WO2021135023A1 - 基于面质比的卫星随机振动与噪声试验剪裁方法 - Google Patents
基于面质比的卫星随机振动与噪声试验剪裁方法 Download PDFInfo
- Publication number
- WO2021135023A1 WO2021135023A1 PCT/CN2020/088918 CN2020088918W WO2021135023A1 WO 2021135023 A1 WO2021135023 A1 WO 2021135023A1 CN 2020088918 W CN2020088918 W CN 2020088918W WO 2021135023 A1 WO2021135023 A1 WO 2021135023A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- satellite
- test
- random vibration
- tailoring
- acoustic
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G7/00—Simulating cosmonautic conditions, e.g. for conditioning crews
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
Definitions
- the invention belongs to the technical field of satellite mechanics environmental tests, and specifically relates to a tailoring method for satellite random vibration and noise tests.
- the tailoring of random vibration test and noise test items is an important content of the satellite mechanics environmental test.
- the relevant tailoring principles are stipulated in the standards of various countries, but the national standards for the selection principles are not consistent. Therefore, it is necessary to conduct in-depth research on it and formulate tailoring criteria for random vibration and noise tests.
- the NASA-STD-7001 standard stipulates that, generally, a system-level random vibration test should be used for compact stars with a weight less than 450kg. For some stars whose work load is caused by the acoustic environment through analysis or empirical data, although they are small in weight, acoustic tests should be used. For parts with large area-to-mass ratios, such as solar wings, acoustic tests should be used.
- the SMC-S-016 standard stipulates that when the mass of the aircraft is less than 180kg, the vibration test can replace the acoustic test to more effectively stimulate the vibration of the aircraft. In the two given standards, only the influence of quality on the tailoring of random vibration test/noise test is considered. Regarding the effect of the area-to-mass ratio on the experimental tailoring, only a rough qualitative analysis is given, but no relevant quantitative analysis is given.
- ECSS-26A The standard given by ECSS-26A is: For the influence of quality on random vibration test/noise test tailoring, the following standard is given: In most cases, the noise test is performed on satellites. Only for tiny satellites (150kg-200kg), random vibration tests must be carried out.
- ISO19683 provides the following tailoring principles for noise test and random vibration test: For small and compact satellites, the interface vibration is more severe than the sound field, and random vibration test is required instead of acoustic test. A system based on a single degree of freedom and a first-order resonance frequency are also given for calculation, and a quantitative formula for area-to-mass ratio tailoring is given. The final conclusion is that when the area-to-mass ratio is greater than 0.083m 2 /kg, the noise The experiment is more effective, and the random experiment is more effective.
- GJB1027A The main domestic satellite development unit, GJB1027A is an important reference for related experiments. Including China Dongfanghong Satellite Co., Ltd., Shanghai Institute of Microsatellites, Chinese Academy of Sciences, and Changguang Satellite Technology Co., Ltd. At present, most small satellites have undergone random vibration test verification, and only a few have carried out noise test verification. There is no unified conclusion on the tailoring of the small satellite random vibration test verification method. Compared with foreign standards, GJB1027A mainly refers to NASA-STD-7001, so the relevant regulations are basically coordinated with NASA-STD-7001. Therefore, in general, my country currently lacks a precise mechanical model for the impact of dimensions such as the area-to-mass ratio on the random/noise test tailoring, and also lacks specific tailoring indicators for the random/noise test tailoring of relevant parameters.
- the technical solution of the present invention is to quantify the basis of the satellite random vibration test and noise test tailoring, fully consider the contribution of each mode of the satellite to the vibration, and has the characteristic of strong applicability.
