WO2021135315A1 - 一种机器人碰撞检测装置及碰撞检测的方法 - Google Patents

一种机器人碰撞检测装置及碰撞检测的方法 Download PDF

Info

Publication number
WO2021135315A1
WO2021135315A1 PCT/CN2020/111825 CN2020111825W WO2021135315A1 WO 2021135315 A1 WO2021135315 A1 WO 2021135315A1 CN 2020111825 W CN2020111825 W CN 2020111825W WO 2021135315 A1 WO2021135315 A1 WO 2021135315A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
collision detection
acceleration
detection device
measurement unit
Prior art date
Application number
PCT/CN2020/111825
Other languages
English (en)
French (fr)
Inventor
臧家炜
张圣
钱巍
Original Assignee
南京埃斯顿自动化股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京埃斯顿自动化股份有限公司 filed Critical 南京埃斯顿自动化股份有限公司
Publication of WO2021135315A1 publication Critical patent/WO2021135315A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0095Means or methods for testing manipulators

Definitions

  • the invention relates to a robot collision detection device and a collision detection method.
  • the safety performance of the robot in the process of human-computer interaction is very important, and the machine collision detection ability directly determines the safety performance of the robot.
  • the methods commonly used in robot collision detection can be divided into three types, namely, collision detection based on current loop, collision detection based on joint torque sensors, and collision detection based on electronic skin.
  • the collision detection based on the current loop is based on the identification of the robot dynamics model combined with the current loop torque feedback information to estimate the external force received by the robot, and judge whether the robot has a collision;
  • the collision detection based on the joint torque sensor is directly based on the joint torque
  • the feedback information of the sensor estimates the external force received by the robot and determines whether the robot has a collision;
  • the electronic skin-based collision detection is to estimate whether the robot is subjected to an external force based on the detection information of the pressure sensor in the electronic skin on the surface of the robot, and judge whether the robot has a collision .
  • the relatively cheap acceleration measurement unit of the MEMS type can accurately measure the spatial three-dimensional acceleration information of the system. It has been widely used in the inertial navigation of mobile robots and provides a good solution for part of the motion sensing function of mobile robots. However, it has not yet been used maturely in the collision detection functions of industrial, collaborative and medical robots. At present, there is a lack of robot collision detection devices based on MEMS-type acceleration measurement units, and rapid calibration of this device in robotic systems. At the same time, there is a lack of a method for identifying the vibration characteristics of a robot system based on a micro-electromechanical system type acceleration measurement unit and a perfect method for robot collision detection.
  • the purpose of the present invention is to overcome the deficiencies in the prior art, and proposes a robot collision detection device and a collision detection method.
  • Design related devices and detection methods based on the acceleration measurement unit of the MEMS type to realize the collision detection and avoidance functions of the robot.
  • the robot collision detection device of the present invention is composed of a protective cover 2, a rotation adjustment platform 3, and an acceleration measurement unit 4 of the micro-electromechanical system type.
  • the bottom of the rotating adjustment platform 3 is provided with an installation shaft
  • the protective cover is provided with a chamber
  • the bottom of the chamber is provided with a shaft hole.
  • the installation shaft of the rotating adjustment platform 3 is sleeved in the shaft hole of the protective cover.
  • the cover 2 is installed concentrically.
  • the shoulder end surface of the rotating adjustment platform 3 is attached to the bottom surface of the cavity of the protective cover 2, and the rotating adjustment platform 3 is fixed in the cavity of the protective cover 2.
  • the acceleration measurement unit 4 of the micro-electromechanical system type is fixedly mounted on the rotation adjustment platform 3, and its center is located on the axis of the rotation adjustment platform 3.
  • the collision detection device can be freely connected and disassembled with the end of the robot through the thread.
  • the method of using the device of the present invention for robot collision detection includes the following steps:
  • the collision detection device is installed at the end of the robot.
  • Step 1 Coordinate calibration between the collision detection device and the robot
  • Step 2 Combine the vibration characteristics of the robot and the band stop filter to filter the measurement data of the acceleration measurement unit 4 of the collision detection device MEMS type
  • the inner leaf transform analysis obtains the first-order natural frequency f of the robot at the discrete point, and then obtains the distribution of the first-order natural frequency f in the entire work space, and determines its maximum value f max and minimum value f min , and finally obtains the first-order natural frequency f of the robot.
  • the bandwidth range of the first-order natural frequency f [f min , f max ].
  • the band stop filter is used to eliminate the influence of the first-order natural vibration characteristics of the robot on the measurement results of the acceleration measurement unit of the MEMS type.
  • the stopband bandwidth range of the band stop filter is the same as the bandwidth range of the first-order natural frequency f of the robot.
  • the passband bandwidth range can be set according to whether there are other interference signals in the actual system.
