WO2021135510A1 - 一种聚合物空间电荷分布测量用复合探头及其测量方法 - Google Patents

一种聚合物空间电荷分布测量用复合探头及其测量方法 Download PDF

Info

Publication number
WO2021135510A1
WO2021135510A1 PCT/CN2020/121452 CN2020121452W WO2021135510A1 WO 2021135510 A1 WO2021135510 A1 WO 2021135510A1 CN 2020121452 W CN2020121452 W CN 2020121452W WO 2021135510 A1 WO2021135510 A1 WO 2021135510A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sleeve
composite probe
space charge
quartz glass
Prior art date
Application number
PCT/CN2020/121452
Other languages
English (en)
French (fr)
Inventor
张冶文
曹泽宾
徐景贤
郑飞虎
Original Assignee
同济大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学 filed Critical 同济大学
Priority to US17/299,322 priority Critical patent/US11698402B2/en
Publication of WO2021135510A1 publication Critical patent/WO2021135510A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06777High voltage probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/24Arrangements for measuring quantities of charge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/12Measuring electrostatic fields or voltage-potential
    • G01R29/14Measuring field distribution

Definitions

  • the invention relates to the field of electrical charge measurement devices, and in particular to a composite probe for polymer space charge distribution measurement and its measurement method.
  • Piezoelectric pressure wave method and laser pressure wave method are the two main measurement methods of pressure wave method to measure the space charge distribution inside the insulating medium. Compared with the LIPP method, the piezoelectric pressure wave method has the advantages of simple equipment and low cost. At the same time, the piezoelectric material generates sound waves, which overcomes the shortcomings of laser targets that are easily damaged in the LIPP method.
  • the basic principle of the pressure wave method is: when the elastic wave propagates in the medium at the speed of sound, it destroys the original balance between the elastic force in the medium and the electric field force generated by the electric charge, causing a small displacement of the charge in the medium, and the small displacement of the charge causes the dielectric electrode.
  • the amount of induced charge changes on the external circuit, so the current or voltage signal changes can be observed on the external circuit, so as to obtain information about the space charge distribution in the medium.
  • the measurement principle of the existing piezoelectric pressure wave method is: a high-voltage direct current (HVDC) voltage is applied to one electrode of the sample through a protective resistor, and the other electrode of the sample is grounded.
  • the pressure wave generating probe is used to generate a disturbance to the sample through the acoustic waveguide.
  • the change in the amount of charge on the sample electrode will generate an instantaneous current and pass through the capacitor (C), the protection circuit and the amplifier, and finally record it in the oscilloscope.
  • the disadvantage of the existing pressure wave method for measuring space charge distribution is that its high-voltage circuit and signal circuit are only separated by coupling capacitors. When the capacitor is used to block the high-voltage circuit and the low-voltage signal circuit, it is more dangerous and easy to threaten the experimental equipment and operators. .
  • the purpose of the present invention is to overcome the disadvantages of complex operation in the actual measurement process of space charge measurement based on the piezoelectric pressure wave method and the risk of taking signals from the high-voltage end, and to provide an easy-to-operate and safe polymer that extracts signals from the low-voltage end.
  • Composite probe for space charge distribution measurement and its measurement method is to overcome the disadvantages of complex operation in the actual measurement process of space charge measurement based on the piezoelectric pressure wave method and the risk of taking signals from the high-voltage end, and to provide an easy-to-operate and safe polymer that extracts signals from the low-voltage end.
  • a composite probe for polymer space charge distribution measurement including a housing, the composite probe also includes a signal-taking aluminum block, a quartz glass block, a piezoelectric ceramic sheet, a voltage pulse transmission unit, and a signal extraction fixed by the housing Unit, a conductive material is attached to the outer surface of the quartz glass block, the conductive material is in contact with the housing, the positive electrode of the piezoelectric ceramic sheet is connected to the voltage pulse transmission unit, and the negative electrode is connected to the outside of the quartz glass block Conductive material on the surface, the signal-taking aluminum block is respectively connected to the quartz glass block and the signal extraction unit.
  • the composite probe for polymer space charge distribution measurement of the present invention takes the signal from the signal-taking aluminum block, and the signal is taken at the same end as the sound pulse, that is, the signal is taken from the low-voltage end, which avoids the traditional taking of the signal from the high-voltage end and can avoid danger , And it is simple and easy to operate in actual use.
  • the composite probe for space charge distribution measurement of the present invention uses quartz glass as the acoustic waveguide material to transmit the acoustic signal to the signal-taking aluminum block.
  • the quartz glass block is laminated with a layer of aluminum foil with silicon oil and connected with the shell to become piezoelectric ceramics
  • the low-voltage end of the chip, the quartz glass block and the signal-taking aluminum block are bonded by epoxy resin, and the shell is connected by four positioning screws.
  • the voltage pulse transmission unit includes a BNC connector and a backing copper column connected in sequence, the BNC connector is fixedly connected to the housing, the backing copper column is connected to the piezoelectric ceramic sheet, and the backing The copper column is matched with the connecting surface of the piezoelectric ceramic sheet.
  • a cylindrical chamber is formed in the housing, the backing copper column is arranged in the cylindrical chamber, and the composite probe further includes a limiting sleeve whose inner diameter matches the backing copper column , Restricting the lateral movement of the backing copper column, the outer diameter is matched with the radius of the cylindrical chamber, so that the limit sleeve is fixed by the shell, the material of the limit sleeve is an insulating material, and the limit The function of the sleeve is to restrict the backing copper pillar from deviating from the center position during the bonding process, and to prevent the backing copper pillar from being connected to the main sleeve.
  • the voltage pulse transmission unit further includes an electric pulse spring pin arranged between the BNC connector and the backing copper column, the fixed end of the electric pulse spring pin is connected to the BNC connector, and the telescopic end is connected to the The backing copper column is used, and the electric pulse spring pin is connected with the backing copper column through the elastic force of the telescopic end.
  • a first groove is provided at the connection between the backing copper column and the electric pulse spring needle, and the electric pulse spring needle passes through the first groove and is connected to the backing copper column.
  • the first groove is matched with the top of the telescopic end of the electric pulse spring needle.
  • the shell is provided with an annular groove, the annular groove is located in the connecting surface of the shell and the quartz glass block, the annular groove is also located outside the piezoelectric ceramic sheet, and the annular groove
  • the groove is filled with soft metal, and the thickness of the soft metal is greater than the depth of the annular groove, so that the soft metal is embedded in the annular groove with slight protrusions, which further ensures that the voltage pulse on the piezoelectric ceramic sheet is grounded, and the shell and the quartz
  • the electrical path between the aluminum foils on the glass surface is a reliable path.
  • the piezoelectric ceramic sheet, the quartz glass block and the signal-taking aluminum block are all cylindrical, and the piezoelectric ceramic sheet, the quartz glass block and the signal-taking aluminum block are coaxial.
  • the piezoelectric ceramic sheet is bonded to the aluminum foil on the upper surface of the quartz glass block through phenyl salicylate, and is bonded to the upper backing copper column through phenyl salicylate, ensuring that the electrical pulse signal passes through the backing copper
  • the column can be transferred to the piezoelectric ceramic sheet and generate acoustic pulses.
  • the signal extraction unit includes an SMA connector connected to the housing, and a signal extraction end of the SMA connector is connected to the signal-taking aluminum block.
  • the signal extraction unit further includes a signal end spring pin, the fixed end of the signal end spring pin is connected to the signal extraction end of the SMA connector, the telescopic end is connected to the signal-taking aluminum block, and the signal end spring pin passes The telescopic elastic force of the telescopic end ensures the connection with the signal-taking aluminum block.
  • a second groove is provided at the connection between the signal-taking aluminum block and the signal terminal elastic pin, and the signal-terminal elastic pin passes through the second groove and is connected to the signal-taking aluminum block.
  • the second groove is matched with the top of the telescopic end of the signal end elastic pin, and the second groove is elongated and is longitudinally distributed along the side of the signal-taking aluminum block, which avoids the movement of the signal end elastic pin It is disconnected from the aluminum block for signal acquisition.
  • the voltage pulse transmitted by the voltage pulse transmission unit is a high-speed periodic pulse voltage with a voltage of 150 volts, a frequency of 100 Hz, and a falling edge time of nanoseconds.
  • the housing includes a top cover, a main body cover and a movable telescopic cover, the top cover is fixedly connected to the voltage pulse transmission unit, and the signal-taking aluminum block, the quartz glass block and the piezoelectric ceramic sheet are all subjected to
  • the main body sleeve is fixed
  • the signal extraction unit is fixed by the movable telescopic sleeve
  • the top cover is connected to the main body sleeve
  • the movable telescopic sleeve is connected to the outside of the main body sleeve with the signal-taking aluminum block end, And can move along the outer surface of the main sleeve, so that one end of the movable telescopic sleeve and the other end of the connecting end of the signal-taking aluminum block and the quartz glass block are kept on the same plane,
  • the composite probe is used for measuring flat polyethylene samples.
  • the present invention also provides a polymer space charge distribution measurement method using the above composite probe.
  • the method is specifically as follows: when an EVA electrode is attached to a single surface of the polymer to be tested to measure the space charge distribution, the polymer to be tested The EVA electrode surface of the object is in contact with the signal-taking aluminum block in the composite probe, the EVA electrode surface of the polymer under test is in contact with the high-voltage electrode, and the polymer under test must have a flat surface.