- the tailoring method of satellite random vibration and noise test based on area-to-mass ratio includes the following steps:
- step (2) and step (3) calculate the sound pressure spectral density Where Pref is the reference sound pressure 2 ⁇ 10 -5 Pa;
- W A-max (f c ) i is the response value of i key points measured by acoustic test simulation analysis or satellite acoustic test of similar structure
- Q is the quality factor
- Is the area-to-mass ratio
- W r-max (f n ) i is the response value of i key points measured by random test simulation analysis or random vibration test of satellite with similar structure
- the calculation bandwidth formula is tailored according to the different octave bands of the acoustic test spectrum.
- the quality factor Q is generally 4.5; ⁇ r and ⁇ a are the arithmetic mean values of m selected key measurement points, and the minimum value of m is 1; W A-max (f c ) i and W r-max (f n ) i are respectively the response values of i key points measured by acoustic test and random vibration test simulation analysis or satellite acoustic test of similar structure.
- the choice of random vibration test and noise test for domestic satellites is controversial, and there is no theoretical basis at present.
- the present invention proposes a tailoring method for solving the ground simulation random vibration and noise test of complex satellite products, which is more advanced than the internationally used algorithms such as ECSS-26A, ISO19683 and the like, and the calculation result is more accurate.
- the present invention proposes a "break-even" area-to-mass ratio calculation coefficient, which uses noise test and random vibration test source data, satellite sound test data of similar structures or simulation analysis results for correction calculations.
- the coefficient fully takes into account the product structure. Type, area, mass, damping characteristics, etc., are more comprehensive than a single factor.
- the method of the present invention provides the scope of application of the tailoring "break-even" of the satellite random vibration and noise test, and enhances the engineering practicability of the method of the present invention.
- this method can effectively guide the tailoring of satellite mechanics tests, and can effectively improve development efficiency and reduce test costs.
- Fig. 1 is an implementation flow chart of the satellite random vibration and noise test tailoring method based on the surface-to-mass ratio of the present invention.