  • the maximum attenuation of the passband and the minimum attenuation of the stopband can be set.
  • the robot collision detection device and detection method of the present invention greatly save costs compared with the existing torque sensor-based collision detection scheme and the electronic skin-based collision detection scheme, and overcome the previous collision detection scheme based on the current loop due to the identification dynamics
  • the sensitivity and reliability of the collision detection function caused by the inaccurate model are not high.
  • the coordinate calibration method between the collision detection device and the robot adopted by the present invention can quickly and accurately complete the initial calibration work of the collision detection device in the robot system.
  • the invention combines the vibration characteristics of the robot and the band-stop filter to establish a filtering method for the collision detection device, which can effectively reduce the influence of the low-order natural vibration characteristics of the robot on the measurement signal of the collision detection device.
  • Fig. 1 is a schematic structural diagram of the structure of the robot collision detection device of the present invention.
  • Figure 2 is an exploded schematic diagram of the robot collision detection device of the present invention.
  • Fig. 3 is a schematic diagram of the installation structure of the robot collision detection device of the present invention in the robot.
  • Fig. 4 is a flowchart of the robot collision detection method of the present invention.
  • the collision detection device 1 is composed of a protective cover 2, a rotation adjustment platform 3, a micro-electromechanical system type acceleration measurement unit 4 and a locking screw 5.
  • the bottom of the rotating adjustment platform 3 is provided with an installation shaft
  • the protective cover 2 is provided with a chamber
  • the bottom of the chamber is provided with a shaft hole.
  • the installation shaft of the rotating adjustment platform 3 is sleeved in the shaft hole of the protective cover 2, and the rotating adjustment platform 3 It is installed coaxially with the protective cover 2.
  • the shoulder end surface of the rotating adjustment platform 3 is attached to the bottom surface of the cavity of the protective cover 2, and the rotating adjustment platform 3 is fixed in the cavity of the protective cover 2 by a locking screw 5.
  • the acceleration measurement unit 4 of the micro-electromechanical system type is fixedly mounted on the rotation adjustment platform 3, and its center is located on the axis of the rotation adjustment platform 3.
  • the collision detection device 1 is connected and disassembled freely with the end of the robot 6 through a screw thread.
  • Step 1 Calibration of the coordinate system between the collision detection device 1 and the robot 6
  • a' I [a ' Ix ,a′ Iy ,a′ Iz ] T.
  • the end of the robot 6 is driven to move back and forth along the x-axis direction of the coordinate system O-xyz, and the rotation adjustment platform 3 is fine-tuned to make a'Iy tend to 0.
  • the x'axis and the x axis are basically parallel.
  • the coordinate system O'-x'y'z' of the acceleration measurement unit 4 of the MEMS type is basically aligned with the coordinate system O-yzx of the robot 6, thereby completing the coordinate between the collision detection device 1 and the robot 6 Department of calibration process.
  • Step 2 Combine the vibration characteristics of the robot and the band stop filter to filter the measurement data of the acceleration measurement unit of the MEMS type
  • the low-order natural vibration characteristics of the robot 6 In order to prevent the low-order natural vibration characteristics of the robot 6 from having a greater influence on the measured acceleration signal a′ I , the low-order natural vibration characteristics of the robot 6 need to be analyzed, and the acceleration signal a′ I needs to be filtered.
  • the working space of the robot 6 is discretized (for example, uniformly discretized into 100 points), and the end of the robot 6 is excited by an excitation method such as hammering at each discrete point.
  • an excitation method such as hammering at each discrete point.
  • perform fast Fourier transform analysis on the acceleration signal recorded by the acceleration measurement unit 4 of the MEMS type and then obtain the first-order natural frequency f of the robot 6 at the sampling point, and finally obtain the working space The distribution of the first-order natural frequency f of the middle robot 6.
  • a band stop filter (such as a Butterworth band stop filter) is used to eliminate the influence of the first-order natural frequency of the robot 6 on the measurement result of the MEMS type acceleration measurement unit 4.
  • the stopband bandwidth range of the band stop filter is the same as the bandwidth range of the first-order natural frequency f of the robot.
  • the coordinate system O'-x'y'z' of the acceleration measurement unit 4 of the MEMS type cannot be aligned with the robot coordinate system O-xyz.
  • the coordinate transformation is performed to obtain terminal acceleration information that can be expressed in the robot 6 coordinate system.
  • the coordinate system of the robot 6 can be obtained through the rotation transformation between the coordinate systems.
  • the collision detection threshold ⁇ of the robot 6 is set according to the actual sensitivity requirements, when any condition of
  • > ⁇ When it is established, it is considered that the robot 6 collides with the outside world, and the robot 6 immediately executes the braking instruction.
  • > ⁇ are all established, it is considered that the robot 6 has not collided with the external environment, and the robot continues to execute the original There are motion instructions.