  • the present invention has the following advantages:
  • the signal is taken from the signal-taking aluminum block, and the signal is taken at the same end as the sound pulse.
  • the composite probe of the present invention can be obtained from the test sample.
  • the low-voltage end takes signals, compared with the traditional high-voltage end take signals, it has better safety performance, and provides an idea for the measurement in the actual scene based on the piezoelectric pressure wave method.
  • a voltage pulse is applied to the piezoelectric ceramic sheet through the voltage pulse transmission unit, and the conductive material on the outer surface of the quartz glass block and the shell are grounded to form a loop, so that the piezoelectric ceramic sheet generates an acoustic pulse to meet the piezoelectric requirements.
  • the method is stable and reliable, and can control the input of voltage pulses, thereby improving the measurement accuracy of the composite probe of the present invention.
  • the composite probe of the present invention is equipped with elastic needles in both the voltage pulse transmission unit and the signal extraction unit, which not only extends the connection length of the BNC connector and the SMA connector, but also ensures the connection with other components through the telescopic elastic force of the elastic needle. The reliability of the composite probe of the invention is improved.
  • the present invention uses springs and limit screws, so that the movable signal sleeve can move along the outer surface of the main sleeve, so that during the measurement process, it can ensure that the lower surface of the aluminum block and the lower surface of the signal
  • the lower surface of the movable signal sleeve is the same plane, which makes the measurement result more accurate.
  • the present invention uses the design of the electric pulse spring pin to press down the backing copper column, the elastic force of the spring spring pin and the design of the limit hole on the upper surface of the backing copper column, so that there will be no pressure during long-term use.
  • the phenomenon of the electric ceramic sheet and the backing copper column falling off makes the invention can be used for a long time.
  • the composite probe of the present invention fixes most of the components on the main cover, and the main cover is designed with threads, which makes the whole new probe easy to disassemble and assemble, easy to operate and use.
  • the actual process only needs to connect the BNC head to the electric pulse signal.
  • the overall design of the present invention is compact, easy to carry, simple to operate, and easy to install.
  • FIG. 1 is a schematic diagram of the structure of a composite probe according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of the installation position of the SMA connector in the composite probe of Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of the distribution of the limiting holes in the composite probe according to Embodiment 1 of the present invention.
  • Fig. 5 is a right side view of the main body cover in the composite probe of embodiment 1 of the present invention.
  • Fig. 6 is a bottom view of the main body cover in the composite probe according to Embodiment 1 of the present invention.
  • FIG. 7 is a cross-sectional view of the movable signal sleeve in the composite probe of Embodiment 1 of the present invention.
  • Figure 8 is a right side view of the movable signal sleeve in the composite probe according to Embodiment 1 of the present invention.
  • FIG. 9 is a schematic diagram of the connection hole distribution of the movable signal sleeve in the composite probe of Embodiment 1 of the present invention.
  • Figure 10 is a cross-sectional view of the top cover of the composite probe in Example 1 of the present invention.
  • Fig. 11 is a top view of the top cover of the composite probe according to the first embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the structure of a composite probe according to Embodiment 2 of the present invention.
  • FIG. 13 is a schematic diagram of the installation position of the SMA connector in the composite probe according to Embodiment 2 of the present invention.
  • FIG. 14 is a schematic diagram of the distribution of the limiting holes in the composite probe according to Embodiment 2 of the present invention.
  • Fig. 16 is a right view of the main body cover in the composite probe according to the second embodiment of the present invention.
  • FIG. 17 is a bottom view of the main body cover in the composite probe according to Embodiment 2 of the present invention.
  • FIG. 19 is a right side view of the movable signal sleeve in the composite probe according to Embodiment 2 of the present invention.
  • FIG. 20 is a schematic diagram of the connection hole distribution of the movable signal sleeve in the composite probe according to Embodiment 2 of the present invention.
  • Figure 21 is a cross-sectional view of the top cover of the composite probe according to Embodiment 2 of the present invention.
  • Figure 22 is a top view of the top cover of the composite probe according to Embodiment 2 of the present invention.
  • FIG. 23 is a schematic diagram of the measurement principle of the existing pressure wave method in the background of the present invention.
  • 24 is a schematic diagram of the measurement principle of the composite probe for measuring the polymer space charge distribution of the present invention.
  • Fig. 25 is a diagram of voltage pulse signals matched with the composite probe of the present invention.
  • Figure 26 is a first physical view of a flat polymer sample measured by the composite probe of the present invention.
  • Figure 27 is a second physical diagram of a flat polymer sample measured by the composite probe of the present invention.
  • this embodiment is a composite probe for polymer space charge distribution measurement, including a housing, a signal-taking aluminum block 1, a quartz glass block 4, a piezoelectric ceramic sheet 6, and a voltage pulse fixed by the housing Transmission unit and signal extraction unit, the outer surface of the quartz glass block 4 is laminated with a conductive material, the conductive material is in contact with the housing, the positive electrode of the piezoelectric ceramic sheet 6 is connected to the voltage pulse transmission unit, and the negative electrode is connected to the outer surface of the quartz glass block 4 Conductive material, take the signal aluminum block 1 to connect the quartz glass block 4 and the signal extraction unit respectively.
  • the piezoelectric ceramic sheet 6, the quartz glass block 4, and the signal-taking aluminum block 1 are all cylindrical, and the piezoelectric ceramic sheet 6, the quartz glass block 4 and the signal-taking aluminum block 1 are coaxial.
  • the voltage pulse transmission unit includes a BNC connector 14, an electric pulse spring pin 13, and a backing copper column 7, which are connected in sequence.
  • the BNC connector 14 is fixedly connected to the shell, the backing copper column 7 is connected to the piezoelectric ceramic sheet 6, and the backing copper column 7 is connected to the The connecting surfaces of the piezoelectric ceramic sheet 6 are matched.
  • a cylindrical chamber is formed in the shell, and the backing copper column 7 is arranged in the cylindrical chamber.
  • the composite probe also includes a limiting sleeve 8.
  • the inner diameter of the limiting sleeve 8 matches the backing copper column 7 to limit the lateral direction of the backing copper column 7 Move, the outer diameter matches the radius of the cylindrical chamber, so that the limit sleeve 8 is fixed by the shell.
  • the material of the limit sleeve is insulating material. In this embodiment, polytetrafluoroethylene is used, and the function of the limit sleeve is to limit the adhesion.
  • the backing copper column deviates from the center position and prevents the backing copper column from being connected to the main sleeve.
  • the fixed end of the electric pulse spring needle 13 is connected to the BNC connector 14, the telescopic end is connected to the backing copper column 7, and the electric pulse spring needle 13 is connected to the backing copper column 7 through the telescopic elastic force of the telescopic end.
  • the backing copper pillar 7 is correspondingly provided with a small pit. The top of the telescopic end of the electric pulse bullet pin 13 enters the pit, which restricts the horizontal movement of the electric pulse bullet needle 13 and fixes the position of the electric pulse bullet needle 13.
  • the voltage of the voltage pulse connected to the BNC connector 14 is 150 volts and the frequency is 100 Hz, as shown in FIG. 25, where Time is time and Voltage is voltage.
  • the composite probe of this embodiment uses the quartz glass block 4 as the acoustic waveguide material to transmit the acoustic signal to the signal-taking aluminum block 1.
  • the quartz glass block 4 is laminated with a layer of conductive material: aluminum foil with silicon oil, and is connected with the shell to become the ground terminal of the piezoelectric ceramic sheet 6.
  • the quartz glass block 4 and the signal-taking aluminum block 1 are bonded by epoxy resin, and are connected with the shell by four positioning screws.
  • the piezoelectric ceramic sheet 6 is bonded to the aluminum foil on the upper surface of the quartz glass block 4 through phenyl salicylate, and is bonded to the upper backing copper pillar 7 through phenyl salicylate to ensure that the electrical pulse signal passes through the backing copper
  • the column 7 can be transferred to the piezoelectric ceramic sheet 6 and generate acoustic pulses.
  • the signal extraction unit includes an SMA connector 3 and a signal end spring pin 2.
  • the fixed end of the signal end spring pin 2 is connected to the signal extraction end of the SMA connector 3, the telescopic end is connected to the signal aluminum block 1, and the signal end spring pin 2 Ensure the connection with the signal-taking aluminum block 1 through the telescopic elastic force of the telescopic end.
  • the SMA connector 3 is fixedly connected to the housing.
  • the signal-taking aluminum block 1 is correspondingly provided with a vertical pit.
  • the top of the telescopic end of the electric pulse bullet pin 13 enters the pit, which restricts the horizontal movement of the bullet needle, so that the electric pulse needle 13 can only be along the surface of the signal-taking aluminum block 1 move up and down.
  • the housing includes a top cover 15, a main body sleeve 9 and a movable telescopic sleeve 16.
  • the top cover 15 is fixedly connected to the voltage pulse transmission unit, and the signal-taking aluminum block 1, the quartz glass block 4 and the piezoelectric ceramic sheet 6 are all fixed by the main body sleeve 9.
  • the signal extraction unit is fixed by a movable telescopic sleeve 16, the top cover 15 is connected to the main body sleeve 9, and the movable telescopic sleeve 16 is connected to the outer side of the main body sleeve 9 with the signal-taking aluminum block 1 and can move along the outer surface of the main body sleeve 9.
  • One end of the movable telescopic sleeve 16 and the other end of the connecting end of the signal-taking aluminum block 1 and the quartz glass block 4 are kept on the same plane.
