WO2021135526A1 - 一种组合鸭式波浪能发电装置及发电方法 - Google Patents

一种组合鸭式波浪能发电装置及发电方法 Download PDF

Info

Publication number
WO2021135526A1
WO2021135526A1 PCT/CN2020/122224 CN2020122224W WO2021135526A1 WO 2021135526 A1 WO2021135526 A1 WO 2021135526A1 CN 2020122224 W CN2020122224 W CN 2020122224W WO 2021135526 A1 WO2021135526 A1 WO 2021135526A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
duck
shaft
gear
floating body
Prior art date
Application number
PCT/CN2020/122224
Other languages
English (en)
French (fr)
Inventor
曹飞飞
史宏达
韩蒙
江小强
黎明
刘臻
张嶔
朱凯
李妍妮
李德敏
钟子悦
张茴栋
Original Assignee
中国海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国海洋大学 filed Critical 中国海洋大学
Priority to KR1020227009564A priority Critical patent/KR102590380B1/ko
Publication of WO2021135526A1 publication Critical patent/WO2021135526A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1805Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem
    • F03B13/181Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for limited rotation
    • F03B13/1815Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for limited rotation with an up-and-down movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1885Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is tied to the rem
    • F03B13/189Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is tied to the rem acting directly on the piston of a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/406Transmission of power through hydraulic systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the invention belongs to the field of wave energy power generation, and relates to a combined duck-type wave energy power generation device and a power generation method.
  • Ocean wave energy is a clean and pollution-free energy in the true sense, and as a renewable energy with abundant reserves, its development potential is huge.
  • the oscillating float type wave energy power generation device has high energy harvesting efficiency and high stability.
  • the duck device is a wave energy device that the duck body reciprocally rotates around an axis to perform work. It has an excellent shape design and is therefore a wave energy device with high conversion efficiency.
  • the purpose of the present invention is to provide a combined duck-type wave energy power generation device and a power generation method that combines a parallel cantilever hydraulic energy harvesting system and a vertical pendulum nodding mechanical energy harvesting system with an ocean platform.
  • the advantages of the transmission mechanism such as low cost, easy maintenance, high reliability of the hydraulic transmission mechanism, and convenient energy storage, are of far-reaching significance.
  • the inventor is determined to forge ahead, focusing on the research and development of the combined duck-type wave energy power generation device, and has made gratifying progress in terms of low cost, high efficiency and high reliability.
  • the invention provides a combined duck-type wave energy power generation device, which is provided with a hydraulic energy harvesting system and a mechanical energy harvesting system;
  • the hydraulic energy harvesting system is installed on an ocean platform and has a nodding duck floating body and a cantilever connected to the nodding duck floating body Connecting mechanism;
  • the mechanical energy harvesting system is installed inside the nodding duck floating body, and has: a differential integration mechanism that unifies different or the same rotational speed; and is connected to both sides of the differential integration mechanism and is respectively installed with a pendulum Hammer, and convert two-way rotation into one-way rotation of two speed-changing mechanisms;
  • the nodding duck floating body has a front cabin at the duckbill end and a rear cabin at the duck body;
  • the cantilever connection mechanism has a The truss connection unit connecting the nodding duck floating body and the hydraulic oil circuit unit for conveying pressure oil;
  • the truss connection unit of the cantilever connection mechanism is hinged to the front cabin and the rear cabin of the nodding duck floating body
  • the hydraulic energy harvesting system can cleverly transform the floating heave motion of the nodding duck floating body under the action of the wave motion into the relative resetting movement around the fixed axis through the unstable structure of the parallelogram cantilever, thereby driving the hydraulic cylinder to work, and the wave
  • the pressure energy that can be converted into oil is transmitted by the oil pressure system to drive the oil pressure generator to generate electricity.
  • the mechanical energy harvesting system is installed inside the duck body of the nodding duck floating body independent of the hydraulic energy harvesting system, and the two sets of pendulums inside the nodding duck floating body are converted into rotation of the main shaft under the action of wave motion.
  • the unified rotation speed is integrated and output, so as to efficiently drive the gears to rotate and realize the generator to generate electricity.
  • the present invention not only uses the advantages of low cost and simple maintenance of the mechanical transmission mechanism, but also takes advantage of the advantages of high reliability and convenient energy storage of the hydraulic transmission mechanism, and creatively combines the two transmission mechanisms to ensure efficient conversion of captured energy. And utilization, the efficiency of energy capture is improved, and the application range of the overall power generation device is wider.
  • the front cabin is formed as a structure in which counterweights are placed in accordance with actual sea conditions to adjust the forward inclination angle of the nodding duck floating body.
  • the forward inclination angle of the nodding-duck floating body can be adjusted according to the characteristics of the sea conditions in different regions to improve the efficiency of energy harvesting.
  • the hydraulic oil circuit unit when there are multiple nodding duck floats, the hydraulic oil circuit unit is connected to the high pressure oil pipelines and low pressure oil delivery pipes of the multiple nodding duck floats through a three-way valve, and they are respectively integrated into the fuel tank.
  • a high-pressure oil pipe and a low-pressure oil pipe; the three-way valve is provided with the one-way valve and the mechanical energy harvesting system.
  • the two cantilevers hinged to the nodding duck float in the truss connection unit have the same length and are longer than the two cantilevers on the front and rear cabins of the nodding duck float. The length between two hinge points.
  • the reversing speed increasing mechanism includes an input shaft, a driven shaft, and a rotating output shaft that are mounted horizontally and parallel to each other; a clockwise one-way ratchet and a counterclockwise single are mounted on the input shaft.
  • a driven gear is installed on the driven shaft; a first drive gear and a second drive gear are installed on the rotating output shaft; wherein the clockwise one-way ratchet meshes with the second drive gear, so The counterclockwise one-way ratchet gear meshes with the driven gear, and the driven gear meshes with the first drive gear.
  • the differential speed integration mechanism includes a first rotating shaft, a second rotating shaft, and a power output shaft that are mounted horizontally and parallel to each other; and a first cone input is mounted on the first rotating shaft.
  • Gear; the second rotating shaft is mounted with a second bevel input gear and a speed-increasing gear, and a pair of bevel conversion gears are symmetrically installed on the speed-increasing gear;
  • An output gear is installed on the power generation output shaft, the first bevel input gear and the second bevel input gear are respectively meshed with the pair of bevel conversion gears at the same time, and the output gear and the speed increasing Gear meshing. With this, the different speeds of the output shafts on both sides are integrated and input into the same generator, which improves the power generation efficiency.
  • the rotation output shaft in the commutation speed increasing mechanism on one side and the first rotation shaft in the differential integration mechanism are the same shaft; all on the other side
  • the rotation output shaft in the commutation speed increasing mechanism and the second rotation shaft in the differential integration mechanism are the same shaft.
  • the present invention provides a power generation method, which utilizes the above-mentioned combined duck-type wave energy power generation device to generate power.
  • the power generation of the mechanical energy harvesting system inside the nodding duck floating body and the nodding duck floating body and the cantilever connecting mechanism are formed
  • the power generation of the hydraulic energy harvesting system is combined.
  • the two power generation methods are creatively combined, which can not only perform mechanical transmission type power generation through the mechanical energy harvesting system, but also hydraulic transmission type power generation through the hydraulic energy harvesting system, and use ocean wave energy very efficiently. It has realized the advantages of high energy capture and conversion rate, low cost, simple maintenance, high reliability, and convenient energy storage, so that the power generation device has a wider application range and a better development prospect.
  • the cantilever connection mechanism in the hydraulic energy harvesting system changes the diagonal position along with the ups and downs of the nodding duck floating body, driving the piston in the hydraulic cylinder
  • the rod reciprocates and retracts; when the piston rod retracts, low-pressure oil is drawn into one end of the hydraulic cylinder, and high-pressure oil is squeezed from the other end of the hydraulic cylinder into the accumulator installed on the oil circuit; when the When the piston rod extends, low-pressure oil is sucked into one end of the hydraulic cylinder, and high-pressure oil is squeezed into the accumulator from the other end of the hydraulic cylinder; the high-pressure oil in the accumulator flows into the hydraulic motor And drive to generate electricity.
  • the two pendulums in the mechanical energy harvesting system swing back and forth due to gravity, thereby driving the input shaft in the reversing speed increasing mechanism to rotate, After the clockwise or counterclockwise rotation of the input shaft is converted into rotation in the same direction through the mechanical cooperation between the gears, the rotation is output to the differential integration mechanism; If the input rotations are the same, there will be no relative rotation between the internal gears. If the input rotations from the left and right sides are inconsistent, then the internal gears will rotate relative to each other, thereby driving the output shaft to rotate to generate electricity.
  • the invention provides a combined duck-type wave energy power generation device and a power generation method that can combine a parallel cantilever type hydraulic energy harvesting system and a vertical swing nodding mechanical energy harvesting system with an ocean platform, which takes into account the low cost and ease of the mechanical transmission mechanism.
  • the advantages of maintenance and hydraulic transmission mechanism are high reliability, convenient for energy storage, etc., which are of far-reaching significance.
  • Figure 1 is a side view showing the overall structure of the combined duck-type wave energy power generation device of the present invention