Abstract

本发明公开了一种机器人碰撞检测装置及碰撞检测的方法,机器人碰撞检测装置由保护罩、旋转调整平台、微机电系统类型的加速度测量单元和锁紧螺钉组成;通过调整碰撞检测装置与机器人之间的连接部分和旋转调整平台可以实现微机电系统类型的加速度测量单元坐标系与机器人坐标系之间的标定;利用微机电系统类型的加速度测量单元和带阻滤波器可实现机器人末端加速度信息的测量;结合所获得的机器人末端加速度信息、机器人的运动学及其微分模型可实现机器人的碰撞检测。本发明的机器人碰撞检测装置及碰撞检测的方法能够在尽量降低系统成本的基础上有效提升机器人的碰撞检测能力。

Description

一种机器人碰撞检测装置及碰撞检测的方法 技术领域
本发明涉及一种机器人碰撞检测装置和碰撞检测的方法。
背景技术
人机交互过程中机器人的安全性能至关重要,而机碰撞检测能力直接决定了机器人的安全性能。目前机器人碰撞检测普遍采用的方法可分为三种,即基于电流环的碰撞检测、基于关节力矩传感器的碰撞检测和基于电子皮肤的碰撞检测。基于电流环的碰撞检测是在对机器人动力学模型进行辨识的基础上结合电流环力矩反馈信息估计出机器人受到的外力,并判断机器人是否发生碰撞;基于关节力矩传感器的碰撞检测是直接根据关节力矩传感器的反馈信息估计出机器人所受到的外力,并判断机器人是否发生碰撞;基于电子皮肤的碰撞检测是根据机器人表面电子皮肤中的压力传感器检测信息估计出机器人是否受到外力,并判断机器人是否发生碰撞。
然而,由于机器人的复杂动力学模型难以得到精确辨识,所以基于电流环的碰撞检测方法灵敏度不高且可靠性难以得到保障。此外,由于力矩传感器和电子皮肤价格昂贵,大批量的在机器人当中使用将会造成成本的急剧上升,因此基于关节力矩传感器的碰撞检测和基于电子皮肤的碰撞检测方法难以广泛应用。
价格相对便宜的微机电系统类型的加速度测量单元可准确测量出系统的空间三维加速度信息,目前已经广泛运用在移动机器人的惯性导航当中,为移动机器人的部分运动感知功能提供了良好的解决方案。但其在工业、协作和医疗机器人等领域的碰撞检测功能中还未有成熟的运用,目前缺乏基于微机电系统类型的加速度测量单元的机器人碰撞检测装置,以及该装置在机器人系统中的快速标定方法,同时缺乏基于微机电系统类型的加速度测量单元的机器人系统振动特性识别方法以及完善的机器人碰撞检测方法。
发明内容
本发明的目的是为了克服现有技术中的不足,提出了一种机器人碰撞检测装置及碰撞检测方法。基于微机电系统类型的加速度测量单元设计相关装置以及检测方法,实现机器人的碰撞检测和避免功能。
本发明机器人碰撞检测装置,由保护罩2、旋转调整平台3和微机电系统类型的加速度测量单元4组成。所述旋转调整平台3底部设有安装轴,所述保护罩设有腔室,腔室底部设轴孔,旋转调整平台3的安装轴套装于保护罩的轴孔中,旋转调整平台3与保护罩2同轴心安装。旋转调整平台3的轴肩端面与保护罩2的腔室底面贴合,旋转调整平台3固定于保护罩2腔室内。所述微机电系统类型的加速度测量单元4固装于旋转调整平台3上,其中心位于旋转调整平台3的轴线上。
碰撞检测装置可通过螺纹与机器人的末端实现自由连接和拆卸。
使用本发明装置进行机器人碰撞检测的方法,其步骤是:
碰撞检测装置安装在机器人的末端。
步骤1.碰撞检测装置与机器人之间的坐标标定
由微机电系统类型的加速度测量单元获得自身坐标系O′-y′z′x′下所表示的机器人的末端加速度矢量a′ I=[a′ Ix,a′ Iy,a′ Iz] T的测量值。
首先,驱动机器人的末端运动使其轴线与机器人坐标系O-xyz中的z轴平行,并微调保护罩与机器人的连接部分使得a′ Iz与-g(g=9.81m/s 2)之差小于设定值。其次,驱动机器人末端沿坐标系O-xyz的x轴方向往返运动,通过微调旋转调整平台使得a′ Iy趋向于0。最后,当前述两个条件成立时,可认为微机电系统类型的加速度测量单元的坐标系O′-x′y′z′与机器人坐标系O-xyz对齐,实现了碰撞检测装置与机器人间的坐标系标定。
步骤2结合机器人的振动特性和带阻滤波器,对碰撞检测装置微机电系统类型的加速度测量单元4测量数据滤波