  • the main body sleeve 9, the movable telescopic sleeve 16 and the top cover 15 are respectively described in detail below:
  • the upper outer surface of the main sleeve 9 is provided with a fixed thread 12, which makes the entire probe easier to install and use. Just use a fixed head with a matching thread and screw the entire device into the fixed head. Use, reduce the operation during installation and use. It is easy to install and disassemble, and can be replaced.
  • the lower side of the main body sleeve 9 is provided with four limiting holes 11, which are used to connect the main body sleeve 9 and the movable telescopic sleeve 16 through bolts, and the bolts are connected to the corresponding connecting holes on the external movable signal sleeve 16. Together, they form a limit for the movable signal sleeve 16 so that the external movable signal sleeve 16 is not separated from the main body sleeve 9.
  • the radius of the connecting hole is larger than the radius of the bolt, so that the movable signal sleeve 16 can move relative to the main body sleeve 9.
  • the lower end of the main body sleeve 9 is provided with four spring holes 10, and the connection line between every two adjacent spring holes 10 and the center of the main body sleeve 9 is separated by 90°. Through this spring hole 10, the movable telescopic sleeve 16 is connected by a spring.
  • the inside of the movable signal sleeve 16 and the main sleeve 9 are loosely fitted, and the radius of the four connecting holes of the movable telescopic sleeve 16 is larger than the radius of the bolt, so that the movable signal sleeve 16 can move along the outer surface of the main sleeve 9,
  • the lower end of the main body sleeve 9 is connected to the movable telescopic sleeve 16 through a spring, which provides resilience for the movable signal sleeve 16 and ensures that the lower surface of the movable signal sleeve and the signal-taking aluminum block are strictly the same plane.
  • the bottom surface of the main sleeve 9 is provided with an annular groove 5, which is located in the connecting surface of the main sleeve 9 and the quartz glass block 4.
  • the annular groove 5 is also located outside the piezoelectric ceramic sheet 6, and the annular groove 5 is filled with soft Metal, the thickness of the soft metal is greater than the depth of the annular groove.
  • the lower end of the main body sleeve 9 is also provided with four positioning screw holes, and the main body sleeve 9 and the signal-taking aluminum block 1 are fixedly connected by the four positioning screws.
  • the upper part of the movable telescopic sleeve 16 is sleeved on the lower part of the main sleeve 9, and corresponding to the positions of the four limiting holes 11 on the main sleeve 9, there are four connecting holes 161, which can be bolted Through the connecting hole 161 and the limiting hole 11, the movable telescopic sleeve 16 and the main body sleeve 9 are connected.
  • the lower part of the movable telescopic sleeve 16 is provided with a signal extraction slot 162 through which the SMA connector passes, and the movable telescopic sleeve 16 is fixedly connected with screws.
  • the top cover 15 is circular, with a BNC connector fixing groove 151 in the center, and four evenly distributed screw connection grooves 152 around it.
  • the BNC connector 14 is fixedly connected with the top cover 15 through the BNC connector fixing groove 151, and the top cover 15 is fixed with screws; the upper end of the main body sleeve 9 is provided with a top cover slot and a screw access slot.
  • the top cover slot matches the shape of the top cover 15, and the screw access
  • the number and positions of the grooves and the screw connection grooves 152 are matched, and the fixed connection between the top cover 15 and the main body sleeve 9 is realized by the positioning screw passing through the screw connection groove 152 and the screw access groove.
  • the top cover 15 and the main body sleeve 9 are separated from each other for easier operation during the installation of the BNC connector 14 and the electric pulse spring pin 13.
  • This embodiment also provides a method for assembling and space charge measurement of the composite probe of this embodiment.
  • the specific process is as follows:
  • the piezoelectric ceramic sheet 6 is divided into positive and negative electrodes, and the positive electrode needs to be connected to the backing copper pillar 7 and the negative electrode is connected to the upper surface of the quartz glass block 4 with aluminum foil. After the surfaces of the quartz glass 4 are all bonded, soft metal is embedded in the annular groove 5, and then the quartz glass block 4 is connected to the main sleeve 9 by four positioning screws.
  • the BNC connector 14 is fixed to the top cover 15, and the tail end of the electric pulse spring pin 13 is welded to the inner middle conductor of the BNC connector 14, and the top cover 15 is fixed on the main sleeve 9.
  • the probe is fixed on the joint through the fixed thread 12, and the lower surface of the signal aluminum block 1 and the movable signal sleeve 16 are pressed on the surface of the flat polymer sample (the surface is coated with petroleum jelly), the surface is low pressure Electrode, the other surface of the flat polymer sample is a high-voltage electrode. And connect the electrical pulse signal to the BNC connector 14. A force perpendicular to the surface of the sample is applied to the entire probe to make the electrodes fit tightly. As a result, the space charge in the insulating material can be measured.
  • the PZT in the figure is a piezoelectric ceramic sheet.
  • the measurement principle of the composite probe for measuring the polymer space charge distribution of the present invention is:
  • a high-voltage direct current (HVDC) voltage is applied to one electrode of the flat polymer sample through a protective resistor, and the other electrode of the flat polymer sample is grounded.
  • a pressure wave generating probe is used to generate a disturbance to the flat polymer sample through the acoustic waveguide.
  • the change in the amount of charge on the flat polymer sample electrode will generate an instantaneous current and take the signal aluminum block, SMA connector and amplifier, and finally record it in the oscilloscope. By recording the change of the current signal and performing the corresponding conversion, the generation, change and distribution of the space charge in the flat polymer sample medium can be obtained.
  • FIG. 28 is a space charge distribution diagram of a flat polyethylene sample measured by the composite probe of this embodiment in an experiment.
  • Time time
  • Voltage voltage
  • this embodiment is basically the same as Embodiment 1, but the difference lies in the housing.
  • the main body sleeve 9 is fixed to the shielding box in the laboratory, and the SMA takes the signal connector 3. It is fixed on the movable telescopic sleeve 16 and is movable relative to the main body sleeve 9.
  • the SMA signal-taking connector 3 is fixed on the main sleeve 9 and is fixed relative to the main sleeve 9 during the measurement process.
  • the housing of this embodiment includes a top cover 15, a main body sleeve 9 and a movable telescopic sleeve 16.
  • the top cover 15 is fixedly connected to the voltage pulse transmission unit, and the signal aluminum block 1, the quartz glass block 4 and the piezoelectric ceramic sheet 6 are all subjected to the movable
  • the telescopic sleeve 16 is fixed, the signal extraction unit is fixed by the main body sleeve 9, the top cover 15 is connected to the movable telescopic sleeve 16, and the main body sleeve 9 is movably connected to the outside of the movable telescopic sleeve 16, so that one end of the main body sleeve 9 is connected to the signal-taking aluminum block 1
  • the other end of the connection end with the quartz glass block 4 is kept on the same plane.
  • the main body sleeve 9, the movable telescopic sleeve 16 and the top cover 15 are respectively described in detail below:
  • the upper outer surface of the main sleeve 9 is provided with a fixed thread 12, which makes the entire probe easier to install and use. Just use a fixed head with a matching thread and screw the entire device into the fixed head. Use, reduce the operation during installation and use. It is easy to install and disassemble, and can be replaced.
  • a signal extraction groove 162 is provided at the lower part of the main body sleeve 9 through which the SMA connector passes and is fixedly connected to the main body sleeve 9 by screws.
  • the movable telescopic sleeve 16 is arranged inside the main body sleeve 9 and matches the size of the internal space of the main body sleeve 9.
  • the outer surface of the movable telescopic sleeve 16 is provided with four limiting holes 11, and the main body
  • the sleeve 9 is correspondingly provided with four connecting holes, and bolts can be used to pass through the connecting hole and the limiting hole 11 to connect the movable telescopic sleeve 16 and the main sleeve 9.
  • the radius of the connecting hole is larger than the radius of the bolt, so that the movable telescopic sleeve 16 can be Move relative to the main body cover 9.
  • the upper end of the movable telescopic sleeve 16 is provided with four spring holes 10, and the connection line between every two adjacent spring holes 10 and the center of the movable telescopic sleeve 16 is separated by 90°. Through this spring hole 10, the main sleeve 9 is connected by springs.
  • the inside of the movable signal sleeve 16 and the main sleeve 9 are loosely fitted, and the radius of the four connecting holes on the side of the main sleeve 9 is larger than the radius of the bolt, so that the movable signal sleeve 16 can move along the inner surface of the main sleeve 9
  • the movable signal sleeve 16 is connected to the main sleeve 9 through a spring, which provides a resilient force for the main sleeve 9 to ensure that the bottom surface of the main sleeve 9 and the bottom surface of the signal-taking aluminum block 1 are strictly the same plane.
  • the lower end of the movable telescopic sleeve 16 is also provided with four positioning screw holes, and the movable telescopic sleeve 16 is fixedly connected with the signal-taking aluminum block 1 through the four positioning screws.
  • the top cover 15 is circular, with a BNC connector fixing groove 151 in the center, and four evenly distributed screw connection grooves 152 around it.
  • the BNC connector 14 is fixedly connected to the top cover 15 with screws through the BNC connector fixing slot 151; the inner side of the upper end of the movable telescopic sleeve 16 is provided with a top cover slot and a screw access slot.
  • the top cover slot matches the shape of the top cover 15.
  • the number and positions of the access grooves and the screw connection grooves 152 are matched, and the fixed connection between the top cover 15 and the movable telescopic sleeve 16 is realized by the positioning screw passing through the screw connection groove 152 and the screw access groove.
  • the top cover 15 and the movable telescopic sleeve 16 are separated from each other for easier operation during the installation of the BNC connector 14 and the electric pulse spring needle 13.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种聚合物空间电荷分布测量用复合探头及其测量方法,复合探头包括壳体,和受壳体固定的取信号铝块(1)、石英玻璃块(4)、压电陶瓷片(6)、电压脉冲传输单元以及信号提取单元,石英玻璃块(4)的外表面贴合有导电材料,导电材料与壳体接触,压电陶瓷片(6)的正极连接电压脉冲传输单元,负极连接石英玻璃块(4)外表面的导电材料,取信号铝块(1)分别连接石英玻璃块(4)和信号提取单元。该复合探头从低压端提取信号,具有安全可靠、测量准确度高、设计小巧、便于携带、操作简单、易于安装等优点。

