WO2021135524A1 - 一种横摇模拟平台、测试平台和测试系统 - Google Patents

一种横摇模拟平台、测试平台和测试系统 Download PDF

Info

Publication number
WO2021135524A1
WO2021135524A1 PCT/CN2020/122146 CN2020122146W WO2021135524A1 WO 2021135524 A1 WO2021135524 A1 WO 2021135524A1 CN 2020122146 W CN2020122146 W CN 2020122146W WO 2021135524 A1 WO2021135524 A1 WO 2021135524A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
vibration
roll
platform according
main shaft
Prior art date
Application number
PCT/CN2020/122146
Other languages
English (en)
French (fr)
Inventor
张维
李东昱
杨预立
Original Assignee
中科振声(苏州)电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科振声(苏州)电子科技有限公司 filed Critical 中科振声(苏州)电子科技有限公司
Publication of WO2021135524A1 publication Critical patent/WO2021135524A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/04Monodirectional test stands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/022Vibration control arrangements, e.g. for generating random vibrations

Definitions

  • the invention relates to a rolling simulation platform, a testing platform and a testing system.
  • the noise caused by the ship vibration destroys the concealment of the ship; vibration can cause cracks or fatigue damage to the hull structure, shortening the life of the ship; affecting the performance of the instrumentation and control system on the ship, causing hidden dangers of navigation; affecting the work efficiency of the crew on the ship And the comfort of life.
  • Vibration reduction control devices active and passive vibration isolators, vibration absorbers, etc.
  • the impact of the vibration machinery on the hull is reduced or eliminated from the vibration propagation path.
  • the purpose of the present invention is to provide a rolling simulation platform that simulates the rolling motion state under real sea conditions, and provides a simulation environment for the preliminary test of the vibration reduction control technology, and has a simple, compact and low cost structure.
  • the technical solution of the present invention is:
  • a roll simulation platform comprising a vibration frame and a roll frame, the vibration frame is arranged above the roll frame, the roll frame includes a bottom plate, a main shaft seat and at least one set of branch chains, the vibration frame It is arranged on the spindle seat, the spindle seat is arranged on the bottom plate, one end of the branch chain group is connected to the bottom plate, and the other end is connected to the vibration frame.
  • it further includes an angular velocity sensor, which is arranged on the bottom plate through an adaptor and is connected to the spindle seat.
  • the branch chain group includes a left branch chain and a right branch chain symmetrically arranged with respect to the main shaft seat, and the left branch chain and the right branch chain intersect the projected extension lines of the end of the vibration damping frame.
  • each of the branch chains includes a hydraulic cylinder, a first rotating pair, and a second rotating pair.
  • One end of the hydraulic cylinder is connected to the roll frame through the first rotating pair, and the other end is connected to the roll frame through the second rotating pair.
  • the rotating pair is connected to the bottom plate.
  • the thrust of the hydraulic cylinder is perpendicular to the thrust arm.
  • the main shaft base includes a main shaft main body, a main shaft bearing base and a mating shaft support frame, the main shaft main body is fixed on the floor through the main shaft bearing base, and the vibration frame is supported by the mating shaft support base, The vibrating frame makes a rolling motion on the main shaft body along with the rotation of the main shaft body.
  • the roll frame further includes a group of photoelectric switches arranged symmetrically with respect to the main shaft base.
  • the vibration frame includes a support frame and an excitation source, the excitation source is arranged on the support frame, the support frame is arranged on the spindle seat, and is connected to the Floor.
  • the support frame has a concave cross-section, and includes a frame body and elevated parts arranged on both sides of the frame body, the excitation source is arranged on the frame body, and the branch chain group is connected to the frame body. Description of elevated parts.
  • the elevated member is a side arm.
  • the vibration frame further includes a counterweight, and the counterweight is arranged on the support frame.
  • the vibrating frame further includes a set of detachable supporting feet arranged symmetrically with respect to the main shaft base, and the detachable supporting feet are arranged on the supporting frame.
  • a test platform comprising a roll frame, a damping frame, and a vibration frame
  • the damping frame is set on the vibrating frame
  • the vibrating frame is set on the roll frame
  • the roll frame includes a bottom plate
  • a main shaft seat and at least one set of branch chains the vibration frame is arranged on the main shaft seat
  • the main shaft seat is arranged on the bottom plate
  • one end of the branch chain group is connected to the bottom plate, and the other end is connected to the Vibrating frame.
  • it further includes an angular velocity sensor, which is arranged on the bottom plate through an adaptor and is connected to the spindle seat.
  • the branch chain group includes a left branch chain and a right branch chain symmetrically arranged with respect to the main shaft seat, and the left branch chain and the right branch chain intersect the projected extension lines of the end of the vibration damping frame.
  • each of the branch chains includes a hydraulic cylinder, a first rotating pair, and a second rotating pair.
  • One end of the hydraulic cylinder is connected to the roll frame through the first rotating pair, and the other end is connected to the roll frame through the second rotating pair.
  • the rotating pair is connected to the bottom plate.
  • the thrust of the hydraulic cylinder is perpendicular to the thrust arm.
  • the main shaft base includes a main shaft main body, a main shaft bearing base and a mating shaft support frame, the main shaft main body is fixed on the floor through the main shaft bearing base, and the vibration frame is supported by the mating shaft support base, The vibrating frame makes a rolling motion on the main shaft body along with the rotation of the main shaft body.
  • the roll frame further includes a group of photoelectric switches arranged symmetrically with respect to the main shaft base.
  • the vibration frame includes a support frame and an excitation source
  • the vibration reduction frame includes a vibration isolator, a support plate, an upper acceleration sensor and a lower acceleration sensor
  • the vibration isolator is arranged on the support frame, so
  • the support plate is arranged on the vibration isolator
  • the excitation source is arranged on the support plate
  • the upper acceleration sensor is arranged on the support plate
  • the lower acceleration sensor is arranged on the support frame
  • the support frame is arranged on the main shaft seat, and is connected to the bottom plate through the branch chain group.
  • the vibration of the upper acceleration sensor provided on the support plate is transmitted to the path of the vibration isolator.
  • the vibration of the lower acceleration sensor provided on the vibration isolator is transmitted to the path of the support frame.
  • the vibration isolator is arranged on the support frame through a flange, and the lower acceleration sensor is arranged on the flange.
  • the support frame has a concave cross-section, and includes a frame body and elevated parts arranged on both sides of the frame body, the excitation source is arranged on the frame body, and the branch chain group is connected to the frame body. Description of elevated parts.
  • the elevated member is a side arm.
  • the vibration frame further includes a counterweight, and the counterweight is arranged on the support frame.
  • the vibrating frame further includes a set of detachable supporting feet arranged symmetrically with respect to the main shaft base, and the detachable supporting feet are arranged on the supporting frame.
  • a test system includes the above-mentioned test platform, an electro-hydraulic servo system and an upper computer, and the test platform, the electro-hydraulic servo system and the upper computer are in communication connection.
  • the rolling simulation platform of the present invention simulates the rolling motion state under real sea conditions, provides a simulation environment for the preliminary test of vibration reduction control technology, and has simple structure, compactness and low cost.
  • the single-rod bidirectional hydraulic rod series and parallel hybrid method are adopted to realize the synchronous operation of the hydraulic cylinder, and the side wall is pushed (pulled) by the hydraulic rod to realize the rocking action, and the cost is low.
  • the connecting seat between the support frame and the hydraulic cylinder adopts an elevated structure to reduce the height of the platform, lower the center of gravity, reduce the volume of the platform, and increase the stability of the platform.
  • the test platform has a simple, compact structure and low cost.
  • the test system simulates the rolling motion state under real sea conditions, provides a simulation environment for the preliminary test of the vibration reduction control technology, performs the vibration reduction control test of the vibration reduction control device for ships, and ensures the credibility of the test results.
  • Figure 1 is a schematic structural diagram of a roll simulation platform according to a specific embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the structure of a test platform according to a specific embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of a spindle seat of a test platform according to a specific embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a supporting skeleton of a test platform according to a specific embodiment of the present invention.
  • Figure 5 is a schematic structural diagram of a test system according to a specific embodiment of the present invention.
  • FIGS. 6 and 7 are schematic diagrams of the structure of the electro-hydraulic servo system of the test system according to a specific embodiment of the present invention.
  • a rolling simulation platform includes a vibrating frame and a rolling frame, and the vibrating frame is arranged above the rolling frame.