对机器人工作空间进行离散化,在每一个离散点处使用锤击等激振方式对机器人的末端进行激振,并对微机电系统类型的加速度测量单元所记录的加速度信号a′ I进行快速傅里叶变换分析,获得该离散点处机器人的一阶固有频率f,进而获得整个工作空间中一阶固有频率f的分布情况,并确定其最大值f max和最小值f min,最终得到机器人一阶固有频率f的带宽范围[f min,f max]。
使用带阻滤波器消除机器人的一阶固有振动特性对于微机电系统类型的加速度测量单元测量结果的影响。其中,带阻滤波器的阻带带宽范围与机器人的一阶固有频率f的带宽范围相同,通带带宽范围可根据实际系统是否存在其它干扰信号设定,通带最大衰减和阻带最小衰减可根据实际信号的幅值需求设置,最终获得滤波后的加速度信号a′ If=BandStopFilter(a′ I),其中BandStopFilter()表示带阻滤波器函数。
步骤3机器人的碰撞检测
结合机器人的Denavit–Hartenberg(DH)参数和各个关节位置θ i(1<i<n,n为机器人自由度),通过坐标系间的旋转变换,获得在机器人坐标系O-yzx下所表示的末端加速度矢量a If=[a Ifx,a Ify,a Ifz] T的测量值,即a If=Ra′ If,其中R表示由微机电系统类型的加速度测量单元坐标系O′-y′z′x′到机器人坐标系O-yzx的旋转变换。
结合运动学及其微分模型获得机器人的末端加速度
Figure PCTCN2020111825-appb-000001
其中θ=[θ 12,...,θ n] T
Figure PCTCN2020111825-appb-000002
Figure PCTCN2020111825-appb-000003
分别为机器人的关节位置、速度和加速度矢量,J(θ)为机器人的雅可比矩阵,
Figure PCTCN2020111825-appb-000004
为机器人的雅可比微分矩阵。
根据实际灵敏度需求设定碰撞检测阈值ε,当|a cx-a Ifx|>ε、|a cy-a Ify|>ε或|a cz-a Ifz|>ε任一条件成立时,认为机器人与外界发生碰撞,此时机器人立即执行刹车指令。当|a cx-a Ifx|>ε且|a cy-a Ify|>ε且|a cz-a Ifz|>ε均成立时,认为机器人未与外界环境发生碰撞,此时机器人继续执行原有运动指令。
本发明机器人碰撞检测装置及检测方法,较现有基于力矩传感器的碰撞检测方案和基于电子皮肤的碰撞检测方案极大地节约了成本,并克服了以往基于电流环的碰撞检测方案因所辨识动力学模型不准确所造成的碰撞检测功能灵敏度和可靠度不高的问题。本发明所采取的碰撞检测装置与机器人间的坐标标定方法,可快速准确的完成碰撞检装置在机器人系统中的初始标定工作。本发明结合机器人的振动特性和带阻滤波器,建立了碰撞检测装置的滤波方法,可有效 降低机器人低阶固有振动特性对于碰撞检测装置测量信号的影响。
附图说明
图1是本发明机器人碰撞检测装置结构示意图结构示意图。
图2是本发明机器人碰撞检测装置爆炸示意图。
图3是本发明机器人碰撞检测装置在机器人当中的安装结构示意图。
图4是本发明机器人碰撞检测方法的流程图。
具体实施方式
下面结合实施例和附图,对本发明方法作进一步详细说明。
如图1和图2所示,所述碰撞检测装置1由保护罩2、旋转调整平台3、微机电系统类型的加速度测量单元4和锁紧螺钉5组成。所述旋转调整平台3底部设有安装轴,所述保护罩2设有腔室,腔室底部设轴孔,旋转调整平台3的安装轴套装于保护罩2的轴孔中,旋转调整平台3与保护罩2同轴心安装。旋转调整平台3的轴肩端面与保护罩2的腔室底面贴合,旋转调整平台3通过锁紧螺钉5固定于保护罩2腔室内。所述微机电系统类型的加速度测量单元4固装于旋转调整平台3上,其中心位于旋转调整平台3的轴线上。碰撞检测装置1通过螺纹与机器人6的末端实现自由连接和拆卸。
使用所述碰撞检测装置1进行机器人6的碰撞检测时,所需采取的具体步骤如下:
步骤1 碰撞检测装置1与机器人6之间的坐标系标定
如图2~3所示,通过微机电系统类型的加速度测量单元4可获得其自身坐标系O′-x′y′z′下所表示的机器人6的末端加速度矢量a′ I=[a′ Ix,a′ Iy,a′ Iz] T。为完成碰撞检测装置1与机器人6之间的坐标系标定,需采用如下步骤:
首先,驱动机器人6的末端运动,使其轴线与机器人6坐标系O-xyz中的z轴平行。当机器人6静止时,假设微机电系统类型的加速度测量单元4坐标系中的z′轴与机器人6坐标系中的z轴平行,则受重力加速度的影响有a′ Iz=-g(g=9.81m/s 2)。当发现上述条件存在较大误差时,需微调保护罩2与机器人6的螺纹连接部分,直至a′ Iz与-g之差小于设定值,此时可认为z′轴与z轴基本平行。
其次,驱动机器人6末端沿坐标系O-xyz的x轴方向进行往返运动,通过微调旋转调整平台3使得a′ Iy趋向于0,此时可认为x′轴与x轴基本平行。
最后,当z′轴和x′轴分别与z轴和x轴基本平行时,可认为y′轴和y轴也基本保持平行。此时,微机电系统类型的加速度测量单元4的坐标系O′-x′y′z′与机器人6的坐标系O-yzx基本对齐,从而完成了碰撞检测装置1与机器人6之间的坐标系标定过程。
步骤2 结合机器人的振动特性和带阻滤波器,对微机电系统类型的加速度测量单元测量数据进行滤波
为防止机器人6的低阶固有振动特性对测量得到的加速度信号a′ I产生较大影响,需对机器人6的低阶固有振动特性进行分析,并对加速度信号a′ I进行滤波处理。
首先,对机器人6的工作空间进行离散化(例如均匀离散为100个点),并在每一个离散点使用锤击等激振方式对机器人6的末端进行激振。在每一次激振后,对微机电系统类型的加速度测量单元4所记录的加速度信号进行快速傅里叶变换分析,进而获得机器人6在该采样点处的一阶固有频率f,最终获得工作空间中机器人6一阶固有频率f的分布情况。
其次,确定机器人工作空间中一阶固有频率f的最大值f max和最小值f min,最终得到一阶固有频率f的带宽范围[f min,f max]。
最后,使用带阻滤波器(如巴特沃斯带阻滤波器)消除机器人6的一阶固有频率对于微机电系统类型的加速度测量单元4测量结果的影响。其中带阻滤波器的阻带带宽范围与机器人的一阶固有频率f的带宽范围相同,通带带宽范围可根据实际系统是否存在其它干扰信号设定,通带最大衰减和阻带最小衰减可根据实际信号的幅值需求设置,最终获得滤波后的加速度信号a′ If=BandStopFilter(a′ I),其中BandStopFilter()表示带阻滤波器函数。
步骤3 机器人的碰撞检测
由于机器人6在实际工作过程中末端姿态会发生变化,进而导致微机电系统类型的加速度测量单元4的坐标系O′-x′y′z′无法对齐于机器人坐标系O-xyz,此时需要进行坐标变换获得能够在机器人6坐标系中表示的末端加速度信息。
首先,基于机器人6的Denavit–Hartenberg(DH)参数和机器人6的各个关节位置θ i(1<i<n,n为机器人自由度),可通过坐标系间的旋转变换获得在机器人6坐标系O-xyz下所表示的末端加速度矢量a If=[a Ifx,a Ify,a Ifz] T,即a If=Ra′ If,其中R表示由微机电系统类型的加速度测量单元4坐标系O′-x′y′z′到机器人6坐标系O-xyz的旋转变换。
其次,结合运动学及其微分模型可通过计算获得机器人6的末端加速度矢量
Figure PCTCN2020111825-appb-000005
其中θ=[θ 12,...,θ n] T
Figure PCTCN2020111825-appb-000006
Figure PCTCN2020111825-appb-000007
分别为机器人6的关节位置、速度和加速度矢量,J(θ)为机器人6的雅可比矩阵,
Figure PCTCN2020111825-appb-000008
为机器人6的雅可比微分矩阵。
最后,根据实际的灵敏度需求设定机器人6的碰撞检测阈值ε,当|a cx-a Ifx|>ε、|a cy-a Ify|>ε或|a cz-a Ifz|>ε任一条件成立时,认为机器人6与外界发生碰撞,此时机器人6立即执行刹车指令。当|a cx-a Ifx|>ε且|a cy-a Ify|>ε且|a cz-a Ifz|>ε均成立时,认为机器人6未与外界环境发生碰撞,此时机器人继续执行原有运动指令。