Description

一种聚合物空间电荷分布测量用复合探头及其测量方法 技术领域
本发明涉及电荷电量的测量装置领域,尤其是涉及一种聚合物空间电荷分布测量用复合探头及其测量方法。
背景技术
聚乙烯材料因其优良的电气性能和绝缘性能,价格低廉,设备维护简单等优势在高压直流输电网络中得到广泛应用。但在强电场作用下,聚乙烯内部的空间电荷会逐渐积累,造成绝缘介质中的电场局部畸变,甚至会严重影响聚合物的绝缘性能。因此,聚乙烯内的空间电荷问题一直是高压绝缘领域的重要课题。压电压力波法和激光压力波法(LIPP法)是压力波法测量绝缘介质内部空间电荷分布的两种主要测量方法。与LIPP法相比而言,压电压力波法具有设备简单、成本低廉的优点。同时,由压电材料产生声波,克服了LIPP法中激光靶易损坏的缺点。
压力波法的基本原理是:弹性波在介质中以声速传播时,破坏了介质内部原先弹性力和电荷产生电场力的平衡,引起介质中的电荷发生微小位移,电荷的微小位移又导致介质电极上的感应电荷量的变化,因此在外电路上可观测到电流或电压信号的变化,从而获得介质中空间电荷分布的有关信息。
如图23所示,现有的压电压力波法的测量原理为:直流高压电源(HVDC)经过保护电阻将电压加在样品的一个电极,而样品的另外一个电极接地。使用压力波发生探头产生一个扰动通过声波导传给样品,样品电极上电荷量的变化将会产生瞬时电流并通过电容(C)、保护电路以及放大器,最后记录在示波器中。通过记录电流信号的变化,并进行相应的换算,就可以得到样品介质中空间电荷的产生、变化和分布的情况。
现有的压力波法测量空间电荷分布的不足之处是其高压电路和信号电路仅通过耦合电容隔离,用电容器阻隔高压回路和低压信号回路时,比较危险,容易对实验设备和操作人员构成威胁。
发明内容
本发明的目的就是为了克服基于压电压力波法测量空间电荷在实际测量过程中操作复杂且从高压端取信号比较危险等缺陷而提供一种易于操作且安全的从低压端提取信号的聚合物空间电荷分布测量用复合探头及其测量方法。
本发明的目的可以通过以下技术方案来实现:
一种聚合物空间电荷分布测量用复合探头,包括壳体,所述复合探头还包括受所述壳体固定的取信号铝块、石英玻璃块、压电陶瓷片、电压脉冲传输单元以及信号提取单元,所述石英玻璃块的外表面贴合有导电材料,该导电材料与所述壳体接触,所述压电陶瓷片的正极连接所述电压脉冲传输单元,负极连接所述石英玻璃块外表面的导电材料,所述取信号铝块分别连接所述石英玻璃块和所述信号提取单元。
本发明聚合物空间电荷分布测量用复合探头从取信号铝块处取信号,取信号与声脉冲发生为同一端,即从低压端取信号,避免了传统的从高压端取信号,能够避免危险,且在实际使用过程中简便易于操作。
本发明空间电荷分布测量用复合探头以石英玻璃作为声波导材料,将声信号传至取信号铝块上,石英玻璃块上用硅油贴合一层铝箔,并与壳体相连,成为压电陶瓷片的低压端,石英玻璃块与取信号铝块间通过环氧树脂粘结,与壳体之间通过四个定位螺丝连接。
进一步地,所述电压脉冲传输单元包括依次连接的BNC接头和背衬铜柱,所述BNC接头固定连接所述壳体,所述背衬铜柱连接所述压电陶瓷片,所述背衬铜柱与所述压电陶瓷片的连接面相配合。
进一步地,所述壳体内形成有圆柱室,所述背衬铜柱设置在所述圆柱室内,所述复合探头还包括限位套,该限位套的内径与所述背衬铜柱相配合,限制所述背衬铜柱的横向移动,外径与所述圆柱室的半径相配合,使得所述限位套受所述壳体固定,所述限位套的材料为绝缘材料,限位套的作用为限制在粘结过程中背衬铜柱偏离中心位置,且防止背衬铜柱与主体套相连。
进一步地,所述电压脉冲传输单元还包括设置在所述BNC接头和所述背衬铜柱之间的电脉冲弹针,该电脉冲弹针的固定端连接所述BNC接头,伸缩端连接所述背衬铜柱,所述电脉冲弹针通过伸缩端的伸缩弹力保证与所述背衬铜柱的连接。
进一步地,所述背衬铜柱与所述电脉冲弹针的连接处设有第一凹槽,所述电脉冲 弹针经过所述第一凹槽与所述背衬铜柱连接,所述第一凹槽与所述电脉冲弹针的伸缩端顶部相配合。
进一步地,所述壳体的设有环形槽,该环形槽位于所述壳体与所述石英玻璃块的连接面内,所述环形槽还位于所述压电陶瓷片的外侧,所述环形槽内填充有软金属,该软金属的厚度大于所述环形槽的深度,使得软金属嵌入环形槽中,并有轻微凸起,进一步确保压电陶瓷片上的电压脉冲接地,保证壳体与石英玻璃表面的铝箔之间的电通路为可靠通路。
进一步地,所述压电陶瓷片、石英玻璃块和取信号铝块均为圆柱状,所述压电陶瓷片、石英玻璃块和取信号铝块同轴。
进一步地,压电陶瓷片通过水杨酸苯酯与石英玻璃块上表面的铝箔相粘结,并通过水杨酸苯酯与上部背衬铜柱相粘结,保证电脉冲信号通过背衬铜柱能够传递到压电陶瓷片上,并产生声脉冲。
进一步地,所述信号提取单元包括SMA接头,该SMA接头连接所述壳体,所述SMA接头的信号提取端连接所述取信号铝块。
进一步地,所述信号提取单元还包括信号端弹针,该信号端弹针的固定端连接所述SMA接头的信号提取端,伸缩端连接所述取信号铝块,所述信号端弹针通过伸缩端的伸缩弹力保证与所述取信号铝块的连接。
进一步地,所述取信号铝块与所述信号端弹针的连接处设有第二凹槽,所述信号端弹针经过所述第二凹槽与所述取信号铝块连接,所述第二凹槽与所述信号端弹针的伸缩端顶部相配合,并且所述第二凹槽为长条状,沿所述取信号铝块侧面纵向分布,避免了信号端弹针移动过程中与取信号铝块断开。
进一步地,所述电压脉冲传输单元传输的电压脉冲,为电压为150伏、频率为100赫兹、下降沿时间为纳秒级的高速周期脉冲电压。
进一步地,所述壳体包括顶盖、主体套和可移动伸缩套,所述顶盖固定连接所述电压脉冲传输单元,所述取信号铝块、石英玻璃块和压电陶瓷片均受所述主体套固定,所述信号提取单元受所述可移动伸缩套固定,所述顶盖连接所述主体套,所述可移动伸缩套连接在所述主体套设有取信号铝块端的外侧,并能沿着所述主体套外表面移动,使得所述可移动伸缩套的一端与所述取信号铝块和石英玻璃块连接端的另一端保持在同一平面上,
进一步地,所述复合探头用于测量平板聚乙烯样品。
本发明还提供一种采用上述的复合探头的聚合物空间电荷分布测量方法,该方法具体为,在被测聚合物表面单面贴合EVA电极,进行空间电荷分布测量时,所述被测聚合物未贴EVA电极面与复合探头中的取信号铝块相接触,所述被测聚合物贴有EVA电极面与高压电极相接触,所述被测聚合物须具有平整的表面。
与现有技术相比,本发明具有以下优点:
(1)本发明根据压电压力波法,从取信号铝块处取信号,取信号与声脉冲发生为同一端,当被测试样接入高压时,本发明复合探头可以从被测试样的低压端取信号,与传统的高压端取信号方案相比,具有更好的安全性能,为以压电压力波法为基础的实际场景中的测量提供了思路。
(2)本发明通过电压脉冲传输单元对压电陶瓷片施加电压脉冲,并经过石英玻璃块外表面的导电材料以及壳体接地,形成回路,从而使得压电陶瓷片产生声脉冲,满足压电压力波法的条件,该方法稳定可靠,且可控制电压脉冲的输入,提高本发明复合探头的测量准确度。