  • Figure 2 is a perspective view showing the structure of the hydraulic energy harvesting system
  • Figure 3 is a schematic diagram showing the structure of the nodding duck floating body and its internal mechanical energy harvesting system
  • Figure 4 is a schematic diagram showing the structure of the reversing speed increasing mechanism and the differential speed integrating mechanism
  • Figure 5 is a partially enlarged schematic diagram showing the structure of the reversing speed increasing mechanism
  • Figure 6 is a partially enlarged schematic diagram showing the structure of the differential integration mechanism
  • 100-hydraulic energy harvesting system 200-cantilever connection mechanism; 300-nodding duck floating body, 400-mechanical energy harvesting system, 500-reversing speed increasing mechanism, 600-differential integrated mechanism,
  • 201-support steel frame 202-support steel frame fixed shaft
  • 203-side cantilever 204-upper parallel cantilever
  • 205-lower parallel cantilever 206-hydraulic cylinder
  • 207-piston rod 208-high pressure oil pipeline
  • 209-low pressure Oil pipeline 209-low pressure Oil pipeline
  • FIG. 1 shows the overall structure of the power generation device D. As shown in Figure 1, it has a parallel cantilever type hydraulic energy harvesting system 100 installed on the offshore platform OP and a vertical pendulum nodding type mechanical energy harvesting system 400 installed in the hydraulic energy harvesting system 100.
  • the hydraulic energy harvesting system 100 Equipped with a nodding duck floating body 300 that moves with the waves and a cantilever connection mechanism 200 of parallel truss structure.
  • the mechanical energy harvesting system 400 is equipped with a reversing speed increasing mechanism 500 that converts two-way rotation into one-way rotation and a differential speed that unifies different or the same speed. Integration agency 600.
  • the nodding duck floating body 300 itself produces bidirectional nodding movement and up and down movement under the action of the waves, and is transformed into a relative displacement between parallel cantilevers by forming a parallelogram and unstable structure of the cantilever connecting mechanism 200, so that the deformation brings about
  • the energy of the hydraulic energy harvesting system 100 is converted into electrical energy for storage or output.
  • the pendulum (detailed later) located inside the nodding duck floating body 300 produces uncoordinated and irregular swings due to the action of waves and the movement of the nodding duck floating body 300.
  • This swing (rotation) mechanical energy is passed through the reversing speed increasing mechanism 500.
  • the mechanical energy harvesting system 400 is converted into electrical energy.
  • FIG. 2 shows the structure of a hydraulic energy harvesting system 100 provided with a cantilever connection mechanism 200 and a nodding duck float 300.
  • Fig. 3 is a schematic diagram showing the structure of the nodding duck floating body and the mechanical energy harvesting system inside. The structure of the hydraulic energy harvesting system 100 will be described in detail below with reference to FIGS. 1-3.
  • the hydraulic energy harvesting system 100 includes a cantilever connection mechanism 200 and a nodding duck float 300.
  • the nodding duck floating body 300 has a cylindrical front cabin 301 at the end of the duck bill and a cylindrical rear cabin 302 on the main body of the duck body.
  • the front cabin 301 can be adjusted according to the actual sea conditions by adding counterweights to adjust the nodding duck floating body.
  • the 300 forward inclination angle is used to achieve the best energy harvesting efficiency, and the mechanical energy harvesting system 400 described later is installed in the space of the rear cabin 302.
  • the cantilever connection mechanism 200 includes a truss connection unit for connecting the nodding duck float 300 and a hydraulic oil circuit unit for conveying pressure oil.
  • connection modes of the left and right sides of the duck floating body 300 are symmetrical, so this embodiment only exemplifies and details the connection mode on one side.
  • the truss connection unit will be described in detail below with reference to Figures 1 and 2.
  • One end of the offshore platform OP is fixed with multiple pairs of supporting steel frames 201 for installing and supporting the nodding duck floating body 300, and a nodding duck floating body 300 is arranged between every two pairs of supporting steel frames 201.
  • a supporting steel frame fixing shaft 202 is provided between the tip ends of each pair of supporting steel frames 201 far away from the offshore platform OP.
  • Each supporting steel frame fixing shaft 202 is connected to the tip root of a lateral cantilever 203 and a lower layer respectively.
  • the tip roots of the parallel cantilever 205 are relatively independently hinged.
  • the tip root of the other side of the side cantilever 203 and the tip root of the upper parallel cantilever 204 are hinged to each other, and the tip root of the other side of the upper parallel cantilever 204 and the side of the front cabin 301 of the duckbill end of the nodding duck float 300 are mutually hinged. Hinged, the other tip root of the lower parallel cantilever 205 is hinged to one side of the rear cabin 302 of the nodding duck float 300 at the center of the cylindrical rear cabin 302.
  • the tip roots of the adjacent pairs of lower parallel cantilevers 205 and the other side of the rear cabin 302 are hinged to each other, and the tip roots of the adjacent pairs of upper parallel cantilevers 204 and the other side of the front cabin 301 are mutually hinged. Articulated. Therefore, the left and right sides of the nodding duck floating body 300 are fixed by a pair of upper and lower parallel cantilever arms 204 and 205.
  • lateral cantilevers 203 there are a total of four lateral cantilevers 203, four lower parallel cantilevers 205, and four upper parallel cantilevers 204.
  • Four pairs of supporting steel frames 201 fix two nodding duck floats 300, but the number is not limited to this. Adaptable choices can be made according to real-time needs.
  • the length of the upper parallel cantilever 204 is the same as the length of the lower parallel cantilever 205
  • the length of the side cantilever 203 is the same as the length between the two hinge points on the front cabin 301 and the rear cabin 302 of the nodding duck float 300, and the upper
  • the length of the lower parallel cantilever 204, 205 is longer than the length of the side cantilever frame 203.
  • the truss connection unit is formed as a linkage structure capable of relative displacement around the supporting steel frame fixed shaft 202 as the nodding duck floating body 300 heaves and sinks.
  • two hydraulic cylinders 206 are respectively provided between the parallel upper parallel cantilever 204 and the lower parallel cantilever 205 on the left and right sides of the nodding duck floating body 300.
  • a piston rod 207 is inserted into the hydraulic cylinder 206 in a nested manner. Near the hinge point of the upper parallel cantilever 204 and the side cantilever 203, one end of the piston rod 207 is hinged with the upper parallel cantilever 204. Near the hinge point of the lower parallel cantilever 205 and the nodding duck floating body 300, one end of the hydraulic cylinder 206 is connected to the lower layer.
  • the parallel cantilevers 205 are hinged to each other. Therefore, when the truss connection unit produces relative displacement due to wave motion, the hydraulic cylinder 206 and the piston rod 207 can also produce relative displacement, thereby performing work.
  • the hydraulic oil circuit unit includes: an oil tank 107, a low-pressure oil pipe 101 connected and extended on one side of the oil tank 107, a high-pressure oil pipe 102 connected and extended on the other side of the oil tank 107, a hydraulic motor 105 mounted on the high-pressure oil pipe 102, and a hydraulic motor 105 connected to the generator 106, the accumulator 103 installed on the high-pressure oil pipe 102 farther from the hydraulic motor 105 and the generator 106, and installed on the high-pressure oil pipe 102 between the hydraulic motor 105 and the accumulator 103
  • the solenoid ball valve 104 is used to the generator 106.
  • the oil inlet of the accumulator 103 is connected to the high-pressure oil pipe 102
  • the oil outlet is connected to the oil inlet of the solenoid ball valve 104
  • the oil outlet of the solenoid ball valve 104 is connected to the oil inlet of the hydraulic motor 105
  • the hydraulic motor 105 The oil outlet is connected to one side of the oil tank 107, the other side of the oil tank 107 is connected to the low pressure oil pipe 101, and the power output end of the hydraulic motor 105 is driveably connected to the power input end of the generator 106.
  • each hydraulic cylinder 206 is respectively connected with a high-pressure oil pipe 208 and a low-pressure oil pipe 209, and three-way valves are provided at the ends of the high and low-pressure oil pipes 208 and 209.
  • the low-pressure oil pipelines 209 are connected to each other through the three-way valve after the one-way delivery valve (in this embodiment, there are four low-pressure oil pipelines 209, and three three-way valves are required), and then connect with the ocean
  • the low-pressure oil pipe 101 on the platform OP is connected to the oil tank 107. With this, it can be driven by the relative motion generated by the wave motion, and the wave energy can be converted into electric energy, so that the electricity generated by the generator 106 is transmitted to the energy storage device of the offshore platform OP.
  • the mechanical energy harvesting system 400 is installed in the cylindrical space of the rear cabin 302 of the nodding duck float 300.
  • 4 and 5 are schematic diagrams showing the structure of the reversing speed increasing mechanism 500 and the differential speed integrating mechanism 600.
  • four supporting plates 401 are fixed in parallel with a certain interval, so that three spaces are sequentially formed between the supporting plates 401.
  • the speed-reversing mechanism 500 and two pendulums 404 fixed to the speed-reversing mechanism 500 through vertical rods 403 are respectively installed.
  • a differential integration mechanism 600 which is respectively connected to the reversing speed increasing mechanism 500 on both sides is installed.
  • FIG. 5 is a partially enlarged schematic diagram showing the structure of the reversing speed increasing mechanism 500.
  • the reversing speed increasing mechanism 500 will be described in detail below with reference to FIG. 5.
  • the reversing speed-increasing mechanism 500 on the left and right sides has a substantially symmetrical structure, so this embodiment only exemplifies one of them in detail.
  • the reversing speed increasing mechanism 500 as a transmission system includes an input shaft 501, a driven shaft 506, and a rotation output shaft 508 that are horizontally mounted between the support plates 401 through a plurality of fixed brackets 402.
  • One end of the vertical rod 403 is fixed to the input shaft 501 and the other end is connected to the pendulum 404.
  • a clockwise one-way ratchet 503 and a counterclockwise one-way ratchet 502 are installed and fixed on the input shaft 501.
  • a driven gear 507 is installed and fixed on the driven shaft 506.
  • a first driving gear 504 and a second driving gear 505 are installed and fixed on the rotating output shaft 508.
  • a clockwise one-way ratchet 503 meshes with the second drive gear 505
  • a counterclockwise one-way ratchet gear 502 meshes with the driven gear 507
  • the driven gear 507 meshes with the first drive gear 504.