Claims (2)

  1. 一种机器人碰撞检测装置,由保护罩(2)、旋转调整平台(3)和加速度测量单元(4)组成;其特征是:所述旋转调整平台底部设有安装轴,所述保护罩设有腔室,腔室底部设轴孔,旋转调整平台的安装轴套装于保护罩的轴孔中,旋转调整平台与保护罩同轴心安装;旋转调整平台的轴肩端面与保护罩的腔室底面贴合,旋转调整平台固定于保护罩腔室内;所述加速度测量单元固装于旋转调整平台上,其中心位于旋转调整平台3的轴线上。
  2. 一种使用权利要求1所述的机器人碰撞检测装置进行机器人碰撞检测的方法,其步骤是:
    碰撞检测装置安装在机器人的末端;
    步骤1.碰撞检测装置与机器人之间的坐标标定
    由加速度测量单元获得自身坐标系O′-x′y′z′下所表示的机器人的末端加速度矢量a′ I=[a′ Ix,a′ Iy,a′ Iz] T的测量值;
    假设碰撞检测装置不存在安装误差,当机器人处于静止时,受到重力加速度的影响有a′ Ix=0,a′ Iy=0,a′ Iz=-g,其中g=9.81m/s 2;当上述条件存在较大误差时,首先微调保护罩与机器人的连接部分,使得a′ Iz与-g之差小于设定值;其次,驱动机器人末端沿其自身坐标系O-xyz的x轴方向往返运动,通过微调旋转调整平台使得a′ Iy趋向于0;最后,当前述两个条件成立时,则认为微机电系统类型的加速度测量单元的坐标系O′-x′y′z′与机器人坐标系O-xyz对齐,实现了碰撞检测装置与机器人间的坐标系标定;
    步骤2.结合机器人的振动特性和带阻滤波器,对碰撞检测装置的加速度测量单元测量数据滤波
    对工作空间进行离散化,在每一个离散点对机器人的末端进行激振,并对加速度测量单元所记录的加速度信号a′ I进行傅里叶变换分析,获得该离散点处机器人的一阶固有频率f,进而获得整个工作空间中一阶固有频率f的分布,确定其最大值f max和最小值f min,最终得到机器人一阶固有频率f的带宽范围[f min,f max];
    加速度测量单元使用带阻滤波器消除机器人的一阶固有振动特性对于加速度测量单元测量结果的影响,带阻滤波器的阻带带宽范围与机器人的一阶固有频率f的带宽范围相同,通带带宽范围可根据实际系统是否存在其它干扰信号设定,通带最大衰减和阻带最小衰减可根据实际信号的幅值需求设置,最终获得滤波后的加速度信号a′ If=BandStopFilter(a′ I),其中BandStopFilter()表示带阻滤波器函数;
    步骤3.机器人的碰撞检测
    结合机器人的Denavit–Hartenberg参数和各个关节位置θ i,1<i<n,n为机器人自由度,通过坐标系间的旋转变换,获得在机器人坐标系O-xyz下所表示的末端加速度矢量a If=[a Ifx,a Ify,a Ifz] T的测量值,
    a If=Ra′ If
    其中R表示由加速度测量单元坐标系O′-x′y′z′到机器人坐标系O-xyz的旋转变换;
    获得机器人末端加速度矢量的计算值
    Figure PCTCN2020111825-appb-100001
    其中θ=[θ 12,...,θ n] T
    Figure PCTCN2020111825-appb-100002
    Figure PCTCN2020111825-appb-100003
    分别为机器人的关节位置、速度和加速度矢量,J(θ)为机器人的雅可比矩阵,
    Figure PCTCN2020111825-appb-100004
    为机器人6的雅可比微分矩阵;
    设定碰撞检测阈值ε,
    当|a cx-a Ifx|>ε、|a cy-a Ify|>ε或|a cz-a Ifz|>ε任一成立时,判定机器人与外界环境发生碰撞,此时机器人6立即执行刹车指令
    当|a cx-a Ifx|>ε且|a cy-a Ify|>ε且|a cz-a Ifz|>ε成立时,判定机器人未与外界环境发生碰撞,此时机器人继续执行原有运动指令。
PCT/CN2020/111825 2019-12-30 2020-08-27 一种机器人碰撞检测装置及碰撞检测的方法 WO2021135315A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911394987.9A CN111113488B (zh) 2019-12-30 2019-12-30 一种机器人碰撞检测装置及碰撞检测的方法
CN201911394987.9 2019-12-30

Publications (1)

Publication Number Publication Date
WO2021135315A1 true WO2021135315A1 (zh) 2021-07-08

Family

ID=70505066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111825 WO2021135315A1 (zh) 2019-12-30 2020-08-27 一种机器人碰撞检测装置及碰撞检测的方法

Country Status (2)

Country Link
CN (1) CN111113488B (zh)
WO (1) WO2021135315A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113992065A (zh) * 2021-11-04 2022-01-28 苏州天准科技股份有限公司 一种带锁定保护的驱控轴装置及其控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111113488B (zh) * 2019-12-30 2022-06-14 南京埃斯顿自动化股份有限公司 一种机器人碰撞检测装置及碰撞检测的方法
CN112611381A (zh) * 2020-10-29 2021-04-06 武汉哈船导航技术有限公司 一种人工智能惯性导航系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150080050A (ko) * 2013-12-30 2015-07-09 전자부품연구원 다관절로봇의 충돌 감지 장치 및 이를 이용한 충돌 감지 방법
CN106996989A (zh) * 2017-05-09 2017-08-01 北京克路德人工智能科技有限公司 一种机器人壳体碰撞检测方法
CN207123333U (zh) * 2017-04-28 2018-03-20 深圳乐行天下科技有限公司 碰撞检测装置及具有其的机器人
CN108519081A (zh) * 2018-03-24 2018-09-11 北京工业大学 一种工业机器人高精度检测装置
CN108972567A (zh) * 2017-05-31 2018-12-11 西门子(中国)有限公司 机械臂防碰撞系统、方法及存储介质
CN111113488A (zh) * 2019-12-30 2020-05-08 南京埃斯顿自动化股份有限公司 一种机器人碰撞检测装置及碰撞检测的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5195054B2 (ja) * 2008-06-11 2013-05-08 パナソニック株式会社 アームの関節、及びそれを有するロボット
US8751040B2 (en) * 2010-04-02 2014-06-10 GM Global Technology Operations LLC Systems and methods for evaluating braking performance
CN103785959A (zh) * 2014-02-13 2014-05-14 无锡卓工自动化制造有限公司 防撞连接器
CN104400271B (zh) * 2014-11-19 2016-08-24 湖南蓝天机器人科技有限公司 一种灵敏度可调的焊接机器人防碰撞传感器
US10632624B2 (en) * 2016-07-26 2020-04-28 Illinois Tool Works Inc. Tool holders for robotic systems having collision detection
CN107813345B (zh) * 2017-11-28 2020-11-13 广东省智能制造研究所 机器人碰撞检测方法及装置
CN110480678B (zh) * 2019-07-19 2022-03-04 南京埃斯顿机器人工程有限公司 一种工业机器人碰撞检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150080050A (ko) * 2013-12-30 2015-07-09 전자부품연구원 다관절로봇의 충돌 감지 장치 및 이를 이용한 충돌 감지 방법
CN207123333U (zh) * 2017-04-28 2018-03-20 深圳乐行天下科技有限公司 碰撞检测装置及具有其的机器人
CN106996989A (zh) * 2017-05-09 2017-08-01 北京克路德人工智能科技有限公司 一种机器人壳体碰撞检测方法
CN108972567A (zh) * 2017-05-31 2018-12-11 西门子(中国)有限公司 机械臂防碰撞系统、方法及存储介质
CN108519081A (zh) * 2018-03-24 2018-09-11 北京工业大学 一种工业机器人高精度检测装置