(3)本发明复合探头在电压脉冲传输单元以及信号提取单元中均设有弹针,既延长了BNC接头和SMA接头的连接长度,又通过弹针伸缩端的伸缩弹力保证了与其他部件连接,提高了本发明复合探头的可靠性。
(4)本发明通过设计探头的机械结构,使用弹簧与限位螺丝,使得可移动信号套能沿着所述主体套外表面移动,使得在测量过程中,能够保证取信号铝块下表面与可移动信号套下表面为同一平面,使得测量结果更为精确。
(5)本发明通过电脉冲弹针下压背衬铜柱的设计,使用弹簧弹针的弹力以及背衬铜柱上表面限位孔的设计,使得在长久使用过程中,也不会产生压电陶瓷片以及背衬铜柱脱落的现象,使得本发明能够长久使用。
(6)本发明复合探头,将所有大部分部件固定在主体套上,主体套上设计螺纹,这样使得整个新型探头拆装简便,易于操作使用,实际过程只需要将BNC头接上电脉冲信号,将取信号铝块与可移动套一齐贴合在样品表面,加上其他辅助电路,即可进行空间电荷的测量。
(7)本发明整体设计小巧,便于携带,操作简单,易于安装。
附图说明
图1为本发明实施例1复合探头的结构示意图;
图2为本发明实施例1复合探头中SMA接头的安装位置示意图;
图3为本发明实施例1复合探头中限位孔的分布示意图;
图4为本发明实施例1复合探头中主体套的截面图;
图5为本发明实施例1复合探头中主体套的右视图;
图6为本发明实施例1复合探头中主体套的仰视图;
图7为本发明实施例1复合探头中可移动信号套的截面图;
图8为本发明实施例1复合探头中可移动信号套的右视图;
图9为本发明实施例1复合探头中可移动信号套的连接孔分布示意图;
图10为本发明实施例1复合探头中顶盖的截面图;
图11为本发明实施例1复合探头中顶盖的俯视图;
图12为本发明实施例2复合探头的结构示意图;
图13为本发明实施例2复合探头中SMA接头的安装位置示意图;
图14为本发明实施例2复合探头中限位孔的分布示意图;
图15为本发明实施例2复合探头中主体套的截面图;
图16为本发明实施例2复合探头中主体套的右视图;
图17为本发明实施例2复合探头中主体套的仰视图;
图18为本发明实施例2复合探头中可移动信号套的截面图;
图19为本发明实施例2复合探头中可移动信号套的右视图;
图20为本发明实施例2复合探头中可移动信号套的连接孔分布示意图;
图21为本发明实施例2复合探头中顶盖的截面图;
图22为本发明实施例2复合探头中顶盖的俯视图;
图23为本发明背景技术中现有的压力波法的测量原理示意图;
图24为本发明聚合物空间电荷分布测量用复合探头的测量原理示意图;
图25为本发明复合探头所配套的电压脉冲信号图;
图26为本发明复合探头所测量的平板聚合物样品的第一实物图;
图27为本发明复合探头所测量的平板聚合物样品的第二实物图;
图28为本发明复合探头所测量的平板聚合物样品的空间电荷分布信号图;
图中,1、取信号铝块,2、信号端弹针,3、SMA接头,4、石英玻璃块,5、环形槽,6、压电陶瓷片,7、背衬铜柱,8、限位套,9、主体套,10、弹簧孔,11、限位孔,12、固定螺纹,13、电脉冲弹针,14、BNC接头,15、顶盖,151、BNC接头固定槽,152、螺丝连接槽,16、可移动信号套,161、连接孔,162、信号提取槽。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
如图1所示,本实施例为一种聚合物空间电荷分布测量用复合探头,包括壳体,受壳体固定的取信号铝块1、石英玻璃块4、压电陶瓷片6、电压脉冲传输单元以及信号提取单元,石英玻璃块4的外表面贴合有导电材料,该导电材料与壳体接触,压电陶瓷片6的正极连接电压脉冲传输单元,负极连接石英玻璃块4外表面的导电材料,取信号铝块1分别连接石英玻璃块4和信号提取单元。
本实施例中压电陶瓷片6、石英玻璃块4和取信号铝块1均为圆柱状,压电陶瓷片6、石英玻璃块4和取信号铝块1同轴。
下面对各部分进行具体描述:
1、电压脉冲传输单元
电压脉冲传输单元包括依次连接的BNC接头14、电脉冲弹针13和背衬铜柱7,BNC接头14固定连接壳体,背衬铜柱7连接压电陶瓷片6,背衬铜柱7与压电陶瓷片6的连接面相配合。
壳体内形成有圆柱室,背衬铜柱7设置在圆柱室内,复合探头还包括限位套8,该限位套8的内径与背衬铜柱7相配合,限制背衬铜柱7的横向移动,外径与圆柱室的半径相配合,使得限位套8受壳体固定,限位套的材料为绝缘材料,本实施例采用聚四氟乙烯,限位套的作用为限制在粘结过程中背衬铜柱偏离中心位置,且防止背衬铜柱与主体套相连。
电脉冲弹针13的固定端连接BNC接头14,伸缩端连接背衬铜柱7,电脉冲弹针13通过伸缩端的伸缩弹力保证与背衬铜柱7的连接。背衬铜柱7对应设有一小凹坑, 电脉冲弹针13伸缩端顶部进入凹坑,限制了电脉冲弹针13水平上的移动,固定了电脉冲弹针13的位置。
本实施例中接入BNC接头14的电压脉冲的电压为150伏,频率为100赫兹,如图25所示,图中Time为时间,Voltage为电压。
2、石英玻璃块4
本实施例复合探头以石英玻璃块4作为声波导材料,将声信号传至取信号铝块上1。该石英玻璃块4上用硅油贴合一层导电材料:铝箔,并与壳体相连,成为压电陶瓷片6的接地端。石英玻璃块4与取信号铝块1间通过环氧树脂粘结,与壳体之间通过四个定位螺丝连接。
3、压电陶瓷片6
压电陶瓷片6通过水杨酸苯酯与石英玻璃块4上表面的铝箔相粘结,并通过水杨酸苯酯与上部背衬铜柱7相粘结,保证电脉冲信号通过背衬铜柱7能够传递到压电陶瓷片6上,并产生声脉冲。
4、信号提取单元
如图2所示,信号提取单元包括SMA接头3和信号端弹针2,信号端弹针2的固定端连接SMA接头3的信号提取端,伸缩端连接取信号铝块1,信号端弹针2通过伸缩端的伸缩弹力保证与取信号铝块1的连接。SMA接头3固定连接壳体。取信号铝块1对应设有一竖向凹坑,电脉冲弹针13伸缩端顶部进入凹坑,限制了弹针水平上的移动,使得电脉冲弹针13仅能沿着取信号铝块1表面上下移动。
5、壳体
壳体包括顶盖15、主体套9和可移动伸缩套16,顶盖15固定连接电压脉冲传输单元,取信号铝块1、石英玻璃块4和压电陶瓷片6均受主体套9固定,信号提取单元受可移动伸缩套16固定,顶盖15连接主体套9,可移动伸缩套16连接在主体套9设有取信号铝块1端的外侧,并能沿着主体套9外表面移动,使得可移动伸缩套16的一端与取信号铝块1和石英玻璃块4连接端的另一端保持在同一平面上。
下面对主体套9、可移动伸缩套16和顶盖15分别进行具体描述:
5.1、主体套9
如图4至6所示,主体套9的上部外表面设有固定螺纹12,其作用使得整个探头更加容易安装使用,仅仅使用一个配套螺纹的固定头,将整个装置旋入固定头,即 可使用,减少在安装使用过程中的操作。且易于安装拆卸,可替换。
如图3所示,主体套9的侧面下部设有四个限位孔11,其作用是通过螺栓连接主体套9和可移动伸缩套16,螺栓与外部可移动信号套16上对应的连接孔共同组成对可移动信号套16的限位,使得外部可移动信号套16不与主体套9相分离。连接孔的半径大于螺栓的半径,使得可移动信号套16可相对主体套9移动。
