WO2021134728A1 - 一种上下文管理方法及装置 - Google Patents

一种上下文管理方法及装置 Download PDF

Info

Publication number
WO2021134728A1
WO2021134728A1 PCT/CN2019/130987 CN2019130987W WO2021134728A1 WO 2021134728 A1 WO2021134728 A1 WO 2021134728A1 CN 2019130987 W CN2019130987 W CN 2019130987W WO 2021134728 A1 WO2021134728 A1 WO 2021134728A1
Authority
WO
WIPO (PCT)
Prior art keywords
side device
terminal
message
context
network
Prior art date
Application number
PCT/CN2019/130987
Other languages
English (en)
French (fr)
Inventor
徐小英
酉春华
曾清海
黄曲芳
娄崇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980103344.6A priority Critical patent/CN114902745A/zh
Priority to PCT/CN2019/130987 priority patent/WO2021134728A1/zh
Priority to EP19958082.0A priority patent/EP4075880A4/en
Publication of WO2021134728A1 publication Critical patent/WO2021134728A1/zh
Priority to US17/855,166 priority patent/US20220338298A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/32Release of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a context management method and device.
  • the network side device can establish a corresponding context for the terminal side device (context).
  • the terminal-side device transitions from the radio resource control (Radio Resource Control, RRC) connected state to the RRC idle state, the network-side device releases the context of the terminal-side device.
  • RRC Radio Resource Control
  • an inactive (inactive) state also referred to as a third state
  • the terminal-side device can maintain the core network connection, but does not perform operations such as cell handover, uplink timing update, and radio link monitoring.
  • the terminal-side device transitions from the RRC connected state to the inactive state, the terminal-side device saves part of the context.
  • the network-side device notifies the terminal-side device to restore the saved context.
  • the network-side equipment can be composed of a centralized unit (CU) and a distributed unit (DU). Among them, some of the functions of the network-side equipment are deployed in a CU, and the remaining functions are deployed in a CU. DU, multiple DUs can share one CU, which can save costs and facilitate network expansion.
  • the CU of the network side device is responsible for managing the RRC state of the terminal side device. Therefore, when the RRC state of the terminal-side device transitions, the CU of the network-side device needs to notify the DU of the network-side device to perform linked context processing.
  • the CU of the network-side device when the terminal-side device transitions from the RRC connected state to the inactive state, the CU of the network-side device notifies the DU of the network-side device to release the context of the terminal-side device, which includes all dedicated F1 transmission resources and air interface configuration information, etc. .
  • the DU of the network side device releases the context of the terminal side device, when the terminal side device in the inactive state sends uplink data to the DU of the network side device, the DU of the network side device cannot immediately send the data to the CU of the network side device.
  • the DU of the network-side device must wait for the context establishment process to be completed before sending uplink data to the CU of the network-side device, which leads to a longer transmission delay of the uplink data and also increases the power consumption of the terminal-side device.
  • the purpose of the embodiments of the present application is to provide a context management method and device to solve the problem of how to reduce the uplink data transmission delay of the terminal-side device in the inactive state.
  • the present application provides a context management method, including: a distributed unit DU of a network side device receives a first message from a centralized unit CU of the network side device; the first message includes a second message, The second message is used to instruct the terminal-side device to enter an inactive state and release the connection with the network-side device; the DU of the network-side device retains the context of the terminal-side device in the inactive state .
  • the DU of the network side device when the DU of the network side device retains the context of the inactive terminal side device, it can receive the uplink data from the inactive terminal side device according to the context and other information, which can reduce the signaling of the terminal side device.
  • the overhead and power consumption when the DU of the network side device retains the context of the inactive terminal side device, it can receive the uplink data from the inactive terminal side device according to the context and other information, which can reduce the signaling of the terminal side device.
  • the first message includes first information, and the first information is used to instruct the DU of the network side device to reserve the air interface context in the context of the terminal side device; the network The DU of the side device retains the air interface context of the terminal side device according to the first information.
  • the first information is also used to instruct the DU of the network side device to reserve the F1 context in the context of the terminal side device;
  • the F1 context includes data of the terminal side device A transmission channel, where the data transmission channel is a dedicated transmission tunnel for the F1 interface corresponding to the data radio bearer DRB data of the terminal-side device.
  • the DU of the network side device when the DU of the network side device reserves the data transmission channel of the inactive terminal side device, it can immediately transmit the uplink data of the inactive terminal side device to the CU of the network side device to reduce the data transmission delay. At the same time, the time delay for the terminal-side device to monitor the PDCCH in response to the uplink data can be reduced, thereby reducing the power consumption of the terminal-side device.
  • the first message is an interface message between the CU of the network side device and the DU of the network side device, but is not the user equipment UE context release command message in the interface message.
  • the context includes one or more of the following:
  • PDCCH configuration information configured for the terminal-side device
  • An inactive wireless network temporary identifier I-RNTI configured for the terminal-side device
  • the present application also provides a communication device that has any method provided in the first aspect.
  • the communication device can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or units corresponding to the above-mentioned functions.
  • the communication device includes a processor configured to support the communication device to perform the corresponding function of the DU of the network side device in the above method.
  • the communication device may further include a memory, and the storage may be coupled with the processor, which stores program instructions and data necessary for the communication device.
  • the communication device further includes a communication interface, and the communication interface is used to support communication between the communication device and a device such as a CU of a network side device.
  • the communication device includes corresponding functional units, which are respectively used to implement the steps in the above method.
  • the function can be realized by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a communication unit, and these units can perform corresponding functions in the foregoing method examples.
  • these units can perform corresponding functions in the foregoing method examples.
  • this application provides a context management method, including:
  • the centralized unit CU of the network side device determines that the terminal side device enters an inactive state, it generates a first message; the first message includes a second message, and the second message is used to instruct the terminal side device to enter the inactive state (inactive) state, and release the connection with the network side device;
  • the CU of the network side device sends the first message to the distributed unit DU of the network side device, where the first message is used to instruct the DU of the network side device to reserve the terminal side in an inactive state
  • the context of the device is used to instruct the DU of the network side device to reserve the terminal side in an inactive state.
  • the first message includes first information, and the first information is used to instruct the DU of the network side device to reserve the air interface context of the terminal side device.
  • the first information is further used to instruct the DU of the network side device to reserve the F1 context of the terminal side device;
  • the F1 context includes the data transmission channel of the terminal side device,
  • the data transmission channel is a dedicated transmission tunnel for the F1 interface corresponding to the data radio bearer DRB data of the terminal side device.
  • the first message is an F1 application layer F1AP message, but is not a context release command message in the F1AP message.
  • the context includes one or more of the following:
  • PDCCH configuration information configured for the terminal-side device
  • An inactive wireless network temporary identifier I-RNTI configured for the terminal-side device
  • the present application also provides a communication device having any method provided in the third aspect.
  • the communication device can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or units corresponding to the above-mentioned functions.
  • the communication device includes a processor configured to support the communication device to perform the corresponding function of the CU of the network side device in the above method.
  • the communication device may further include a memory, and the storage may be coupled with the processor, which stores program instructions and data necessary for the communication device.
  • the communication device further includes a communication interface, which is used to support communication between the communication device and devices such as a DU of a network side device.
  • the communication device includes corresponding functional units, which are respectively used to implement the steps in the above method.
  • the function can be realized by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a communication unit, and these units can perform corresponding functions in the foregoing method examples.
  • these units can perform corresponding functions in the foregoing method examples.
  • the present application provides a context management method, including: the distributed unit DU of the network side device receives capability information from the centralized unit CU of the network side device; the capability information is used to indicate the terminal device Capability; when the DU of the network-side device determines that the terminal-side device is in an inactive state according to the capability information, and has the ability to transmit uplink information in the configuration authorization, keep the terminal-side device in the inactive state Context.
  • the DU of the network side device when the DU of the network side device retains the context of the inactive terminal side device, it can receive the uplink data from the inactive terminal side device according to the context and other information, which can reduce the signaling of the terminal side device.
  • the overhead and power consumption when the DU of the network side device retains the context of the inactive terminal side device, it can receive the uplink data from the inactive terminal side device according to the context and other information, which can reduce the signaling of the terminal side device.
  • the DU of the network side device reserves the air interface context in the context of the terminal side device.
  • the DU of the network side device reserves the F1 context in the context of the terminal side device; the F1 context includes the data transmission channel of the terminal side device, and the data transmission channel is The F1 interface dedicated transmission tunnel corresponding to the DRB data wirelessly carried by the terminal-side device.
  • the DU of the network side device when the DU of the network side device reserves the data transmission channel of the inactive terminal side device, it can immediately transmit the uplink data of the inactive terminal side device to the CU of the network side device to reduce the data transmission delay. At the same time, the time delay for the terminal-side device to monitor the PDCCH in response to the uplink data can be reduced, thereby reducing the power consumption of the terminal-side device.
  • the context includes one or more of the following:
  • PDCCH configuration information configured for the terminal-side device
  • An inactive wireless network temporary identifier I-RNTI configured for the terminal-side device
  • the present application also provides a communication device that has any method provided in the fifth aspect.
  • the communication device can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or units corresponding to the above-mentioned functions.
  • the communication device includes a processor configured to support the communication device to perform the corresponding function of the DU of the network side device in the above method.
  • the communication device may further include a memory, and the storage may be coupled with the processor, which stores program instructions and data necessary for the communication device.
  • the communication device further includes a communication interface, and the communication interface is used to support communication between the communication device and a device such as a CU of a network side device.
  • the communication device includes corresponding functional units, which are respectively used to implement the steps in the above method.
  • the function can be realized by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a communication unit, and these units can perform corresponding functions in the foregoing method examples.
  • these units can perform corresponding functions in the foregoing method examples.
  • the present application provides a communication device that includes a processor, and when the processor executes a computer program or instruction in a memory, as described in the first or third or fifth aspects The method is executed.
  • the present application provides a communication device.
  • the communication device includes a processor and a memory.
  • the memory is used to store computer programs or instructions; the processor is used to execute the computer programs or instructions stored in the memory. So that the communication device executes the corresponding method as shown in the first aspect or the third aspect or the fifth aspect.
  • the present application provides a communication device that includes a processor, a memory, and a transceiver.
  • the transceiver is used to receive signals or send signals; and the memory is used to store computer programs or instructions;
  • the processor is configured to call the computer program or instruction from the memory to execute the method according to the first aspect or the third aspect or the fifth aspect.
  • the present application provides a communication device, the communication device includes a processor and an interface circuit, the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the code instructions In order to perform the corresponding method as shown in the first aspect or the third aspect or the fifth aspect.
  • the present application provides a computer-readable storage medium for storing a computer program or instruction.
  • the computer reads and executes the computer program or instruction, the first aspect or The method described in the third or fifth aspect is implemented.
  • the present application provides a computer program product including instructions.
  • the computer reads and executes the computer program product, the method described in the first aspect or the third aspect or the fifth aspect is realized.
  • the present application provides a chip including a processor, the processor is coupled with a memory, and is configured to execute a computer program or instruction stored in the memory.
  • the processor executes the computer program or instruction At this time, the method described in the first aspect or the third aspect or the fifth aspect is realized.
  • the present application provides a system including the communication device provided in the above-mentioned second aspect and the communication device provided in the above-mentioned fourth aspect.
  • FIG. 1 is a schematic structural diagram of a network side device applicable to an embodiment of the present application
  • FIG. 2 is a schematic diagram of the structure of a protocol stack provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of another protocol stack structure provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of another network side device applicable to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a context configuration process provided by an embodiment of this application.
  • FIG. 6 is a schematic flowchart of a context management method provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of a data transmission process provided by an embodiment of this application.
  • FIG. 8 is a schematic flowchart of a context management method provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of a data transmission process provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • 5G 5th Generation mobile communication technology
  • NR New Radio
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the terminal-side device may be a device with wireless transceiver functions or a chip that can be installed in any device, and may also be called user equipment (UE), access terminal, user unit, user Station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent, or user device.
  • UE user equipment
  • the terminal-side device in the embodiment of the application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ), the wireless terminal in the smart city, the wireless terminal in the smart home, and so on.
  • a mobile phone mobile phone
  • a tablet computer (Pad)
  • a computer with wireless transceiver function a virtual reality (VR) terminal, an augmented reality (AR) terminal
  • VR virtual reality
  • AR augmented reality
  • Wireless terminals in industrial control wireless terminals in self-driving
  • wireless terminals in remote medical wireless terminals in smart grid, transportation safety
  • the wireless terminal in the smart city the wireless terminal in the smart home, and so on.
  • the network side equipment may be an evolved base station (evolutional node B, eNB) in the LTE system, or a next-generation base station (next Generation node B, gNB) in the NR system.
  • eNB evolved base station
  • gNB next-generation base station
  • the network side device may be composed of a centralized unit (CU) and a distributed unit (DU). Among them, part of the functions of the network side device are deployed in one CU, and the remaining functions are deployed in the DU, and multiple DUs can share one CU.
  • the CU of the network side device is responsible for managing the RRC state of the terminal side device.
  • the segmentation between the CU of the network-side device and the DU of the network-side device according to the protocol stack may be as shown in FIG. 2.
  • the Radio Resource Control (RRC) layer, the Service Data Adaptation Protocol (SDAP) layer, and the Packet Data Convergence Protocol (PDCP) layer are deployed on the network side equipment.
  • CU The Radio Link Control (RLC) layer, the Media Access Control (MAC) layer, and the physical (PHY) layer are deployed in the DU of the network side device.
  • RRC Radio Resource Control
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • CU The Radio Link Control (RLC) layer, the Media Access Control (MAC) layer, and the physical (PHY) layer are deployed in the DU of the network side device.
  • RLC Radio Link Control
  • MAC Media Access Control
  • PHY physical
  • the segmentation between the CU of the network-side device and the DU of the network-side device according to the protocol stack may be as shown in FIG. 3.
  • the RRC layer and the PDCP layer are deployed on the CU of the network side device; the RLC layer, the MAC layer, and the physical layer are deployed on the DU of the network side device.
  • the CU of the network side device may also have a separate control plane (CP) and user plane (UP) form, that is, CU It can be divided into 2 logical network elements: CU-CP and CU-UP.
  • CP control plane
  • UP user plane
  • W1 interface the interface between CU-DU
  • F1 interface the interface between CU-DU in NR system
  • the functions of these two interfaces are similar.
  • the network side device is the gNB in the NR system as an example for illustration.
  • the F1 interface includes a control plane (CP) and a user plane (UP).
  • the transport layer protocol of the control plane is a stream control transport protocol (SCTP), and the transmitted message is an F1 application layer protocol (F1 application protocol, F1AP) message.
  • the transport layer protocol of the user plane is General Packet Radio Service (GPRS) tunneling protocol user plane (GPRS Tunnelling Protocol User Plane, GTP-U).
  • GPRS General Packet Radio Service
  • the interface between CU-CP and CU-UP is named E1, which is used to transmit the signaling between CU-CP and CU-UP.
  • the F1-C interface between the CU-CP and the DU is used to transmit the F1 signaling between the CU-CP and the DU, and the RRC signaling of the terminal side equipment.
  • the F1-U interface between the CU-CP and the DU is used to transmit data radio bearer (DRB) data.
  • DRB data radio bearer
  • the DU air interface receives the uplink data carried on the DRB, it is processed by the physical layer, MAC layer, and RLC layer of the DU, and the DRB data is sent to the CU through the F1-U interface.
  • the DU air interface receives the RRC message sent by the terminal-side device, it is processed by the physical layer, MAC layer, and RLC layer of the DU, and the RRC message is sent to the CU through the F1-CP interface.
  • the signaling generated by the CU can be sent to the terminal-side device through the DU, and the DU can be transparently transmitted to the terminal without parsing the signaling; correspondingly, the signaling generated by the terminal-side device can be sent to the CU through the DU.
  • the DU may transparently transmit the signaling to the CU without parsing the signaling.
  • the CU has an RRC layer, which is responsible for managing the RRC state of the terminal-side device.
  • RRC layer responsible for managing the RRC state of the terminal-side device.
  • the DU of the network side device determines whether to retain the context of the terminal side device. Before the DU of the network side device determines whether to retain the context of the terminal side device, it may also include the process of establishing the context of the terminal side device. For details, refer to FIG. 5.
  • Step 501 The terminal side device sends capability information to the CU of the network side device.