  • the roll frame includes a bottom plate 9, a spindle seat, an angular velocity sensor 16 and at least one branch chain group, and the spindle seat is arranged on the bottom plate 9.
  • the spindle seat includes a spindle body 14, a spindle bearing seat 13, and a mating shaft support frame 10.
  • the spindle body 14 is fixed to the bottom plate 9 through the spindle bearing seat 13, and the mating shaft support frame 10 supports the shaft.
  • the vibrating frame, the vibrating frame on the main shaft body 14 rotates with the main shaft body 14 to make a rolling motion.
  • the angular velocity sensor 16 is arranged on the bottom plate 9 and connected to the main shaft body 14 for feedback of the position and angle value of the vibration frame.
  • the branch chain group connects the bottom plate 9 and the vibration frame.
  • the branch chain group includes a left branch and a right branch symmetrically arranged with respect to the main shaft body 14, and the left branch and the right branch intersect the projected extension lines of the end of the vibration damping frame.
  • Each branch chain includes a hydraulic cylinder 17, a first rotating pair 19, and a second rotating pair 18.
  • One end of the hydraulic cylinder 17 is connected to the vibrating frame through the first rotating pair 19, and the other end is passed through the first rotating pair.
  • the two rotating pairs 18 are connected to the bottom plate 9.
  • the top of the push rod of the hydraulic cylinder 17 is equipped with a fisheye bearing, which is matched and installed on the support frame 6 to realize the first rotating pair 19.
  • the earring of the lower shell of the hydraulic cylinder 17 is connected to the bottom plate 9 through a hydraulic support shaft and a hydraulic bearing seat. , Forming a second rotating pair 18, by controlling the push rod movement of the hydraulic cylinder 17 to realize the real-time swing of the roll simulation platform and the fixed angle position change.
  • the branch chain group is provided with two groups, and the four branch chains are arranged on the four corners of the rectangle.
  • the roll frame also includes a set of photoelectric switches 11 symmetrically arranged with respect to the spindle base.
  • the photoelectric switches 11 are arranged on the bottom plate 9 for angle limit and prevent the swing angle from being excessive. Large and destroy the platform device.
  • the photoelectric switch 11 and the angular velocity sensor 16 are both set on the bottom plate 9 through a transfer frame 15.
  • the vibration frame includes a support frame 6, a counterweight 1 and an exciter 2.
  • the exciter 2 and the counterweight 1 are arranged on the support frame 6, and the counterweight 1 There are several, evenly arranged around the exciter 2.
  • the support frame 6 has a concave shape in cross section, and includes a frame body 62 and elevated side arms 61 arranged on both sides of the frame body.
  • the exciter 2 and the counterweight 1 are arranged on the frame body 62
  • the branch chain is connected to the side arm 61, that is, the hydraulic cylinder 17 is connected to the side arm 61 through the first rotating pair 19.
  • the roll simulation platform also includes a set of detachable support feet 7 symmetrically arranged with respect to the main shaft body 14.
  • the detachable support feet 7 are set on the support frame 6 through flat pins, and a hydraulic cylinder 17 is required on the platform. It can be used when disassembling, adjusting and horizontal placement without swinging, and can be disassembled or suspended when not in use (hung on the side of the platform).
  • the rolling simulation platform simulates the rolling motion state under real sea conditions and provides a simulation environment for the preliminary test of the vibration reduction control technology.
  • the structure is simple, compact, and low in cost.
  • a test platform including a vibration damping frame, a vibration frame and a roll frame.
  • the vibration frame is arranged on the roll frame.
  • the vibration frame includes a support frame 6 and a vibration exciter 2, and the vibration reduction frame is arranged between the support frame 6 and the vibration exciter 2 to reduce or eliminate the influence of vibration on the support frame 6.
  • the damping frame includes a vibration isolator 4, a support plate 3, an upper acceleration sensor 32, and a lower acceleration sensor 5.
  • the support plate 3 is disposed on the vibration isolator 4, and the vibration isolator 4 supports the support Board 3.
  • the vibration isolator 4 is provided on the support frame 6, the support plate 3 is provided on the vibration isolator 4, the vibration exciter 2 is provided on the support plate 3, and the upper acceleration sensor 32 is arranged on the support plate 3, and the vibration on the support plate 3 propagates to the vibration isolator 4.
  • the lower acceleration sensor 4 is arranged on the support frame 6 and is located on the vibration isolator 4. 4 on the path of propagating vibration to the support frame 6.
  • the upper acceleration sensor 32 is arranged on the other side of the vibration isolator 4 contacting the support plate 3, the lower acceleration sensor 5 is arranged on the support frame 6 through a flange, and the lower acceleration sensor 5 is arranged on The flange.
  • each of the vibration isolators 4 is provided on the four corners of the rectangle.
  • the upper acceleration sensor 32 and the lower acceleration sensor 5 are each provided with four vibration isolators.
  • One corresponding setting, that is, each of the vibration isolators 4 is provided with an upper acceleration sensor 32 and a lower acceleration sensor 5 for signal collection.
  • the vibrating frame also includes counterweights 1 with several counterweights 1 arranged evenly around the vibration exciter 2, and simulating different loads by matching counterweights 1 of different masses and quantities.
  • the roll frame includes a bottom plate 9, a spindle seat, an angular velocity sensor 16 and at least one branch chain group, and the spindle seat is arranged on the bottom plate 9.
  • the spindle seat includes a spindle body 14, a spindle bearing seat 13, and a mating shaft support frame 10.
  • the spindle body 14 is fixed to the bottom plate 9 through the spindle bearing seat 13, and the mating shaft support seat 10 supports the shaft.
  • the vibrating frame, the vibrating frame on the main shaft body 14 rotates with the main shaft body 14 to make a rolling motion, specifically, the main shaft body 14 supports the support frame 6 through the mating shaft support base 10 to support The vibration frame.
  • the angular velocity sensor 16 is arranged on the bottom plate 9 and connected to the main shaft body 14 for feedback of the position and angle value of the vibration frame.
  • the branch chain group connects the bottom plate 9 and the vibration frame.
  • the branch chain group includes a left branch and a right branch symmetrically arranged with respect to the main shaft body 14, and the left branch and the right branch intersect the projected extension lines of the end of the vibration damping frame.
  • Each branch chain includes a hydraulic cylinder 17, a first rotating pair 19, and a second rotating pair 18.
  • One end of the hydraulic cylinder 17 is connected to the vibrating frame through the first rotating pair 19, and the other end is passed through the first rotating pair.
  • the two rotating pairs 18 are connected to the bottom plate 9.
  • the branch chain connects the bottom plate 9 and the support frame 6, and the support frame 6 has a concave shape in cross section, and includes a frame body 62 and side arms 61 provided on both sides of the frame body 62.
  • the exciter 2 and the counterweight 1 are arranged on the skeleton body 62, and the branch chain is connected to the side arm 61, that is, the hydraulic cylinder 17 is connected to the side arm 61 through the first rotating pair 19 .
  • the roll frame also includes a set of photoelectric switches 11 symmetrically arranged with respect to the main shaft body 14.
  • the photoelectric switches 11 are arranged on the bottom plate 9 for angle limit and prevent the platform from being damaged due to an excessive swing angle.
  • the photoelectric switch 11 and the angular velocity sensor 16 are both set on the bottom plate 9 through a transfer frame 15.
  • the test platform also includes a set of detachable support feet 7 symmetrically arranged with respect to the spindle base.
  • the detachable support feet 7 are set on the support frame 6 by flat pins.
  • the hydraulic cylinder 17 needs to be disassembled and adjusted on the platform. And the horizontal installation does not need to use when swinging, when not in use, it can be disassembled or suspended (hung on the side of the platform).
  • the test platform is equipped with a vibration reduction frame on the roll simulation platform for testing the vibration isolation effect of the vibration isolator 4 installed on the vibration reduction frame.
  • test system including the test platform described in the second embodiment, and the electro-hydraulic servo system and the host computer 33, the communication connection between the test platform, the electro-hydraulic servo system and the host computer 33 .
  • the electro-hydraulic servo system includes a hydraulic cylinder 17, a proportional servo valve 22, a proportional relief valve 23, a pressure sensor 21, an oil circuit block 31, an oil tank 26, a hydraulic pump 28, a one-way valve 29, an oil return filter 24, The air cleaner 25, the accumulator 30, the drain valve 27 and the hydraulic pipeline.
  • the hydraulic cylinder 17 is an actuator set on the test platform. When the push rod is extended, it is a process hydraulic cylinder, and when the push rod is contracted, it is a return hydraulic cylinder, which is connected to the oil circuit block 31 through a hydraulic pipe.
  • the proportional servo valve 22, the proportional relief valve 23, and the pressure sensor 21 are all installed on the oil circuit block 31.
  • the proportional servo valve 22 controls the opening and closing and direction of the hydraulic pipeline
  • the proportional relief valve 23 controls the pressure of the hydraulic pipeline.
  • the pressure sensor 21 is used to feed back the inlet and outlet pressure of the proportional servo valve 22.
  • the oil circuit block 31 is installed on the oil tank 26 and is an oil circuit adapter device in the electro-hydraulic servo system. It is used to install various valve bodies and sensors. It is suitable for short-distance transmission of hydraulic oil and can reduce the use of hydraulic pipelines.
  • the device integration of the electro-hydraulic servo system is higher.
  • the oil tank 26 is an oil storage device of the electro-hydraulic servo system, and is also a mounting base for other components.
  • the hydraulic pump 28 installed on the oil tank 26 is the power source of the electro-hydraulic servo system, which drives the hydraulic oil to flow in the hydraulic pipeline, realizes the telescopic action of the terminal hydraulic cylinder 17 and drives the test platform to swing.
  • the one-way valve 29 is installed between the hydraulic pump 28 and the proportional servo valve 23 to allow the hydraulic oil to flow in one direction and prevent reverse flow.
  • the oil return filter 24 is installed on the hydraulic pipeline at the end of the system to filter out pollutants generated or invaded in the system before returning to the oil tank.
  • the air filter 25 is installed on the fuel tank 26, which not only prevents particulate pollutants from entering the system through the breathing port of the fuel tank, but also prevents particulate pollutants from being mixed into the fuel tank.
  • the accumulator 30 is installed on the oil tank 26 for absorbing hydraulic circuit pulses, compensating flow and maintaining pressure.
  • the electro-hydraulic servo system is a commonly used electro-hydraulic servo system.
  • the host computer 33 provides a computer operating system required for operation, builds a software operating platform foundation, installs and builds corresponding software, realizes program algorithm writing, and completes data collection, analysis, calculation, and output control of the entire system.
  • the host computer 33 includes a data acquisition module, a data analysis output module, the data acquisition module reads the status data of the test platform and the electro-hydraulic servo system, and the data analysis output module is used to analyze the data acquisition module collection
  • the status data is regulated and output to the test platform and the electro-hydraulic servo system.
  • the data acquisition module is connected with the proportional servo valve 22 and the pressure sensor 21 in the electro-hydraulic servo system, the angular velocity sensor 16, the lower acceleration sensor 5, the upper acceleration sensor 32, and the photoelectric switch 11 in the test platform through a coaxial cable for Collection of various sensor feedback signals;
  • the data analysis output module is connected to the vibration exciter 2, the proportional servo valve 22 and the proportional relief valve 23, and is used to control the vibration of the vibration exciter 2 and the proportional servo valve in the electro-hydraulic servo system 22.
  • the position of the spool of the proportional relief valve 23 changes.
  • an external rudder is installed on the host computer 33, and the running state of the platform is controlled in real time by rotating the rudder.
  • the data acquisition module reads the reference signal of the upper acceleration sensor 32 and the lower error signal of the lower acceleration sensor 5, the angle signal of the angular velocity sensor 16, and the switch signal of the photoelectric switch 11 on the base plate 9, so as to realize the real-time testing of the test platform.
  • Data monitoring reading the position feedback signal of the proportional servo valve 22 spool and the pressure signal of the pressure sensor 21 to realize real-time data monitoring of the electro-hydraulic servo system. And through the FFT filter algorithm to filter the original data into signal data that is conducive to later calculation and control reference.
  • the data analysis output module performs data analysis and performs vibration exciter 2 control, proportional servo valve control, and proportional relief valve control.
  • the power amplifier drives the exciter 2 to operate, combined with the counterweight to simulate the vibration of the equipment, including the analog equipment Single frequency vibration, multi-frequency vibration and sweep frequency vibration.
  • the proportional servo valve control mainly realizes the fixed angle position control, real-time control and simulation control of the roll simulation platform.
  • the fixed angle position control is to preset the static tilt angle value of the rolling platform through software, and control the spool position of the proportional servo valve 22 through the algorithm to realize the platform static at a fixed angle.
  • the specific implementation method is: when the host computer detects the fixed angle When the value is commanded, the difference between the command value and the angle signal of the angular velocity sensor 16 is obtained to obtain the angle signal error value, and then the angle signal error value is multiplied by Kp, plus the integral of the angle signal error value with respect to time multiplied by Ki, and output to the proportional servo Valve 22, proportional servo valve 22 receives the signal, the spool position changes, controls the oil flow to the process hydraulic cylinder and the return hydraulic cylinder, so that the angle of the support plate 3 moves in the direction where the angle signal error value decreases, until the angle signal If the error value is less than the preset error value, the spool of the proportional servo valve 22 is closed.
  • the host computer gives the proportional relief valve 23 command to open the spool of the proportional relief valve 23, so that when the spool of the proportional servo valve 22 is closed, the oil Return to the fuel tank 26 through the proportional relief valve 23 (where Kp and Ki are PID control parameters).
  • the real-time control is to use the external rudder to control the swing and stationary of the roll simulation platform.
  • the specific implementation method is: when the host computer 33 detects the rudder angle value command, the host computer 33 will subtract the command value from the angle signal of the angular velocity sensor 16 The angle signal error value is multiplied by Kp, plus the integral of the angle signal error value with respect to time multiplied by Ki, and output to the proportional servo valve 22. After the proportional servo valve 22 receives the signal, the spool position changes, and the control is open. The oil flow of the forward hydraulic cylinder and the return hydraulic cylinder causes the angle of the upper support plate 3 to move in the direction in which the angle signal error value decreases, until the angle signal error value is less than the preset error value.
  • the upper computer 33 multiplies the angle signal error value by Kp plus the integral of the angle signal error value with respect to time multiplied by Ki, and outputs it to the proportional relief valve 23 command to control the proportional relief valve 23 spool, thereby controlling the hydraulic cylinder leading to the process And the oil flow of the return hydraulic cylinder.
  • the control can avoid the hydraulic system vibration and heating caused by the large oil pressure when the error value is small.
  • the simulation control is for the test platform to automatically run according to the planned movement path and speed change.
  • the specific implementation method is: the upper computer 33 will import the pre-set angle-time signal, and also control according to the above method.
  • the proportional relief valve control is to control the pressure change in the hydraulic circuit of the electro-hydraulic system according to the demand. Specifically, according to the proportional relief valve 23 and its power amplifier parameters, set the proportional relief valve 23 corresponding to the pressure required by the actual system on the host computer 33 The control parameters are sent to the proportional relief valve power amplifier, and the spool position of the proportional relief valve 23 is changed by the power amplifier to achieve pressure control. In addition, the impedance control algorithm is written on the upper computer 33 software, and the pressure control parameters corresponding to the relief valve are adjusted according to the real-time change of the hydraulic circuit pressure fed back by the pressure sensor 21 to realize the impedance control of the roll simulation platform.
  • the vibration exciter 2 Through the control of the vibration exciter 2, the proportional servo valve control and the proportional relief valve control, the rolling motion state under real sea conditions is obtained, the vibration isolator is tested, and the reference signal measured by the upper acceleration sensor 32 is judged, Compared with the error signal measured by the lower acceleration sensor 5, the smaller the error signal, that is, the acceleration signal, the better the vibration isolation effect, so as to determine the vibration control effect of the vibration isolator 4 used.
  • the roll simulation platform of the present invention simulates the state of roll motion under real sea conditions, and provides a simulation environment for the preliminary test of vibration reduction control technology.
  • a vibration isolator is added to the roll simulation platform to reduce vibration to form a test platform,
  • the test platform has a simple, compact structure and low cost.
  • the test platform is connected to a test system formed by an electro-hydraulic servo system and a host computer.
  • the test system simulates the rolling motion state under real sea conditions, provides a simulation environment for the preliminary test of vibration damping control technology, and performs vibration damping control for ships
  • the vibration reduction control test of the device ensures the credibility of the test results.
  • Use the vibration isolator 4 to eliminate the influence of the upper layer vibration on the lower layer frame.
  • the reference signal can take the vibration signal of the vibration source (vibration exciter).
  • the error signal is the vibration signal of the frame under the vibration isolator.
  • the error signal is The smaller the acceleration signal, the better the vibration isolation effect (the lower the vibration is smaller, that is, the vibration transmitted from the upper layer to the lower layer is eliminated by the vibration isolator).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