主体套9的下端设有四个弹簧孔10,每两个相邻弹簧孔10与主体套9中心的连线间隔90°,经过此弹簧孔10,利用弹簧连接可移动伸缩套16,需要注意的是,可移动信号套16内部与主体套9为松配合,可移动伸缩套16的四个连接孔的半径大于螺栓的半径,使得可移动信号套16能够沿着主体套9外表面移动,再加上主体套9的下端通过弹簧连接可移动伸缩套16,为可移动信号套16提供了回弹力,保证可移动信号套的下表面与取信号铝块之间为严格的同一平面。
主体套9的下表面设有环形槽5,该环形槽5位于主体套9与石英玻璃块4的连接面内,环形槽5还位于压电陶瓷片6的外侧,环形槽5内填充有软金属,该软金属的厚度大于环形槽的深度。
主体套9的下端还设有四个定位螺丝孔,通过四个定位螺丝固定连接主体套9和取信号铝块1。
5.2、可移动伸缩套16
如图7至9所示,可移动伸缩套16的上部套设在主体套9的下部,并对应主体套9上四个限位孔11的位置,设有四个连接孔161,可利用螺栓穿过连接孔161和限位孔11,连接可移动伸缩套16和主体套9。
可移动伸缩套16的下部设有信号提取槽162,SMA接头通过该信号提取槽162,并利用螺丝固定连接可移动伸缩套16。
5.3、顶盖15
如图10和11所示,顶盖15为圆形,中心设有BNC接头固定槽151,四周设有四个均匀分布的螺丝连接槽152。BNC接头14通过BNC接头固定槽151,利用螺丝固定连接顶盖15;主体套9的上端内侧设有顶盖槽和螺丝接入槽,顶盖槽与顶盖15的形状相匹配,螺丝接入槽与螺丝连接槽152的个数和位置相匹配,通过定位螺丝经过螺丝连接槽152和螺丝接入槽,实现顶盖15和主体套9的固定连接。顶盖15与主体套9相互分离,是为了在安装BNC接头14与电脉冲弹针13过程中更容易操作。
本实施例还提供一种本实施例复合探头的组装和空间电荷测量方法,具体过程如下:
先使用环氧树脂将取信号铝块1与石英玻璃块4相互粘结,并保证取信号铝块1与石英玻璃块4同轴。随后利用硅油,将铝箔紧密贴合在石英玻璃4上表面,并将压电陶瓷片6通过水杨酸苯酯粘结在铝箔上,且保持压电陶瓷片6与石英玻璃块4同轴。待上述部分冷却固定完毕之后,将背衬铜柱7通过水杨酸苯酯粘结在压电陶瓷片6上表面,并套上限位套8。这里需要注意的是,压电陶瓷片6分为正负极,需要将正极与背衬铜柱7相连,负极与石英玻璃块4上表面铝箔相连。在石英玻璃4表面均粘结之后,在环形槽5中嵌入软金属,随后将石英玻璃块4通过四个定位螺丝连接在主体套9上。
随后将BNC接头14与顶盖15固定,并将电脉冲弹针13尾端焊接至BNC接头14内部中间导体上,并将顶盖15固定在主体套9上。
在主体部分连接之后,在四个弹簧孔10中放置四个弹簧,并将可移动信号套16放置进主体套9中,将四个螺栓旋入在主体套9上的四个限位孔11中,以限制可移动信号套16的移动。最后将信号端弹针2焊接在SMA接头3的内部中心导体上,并将整个SMA接头3固定在可移动信号套16上,并使得弹针进入取信号铝块1的侧面凹槽中。
在整个装置安装完毕之后,将该探头通过固定螺纹12固定在接头上,取信号铝块1与可移动信号套16下表面压在平板聚合物样品表面(该表面涂抹凡士林),该表面为低压电极,平板聚合物样品另一表面为高电压极。并将电脉冲信号接在BNC接头14上。并对整个探头施加垂直于样品表面的力,使得电极贴合紧密。由此可进行绝缘材料中空间电荷的测量。
如图24所示,图中PZT为压电陶瓷片,本发明聚合物空间电荷分布测量用复合探头的测量原理为:
直流高压电源(HVDC)经过保护电阻将电压加在平板聚合物样品的一个电极,而平板聚合物样品的另外一个电极接地。使用压力波发生探头产生一个扰动通过声波导传给平板聚合物样品,平板聚合物样品电极上电荷量的变化将会产生瞬时电流并取信号铝块、SMA接头以及放大器,最后记录在示波器中。通过记录电流信号的变化,并进行相应的换算,就可以得到平板聚合物样品介质中空间电荷的产生、变化和分布 的情况。
如图26和图27所示,为本实施例复合探头所测量的平板聚合物样品的实物图。
如图28所示,为在一次实验中,采用本实施例复合探头测量出的平板聚乙烯样品的空间电荷分布图,图中Time为时间,Voltage为电压。
实施例2
如图12至14所示,本实施例与实施例1大体相同,不同点在于壳体上,实施例1在实际测量当中,主体套9与实验室内屏蔽箱固定,而SMA取信号接头3固定在可移动伸缩套16上,相对主体套9是活动的。而本实施例中SMA取信号接头3固定在主体套9上,在测量过程中相对主体套9是固定的。两种方案都具有方便使用、牢固稳定、安全可靠等优点,下面对本实施例中的壳体进行具体介绍:
本实施例壳体包括顶盖15、主体套9和可移动伸缩套16,顶盖15固定连接电压脉冲传输单元,取信号铝块1、石英玻璃块4和压电陶瓷片6均受可移动伸缩套16固定,信号提取单元受主体套9固定,顶盖15连接可移动伸缩套16,主体套9可移动连接在可移动伸缩套16外侧,使得主体套9的一端与取信号铝块1和石英玻璃块4连接端的另一端保持在同一平面上。
下面对主体套9、可移动伸缩套16和顶盖15分别进行具体描述:
一、主体套9
如图15至17所示,主体套9的上部外表面设有固定螺纹12,其作用使得整个探头更加容易安装使用,仅仅使用一个配套螺纹的固定头,将整个装置旋入固定头,即可使用,减少在安装使用过程中的操作。且易于安装拆卸,可替换。
主体套9的下部设有信号提取槽162,SMA接头通过该信号提取槽162,并利用螺丝固定连接主体套9。
二、可移动伸缩套16
如图18至20所示,可移动伸缩套16设在主体套9的内部,并与主体套9的内部空间大小相配合,可移动伸缩套16外侧表面设有四个限位孔11,主体套9对应设有四个连接孔,可利用螺栓穿过连接孔和限位孔11,连接可移动伸缩套16和主体套9,连接孔的半径大于螺栓的半径,使得可移动伸缩套16可相对主体套9移动。
可移动伸缩套16的上端设有四个弹簧孔10,每两个相邻弹簧孔10与可移动伸缩套16中心的连线间隔90°,经过此弹簧孔10,利用弹簧连接主体套9,需要注意 的是,可移动信号套16内部与主体套9为松配合,主体套9的侧面四个连接孔的半径大于螺栓的半径,使得可移动信号套16能够沿着主体套9内表面移动,再加上可移动信号套16通过弹簧连接主体套9,为主体套9提供了回弹力,保证主体套9的下表面与取信号铝块1底面为严格的同一平面。
可移动伸缩套16的下端还设有四个定位螺丝孔,通过四个定位螺丝固定连接可移动伸缩套16和取信号铝块1。
三、顶盖15
如图21和22所示,顶盖15为圆形,中心设有BNC接头固定槽151,四周设有四个均匀分布的螺丝连接槽152。BNC接头14通过BNC接头固定槽151,利用螺丝固定连接顶盖15;可移动伸缩套16的上端内侧设有顶盖槽和螺丝接入槽,顶盖槽与顶盖15的形状相匹配,螺丝接入槽与螺丝连接槽152的个数和位置相匹配,通过定位螺丝经过螺丝连接槽152和螺丝接入槽,实现顶盖15和可移动伸缩套16的固定连接。顶盖15与可移动伸缩套16相互分离,是为了在安装BNC接头14与电脉冲弹针13过程中更容易操作。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

  1. 一种聚合物空间电荷分布测量用复合探头,包括壳体,其特征在于,所述复合探头还包括受所述壳体固定的取信号铝块(1)、石英玻璃块(4)、压电陶瓷片(6)、电压脉冲传输单元以及信号提取单元,所述石英玻璃块(4)的外表面贴合有导电材料,该导电材料与所述壳体接触,所述压电陶瓷片(6)的正极连接所述电压脉冲传输单元,负极连接所述石英玻璃块(4)外表面的导电材料,所述取信号铝块(1)分别连接所述石英玻璃块(4)和所述信号提取单元。
  2. 根据权利要求1所述的一种聚合物空间电荷分布测量用复合探头,其特征在于,所述电压脉冲传输单元包括依次连接的BNC接头(14)和背衬铜柱(7),所述BNC接头(14)固定连接所述壳体,所述背衬铜柱(7)连接所述压电陶瓷片(6),所述背衬铜柱(7)与所述压电陶瓷片(6)的连接面相配合。
  3. 根据权利要求2所述的一种聚合物空间电荷分布测量用复合探头,其特征在于,所述壳体内形成有圆柱室,所述背衬铜柱(7)设置在所述圆柱室内,所述复合探头还包括限位套(8),该限位套(8)的内径与所述背衬铜柱(7)相配合,限制所述背衬铜柱(7)的横向移动,外径与所述圆柱室的半径相配合,使得所述限位套(8)受所述壳体固定,所述限位套的材料为绝缘材料。
  4. 根据权利要求2所述的一种聚合物空间电荷分布测量用复合探头,其特征在于,所述电压脉冲传输单元还包括设置在所述BNC接头(14)和所述背衬铜柱(7)之间的电脉冲弹针(13),该电脉冲弹针(13)的固定端连接所述BNC接头(14),伸缩端连接所述背衬铜柱(7),所述电脉冲弹针(13)通过伸缩端的伸缩弹力保证与所述背衬铜柱(7)的连接。
  5. 根据权利要求1所述的一种聚合物空间电荷分布测量用复合探头,其特征在于,所述壳体的设有环形槽(5),该环形槽(5)位于所述壳体与所述石英玻璃块(4)的连接面内,所述环形槽(5)还位于所述压电陶瓷片(6)的外侧,所述环形槽(5)内填充有软金属,该软金属的厚度大于所述环形槽的深度。
  6. 根据权利要求1所述的一种聚合物空间电荷分布测量用复合探头,其特征在于,所述信号提取单元包括SMA接头(3),该SMA接头(3)连接所述壳体,所述SMA接头(3)的信号提取端连接所述取信号铝块(1)。
  7. 根据权利要求6所述的一种聚合物空间电荷分布测量用复合探头,其特征在于,所述信号提取单元还包括信号端弹针(2),该信号端弹针(2)的固定端连接所述SMA接头(3)的信号提取端,伸缩端连接所述取信号铝块(1),所述信号端弹针(2)通过伸缩端的伸缩弹力保证与所述取信号铝块(1)的连接。
  8. 根据权利要求1所述的一种聚合物空间电荷分布测量用复合探头,其特征在于,所述电压脉冲传输单元传输的电压脉冲,为电压为150伏、频率为100赫兹、下降沿时间为纳秒级的高速周期脉冲电压。
  9. 根据权利要求1所述的一种聚合物空间电荷分布测量用复合探头,其特征在于,所述壳体包括顶盖(15)、主体套(9)和可移动伸缩套(16),所述顶盖(15)固定连接所述电压脉冲传输单元,所述取信号铝块(1)、石英玻璃块(4)和压电陶瓷片(6)均受所述主体套(9)固定,所述信号提取单元受所述可移动伸缩套(16)固定,所述顶盖(15)连接所述主体套(9),所述可移动伸缩套(16)连接在所述主体套(9)设有取信号铝块(1)端的外侧,并能沿着所述主体套(9)外表面移动,使得所述可移动伸缩套(16)的一端与所述取信号铝块(1)和石英玻璃块(4)连接端的另一端保持在同一平面上。
  10. 一种采用如权利要求1所述的复合探头的聚合物空间电荷分布测量方法,其特征在于,该方法具体为,在被测聚合物表面单面贴合EVA电极,进行空间电荷分布测量时,所述被测聚合物未贴EVA电极面与复合探头中的取信号铝块(1)相接触,所述被测聚合物贴有EVA电极面与高压电极相接触,所述被测聚合物须具有平整的表面。
PCT/CN2020/121452 2020-01-03 2020-10-16 一种聚合物空间电荷分布测量用复合探头及其测量方法 WO2021135510A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/299,322 US11698402B2 (en) 2020-01-03 2020-10-16 Active probe and method for measurement of space charge distribution of polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010005447.3A CN111175549B (zh) 2020-01-03 2020-01-03 一种聚合物空间电荷分布测量用复合探头及其测量方法
CN202010005447.3 2020-01-03