- Figure 1 is the implementation flow chart of the satellite random vibration and noise test tailoring method based on the surface-to-mass ratio of the present invention, which mainly includes the following steps: (1) Perform satellite dynamic frequency response according to satellite random vibration test conditions Simulation analysis to obtain the random vibration test condition power spectral density value corresponding to the frequency corresponding to the maximum frequency response of the satellite key position; (2) According to the satellite acoustic test conditions, carry out the simulation analysis of the satellite acoustic vibration response to obtain the maximum frequency response of the satellite key position The value corresponds to the sound pressure level of the acoustic test conditions corresponding to the frequency band; (3) Calculate the frequency bandwidth; (4) Calculate the sound pressure spectral density; (5) Calculate the area-to-mass ratio of miles; (6) Calculate the break-even coefficient; (7) Calculate Break-even point; (8) Carry out satellite random vibration test and noise test tailoring according to the balance point.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
本发明公开了一种基于面质比的卫星随机振动与噪声试验剪裁方法,该方法用于对卫星地面验证试验中的随机振动试验和噪声试验进行剪裁。首先根据卫星随机振动试验条件,进行卫星动力学频响仿真分析,获取卫星关键位置频响最大值对应频率所对应的随机振动试验条件功率谱密度值,随后根据卫星声试验条件,进行航天声致振动响应仿真分析,获取卫星关键位置频响最大值对应频带所对应的声试验条件声压级,计算频率带宽,和声压频谱密度,后计算miles面积质量比值,最后,计算盈亏平衡系数及盈亏平衡点,根据平衡点对随机振动试验和噪声试验进行剪裁。本发明方法充分考虑了卫星每阶模态对振动的贡献量,针对不同类型卫星自身动力学特征,量化了剪裁阈值,具有适应性强的特点。
Description
本发明属于卫星力学环境试验技术领域,具体涉及卫星随机振动与噪声试验的剪裁方法。
随机振动试验与噪声试验项目的裁剪是卫星力学环境试验的重要内容,相关裁剪原则在各国的标准中均有规定,然而对于选取原则各国标准并不一致。因此有必要对其进行深入研究,制定随机振动和噪声试验的裁剪准则。
目前,国内外相关试验标准只定性给出一般原则,未形成定量的分析选取方法。NASA-STD-7001标准中规定,一般对于重量小于450kg的紧凑星体,应该采用系统级的随机振动试验。对于部分虽然是小重量,但是通过分析或经验数据表明其工作载荷是由声环境造成的星体,应采用声学试验。对于大的面积质量比的部件,如太阳翼等,应该采用声学试验。SMC-S-016标准中规定,在飞行器质量小于180kg的情况下,振动试验可以代替声学试验来对飞行器的振动进行更有效的激发。两个给出的标准中,都只考虑了质量对随机振动试验/噪声试验的剪裁的影响。关于面积质量比对于试验剪裁的影响,只给出了粗略的定性分析,没有给出相关的定量分析。
ECSS-26A给出的标准为:对于质量对随机振动试验/噪声试验剪裁的影响,给出了下述标准:对绝大多数的情况下,对卫星进行噪声试验。只有对于微小卫星(150kg-200kg),必须进行随机振动试验。
ISO19683给出了噪声试验和随机振动试验的剪裁原则如下:对于小型、紧凑的卫星,其界面振动比通过声场更加剧烈,需进行随机振动试验,而不是进行声学试验。给出了同样基于单自由度的系统、一阶共振频率来进行计算,给出了一种面积质量比剪裁定量公式,最终得出的结论是当面积质量比大于 0.083m
2/kg时,噪声试验比较有效,反之随机试验比较有效。
国内主要的卫星研制单位,GJB1027A是相关试验的重要参考依据。包括中国东方红卫星股份有限公司、中科院上海微小卫星研究院、长光卫星技术有限公司等。目前大多数小卫星进行随机振动试验验证,只有少部分开展了噪声试验验证,对于小卫星随机振动试验验证方式的剪裁还没有统一结论。与国外标准相比,GJB1027A中主要参考NASA-STD-7001,因此相关规定基本与NASA-STD-7001协调。因此,总体来说,我国目前缺少对于面积质量比等维度对于随机/噪声试验剪裁影响的精准力学模型,也缺少相关参数对于随机/噪声试验剪裁的具体剪裁指标。