  • a space for installing the reversing speed increasing mechanism 500 is formed between the two supporting plates 401.
  • a vertical rod 403, a clockwise one-way ratchet 503, and a counterclockwise one-way ratchet 502 are sequentially installed from the support plate 401 on the outer side of the two plates.
  • the first drive gear 504 and the second drive gear 505 are sequentially mounted from the support plate 401 on the middle side of the two plates.
  • an "L"-shaped fixing bracket 402 for mounting the rotation output shaft 508 is formed on the support plate 401 on the outer side
  • a “L”-shaped fixing bracket 402 for mounting the driven shaft 506 is formed on the support plate 401 on the middle side.
  • the bracket 402 is fixed, and the two ends of the input shaft 501 are respectively fixed to the supporting plates 401 on both sides by passing through the fixing bracket 402, so as to obtain a more stable structure.
  • the positional structural relationship between each shaft and each gear is not limited to this, as long as the above-mentioned meshing transmission relationship can be realized.
  • FIG. 6 is a partially enlarged schematic diagram showing the structure of the differential integration mechanism 600.
  • the differential integration mechanism 600 will be described in detail below with reference to FIG. 6.
  • the differential integration mechanism 600 includes: a first rotating shaft 601, a second rotating shaft 602, a first bevel input gear 603, a second bevel input gear 604, a speed increasing gear 607, a fixing bracket 608, An output gear 612, a short shaft 609, a pair of bevel conversion gears 610, and a power generation output shaft 611.
  • first rotating shaft 601 is rotatably mounted on the support plate 401 on one side, the other end is fixed with a first bevel input gear 603, and one end of the second rotating shaft 602 is rotatably mounted on the other end.
  • second bevel input gear 604 is fixed on the other end of the supporting plate 401.
  • a speed-increasing gear 607 is rotatably installed at the substantially middle part of the second rotating shaft 602 through a rotating bearing, and the movement of the speed-increasing gear 607 and the movement of the second rotating shaft 602 do not interfere with each other.
  • Two plate-shaped fixing brackets 608 are symmetrically formed on the side surface of the speed increasing gear 607, and the two fixing brackets 608 are parallel to each other and equidistant from the shaft center.
  • One side of the fixed bracket 608 is mounted with a short shaft 609 through a rotating bearing, and a bevel conversion gear 610 is fixed on the tip of the short shaft 609.
  • the short shaft 609 and the bevel conversion gear 610 form an integral body relative to the fixed support through a rotating bearing. 608 rotates, and the bevel conversion gear 610 is symmetrically installed on the fixed bracket 608 on the other side.
  • the first bevel input gear 603 and the second bevel input gear 604 mesh with a pair of bevel conversion gears 610 at the same time, respectively.
  • a power generation output shaft 611 is installed between the support plates 401, an output gear 612 is installed on the power generation output shaft 611, and the output gear 612 meshes with the speed increasing gear 607.
  • the generator 405 is fixedly installed on the support plate 401 and is inserted through the power output shaft 611, that is, the power output shaft 611 is drivingly connected to the power input end of the generator 405.
  • the rotation output shaft 508 in the commutation speed increasing mechanism 500 on one side and the first rotation shaft 601 in the differential integration mechanism 600 are the same shaft that penetrates the support plate 401.
  • the other The rotation output shaft 508 in the reverse speed increasing mechanism 500 on the side and the second rotation shaft 602 in the differential integration mechanism 600 are the same shaft that penetrates the support plate 401.
  • the input shaft 501 is finally drivingly connected to the power input end of the generator 405 fixed on the support plate 401 via the reversing speed increasing mechanism 500 and the differential integration mechanism 600.
  • the power generation method of the power generation device D of the present invention will be described in detail below.
  • the power generation device D After the power generation device D is installed and started, adjust the counterweight in the front cabin 301 of the nodding duck float 300 according to the specific sea conditions, and then adjust the forward inclination angle of the nodding duck float 300 to achieve the best energy harvesting state.
  • the waves beat the nodding duck float 300 to cause it to make a two-way nodding movement accompanied by up and down movement with the waves.
  • the cantilever connection mechanism 200 is hinged with the nodding duck float 300 and forms a parallelogram unstable structure ( Parallelogram structure with an unfixed angle), therefore, the diagonal position of the parallelogram structure changes, so that the piston rod 207 in the hydraulic cylinder 206 reciprocates and retracts.
  • low pressure oil is drawn into one end of the hydraulic cylinder 206 (for example, the lower end) from the low pressure oil pipe 101 through the one-way oil inlet valve on the three-way valve and the low pressure oil delivery pipe 209, and the high pressure oil is drawn from the hydraulic cylinder 206
  • the high-pressure oil delivery pipe 208 at the other end is squeezed into the accumulator 103 through the one-way oil outlet valve on the three-way valve and the high-pressure oil pipe 102.
  • low pressure oil is drawn into one end of the hydraulic cylinder 206 (for example, the upper end) from the low pressure oil pipe 101 through the one-way oil inlet valve on the three-way valve and the low pressure oil delivery pipe 209, and the high pressure oil is drawn from the hydraulic cylinder 206
  • the high-pressure oil delivery pipe 208 at the other end is squeezed into the accumulator 103 through the one-way oil outlet valve on the three-way valve and the high-pressure oil pipe 102.
  • the solenoid ball valve 104 When the high-pressure oil in the accumulator 103 rises to a certain pressure value, the solenoid ball valve 104 is opened. The high-pressure oil enters the hydraulic motor 105 and drives the hydraulic motor 105 to rotate to drive the generator 106 to generate electricity. The oil outlet of the hydraulic motor 105 flows out to the oil tank 107. When the high pressure oil in the accumulator 103 drops to a certain pressure value, the electromagnetic ball valve 104 is closed.
  • the nodding duck floating body 300 floating on the sea will nod in two directions and move up and down under the action of the waves. Due to the effect of inertia, the vertical rod 403 in the rear cabin 302 no longer interacts with the nodding duck.
  • the original horizontal plane of the floating body 300 is orthogonal, that is, an angle is formed between the vertical rod 403 and the original horizontal plane.
  • the left and right pendulums 404 swing back and forth, so that the respective vertical rods 403 drive the input shaft 501 to rotate.
  • the clockwise or counterclockwise rotation of the input shaft 501 is converted into rotation in the same direction through the mechanical cooperation between the gears, and then the differential integration mechanism 600 is driven by rotating the output shaft 508.
  • the clockwise one-way ratchet 503 meshes with the second drive gear 505
  • the counterclockwise one-way ratchet 502 meshes with the driven gear 507
  • the driven gear 507 meshes with the first drive gear 504
  • the first drive gear 504 meshes with the first drive gear 504.
  • the two driving gears 505 are both on the rotating output shaft 508 as a driving shaft.
  • the pendulum 404 rotates clockwise, the one-way ratchet 503 rotates clockwise, driving the second driving gear 505 to rotate, thereby driving the rotation output shaft 508 to rotate.
  • the one-way ratchet 502 rotates counterclockwise, driving the driven gear 507 to rotate, thereby driving the first driving gear 504 to rotate, and then driving the rotating output shaft 508 to rotate.
  • the rotation is output to the differential integration mechanism 600, and the rotations of the left and right reversing speed increasing mechanisms 500 to the differential integration mechanism 600 are in the same direction.
  • the differential integration mechanism 600 if the rotation speeds of the first rotation shaft 601 and the second rotation shaft 602 on the left and right sides (ie, the rotation output shaft 508 on the left and right sides) are the same, the first bevel input gear 603 and the second The bevel input gear 604 rotates at the same speed and remains relatively stationary with the fixed bracket 608 and rotates together to drive the speed increasing gear 607.
  • the pair of bevel conversion gears 610 mesh with the first bevel input gear 603 and the second bevel input gear 604 simultaneously, they do not rotate relative to each other, that is, the pair of bevel conversion gears 610 and connected thereto
  • the stub shaft 609 does not rotate relative to the rotating bearing, so that the speed-increasing gear 607 maintains the same steering and rotational speed as the first bevel input gear 603 and the second bevel input gear 604.
  • a pair of bevel conversion gears 610 meshes with the first bevel input gear 603 and the second bevel input gear 604 respectively simultaneously and relatively rotates, that is, a pair of bevel conversion gears 610 and a short shaft 609 connected to it.
  • the relative rotation relative to the rotating bearing drives the speed-increasing gear 607 to rotate, and the speed-increasing gear 607 drives the output gear 612 to rotate, so that the power generation input shaft 611 installed with the output gear 612 rotates accordingly and drives the generator 405 to generate electricity.
  • the electric energy generated by the generator 405 is first stored in the battery in the form of direct current, and then the stored direct current is converted into alternating current through the inverter and transmitted to the energy storage device of the offshore platform OP via a cable. The details are omitted.
  • the floating heave motion of the nodding duck floating body under the action of the wave motion is transformed into a circling motion through the hydraulic energy harvesting system and the unstable structure of the parallelogram cantilever.
  • the mechanical energy harvesting system independent of the hydraulic energy harvesting system is installed inside the duck body of the nodding duck floating body to convert the two sets of pendulums inside the nodding duck floating body into the rotation of the main shaft under the action of wave motion.
  • the non-uniform speed is integrated and output, so as to efficiently drive the gears to rotate and realize the generator to generate electricity.
  • the present invention not only uses the advantages of low cost and simple maintenance of the mechanical transmission mechanism, but also takes advantage of the advantages of high reliability and convenient energy storage of the hydraulic transmission mechanism, and creatively combines the two transmission mechanisms to make the overall power generation device
  • the application range is wider.
  • it can realize the power generation combination of the internal mechanical power generation of the nodding duck floating body and the hydraulic power generation between the whole nodding duck floating body and the platform, which ensures the efficient conversion and utilization of captured energy and improves the efficiency of energy capture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

一种组合鸭式波浪能发电装置及发电方法,其具备液压捕能系统(100)和机械捕能系统(400);液压捕能系统(100)安装于海洋平台上,具有点头鸭浮体(300)及与点头鸭浮体(300)连接的悬臂连接机构(200);机械捕能系统(400)安装于点头鸭浮体(300)内部,具有差速整合机构(600)和换向增速机构(500)。该发电装置及发电方法将两种发电方式相组合,高效利用了海洋波浪能。

Description

一种组合鸭式波浪能发电装置及发电方法 技术领域
本发明属于波浪能发电领域,涉及一种组合鸭式波浪能发电装置及发电方法。
背景技术
海洋波浪能是一种真正意义上的清洁无污染能源,且作为一种储量丰富的可再生能源,其开发潜力巨大。当前,海洋波浪能转换电能的形式多种多样,出现了不同形式的波浪能装置,而振荡浮子式波浪能发电装置捕能效率高、具有较高的稳定性。其中,鸭式装置是一种鸭体绕轴往复旋转做功的波浪能装置,其具有优良的外形设计,因此是一种转换效率很高的波浪能装置。
我国波浪能具有流密度低、波高较小、波浪周期较短等特点,这些特殊的资源条件提出了更高的捕获难度。传统的漂浮鸭式波浪能装置成本费用较高且受潮位影响较大,此外,我国目前的波浪能俘获及转换装置大多为单一独立的装置,普遍存在波浪俘获效率不稳定等问题。因此为了追求更高捕能效率,不能仅局限于研究单体波浪能发电装置,应该综合利用多种波浪能捕能形式,并使之与海洋平台相结合,为海上设施提供电能。
技术问题
发明要解决的问题:
针对上述问题,本发明的目的在于提供一种将平行悬臂式液压捕能系统和竖摆点头式机械捕能系统与海洋平台相结合的组合鸭式波浪能发电装置及发电方法,其兼顾机械式传动机构成本低廉、易于维护和液压传动机构可靠性高、便于储能等的优点,意义深远。
技术解决方案
发明人锐意进取,注重组合鸭式波浪能发电装置的研究与开发,在低成本、高效和高可靠性方面取得了可喜进展。
解决问题的技术手段:
本发明提供一种组合鸭式波浪能发电装置,具备液压捕能系统和机械捕能系统;所述液压捕能系统安装于海洋平台上,具有点头鸭浮体及与所述点头鸭浮体连接的悬臂连接机构;所述机械捕能系统安装于所述点头鸭浮体内部,具有:将不同或相同转速统一的差速整合机构;和与所述差速整合机构的两侧分别连接且分别安装有摆锤、并将双向转动转化为单向转动的两个换向增速机构;所述点头鸭浮体具备位于鸭嘴端的前舱和位于鸭身主体的后舱;所述悬臂连接机构具有用于所述连接点头鸭浮体的桁架连接单元和用于输送压力油的液压油路单元;所述悬臂连接机构的所述桁架连接单元通过铰接分别与所述点头鸭浮体的所述前舱和所述后舱连接,共同形成为能随所述点头鸭浮体的位移而位移的平行四边形立方体的结构;所述桁架连接单元上设置有与液压油路单元通过油路连通的液压缸和活塞杆。
根据本发明,液压捕能系统能巧妙地通过平行四边形悬臂的不稳定结构将点头鸭浮体在波浪运动作用下浮动升沉运动转变成绕固定轴的相对往复位移,从而驱动液压缸工作,将波浪能转换为油的压能,经油压系统输送后驱动油压发电机发电。此外,机械捕能系统独立于液压捕能系统地设置于点头鸭浮体的鸭体内部,将点头鸭浮体内部的两组摆锤在波浪运动作用下的不协同转动转化为主轴转动,并将不统一的转速整合后输出,从而高效地带动齿轮转动进而实现发电机发电。即,本发明既采用了机械式传动机构成本低、维护简单的优点,又利用了液压传动机构可靠性高、便于储能的优点,创造性地将两种传动机构组合,保证了捕获能量高效转化与利用,提高了捕能效率,使得整体发电装置应用范围更广。
也可以是,本发明中,所述前舱形成为根据实际海况放入配重块以调节所述点头鸭式浮体前倾角的结构。借助于此,可以针对不同地区的海况特点调节点头鸭式浮体前倾角以提高捕能效率。
也可以是,本发明中,当所述点头鸭浮体为多个时,所述液压油路单元通过三通阀分别连通多个所述点头鸭浮体的高压输油管和低压输油管并分别汇总至油箱的高压油管和低压油管;所述三通阀上设有单向阀所述机械捕能系统。
也可以是,本发明中,所述桁架连接单元中的与所述点头鸭浮体铰接的两条悬臂的长度相同,并且长于所述点头鸭浮体的所述前舱和所述后舱上的两个铰接点之间的长度。
也可以是,本发明中,所述换向增速机构具备水平且彼此平行地安装的输入轴、从动轴和转动输出轴;所述输入轴上安装有顺时针单向棘轮和逆时针单向棘轮;所述从动轴上安装有从动齿轮;所述转动输出轴上安装有第一驱动齿轮和第二驱动齿轮;其中,所述顺时针单向棘轮与第二驱动齿轮啮合,所述逆时针单向棘轮与所述从动齿轮啮合,所述从动齿轮与所述第一驱动齿轮啮合。借助于此,可将机械捕能系统两侧摆锤的非同向摆动转化为同向并放大转速。
也可以是,本发明中,所述差速整合机构具备水平且彼此平行地安装的第一转动轴、第二转动轴和发电输出轴;所述第一转动轴上安装有第一锥形输入齿轮;所述第二转动轴上安装有第二锥形输入齿轮和增速齿轮,且在所述增速齿轮上对称地安装一对锥形转换齿轮;
所述发电输出轴上安装有输出齿轮,所述第一锥形输入齿轮和所述第二锥形输入齿轮分别同时与所述一对锥形转换齿轮啮合,所述输出齿轮与所述增速齿轮啮合。借助于此,将两侧输出轴的不同转速整合并输入到同一发电机中,提高发电效率。
也可以是,本发明中,一侧的所述换向增速机构中的所述转动输出轴和所述差速整合机构中的所述第一转动轴为同一根轴;另一侧的所述换向增速机构中的所述转动输出轴和所述差速整合机构中的所述第二转动轴为同一根轴。
本发明提供一种发电方法,其利用上述组合鸭式波浪能发电装置进行发电,将所述点头鸭浮体内部的所述机械捕能系统的发电和所述点头鸭浮体与所述悬臂连接机构构成的所述液压捕能系统的发电相组合。
根据本发明,创造性地将两种发电方式相组合,既能通过机械捕能系统进行机械式传动式发电,又能通过液压捕能系统进行液压传动式发电,非常高效地利用了海洋波浪能,实现了能量捕获及转化率高、成本低、维护简单、可靠性高、便于储能等优点,使得发电装置应用范围更广,发展前景更优越。
也可以是,本发明中,在海面波浪的作用下,所述液压捕能系统中的所述悬臂连接机构随所述点头鸭浮体的起伏而对角位置发生位移变化,带动液压缸内的活塞杆往复伸缩;当所述活塞杆缩回时,低压油被吸入所述液压缸的一端,高压油从所述液压缸的另一端被挤入安装于油路上的蓄能器内;当所述活塞杆伸出时,低压油被吸入所述液压缸的一端,高压油从所述液压缸的另一端被挤入所述蓄能器内;使所述蓄能器内的高压油流入液压马达并驱动,从而发电。
也可以是,本发明中,在海面波浪的作用下,所述机械捕能系统中的两个所述摆锤因重力发生往复摆动,从而带动所述换向增速机构中的输入轴转动,通过齿轮间的机械配合将输入轴的顺时针或逆时针的转动转化为同一方向的转动后,向所述差速整合机构输出所述转动;所述差速整合机构中,若从左右两侧输入的所述转动一致,则内部齿轮间不发生相对转动,若从左右两侧输入的所述转动不一致,则内部齿轮间发生相对转动,进而带动输出轴转动而发电。
有益效果
本发明提供一种能将平行悬臂式液压捕能系统和竖摆点头式机械捕能系统与海洋平台相结合的组合鸭式波浪能发电装置及发电方法,其兼顾机械式传动机构成本低廉、易于维护和液压传动机构可靠性高、便于储能等优点,意义深远。
附图说明
图1是示出本发明的组合鸭式波浪能发电装置的整体结构的侧视图;
图2是示出液压捕能系统的结构的立体图;
图3是示出点头鸭浮体及其内部的机械捕能系统的结构示意图;
图4是示出换向增速机构和差速整合机构的结构示意图;
图5是局部放大示出换向增速机构的结构示意图;
图6是局部放大示出差速整合机构的结构示意图;
符号说明:
D-组合鸭式波浪能发电装置,OP-海洋平台,
100-液压捕能系统,200-悬臂连接机构;300-点头鸭浮体,400-机械捕能系统,500-换向增速机构,600-差速整合机构,
101-低压油管,102-高压油管,103-蓄能器,104-电磁球阀,105-液压马达,106-发电机,107-油箱,
201-支撑钢架,202-支撑钢架固定轴,203-侧方悬臂,204-上层平行悬臂,205-下层平行悬臂,206-液压缸,207-活塞杆,208-高压输油管,209-低压输油管,
301-前舱,302-后舱,
401-支撑板,402-固定支架,403-竖直杆,404-摆锤,405-发电机,
501-输入轴,502-逆时针单向棘轮,503-顺时针单向棘轮,504-第一驱动齿轮,505-第二驱动齿轮,506-从动轴,507-从动齿轮,508-转动输出轴,
601-第一转动轴,602-第二转动轴,603-第一锥形输入齿轮,604-第二锥形输入齿轮, 607-增速齿轮,608-固定支架,609-短轴,610-锥形转换齿轮,611-发电输出轴,612-输出齿轮。
本发明的最佳实施方式
以下结合下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。在各图中相同或相应的附图标记表示同一部件,并省略重复说明。
在此公开一种组合鸭式波浪能发电装置D(以下有时会简称为发电装置D),图1示出了该发电装置D的整体结构。如图1所示,其具有安装于海洋平台OP上的平行悬臂式的液压捕能系统100和安装于液压捕能系统100内的竖摆点头式的机械捕能系统400,液压捕能系统100具备随波浪运动的点头鸭浮体300和平行桁架结构的悬臂连接机构200,机械捕能系统400具备将双向转动转化为单向转动的换向增速机构500和将不同或相同转速统一的差速整合机构600。
其中,点头鸭浮体300自身在波浪的作用下产生双向点头运动及上下起伏运动,通过形成为平行四边形而结构不稳定的悬臂连接机构200转变为平行悬臂间的相对位移,从而该变形所带来的的能量由液压捕能系统100转化为电能储存或输出。与此同时,位于点头鸭浮体300内部的摆锤(详情后述)因波浪作用及点头鸭浮体300的运动而产生不协同且不规则摆动,该摆动(转动)机械能经由换向增速机构500和差速整合机构600整合后,由机械捕能系统400转化成电能。
(液压捕能系统100)
图2示出了具备悬臂连接机构200和点头鸭浮体300的液压捕能系统100的结构。图3是示出点头鸭浮体及其内部的机械捕能系统的结构示意图。以下结合图1-3详细说明液压捕能系统100的结构。
液压捕能系统100具备悬臂连接机构200和点头鸭浮体300。其中,点头鸭浮体300具备位于鸭嘴端的圆筒状的前舱301和位于鸭身主体的圆筒状的后舱302,前舱301可根据实际海况放入配重块来调节点头鸭式浮体300前倾角以达到最佳捕能效率,后舱302的空间内安装有后述的机械捕能系统400。悬臂连接机构200具备用于连接点头鸭浮体300的桁架连接单元和用于输送压力油的液压油路单元。如图2可知,本实施形态中共设有两个点头鸭浮体300,由于连接方式相同,故而本实施形态仅示例详述其中一个点头鸭浮体300与悬臂连接机构200的连接方式,此外,由于点头鸭浮体300左右两侧的连接方式对称,故而本实施形态仅示例详述其中一侧的连接方式。
以下结合图1、2详述桁架连接单元。海洋平台OP的一端侧固定有用于安装并支撑点头鸭浮体300的多对支撑钢架201,每两对支撑钢架201之间设置一个点头鸭浮体300。在每对支撑钢架201的远离海洋平台OP的梢端之间设有一根支撑钢架固定轴202,各支撑钢架固定轴202分别与一根侧方悬臂203的梢端根部和一根下层平行悬臂205的梢端根部相对独立地铰接。侧方悬臂203的另一方的梢端根部与上层平行悬臂204的梢端根部相互铰接,上层平行悬臂204的另一方的梢端根部与点头鸭浮体300的鸭嘴端的前舱301的一侧相互铰接,下层平行悬臂205的另一方的梢端根部在圆筒状的后舱302的中心处与点头鸭浮体300的后舱302的一侧相互铰接。相对称地,相邻成对的下层平行悬臂205的梢端根部与后舱302的另一侧相互铰接,相邻成对的上层平行悬臂204的梢端根部与前舱301的另一侧相互铰接。从而点头鸭浮体300的左右两侧被一对上、下层平行悬臂204、205固定。
本实施形态中,共设有四根侧方悬臂203、四根下层平行悬臂205和四根上层平行悬臂204,四对支撑钢架201分别固定两个点头鸭浮体300,但数量不限于此,可根据实时需求做适应性选择。
又,上层平行悬臂204的长度与下层平行悬臂205的长度相同,侧方悬臂203的长度与点头鸭浮体300的前舱301和后舱302上的两个铰接点之间的长度相同,并且上、下层平行悬臂204、205的长度长于侧方悬臂架203的长度。由此,从点头鸭浮体300的侧面观察,上层平行悬臂204、下层平行悬臂205、侧方悬臂203和点头鸭浮体300共同构成了容易相对位移的平行四边形结构。此外,四根侧方悬臂203彼此平行,四根下层平行悬臂205和四根上层平行悬臂204彼此相互平行,从而通过铰接构成了结构不稳定的平行四边形立方体结构。由此,桁架连接单元形成为能够随点头鸭浮体300的升沉而整体绕支撑钢架固定轴202相对位移的联动结构。
又,在点头鸭浮体300的左右两侧的平行的上层平行悬臂204与下层平行悬臂205之间,分别设置两个液压缸206。液压缸206内嵌套地插入有活塞杆207。在靠近上层平行悬臂204和侧方悬臂203的铰接点处,活塞杆207一端与上层平行悬臂204相互铰接,在靠近下层平行悬臂205和点头鸭浮体300的铰接点处,液压缸206一端与下层平行悬臂205相互铰接。由此,在桁架连接单元因波浪运动而产生相对位移时,液压缸206与活塞杆207也能够产生相对位移,从而做功。
以下结合图1、2详述液压油路单元。液压油路单元具备:油箱107、与油箱107一侧连接并延伸的低压油管101、与油箱107另一侧连接并延伸的高压油管102、安装于高压油管102上的液压马达105、与液压马达105连接的发电机106、比液压马达105和发电机106远离油箱107地安装于高压油管102上的蓄能器103、以及位于液压马达105与蓄能器103之间且安装于高压油管102上的电磁球阀104。换言之,蓄能器103的进油口与高压油管102连接,出油口与电磁球阀104的进油口连接,电磁球阀104的出油口与液压马达105的进油口连接,液压马达105的出油口与油箱107的一侧连接,油箱107的另一侧与低压油管101连接,液压马达105的动力输出端与发电机106的动力输入端可传动地连接。
又,每个液压缸206上分别连接有一根高压输油管208和一根低压输油管209,在高、低压输油管208、209的末端设置有三通阀。使各高压输油管208经单向出油阀后通过三通阀彼此连通并汇总(本实施形态中为四根高压输油管208,需三个三通阀),然后与海洋平台OP上的高压油管102连接从而与油箱107连接。同理,通过三通阀使各低压输油管209经单向出油阀后通过三通阀彼此连通并汇总(本实施形态中为四根低压输油管209,需三个三通阀),然后与海洋平台OP上的低压油管101连接从而与油箱107连接。借助于此,能够通过波浪运动产生的相对运动来进行驱动,将波浪能转换为电能,从而发电机106发出的电输送至海洋平台OP的储能装置中。
(机械捕能系统400)