Publications (1)

Publication Number Publication Date
WO2021135510A1 true WO2021135510A1 (zh) 2021-07-08

Family

ID=70657828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121452 WO2021135510A1 (zh) 2020-01-03 2020-10-16 一种聚合物空间电荷分布测量用复合探头及其测量方法

Country Status (3)

Country Link
US (1) US11698402B2 (zh)
CN (1) CN111175549B (zh)
WO (1) WO2021135510A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111175549B (zh) * 2020-01-03 2020-11-27 同济大学 一种聚合物空间电荷分布测量用复合探头及其测量方法
CN112147424A (zh) * 2020-08-25 2020-12-29 同济大学 一种利用复合探头的可携带式空间电荷测量装置和方法
CN113125917B (zh) * 2021-03-24 2022-04-01 同济大学 综合介电性能测量用的分体式高压强腔体结构和测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452566A (ja) * 1990-06-20 1992-02-20 Fujikura Ltd ケーブル絶縁体の空間電荷分布測定装置
CN2413294Y (zh) * 2000-01-11 2001-01-03 同济大学 一种空间电荷分布的测量装置
CN104991130A (zh) * 2015-06-24 2015-10-21 同济大学 一种直流超高压电缆的空间电荷分布测量方法
CN105092990A (zh) * 2015-09-28 2015-11-25 国网重庆市电力公司电力科学研究院 一种基于电声脉冲法的空间电荷测量装置
CN106597135A (zh) * 2016-12-13 2017-04-26 哈尔滨理工大学 一种温度梯度下采用激光诱导压力波实现的空间电荷测量装置
CN111175549A (zh) * 2020-01-03 2020-05-19 同济大学 一种聚合物空间电荷分布测量用复合探头及其测量方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9600989D0 (sv) * 1996-03-15 1996-03-15 Abb Research Ltd Förfarande och anordning för rymdladdningsmätning i kablar med en pulsad elektroakustisk metod
CN201707437U (zh) * 2010-06-25 2011-01-12 罗湘尤 一种倒车雷达探头
CN201945640U (zh) * 2010-11-11 2011-08-24 华北电力大学 可测传导电流的pea空间电荷测试装置
CN103149515B (zh) * 2013-03-05 2015-08-19 清华大学 一种用于电介质长期老化过程中的空间电荷测量装置
CN104833866B (zh) * 2015-04-30 2017-09-12 南京南瑞集团公司 压力波法模型电缆空间电荷测试系统
CN104833859B (zh) * 2015-04-30 2018-03-27 南京南瑞集团公司 一种平板试样空间电荷分布压力波法测量装置
CN110058093A (zh) * 2018-01-19 2019-07-26 上海交通大学 用于真空、变温环境下固体绝缘材料空间电荷检测系统
FR3087959B1 (fr) * 2018-10-25 2020-11-20 Nexans Jonction de cable avec detecteur de charge d'espace integre
CN109633292B (zh) * 2018-12-07 2020-12-08 南瑞集团有限公司 一种用于压力波法电缆空间电荷测试的电缆屏蔽处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452566A (ja) * 1990-06-20 1992-02-20 Fujikura Ltd ケーブル絶縁体の空間電荷分布測定装置
CN2413294Y (zh) * 2000-01-11 2001-01-03 同济大学 一种空间电荷分布的测量装置
CN104991130A (zh) * 2015-06-24 2015-10-21 同济大学 一种直流超高压电缆的空间电荷分布测量方法
CN105092990A (zh) * 2015-09-28 2015-11-25 国网重庆市电力公司电力科学研究院 一种基于电声脉冲法的空间电荷测量装置
CN106597135A (zh) * 2016-12-13 2017-04-26 哈尔滨理工大学 一种温度梯度下采用激光诱导压力波实现的空间电荷测量装置
CN111175549A (zh) * 2020-01-03 2020-05-19 同济大学 一种聚合物空间电荷分布测量用复合探头及其测量方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAQUE NASIRUL; CHATTERJEE BISWENDU; CHAKRAVORTI SIVAJI: "Modeling of a piezoelectric transducer for application in space charge detection using pressure wave propagation method", 2015 INTERNATIONAL CONFERENCE ON ENERGY ECONOMICS AND ENVIRONMENT (ICEEE), IEEE, 27 March 2015 (2015-03-27), pages 1 - 5, XP033214612, ISBN: 978-1-4673-7491-0, DOI: 10.1109/EnergyEconomics.2015.7235093 *
ZHANG PENGHAO, ZHANG YE-WEN;STÉPHANE HOLÉ;MA PENG;ZHAO HUI;ZHENG FEI-HU;AN ZHEN-LIAN: "Space charge measurement device in LDPE based on PIPWP method under high pressure", JOURNAL OF INNER MONGOLIA UNIVERSITY OF SCIENCE AND TECHNOLOGY, vol. 35, no. 4, 1 December 2016 (2016-12-01), pages 327 - 329, XP055828092, ISSN: 2095-2295, DOI: 10.16559 /j.cnki.2095-2295.2016.04.005 *
ZHANG YEWEN, PAN JIAPING;ZHENG FEIHU;AN ZHENLIAN;YANG LIMING;ZHU ZHIEN;YU ENKE;ZHANG LEI: "Distribution Measurement for Space Charge in Solid Insulation Medium and Its Application in Electrical Industry", GAODIANYA-JISHU : JIKAN - HIGH VOLTAGE ENGINEERING, WUHAN : SHUILI DIANLI BU WUHAN GAOYA YANJIUSUO, CN, vol. 45, no. 8, 31 August 2019 (2019-08-31), CN, pages 2603 - 2618, XP055828095, ISSN: 1003-6520, DOI: 10.13336/j.1003-6520.hve.20190731032 *

Also Published As

Publication number Publication date
CN111175549B (zh) 2020-11-27
US11698402B2 (en) 2023-07-11
US20220317171A1 (en) 2022-10-06
CN111175549A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2021135510A1 (zh) 一种聚合物空间电荷分布测量用复合探头及其测量方法
CN101706537B (zh) 可测传导电流的pea空间电荷测试装置
CN108089068B (zh) 基于电声脉冲法的复合平板试样三维空间电荷测量装置
CN105911326B (zh) 电导电流—空间电荷联合测量装置
CN201945640U (zh) 可测传导电流的pea空间电荷测试装置
CN106771683B (zh) 一种高温抗干扰空间电荷测量装置及测量方法
Mason Discharge detection and measurements
Qi et al. Measurement of the electric field strength in transformer oil under impulse voltage
US2799788A (en) Piezoelectric blast gages
CN205263204U (zh) 瞬态电场传感器
Wang et al. Capacitive sensor for fast pulsed voltage monitor in transmission line
Wang et al. Comparison and analysis of three pulse injection methods in the pulsed electroacoustic technique used for long cables
CN104280620A (zh) 冲击电压作用下变压器油中空间电荷测量装置
Zhang et al. Conical voltage sensor for measuring very fast transient overvoltage up to 3 MV in ultra‐high‐voltage class gas‐insulated switchgear
CN114544064B (zh) 一种谐振式石墨烯气体压力传感器
CN212845185U (zh) 一种超声检测与防雷固定的装置
CN105424209A (zh) 一种直接接触测量高电压物体温度的传感器
CN214750773U (zh) 用于冲击电流测量的宽频磁场传感器
CN104655945A (zh) 一种测量油纸复合绝缘部件空间电荷分布的装置及方法
CN204154864U (zh) 一种非线性光导开关测试装置
CN111855807A (zh) 一种超声检测与防雷固定的装置
CN107807311B (zh) 一种容性套管高频局放信号检测装置
CN101949996A (zh) 用于检测变压器局部放电信号的超声传感器
CN101672868A (zh) 光学电压测量设备
CN110729397A (zh) 一种用于压电薄膜的高电场热极化装置及其极化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910942

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20910942

Country of ref document: EP

Kind code of ref document: A1