一种横摇模拟平台,包括振动框架和横摇框架,振动框架设置在横摇框架上方;横摇框架包括底板(9)、主轴座和至少一组支链组,振动框架设置在主轴座上,主轴座设置在底板(9)上,支链组一端连接底板(9),另一端连接振动框架。横摇模拟平台模拟在真实海况下的横摇运动状态,为减振控制技术前期测试提供模拟环境,结构简单、成本低。还提供了一种测试平台和一种测试系统。

Description

一种横摇模拟平台、测试平台和测试系统 技术领域
本发明涉及一种横摇模拟平台、测试平台和测试系统。
背景技术
舰艇在振动时引起的噪声破坏了舰艇的隐蔽性;振动可导致船体结构出现裂纹或疲破坏,缩短船舶寿命;影响船上仪器仪表和控制系统的性能,产生航行的隐患;影响船上人员的工作效率及生活的舒适性。
舰艇内各类机械(各种内燃机、泵、风机等)的振动通过机座传递至艇体,引起舰艇壳体的振动,从而产生水声辐射。为了有效地抑制船体内部机械振动的传递,各种主被动振动控制技术被广泛研究与应用,减振控制装置(主被动隔振器、吸振器等)一般安装在激振源至船体的振动传递路径(船体与振源间的机座)上,从振动传播路径上降低或消除振动机械对船体的影响。
而在实际舰艇的航行中,波浪所引起的船体摇摆运动尤其是横摇使得舰艇倾斜并具有一定的摆动加速度,在该状态下激振装置所产生激振力至船体的传播路径会发生变化,影响振动控制效果,甚至使得控制失效。因此,需要一种舰艇运动模拟平台,为现有的减振控制技术提供前期测试用模拟环境。
发明内容
本发明的目的是提供一种横摇模拟平台,模拟在真实海况下的横摇运动状态,为减振控制技术前期测试提供模拟环境,结构简单、紧凑、成本低。
为了解决上述技术问题,本发明的技术方案是:
一种横摇模拟平台,包括振动框架和横摇框架,所述振动框架设置在所述横摇框架上方,所述横摇框架包括底板、主轴座和至少一组支链组,所述振动 框架设置在所述主轴座上,所述主轴座设置在所述底板上,所述支链组一端连接所述底板,另一端连接所述振动框架。
作为优选,还包括角速度传感器,所述角速度传感器通过转接架设置在所述底板上,且连接到所述主轴座上。
作为优选,所述支链组包括关于主轴座对称设置的左支链和右支链,且左支链和右支链在减振框架端的投影延长线相交。
作为优选,每条所述支链均包括液压缸、第一转动副和第二转动副,所述液压缸一端通过所述第一转动副连接所述横摇框架,另一端通过所述第二转动副连接所述底板。
作为优选,当所述减振框架处于水平位置时,所述液压缸推力与推力臂垂直。
作为优选,所述主轴座包括主轴主体、主轴轴承座和配合轴支撑架,所述主轴主体通过所述主轴轴承座固定在所述地板上,通过所述配合轴支撑座支撑所述振动框架,所述振动框架在所述主轴主体上随着主轴主体转动做横摇运动。
作为优选,所述横摇框架上还包括关于所述主轴座对称设置的一组光电开关。
作为优选,所述振动框架包括支撑骨架和激振源,所述激振源设置在所述支撑骨架上,所述支撑骨架设置在所述主轴座上,并通过所述支链组连接所述底板。
作为优选,所述支撑骨架截面为凹字型,包括骨架本体和设置在所述骨架本体两侧的架高件,所述激振源设置在所述骨架本体上,所述支链组连接所述架高件。
作为优选,所述架高件为侧臂。
作为优选,所述振动框架还包括配重块,所述配重块设置在所述支撑骨架上。
作为优选,所述振动框架还包括关于所述主轴座对称设置的一组可拆卸支 撑脚,所述可拆卸支撑脚设置在所述支撑骨架上。
一种测试平台,包括横摇框架、减振框架和振动框架,所述减振框架设置在所述振动框架上,所述振动框架设置在所述横摇框架上,所述横摇框架包括底板、主轴座和至少一组支链组,所述振动框架设置在所述主轴座上,所述主轴座设置在所述底板上,所述支链组一端连接所述底板,另一端连接所述振动框架。
作为优选,还包括角速度传感器,所述角速度传感器通过转接架设置在所述底板上,且连接到所述主轴座上。
作为优选,所述支链组包括关于主轴座对称设置的左支链和右支链,且左支链和右支链在减振框架端的投影延长线相交。
作为优选,每条所述支链均包括液压缸、第一转动副和第二转动副,所述液压缸一端通过所述第一转动副连接所述横摇框架,另一端通过所述第二转动副连接所述底板。
作为优选,当所述减振框架处于水平位置时,所述液压缸推力与推力臂垂直。
作为优选,所述主轴座包括主轴主体、主轴轴承座和配合轴支撑架,所述主轴主体通过所述主轴轴承座固定在所述地板上,通过所述配合轴支撑座支撑所述振动框架,所述振动框架在所述主轴主体上随着主轴主体转动做横摇运动。
作为优选,所述横摇框架上还包括关于所述主轴座对称设置的一组光电开关。
作为优选,所述振动框架包括支撑骨架和激振源,所述减振框架包括隔振器、支撑板、上加速度传感器和下加速度传感器,所述隔振器设置在所述支撑骨架上,所述支撑板设置在所述隔振器上,所述激振源设置在所述支撑板上,所述上加速度传感器设置在所述支撑板上,所述下加速度传感器设置在所述支撑骨架上,所述支撑骨架设置在所述主轴座上,并通过所述支链组连接所述底板。
作为优选,所述上加速度传感器设置在所述支撑板上的振动传递至所述隔振器的路径上。
作为优选,所述下加速度传感器设置在所述隔振器上的振动传递至所述支撑骨架的路径上。
作为优选,所述隔振器通过法兰设置在所述支撑骨架上,所述下加速度传感器设置在所述法兰上。
作为优选,所述支撑骨架截面为凹字型,包括骨架本体和设置在所述骨架本体两侧的架高件,所述激振源设置在所述骨架本体上,所述支链组连接所述架高件。
作为优选,所述架高件为侧臂。
作为优选,所述振动框架还包括配重块,所述配重块设置在所述支撑骨架上。
作为优选,所述振动框架还包括关于所述主轴座对称设置的一组可拆卸支撑脚,所述可拆卸支撑脚设置在所述支撑骨架上。
一种测试系统,包括上述的测试平台、电液伺服系统和上位机,所述测试平台、电液伺服系统和上位机之间通信连接。
与现有技术相比,本发明具有以下优点:本发明所述横摇模拟平台模拟在真实海况下的横摇运动状态,为减振控制技术前期测试提供模拟环境,结构简单、紧凑、成本低。采用单杆双向的液压杆串、并联混合的方式,实现液压缸同步运行,通过液压杆推(拉)侧壁实现摇摆动作,成本低。同时,将支撑骨架与液压缸的连接座采用架高结构,降低平台高度,降低重心,减小平台体积空间,增加平台稳定性。所述测试平台结构简单、紧凑、成本低。所述测试系统模拟在真实海况下的横摇运动状态,为减振控制技术前期测试提供模拟环境,进行舰艇用减振控制装置的减振控制试验,保证试验结果的可信度。
附图说明
在此描述的附图仅用于解释目的,而不意图以任何方式来限制本发明公开的范围。另外,图中的各部件的形状和比例尺寸等仅为示意性的,用于帮助对本发明的理解,并不是具体限定本发明各部件的形状和比例尺寸。本领域的技术人员在本发明的教导下,可以根据具体情况选择各种可能的形状和比例尺寸来实施本发明。在附图中:
图1是本发明一具体实施例的横摇模拟平台的结构示意图;
图2是本发明一具体实施例的测试平台的结构示意图;
图3是本发明一具体实施例的测试平台的主轴座的结构示意图;
图4是本发明一具体实施例的测试平台的支撑骨架的结构示意图;
图5是本发明一具体实施例的测试系统的结构示意图;
图6和图7是本发明一具体实施例的测试系统的电液伺服系统的结构示意图。
1-配重块、2-激振器、3-支撑板、4-隔振器、5-下加速度传感器、6-支撑骨架、7-可拆卸支撑脚、9-底板、10-配合轴支撑架、11-光电开关、13-主轴轴承座、14-主轴本体、15-转接架、16-角速度传感器、17-液压缸、18-第二转动副、19-第一转动副、20-转接座、21-压力传感器、22-比例伺服阀、23-比例溢流阀、24-回油滤油器、25-空气滤清器、26-油箱、27-排油阀、28-液压泵、29-单向阀、30-储能器、31-油路块、32-上加速度传感器、33-上位机、61-侧臂、62-骨架本体。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施例。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参见图1,一种横摇模拟平台,包括振动框架和横摇框架,所述振动框架设置在所述横摇框架上方。
结合参见图3,所述横摇框架包括底板9、主轴座、角速度传感器16和至少一组支链组,所述主轴座设置在所述底板9上。所述主轴座包括主轴本体14、主轴轴承座13和配合轴支撑架10,所述主轴本体14通过所述主轴轴承座13固定在所述底板9上,通过所述配合轴支撑架10支撑所述振动框架,所述振动框架在所述主轴本体14上随着主轴本体14转动做横摇运动。所述角速度传感器16设置在所述底板9上,且连接到所述主轴本体14上,用于反馈振动框架位置角度值。
所述支链组连接所述底板9和振动框架。所述支链组包括关于主轴本体14对称设置的左支链和右支链,且左支链和右支链在减振框架端的投影延长线相交。每条所述支链均包括液压缸17、第一转动副19和第二转动副18,所述液压缸17一端通过所述第一转动副19连接所述振动框架,另一端通过所述第二转动副18连接所述底板9。当所述减振框架处于水平位置时,设置所述液压缸17推力与推力臂垂直,提高液压缸17出力效率,同时降低平台高度。所述液压缸17的推杆顶部安装有鱼眼轴承,配合安装在支撑骨架6上实现第一转动副19,所述液压缸17下部外壳的耳环通过液压支撑轴及液压轴承座与底板9连接,形 成第二转动副18,通过控制液压缸17推杆运动实现横摇模拟平台实时摆动及固定角度位置变动。所述支链组设置两组,四条所述支链设置在矩形的四个角上。
结合参见图2,所述横摇框架上还包括关于所述主轴座对称设置的一组光电开关11,所述光电开关11设置在所述底板9上,用于角度限位,防止摆动角度过大而破坏平台装置。所述光电开关11和角速度传感器16均通过转接架15设置在所述底板9上。
结合参见图4,所述振动框架包括支撑骨架6、配重块1和激振器2,所述激振器2和配重块1设置在所述支撑骨架6上,所述配重块1设置若干,均匀环绕所述激振器2设置。所述支撑骨架6截面为凹字型,包括骨架本体62和设置在所述骨架本体两侧的架高件侧臂61,所述激振器2和配重块1设置在所述骨架本体62上,所述支链连接所述侧臂61,即所述液压缸17通过所述第一转动副19连接所述侧臂61。采用部分结构架高的形式,通过液压杆17推(拉)侧臂实现摇摆动作,降低平台高度,降低重心,减小平台体积空间,增加平台稳定性。
所述横摇模拟平台还包括关于所述主轴本体14对称设置的一组可拆卸支撑脚7,所述可拆卸支撑脚7通过平头销设置在所述支撑骨架6上,在平台需要液压缸17拆装调整及水平安置并无需摆动时使用,不用时可拆卸或悬置(悬挂在平台侧面)。
所述横摇模拟平台,模拟在真实海况下的横摇运动状态,为减振控制技术前期测试提供模拟环境,结构简单、紧凑、成本低。
请参见图2~图4,一种测试平台,包括减振框架、振动框架和横摇框架。所述振动框架设置在所述横摇框架上。所述振动框架包括支撑骨架6和激振器2,所述减振框架设置在所述支撑骨架6和激振器2之间,降低或消除振动对支撑骨架6的影响。所述减振框架包括隔振器4、支撑板3、上加速度传感器32和下加速度传感器5,所述支撑板3设置在所述隔振器4上,所述隔振器4支撑所述支撑板3。所述隔振器4设置在所述支撑骨架6上,所述支撑板3设置在所述 隔振器4上,所述激振器2设置在所述支撑板3上,所述上加速度传感器32设置在所述支撑板3上,位于支撑板3上的振动向所述隔振器4传播的路径上,所述下加速度传感器4设置在所述支撑骨架6上,位于所述隔振器4向所述支撑骨架6传播振动的路径上。所述隔振器4接触所述支撑板3的另一侧设置所述上加速度传感器32,所述下加速度传感器5通过法兰设置在所述支撑骨架6上,所述下加速度传感器5设置在所述法兰上。本实施例中,所述隔振器4设置四个,设置在矩形的四个角上,对应的,所述上加速度传感器32和下加速度传感器5均设置四个,和所述隔振器一一对应设置,即每一个所述隔振器4均设置一个上加速度传感器32和下加速度传感器5进行信号收集。所述振动框架还包括配重块1,所述配重块1设置若干,环绕所述激振器2均匀设置,通过搭配不同质量、数量的配重块1模拟不同负载。
所述横摇框架包括底板9、主轴座、角速度传感器16和至少一组支链组,所述主轴座设置在所述底板9上。所述主轴座包括主轴本体14、主轴轴承座13和配合轴支撑架10,所述主轴本体14通过所述主轴轴承座13固定在所述底板9上,通过所述配合轴支撑座10支撑所述振动框架,所述振动框架在所述主轴本体14上随着主轴本体14转动做横摇运动,具体的,所述主轴本体14通过所述配合轴支撑座10支撑所述支撑骨架6从而支撑所述振动框架。所述角速度传感器16设置在所述底板9上,且连接到所述主轴本体14上,用于反馈振动框架位置角度值。
所述支链组连接所述底板9和振动框架。所述支链组包括关于主轴本体14对称设置的左支链和右支链,且左支链和右支链在减振框架端的投影延长线相交。每条所述支链均包括液压缸17、第一转动副19和第二转动副18,所述液压缸17一端通过所述第一转动副19连接所述振动框架,另一端通过所述第二转动副18连接所述底板9。当所述减振框架处于水平位置时,设置所述液压缸17推力与推力臂垂直,提高液压缸出力效率,同时降低平台高度。所述液压缸17一端通过所述第一转动副19连接所述振动框架,另一端通过所述第二转动副 18连接所述底板。具体的,所述支链连接所述底板9和所述支撑骨架6,所述支撑骨架6截面为凹字型,包括骨架本体62和设置在所述骨架本体62两侧的侧臂61,所述激振器2和配重块1设置在所述骨架本体62上,所述支链连接所述侧臂61,即所述液压缸17通过所述第一转动副19连接所述侧臂61。
所述横摇框架上还包括关于所述主轴本体14对称设置的一组光电开关11,所述光电开关11设置在所述底板9上,用于角度限位,防止摆动角度过大而破坏平台装置。所述光电开关11和角速度传感器16均通过转接架15设置在所述底板9上。
所述测试平台还包括关于所述主轴座对称设置的一组可拆卸支撑脚7,所述可拆卸支撑脚7通过平头销设置在所述支撑骨架6上,在平台需要液压缸17拆装调整及水平安置并无需摆动时使用,不用时可拆卸或悬置(悬挂在平台侧面)。
在提供的所述横摇模拟平台的基础上,所述测试平台在所述横摇模拟平台上安装减振框架,用于测试减振框架上安装的隔振器4的隔振效果。
请参见图5~图7,一种测试系统,包括实施例二所述的测试平台,以及电液伺服系统和上位机33,所述测试平台、电液伺服系统和上位机33之间通信连接。
所述电液伺服系统包括液压缸17、比例伺服阀22、比例溢流阀23、压力传感器21、油路块31、油箱26、液压泵28、单向阀29、回油滤油器24、空气滤清器25、储能器30、排油阀27以及液压管路。所述液压缸17为执行机构设置在所述测试平台,当推杆伸长时为进程液压缸,推杆收缩时为回程液压缸,通过液压管道与油路块31连接。比例伺服阀22、比例溢流阀23、压力传感器21均安装在油路块31上,其中,比例伺服阀22控制液压管道的开闭和方向,比例溢流阀23控制液压管道的压力大小,压力传感器21用于反馈比例伺服阀22进出口压力大小。油路块31安装在油箱26上,是电液伺服系统中的油路转接装置,用于安装各类阀体及传感器,适用于液压油的短距传送,可以减少液 压管道的使用,使电液伺服系统的装置集成度更高。油箱26是电液伺服系统的储油装置,同时也是其他部件的安装基座,其内灌装有液压油,用于传递能量,同时也起到系统润滑和冷却等作用。液压泵28安装在油箱26上是电液伺服系统的动力源,驱动液压油在液压管道中流动,实现终端液压缸17的伸缩动作,带动测试平台摆动。单向阀29安装在液压泵28至比例伺服阀23之间,使液压油单向流动,防止反向倒流。回油滤油器24安装在系统末端的液压管路上,把系统内产生或侵入的污染物在返回油箱前过滤掉。空气滤清器25安装在油箱26上,不仅可以防止颗粒污染物通过油箱呼吸口侵入系统,还可以防止加油过中混入颗粒污染物。储能器30安装与油箱26上,用于吸收液压回路脉冲、补偿流量及保压。所述电液伺服系统是常用的一种电液伺服系统。
所述上位机33提供运行所需的计算机操作系统,构建软件运行平台基础,通过安装搭建相应软件,实现程序算法编写,完成整个系统的数据采集、分析、计算及输出控制。所述上位机33包括数据采集模块、数据分析输出模块,所述数据采集模块读取所述测试平台和电液伺服系统的状态数据,所述数据分析输出模块用于分析所述数据采集模块采集的状态数据进行调控,并输出至所述测试平台和电液伺服系统。所述数据采集模块与电液伺服系统中的比例伺服阀22和压力传感器21,测试平台中的角速度传感器16、下加速度传感器5、上加速度传感器32、光电开关11通过同轴电缆连接,用于各类传感器反馈信号的采集;所述数据分析输出模块与激振器2、比例伺服阀22及比例溢流阀23相连,用于控制激振器2的振动及电液伺服系统中比例伺服阀22、比例溢流阀23的阀芯位置变化。此外,所述上位机33上安装了外设方向舵,通过转动方向舵实时控制平台运行状态。
利用上位机软件labview搭建数据采集及运动控制程序。首先所述数据采集模块,读取上加速度传感器32的参考信号和下加速度传感器5的下层误差信号、角速度传感器16的角度信号、底板9上光电开关11的开关量信号,实现对测试平台的实时数据监控,读取比例伺服阀22阀芯位置反馈信号、压力传感器21 压力信号,实现对电液伺服系统的实时数据监控。并通过FFT滤波算法将原始数据过滤为利于后期计算及控制参考的信号数据。
然后,所述数据分析输出模块进行数据分析并进行激振器2控制、比例伺服阀控制和比例溢流阀控制。
在上位机33上设置激振信号类型、频率、幅度、相位等参数,将参数信息通过通信传递给激振器2功放以此驱动激振器2运行,结合配重模拟设备振动,包括模拟设备的单频振动、多频振动和扫频振动。
比例伺服阀控制主要实现横摇模拟平台定角度位置控制、实时控制及仿真控制。定角度位置控制为通过软件预设横摇平台静止倾斜角度值,通过算法控制比例伺服阀22的阀芯位置变动,实现平台静止在固定角度,其具体实现方法为:当上位机检测到固定角度值指令时,会将指令值与角速度传感器16的角度信号做差得到角度信号误差值,再将角度信号误差值乘以Kp,加上角度信号误差值关于时间的积分乘以Ki输出至比例伺服阀22,比例伺服阀22接收到信号后阀芯位置变动,控制通往进程液压缸和回程液压缸的油液流量,使支撑板3角度往角度信号误差值减小的方向运动,直到角度信号误差值小于预设误差值,比例伺服阀22阀芯关闭。此时,不再有油液通往进程液压缸和回程液压缸,上位机给比例溢流阀23指令使比例溢流阀23阀芯打开,使得在比例伺服阀22阀芯关闭时,油液通过比例溢流阀23返回至油箱26(其中,Kp、Ki为PID控制参数)。实时控制为利用外界方向舵控制横摇模拟平台摆动和静止,其具体实现方法为:当上位机33检测到方向舵角度值指令时,上位机33会将指令值与角速度传感器16的角度信号做减法得到角度信号误差值,再将角度信号误差值乘以Kp,加上角度信号误差值关于时间的积分乘以Ki输出至比例伺服阀22,比例伺服阀22接收到信号后阀芯位置变动,控制通往进程液压缸和回程液压缸的油液流量,使上支撑板3角度往角度信号误差值减小的方向运动,直到角度信号误差值小于预设误差值。同时,上位机33会角度信号误差值乘以Kp加上角度信号误差值关于时间的积分乘以Ki输出至比例溢流阀23指令控制比例溢流 阀23阀芯,从而控制通往进程液压缸和回程液压缸的油液流量。这样当角度信号误差值较大时,通往进程液压缸和回程液压缸的油液流量与压力较大;当角度信号误差值较小时,通往进程液压缸和回程液压缸的油液流量与压力较小,这样控制可以避免误差值较小时油压较大导致液压系统振动与发热。仿真控制为测试平台按规划运动路径及速度变化做自动运行,其具体实现方法为:上位机33将导入提前设置好的角度-时间信号,并同样按照上述方法进行控制。
比例溢流阀控制为依据需求控制电液系统液压回路中压力变化,具体为依据比例溢流阀23及其功放参数,在上位机33上设定实际系统所需压力对应的比例溢流阀23的控制参数,将参数发送至比例溢流阀功放,通过功放驱动比例溢流阀23的阀芯位置变化,实现压力控制。此外,在上位机33软件上编写阻抗控制算法,依据压力传感器21反馈的液压回路压力实时变化,调节溢流阀对应的压力控制参数,实现横摇模拟平台阻抗控制。通过进行激振器2控制、比例伺服阀控制和比例溢流阀控制,获得真实海况下的横摇运动状态,对所述隔振器进行测试,通过判断上加速度传感器32测出的参考信号,和下加速度传感器5测出的误差信号,当误差信号也就是加速度信号越小时,隔振效果就越好,来判断所用的隔振器4的振动控制效果。
本发明所述横摇模拟平台模拟在真实海况下的横摇运动状态,为减振控制技术前期测试提供模拟环境,在所述横摇模拟平台中加入隔振器进行减振形成一个测试平台,所述测试平台结构简单、紧凑、成本低。所述测试平台接入电液伺服系统和上位机形成的测试系统,所述测试系统模拟在真实海况下的横摇运动状态,为减振控制技术前期测试提供模拟环境,进行舰艇用减振控制装置的减振控制试验,保证试验结果的可信度。使用隔振器4消除上层振动对下层骨架的影响,此处,参考信号可以取振源(激振器)的振动信号,误差信号为隔振器下方的骨架的振动信号,当误差信号也就是加速度信号越小时,隔振效果就越好(下层振动越小,即从上层传递到下层的振动被隔振器消除)。
应该理解,以上描述是为了进行图示说明而不是为了进行限制。通过阅读 上述描述,在所提供的示例之外的许多实施例和许多应用对本领域技术人员来说都将是显而易见的。因此,本教导的范围不应该参照上述描述来确定,而是应该参照前述权利要求以及这些权利要求所拥有的等价物的全部范围来确定。出于全面之目的,所有文章和参考包括专利申请和公告的公开都通过参考结合在本文中。在前述权利要求中省略这里公开的主题的任何方面并不是为了放弃该主体内容,也不应该认为申请人没有将该主题考虑为所公开的发明主题的一部分。

Claims (30)

  1. 一种横摇模拟平台,其特征在于,包括振动框架和横摇框架,所述振动框架设置在所述横摇框架上方;所述横摇框架包括底板、主轴座和至少一组支链组,所述振动框架设置在所述主轴座上,所述主轴座设置在所述底板上,所述支链组一端连接所述底板,另一端连接所述振动框架。
  2. 根据权利要求1所述的横摇模拟平台,其特征在于,所述横摇框架还包括角速度传感器,所述角速度传感器设置在所述底板上,且连接到所述主轴座上。
  3. 根据权利要求1所述的横摇模拟平台,其特征在于,所述支链组包括关于主轴座对称设置的左支链和右支链,且左支链和右支链在减振框架端的投影延长线相交。
  4. 根据权利要求1所述的横摇模拟平台,其特征在于,所述支链组的每条所述支链均包括液压缸、第一转动副和第二转动副,所述液压缸一端通过所述第一转动副连接所述横摇框架,另一端通过所述第二转动副连接所述底板。
  5. 根据权利要求4所述的横摇模拟平台,其特征在于,当所述振动框架处于水平位置时,所述液压缸推力与推力臂垂直。
  6. 根据权利要求1所述的横摇模拟平台,其特征在于,所述主轴座包括主轴主体、主轴轴承座和配合轴支撑架,所述主轴主体通过所述主轴轴承座固定在所述地板上,通过所述配合轴支撑座支撑所述振动框架。
  7. 根据权利要求1所述的横摇模拟平台,其特征在于,所述横摇框架上还包括关于所述主轴座对称设置的一组光电开关。
  8. 根据权利要求1所述的横摇模拟平台,其特征在于,所述振动框架包括支撑骨架和激振源,所述激振源设置在所述支撑骨架上,所述支撑骨架设置在所述主轴座上,并通过所述支链组连接所述底板。
  9. 根据权利要求8所述的横摇模拟平台,其特征在于,所述支撑骨架截面 为凹字型,包括骨架本体和设置在所述骨架本体两侧的架高件,所述激振源设置在所述骨架本体上,所述支链组连接所述架高件。
  10. 根据权利要求9所述的横摇模拟平台,其特征在于,所述架高件为侧臂。
  11. 根据权利要求8所述的横摇模拟平台,其特征在于,所述激振源为激振器。
  12. 根据权利要求8所述的横摇模拟平台,其特征在于,所述振动框架还包括配重块,所述配重块设置在所述支撑骨架上。
  13. 根据权利要求8所述的横摇模拟平台,其特征在于,所述振动框架还包括关于所述主轴座对称设置的一组可拆卸支撑脚,所述可拆卸支撑脚设置在所述支撑骨架上。
  14. 一种测试平台,其特征在于,包括横摇框架、减振框架和振动框架,所述减振框架设置在所述振动框架上,所述振动框架设置在所述横摇框架上,所述横摇框架包括底板、主轴座和至少一组支链组,所述振动框架设置在所述主轴座上,所述主轴座设置在所述底板上,所述支链组一端连接所述底板,另一端连接所述振动框架。
  15. 根据权利要求14所述的测试平台,其特征在于,所述横摇框架还包括角速度传感器,所述角速度传感器设置在所述底板上,且连接到所述主轴座上。
  16. 根据权利要求14所述的测试平台,其特征在于,所述支链组包括关于主轴座对称设置的左支链和右支链,且左支链和右支链在减振框架端的投影延长线相交。
  17. 根据权利要求14所述的测试平台,其特征在于,所述支链组的每条所述支链均包括液压缸、第一转动副和第二转动副,所述液压缸一端通过所述第一转动副连接所述横摇框架,另一端通过所述第二转动副连接所述底板。
  18. 根据权利要求17所述的测试平台,其特征在于,当所述振动框架处 于水平位置时,所述液压缸推力与推力臂垂直。
  19. 根据权利要求14所述的测试平台,其特征在于,所述主轴座包括主轴主体、主轴轴承座和配合轴支撑架,所述主轴主体通过所述主轴轴承座固定在所述地板上,通过所述配合轴支撑座支撑所述振动框架。
  20. 根据权利要求14所述的测试平台,其特征在于,所述横摇框架上还包括关于所述主轴座对称设置的一组光电开关
  21. 根据权利要求14所述的测试平台,其特征在于,所述振动框架包括支撑骨架和激振源,所述减振框架包括隔振器、支撑板、上加速度传感器和下加速度传感器,所述隔振器设置在所述支撑骨架上,所述支撑板设置在所述隔振器上,所述激振源设置在所述支撑板上,所述上加速度传感器设置在所述支撑板上,所述下加速度传感器设置在所述支撑骨架上,所述支撑骨架设置在所述主轴座上,并通过所述支链组连接所述底板。
  22. 根据权利要求21所述的横摇模拟平台,其特征在于,所述上加速度传感器设置在所述支撑板上的振动传递至所述隔振器的路径上。
  23. 根据权利要求21所述的横摇模拟平台,其特征在于,所述下加速度传感器设置在所述隔振器上的振动传递至所述支撑骨架的路径上。
  24. 根据权利要求23所述的横摇模拟平台,其特征在于,所述隔振器通过法兰设置在所述支撑骨架上,所述下加速度传感器设置在所述法兰上。
  25. 根据权利要求21所述的横摇模拟平台,其特征在于,所述支撑骨架截面为凹字型,包括骨架本体和设置在所述骨架本体两侧的架高件,所述激振源设置在所述骨架本体上,所述支链组连接所述架高件。
  26. 根据权利要求25所述的横摇模拟平台,其特征在于,所述架高件为侧臂。
  27. 根据权利要求21所述的横摇模拟平台,其特征在于,所述激振源为激振器。
  28. 根据权利要求21所述的横摇模拟平台,其特征在于,所述振动框架 还包括配重块,所述配重块设置在所述支撑骨架上。
  29. 根据权利要求21所述的横摇模拟平台,其特征在于,所述振动框架还包括关于所述主轴座对称设置的一组可拆卸支撑脚,所述可拆卸支撑脚设置在所述支撑骨架上。
  30. 一种测试系统,包括如权利要求14~29任一所述的测试平台,以及电液伺服系统和上位机,所述测试平台、电液伺服系统和上位机之间通信连接。
PCT/CN2020/122146 2019-12-31 2020-10-20 一种横摇模拟平台、测试平台和测试系统 WO2021135524A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911420859.7A CN111076885A (zh) 2019-12-31 2019-12-31 一种横摇模拟平台、测试平台和测试系统
CN201911420859.7 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021135524A1 true WO2021135524A1 (zh) 2021-07-08

