architecture for applications requiring a time sensitive network
US11483279B2 (en) Domain name system as an authoritative source for multipath mobility policy
CN114902634A (zh) 移动通信系统中提供应用服务器的信息的设备和方法
WO2021051420A1 (zh) 一种dns缓存记录的确定方法及装置
WO2023011217A1 (zh) 一种通信方法及装置
WO2020015634A1 (zh) 一种mec信息获取方法及装置
WO2020048469A1 (zh) 一种通信的方法及装置
WO2021212939A1 (zh) 通信方法、装置及系统
WO2022021971A1 (zh) 通信方法、第一策略控制网元及通信系统
WO2021072970A1 (zh) 一种限制用户终端接入upf的方法
CN112533177A (zh) 一种提供、发现移动边缘计算的方法及设备、装置、介质
WO2022022322A1 (zh) 访问本地网络的方法和装置
US20240048986A1 (en) Communication method and apparatus
WO2022222817A1 (zh) 一种边缘应用服务器的选择方法及装置
CN112104468B (zh) 一种管理服务的发现方法及装置
WO2021081712A1 (zh) 一种dns查询方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020910957

Country of ref document: EP

Effective date: 20220712

NENP Non-entry into the national phase

Ref country code: DE