  • the capability information is used to indicate the capability of the terminal-side device. Further, optionally, the capability information is used to indicate that the terminal-side device has the ability to transmit data in an inactive state, and the capability indicates that the terminal-side device has the ability to transmit uplink information in a configuration grant or a scheduling grant when it is in an inactive state.
  • the uplink information includes but is not limited to uplink signaling and uplink data.
  • the uplink signaling may be uplink RRC signaling, etc.
  • the uplink data may be uplink service data, such as video data, audio data, and so on.
  • scheduling authorization refers to a resource request sent by the terminal-side device, and the network-side device allocates resources to the terminal-side device according to the resource request.
  • the resource request can be a preamble in the random access process, or For uplink scheduling request, etc.
  • Configuration authorization refers to the resources pre-configured by the network-side equipment, without the terminal-side equipment sending resource requests, and has the characteristics of being allocated once and used multiple times.
  • the capability information may also indicate other capabilities of the terminal-side device, which is not limited in the embodiment of the present application.
  • Step 502 The CU of the network side device sends a UE context establishment request message to the DU of the network side device.
  • the UE context establishment request message may be used to request the establishment of a context (context) for the terminal-side device.
  • the UE context establishment request message may include the capability information.
  • Step 503 The DU of the network side device establishes a context for the terminal side device, and sends a UE context establishment response message to the CU of the network side device.
  • the context may include an air interface context and an F1 context.
  • the air interface context may refer to the RLC layer configuration, MAC layer configuration, physical layer configuration information, I-RNTI, C-RNTI, etc. of the terminal-side device. Among them, it may also include "configuration authorization for data transmission in the inactive state", PDCCH configuration information used to send physical layer feedback information, and RNTI used to scramble the PDCCH.
  • F1 context may refer to F1AP ID, transport layer address information for F1 data transmission, and so on.
  • the DRB data of the terminal side device is transmitted between the CU of the network side device and the DU of the network side device, which may also be referred to as F1 data transmission.
  • the context established by the DU of the network side device for the terminal side device may include one or more of the following:
  • Configured grant configured for the terminal-side device; the configuration grant can be used to indicate the uplink resources allocated to the terminal-side device.
  • the configuration grant can include, but is not limited to, the physical uplink shared channel , One or more of PUSCH frequency domain resources, period, starting position, and data demodulation reference information.
  • the configuration authorization may be configured for the terminal-side device in the inactive state, and the terminal-side device in the inactive state may use the configuration authorization to send one or more of uplink RRC signaling and uplink data.
  • the time-frequency resource of the configuration authorization configuration may be a time-frequency resource dedicated to a terminal-side device, that is, a time-frequency resource that is not shared with other terminal-side devices.
  • the DU of the network-side device may establish a mapping relationship between the configuration authorization and the context of the terminal-side device and the data transmission channel of the terminal-side device, respectively.
  • the time-frequency resource for configuring the authorization configuration may be a time-frequency resource shared by the terminal-side device and other terminal-side devices.
  • the CU of the network side device may send an inactive radio network temporary identity (I-RNTI) to the DU of the network side device.
  • I-RNTI radio network temporary identity
  • the DU of the network side device can establish a mapping relationship between the configuration authorization and the I-RNTI of the terminal side device.
  • the I-RNTI may be the unique identifier of the terminal-side device in the inactive state in a radio network notification area (RAN-based notification area, RNA).
  • RAN-based notification area a radio network notification area
  • the configuration information of the PDCCH can be used to send feedback information of uplink data or schedule PUSCH transmission, and schedule the physical downlink shared control channel (physical downlink control channel, PDSCH) transmission, etc.
  • the configuration information of the PDCCH includes, but is not limited to, the resource location information, period, and starting position of the PDCCH.
  • the PDCCH may schedule the transmission of physical layer signaling, such as Acknowledgement (ACK) or Negative Acknowledgement (NACK) signaling, uplink authorization for initial transmission, and uplink authorization for retransmission. At least one of them.
  • the PDCCH may also schedule the transmission of the PDSCH.
  • the information carried in the PDSCH includes but is not limited to one or more of downlink RRC signaling, downlink data, and timing advance commands.
  • the terminal-side device can perform uplink transmission and downlink transmission according to the scheduling of the PDCCH.
  • a temporary identifier used to scramble the PDCCH is a 32-bit radio network temporary identity (RNTI) used to scramble the PDCCH.
  • the temporary identifier may be a cell radio network temporary identity (C-RNTI) of the terminal-side device.
  • the I-RNTI configured for the terminal-side device.
  • terminal-side device may also include other information, which is not limited in the embodiment of the present application, and will not be described one by one here.
  • the UE context establishment response message sent by the CU of the network side device may include the context of the terminal side device.
  • FIG. 6 is a schematic flow chart of a context management method provided by an embodiment of this application. The method flow includes:
  • Step 601 When the CU of the network side device determines that the terminal side device enters an inactive state, a first message is generated.
  • the first message includes a second message
  • the second message is used to instruct the terminal side device to enter an inactive state and release the connection with the network side device.
  • the second message may be an RRC connection release message defined in the 3rd generation partnership project (3rd generation partnership project, 3GPP) standard.
  • the CU of the network side device determines that the terminal side device enters an inactive state, which is not limited in this embodiment of the present application. For details, reference may be made to the description in the prior art, which will not be repeated here.
  • the CU of the network side device may generate a second message, such as an RRC connection release message, and carry the second message in the first message and send it to the DU of the network side device.
  • the first message may be an F1AP message, for example, the first message may be a UE context release command message; the first message may also be an F1AP message other than the UE context release command message, for example, the first message may be The downlink RRC message transmission message defined in the 3GPP standard.
  • the first message may be used to instruct the DU of the network side device to reserve (or maintain) the context of the terminal side device in an inactive state.
  • the first message instructs the DU of the network-side device to reserve (or keep) the DU in the inactive state.
  • the context of the terminal-side device when the CU of the network side device determines that the terminal side device does not have the ability to transmit data in the inactive state according to the capability information of the terminal side device, it may not instruct the DU of the network side device to reserve (or keep) the terminal in the inactive state without using the first message The context of the side device.
  • the first message may have multiple implementation manners.
  • the first message may include first information, and the first information is used to indicate the DU reservation (or Keep) the context of the terminal-side device.
  • the first information may be the I-RNTI of the terminal-side device.
  • the DU of the network-side device determines that the I-RNTI is included in the first message, it may be determined to reserve (or keep) the I-RNTI.
  • the context of the terminal-side device may be the I-RNTI of the terminal-side device.
  • the first information may also be inactive state information of the terminal-side device, and the inactive state information is used to indicate that the terminal-side device is in the inactive state.
  • the DU of the network side device determines that the first message includes inactive state information, and determines that the terminal side device is in the inactive state according to the inactive state information, it may be determined to reserve (or maintain) the context of the terminal side device.
  • the first information may also be a dedicated reservation indication, such as a bit.
  • a dedicated reservation indication such as a bit.
  • the value of the bit is 1, it means that the context of the terminal-side device is reserved (or maintained).
  • the DU of the network-side device determines the When the value of the bit corresponding to the dedicated reservation indication is 1, the context of the terminal-side device is reserved (or maintained).
  • the CU of the network side device determines that the terminal side device has the capability of data transmission in the inactive state according to the capability information of the terminal side device, the first information is carried in the first message.
  • the first message may be a UE context release command message.
  • the first information is carried in the first message, so that the DU of the network side device no longer deletes the context of the terminal side device according to the first information.
  • the first information may be used to instruct the DU of the network side device to reserve (or keep) part of the content in the context of the terminal side device, for example, it may indicate to reserve (or keep) one or more of the following:
  • the CU of the network-side device may also instruct the DU of the network-side device to reserve which radio bearer identifiers or logical channel identifiers corresponding to the configuration authorization for data transmission.
  • the first message may also include the I-RNTI, and the DU of the network-side device can thus be established on the terminal-side device.
  • the mapping relationship between the I-RNTI of the device and the data transmission channel and context of the terminal-side device respectively.
  • PDCCH configuration information configured for the terminal side device.
  • the transmission layer information of the F1 data transmission channel of the terminal-side device may include, for example, the transmission layer address and the GTP-tunnel endpoint identifier (TEID).
  • TEID GTP-tunnel endpoint identifier
  • the first information may also be used to instruct the DU of the network side device to reserve (or maintain) the F1 context of the terminal side device, where the F1 context includes but is not limited to the data transmission channel of the terminal side device, and the data transmission channel is
  • the F1 interface dedicated transmission tunnel corresponding to the DRB data of the terminal side device is a GTP tunnel.
  • the DRB data of the terminal-side device is transmitted from the DU of the network-side device to the CU of the network-side device through the data transmission channel.
  • the data transmission channel may also be referred to as an F1 data transmission channel, etc. For the convenience of description, all are referred to as a data transmission channel below.
  • the CU of the network-side device may also instruct the DU of the network-side device to reserve (or keep) the data transmission channels of the F1 interface corresponding to which DRBs.
  • the second message may include part or all of the content in the context of the terminal-side device, for example, may include one or more of the following: configuration authorization configured for the terminal-side device; The configuration information of the configured PDCCH; the temporary identifier used to scramble the PDCCH; the I-RNTI configured for the terminal-side device; the configuration information of the RLC layer of the radio bearer configured for the terminal-side device; The configuration information of the MAC layer configured by the terminal-side device.
  • the terminal-side device can pass the public time Frequency resources to send uplink data.
  • the terminal-side device can select a 2-step random access channel (RACH) resource configuration from the broadcast message sent by the network-side device, or select a 4-step RACH resource configuration, and request the network to request scheduling uplink authorization Therefore, the uplink data transmission is performed according to the selected 2-step RACH resource configuration or 4-step RACH resource configuration.
  • RACH random access channel
  • the DU of the network-side device may adopt a common
  • the PDCCH configuration information is used to transmit the PDCCH, for example, the PDCCH configuration information such as the scheduled transmission of a broadcast message or a random access response is used to transmit the PDCCH.
  • a common RNTI can be used to add Scramble the PDCCH, or derive an RNTI used to scramble the PDCCH according to the RACH resource or configuration authorization.
  • the DU of the network side device can use the common RLC layer configuration information .
  • the DU of the network side device can use the common MAC layer configuration information .
  • the DU of the network-side device can request the CU of the network-side device to resume the establishment of the terminal-side device's
  • the data transmission channel of the F1 interface sends the uplink data of the terminal side device to the CU of the network side device through the restored data transmission channel.
  • the first message can be implicitly indicated.
  • the first message is an F1AP message other than the UE context release command message.
  • the first message may be a downlink RRC message transmission message.
  • the CU of the network side device determines that the terminal side device has the ability to transmit data in the inactive state according to the capability information of the terminal side device, it implicitly instructs the DU of the network side device to retain the air interface context of the terminal side device through the first message .
  • the DU of the network side device when the DU of the network side device receives the UE context release command message, it can delete all configuration information of the terminal side device, including information such as context.
  • the CU of the network side device transmits the F1AP message other than the UE context release command message, such as a downlink RRC message, to carry the second message.
  • the DU of the network side device receives messages such as downlink RRC message transfer messages, it will not delete the context and other information of the terminal side device, so that the air interface in the context of the inactive terminal side device is retained (or maintained) Context.
  • the DU of the network-side device may reserve (or keep) part or all of the content in the air interface context of the inactive terminal-side device, for example, reserve (or keep) one or more of the following: item:
  • the I-RNTI configured for the terminal-side device.
  • the DU of the network side device may also reserve (or maintain) the data transmission channel of the terminal side device.
  • the DU of the network side device can also reserve (or maintain) some or all of the data transmission channels of the F1 interface corresponding to the DRB of the terminal side device, and specifically reserve (or keep) the data transmission channels of the F1 interface corresponding to which DRBs , Can be determined according to the actual situation, this is no longer limited.
  • Step 602 The CU of the network side device sends the first message to the DU of the network side device.
  • Step 603 The DU of the network side device receives the first message from the CU of the network side device.
  • Step 604 The DU of the network side device reserves (or maintains) the context of the terminal side device that is in an inactive state.
  • the DU of the network-side device reserves (or maintains) the inactive state of the terminal-side device according to the first information. Air interface context.
  • the DU of the network-side device may also reserve (or maintain) the F1 context of the terminal-side device that is in an inactive state. For details, refer to the description in step 601, which will not be repeated here.
  • the DU of the network-side device determines that the first message is not a UE context release command message, it reserves (or maintains) the inactive state The air interface context of the terminal-side device.
  • the DU of the network-side device may also retain (or maintain) the F1 context of the terminal-side device that is in an inactive state.
  • the DU of the network side device specifically retains (or maintains) the context of the terminal side device that is in an inactive state, reference may be made to the description in the previous steps, which will not be repeated here.
  • the DU of the network-side device may establish a configuration authorization to communicate with the context of the terminal-side device and the terminal-side device respectively.
  • the mapping relationship of the data transmission channel of the device may be established.
  • the first message may include that the terminal-side device With the configured I-RNTI, the DU of the network side device can establish a mapping relationship between the I-RNTI of the terminal side device and the data transmission channel and context of the terminal side device.
  • step 605 In the process shown in FIG. 6, only the main steps are described, and there may be other steps, such as step 605, and other steps will not be repeated here.
  • Step 605 The DU of the network side device sends a third message to the CU of the network side device.
  • the third message may be a response message of the first message.
  • the third message may be a UE context release completion message defined by the 3GPP standard, and other situations will not be described in detail.
  • the DU of the network side device when the DU of the network side device retains (or maintains) the context of the inactive terminal side device, it can receive uplink data from the inactive terminal side device according to the context and other information, which can reduce the number of terminals.
  • the overhead and power consumption for sending signaling by the side device when the DU of the network side device retains (or maintains) the context of the inactive terminal side device, it can receive uplink data from the inactive terminal side device according to the context and other information, which can reduce the number of terminals.
  • the overhead and power consumption for sending signaling by the side device when the DU of the network side device retains (or maintains) the context of the inactive terminal side device, it can receive uplink data from the inactive terminal side device according to the context and other information, which can reduce the number of terminals.
  • the overhead and power consumption for sending signaling by the side device when the DU of the network side device retains (or maintains) the context of the inactive terminal side device, it can receive uplink data from
  • the DU of the network side device reserves (or maintains) the data transmission channel of the inactive terminal side device, it can immediately transmit the uplink data of the inactive terminal side device to the CU of the network side device, reducing data transmission Time delay. At the same time, the time delay for the terminal-side device to monitor the PDCCH in response to the uplink data can be reduced, thereby reducing the power consumption of the terminal-side device.
  • the uplink data of the terminal side device can be processed according to the flow shown in FIG. 7.
  • the CU of the network side device sends the configuration authorization of the DU configuration of the network side device to the terminal side device as an example for description.
  • Step 701 The terminal-side device in the inactive state sends an RRC connection recovery request message and the uplink data carried on the DRB to the DU of the network-side device.
  • the specific content of the uplink data carried on the DRB is not limited in the embodiment of the present application.
  • the terminal-side device may send at least one of the RRC connection recovery request message and the uplink data carried on the DRB through the configuration authorization.
  • the terminal-side device may send the RRC connection recovery request message and the uplink data carried on the DRB separately.
  • the configuration authorization of the same frequency domain resource sends the RRC connection recovery request message and the uplink data carried on the DRB at different times; or the two configuration authorizations obtained in the 2-step random access process send the RRC connection recovery request message separately And the uplink data carried on the DRB.
  • the scheduling authorization obtained in the 4-step random access process is authorized to send the RRC connection recovery request message, and the obtained configuration authorization is used to send the uplink data carried on the DRB.
  • Step 702 When the DU of the network side device receives the RRC connection recovery request message from the terminal side device and the uplink data carried on the DRB, the MAC layer entity in the DU of the network side device can obtain the RRC connection recovery request message and the DRB bearer Upstream data.
  • the DU of the network side device may send an initial uplink RRC message transmission message to the CU of the network side device, which carries the "RRC connection recovery request" message.
  • Step 703 The DU of the network side device transmits the uplink data carried on the DRB to the CU of the network side device through the data transmission channel corresponding to the uplink data carried on the DRB.
  • the DU of the network-side device can determine the data transmission channel mapped to the configuration authorization, so as to transfer the uplink carried on the DRB The data is transmitted to the CU of the network side device through the data transmission channel mapped with the configuration authorization.
  • the RRC connection recovery request message may include the I-RNTI of the terminal-side device, and the DU of the network-side device can be determined The data transmission channel mapped with the I-RNTI, so that the uplink data carried on the DRB is transmitted to the CU of the network side device through the data transmission channel mapped with the I-RNTI.
  • step 704 may also be included.
  • Step 704 The CU of the network side device sends the downlink data carried on the DRB to the DU of the network side device.
  • Step 705 The CU of the network side device sends a downlink RRC message transmission message to the DU of the network side device.
  • Step 706 The DU of the network side device sends an RRC connection release message to the terminal side device.
  • the RRC connection release message and the downlink data carried on the DRB can be sent to the DU of the network side device through the same transport block, and the DU of the network side device sends the RRC connection release message and the downlink data carried on the DRB to the terminal side device at the same time.
  • the RRC connection release message and the downlink data carried on the DRB can also be sent to the DU of the network side device at different times, and the DU of the network side device is then sent to the terminal side device respectively.
  • Fig. 7 is only an example, in the actual process, there may be other steps, which will not be repeated here.
  • the terminal side device may determine the RACH resource configuration through a broadcast message when sending uplink data. Specifically, in the first implementation manner, the terminal-side device may select a 2-step random access channel (RACH) resource configuration from the broadcast message sent by the network-side device.
  • RACH 2-step random access channel
  • the 2-step RACH resource configuration includes RACH time-frequency resources, preamble identification and random access configuration authorization; the terminal side device can send uplink data to the DU of the network side device in the random access configuration authorization, and the terminal The side device sends the preamble corresponding to the preamble identifier on the RACH resource; among them, the preamble and the random access configuration authorization are in a one-to-one or many-to-one relationship. That is, after the terminal-side device sends the preamble, it can send uplink data on the random access configuration authorization corresponding to the preamble.
  • the terminal-side device can select a 4-step RACH resource configuration from the broadcast message sent by the network-side device.
  • the terminal-side device can send a preamble to the DU of the network-side device according to the 4-step RACH resource configuration, and receive the random access response of the DU of the network-side device, where the random access response includes PUSCH resources and timing advance information, etc.
  • PUSCH resources are The resource for sending message 3 by the terminal-side device.
  • the terminal-side device can send uplink data through the resource of message 3. It should be noted that the message 3 here refers to the message 3 in the random access process.
  • step 702 For the process after the terminal-side device sends the uplink data, reference may be made to the description in step 702 to step 706, which will not be repeated here.
  • the first message is used to instruct the DU of the network side device to reserve (or maintain) the context of the inactive terminal side device.
  • a method is also provided, which may not The first message is used to instruct the DU of the network side device to reserve (or maintain) the context of the terminal side device in an inactive state. For details, refer to FIG. 8.
  • Step 801 The DU of the network side device receives the capability information of the CU of the network side device.
  • the capability information is used to indicate the capability of the terminal-side device.
  • Step 802 When the DU of the network side device determines according to the capability information that the terminal side device is in an inactive state and has the ability to transmit uplink information in a configuration authorization or a scheduling authorization, reserve (or maintain) the inactive state The context of the terminal-side device.
  • the DU of the network-side device may reserve (or keep) a part of the context of the terminal-side device, for example, the DU of the network-side device may reserve (or keep) the air interface context in the context of the terminal-side device , Or part of the content in the air interface context; for another example, the DU of the network-side device may also retain (or keep) the F1 context in the context of the terminal-side device, or part of the content in the F1 context.
  • the DU of the network-side device may reserve (or keep) a part of the context of the terminal-side device, for example, the DU of the network-side device may reserve (or keep) the air interface context in the context of the terminal-side device , Or part of the content in the air interface context; for another example, the DU of the network-side device may also retain (or keep) the F1 context in the context of the terminal-side device, or part of the content in the F1 context.
  • the DU of the network-side device can also execute other content. For details, refer to the part of the DU of the network-side device in the processes of FIG. 5, FIG. 6 and FIG. 7, which will not be repeated here.
  • the DU of the network side device reserves (or maintains) the air interface context and F1 context of the inactive terminal side device, thereby reducing the data transmission delay of the inactive terminal side device.
  • the DU of the network side device may not retain (or maintain) the air interface context and F1 context of the inactive terminal side device.
  • the CU of the network side device maintains the air interface configuration such as the RLC layer, and the network
  • the DU of the side device sends data to the CU of the network side device through the public channel, and the CU of the network side device performs RLC processing of the data, which will be described in detail below.
  • the public channel may refer to an F1 data transmission channel shared by multiple terminal side devices under the UD of a network side device.
  • Step 1 The DU of the network side device receives the CU message 1 from the network side device through the F1 interface.
  • message 1 may be "UE context release command message” or “downlink RRC message transmission message” or “UE context modification request message”, etc.
  • the message 1 may carry configuration request information for requesting at least one of the RLC layer configuration and the MAC layer configuration corresponding to the data radio bearer of the terminal side device.
  • the RLC layer configuration includes multiple radio bearer identifiers.
  • the RLC layer configuration may refer to the configuration information of the RLC layer;
  • the MAC layer configuration may refer to the configuration information of the MAC layer.
  • the configuration request information may also indicate which radio bearer identity(s) in the RLC layer configuration is requested.
  • Message 1 may also carry "RRC connection release message", and step two is also included in this case.
  • step 2 The DU of the network side device sends an RRC connection release message to the terminal side device.
  • Step 3 The DU of the network side device sends a message 2 to the CU of the network side device.
  • message 2 may be "UE context release complete message”.
  • the message 2 may include at least one of the RLC layer configuration and the MAC layer configuration corresponding to the data radio bearer of the terminal-side device.
  • the message 2 at least includes the RLC layer configuration corresponding to the data radio bearer of the terminal side device.
  • Step 4 When the CU of the network side device receives the message 2, it can set the variable in the RLC entity to the initial value.
  • the CU of the network side device can obtain the RLC layer configuration on the DU of the network side device.
  • the following process can be used to send the uplink data of the terminal side device to the CU of the network side device.
  • Step 901 The terminal-side device in the inactive state sends an RRC connection recovery request message and the uplink data carried on the DRB to the DU of the network-side device.
  • Step 902 When the DU of the network side device receives the RRC connection recovery request message from the terminal side device and the uplink data carried on the DRB, the DU of the network side device transmits the uplink data carried on the DRB to the network side device through the F1 message. CU.
  • the F1 message may be an initial uplink RRC message transmission message, etc.
  • the DU of the network-side device may also transmit the uplink data carried on the DRB to the CU of the network-side device through a public channel.
  • the uplink data carried on the DRB in the F1 message can include the logical channel identifier and the MAC service data unit (SDU), and the RLC protocol data unit (Protocol Data Unit) can be used. , PDU) format to send.
  • SDU logical channel identifier
  • RLC protocol data unit Protocol Data Unit
  • the uplink data carried on the DRB in the F1 message can be sent in the MAC PDU format.
  • the DU of the network side device may carry the content in the RRC recovery request message in the "initial uplink RRC message transmission message.”
  • the RRC recovery request message and the uplink data carried on the DRB may not be sent to the CU of the network side device in the same F1 message.
  • Step 903 After completing the data processing, the CU of the network side device sends a downlink RRC message transmission message to the DU of the network side device.
  • the processing of the CU of the network-side device is as follows:
  • the RLC configuration is determined according to the logical channel identifier, and the RLC PDU is processed.
  • the CU of the network side device If the CU of the network side device supports MAC PDU, the CU of the network side device first performs MAC processing to obtain RLC PDU, and then processes RLC PDU.
  • the downlink RRC message transmission message may include an air interface message.
  • the air interface message may be other RRC messages such as an RRC connection release message, an RRC connection recovery message, or an RRC connection rejection message.
  • the downlink data may be carried in the downlink RRC message transmission message.
  • the CU of the network side device When the CU of the network side device receives the content in the RRC recovery request message, it can set the variable in the RLC entity to an initial value.
  • Step 904 The DU of the network side device sends an RRC connection release message to the terminal side device.
  • the methods provided in the embodiments of the present application are respectively introduced from the perspective of interaction between various devices.
  • the CU of the network-side device or the DU of the network-side device may include a hardware structure and/or a software module, and a hardware structure, a software module, or a hardware structure plus a software module may be used.
  • a hardware structure, a software module, or a hardware structure plus a software module may be used.
  • the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional modules in the various embodiments of the present application may be integrated in one processor, or may exist alone physically, or two or more modules may be integrated in one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • an embodiment of the present application further provides an apparatus 1000 for implementing the function of the CU of the network side device or the DU of the network side device in the foregoing method.
  • the device may be a software module or a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 1000 may include: a processing unit 1001 and a communication unit 1002.
  • the communication unit may also be referred to as a transceiver unit, and may include a sending unit and/or a receiving unit, which are respectively used to perform the sending and receiving of the CU of the network side device or the DU of the network side device in the above method embodiment. step.
  • the communication unit 1002 is configured to receive a first message from the CU of the network-side device; the first message includes a second message, and the second message is used to instruct the terminal-side device to enter an inactive state and release and The connection of the network side device;
  • the processing unit 1001 is configured to retain the context of the terminal-side device in an inactive state.
  • the first message includes first information, and the first information is used to instruct the apparatus to reserve the air interface context in the context of the terminal-side device;
  • the processing unit 1001 is specifically configured to:
  • the first information is further used to instruct the apparatus to reserve the F1 context in the context of the terminal-side device;
  • the F1 context includes a data transmission channel of the terminal-side device, and the data transmission channel is a dedicated transmission tunnel for the F1 interface corresponding to the data radio bearer DRB data of the terminal-side device.
  • the first message is an interface message between the apparatus and the CU of the network side device, but is not the user equipment UE context release command message in the interface message.
  • the context includes one or more of the following:
  • An inactive wireless network temporary identifier I-RNTI configured for the terminal-side device
  • the processing unit 1001 is configured to generate a first message when determining that the terminal-side device enters an inactive state; the first message includes a second message, and the second message is used to instruct the terminal-side device to enter the inactive state. ) State, and release the connection with the network side device;
  • the communication unit 1002 is configured to send the first message to the distributed unit DU of the network side device, where the first message is used to instruct the DU of the network side device to reserve the terminal side device in an inactive state
  • the context is configured to send the first message to the distributed unit DU of the network side device, where the first message is used to instruct the DU of the network side device to reserve the terminal side device in an inactive state
  • the first message includes first information, and the first information is used to instruct the DU of the network side device to reserve the air interface context in the context of the terminal side device.
  • the first information is further used to instruct the DU of the network side device to reserve the F1 context in the context of the terminal side device;
  • the F1 context includes a data transmission channel of the terminal-side device, and the data transmission channel is a dedicated transmission tunnel for the F1 interface corresponding to the data radio bearer DRB data of the terminal-side device.
  • the first message is an interface message between the device and the DU of the network side device, but is not a context release command message in the interface message.
  • the context includes one or more of the following:
  • An inactive wireless network temporary identifier I-RNTI configured for the terminal-side device
  • the communication unit 1002 is configured to receive capability information of the CU from the network-side device; the capability information is used to indicate the capability of the terminal-side device;
  • the processing unit 1001 is configured to retain the context of the terminal-side device in the inactive state when it is determined according to the capability information that the terminal-side device is in an inactive state and has the ability to transmit uplink information in the configuration authorization.
  • the processing unit is specifically configured to: reserve the air interface context in the context of the terminal-side device.
  • the processing unit is specifically configured to: reserve the F1 context in the context of the terminal-side device;
  • the F1 context includes a data transmission channel of the terminal-side device, and the data transmission channel is a dedicated transmission tunnel for the F1 interface corresponding to the data radio bearer DRB data of the terminal-side device.
  • the context includes one or more of the following:
  • PDCCH configuration information configured for the terminal-side device
  • An inactive wireless network temporary identifier I-RNTI configured for the terminal-side device
  • FIG. 11 shows an apparatus 1100 provided by an embodiment of the application, and the apparatus shown in FIG. 11 may be a hardware circuit implementation of the apparatus shown in FIG. 10. For ease of description, FIG. 11 only shows the main components of the communication device.
  • the apparatus 1100 shown in FIG. 11 includes at least one processor 1101, and the apparatus 1100 may further include at least one memory 1103 for storing program instructions and/or data.
  • the memory 1103 is coupled with the processor 1101.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1101 may cooperate with the memory 1103 to operate.
  • the processor 1101 may execute program instructions stored in the memory 1103. At least one of the at least one memory may be included in the processor.
  • the steps of the above method can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processing circuit (digital signal processor, DSP), a dedicated integrated circuit (application specific integrated circuit, ASIC), a field programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processing circuit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programming logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the apparatus 1100 may further include a communication interface 1102 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 1100 can communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • the transceiver when the communication interface is a transceiver, the transceiver may include an independent receiver and an independent transmitter; it may also be a transceiver with integrated transceiver functions, or an interface circuit.
  • the device 1100 may further include a communication line 1104.
  • the communication interface 1102, the processor 1101, and the memory 1103 may be connected to each other through a communication line 1104;
  • the communication line 1104 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (extended industry standard architecture) , Referred to as EISA) bus and so on.
  • the communication line 1104 can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used to represent in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • the communication interface 1102 is configured to receive a first message from the CU of the network-side device; the first message includes a second message, and the second message is used to instruct the terminal-side device to enter an inactive state and release the The connection of the network side device;
  • the processor 1101 is configured to retain the context of the terminal-side device in an inactive state.
  • the first message includes first information, and the first information is used to instruct the apparatus to reserve the air interface context in the context of the terminal-side device;
  • the processor 1101 is specifically configured to:
  • the first information is further used to instruct the apparatus to reserve the F1 context in the context of the terminal-side device;
  • the F1 context includes a data transmission channel of the terminal-side device, and the data transmission channel is a dedicated transmission tunnel for the F1 interface corresponding to the data radio bearer DRB data of the terminal-side device.
  • the first message is an interface message between the apparatus and the CU of the network side device, but is not the user equipment UE context release command message in the interface message.
  • the context includes one or more of the following:
  • An inactive wireless network temporary identifier I-RNTI configured for the terminal-side device
  • the processor 1101 is configured to generate a first message when determining that the terminal-side device enters an inactive state; the first message includes a second message, and the second message is used to instruct the terminal-side device to enter the inactive state. ) State, and release the connection with the network side device;
  • the communication interface 1102 is configured to send the first message to the distributed unit DU of the network-side device, where the first message is used to instruct the DU of the network-side device to reserve the terminal-side device in an inactive state
  • the context is configured to send the first message to the distributed unit DU of the network-side device, where the first message is used to instruct the DU of the network-side device to reserve the terminal-side device in an inactive state
  • the first message includes first information, and the first information is used to instruct the DU of the network side device to reserve the air interface context in the context of the terminal side device.
  • the first information is further used to instruct the DU of the network side device to reserve the F1 context in the context of the terminal side device;
  • the F1 context includes a data transmission channel of the terminal-side device, and the data transmission channel is a dedicated transmission tunnel for the F1 interface corresponding to the data radio bearer DRB data of the terminal-side device.
  • the first message is an interface message between the device and the DU of the network side device, but is not a context release command message in the interface message.
  • the context includes one or more of the following:
  • An inactive wireless network temporary identifier I-RNTI configured for the terminal-side device
  • the communication interface 1102 is used to receive the capability information of the CU from the network side device; the capability information is used to indicate the capability of the terminal side device;
  • the processor 1101 is configured to reserve the context of the terminal-side device in the inactive state when it is determined according to the capability information that the terminal-side device is in an inactive state and has the ability to transmit uplink information in a configuration grant.
  • the processor 1101 is specifically configured to: reserve the air interface context in the context of the terminal-side device.
  • the processor 1101 is specifically configured to: reserve the F1 context in the context of the terminal-side device;
  • the F1 context includes a data transmission channel of the terminal-side device, and the data transmission channel is a dedicated transmission tunnel for the F1 interface corresponding to the data radio bearer DRB data of the terminal-side device.
  • the context includes one or more of the following:
  • PDCCH configuration information configured for the terminal-side device
  • An inactive wireless network temporary identifier I-RNTI configured for the terminal-side device
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上下文管理方法及装置,其中方法包括:网络侧设备的分布式单元DU接收来自所述网络侧设备的集中式单元CU的第一消息时,可以保留处于不活跃态的所述终端侧设备的上下文。其中所述第一消息包括第二消息,所述第二消息用于指示终端侧设备进入不活跃(inactive)态,并释放与所述网络侧设备的连接。通过本申请提供的方法,网络侧设备的DU保留(或保持)处于不活跃态的终端侧设备的上下文时,可以根据上下文等信息接收到来自不活跃态的终端侧设备的上行数据,可以降低终端侧设备发送信令的开销和耗电量。

Description

一种上下文管理方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种上下文管理方法及装置。
背景技术
目前的通信系统中,例如长期演进(long term evolution,LTE)系统或者新无线(new radio,NR)系统,终端侧设备接入网络侧设备之后,网络侧设备可以为终端侧设备建立相应的上下文(context)。终端侧设备从无线资源控制(radio resource control,RRC)连接态转换到RRC空闲态时,网络侧设备会释放终端侧设备的上下文。此外,在新无线(New Radio,NR)系统中,为终端侧设备的RRC态引入了不活跃(inactive)态(也可以称为第三态)。这种不活动状态下终端侧设备可以保持核心网连接,但不进行小区切换、上行定时更新、无线链路监控等操作。当终端侧设备从RRC连接态转换为inactive态时,终端侧设备保存部分上下文。当终端侧设备从inactive态转换到RRC连接态的过程中,网络侧设备通知终端侧设备恢复保存的上下文。
在NR和LTE系统中,网络侧设备可以由集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)构成,其中,网络侧设备的部分功能部署在一个CU,剩余功能部署在DU,多个DU可以共用一个CU,可以节省成本,并易于网络扩展。对于CU-DU架构的网络侧设备,由网络侧设备的CU负责管理终端侧设备的RRC状态。因此,当终端侧设备的RRC状态转变时,网络侧设备的CU需要通知网络侧设备的DU进行联动的上下文处理。具体的,终端侧设备从RRC连接态转换到inactive态的过程中,网络侧设备的CU通知网络侧设备的DU释放终端侧设备的上下文,其中包括所有的专用F1传输资源和空口的配置信息等。
然而,如果网络侧设备的DU释放终端侧设备的上下文,当inactive态的终端侧设备向网络侧设备的DU发送上行数据时,网络侧设备的DU不能立即将数据发送给网络侧设备的CU。网络侧设备的DU必须等上下文建立过程完成后,才能发送上行数据到网络侧设备的CU,这就导致上行数据传输时延变长,同时也增加了终端侧设备的耗电量。
发明内容
本申请实施方式的目的在于提供一种上下文管理方法及装置,用以解决如何降低inactive态的终端侧设备的上行数据传输时延的问题。
第一方面,本申请提供一种上下文管理方法,包括:网络侧设备的分布式单元DU接收来自所述网络侧设备的集中式单元CU的第一消息;所述第一消息包括第二消息,所述第二消息用于指示终端侧设备进入不活跃(inactive)态,并释放与所述网络侧设备的连接;所述网络侧设备的DU保留处于不活跃态的所述终端侧设备的上下文。
通过上面的方法,网络侧设备的DU保留处于不活跃态的终端侧设备的上下文时,可以根据上下文等信息接收到来自不活跃态的终端侧设备的上行数据,可以降低终端侧设备发送信令的开销和耗电量。
在一种可能的实现方式中,所述第一消息包括第一信息,所述第一信息用于指示所述 网络侧设备的DU保留所述终端侧设备的上下文中的空口上下文;所述网络侧设备的DU根据所述第一信息保留所述终端侧设备的空口上下文。
在一种可能的实现方式中,所述第一信息还用于指示所述网络侧设备的DU保留所述终端侧设备的上下文中的F1上下文;所述F1上下文包括所述终端侧设备的数据传输通道,所述数据传输通道为所述终端侧设备的数据无线承载DRB数据对应的F1接口专用传输隧道。
进一步的,网络侧设备的DU保留处于不活跃态的终端侧设备的数据传输通道时,可以立即传输不活跃态的终端侧设备的上行数据给网络侧设备的CU,降低数据传输时延。同时也可以降低终端侧设备监听响应上行数据的PDCCH的时延,进而降低终端侧设备的耗电。
在一种可能的实现方式中,所述第一消息是所述网络侧设备的CU和所述网络侧设备的DU间的接口消息,但不是接口消息中的用户设备UE上下文释放命令消息。
在一种可能的实现方式中,所述上下文包括以下一项或多项:
为所述终端侧设备配置的配置授权;
为所述终端侧设备配置的PDCCH的配置信息;
用于加扰所述PDCCH的临时标识;
为所述终端侧设备配置的不活跃态无线网络临时标识I-RNTI;
为所述终端侧设备配置的无线承载的RLC层的配置信息。
第二方面,本申请还提供一种通信装置,该通信装置具有实现上述第一方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或单元。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中网络侧设备的DU的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与网络侧设备的CU等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能单元,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第一方面提供的方法中的描述,此处不做赘述。
第三方面,本申请提供一种上下文管理方法,包括:
网络侧设备的集中式单元CU确定终端侧设备进入不活跃(inactive)态时,生成第一消息;所述第一消息包括第二消息,所述第二消息用于指示终端侧设备进入不活跃(inactive)态,并释放与所述网络侧设备的连接;
所述网络侧设备的CU向所述网络侧设备的分布式单元DU发送所述第一消息,所述第一消息用于指示所述网络侧设备的DU保留处于不活跃态的所述终端侧设备的上下文。
在一种可能的实现方式中,所述第一消息包括第一信息,所述第一信息用于指示所述网络侧设备的DU保留所述终端侧设备的空口上下文。
在一种可能的实现方式中,所述第一信息还用于指示所述网络侧设备的DU保留所述终端侧设备的F1上下文;所述F1上下文包括所述终端侧设备的数据传输通道,所述数据传输通道为所述终端侧设备的数据无线承载DRB数据对应的F1接口专用传输隧道。
在一种可能的实现方式中,所述第一消息是F1应用层F1AP消息,但不是F1AP消息中的上下文释放命令消息。
在一种可能的实现方式中,所述上下文包括以下一项或多项:
为所述终端侧设备配置的配置授权;
为所述终端侧设备配置的PDCCH的配置信息;
用于加扰所述PDCCH的临时标识;
为所述终端侧设备配置的不活跃态无线网络临时标识I-RNTI;
为所述终端侧设备配置的无线承载的RLC层的配置信息;
为所述终端侧设备配置的MAC层的配置信息。
第四方面,本申请还提供一种通信装置,该通信装置具有实现上述第三方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或单元。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中网络侧设备的CU的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与网络侧设备的DU等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能单元,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第三方面提供的方法中的描述,此处不做赘述。
第五方面,本申请提供一种上下文管理方法,包括:网络侧设备的分布式单元DU接收来自所述网络侧设备的集中式单元CU的能力信息;所述能力信息用于指示终端侧设备的能力;所述网络侧设备的DU根据所述能力信息确定所述终端侧设备处于不活跃态时,具有在配置授权中传输上行信息的能力时,保留处于不活跃态的所述终端侧设备的上下文。
通过上面的方法,网络侧设备的DU保留处于不活跃态的终端侧设备的上下文时,可以根据上下文等信息接收到来自不活跃态的终端侧设备的上行数据,可以降低终端侧设备发送信令的开销和耗电量。
在一种可能的实现方式中,所述网络侧设备的DU保留所述终端侧设备的上下文中的空口上下文。
在一种可能的实现方式中,所述网络侧设备的DU保留所述终端侧设备的上下文中的F1上下文;所述F1上下文包括所述终端侧设备的数据传输通道,所述数据传输通道为所述终端侧设备的数据无线承载DRB数据对应的F1接口专用传输隧道。
进一步的,网络侧设备的DU保留处于不活跃态的终端侧设备的数据传输通道时,可以立即传输不活跃态的终端侧设备的上行数据给网络侧设备的CU,降低数据传输时延。 同时也可以降低终端侧设备监听响应上行数据的PDCCH的时延,进而降低终端侧设备的耗电。
在一种可能的实现方式中,所述上下文包括以下一项或多项:
为所述终端侧设备配置的配置授权;
为所述终端侧设备配置的PDCCH的配置信息;
用于加扰所述PDCCH的临时标识;
为所述终端侧设备配置的不活跃态无线网络临时标识I-RNTI;
为所述终端侧设备配置的无线承载的RLC层的配置信息。
第六方面,本申请还提供一种通信装置,该通信装置具有实现上述第五方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或单元。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中网络侧设备的DU的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与网络侧设备的CU等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能单元,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第五方面提供的方法中的描述,此处不做赘述。
第七方面,本申请提供一种通信装置,所述通信装置包括处理器,当所述处理器执行存储器中的计算机程序或指令时,如第一方面或第三方面或第五方面所述的方法被执行。
第八方面,本申请提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机程序或指令;所述处理器用于执行所述存储器所存储的计算机程序或指令,以使所述通信装置执行如第一方面或第三方面或第五方面中所示的相应的方法。
第九方面,本申请提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储计算机程序或指令;所述处理器,用于从所述存储器调用所述计算机程序或指令执行如第一方面或第三方面或第五方面所述的方法。
第十方面,本申请提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第一方面或第三方面或第五方面所示的相应的方法。
第十一方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当计算机读取并执行所述计算机程序或指令时,使得第一方面或第三方面或第五方面所述的方法被实现。
第十二方面,本申请提供一种包括指令的计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得第一方面或第三方面或第五方面所述的方法被实现。
第十三方面,本申请提供一种芯片,包括处理器,所述处理器与存储器耦合,用于执 行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,使得第一方面或第三方面或第五方面所述的方法被实现。
第十四方面,本申请提供一种系统,包括上述第二方面提供的通信装置、上述第四方面提供的通信装置。
附图说明
图1为适用于本申请实施例的一种网络侧设备的结构示意图;
图2为本申请实施例提供的一种协议栈结构示意图;
图3为本申请实施例提供的另一种协议栈结构示意图;
图4为适用于本申请实施例的另一种网络侧设备的结构示意图;
图5为本申请实施例提供的一种上下文配置流程示意图;
图6为本申请实施例提供的一种上下文管理方法流程示意图;
图7为本申请实施例提供的一种数据传输流程示意图;
图8为本申请实施例提供的一种上下文管理方法流程示意图;
图9为本申请实施例提供的一种数据传输流程示意图;
图10为本申请实施例提供的一种通信装置结构示意图;
图11为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第五代移动通信(the 5th Generation mobile communication technology,5G)系统(例如新无线(New Radio,NR))、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)等,在此不做限制。
本申请实施例中,终端侧设备,可以为具有无线收发功能的设备或可设置于任一设备中的芯片,也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端侧设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
网络侧设备,可以是LTE系统中的演进型基站(evolutional node B,eNB),可以是NR系统中的下一代基站(next Generation node B,gNB)等。
如图1所示,本申请实施例中,网络侧设备可以由集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)构成。其中,网络侧设备的部分功能部署在一个CU,剩余功能部署在DU,多个DU可以共用一个CU。对于CU-DU架构的网络侧设备,由网络侧设备的CU负责管理终端侧设备的RRC状态。
本申请实施例中,当网络侧设备为支持NR系统的设备时,网络侧设备的CU和网络侧设备的DU之间按照协议栈切分可以如图2所示。图2中,无线资源控制(Radio Resource Control,RRC)层、业务数据适配协议(Service Data Adaptation Protocol,SDAP)层以及分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层部署在网络侧设备的CU;无线链路控制(Radio Link Control,RLC)层、介质访问控制(Media Access Control,MAC)层以及物理(physical,PHY)层部署在网络侧设备的DU。
当网络侧设备为支持LTE系统的设备时,网络侧设备的CU和网络侧设备的DU之间按照协议栈切分可以如图3所示。图3中,RRC层以及PDCP层部署在网络侧设备的CU;RLC层、MAC层以及物理层部署在网络侧设备的DU。
上面描述的协议层的划分仅仅是一种举例,还可以在其它协议层划分,在此不再逐一举例说明。
进一步的,如图4所示,相对于图1所示的架构,网络侧设备的CU还有可能是控制面(control plane,CP)和用户面(user plane,UP)分离的形态,即CU可分成2个逻辑网元:CU-CP和CU-UP。目前,LTE系统中,CU-DU之间的接口命名为W1接口,NR系统中CU-DU之间的接口命名为F1接口,这2个接口的功能类似。图4中以网络侧设备为NR系统中的gNB为例来说明。F1接口上包含控制面(CP)和用户面(UP)。控制面的传输层协议为流控传输协议(stream control transport protocol,SCTP),传输的消息为F1应用层协议(F1application protocol,F1AP)消息。用户面的传输层协议为通用分组无线服务(General Packet Radio Service,GPRS)隧道协议用户面(GPRS Tunnelling Protocol User Plane,GTP-U)。
CU-CP和CU-UP之间的接口命名为E1,用于传输CU-CP和CU-UP间的信令。CU-CP和DU间的F1-C接口用于传输CU-CP和DU间的F1信令、终端侧设备的RRC信令。CU-CP和DU间的F1-U接口用于传输数据无线承载(data radio bearer,DRB)的数据。DU空口接收DRB上承载的上行数据后,经过DU的物理层、MAC层、RLC层处理,通过F1-U接口将DRB数据发送给CU。DU空口接收到终端侧设备发送的RRC消息后,经过DU的物理层、MAC层、RLC层处理,通过F1-CP接口,将RRC消息发送给CU。
在以上网络架构中,CU产生的信令可以通过DU发送给终端侧设备,DU可以不对信令进行解析而透传给终端;相应的,终端侧设备产生的信令可以通过DU发送给CU,DU可以不对信令进行解析而透传给CU。
如前所述,当网络侧设备为CU-DU架构时,CU具有RRC层,负责管理终端侧设备的RRC状态。当终端侧设备的RRC状态转变不活跃(inactive)态时,本申请实施例提供一种方法,用于对终端侧设备的上下文进行处理,下面将详细描述。
需要说明的是,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中,主要涉及网络侧设备的DU如何确定是否保留终端侧设备的上下文。在网络侧设备的DU确定是否保留终端侧设备的上下文之前,还可以包括终端侧设备的上下文建立的流程,具体可以参考图5所示。
步骤501:终端侧设备向网络侧设备的CU发送能力信息。
所述能力信息用于指示终端侧设备的能力。进一步,可选的,所述能力信息用于指示终端侧设备具有inactive态数据传输的能力,该能力表示终端侧设备处于不活跃态时,具有在配置授权或调度授权中传输上行信息的能力。其中,上行信息包括但不限于上行信令以及上行数据。上行信令可以为上行RRC信令等,上行数据可以为上行业务数据,例如视频数据、音频数据等。
需要说明的是,调度授权是指由终端侧设备发送资源请求,网络侧设备根据资源请求为终端侧设备分配的资源,例如资源请求可以为随机接入过程中的前导码(preamble),还可以为上行调度请求等。配置授权,是指网络侧设备预先配置的资源,无需终端侧设备发送资源请求,具有一次分配多次使用的特点。
需要说明的是,终端侧设备的能力有多种,能力信息还可以指示终端侧设备的其它能力,本申请实施例对此并不限定。
步骤502:网络侧设备的CU向网络侧设备的DU发送UE上下文建立请求消息。
所述UE上下文建立请求消息可以用于请求为终端侧设备建立上下文(context)。
可选的,UE上下文建立请求消息中可以包括所述能力信息。
步骤503:网络侧设备的DU为终端侧设备建立上下文,并向网络侧设备的CU发送UE上下文建立响应消息。
需要说明的是,本申请实施例中,上下文可以包括空口上下文和F1上下文。
其中,空口上下文可以是指终端侧设备的RLC层配置、MAC层配置、物理层的配置信息、I-RNTI、C-RNTI等。其中,还可包括“inactive态的数据传输的配置授权”、用于发送物理层反馈信息的PDCCH配置信息、用于加扰PDCCH的RNTI。F1上下文可以是指F1AP ID、F1数据传输的传输层地址信息等。网络侧设备的CU与网络侧设备的DU之间传输终端侧设备的DRB数据,也可以称为F1数据传输。
本申请实施例中,网络侧设备的DU为终端侧设备建立的上下文可以包括以下一项或多项:
1、为所述终端侧设备配置的配置授权(configured grant);配置授权可以用于指示为终端侧设备分配的上行资源,其中,配置授权可以包括但不限于物理上行共享信道(physical uplink shared channel,PUSCH频域资源、周期、起始位置、数据解调参考信息中的一个或多个。
可选的,所述配置授权可以是为inactive态的终端侧设备配置的,inactive态的终端侧设备可以使用所述配置授权发送上行RRC信令、上行数据中的一项或多项。
可选的,所述配置授权配置的时频资源可以是终端侧设备专用的时频资源,即不和其他终端侧设备共享的时频资源。在该情况下,网络侧设备的DU可以建立配置授权分别与终端侧设备的上下文和终端侧设备的数据传输通道的映射关系。
可选的,所述配置授权配置的时频资源可以是终端侧设备与其他终端侧设备共享的时频资源。在该情况下,当网络侧设备的CU确定终端侧设备进入不活跃态时,可以向网络侧设备的DU发送不活跃态无线网络临时标识(inactive radio network temporary identity,I-RNTI)。网络侧设备的DU可以建立配置授权与终端侧设备的I-RNTI的映射关系。I-RNTI可以是inactive态的终端侧设备在一个无线网络通知区域(RAN-based notification area,RNA)内的唯一标识。
2、为所述终端侧设备配置的物理下行控制信道(physical downlink control channel, PDCCH)的配置信息;PDCCH的配置信息可以用于发送上行数据的反馈信息或调度PUSCH传输、调度物理下行共享控制信道(physical downlink control channel,PDSCH)传输等。
其中,PDCCH的配置信息包括但不限于PDCCH的资源位置信息、周期、起始位置等。
本申请实施例中,PDCCH可能调度物理层信令的发送,比如确认(Acknowledgement,ACK)或非确认(Negative Acknowledgement,NACK)信令、用于初传的上行授权、用于重传的上行授权中的至少一个。PDCCH还可能调度PDSCH的发送,PDSCH中承载的信息包括但不限于下行RRC信令、下行数据、定时提前量命令中的一个或多个。终端侧设备可以根据PDCCH的调度进行上行传输以及下行传输。
3、用于加扰所述PDCCH的临时标识;所述临时标识为用于加扰PDCCH的32比特的无线网络临时标识(radio network temporary identity,RNTI)。例如,所述临时标识可以为终端侧设备的小区无线网络临时标识(cell radio network temporary identity,C-RNTI)。
4、为所述终端侧设备配置的无线承载的RLC层的配置信息。
5、为所述终端侧设备配置的MAC层的配置信息。
6、为所述终端侧设备配置的I-RNTI。
需要说明的是,以上只是示例,终端侧设备的上下文还可以包括其他信息,本申请实施例并不限定,在此不再逐一举例说明。
示例性的,网络侧设备的CU发送的UE上下文建立响应消息中可以包括所述终端侧设备的上下文。
图5所示的流程中,只描述了主要步骤,在为终端侧设备建立上下文的过程中还可能存在其他步骤,在此不再赘述。
通过图5所示的流程,建立了终端侧设备的上下文,当终端侧设备进入不活跃态时,网络侧设备如何处理终端侧设备的上下文,可以参考图6所示。参见图6,为本申请实施例提供的一种上下文管理方法流程示意图,该方法流程包括:
步骤601:网络侧设备的CU确定终端侧设备进入不活跃态时,生成第一消息。
其中,所述第一消息包括第二消息,所述第二消息用于指示终端侧设备进入不活跃(inactive)态,并释放与所述网络侧设备的连接。例如,第二消息可以为第三代合作伙伴计划(3rd generation partnership project,3GPP)标准中定义的RRC连接释放消息。
需要说明的是,网络侧设备的CU如何确定终端侧设备进入不活跃态,本申请实施例对此并不限定,具体可以参考现有技术中的描述,在此不再赘述。网络侧设备的CU确定终端侧设备进入不活跃态时,可以生成第二消息,例如RRC连接释放消息,并将第二消息携带在第一消息中发给网络侧设备的DU。
本申请实施例中,第一消息可以为F1AP消息,例如第一消息可以为UE上下文释放命令消息;第一消息也可以为除了UE上下文释放命令消息之外的F1AP消息,例如第一消息可以为3GPP标准中定义的下行RRC消息传送消息。
本申请实施例中,第一消息可以用于指示网络侧设备的DU保留(或保持)处于不活跃态的终端侧设备的上下文。
其中,保留一个配置,可以是指保留该配置中的变量,但可以对该配置中的变量复位;保持一个配置,可以是指保持该配置中的变量的取值不变。例如,保留配置的序列号,可 以将序列号复位为0;保持配置的序列号,则不可以将该序列号复位为0,但可以保持该序列号不变。
可选的,网络侧设备的CU根据终端侧设备的能力信息,确定终端侧设备具有inactive态数据传输的能力时,通过第一消息指示网络侧设备的DU保留(或保持)处于不活跃态的终端侧设备的上下文。网络侧设备的CU根据终端侧设备的能力信息,确定终端侧设备不具有inactive态数据传输的能力时,可以不通过第一消息指示网络侧设备的DU保留(或保持)处于不活跃态的终端侧设备的上下文。
本申请实施例中,第一消息可能存在多种实现方式,第一种可能的实现方式中,第一消息可以包括第一信息,第一信息用于指示所述网络侧设备的DU保留(或保持)所述终端侧设备的上下文。
第一信息的实现方式存在多种,例如第一信息可以是终端侧设备的I-RNTI,当网络侧设备的DU确定第一消息中包括I-RNTI时,可以确定保留(或保持)所述终端侧设备的上下文。
再例如,第一信息也可以是终端侧设备的inactive状态信息,inactive状态信息用于指示终端侧设备处于inactive态。当网络侧设备的DU确定第一消息中包括inactive状态信息,并根据inactive状态信息确定终端侧设备处于inactive态时,可以确定保留(或保持)所述终端侧设备的上下文。
再例如,第一信息还可以是专用的保留指示,例如一个比特位,该比特位的值为1时,表示保留(或保持)所述终端侧设备的上下文,当网络侧设备的DU确定该专用的保留指示对应的比特位的值为1时,保留(或保持)所述终端侧设备的上下文。
可选的,网络侧设备的CU根据终端侧设备的能力信息,确定终端侧设备具有inactive态数据传输的能力时,在第一消息中携带第一信息。
在该实现方式中,第一消息可以为UE上下文释放命令消息。
在该实现方式中,通过第一消息携带第一信息,可以使得网络侧设备的DU根据第一信息不再删除终端侧设备的上下文。
可选的,第一信息可以用于指示网络侧设备的DU保留(或保持)终端侧设备的上下文中的部分内容,例如可以指示保留(或保持)以下一项或多项:
1、为所述终端侧设备配置的配置授权。
可选的,网络侧设备的CU还可以指示网络侧设备的DU保留哪些无线承载标识或逻辑信道标识对应的数据传输的配置授权。
可选的,所述配置授权配置的时频资源是终端侧设备与其他终端侧设备共享的时频资源时,第一消息中还可以包括I-RNTI,网络侧设备的DU从而可以建立终端侧设备的I-RNTI分别与终端侧设备的数据传输通道和上下文的映射关系。
2、为所述终端侧设备配置的PDCCH的配置信息。
3、用于加扰所述PDCCH的临时标识。
4、为所述终端侧设备配置的无线承载的RLC层的配置信息。
5、为所述终端侧设备配置的MAC层的配置信息。
6、终端侧设备的F1数据传输通道的传输层信息,例如可以包括传输层地址和GTP-隧道端点标识(tunnel endpoint identifier,TEID)。
可选的,第一信息还可以用于指示网络侧设备的DU保留(或保持)终端侧设备的F1上下文,其中F1上下文包括但不限于终端侧设备的数据传输通道,所述数据传输通道为所述终端侧设备的DRB数据对应的F1接口专用传输隧道,即GTP隧道。终端侧设备的DRB数据通过所述数据传输通道从网络侧设备的DU传输至网络侧设备的CU。所述数据传输通道还可以称为F1数据传输通道等,为了描述方便,以下均称为数据传输通道。
进一步可选的,网络侧设备的CU还可以指示网络侧设备的DU保留(或保持)哪些DRB对应的F1接口的数据传输通道。
本申请实施例中,第二消息可以包括终端侧设备的上下文中的部分或全部内容,例如可以包括以下一项或多项:为所述终端侧设备配置的配置授权;为所述终端侧设备配置的PDCCH的配置信息;用于加扰所述PDCCH的临时标识;为所述终端侧设备配置的I-RNTI;为所述终端侧设备配置的无线承载的RLC层的配置信息;为所述终端侧设备配置的MAC层的配置信息。
需要说明的是,当网络侧设备的DU不保留(或不保持)配置授权时,和/或第二消息中不包括为所述终端侧设备配置的配置授权时,终端侧设备可以通过公共时频资源发送上行数据。举例来说,终端侧设备可以从网络侧设备发送的广播消息中选一个2步随机接入信道(random access channel,RACH)资源配置,或者选一个4步RACH资源配置,请求向网络请求调度上行授权,从而根据选择的2步RACH资源配置或4步RACH资源配置进行上行数据传输,具体可以参见后面的描述,在此不再赘述。
当网络侧设备的DU不保留(或不保持)PDCCH的配置信息时,和/或第二消息中不包括为所述终端侧设备配置的PDCCH的配置信息时,网络侧设备的DU可以采用公共PDCCH的配置信息发送PDCCH,例如采用调度发送广播消息或随机接入响应等的PDCCH的配置信息发送PDCCH。
当网络侧设备的DU不保留(或不保持)用于加扰所述PDCCH的临时标识时,和/或第二消息中不包括加扰所述PDCCH的临时标识时,可以采用公共的RNTI加扰所述PDCCH,或者根据RACH资源或配置授权推演一个用于加扰所述PDCCH的RNTI。
当网络侧设备的DU不保留(或不保持)RLC层的配置信息时,和/或第二消息中不包括RLC层的配置信息时,网络侧设备的DU可以采用公共的RLC层的配置信息。
当网络侧设备的DU不保留(或不保持)MAC层的配置信息时,和/或第二消息中不包括MAC层的配置信息时,网络侧设备的DU可以采用公共的MAC层的配置信息。
当网络侧设备的DU不保留(或不保持)终端侧设备的数据传输通道时,网络侧设备的DU在收到终端侧设备的上行数据,可以请求网络侧设备的CU恢复建立终端侧设备的F1接口的数据传输通道,再通过恢复的数据传输通道将终端侧设备的上行数据发送到网络侧设备的CU。
第二种可能的实现方式中,第一消息可以隐式的进行指示。例如,第一消息为除了UE上下文释放命令消息之外的F1AP消息,例如第一消息可以为下行RRC消息传送消息。
可选的,网络侧设备的CU根据终端侧设备的能力信息,确定终端侧设备具有inactive 态数据传输的能力时,通过第一消息隐式的指示网络侧设备的DU保留终端侧设备的空口上下文。
需要说明的是,在现有的协议中,当网络侧设备的DU接收到UE上下文释放命令消息时,可以删除终端侧设备的所有配置信息,其中包括上下文等信息。在第二种可能的实现方式中,网络侧设备的CU通过下行RRC消息传送消息等除了UE上下文释放命令消息之外的F1AP消息,携带第二消息。此时网络侧设备的DU在接收到下行RRC消息传送消息等消息时,不会删除终端侧设备的上下文等信息,从而实现保留(或保持)处于不活跃态的终端侧设备的上下文中的空口上下文。
可选的,在该实现方式下,网络侧设备的DU可以保留(或保持)处于不活跃态的终端侧设备的空口上下文中的部分或全部内容,例如保留(或保持)以下一项或多项:
1、为所述终端侧设备配置的PDCCH的配置信息。
2、用于加扰所述PDCCH的临时标识。
3、为所述终端侧设备配置的I-RNTI。
4、为所述终端侧设备配置的无线承载的RLC层的配置信息。
5、为所述终端侧设备配置的MAC层的配置信息。
上面的内容具体可以参考前面第一种可能的实现方式中的描述,在此不再赘述。
需要说明的是,网络侧设备的DU不保留(或不保持)以上任一项时,可以参考前面第一种可能的实现方式中的描述,在此不再赘述。
可选的,在该实现方式下,网络侧设备的DU还可以保留(或保持)终端侧设备的数据传输通道。
进一步可选的,网络侧设备的DU还可以保留(或保持)终端侧设备的部分或全部DRB对应的F1接口的数据传输通道,具体保留(或保持)哪些DRB对应的F1接口的数据传输通道,可以根据实际情况确定,对此不再限定。
步骤602:网络侧设备的CU向所述网络侧设备的DU发送所述第一消息。
步骤603:网络侧设备的DU接收来自所述网络侧设备的CU的第一消息。
步骤604:网络侧设备的DU保留(或保持)处于不活跃态的所述终端侧设备的上下文。
如前所述,第一种可能的实现方式中,当第一消息中包括第一信息时,网络侧设备的DU根据第一信息保留(或保持)处于不活跃态的所述终端侧设备的空口上下文。网络侧设备的DU还可以保留(或保持)处于不活跃态的所述终端侧设备的F1上下文,具体可以参考步骤601中的描述,在此不再赘述。
在第二种可能的实现方式中,第一消息中不包括第一信息时,网络侧设备的DU确定第一消息不是UE上下文释放命令消息时,保留(或保持)处于不活跃态的所述终端侧设备的空口上下文。网络侧设备的DU还可以保留(或保持)处于不活跃态的所述终端侧设备的F1上下文。
网络侧设备的DU具体如何保留(或保持)处于不活跃态的所述终端侧设备的上下文,可以参考前面步骤中的描述,在此不再赘述。
可选的,所述终端侧设备的上下文中的配置授权配置的时频资源是终端侧设备专用的时频资源时,网络侧设备的DU可以建立配置授权分别与终端侧设备的上下文和终端侧设 备的数据传输通道的映射关系。
可选的,所述终端侧设备的上下文中的配置授权配置的时频资源是所述终端侧设备与其他终端侧设备共享的时频资源时,第一消息中可以包括为所述终端侧设备配置的I-RNTI,网络侧设备的DU可以建立终端侧设备的I-RNTI分别与终端侧设备的数据传输通道和上下文的映射关系。
图6所示的流程中,只描述了主要步骤,还可能存在其他步骤,例如步骤605,其它步骤在此不再赘述。
步骤605:网络侧设备的DU向网络侧设备的CU发送第三消息。
第三消息可以为第一消息的响应消息,例如,第一消息为3GPP标准定义的UE上下文释放命令消息时,第三消息可以为3GPP标准定义的UE上下文释放完成消息,其它情况不再赘述。
通过图6的流程,网络侧设备的DU保留(或保持)处于不活跃态的终端侧设备的上下文时,可以根据上下文等信息接收到来自不活跃态的终端侧设备的上行数据,可以降低终端侧设备发送信令的开销和耗电量。
进一步的,网络侧设备的DU保留(或保持)处于不活跃态的终端侧设备的数据传输通道时,可以立即传输不活跃态的终端侧设备的上行数据给网络侧设备的CU,降低数据传输时延。同时也可以降低终端侧设备监听响应上行数据的PDCCH的时延,进而降低终端侧设备的耗电。
网络侧设备的DU保留(或保持)了终端侧设备的空口上下文和终端侧设备的数据传输通道中的至少一项之后,终端侧设备的上行数据可以按照图7所示的流程进行处理。图7所示的流程中,以网络侧设备的CU向终端侧设备发送了网络侧设备的DU配置的配置授权为例进行说明。
步骤701:处于不活跃态的终端侧设备向网络侧设备的DU发送RRC连接恢复请求消息和DRB上承载的上行数据。
其中,DRB上承载的上行数据的具体内容,本申请实施例并不限定。
需要说明的是,终端侧设备可以通过所述配置授权发送RRC连接恢复请求消息和DRB上承载的上行数据中的至少一项。或者,终端侧设备可以将RRC连接恢复请求消息和DRB上承载的上行数据分开发送。例如,在相同频域资源的配置授权在不同时间发送RRC连接恢复请求消息和DRB上承载的上行数据;或者,在2步随机接入过程中获得的两个配置授权分别发送RRC连接恢复请求消息和DRB上承载的上行数据。或者,在4步随机接入过程中获得的调度授权发送RRC连接恢复请求消息、通过获得的配置授权发送DRB上承载的上行数据。
步骤702:网络侧设备的DU接收到来自终端侧设备的RRC连接恢复请求消息和DRB上承载的上行数据时,网络侧设备的DU中的MAC层实体可以获取RRC连接恢复请求消息和DRB上承载的上行数据。网络侧设备的DU可以通过向网络侧设备的CU发送初始上行RRC消息传输消息,其中携带“RRC连接恢复请求”消息。
步骤703:网络侧设备的DU通过DRB上承载的上行数据对应的数据传输通道,将DRB上承载的上行数据传输至网络侧设备的CU。
结合前面的描述,所述配置授权配置的时频资源是终端侧设备专用的时频资源时,网 络侧设备的DU可以确定与所述配置授权映射的数据传输通道,从而将DRB上承载的上行数据通过与所述配置授权映射的数据传输通道传输至网络侧设备的CU。
所述配置授权配置的时频资源是所述终端侧设备与其他终端侧设备共享的时频资源时,RRC连接恢复请求消息中可以包括终端侧设备的I-RNTI,网络侧设备的DU可以确定与所述I-RNTI映射的数据传输通道,从而将DRB上承载的上行数据通过与所述I-RNTI映射的数据传输通道传输至网络侧设备的CU。
可选的,如果网络侧设备的CU需要向终端侧设备发送下行数据,还可以包括步骤704。
步骤704:网络侧设备的CU向网络侧设备的DU发送DRB上承载的下行数据。
步骤705:网络侧设备的CU向网络侧设备的DU发送下行RRC消息传送消息。
步骤706:网络侧设备的DU向终端侧设备发送RRC连接释放消息。
RRC连接释放消息和DRB上承载的下行数据可以通过同一个传输块发送到网络侧设备的DU,网络侧设备的DU再将RRC连接释放消息和DRB上承载的下行数据同时发送给终端侧设备。
RRC连接释放消息和DRB上承载的下行数据也可以在不同时间分别发送至网络侧设备的DU,网络侧设备的DU再分别发送给终端侧设备。
图7只是示例,在实际过程中,还可能存在其他步骤,在此不再赘述。
另一种实现方式中,如果网络侧设备的CU没有向终端侧设备发送了网络侧设备的DU配置的配置授权,那么终端侧设备在发送上行数据时,可以通过广播消息确定RACH资源配置。具体的,实现方式一,终端侧设备可以从网络侧设备发送的广播消息中选一个2步随机接入信道(random access channel,RACH)资源配置。其中,2步RACH资源配置包括RACH时频资源,前导码(preamble)标识以及随机接入的配置授权;终端侧设备可以在随机接入的配置授权中发送上行数据到网络侧设备的DU,终端侧设备在RACH资源上发送前导码标识对应的preamble;其中,preamble和随机接入的配置授权是一对一或多对一的关系。即终端侧设备发送了preamble后,即可在该preamble对应的随机接入的配置授权上发送上行数据。
实现方式二,终端侧设备可以从网络侧设备发送的广播消息中选一个4步RACH资源配置。终端侧设备可以根据4步RACH资源配置向网络侧设备的DU发送preamble,并接收网络侧设备的DU的随机接入响应,其中,随机接入响应包含PUSCH资源和定时提前信息等,PUSCH资源即终端侧设备发送消息3的资源。终端侧设备可以通过消息3的资源发送上行数据。需要说明的是,这里的消息3是指随机接入过程中的消息3。
终端侧设备发送上行数据之后的过程,可以参考步骤702至步骤706中的描述,在此不再赘述。
前面的图6所示的流程中,通过第一消息指示网络侧设备的DU保留(或保持)处于不活跃态的终端侧设备的上下文,本申请实施例中,还提供一种方法,可以不通过第一消息指示网络侧设备的DU保留(或保持)处于不活跃态的终端侧设备的上下文,具体可以参考图8所示。
步骤801:网络侧设备的DU接收来自所述网络侧设备的CU的能力信息。
其中,所述能力信息用于指示终端侧设备的能力。
步骤802:网络侧设备的DU根据所述能力信息确定所述终端侧设备处于不活跃态时,具有在配置授权或调度授权中传输上行信息的能力时,保留(或保持)处于不活跃态的所 述终端侧设备的上下文。
终端侧设备的上下文的具体内容,可以参考图5以及图6流程中的描述,在此不再赘述。
可选的,网络侧设备的DU可以保留(或保持)所述终端侧设备的上下文中的一部分,例如,网络侧设备的DU可以保留(或保持)所述终端侧设备的上下文中的空口上下文,或者空口上下文中的部分内容;再例如,网络侧设备的DU还可以保留(或保持)所述终端侧设备的上下文中的F1上下文,或者F1上下文中的部分内容,具体可以参考图6流程中的描述,在此不再赘述。
网络侧设备的DU还可以执行其他内容,具体可以参考图5、图6以及图7流程中涉及到网络侧设备的DU的部分,在此不再赘述。
前面的各种可能实现方式中,网络侧设备的DU保留(或保持)不活跃态的终端侧设备的空口上下文和F1上下文,从而降低inactive的终端侧设备的数据传输时延。本申请另一种实施例中,网络侧设备的DU也可以不保留(或保持)不活跃态的终端侧设备的空口上下文和F1上下文,由网络侧设备的CU保持RLC层等空口配置,网络侧设备的DU通过公共通道发送数据到网络侧设备的CU,网络侧设备的CU进行数据的RLC处理,下面将详细描述。其中,公共通道可以是指一个网络侧设备的UD下的多个终端侧设备共享的F1数据传输通道。
步骤一:网络侧设备的DU通过F1接口接收来自网络侧设备的CU消息1。
其中,消息1可以为“UE上下文释放命令消息”或“下行RRC消息传送消息”或者“UE上下文修改请求消息”等。
可选的,消息1可以携带配置请求信息,用于请求终端侧设备的数据无线承载对应的RLC层配置和MAC层配置中的至少一项,RLC层配置包括多个无线承载标识。
其中,RLC层配置可以是指RLC层的配置信息;MAC层配置可以是指MAC层的配置信息。
进一步,配置请求信息还可以指示请求RLC层配置中的哪个(些)无线承载标识。
消息1中还可以携带“RRC连接释放消息”,此时还包括步骤二。
可选的,步骤二:网络侧设备的DU向终端侧设备发送RRC连接释放消息。
步骤三:网络侧设备的DU向网络侧设备的CU发送消息2。
例如,消息1为“UE上下文释放命令消息”时,消息2可以为“UE上下文释放完成消息”。
消息2中可以包括终端侧设备的数据无线承载对应的RLC层配置和MAC层配置中的至少一项。
可选的,当消息1为“UE上下文释放命令消息”时,消息2中至少包括终端侧设备的数据无线承载对应的RLC层配置。
步骤四:网络侧设备的CU在收到消息2时,可以将RLC实体中的变量设置为初始值。
通过上述流程,网络侧设备的CU就能获得网络侧设备的DU上的RLC层配置。当网络侧设备的DU接收到终端侧设备的上行数据,可通过以下流程,将终端侧设备的上行数据发送到网络侧设备的CU。
步骤901:处于不活跃态的终端侧设备向网络侧设备的DU发送RRC连接恢复请求消息和DRB上承载的上行数据。
步骤902:网络侧设备的DU接收到来自终端侧设备的RRC连接恢复请求消息和DRB上承载的上行数据时,网络侧设备的DU通过F1消息将DRB上承载的上行数据传输至网络侧设备的CU。
其中,F1消息可以为初始上行RRC消息传送消息等。
需要说明的是,网络侧设备的DU也可以通过公共通道,将DRB上承载的上行数据传输至网络侧设备的CU。
下面只举例用F1消息的实施方式。网络侧设备的DU可能发送的2种格式的数据:
若网络侧设备的CU获取到RLC层配置,F1消息中的DRB上承载的上行数据可以包含逻辑信道标识、MAC服务数据单元(service data unit,SDU),可采用RLC协议数据单元(Protocol Data Unit,PDU)格式发送。
若网络侧设备的CU获取到RLC层配置和MAC层配置,F1消息中的DRB上承载的上行数据可以是以MAC PDU格式发送。
需要说明的是,网络侧设备的DU在“初始上行RRC消息传送消息中,可以携带RRC恢复请求消息中的内容。
可选的,RRC恢复请求消息和DRB上承载的上行数据可不在同一个F1消息中发送给网络侧设备的CU。
步骤903:网络侧设备的CU在完成数据处理后,向网络侧设备的DU发送下行RRC消息传送消息。
对应步骤902中,网络侧设备的DU可能发送的2种数据,网络侧设备的CU的处理如下:
若网络侧设备的CU收到的是RLC PDU,根据逻辑信道标识确定RLC的配置,处理RLC PDU。
若网络侧设备的CU支持MAC PDU,网络侧设备的CU先进行MAC处理获得RLC PDU,再处理RLC PDU。
网络侧设备的CU的具体处理过程,在此不再赘述。
可选的,下行RRC消息传送消息中可包含空口消息。空口消息可以是RRC连接释放消息、RRC连接恢复消息或RRC连接拒绝消息等其他RRC消息。
可选的,若网络侧设备的CU有下行数据要发送,可在下行RRC消息传送消息中携带下行数据。
网络侧设备的CU在收到RRC恢复请求消息中的内容时,可以将RLC实体中的变量设置为初始值。
步骤904:网络侧设备的DU向终端侧设备发送RRC连接释放消息。
图9只是示例,在实际过程中,还可能存在其他步骤,在此不再赘述。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络侧设备的CU或网络侧设备的DU可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图10所示,本申请实施例还提供一种装置1000用于实现上述方法中网络侧设备的CU或网络侧设备的DU的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该装置1000可以包括:处理单元1001和通信单元1002。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中网络侧设备的CU或网络侧设备的DU发送和接收的步骤。
以下,结合图10至图11详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再一一赘述。
示例性地,当该装置1000实现图6所示的流程中网络侧设备的DU的功能时:
通信单元1002,用于接收来自网络侧设备的CU的第一消息;所述第一消息包括第二消息,所述第二消息用于指示终端侧设备进入不活跃(inactive)态,并释放与所述网络侧设备的连接;
处理单元1001,用于保留处于不活跃态的所述终端侧设备的上下文。
在一种可能的实施方式中,所述第一消息包括第一信息,所述第一信息用于指示所述装置保留所述终端侧设备的上下文中的空口上下文;
所述处理单元1001具体用于:
根据所述第一信息保留所述终端侧设备的空口上下文。
在一种可能的实施方式中,所述第一信息还用于指示所述装置保留所述终端侧设备的上下文中的F1上下文;
所述F1上下文包括所述终端侧设备的数据传输通道,所述数据传输通道为所述终端侧设备的数据无线承载DRB数据对应的F1接口专用传输隧道。
在一种可能的实施方式中,所述第一消息是所述装置和所述网络侧设备的CU间的接口消息,但不是所述接口消息中的用户设备UE上下文释放命令消息。
在一种可能的实施方式中,所述上下文包括以下一项或多项:
为所述终端侧设备配置的配置授权;
为所述终端侧设备配置的物理下行控制信道PDCCH的配置信息;
用于加扰所述PDCCH的临时标识;
为所述终端侧设备配置的不活跃态无线网络临时标识I-RNTI;
为所述终端侧设备配置的无线承载的RLC层的配置信息。
示例性地,当该装置1000实现图6所示的流程中网络侧设备的CU的功能时:
处理单元1001,用于确定终端侧设备进入不活跃(inactive)态时,生成第一消息;所述第一消息包括第二消息,所述第二消息用于指示终端侧设备进入不活跃(inactive)态,并释放与网络侧设备的连接;
通信单元1002,用于向所述网络侧设备的分布式单元DU发送所述第一消息,所述第一消息用于指示所述网络侧设备的DU保留处于不活跃态的所述终端侧设备的上下文。
在一种可能的实施方式中,所述第一消息包括第一信息,所述第一信息用于指示所述网络侧设备的DU保留所述终端侧设备的上下文中的空口上下文。
在一种可能的实施方式中,所述第一信息还用于指示所述网络侧设备的DU保留所述终端侧设备的上下文中的F1上下文;
所述F1上下文包括所述终端侧设备的数据传输通道,所述数据传输通道为所述终端侧设备的数据无线承载DRB数据对应的F1接口专用传输隧道。
在一种可能的实施方式中,所述第一消息是所述装置和所述网络侧设备的DU间的接口消息,但不是所述接口消息中的上下文释放命令消息。
在一种可能的实施方式中,所述上下文包括以下一项或多项:
为所述终端侧设备配置的配置授权;
为所述终端侧设备配置的物理下行控制信道PDCCH的配置信息;
用于加扰所述PDCCH的临时标识;
为所述终端侧设备配置的不活跃态无线网络临时标识I-RNTI;
为所述终端侧设备配置的无线承载的RLC层的配置信息。
示例性地,当该装置1000实现图8所示的流程中网络侧设备的DU的功能时:
通信单元1002,用于接收来自所述网络侧设备的CU的能力信息;所述能力信息用于指示终端侧设备的能力;
处理单元1001,用于根据所述能力信息确定所述终端侧设备处于不活跃态时,具有在配置授权中传输上行信息的能力时,保留处于不活跃态的所述终端侧设备的上下文。
在一种可能的实现方式中,处理单元具体用于:保留所述终端侧设备的上下文中的空口上下文。
在一种可能的实现方式中,处理单元具体用于:保留所述终端侧设备的上下文中的F1上下文;
所述F1上下文包括所述终端侧设备的数据传输通道,所述数据传输通道为所述终端侧设备的数据无线承载DRB数据对应的F1接口专用传输隧道。
在一种可能的实现方式中,所述上下文包括以下一项或多项:
为所述终端侧设备配置的配置授权;
为所述终端侧设备配置的PDCCH的配置信息;
用于加扰所述PDCCH的临时标识;
为所述终端侧设备配置的不活跃态无线网络临时标识I-RNTI;
为所述终端侧设备配置的无线承载的RLC层的配置信息。
如图11所示为本申请实施例提供的装置1100,图11所示的装置可以为图10所示的装置的一种硬件电路的实现方式。为了便于说明,图11仅示出了该通信装置的主要部件。
图11所示的装置1100包括至少一个处理器1101,装置1100还可以包括至少一个存储器1103,用于存储程序指令和/或数据。存储器1103和处理器1101耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1101可能和存储器1103协同操作。处理器1101可能执行存储器1103中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件 形式的指令完成。结合本申请实施例所公开的方法的步骤可以体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理电路(digital signal processor,DSP)、专用集成芯片(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
装置1100还可以包括通信接口1102,用于通过传输介质和其它设备进行通信,从而用于装置1100中的装置可以和其它设备进行通信。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,通信接口为收发器时,收发器可以包括独立的接收器、独立的发射器;也可以集成收发功能的收发器、或者是接口电路。
装置1100还可以包括通信线路1104。其中,通信接口1102、处理器1101以及存储器1103可以通过通信线路1104相互连接;通信线路1104可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述通信线路1104可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
示例性地,当该装置1100实现图6所示的流程中网络侧设备的DU的功能时:
通信接口1102,用于接收来自网络侧设备的CU的第一消息;所述第一消息包括第二消息,所述第二消息用于指示终端侧设备进入不活跃(inactive)态,并释放与所述网络侧设备的连接;
处理器1101,用于保留处于不活跃态的所述终端侧设备的上下文。
在一种可能的实施方式中,所述第一消息包括第一信息,所述第一信息用于指示所述装置保留所述终端侧设备的上下文中的空口上下文;
所述处理器1101具体用于:
根据所述第一信息保留所述终端侧设备的空口上下文。
在一种可能的实施方式中,所述第一信息还用于指示所述装置保留所述终端侧设备的上下文中的F1上下文;
所述F1上下文包括所述终端侧设备的数据传输通道,所述数据传输通道为所述终端侧设备的数据无线承载DRB数据对应的F1接口专用传输隧道。
在一种可能的实施方式中,所述第一消息是所述装置和所述网络侧设备的CU间的接口消息,但不是所述接口消息中的用户设备UE上下文释放命令消息。
在一种可能的实施方式中,所述上下文包括以下一项或多项:
为所述终端侧设备配置的配置授权;
为所述终端侧设备配置的物理下行控制信道PDCCH的配置信息;
用于加扰所述PDCCH的临时标识;
为所述终端侧设备配置的不活跃态无线网络临时标识I-RNTI;
为所述终端侧设备配置的无线承载的RLC层的配置信息。
示例性地,当该装置1100实现图6所示的流程中网络侧设备的CU的功能时:
处理器1101,用于确定终端侧设备进入不活跃(inactive)态时,生成第一消息;所述第一消息包括第二消息,所述第二消息用于指示终端侧设备进入不活跃(inactive)态,并释放与网络侧设备的连接;
通信接口1102,用于向所述网络侧设备的分布式单元DU发送所述第一消息,所述第一消息用于指示所述网络侧设备的DU保留处于不活跃态的所述终端侧设备的上下文。
在一种可能的实施方式中,所述第一消息包括第一信息,所述第一信息用于指示所述网络侧设备的DU保留所述终端侧设备的上下文中的空口上下文。
在一种可能的实施方式中,所述第一信息还用于指示所述网络侧设备的DU保留所述终端侧设备的上下文中的F1上下文;
所述F1上下文包括所述终端侧设备的数据传输通道,所述数据传输通道为所述终端侧设备的数据无线承载DRB数据对应的F1接口专用传输隧道。
在一种可能的实施方式中,所述第一消息是所述装置和所述网络侧设备的DU间的接口消息,但不是所述接口消息中的上下文释放命令消息。
在一种可能的实施方式中,所述上下文包括以下一项或多项:
为所述终端侧设备配置的配置授权;
为所述终端侧设备配置的物理下行控制信道PDCCH的配置信息;
用于加扰所述PDCCH的临时标识;
为所述终端侧设备配置的不活跃态无线网络临时标识I-RNTI;
为所述终端侧设备配置的无线承载的RLC层的配置信息。
示例性地,当该装置1100实现图8所示的流程中网络侧设备的DU的功能时:
通信接口1102,用于接收来自所述网络侧设备的CU的能力信息;所述能力信息用于指示终端侧设备的能力;
处理器1101,用于根据所述能力信息确定所述终端侧设备处于不活跃态时,具有在配置授权中传输上行信息的能力时,保留处于不活跃态的所述终端侧设备的上下文。
在一种可能的实现方式中,处理器1101具体用于:保留所述终端侧设备的上下文中的空口上下文。
在一种可能的实现方式中,处理器1101具体用于:保留所述终端侧设备的上下文中的F1上下文;
所述F1上下文包括所述终端侧设备的数据传输通道,所述数据传输通道为所述终端侧设备的数据无线承载DRB数据对应的F1接口专用传输隧道。
在一种可能的实现方式中,所述上下文包括以下一项或多项:
为所述终端侧设备配置的配置授权;
为所述终端侧设备配置的PDCCH的配置信息;
用于加扰所述PDCCH的临时标识;
为所述终端侧设备配置的不活跃态无线网络临时标识I-RNTI;
为所述终端侧设备配置的无线承载的RLC层的配置信息。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (23)

  1. 一种上下文管理方法,其特征在于,包括:
    网络侧设备的分布式单元DU接收来自所述网络侧设备的集中式单元CU的第一消息;所述第一消息包括第二消息,所述第二消息用于指示终端侧设备进入不活跃(inactive)态,并释放与所述网络侧设备的连接;
    所述网络侧设备的DU保留处于不活跃态的所述终端侧设备的上下文。
  2. 根据权利要求1所述的方法,其特征在于,所述第一消息包括第一信息,所述第一信息用于指示所述网络侧设备的DU保留所述终端侧设备的上下文中的空口上下文;
    所述网络侧设备的DU根据所述第一信息保留所述终端侧设备的空口上下文。
  3. 根据权利要求1所述的方法,其特征在于,所述第一信息还用于指示所述网络侧设备的DU保留所述终端侧设备的上下文中的F1上下文;
    所述F1上下文包括所述终端侧设备的数据传输通道,所述数据传输通道为所述终端侧设备的数据无线承载DRB数据对应的F1接口专用传输隧道。
  4. 根据权利要求1所述的方法,其特征在于,所述第一消息是所述网络侧设备的CU和所述网络侧设备的DU间的接口消息,但不是所述接口消息中的用户设备UE上下文释放命令消息。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述上下文包括以下一项或多项:
    为所述终端侧设备配置的配置授权;
    为所述终端侧设备配置的物理下行控制信道PDCCH的配置信息;
    用于加扰所述PDCCH的临时标识;
    为所述终端侧设备配置的不活跃态无线网络临时标识I-RNTI;
    为所述终端侧设备配置的无线承载的RLC层的配置信息。
  6. 一种上下文管理方法,其特征在于,包括:
    网络侧设备的集中式单元CU确定终端侧设备进入不活跃(inactive)态时,生成第一消息;所述第一消息包括第二消息,所述第二消息用于指示终端侧设备进入不活跃(inactive)态,并释放与所述网络侧设备的连接;
    所述网络侧设备的CU向所述网络侧设备的分布式单元DU发送所述第一消息,所述第一消息用于指示所述网络侧设备的DU保留处于不活跃态的所述终端侧设备的上下文。
  7. 根据权利要求6所述的方法,其特征在于,所述第一消息包括第一信息,所述第一信息用于指示所述网络侧设备的DU保留所述终端侧设备的上下文中的空口上下文。
  8. 根据权利要求7所述的方法,其特征在于,所述第一信息还用于指示所述网络侧设备的DU保留所述终端侧设备的上下文中的F1上下文;
    所述F1上下文包括所述终端侧设备的数据传输通道,所述数据传输通道为所述终端侧设备的数据无线承载DRB数据对应的F1接口专用传输隧道。
  9. 根据权利要求6所述的方法,其特征在于,所述第一消息是所述网络侧设备的CU和所述网络侧设备的DU间的接口消息,但不是所述接口消息中的上下文释放命令消息。
  10. 根据权利要求6至9任一所述的方法,其特征在于,所述上下文包括以下一项或多项:
    为所述终端侧设备配置的配置授权;
    为所述终端侧设备配置的物理下行控制信道PDCCH的配置信息;
    用于加扰所述PDCCH的临时标识;
    为所述终端侧设备配置的不活跃态无线网络临时标识I-RNTI;
    为所述终端侧设备配置的无线承载的RLC层的配置信息。
  11. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自网络侧设备的集中式单元CU的第一消息;所述第一消息包括第二消息,所述第二消息用于指示终端侧设备进入不活跃(inactive)态,并释放与所述网络侧设备的连接;
    处理单元,用于保留处于不活跃态的所述终端侧设备的上下文。
  12. 根据权利要求11所述的装置,其特征在于,所述第一消息包括第一信息,所述第一信息用于指示所述装置保留所述终端侧设备的上下文中的空口上下文;
    所述处理单元具体用于:
    根据所述第一信息保留所述终端侧设备的空口上下文。
  13. 根据权利要求11所述的装置,其特征在于,所述第一信息还用于指示所述装置保留所述终端侧设备的上下文中的F1上下文;
    所述F1上下文包括所述终端侧设备的数据传输通道,所述数据传输通道为所述终端侧设备的数据无线承载DRB数据对应的F1接口专用传输隧道。
  14. 根据权利要求11所述的装置,其特征在于,所述第一消息是所述装置和所述网络侧设备的CU间的接口消息,但不是所述接口消息中的用户设备UE上下文释放命令消息。
  15. 根据权利要求11至14任一所述的装置,其特征在于,所述上下文包括以下一项或多项:
    为所述终端侧设备配置的配置授权;
    为所述终端侧设备配置的物理下行控制信道PDCCH的配置信息;
    用于加扰所述PDCCH的临时标识;
    为所述终端侧设备配置的不活跃态无线网络临时标识I-RNTI;
    为所述终端侧设备配置的无线承载的RLC层的配置信息。
  16. 一种通信装置,其特征在于,包括:
    处理单元,用于确定终端侧设备进入不活跃(inactive)态时,生成第一消息;所述第一消息包括第二消息,所述第二消息用于指示终端侧设备进入不活跃(inactive)态,并释放与网络侧设备的连接;
    通信单元,用于向所述网络侧设备的分布式单元DU发送所述第一消息,所述第一消息用于指示所述网络侧设备的DU保留处于不活跃态的所述终端侧设备的上下文。
  17. 根据权利要求16所述的装置,其特征在于,所述第一消息包括第一信息,所述第一信息用于指示所述网络侧设备的DU保留所述终端侧设备的上下文中的空口上下文。
  18. 根据权利要求17所述的装置,其特征在于,所述第一信息还用于指示所述网络侧设备的DU保留所述终端侧设备的上下文中的F1上下文;
    所述F1上下文包括所述终端侧设备的数据传输通道,所述数据传输通道为所述终端侧设备的数据无线承载DRB数据对应的F1接口专用传输隧道。
  19. 根据权利要求16所述的装置,其特征在于,所述第一消息是所述装置和所述网 络侧设备的DU间的接口消息,但不是所述接口消息中的上下文释放命令消息。
  20. 根据权利要求16至19任一所述的装置,其特征在于,所述上下文包括以下一项或多项:
    为所述终端侧设备配置的配置授权;
    为所述终端侧设备配置的物理下行控制信道PDCCH的配置信息;
    用于加扰所述PDCCH的临时标识;
    为所述终端侧设备配置的不活跃态无线网络临时标识I-RNTI;
    为所述终端侧设备配置的无线承载的RLC层的配置信息。
  21. 一种通信装置,其特征在于,包括:存储器与处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得,所述处理器用于执行如权利要求1至5或6至10中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,包括计算机可读指令,当通信装置读取并执行所述计算机可读指令时,使得所述通信装置执行如权利要求1至5或6至10中任一项所述的方法。
  23. 一种计算机程序产品,其特征在于,包括计算机可读指令,当通信装置读取并执行所述计算机可读指令,使得所述通信装置执行如权利要求1至5或6至10中任一项所述的方法。
PCT/CN2019/130987 2019-12-31 2019-12-31 一种上下文管理方法及装置 WO2021134728A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980103344.6A CN114902745A (zh) 2019-12-31 2019-12-31 一种上下文管理方法及装置
PCT/CN2019/130987 WO2021134728A1 (zh) 2019-12-31 2019-12-31 一种上下文管理方法及装置
EP19958082.0A EP4075880A4 (en) 2019-12-31 2019-12-31 METHOD AND DEVICE FOR CONTEXT MANAGEMENT
US17/855,166 US20220338298A1 (en) 2019-12-31 2022-06-30 Context management method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130987 WO2021134728A1 (zh) 2019-12-31 2019-12-31 一种上下文管理方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/855,166 Continuation US20220338298A1 (en) 2019-12-31 2022-06-30 Context management method and apparatus

Publications (1)

Publication Number Publication Date
WO2021134728A1 true WO2021134728A1 (zh) 2021-07-08

Family

ID=76686327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130987 WO2021134728A1 (zh) 2019-12-31 2019-12-31 一种上下文管理方法及装置

Country Status (4)

Country Link
US (1) US20220338298A1 (zh)
EP (1) EP4075880A4 (zh)
CN (1) CN114902745A (zh)
WO (1) WO2021134728A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022236000A1 (en) * 2021-05-07 2022-11-10 Google Llc Managing early data communication with a ue operating in an inactive state
WO2023116336A1 (zh) * 2021-12-24 2023-06-29 中兴通讯股份有限公司 指示方法、数据传输方法、通信节点及存储介质
WO2023160712A1 (zh) * 2022-02-28 2023-08-31 维沃移动通信有限公司 数据传输的方法、终端及网络侧设备
WO2024037855A1 (en) * 2022-08-18 2024-02-22 Nokia Solutions And Networks Oy Distributed radio resource control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104255056A (zh) * 2012-10-19 2014-12-31 华为技术有限公司 切换方法和设备
CN107635271A (zh) * 2016-07-18 2018-01-26 电信科学技术研究院 一种传输数据的方法和设备
WO2019098900A1 (en) * 2017-11-17 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Methods, apparatus and systems relating to ue inactivity
CN110139386A (zh) * 2018-02-08 2019-08-16 电信科学技术研究院有限公司 一种上行小数据的传输方法、网络侧du和网络侧cu
CN110139387A (zh) * 2018-02-08 2019-08-16 电信科学技术研究院有限公司 一种上行小数据的传输方法、网络侧du和网络侧cu

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632946B (zh) * 2017-03-24 2021-06-22 华为技术有限公司 一种接入控制方法、终端及接入网设备
CN110662267B (zh) * 2017-08-11 2020-12-08 华为技术有限公司 一种传输方法和网络设备
CN110381554B (zh) * 2018-06-21 2021-04-09 华为技术有限公司 通信方法、装置、系统和计算机存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104255056A (zh) * 2012-10-19 2014-12-31 华为技术有限公司 切换方法和设备
CN107635271A (zh) * 2016-07-18 2018-01-26 电信科学技术研究院 一种传输数据的方法和设备
WO2019098900A1 (en) * 2017-11-17 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Methods, apparatus and systems relating to ue inactivity
CN110139386A (zh) * 2018-02-08 2019-08-16 电信科学技术研究院有限公司 一种上行小数据的传输方法、网络侧du和网络侧cu
CN110139387A (zh) * 2018-02-08 2019-08-16 电信科学技术研究院有限公司 一种上行小数据的传输方法、网络侧du和网络侧cu

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4075880A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022236000A1 (en) * 2021-05-07 2022-11-10 Google Llc Managing early data communication with a ue operating in an inactive state
WO2023116336A1 (zh) * 2021-12-24 2023-06-29 中兴通讯股份有限公司 指示方法、数据传输方法、通信节点及存储介质
WO2023160712A1 (zh) * 2022-02-28 2023-08-31 维沃移动通信有限公司 数据传输的方法、终端及网络侧设备
WO2024037855A1 (en) * 2022-08-18 2024-02-22 Nokia Solutions And Networks Oy Distributed radio resource control

Also Published As

Publication number Publication date
US20220338298A1 (en) 2022-10-20
EP4075880A1 (en) 2022-10-19
CN114902745A (zh) 2022-08-12
EP4075880A4 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
US11706814B2 (en) Communications device, infrastructure equipment and methods
EP3965440A1 (en) Sidelink communication method and apparatus, and storage medium
WO2021134728A1 (zh) 一种上下文管理方法及装置
US20200221538A1 (en) Data transmission method, terminal device, and network device
KR20220140605A (ko) Sidelink 릴레이 통신 방법, 장치, 설비 및 매체
WO2021139719A1 (zh) 非连续接收drx参数配置方法和装置
WO2017193766A1 (zh) 一种下行数据传输的方法及设备
WO2021062797A1 (zh) 配置方法和装置
WO2020088049A1 (zh) 车联网的数据传输方法、发送终端和网络侧设备
KR20220042176A (ko) 통신 방식, slrb 구축 방식 및 통신 장치
TW202029810A (zh) 用於5g新無線電系統中之上行鏈路傳輸之方法
WO2020199195A1 (zh) 一种数据处理方法、中继设备和网络设备
WO2020164620A1 (zh) 一种终端信息的通信处理方法和相关设备
WO2021174377A1 (zh) 切换方法和通信装置
WO2018145292A1 (zh) 通信方法、装置和系统
WO2021088006A1 (zh) 通信方法和通信装置
US20220053570A1 (en) Uplink transmission method and communication apparatus
WO2017177440A1 (zh) 状态指示的传输装置、方法以及通信系统
WO2022206618A1 (zh) 一种通信方法及装置
WO2023093868A1 (zh) 一种通信方法及设备
WO2022036611A1 (zh) 一种数据传输方法及通信装置
WO2022032681A1 (zh) 一种数据传输方法及通信装置
WO2023246544A1 (zh) 一种通信方法及装置
WO2023231907A1 (zh) 数据传输的方法、装置和系统
WO2021032022A1 (zh) 一种调度方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019958082

Country of ref document: EP

Effective date: 20220714

NENP Non-entry into the national phase

Ref country code: DE