Family

ID=70321350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122146 WO2021135524A1 (zh) 2019-12-31 2020-10-20 一种横摇模拟平台、测试平台和测试系统

Country Status (2)

Country Link
CN (1) CN111076885A (zh)
WO (1) WO2021135524A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111339705B (zh) * 2020-03-04 2024-02-20 海南金盘智能科技股份有限公司 一种海洋运输工况下的干式变压器机械振动仿真分析方法
CN111577516B (zh) * 2020-05-15 2022-05-06 中国海洋石油集团有限公司 一种海洋温差能发电平台海水管振动监测系统
CN112525460B (zh) * 2020-10-29 2022-09-20 中国人民解放军92942部队 一种基于多轴摇摆与振动复合试验平台的试验方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101487766A (zh) * 2009-02-17 2009-07-22 上海航海设备有限责任公司 三轴摇摆模拟试验装置
CN101995322A (zh) * 2010-10-18 2011-03-30 常州西南交通大学轨道交通研究院 一种磁浮列车机电耦合振动试验装置
EP2645076A1 (de) * 2012-03-28 2013-10-02 Sälzer Sicherheitstechnik GmbH Verfahren und Vorrichtung zum Testen eines flächigen Bauelements bezüglich Beständigkeit gegenüber Druckeinwirkung
CN103645055A (zh) * 2013-10-25 2014-03-19 陕西盛迈石油有限公司 模拟动态环境试验平台
CN109048808A (zh) * 2018-08-29 2018-12-21 江苏大学 一种三自由度摇摆转台
CN209148011U (zh) * 2019-01-30 2019-07-23 深圳市万萌建科集团有限公司 幕墙性能试验系统
CN211452778U (zh) * 2019-12-31 2020-09-08 中科振声(苏州)电子科技有限公司 一种横摇模拟平台、测试平台和测试系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101721498B1 (ko) * 2015-07-08 2017-03-30 한국기계연구원 듀얼링크와 공압 바이브레이터를 이용한 슬로싱 및 바이브레이터 시험 장치
CN105509983A (zh) * 2016-01-12 2016-04-20 中国工程物理研究院总体工程研究所 倾斜摇摆与低频振动复合实验平台
CN107063702B (zh) * 2017-06-29 2019-10-01 湘潭大学 一种新型吊篮式结构重载摇摆试验台
CN109839282A (zh) * 2017-11-24 2019-06-04 成都九鼎科技(集团)有限公司 电液伺服式减振器测试平台

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101487766A (zh) * 2009-02-17 2009-07-22 上海航海设备有限责任公司 三轴摇摆模拟试验装置
CN101995322A (zh) * 2010-10-18 2011-03-30 常州西南交通大学轨道交通研究院 一种磁浮列车机电耦合振动试验装置
EP2645076A1 (de) * 2012-03-28 2013-10-02 Sälzer Sicherheitstechnik GmbH Verfahren und Vorrichtung zum Testen eines flächigen Bauelements bezüglich Beständigkeit gegenüber Druckeinwirkung
CN103645055A (zh) * 2013-10-25 2014-03-19 陕西盛迈石油有限公司 模拟动态环境试验平台
CN109048808A (zh) * 2018-08-29 2018-12-21 江苏大学 一种三自由度摇摆转台
CN209148011U (zh) * 2019-01-30 2019-07-23 深圳市万萌建科集团有限公司 幕墙性能试验系统
CN211452778U (zh) * 2019-12-31 2020-09-08 中科振声(苏州)电子科技有限公司 一种横摇模拟平台、测试平台和测试系统

Also Published As

Publication number Publication date
CN111076885A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2021135524A1 (zh) 一种横摇模拟平台、测试平台和测试系统
CN201763726U (zh) 一种模拟航空发动机液压管路振动环境的测试试验装置
US20210223151A1 (en) True triaxial testing system for disturbance experiment with broadband and low amplitude of high pressure hard rock
CN105913717B (zh) 一种大位移六自由度振动台
CN108168880A (zh) 一种功率封闭的齿轮箱振动噪声测试试验台
EP2778466A1 (en) Pumper truck and method, controller, and apparatus for controlling pumper truck boom vibration
CN105545765B (zh) 船用泵摇摆条件下的性能测试装置
KR100934618B1 (ko) 선박용 감요 모형의 강제동요 시험장치
CN211452778U (zh) 一种横摇模拟平台、测试平台和测试系统
CN104897493A (zh) 低温压力循环寿命试验方法及系统
CN105021363A (zh) 基于s-p-r的船舶结构振动与噪声预报系统
WO2020155633A1 (zh) 复合式桥梁扭转振动控制系统
CN105173127A (zh) 基于悬吊与气悬浮组合的六自由度零重力模拟系统
CN105889642A (zh) 管道智能减振器
CN112146833B (zh) 一种模拟复杂海洋环境下海底管道涡激振动的实验装置
Yang et al. Dynamic analysis of wave energy converter by incorporating the effect of hydraulic transmission lines
Clark Dynamic characteristics of large multiple degree of freedom shaking tables
CN105277337A (zh) 模拟j型铺管船铺设海底管道过程的试验装置
CN105151331A (zh) 一种零重力模拟系统及其使用方法
CN204286961U (zh) 应用于低温压力循环寿命测试的设备
CN110044568A (zh) 一种两自由度双电液振动台台阵模拟系统干扰力补偿方法
CN110389035A (zh) 一种柴油机推进系统的振动特性试验系统
Xu et al. Shaking table substructure test of tuned liquid damper for controlling earthquake response of structure
CN212432471U (zh) 一种用于研究在水锤激励下水管系统振动特性的实验装置
CN210071284U (zh) 舱段摇摆试验系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911137

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20911137

Country of ref document: EP

Kind code of ref document: A1