发明内容
本发明的技术解决问题是:量化卫星随机振动试验和噪声试验剪裁依据,充分考虑了卫星每阶模态对振动的贡献量,具有适用性强的特点。
为了实现上述目的,本发明采用了如下的技术方案:
基于面质比的卫星随机振动与噪声试验剪裁方法,包括如下步骤:
(1)根据卫星随机振动试验条件,进行卫星动力学频响仿真分析,获取卫星关键位置频响最大值对应频率所对应的随机振动试验条件功率谱密度值PSD
fn;
(2)根据卫星声试验条件,进行航天声致振动响应仿真分析,获取卫星关键位置频响最大值对应频带所对应的声试验条件声压级spl;
(3)根据中心频率f
c,计算频率带宽Δf,对于倍频程声谱,取Δf=0.707f
c;对于1/3倍频程声谱,取Δf=0.232f
c;
(6)计算盈亏平衡系数
其中,
其中,W
A-max(f
c)
i为声试验仿真分析或类似结构卫星声试验实测的i个关键点响应值,Q为品质因数,
为面积质量比;
其中,W
r-max(f
n)
i为随机试验仿真分析或类似结构卫星随机振动试验实测的i个关键点响应值;
(8)根据盈亏平衡点进行卫星随机振动试验与噪声试验剪裁。
所述步骤(3)中,根据声试验谱的不同倍频程来剪裁计算带宽公式。
所述步骤(6)中,品质因数Q一般取值为4.5;β
r和β
a是选取的m个关键测点的算术平均值,m的最小值为1;W
A-max(f
c)
i和W
r-max(f
n)
i分别为声试验和随机振动试验仿真分析或类似结构卫星声试验实测的i个关键点响应值。
利用该方法,成功完成了卫星随机振动试验和噪声试验的剪裁,与现有技术相比的优点在于:
(1)国内卫星随机振动试验与噪声试验的选择存在较大争议,目前缺乏理论依据。本发明提出了一种用于解决复杂卫星产品地面模拟随机振动与噪声试验的剪裁方法,与国际通用的ECSS-26A、ISO19683等提出算法相比更为先进,计算结果较准确。
(2)本发明提出了“盈亏平衡”面质比计算系数,使用了噪声试验和随机振动试验源数据、类似结构卫星声试验实测数据或仿真分析结果进行修正计算,该系数充分考虑了产品构型、面积、质量、阻尼特性等,较单一因素更为全面。
(3)本发明方法给出了卫星随机振动与噪声试验剪裁“盈亏平衡”的使用范围,增强了本发明方法的工程实用性。在卫星研制工程实践中,该方法可有效指导卫星力学试验的剪裁,并能有效提高研制效率,降低试验成本。
图1为本发明的基于面质比的卫星随机振动与噪声试验剪裁方法实施流程图。
以下介绍的是作为本发明所述内容的具体实施方式,下面通过具体实施方式对本发明的所述内容作进一步的阐明。当然,描述下列具体实施方式只为示例本发明的不同方面的内容,而不应理解为限制本发明范围。
参见图1,图1为本发明的基于面质比的卫星随机振动与噪声试验剪裁方法实施流程图,主要包括如下几个步骤:(1)根据卫星随机振动试验条件,进行卫星动力学频响仿真分析,获取卫星关键位置频响最大值对应频率所对应的随机振动试验条件功率谱密度值;(2)根据卫星声试验条件,进行卫星声致振动响应仿真分析,获取卫星关键位置频响最大值对应频带所对应的声试验条件声压级;(3)计算频率带宽;(4)计算声压频谱密度;(5)计算miles面积质量比;(6)计算盈亏平衡系数;(7)计算盈亏平衡点;(8)根据平衡点进行卫星随机振动试验与噪声试验剪裁。
以某卫星研制工程中的力学环境试验剪裁为例,随机振动试验条件与噪声试验条件如表1和表2所示。对各步骤进行详细的说明。
表1随机振动试验条件
频率(Hz) | 20-150 | 150-800 | 800-2000 |
PSD | +3dB/Oct | 0.031g 2/Hz | -6dB/Oct |
表2噪声试验条件
(1)根据某卫星表1随机振动试验条件和表2噪声试验条件,进行卫星有限元模型仿真分析。以卫星有限元模型中的关键位置频响最大值对应频率250Hz为例,随机振动试验条件谱在150Hz到800Hz的谱密度值为0.031g
2/Hz,即2.98(m/s
2)
2/Hz。
(2)250Hz对应的卫星噪声试验条件的倍频程声压级为134dB;
(3)计算倍频程频率带宽,Δf=0.707f
c=0.707×250Hz=176.75Hz;
(6)计算盈亏平衡系数。对于第一个测点:
选取5个关键位置测点,即m=5,5个测点对应的系数均按照以上公式进行计算。盈亏平衡系数计算结果见表3和表4。
表3关键位置测点βa计算结果
表4关键位置测点βr计算结果
(7)计算盈亏平衡点。
(8)根据平衡点进行卫星随机振动试验或噪声试验的裁剪。卫星实际面积质量比为0.018,小于0.0346,即采用随机振动试验进行验证更合适,将噪声试验剪裁。
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。
尽管上文对本发明的具体实施方式进行了详细的描述和说明,但应该指明的是,我们可以对上述实施方式进行各种改变和修改,但这些都不脱离本发明的精神和所附的权利要求所记载的范围。
Claims (6)
- 基于面质比的卫星随机振动与噪声试验剪裁方法,包括如下步骤:(1)根据卫星随机振动试验条件,进行卫星动力学频响仿真分析,获取卫星关键位置频响最大值对应频率所对应的随机振动试验条件功率谱密度值PSD fn;(2)根据卫星声试验条件,进行航天声致振动响应仿真分析,获取卫星关键位置频响最大值对应频带所对应的声试验条件声压级spl;(3)根据中心频率f c,计算频率带宽Δf,对于倍频程声谱,取Δf=0.707f c;对于1/3倍频程声谱,取Δf=0.232f c;(6)计算“盈亏平衡”修正系数 其中, 其中,W A-max(f c) i为声试验仿真分析或类似结构卫星声试验实测的i个关键点响应值,Q为品质因数, 为卫星实际面积质量比; 其中,W r-max(f n) i为随机试验仿真分析或类似结构卫星随机振动试验实测的i个关键点响应值;(8)根据盈亏平衡点进行卫星随机振动试验与噪声试验剪裁。