如前所述,点头鸭浮体300的后舱302的圆筒状空间内安装有机械捕能系统400。图4、5是示出换向增速机构500和差速整合机构600的结构示意图。如图3、4、5所示,在后舱302内,平行且隔着一定间隔地固定有四块支撑板401,从而支撑板401之间依次形成有三个空间。在三个空间中位于左右两侧的空间内,分别安装有换向增速机构500和通过竖直杆403分别固定于换向增速机构500上的两个摆锤404。在三个空间中位于中间的空间内,安装有与两侧的换向增速机构500分别连接的差速整合机构600。
图5是局部放大示出换向增速机构500的结构示意图。以下结合图5详述换向增速机构500。左右两侧的换向增速机构500具有左右大致对称的结构,故而本实施形态仅示例详述其中一侧。
换向增速机构500作为一种传动系统具备:通过多个固定支架402而水平安装于支撑板401之间的彼此平行的输入轴501、从动轴506和转动输出轴508。竖直杆403一端固定于输入轴501,另一端与摆锤404连接。输入轴501上安装固定有顺时针单向棘轮503和逆时针单向棘轮502。从动轴506上安装固定有从动齿轮507。转动输出轴508上安装固定有第一驱动齿轮504和第二驱动齿轮505。各齿轮间的结构关系如下:顺时针单向棘轮503与第二驱动齿轮505啮合,逆时针单向棘轮502与从动齿轮507啮合,从动齿轮507与第一驱动齿轮504啮合。
本实施形态中,两块支撑板401之间形成安装换向增速机构500的空间。在输入轴501上,从两块板中靠外侧的支撑板401起依次安装竖直杆403、顺时针单向棘轮503和逆时针单向棘轮502。在转动输出轴508上,从两块板中靠中间侧的支撑板401起依次安装第一驱动齿轮504和第二驱动齿轮505。此外,在靠外侧的支撑板401上形成用于安装转动输出轴508的“L”状固定支架402,在靠中间侧的支撑板401上形成用于安装从动轴506的“匸”状的固定支架402,且输入轴501以穿过该固定支架402的形式两端分别固定于两侧的支撑板401,从而获得更稳定的结构。但是,各轴与各齿轮的位置结构关系均不限于此,只要能实现上述啮合传动关系即可。
图6是局部放大示出差速整合机构600的结构示意图。以下结合图6详述差速整合机构600。如图6所示,差速整合机构600具备:第一转动轴601、第二转动轴602、第一锥形输入齿轮603、第二锥形输入齿轮604、增速齿轮607、固定支架608、输出齿轮612、短轴609、一对锥形转换齿轮610、发电输出轴611。
具体而言,第一转动轴601的一端可转动地安装于一侧的支撑板401,另一端上固定有第一锥形输入齿轮603,第二转动轴602的一端可转动地安装于另一侧的支撑板401,另一端上固定有第二锥形输入齿轮604。又,第二转动轴602的大致中间部位通过转动轴承可转动地安装有增速齿轮607,且增速齿轮607的运动与第二转动轴602的运动互不干扰。在增速齿轮607的侧表面上对称地形成两个板状的固定支架608,该两个固定支架608彼此平行且与轴心等距。一侧的固定支架608上通过转动轴承而安装有短轴609,短轴609的梢端上固定有锥形转换齿轮610,短轴609与锥形转换齿轮610构成整体通过转动轴承相对于固定支架608发生转动,而另一侧的固定支架608上对称地安装锥形转换齿轮610。本实施形态中,第一锥形输入齿轮603和第二锥形输入齿轮604分别同时与一对锥形转换齿轮610啮合。
又,在支撑板401之间安装发电输出轴611,发电输出轴611上安装有输出齿轮612,输出齿轮612与增速齿轮607啮合。又,发电机405固定安装于支撑板401上,且被发电输出轴611插通,即、发电输出轴611与发电机405的动力输入端传动连接。
此外,本实施形态中,一侧的换向增速机构500中的转动输出轴508和差速整合机构600中的第一转动轴601为贯穿支撑板401的同一根轴,同样地,另一侧的换向增速机构500中的转动输出轴508和差速整合机构600中的第二转动轴602为贯穿支撑板401的同一根轴。借助于此,输入轴501经由换向增速机构500和差速整合机构600最终与固定在支撑板401上的发电机405的动力输入端传动连接。
下面详细说明本发明的发电装置D的发电方法。
(液压捕能系统100的发电方法)
发电装置D安装就位并启动后,根据具体海况,调整点头鸭浮体300的前舱301中的配重,进而调节点头鸭浮体300前倾角,达到最佳捕能工作状态。在海面波浪的作用下,海浪拍打点头鸭浮体300从而使其发生双向点头式运动并伴有上下随波起伏运动,由于悬臂连接机构200通过铰接与点头鸭浮体300且构成平行四边形不稳定结构(角度不固定的平行四边形结构),因此平行四边形结构对角位置发生位移变化,从而液压缸206内的活塞杆207往复伸缩运动。
当活塞杆207缩回时,低压油从低压油管101经三通阀上的单向入油阀和低压输油管209而被吸入液压缸206的一端(例如可为下端),高压油从液压缸206另一端(例如可为上端)的高压输油管208经三通阀上的单向出油阀和高压油管102而被挤入蓄能器103内。
当活塞杆207伸出时,低压油从低压油管101经三通阀上的单向入油阀和低压输油管209而被吸入液压缸206的一端(例如可为上端),高压油从液压缸206另一端(例如可为下端)的高压输油管208经三通阀上的单向出油阀和高压油管102而挤入蓄能器103内。
当蓄能器103内高压油升至一定压力值时开启电磁球阀104,高压油进入液压马达105并驱动液压马达105转动从而带动发电机106发电,做功后的高压油变为低压油,而后从液压马达105的出油口流出至油箱107。当蓄能器103内高压油降至一定压力值时关闭电磁球阀104。
(机械捕能系统400的发电方法)
发电装置D安装就位并启动后,漂浮在海面上的点头鸭浮体300在波浪作用下发生双向点头运动及上下起伏运动,由于惯性作用,后舱302内的竖直杆403不再与点头鸭浮体300原有水平面正交,即竖直杆403与原有水平面之间产生夹角。在重力的作用下,左右两组摆锤404发生往复摆动,从而使各自的竖直杆403带动输入轴501转动。
换向增速机构500中,通过各齿轮间的机械配合将输入轴501的顺时针或逆时针的转动转化为同一方向的转动后,通过转动输出轴508带动差速整合机构600。具体而言,顺时针单向棘轮503与第二驱动齿轮505啮合,逆时针单向棘轮502与从动齿轮507啮合,从动齿轮507与第一驱动齿轮504啮合,第一驱动齿轮504与第二驱动齿轮505均在作为驱动轴的转动输出轴508上。当摆锤404顺时针转动时,顺时针单向棘轮503转动,带动第二驱动齿轮505转动,从而带动转动输出轴508转动。当摆锤404逆时针转动时,逆时针单向棘轮502转动,带动从动齿轮507转动,从而带动第一驱动齿轮504转动,进而带动转动输出轴508转动。最后,向差速整合机构600输出该转动,且左右两侧换向增速机构500输出到差速整合机构600的转动为同向。
在差速整合机构600中,若左右两侧的第一转动轴601、第二转动轴602(即、左右两侧的转动输出轴508)转速一致,则第一锥形输入齿轮603与第二锥形输入齿轮604转速一致并与固定支架608保持相对静止且共同转动而带动增速齿轮607。此时,一对锥形转换齿轮610虽与第一锥形输入齿轮603和第二锥形输入齿轮604分别同时啮合,但并不发生相对转动,即一对锥形转换齿轮610及与之连接的短轴609相对于转动轴承不发生相对转动,从而增速齿轮607与第一锥形输入齿轮603和第二锥形输入齿轮604保持相同的转向及转速。