CN111113488A (zh) * 2019-12-30 2020-05-08 南京埃斯顿自动化股份有限公司 一种机器人碰撞检测装置及碰撞检测的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113992065A (zh) * 2021-11-04 2022-01-28 苏州天准科技股份有限公司 一种带锁定保护的驱控轴装置及其控制方法
CN113992065B (zh) * 2021-11-04 2022-07-22 苏州天准科技股份有限公司 一种带锁定保护的驱控轴装置及其控制方法

Also Published As

Publication number Publication date
CN111113488B (zh) 2022-06-14
CN111113488A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2021135315A1 (zh) 一种机器人碰撞检测装置及碰撞检测的方法
US9956689B2 (en) Robotic device, method for controlling robotic device, and computer program
JP3883544B2 (ja) ロボット制御装置およびロボットの制御方法
WO2020258198A1 (zh) 标定方法、标定设备、稳定器及计算机可读存储介质
WO2018028711A1 (zh) 一种对无人机的噪声协方差进行估算的方法
EP1803536A1 (en) Robot evaluation system and evaluation method
CN110017850B (zh) 一种陀螺仪漂移估计方法、装置及定位系统
EP3387450B1 (en) Mems sensor with compensation of residual voltage
US10551191B2 (en) Deformation rejection mechanism for offset minimization of out-of-plane sensing MEMS device
JPH0943269A (ja) 加速度トランスデューサ
US20220144624A1 (en) Electrode layer partitioning
EP3387381B1 (en) Dual-sealed mems package with cavity pressure monitoring
CN111208317B (zh) Mems惯性传感器及应用方法和电子设备
Hoang et al. Noise attenuation on IMU measurement for drone balance by sensor fusion
Beitia et al. Quartz pendulous accelerometers for navigation and tactical grade systems
CN115244407B (zh) 使用mems陀螺仪补偿加速度计的应力引起的误差
EP3387379B1 (en) Two frequency gyroscope compensation system and method
EP3608632B1 (en) Identification of a seal failure in mems devices
CN113246137A (zh) 基于外力矩估计模型的机器人碰撞检测方法
Kroger et al. 12d force and acceleration sensing: A helpful experience report on sensor characteristics
WO2023155790A1 (zh) 机器人负载转动惯量的标定方法、装置及存储介质
CN109612464B (zh) 基于iez框架下的多算法增强的室内导航系统及方法
EP3387451B1 (en) Residual voltage self test for accelerometers
US11268975B2 (en) Accelerometer sensitivity self-calibration with duty cycle control of drive signal
Xu et al. EKF based multiple-mode attitude estimator for quadrotor using inertial measurement unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909645

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20909645

Country of ref document: EP

Kind code of ref document: A1