- 根据权利要求1所述的卫星随机振动与噪声试验剪裁方法,其特征在于:所述步骤(3)中,根据声试验谱的不同倍频程来剪裁计算带宽公式。
- 根据权利要求1所述的卫星随机振动与噪声试验剪裁方法,其特征在于:所述步骤(6)中,品质因数Q取值为4.5。
- 根据权利要求1所述的卫星随机振动与噪声试验剪裁方法,其特征在于:所述步骤(6)中,β r和β a是选取的m个关键测点的算术平均值,m的最小值为1。
- 根据权利要求1所述的卫星随机振动与噪声试验剪裁方法,其特征在于:所述步骤(6)中,W A-max(f c) i和W r-max(f n) i分别为声试验和随机振动试验仿真分析或类似结构卫星声试验实测的i个关键点响应值。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20908445.8A EP3926508A1 (en) | 2019-12-31 | 2020-05-07 | Method for tailoring satellite random vibration and noise tests on the basis of area-to-mass ratio |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911404703.XA CN111144022B (zh) | 2019-12-31 | 2019-12-31 | 基于面质比的卫星随机振动与噪声试验剪裁方法 |
CN201911404703.X | 2019-12-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021135023A1 true WO2021135023A1 (zh) | 2021-07-08 |
Family
ID=70522340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/088918 WO2021135023A1 (zh) | 2019-12-31 | 2020-05-07 | 基于面质比的卫星随机振动与噪声试验剪裁方法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3926508A1 (zh) |
CN (1) | CN111144022B (zh) |
WO (1) | WO2021135023A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116663192A (zh) * | 2023-06-08 | 2023-08-29 | 武汉轻工大学 | 双层圆柱壳振动响应模拟方法及装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113639945B (zh) * | 2021-06-28 | 2024-02-09 | 上海宇航系统工程研究所 | 基于经验模态分解的航天器随机振动试验条件设计方法 |
CN113933086B (zh) * | 2021-12-17 | 2022-02-22 | 中国飞机强度研究所 | 实验室内飞机整机低温环境试验条件剪裁优化方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6810741B1 (en) * | 2003-04-30 | 2004-11-02 | CENTRE DE RECHERCHE INDUSTRIELLE DU QUéBEC | Method for determining a vibratory excitation spectrum tailored to physical characteristics of a structure |
CN104463355A (zh) * | 2014-11-21 | 2015-03-25 | 航天东方红卫星有限公司 | 一种基于测试模型的小卫星测试规划系统 |
CN110375939A (zh) * | 2019-07-03 | 2019-10-25 | 航天东方红卫星有限公司 | 一种航天器结构振动试验健康状态评估的改进方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4394398B2 (ja) * | 2003-08-28 | 2010-01-06 | Necエンジニアリング株式会社 | 宇宙飛翔体試験リアルタイム自動監視制御システム |
-
2019
- 2019-12-31 CN CN201911404703.XA patent/CN111144022B/zh active Active
-
2020
- 2020-05-07 WO PCT/CN2020/088918 patent/WO2021135023A1/zh unknown
- 2020-05-07 EP EP20908445.8A patent/EP3926508A1/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6810741B1 (en) * | 2003-04-30 | 2004-11-02 | CENTRE DE RECHERCHE INDUSTRIELLE DU QUéBEC | Method for determining a vibratory excitation spectrum tailored to physical characteristics of a structure |