若左右两侧的第一转动轴601、第二转动轴602转速不一致,则第一锥形输入齿轮603与第二锥形输入齿轮604的转动方向和转速也不一致。此时,一对锥形转换齿轮610与第一锥形输入齿轮603和第二锥形输入齿轮604分别同时啮合并发生相对转动,即一对锥形转换齿轮610及与之连接的短轴609相对于转动轴承发生相对转动,从而带动增速齿轮607转动,进而增速齿轮607带动输出齿轮612转动,由此安装有输出齿轮612的发电输入轴611随之转动并带动发电机405发电。
发电机405发出的电能以直流电的形式先存储在蓄电池内,再通过逆变器将存储的直流电转化为交流电经电缆输送至海洋平台OP的储能装置中,详情省略图示。
根据本发明所公开的组合鸭式波浪能发电装置D及发电方法,通过液压捕能系统,巧妙地通过平行四边形悬臂的不稳定结构将点头鸭浮体在波浪运动作用下浮动升沉运动转变成绕固定轴的相对往复位移,从而驱动液压缸工作,将波浪能转换为油的压能,经油压系统输送后驱动油压发电机发电。此外,通过在点头鸭浮体的鸭体内部设置的独立于液压捕能系统的机械捕能系统,将点头鸭浮体内部的两组摆锤在波浪运动作用下的不协同转动转化为主轴转动,并将不统一的转速整合后输出,从而高效地带动齿轮转动进而实现发电机发电。
也就是说,本发明既采用了机械式传动机构成本低、维护简单的优点,又利用了液压传动机构可靠性高、便于储能的优点,创造性地将两种传动机构组合,使得整体发电装置应用范围更广。同时,可实现点头鸭浮体自体内部机械发电和点头鸭浮体整体与平台间相互运动液压发电的发电组合,保证了捕获能量高效转化与利用,提高了捕能效率。
以上的具体实施方式对本发明的目的、技术方案和有益效果进行了进一步详细说明,应当理解的是,以上仅为本发明的一种具体实施方式而已,并不限于本发明的保护范围,在不脱离本发明的基本特征的宗旨下,本发明可体现为多种形式,因此本发明中的实施形态是用于说明而非限制,由于本发明的范围由权利要求限定而非由说明书限定,而且落在权利要求界定的范围,或其界定的范围的等价范围内的所有变化都应理解为包括在权利要求书中。凡在本发明的精神和原则之内的,所做出的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种组合鸭式波浪能发电装置,其特征在于,
    具备液压捕能系统和机械捕能系统;
    所述液压捕能系统安装于海洋平台上,具有点头鸭浮体及与所述点头鸭浮体连接的悬臂连接机构;
    所述机械捕能系统安装于所述点头鸭浮体内部,具有:
    将不同或相同转速统一的差速整合机构;和
    与所述差速整合机构的两侧分别连接且分别安装有摆锤、并将双向转动转化为单向转动的两个换向增速机构;
    所述点头鸭浮体具备位于鸭嘴端的前舱和位于鸭身主体的后舱;
    所述悬臂连接机构具有用于所述连接点头鸭浮体的桁架连接单元和用于输送压力油的液压油路单元;
    所述悬臂连接机构的所述桁架连接单元通过铰接分别与所述点头鸭浮体的所述前舱和所述后舱连接,共同形成为能随所述点头鸭浮体的位移而位移的平行四边形立方体的结构;
    所述桁架连接单元上设置有与液压油路单元通过油路连通的液压缸和活塞杆。
  2. 根据权利要求1所述的发电装置,其特征在于,
    所述前舱形成为根据实际海况放入配重块以调节所述点头鸭式浮体前倾角的结构。
  3. 根据权利要求1所述的发电装置,其特征在于,
    当所述点头鸭浮体为多个时,所述液压油路单元通过三通阀分别连通多个所述点头鸭浮体的高压输油管和低压输油管并分别汇总至油箱的高压油管和低压油管;
    所述三通阀上设有单向阀。
  4. 根据权利要求1所述的发电装置,其特征在于,
    所述桁架连接单元中的与所述点头鸭浮体铰接的两条悬臂的长度相同,并且长于所述点头鸭浮体的所述前舱和所述后舱上的两个铰接点之间的长度。
  5. 根据权利要求1所述的发电装置,其特征在于,
    所述换向增速机构具备水平且彼此平行地安装的输入轴、从动轴和转动输出轴;
    所述输入轴上安装有顺时针单向棘轮和逆时针单向棘轮;
    所述从动轴上安装有从动齿轮;
    所述转动输出轴上安装有第一驱动齿轮和第二驱动齿轮;
    其中,所述顺时针单向棘轮与第二驱动齿轮啮合,所述逆时针单向棘轮与所述从动齿轮啮合,所述从动齿轮与所述第一驱动齿轮啮合。
  6. 根据权利要求1所述的发电装置,其特征在于,
    所述差速整合机构具备水平且彼此平行地安装的第一转动轴、第二转动轴和发电输出轴;
    所述第一转动轴上安装有第一锥形输入齿轮;
    所述第二转动轴上安装有第二锥形输入齿轮和增速齿轮,且在所述增速齿轮上对称地安装一对锥形转换齿轮;
    所述发电输出轴上安装有输出齿轮,
    所述第一锥形输入齿轮和所述第二锥形输入齿轮分别同时与所述一对锥形转换齿轮啮合,所述输出齿轮与所述增速齿轮啮合。
  7. 根据权利要求5和6所述的发电装置,其特征在于,
    一侧的所述换向增速机构中的所述转动输出轴和所述差速整合机构中的所述第一转动轴为同一根轴;
    另一侧的所述换向增速机构中的所述转动输出轴和所述差速整合机构中的所述第二转动轴为同一根轴。
  8. 一种组合鸭式波浪能发电装置的发电方法,其特征在于,
    是使用权里要求1至7中任意一项所述的组合鸭式波浪能发电装置所进行的发电方法,
    将所述点头鸭浮体内部的所述机械捕能系统的发电和所述点头鸭浮体与所述悬臂连接机构构成的所述液压捕能系统的发电相组合。
  9. 根据权利要求8所述的发电方法,其特征在于,
    在海面波浪的作用下,所述液压捕能系统中的所述悬臂连接机构随所述点头鸭浮体的起伏而对角位置发生位移变化,带动液压缸内的活塞杆往复伸缩;
    当所述活塞杆缩回时,低压油被吸入所述液压缸的一端,高压油从所述液压缸的另一端被挤入安装于油路上的蓄能器内;
    当所述活塞杆伸出时,低压油被吸入所述液压缸的一端,高压油从所述液压缸的另一端被挤入所述蓄能器内;
    使所述蓄能器内的高压油流入液压马达并驱动,从而发电。
  10. 根据权利要求8所述的发电方法,其特征在于,
    在海面波浪的作用下,所述机械捕能系统中的两个所述摆锤因重力发生往复摆动,从而带动所述换向增速机构中的输入轴转动,通过齿轮间的机械配合将输入轴的顺时针或逆时针的转动转化为同一方向的转动后,向所述差速整合机构输出所述转动;
    所述差速整合机构中,若从左右两侧输入的所述转动一致,则内部齿轮间不发生相对转动,若从左右两侧输入的所述转动不一致,则内部齿轮间发生相对转动,进而带动输出轴转动而发电。
PCT/CN2020/122224 2019-12-31 2020-10-20 一种组合鸭式波浪能发电装置及发电方法 WO2021135526A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227009564A KR102590380B1 (ko) 2019-12-31 2020-10-20 복합식 덕형 파력 발전 장치 및 발전 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911411911.2 2019-12-31
CN201911411911.2A CN111022243B (zh) 2019-12-31 2019-12-31 一种组合鸭式波浪能发电装置及发电方法

Publications (1)

Publication Number Publication Date
WO2021135526A1 true WO2021135526A1 (zh) 2021-07-08

Family

ID=70197595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122224 WO2021135526A1 (zh) 2019-12-31 2020-10-20 一种组合鸭式波浪能发电装置及发电方法

Country Status (3)

Country Link
KR (1) KR102590380B1 (zh)
CN (1) CN111022243B (zh)
WO (1) WO2021135526A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114109706A (zh) * 2021-11-16 2022-03-01 哈尔滨工程大学 一种可与多功能海洋平台集成的仿生鳗式波能发电装置
CN114876707A (zh) * 2022-05-25 2022-08-09 浙江大学 用于解决液压pto系统终端碰撞问题的波浪能转换装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111022243B (zh) * 2019-12-31 2020-09-25 中国海洋大学 一种组合鸭式波浪能发电装置及发电方法
CN111648904B (zh) * 2020-06-16 2022-08-26 江柴发动机徐州有限公司 一种海浪发电装置
CN114039454A (zh) * 2021-10-26 2022-02-11 东北大学秦皇岛分校 一种波浪能发电装置
TWI817339B (zh) * 2022-01-27 2023-10-01 呂澄貴 節能發電裝置
CN114701603A (zh) * 2022-03-09 2022-07-05 宁波大学 一种基于波浪能和太阳能组合发电的浮标装置
CN114684331A (zh) * 2022-04-27 2022-07-01 海南大学 模块化波浪能发电及人工鱼礁浮式平台集成结构系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6247308B1 (en) * 2000-04-17 2001-06-19 Worldwide Solutions Company, Llc Bidirectional rotary motion-converter, wave motors, and various other applications thereof
KR20110003133U (ko) * 2009-09-22 2011-03-30 유효상 파력을 이용한 발전 시스템
CN203532146U (zh) * 2013-11-13 2014-04-09 上海海洋大学 摆式波浪能发电装置
CN105756847A (zh) * 2016-03-31 2016-07-13 华南理工大学 一种为海洋浮标提供电能的波浪发电装置
CN205478084U (zh) * 2016-01-04 2016-08-17 武汉理工大学 一种机械式“点头鸭”装置
CN109763931A (zh) * 2019-02-13 2019-05-17 中国海洋大学 一种组合式波浪能发电装置及发电方法
CN111022243A (zh) * 2019-12-31 2020-04-17 中国海洋大学 一种组合鸭式波浪能发电装置及发电方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6247308B1 (en) * 2000-04-17 2001-06-19 Worldwide Solutions Company, Llc Bidirectional rotary motion-converter, wave motors, and various other applications thereof
KR20110003133U (ko) * 2009-09-22 2011-03-30 유효상 파력을 이용한 발전 시스템
CN203532146U (zh) * 2013-11-13 2014-04-09 上海海洋大学 摆式波浪能发电装置
CN205478084U (zh) * 2016-01-04 2016-08-17 武汉理工大学 一种机械式“点头鸭”装置
CN105756847A (zh) * 2016-03-31 2016-07-13 华南理工大学 一种为海洋浮标提供电能的波浪发电装置
CN109763931A (zh) * 2019-02-13 2019-05-17 中国海洋大学 一种组合式波浪能发电装置及发电方法
CN111022243A (zh) * 2019-12-31 2020-04-17 中国海洋大学 一种组合鸭式波浪能发电装置及发电方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114109706A (zh) * 2021-11-16 2022-03-01 哈尔滨工程大学 一种可与多功能海洋平台集成的仿生鳗式波能发电装置
CN114109706B (zh) * 2021-11-16 2023-05-26 哈尔滨工程大学 一种可与多功能海洋平台集成的仿生鳗式波能发电装置
CN114876707A (zh) * 2022-05-25 2022-08-09 浙江大学 用于解决液压pto系统终端碰撞问题的波浪能转换装置
CN114876707B (zh) * 2022-05-25 2023-07-28 浙江大学 用于解决液压pto系统终端碰撞问题的波浪能转换装置

Also Published As

Publication number Publication date
CN111022243A (zh) 2020-04-17
KR102590380B1 (ko) 2023-10-16
CN111022243B (zh) 2020-09-25
KR20220046690A (ko) 2022-04-14

Similar Documents

Publication Publication Date Title
WO2021135526A1 (zh) 一种组合鸭式波浪能发电装置及发电方法
CN101725453B (zh) 一种新型海浪能发电系统
CN110219766B (zh) 一种行星轮传动的波浪能发电装置
CN102297091B (zh) 海上风浪互补型发电系统
CN103821662B (zh) 移动式光伏波浪发电船
WO2020143287A1 (zh) 基于固定式基础的风浪互补能源集成系统及其发电与输电方法
CN109763931B (zh) 一种组合式波浪能发电装置及发电方法
TWM481290U (zh) 一種波浪發電裝置
CN114060206B (zh) 液压式多自由度波浪能发电装置
WO2018108037A1 (zh) 波浪动力机构及具有该机构的海洋波浪能发电机
CN102011678A (zh) 一种波浪发电方法以及实施此方法的系统
CN202645829U (zh) 一种新型浮子液压传动海洋波浪能发电装置
CN108035841A (zh) 一种鱼尾式潮流能发电装置
CN105240203A (zh) 筏式柔性结构波能发电装置
CN113202699B (zh) 一种基于浮式平台的风能-波浪能发电装置及其工作方法
CN105971811A (zh) 一种利用平行四边形结构的海洋能发电装置及其工作方法
CN203717228U (zh) 移动式光伏波浪发电船
CN205078394U (zh) 一种近岸机械式波浪能量收集装置
CN108457805A (zh) 基于单桩式的风能-波浪能集成发电系统
CN103306931B (zh) 一种波浪能液压泵
CN116537997A (zh) 一种垂荡姿态自持式波浪能发电装置
CN210317588U (zh) 一种组合式波浪能发电装置
CN114233561B (zh) 基于张力腿式系泊的多自由度波浪能利用装置
CN102182619B (zh) 一种用海水波浪发电的机械装置
CN102661229A (zh) 由圆柱和四棱柱及浮球几何体组成的发电环保机械装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908662

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227009564

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908662

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20908662

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20908662

Country of ref document: EP

Kind code of ref document: A1