CN104463355A (zh) * | 2014-11-21 | 2015-03-25 | 航天东方红卫星有限公司 | 一种基于测试模型的小卫星测试规划系统 |
CN110375939A (zh) * | 2019-07-03 | 2019-10-25 | 航天东方红卫星有限公司 | 一种航天器结构振动试验健康状态评估的改进方法 |
Non-Patent Citations (1)
Title |
---|
LI CHUNLI, CHEN QIANGHONG, PU YONGFEI: "Spacecraft Vibration Test Optimization in System and Component Level", SPACECRAFT ENVIRONMENT ENGINEERING, vol. 24, no. 3, 1 June 2007 (2007-06-01), pages 187 - 7, XP055826749, ISSN: 1673-1379 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116663192A (zh) * | 2023-06-08 | 2023-08-29 | 武汉轻工大学 | 双层圆柱壳振动响应模拟方法及装置 |
CN116663192B (zh) * | 2023-06-08 | 2024-05-17 | 武汉轻工大学 | 双层圆柱壳振动响应模拟方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN111144022B (zh) | 2021-05-28 |
CN111144022A (zh) | 2020-05-12 |
EP3926508A1 (en) | 2021-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021135023A1 (zh) | 基于面质比的卫星随机振动与噪声试验剪裁方法 | |
CN107609332B (zh) | 一种换流变压器远场噪声预测的方法 | |
CN105427853A (zh) | 宽频带微穿孔板吸声体及其性能预测方法、结构设计方法 | |
CN107145641A (zh) | 叶片振动疲劳概率寿命预测方法 | |
CN106845111A (zh) | 一种基于多元回归的航空发动机噪声预测方法 | |
CN205194322U (zh) | 基于周期性子背腔的宽频带微穿孔板吸声体 | |
CN106844958A (zh) | 基于改进雨流计数法的薄壁结构热声疲劳寿命预估方法 | |
CN102937547A (zh) | 一种金属材料强度性能评定方法 | |
Ih et al. | Prediction of intake noise of an automotive engine in run-up condition | |
CN104358602A (zh) | 基于宽频带复合吸声结构汽轮发电机组的噪声控制方法 | |
CN108595794A (zh) | 一种管路结构振动载荷分析方法 | |
CN111382533A (zh) | 一种变压器电磁振动噪音仿真分析方法 | |
CN104869519A (zh) | 一种测试麦克风本底噪声的方法和系统 | |
CN111784149A (zh) | 基于变权重的土壤重金属污染综合评价方法 | |
Xie et al. | Sound Transmission Loss of a Metal Panel With Rib Reinforcements and Pasted Damping. | |
Wang | Formulae for the forced sound transmission coefficients | |
Kim et al. | Comparison study of sound transmission loss in high speed train | |
CN112881025B (zh) | 一种航空发动机振动控制与能量收集的方法 | |
CN110796036B (zh) | 一种用于提高结构模态参数识别精度的方法 | |
Zhong et al. | High frequency vibro-acoustic fatigue analysis with a radiosity based theory | |
CN117556544A (zh) | 一种结构振动疲劳临界应力计算方法 | |
CN112632690B (zh) | 一种燃烧噪声参数的确定方法和装置 | |
Wang et al. | Filter Capacitor Acoustic Noise Prediction Based on ESM for HVDC Converter Stations | |
Billon et al. | Numerical optimization of liner impedance in acoustic duct | |
Ling et al. | Research on Designing Outdoor Microphone Protection Structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20908445 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020908445 Country of ref document: EP Effective date: 20210912 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |