WO2021134702A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021134702A1
WO2021134702A1 PCT/CN2019/130946 CN2019130946W WO2021134702A1 WO 2021134702 A1 WO2021134702 A1 WO 2021134702A1 CN 2019130946 W CN2019130946 W CN 2019130946W WO 2021134702 A1 WO2021134702 A1 WO 2021134702A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
synchronous broadcast
broadcast block
domain position
index
Prior art date
Application number
PCT/CN2019/130946
Other languages
English (en)
French (fr)
Inventor
薛丽霞
张旭
王�锋
张荻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/130946 priority Critical patent/WO2021134702A1/zh
Priority to CN201980103227.XA priority patent/CN114846884A/zh
Priority to EP19958556.3A priority patent/EP4072096A4/en
Publication of WO2021134702A1 publication Critical patent/WO2021134702A1/zh
Priority to US17/853,269 priority patent/US20220338275A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a communication method and device.
  • the synchronous broadcast blocks in a synchronous broadcast set are all transmitted at one frequency domain position.
  • synchronous broadcast block frequency division multiplexing can be applied, that is, synchronous broadcast blocks in the same synchronous broadcast set can be located in multiple frequency domain positions.
  • the terminal device When the terminal device performs random access, it will select a synchronous broadcast block, and perform random access on the random access channel to which the synchronous broadcast block is mapped.
  • the network device may not be able to know the synchronous broadcast block selected by the terminal device.
  • the embodiments of the present application provide a communication method, device, and equipment, which are used to enable network equipment to learn the synchronous broadcast block selected by the terminal device when synchronous broadcast block frequency division multiplexing is applied.
  • a first communication method comprising: receiving a first synchronous broadcast block located at a first frequency domain position; receiving a second synchronous broadcast block located at a second frequency domain position; determining that the second frequency domain position corresponds Random access channel RACH opportunity; according to the transmission situation of the synchronous broadcast block located at the second frequency domain position, determine the RACH opportunity to which the second synchronous broadcast block is mapped from the RACH opportunity corresponding to the second frequency domain position; in the second Random access is performed on the RACH opportunity to which the synchronous broadcast block is mapped.
  • the method may be executed by a first communication device, and the first communication device may be a terminal device, or a chip set in the terminal device for realizing the function of the terminal device, or other components for realizing the function of the terminal device.
  • the network device can learn the synchronous broadcast block selected by the terminal device.
  • the method further includes: receiving a system information block type SIB1 corresponding to the first synchronous broadcast block, where the SIB1 includes indication information of the RACH opportunity corresponding to the first frequency domain position; wherein, determining the second The RACH opportunity corresponding to the frequency domain position includes: determining the RACH opportunity corresponding to the second frequency domain position according to the indication information of the RACH opportunity corresponding to the first frequency domain position.
  • the terminal device switches to a new frequency domain location for random access, it does not need to receive SIB1 repeatedly, which shortens the time delay of the terminal device switching frequency domain location, accelerates the random access speed of the terminal device, and reduces Energy consumption of terminal equipment.
  • determining the RACH opportunity corresponding to the second frequency domain position according to the indication information of the RACH opportunity corresponding to the first frequency domain position includes: according to the indication information of the RACH opportunity corresponding to the first frequency domain position And the index of the first synchronous broadcast block and the index of the second synchronous broadcast block to determine the RACH opportunity corresponding to the second frequency domain position.
  • the index of the first synchronous broadcast block is the index of the first synchronous broadcast block that only considers the order in the frequency domain
  • the index of the second synchronous broadcast block is the index of the second synchronous broadcast block that only considers the sequence in the frequency domain.
  • the index of the order in the frequency domain; or, the index of the first synchronous broadcast block is the index of the first synchronous broadcast block in consideration of the order in the frequency domain and the time domain
  • the index of the second synchronous broadcast block is the index of the second synchronous broadcast block Consider the sequential index in the frequency domain and the time domain.
  • the index of the first synchronous broadcast block and the index of the second synchronous broadcast block are included in SIB1; or, the index of the first synchronous broadcast block is included in the first synchronous broadcast block, The index of the second synchronous broadcast block is included in the second synchronous broadcast block.
  • the method further includes: receiving system information block type one SIB1 corresponding to the first synchronous broadcast block, and SIB1 includes indication information of the RACH opportunity corresponding to the first frequency domain position; wherein, the second frequency
  • the indication information of the RACH opportunity corresponding to the domain position is included in at least one of the following items: SIB1, and the second synchronous broadcast block; wherein, determining the RACH opportunity corresponding to the second frequency domain position includes: according to the second frequency domain position
  • the indication information of the corresponding RACH opportunity determines the RACH opportunity corresponding to the second frequency domain position.
  • the terminal device switches to a new frequency domain location for random access, it does not need to receive SIB1 repeatedly, which shortens the time delay of the terminal device switching frequency domain location, accelerates the random access speed of the terminal device, and reduces The energy consumption of the terminal equipment.
  • the transmission situation of the synchronous broadcast block at the second frequency domain position is included in SIB1.
  • the method further includes: receiving system information block type one SIB1 corresponding to the first synchronous broadcast block, where the SIB1 includes indication information of the RACH opportunity corresponding to the first frequency domain position; and according to the first frequency domain
  • the indication information of the RACH opportunity corresponding to the position determines the RACH opportunity corresponding to the first frequency domain position; according to the transmission situation of the synchronous broadcast block located at the first frequency domain position, the first synchronization is determined in the RACH opportunity corresponding to the first frequency domain position
  • the terminal device switches to a new frequency domain location for random access, it does not need to receive SIB1 repeatedly, which shortens the time delay of the terminal device switching frequency domain location, accelerates the random access speed of the terminal device, and reduces The energy consumption of the terminal equipment.
  • the impact on terminal equipment that does not perform synchronous broadcast block frequency division multiplexing is reduced.
  • the transmission situation of the SSB at the second frequency domain position and/or the index of the second synchronous broadcast block is included in RRC signaling or PDCCH.
  • the indication information of the RO corresponding to the second frequency domain position includes at least one of the following items: all indication information of the RO corresponding to the second frequency domain position except for the first frequency domain position
  • the indication information of the corresponding RO is the indication information other than the same indication information; the frequency domain start position of the RO corresponding to the second frequency domain position; the frequency division multiplexing number of the RO corresponding to the second frequency domain position.
  • the time domain position of the RO corresponding to the first frequency domain position is the same as that of the RO corresponding to the second frequency domain position; the RO corresponding to the first frequency domain position The RO corresponding to the second frequency domain position does not overlap; the RO corresponding to the first frequency domain position and the RO corresponding to the second frequency domain position are closely arranged in the frequency domain and/or the time domain; the RO corresponding to the first frequency domain position is closely aligned
  • the indication information is compared with the indication information of the RO corresponding to the second frequency domain position.
  • the frequency domain starting position of the RO corresponding to the first frequency domain position is different from the frequency domain starting position of the RO corresponding to the second frequency domain position, and the remaining indications
  • the information is the same; the frequency division multiplexing number of the RO corresponding to the first frequency domain position is the same as the frequency division multiplexing number of the RO corresponding to the SSB at the second frequency domain position.
  • a second communication method includes: sending a first synchronous broadcast block located at a first frequency domain position; sending a second synchronous broadcast block located at a second frequency domain position; According to the transmission situation of the synchronous broadcast block in the second frequency domain, determine the RACH opportunity to which the first synchronous broadcast block is mapped in the random access channel RACH opportunity corresponding to the first frequency domain position; according to the transmission situation of the synchronous broadcast block at the second frequency domain position , Determining the RACH opportunity to which the second synchronous broadcast block is mapped from the RACH opportunity corresponding to the second frequency domain position.
  • the method may be executed by a second communication device, and the second communication device may be a network device, or a chip set in the network device for realizing the function of the network device, or other components used for realizing the function of the network device.
  • the first synchronous broadcast block includes the index of the first synchronous broadcast block
  • the second synchronous broadcast block includes the index of the second synchronous broadcast block
  • the method further includes: sending the first synchronous broadcast
  • the index of the first synchronous broadcast block is the index of the first synchronous broadcast block that only considers the order in the frequency domain
  • the index of the second synchronous broadcast block is the index of the second synchronous broadcast block that only considers the sequence in the frequency domain.
  • the index of the order in the frequency domain; or, the index of the first synchronous broadcast block is the index of the first synchronous broadcast block taking into account the order in the frequency domain and the time domain
  • the index of the second synchronous broadcast block is the index of the second synchronous broadcast block Consider the sequential index in the frequency domain and the time domain.
  • the method further includes: sending a system information block type SIB1 corresponding to the first synchronous broadcast block, where the SIB1 includes indication information of the RACH opportunity corresponding to the first frequency domain position; wherein, the second frequency
  • the indication information of the RACH opportunity corresponding to the domain location is included in at least one of the following items: SIB1, and the second synchronous broadcast block.
  • the transmission situation of the synchronous broadcast block at the second frequency domain position is included in SIB1.
  • the method further includes: sending a system information block type-1 SIB1 corresponding to the first synchronous broadcast block, where the SIB1 includes indication information of the RACH opportunity corresponding to the first frequency domain position;
  • the radio resource control RRC signaling or the physical downlink control channel PDCCH is sent to the terminal device.
  • the RRC signaling or PDCCH includes the second frequency domain position corresponding The indication information of the RACH opportunity.
  • the transmission situation of the SSB at the second frequency domain position and/or the index of the second synchronous broadcast block is included in RRC signaling or PDCCH.
  • the indication information of the RO corresponding to the second frequency domain position includes at least one of the following items: all indication information of the RO corresponding to the second frequency domain position except for the first frequency domain position
  • the indication information of the corresponding RO is the indication information other than the same indication information; the frequency domain start position of the RO corresponding to the second frequency domain position; the frequency division multiplexing number of the RO corresponding to the second frequency domain position.
  • the time domain position of the RO corresponding to the first frequency domain position is the same as that of the RO corresponding to the second frequency domain position; the RO corresponding to the first frequency domain position The RO corresponding to the second frequency domain position does not overlap; the RO corresponding to the first frequency domain position and the RO corresponding to the second frequency domain position are closely arranged in the frequency domain and/or the time domain; the RO corresponding to the first frequency domain position is closely aligned
  • the indication information is compared with the indication information of the RO corresponding to the second frequency domain position.
  • the frequency domain starting position of the RO corresponding to the first frequency domain position is different from the frequency domain starting position of the RO corresponding to the second frequency domain position, and the remaining indications
  • the information is the same; the frequency division multiplexing number of the RO corresponding to the first frequency domain position is the same as the frequency division multiplexing number of the RO corresponding to the SSB at the second frequency domain position.
  • a communication device is provided, and the communication device may be the first communication device as described above.
  • the communication device is used to execute the method in the foregoing first aspect or any possible implementation manner.
  • the communication device may be a terminal device, or a chip or other component provided in the terminal device.
  • the communication device may include a module for executing the method in the first aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the transceiver module can also be implemented by a transceiver, and the processing module can also be implemented by a processor. If the communication device is a terminal device, the transceiver can be implemented by an antenna, a feeder, a codec, etc. in the terminal device.
  • the transceiver may be a communication interface in the chip, and the communication interface is connected to a radio frequency transceiver component in the terminal device to implement information transmission and reception through the radio frequency transceiver component.
  • a communication device is provided, and the communication device may be the second communication device as described above.
  • the communication device is used to execute the method in the above second aspect or any possible implementation manner.
  • the communication device may be a network device, or a chip or other component provided in the network device.
  • the communication device may include a module for executing the method in the second aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the transceiver module can also be implemented by a transceiver, and the processing module can also be implemented by a processor. If the communication device is a network device, the transceiver can be realized by an antenna, a feeder, a codec, etc. in the network device.
  • the transceiver may be a communication interface in the chip, and the communication interface is connected to a radio frequency transceiver component in the network device to implement information transmission and reception through the radio frequency transceiver component.
  • a communication device may be the first communication device as described above.
  • the communication device includes a processor.
  • the communication device may further include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the methods described in the first aspect or various possible implementation manners.
  • the communication device may not include a memory, and the memory may be located outside the communication device.
  • the communication device may also include a communication interface for communicating with other devices or equipment.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the methods described in the first aspect or various possible implementation manners.
  • the communication device may be a terminal device, or a chip or other component provided in the terminal device. If the communication device is a terminal device, the transceiver can be implemented by an antenna, a feeder, a codec, etc. in the terminal device. Or, if the communication device is a chip set in a terminal device, the transceiver may be a communication interface in the chip, and the communication interface is connected to a radio frequency transceiver component in the terminal device to implement information transmission and reception through the radio frequency transceiver component.
  • a communication device in a sixth aspect, is provided, and the communication device may be the second communication device as described above.
  • the communication device includes a processor.
  • the communication device may further include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the methods described in the second aspect or various possible implementation manners.
  • the communication device may not include a memory, and the memory may be located outside the communication device.
  • the communication device may also include a communication interface for communicating with other devices or equipment.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the methods described in the second aspect or various possible implementation manners.
  • the communication device when the processor executes the computer instructions stored in the memory, the communication device is caused to execute the method in the second aspect or any one of the possible implementation manners.
  • the communication device may be a network device, or a chip or other component provided in the network device. If the communication device is a network device, the transceiver can be realized by an antenna, a feeder, a codec, etc. in the network device. Or, if the communication device is a chip set in a network device, the transceiver may be a communication interface in the chip, and the communication interface is connected to a radio frequency transceiver component in the network device to implement information transmission and reception through the radio frequency transceiver component.
  • a communication system in a seventh aspect, includes the communication device described in the third aspect or the communication device described in the fifth aspect, and the communication device described in the fourth aspect or the communication device described in the sixth aspect. Communication device.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions are executed on a computer, the computer is caused to execute the first aspect or any one of the foregoing The methods described in the possible implementations.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the second aspect or any one of the above The methods described in the possible implementations.
  • a computer program product containing instructions is provided.
  • the computer program product is used to store computer instructions.
  • the computer instructions run on a computer, the computer executes the first aspect or any one of the above. The methods described in the possible implementations.
  • a computer program product containing instructions is provided.
  • the computer program product is used to store computer instructions.
  • the computer instructions run on a computer, the computer executes the second aspect or any one of the foregoing. The method described in one possible implementation.
  • Figure 1A is a schematic diagram of the time-frequency domain position of the synchronous broadcast block when the synchronous broadcast block frequency division multiplexing is not applied;
  • Figure 1B is a schematic diagram of the mapping relationship between synchronous broadcast blocks and random access channel opportunities when synchronous broadcast block frequency division multiplexing is not applied;
  • 1C is another schematic diagram of the mapping relationship between the synchronous broadcast block and the random access channel opportunity when the synchronous broadcast block frequency division multiplexing is not applied;
  • 2A is a schematic diagram of the time-frequency domain position of the synchronous broadcast block when the synchronous broadcast block frequency division multiplexing is applied;
  • 2B is another schematic diagram of the mapping relationship between synchronous broadcast blocks and random access channel opportunities when synchronous broadcast block frequency division multiplexing is applied;
  • 2C is a schematic diagram of the mapping relationship between synchronous broadcast blocks and random access channel opportunities when synchronous broadcast block frequency division multiplexing is applied;
  • 2D is another schematic diagram of the mapping relationship between synchronous broadcast blocks and random access channel opportunities when synchronous broadcast block frequency division multiplexing is applied;
  • FIG. 3 is a schematic diagram of an application scenario of an embodiment of the application.
  • FIG. 4 is a flowchart of a communication method provided by an embodiment of this application.
  • FIG. 5 is a flowchart of another communication method provided by an embodiment of this application.
  • FIG. 6 is a flowchart of another communication method provided by an embodiment of this application.
  • FIG. 7 is a flowchart of still another communication method provided by an embodiment of this application.
  • FIG. 8 is a schematic block diagram of a terminal device according to an embodiment of the application.
  • FIG. 9 is a schematic block diagram of a network device provided by an embodiment of this application.
  • FIG. 10 is a schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 11 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 12 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 13 is still another schematic block diagram of the communication device provided by an embodiment of the application.
  • Terminal devices including devices that provide users with voice and/or data connectivity, specifically, include devices that provide users with voice, or include devices that provide users with data connectivity, or include devices that provide users with voice and data connectivity Sexual equipment.
  • it may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle to everything (V2X) terminal equipment , Machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit, subscriber station (subscriber) station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user Agent (user agent), or user equipment (user device), etc.
  • UE user equipment
  • M2M/MTC Machine-to-machine/machine-type communications
  • IoT Internet of things
  • subscriber unit subscriber station (subscriber) station)
  • mobile station mobile station
  • remote station remote station
  • access point access point
  • AP remote terminal
  • remote terminal remote terminal
  • access terminal access terminal
  • user terminal user terminal
  • user Agent
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, mobile devices with built-in computers, and so on.
  • PCS personal communication service
  • PCS cordless phones
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be regarded as vehicle-mounted terminal equipment, for example, the vehicle-mounted terminal equipment is also called on-board unit (OBU). ).
  • OBU on-board unit
  • Network equipment including, for example, access network (AN) equipment, such as a base station (e.g., access point), which may refer to equipment that communicates with wireless terminal equipment through one or more cells on the air interface in the access network
  • AN access network
  • a base station e.g., access point
  • a network device in a V2X technology is a roadside unit (RSU).
  • the base station can be used to convert the received air frame and IP packet to each other, as a router between the terminal device and the rest of the access network, where the rest of the access network can include the IP network.
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (LTE) system or an advanced long term evolution (LTE-A) system, Or it can also include the next generation node B (gNB) in the new radio (NR) system (also referred to as the NR system) in the 5th generation (5G) mobile communication technology (the 5th generation, 5G), or it can also Including the centralized unit (CU) and distributed unit (DU) in the cloud radio access network (cloud RAN) system.
  • NodeB or eNB or e-NodeB, evolutional Node B in a long term evolution (LTE) system or an advanced long term evolution (LTE-A) system
  • gNB next generation node B
  • NR new radio
  • 5G 5th generation
  • 5G 5th generation
  • CU centralized unit
  • DU distributed unit
  • the synchronization broadcast block can be a synchronization signal and a physical broadcast channel (synchronization signal/physical broadcast channel, SS/PBCH) block, and can also be called a synchronization signal block (synchronization signal block, SSB).
  • the SS/PBCH block is composed of a broadcast channel (broadcast channel, BCH) and a synchronization signal.
  • the synchronization signal includes a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • the random access channel (RACH) opportunity (occasion) is the position where the terminal device performs random access. Before performing random access, the terminal device first needs to perform a cell search to obtain a synchronous broadcast block. Next, the terminal device needs to select a synchronous broadcast block and perform random access on the RACH opportunity corresponding to the synchronous broadcast block, so that the network device can learn the synchronous broadcast block selected by the terminal device. This correspondence between synchronous broadcast blocks and RACH opportunities may be referred to as being mapped to RACH opportunities by synchronous broadcast blocks.
  • the master information block (MIB) is broadcast on the BCH in the synchronous broadcast block. Therefore, when the synchronous broadcast block is acquired, the MIB corresponding to the synchronous broadcast block can be obtained.
  • the MIB is configured with parameters related to the physical downlink control channel (PDCCH) of the scheduling system information block type 1 (system information block type 1, SIB1).
  • PDCCH physical downlink control channel
  • SIB1 is configured with parameters about all RACH opportunities to which the synchronous broadcast block may be mapped.
  • the terminal device needs to determine the RACH opportunity to which the synchronous broadcast block is actually mapped from these RACH opportunities.
  • One of the mapping principles is that the synchronous broadcast block needs to be mapped to consecutive valid RACH opportunities.
  • system and “network” in the embodiments of this application can be used interchangeably.
  • At least one means one or more, and “plurality” means two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship, but can also indicate that the associated objects before and after are in an “and” relationship, subject to the description in this application or the understanding of those skilled in the art.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • first and second are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • first signaling and the second signaling are only used to distinguish different signaling, but do not indicate the difference in content, transmission order, priority, or importance of the two signalings.
  • the maximum number of synchronous broadcast blocks that can be sent in a half-frame of 5 milliseconds is a fixed value (for example, 4, 8, or 64), and the optional RACH opportunity resources for these synchronous broadcast blocks are the same.
  • the terminal equipment and the network equipment will determine the RACH opportunity to which these synchronous broadcast blocks are actually mapped according to the actual sending situation of these synchronous broadcast blocks.
  • the set of these synchronous broadcast blocks is called a synchronous broadcast set, in other words, these synchronous broadcast blocks belong to the same synchronous broadcast set. It should be understood that the synchronous broadcast set mentioned in the following description is not necessarily limited to a half frame of 5 milliseconds.
  • the synchronous broadcast blocks in a synchronous broadcast set are all transmitted at one frequency domain position.
  • 4 synchronous broadcast blocks in a synchronous broadcast set are sent at the same frequency domain location and 4 different time domain locations.
  • These 4 synchronous broadcast blocks can be represented as Synchronous broadcast block #0, synchronous broadcast block #1, synchronous broadcast block #2, and synchronous broadcast block #3.
  • synchronous broadcast block #0 the first synchronous broadcast block to be sent in the synchronous broadcast set is synchronous broadcast block #1.
  • synchronous broadcast block #1 is mapped to RACH opportunity 1
  • synchronous broadcast block #2 is mapped to RACH opportunity 2
  • synchronous broadcast block #3 is mapped to RACH opportunity 3
  • RACH opportunity 4 is not used. It can be seen that even if there are unsent synchronous broadcast blocks, the RACH opportunities to which the actually sent synchronous broadcast blocks are mapped are still continuous.
  • a synchronous broadcast block in a synchronous broadcast set can be sent at multiple frequency positions, the number of times that the synchronous broadcast block is sent in the time domain can be reduced, thereby increasing the probability that the network device is shut down, which is beneficial to the energy saving of the network device.
  • This method can be called synchronous broadcast block frequency division multiplexing (frequency division multiplexing, FDM).
  • FDM frequency division multiplexing
  • the four synchronous broadcast blocks in a synchronous broadcast set are sent at two different frequency domain positions and two different time domain positions, which can be transmitted according to frequency.
  • the domain position and time domain position represent these 4 synchronous broadcast blocks as synchronous broadcast block #0 at frequency domain position 1, synchronous broadcast block #0 at frequency domain position 2, and synchronous broadcast block #1 at frequency domain position 1.
  • the synchronous broadcast block frequency division multiplexing when the synchronous broadcast block frequency division multiplexing is applied, if the existing mapping scheme is used, the synchronous broadcast block is mapped to a continuous effective RACH opportunity according to the time domain position of the synchronous broadcast block and the actual transmission situation.
  • the synchronous broadcast block #1 at frequency domain position 1 The time domain position is the same as the synchronous broadcast block #1 at the frequency domain position 2. Therefore, as shown in FIG.
  • the synchronous broadcast block #0 at the frequency domain position 1 and the synchronous broadcast block #0 at the frequency domain position 2 are both Being mapped to RACH opportunity 1
  • synchronous broadcast block #1 at frequency domain position 1 and synchronous broadcast block #1 at frequency domain position 2 are both mapped to RACH opportunity 2
  • RACH opportunity 3 and RACH opportunity 4 are not used. If the terminal device performs random access at RACH opportunity 1, the network device cannot distinguish whether the synchronous broadcast block selected by the terminal device is the synchronous broadcast block #0 located in the frequency domain position 1 or the synchronous broadcast block #0 located in the frequency domain position 2.
  • the SIB1 corresponding to the synchronous broadcast blocks at different frequency domain positions can be made to indicate different RACH opportunities (hereinafter, the RACH opportunity indicated by the SIB1 corresponding to the synchronous broadcast block at a certain frequency domain position is referred to as the frequency domain. RACH opportunities corresponding to domain positions).
  • synchronous broadcast blocks located at different frequency domain positions can be independently mapped, that is, synchronous broadcast blocks at a certain frequency domain position are only mapped to the RACH opportunities corresponding to the frequency domain position. For example, when 4 synchronous broadcast blocks in a synchronous broadcast set are all transmitted, as shown in Figure 2C, synchronous broadcast block #0 and synchronous broadcast block #1 located at frequency domain position 1 are mapped to frequency domain position 1 respectively.
  • RACH opportunity 1 and RACH opportunity 2 and synchronous broadcast block #0 and synchronous broadcast block #1 located in frequency domain position 2 are mapped to RACH opportunity 1 and RACH opportunity 2 corresponding to frequency domain position 2, respectively.
  • the synchronous broadcast block #0 at the frequency domain position 1 is not transmitted, as shown in FIG. 2D, the synchronous broadcast block #0 and the synchronous broadcast block #1 at the frequency domain position 2 are respectively mapped to the frequency domain positions 2
  • Corresponding RACH opportunity 1 and RACH opportunity 2 as the first synchronous broadcast block to be sent at frequency domain position 1, synchronous broadcast block #1 at frequency domain position 1 is mapped to the RACH opportunity corresponding to frequency domain position 1 1.
  • the RACH opportunity 2 corresponding to frequency domain position 1 is not used.
  • the network device can identify the synchronous broadcast block selected by the terminal device.
  • a synchronous broadcast block with a synchronization signal reference signal received power (synchronization signal reference signal received power, SS-RSRP) higher than a prescribed threshold. If there is such a synchronous broadcast block, select the synchronous broadcast block, and perform random access on the RACH opportunity to which the synchronous broadcast block is mapped. If there is no such synchronous broadcast block, any one of the synchronous broadcast blocks is selected, and random access is performed on the RACH opportunity to which the synchronous broadcast block is mapped.
  • SS-RSRP synchronization signal reference signal received power
  • the terminal device may select a synchronous broadcast block and obtain the SIB1 corresponding to the synchronous broadcast block, and then select another synchronous broadcast block belonging to the same synchronous broadcast set for random access. For example, a fast-moving terminal device may not perform random access yet, and the SS-RSRP of the currently selected synchronous broadcast block has changed, and the synchronous broadcast block needs to be selected again. For another example, the terminal device may select another synchronous broadcast block for random access after random access fails.
  • SIB1 is used to indicate the RACH opportunity to which the synchronous broadcast block may be mapped.
  • the terminal device can use the previously acquired SIB1, and determine the RACH opportunity to which the newly selected synchronous broadcast block is mapped among the RACH opportunities to which the synchronous broadcast block indicated by the SIB1 may be mapped. That is, the terminal device does not need to acquire the RACH opportunity to which the synchronous broadcast block may be mapped again.
  • the two synchronous broadcast blocks may The RACH opportunity that is mapped to is different.
  • the terminal device needs to decode the newly selected synchronous broadcast block, obtain the PDCCH information for scheduling the SIB1 corresponding to the synchronous broadcast block, and obtain the new SIB1 by detecting the PDCCH, so as to obtain the new SIB1 from the new SIB1. Get the RACH opportunity to which the newly selected synchronous broadcast block may be mapped.
  • Such an approach will lead to a longer time delay for the terminal device to switch the frequency domain position, affect the random access speed of the terminal device, and increase the energy consumption of the terminal device.
  • the technical solutions of the embodiments of the present application are provided.
  • the technical solutions provided in the embodiments of this application can be applied to the 4th generation (4G) 4G system, such as the LTE system, or can be applied to the 5G system, such as the NR system, or can also be applied to the next generation of mobile communication technology.
  • Communication systems or other similar communication systems are not specifically restricted.
  • Figure 3 includes network equipment and terminal equipment.
  • the terminal equipment is connected to a network equipment.
  • the number of terminal devices in FIG. 3 is just an example.
  • a network device can provide services for multiple terminal devices.
  • the network device in FIG. 3, and each of the terminal devices or all of the terminal devices among the multiple terminal devices can implement the technical solutions provided in the embodiments of the present application.
  • the terminal device in Fig. 3 uses a mobile phone as an example, which is not limited to this in practical applications.
  • the network device in FIG. 3 is, for example, an access network device, such as a base station, or may also be a device such as an RSU.
  • the base station corresponds to different devices in different systems.
  • the base station can correspond to an eNB
  • a 5G system it can correspond to a gNB.
  • the technical solutions provided by the embodiments of the present application can also be applied to future mobile communication systems. Therefore, the network equipment in FIG. 3 can also correspond to the access network equipment in the future mobile communication system.
  • FIG. 4 is a flowchart of the method.
  • the application of this method to the network architecture shown in FIG. 3 is taken as an example.
  • the terminal device receives a first synchronous broadcast block located at a first frequency domain position from a network device.
  • the terminal device receives a second synchronous broadcast block located at a second frequency domain position from the network device.
  • S401 is located before S402 in FIG. 4, the timing of these steps is not limited to this. S401 can be performed after S402, or can be performed simultaneously with S402.
  • the frequency domain position may also be called a frequency point, and may be represented by a channel number marking a synchronization broadcast block, such as a global synchronization channel number (Global Synchronization Channel Number, GSCN).
  • GSCN Global Synchronization Channel Number
  • the first synchronous broadcast block and the second synchronous broadcast block may belong to the same synchronous broadcast set.
  • the synchronous broadcast set in addition to the first synchronous broadcast block and the second synchronous broadcast block, other synchronous broadcast blocks located in the first frequency domain and/or other synchronous broadcast blocks located in the second frequency domain may also be included.
  • the synchronous broadcast set may also include synchronous broadcast blocks located in other frequency domains.
  • the first frequency domain position may be frequency domain position 1, and the second frequency domain position may be frequency domain position 2.
  • the first synchronous broadcast block may be the synchronous broadcast block #1 located at the frequency domain position 1
  • the second synchronous broadcast block may be the synchronous broadcast block #1 located at the frequency domain position 2.
  • the terminal device determines the RACH opportunity corresponding to the second frequency domain position.
  • the RACH opportunity corresponding to the second frequency domain position there are different ways of determining the RACH opportunity corresponding to the second frequency domain position, which will be described in detail later.
  • the mapping of synchronous broadcast blocks and RACH opportunities at different frequency domain positions are independent of each other. That is, there are RACH opportunities corresponding to the first frequency domain position and RACH opportunities corresponding to the second frequency domain position respectively.
  • the synchronous broadcast block located in the first frequency domain position will only be mapped to the RACH opportunity corresponding to the first frequency domain position
  • the synchronous broadcast block located in the second frequency domain position will only be mapped to the RACH opportunity corresponding to the second frequency domain position.
  • the RACH opportunities corresponding to frequency domain position 1 are RACH opportunities 1 and 2 below
  • the RACH opportunities corresponding to frequency domain position 2 are RACH opportunities 1 and RACH opportunity 2 above.
  • the terminal device determines the RACH opportunity to which the second synchronous broadcast block is mapped among the RACH opportunities corresponding to the second frequency domain position according to the transmission situation of the synchronous broadcast block located at the second frequency domain position.
  • the network device determines the RACH opportunity to which the second synchronous broadcast block is mapped among the RACH opportunities corresponding to the second frequency domain position according to the transmission situation of the synchronous broadcast block located at the second frequency domain position.
  • mapping relationship between synchronous broadcast blocks and RACH opportunities does not necessarily have a one-to-one correspondence.
  • One synchronous broadcast block can be mapped to multiple RACH opportunities, and multiple synchronous broadcast blocks can also be mapped to one RACH opportunity.
  • the synchronous broadcast block located in the second frequency domain may refer to all the synchronous broadcast blocks located in the second frequency domain in the synchronous broadcast set.
  • the sending status of the synchronous broadcast block refers to whether the synchronous broadcast block is actually sent. It can be seen from Figure 2C and Figure 2D that when the sending conditions of the synchronous broadcast blocks in the same synchronous broadcast set are different, the mapping relationship between the sent synchronous broadcast blocks and the RACH opportunity is different.
  • the transmission situation of the synchronous broadcast block located in the second frequency domain may be included in the SIB1 corresponding to the first synchronous broadcast block.
  • the SIB1 corresponding to the first synchronous broadcast block can also include the transmission of synchronous broadcast blocks located in other frequency domains.
  • the SIB1 corresponding to the first synchronous broadcast block can include all synchronizations in the synchronous broadcast set.
  • the sending situation of the broadcast block, or the SIB1 corresponding to the first synchronous broadcast block may include the sending situation of synchronous broadcast blocks located in other frequency domain locations than the first frequency domain location.
  • the transmission status of the synchronous broadcast block at the second frequency domain position may be included in the reserved bits of the SIB1 corresponding to the first synchronous broadcast block.
  • the SIB1 can be divided into a first part and a second part, a terminal device that does not perform synchronous broadcast block frequency division multiplexing only decodes the first part, and a terminal device that performs synchronous broadcast block frequency division multiplexing decodes the first part and the second part.
  • the transmission situation of the synchronous broadcast block at the second frequency domain position may be included in the second part (that is, the part decoded only by the terminal device that performs frequency division multiplexing of the synchronous broadcast block).
  • the terminal device performs random access on the RACH opportunity to which the second synchronous broadcast block is mapped.
  • S405 is located before S406 in FIG. 4, the timing of these steps is not limited to this. S405 may be performed after S406, or may be performed simultaneously with S406.
  • the network device can first determine the mapping relationship between the synchronous broadcast block it actually sends and the RACH opportunity. When the terminal device performs random access on the RACH opportunity to which the second synchronous broadcast block is mapped, the second synchronous broadcast block is mapped according to the second mapping relationship. The mapping relationship of the RACH opportunity to which the synchronous broadcast block is mapped infers the synchronous broadcast block selected by the terminal device.
  • the network device may also determine which frequency domain position the RACH opportunity to which the second synchronous broadcast block is mapped belongs to the RACH opportunity corresponding to which frequency domain when the terminal device performs random access on the RACH opportunity to which the second synchronous broadcast block is mapped. Then determine the mapping relationship between the synchronous broadcast block actually sent at the frequency domain position and the RACH opportunity, and then infer the synchronous broadcast block selected by the terminal device based on the mapping relationship of the RACH opportunity to which the second synchronous broadcast block is mapped in these mapping relationships .
  • the network device can learn the synchronous broadcast block selected by the terminal device.
  • the terminal device determines the RACH opportunity corresponding to the second frequency domain position.
  • the following will specifically introduce a way for the terminal device to determine the RACH opportunity corresponding to the second frequency domain position.
  • the SIB1 corresponding to each synchronous broadcast block includes the indication information of the RACH opportunity corresponding to the frequency domain position where the synchronous broadcast block is located.
  • This scheme can be used to enable the terminal equipment to be able to determine the RACH opportunity corresponding to the frequency domain position.
  • Figure 5 is a flowchart of this method.
  • a terminal device receives a first synchronous broadcast block located at a first frequency domain position from a network device.
  • the terminal device receives a second synchronous broadcast block located at a second frequency domain position from the network device.
  • the terminal device receives the SIB1 corresponding to the first synchronous broadcast block from the network device, and the SIB1 corresponding to the first synchronous broadcast block includes indication information of the RACH opportunity corresponding to the first frequency domain position.
  • the indication information of the RACH opportunity may include frequency domain information and/or time domain information.
  • the indication information of the RACH opportunity may include the start position in the frequency domain, the number of frequency division multiplexing, and the position in the time domain.
  • the frequency domain start position may be the frequency domain position of the RACH opportunity with the lowest frequency domain position among these RACH opportunities.
  • the number of frequency division multiplexing is the number of opportunities for multiplexing RACH in the frequency domain. Taking FIG. 2C as an example, in the indication information of the RACH opportunity corresponding to the frequency domain position 1, the frequency domain start position is the frequency domain position of the RACH opportunity 1 corresponding to the frequency domain position 1, and the number of frequency division multiplexing is 2.
  • the terminal device determines the RACH opportunity corresponding to the second frequency domain position according to the indication information of the RACH opportunity corresponding to the first frequency domain position.
  • the following solutions exist in this embodiment. These schemes can be used in combination. For example, different schemes can be applied to the frequency domain position and time domain position of the RACH opportunity respectively, and different schemes can also be applied to the frequency domain start position and frequency division multiplexing of the RACH opportunity respectively. Use the number. In addition, the examples in each solution can also be used in combination.
  • the terminal device can determine the RACH opportunity corresponding to the second frequency domain position according to the indication information of the RACH opportunity corresponding to the first frequency domain position in combination with a predefined rule.
  • the predefined rule may refer to an association relationship between frequency domain and/or time domain positions of RACH opportunities corresponding to different frequency domain positions, or an association relationship between indication information of RACH opportunities corresponding to different frequency domain positions.
  • the terminal device can infer that the time domain position of the RACH opportunity corresponding to the first frequency domain position may be the same as the time domain position of the RACH opportunity corresponding to the second frequency domain position.
  • the RACH opportunities corresponding to different frequency domain positions may have the same time domain position as a whole, or the time domain position of each RACH opportunity may be the same.
  • the terminal device can infer that the indication information of the RACH opportunity at the first frequency domain position is the same as the indication information of the RACH opportunity corresponding to the second frequency domain position except for the frequency domain start position.
  • the terminal device can infer from this that the number of frequency division multiplexing of the RACH opportunity corresponding to the first frequency domain position is the same as the number of frequency division multiplexing of the RACH opportunity corresponding to the second frequency domain position.
  • the terminal device can determine the second frequency domain position corresponding to the second frequency domain position according to the indication information of the RACH opportunity corresponding to the first frequency domain position, and the index of the first synchronous broadcast block and the index of the second synchronous broadcast block in combination with predefined rules.
  • RACH opportunity For the specific description of the predefined rules, please refer to the corresponding description in the above scheme 1, which will not be repeated here.
  • the index of the first synchronous broadcast block may be the index of the first synchronous broadcast block that only considers the order in the frequency domain
  • the index of the second synchronous broadcast block may be the index of the second synchronous broadcast block that only considers the order in the frequency domain.
  • This kind of index can be referred to as a frequency domain index for short.
  • the frequency domain index of synchronous broadcast block #0 and synchronous broadcast block #1 at frequency domain position 1 can be 0, and the frequency of synchronous broadcast block #0 and synchronous broadcast block #1 at frequency domain position 2
  • the domain index can be 1.
  • the index of the first synchronous broadcast block may be the index of the first synchronous broadcast block considering the order in the frequency domain and time domain
  • the index of the second synchronous broadcast block may be the index of the second synchronous broadcast block considering the frequency domain and time domain.
  • This kind of index can be referred to as an absolute index for short.
  • the absolute index of the synchronous broadcast block #0 at the frequency domain position 1 can be 0, the absolute index of the synchronous broadcast block #1 at the frequency domain position 1 can be 1, and the synchronous broadcast at the frequency domain position 2
  • the absolute index of block #0 may be 2, and the absolute index of synchronous broadcast block #1 located at position 2 in the frequency domain may be 3.
  • any information that can reflect the ordering of a certain frequency domain position in all frequency domain positions involved in a synchronous broadcast block can be used to replace the index of the synchronous broadcast block.
  • the time domain positions and the number of frequency division multiplexing of RACH opportunities corresponding to different frequency domain positions are the same, and the RACH opportunities corresponding to adjacent frequency domain positions are closely arranged in the frequency domain.
  • the adjacent frequency domain positions are not necessarily continuous in the frequency domain, as long as there is no interval between the two frequency domain positions and other frequency domain positions used for transmitting synchronous broadcast blocks can be regarded as adjacent.
  • RACH opportunities that are closely arranged in the frequency domain are not necessarily continuous in the frequency domain, and fixed intervals such as sub-carrier spacing can be regarded as closely arranged.
  • the time domain position of the RACH opportunity corresponding to the first frequency domain position is known, the time domain position of the RACH opportunity corresponding to the second frequency domain position can be directly determined.
  • the frequency domain position if the frequency domain index of the first frequency domain position is 0 and the frequency domain index of the second frequency domain position is 1, then the RACH opportunity corresponding to the first frequency domain position and the RACH opportunity corresponding to the second frequency domain position Are closely arranged.
  • the frequency domain start position of the RACH opportunity corresponding to the second frequency domain position can be inferred accordingly, and The number of frequency division multiplexing at the second frequency domain position can be determined directly according to the number of frequency division multiplexing at the first frequency domain position. Or, if the frequency domain index of the first frequency domain position is 1, and the frequency domain index of the second frequency domain position is 3, the frequency domain start position and frequency division multiplexing of the RACH opportunity corresponding to the first frequency domain position may also be used. The number infers the interval in the frequency domain between the RACH opportunity corresponding to the first frequency domain position and the RACH opportunity corresponding to the second frequency domain position, thereby determining the frequency domain starting position of the RACH opportunity corresponding to the second frequency domain position.
  • the terminal device may take the RACH subcarrier spacing and/or the physical uplink shared channel (physical uplink shared channel, PUSCH) subcarrier spacing as consideration factors.
  • the difference between the frequency domain and/or time domain positions of the RACH opportunities corresponding to different frequency points may be an expression related to the subcarrier spacing of RACH and/or the subcarrier spacing of PUSCH.
  • the index of the first synchronous broadcast block and the index of the second synchronous broadcast block may be included in the synchronous broadcast block and/or SIB1.
  • the index of the first synchronous broadcast block and the index of the second synchronous broadcast block may be included in the payload and/or reserved bits of the synchronous broadcast block.
  • the index of the first synchronous broadcast block and the index of the second synchronous broadcast block are included in SIB1, they may be included in the reserved bits of SIB1 and/or decoded only by the terminal device that performs synchronous broadcast block frequency division multiplexing Part.
  • the index of the first synchronous broadcast block and the index of the second synchronous broadcast block may be included in the payload of the first synchronous broadcast block and the second synchronous broadcast block, respectively.
  • the index of the first synchronous broadcast block is included in the payload of the first synchronous broadcast block
  • the index of the second synchronous broadcast block is included in the SIB1 corresponding to the first synchronous broadcast block.
  • the index of the second synchronous broadcast block will be included in the payload of the second synchronous broadcast block
  • the index of the first synchronous broadcast block will be included in the SIB1 corresponding to the second synchronous broadcast block.
  • the terminal device can perform random access without acquiring the SIB1 corresponding to the second synchronous broadcast block.
  • the index of the first synchronous broadcast block and the index of the second synchronous broadcast block may both be included in the SIB1 corresponding to the first synchronous broadcast block.
  • the SIB1 corresponding to the first synchronous broadcast block may also include the indexes of other synchronous broadcast blocks.
  • the SIB1 corresponding to the first synchronous broadcast block may include the indexes of all the synchronous broadcast blocks in the synchronous broadcast set, or ,
  • the SIB1 corresponding to the first synchronous broadcast block may include indexes of other synchronous broadcast blocks except the first synchronous broadcast block.
  • the terminal device may first determine the RACH opportunity corresponding to the first frequency domain position according to the indication information of the RACH opportunity corresponding to the first frequency domain position, and then determine the RACH opportunity corresponding to the second frequency domain position according to the RACH opportunity corresponding to the first frequency domain position RACH opportunity. It is also possible to determine the RACH opportunity corresponding to the second frequency domain position directly according to the indication information of the RACH opportunity corresponding to the first frequency domain position. This application does not limit this.
  • the terminal device determines the RACH opportunity to which the second synchronous broadcast block is mapped among the RACH opportunities corresponding to the second frequency domain position according to the transmission situation of the synchronous broadcast block located at the second frequency domain position.
  • the network device determines the RACH opportunity to which the second synchronous broadcast block is mapped among the RACH opportunities corresponding to the second frequency domain position according to the transmission situation of the synchronous broadcast block located at the second frequency domain position.
  • the terminal device performs random access on the RACH opportunity to which the second synchronous broadcast block is mapped.
  • S506 is located after S503 in FIG. 5, the timing of these steps is not limited to this.
  • S506 can be performed before S503, or can be performed simultaneously with S503.
  • the network device can first determine the mapping relationship between the synchronous broadcast block it actually sends and the RACH opportunity.
  • the terminal device performs random access on the RACH opportunity to which the second synchronous broadcast block is mapped, the second synchronous broadcast block is mapped according to the second mapping relationship.
  • the mapping relationship of the RACH opportunity to which the synchronous broadcast block is mapped infers the synchronous broadcast block selected by the terminal device.
  • the network device may also determine which frequency domain position the RACH opportunity to which the second synchronous broadcast block is mapped belongs to the RACH opportunity corresponding to which frequency domain when the terminal device performs random access on the RACH opportunity to which the second synchronous broadcast block is mapped. Then determine the mapping relationship between the synchronous broadcast block actually sent at the frequency domain position and the RACH opportunity, and then infer the synchronous broadcast block selected by the terminal device based on the mapping relationship of the RACH opportunity to which the second synchronous broadcast block is mapped in these mapping relationships .
  • the terminal device can infer the RACH opportunities corresponding to other frequency domain positions based on the RACH opportunities corresponding to a certain frequency domain position. Therefore, even if the terminal device switches to a new frequency domain location for random access, it does not need to receive SIB1 repeatedly, which shortens the time delay of the terminal device switching frequency domain location, accelerates the random access speed of the terminal device, and reduces the terminal device’s Energy consumption.
  • the content included in the SIB1 in the existing solution can be extended, so that the SIB1 corresponding to each synchronous broadcast block not only includes the indication information of the RACH opportunity corresponding to the frequency domain position where the synchronous broadcast block is located, but also includes other frequency domain position correspondences. All or part of the indication information of the RACH opportunity.
  • the content included in the synchronous broadcast block in the existing solution can be extended, so that each synchronous broadcast block includes all or part of the indication information of the RACH opportunity corresponding to the frequency domain position where the synchronous broadcast block is located.
  • the terminal device may obtain the remaining indication information through a predefined method or the like.
  • Figure 6 is a flowchart of this method.
  • the terminal device receives a first synchronous broadcast block located at a first frequency domain position from a network device.
  • the terminal device receives the second synchronous broadcast block located in the second frequency domain from the network device.
  • the terminal device receives the SIB1 corresponding to the first synchronous broadcast block from the network device, and the SIB1 corresponding to the first synchronous broadcast block includes indication information of the RACH opportunity corresponding to the first frequency domain position.
  • the SIB1 corresponding to the first synchronous broadcast block may also include indication information of the RACH opportunity corresponding to the second frequency domain position, which is described in detail in the following scheme 1.
  • the indication information of the RACH opportunity corresponding to the second frequency domain position may also be included in the second SSB, which is described in detail in the following scheme 2.
  • different schemes can be applied to the frequency domain position and time domain position of the RACH opportunity respectively, and different schemes can also be applied to the frequency domain start position and frequency division multiplexing of the RACH opportunity respectively. Use the number.
  • the examples in each solution can also be used in combination.
  • the indication information of the RACH opportunity corresponding to the second frequency domain position may be included in the SIB1 corresponding to the first synchronous broadcast block.
  • the indication information of the RACH opportunity corresponding to the second frequency domain position will also be included in the SIB1 corresponding to the second synchronous broadcast block, but in the embodiment of this application, the terminal device does not need to obtain the SIB1 corresponding to the second synchronous broadcast block. Random access can be performed.
  • the SIB1 corresponding to the first synchronous broadcast block may also include indication information of the RACH opportunity corresponding to other frequency domain positions.
  • the SIB1 corresponding to the first synchronous broadcast block may The indication information of RACH opportunities corresponding to all frequency domain positions is included, or the SIB1 corresponding to the first synchronous broadcast block may include indication information of RACH opportunities corresponding to other frequency domain positions except the first frequency domain position.
  • the terminal device may determine which part of the indication information of the RACH opportunity in the SIB1 is the indication information of the RACH opportunity corresponding to the second frequency domain position where the second synchronous broadcast block is located according to the index of the second synchronous broadcast block.
  • the indication information of the RACH opportunity corresponding to the second frequency domain position may be included in the reserved bits of the SIB1 and/or only the part decoded by the terminal device that performs synchronous broadcast block frequency division multiplexing.
  • the indication information of the RACH opportunity corresponding to the first frequency domain position may be included in the regular bit of SIB1
  • the indication information of the RACH opportunity corresponding to the second frequency domain position may be included in the reserved bit of SIB1.
  • the indication information of the RACH opportunity corresponding to the first frequency domain position may be included in the first part of SIB1 (that is, it can be decoded by terminal equipment that does not perform synchronous broadcast block frequency division multiplexing, but can also be frequency division multiplexed.
  • the indication information of the RACH opportunity corresponding to the second frequency domain position may be included in the second part of SIB1 (that is, only the part that is decoded by the terminal device that performs synchronous broadcast block frequency division multiplexing) in.
  • the indication information of the RACH opportunity corresponding to the second frequency domain position may be included in the second synchronous broadcast block.
  • the indication information of the RACH opportunity corresponding to the first frequency domain position may also be included in the first synchronous broadcast block.
  • the terminal device in this embodiment may or may not need to obtain the first synchronous broadcast block from the first synchronous broadcast block.
  • the indication information of the RACH opportunity corresponding to the frequency domain position From the perspective of the entire system, the indication information of the RACH opportunity corresponding to the first frequency domain position in the first synchronous broadcast block can be used by other terminal devices that have reselected the first synchronous broadcast block.
  • the indication information of the RACH opportunity corresponding to the second frequency domain position may be included in the payload and/or reserved bits of the second synchronous broadcast block.
  • the indication information of the RACH opportunity corresponding to the first frequency domain position may also be included in the payload and/or reserved bits of the first synchronous broadcast block.
  • the indication information of the RACH opportunity corresponding to the second frequency domain position may be only part of the indication information of the RACH opportunity corresponding to the second frequency domain position, and the remaining indication information may be indicated in other ways , Such as combining with mode one.
  • the terminal device may determine the remaining indication information according to the indication information of the RACH opportunity at the first frequency domain position through a predefined rule. For example, it may be agreed in advance that part of the indication information of the RACH opportunity corresponding to different frequency domain positions is the same.
  • the SIB1 corresponding to the first synchronous broadcast block may include the indication information of the RACH opportunity corresponding to the first frequency domain position and the second frequency domain position.
  • the part of the indication information of the RACH opportunity corresponding to the first frequency domain position that is the same as the indication information of the RACH opportunity corresponding to the second frequency domain position is essentially also the indication information of the RACH opportunity corresponding to the second frequency domain position.
  • the indication information of the RACH opportunity corresponding to the first frequency domain position may be Including the frequency domain start position, the number of frequency division multiplexing and the time domain position of the RACH opportunity corresponding to the first frequency domain position, and the indication information of the RACH opportunity corresponding to the second frequency domain position may include the frequency domain corresponding to the second frequency domain position starting point.
  • the first part of SIB1 may include the frequency domain start position, frequency division multiplexing number, and time domain position of the RACH opportunity corresponding to the first frequency domain position
  • the second part of SIB1 may include the second frequency domain position. The number of frequency division multiplexing corresponding to the domain position and the starting position of the frequency domain.
  • the indication information of the RACH opportunity corresponding to the first frequency domain position may include the first frequency domain.
  • the indication information of the RACH opportunity corresponding to the second frequency domain position may include the frequency division multiplexing number and frequency corresponding to the second frequency domain position. The starting position of the domain.
  • the first part of SIB1 may include the frequency domain start position, frequency division multiplexing number, and time domain position of the RACH opportunity corresponding to the first frequency domain position
  • the second synchronous broadcast block may include the second frequency domain position. The number of frequency division multiplexing corresponding to the domain position and the starting position of the frequency domain.
  • the terminal device determines the RACH opportunity corresponding to the second frequency domain position according to the indication information of the RACH opportunity corresponding to the second frequency domain position.
  • the terminal device determines the RACH opportunity to which the second synchronous broadcast block is mapped among the RACH opportunities corresponding to the second frequency domain position according to the transmission situation of the synchronous broadcast block located at the second frequency domain position.
  • the network device determines the RACH opportunity to which the second synchronous broadcast block is mapped among the RACH opportunities corresponding to the second frequency domain position according to the transmission situation of the synchronous broadcast block located at the second frequency domain position.
  • the terminal device performs random access on the RACH opportunity to which the second synchronous broadcast block is mapped.
  • S605, S606, and S607 please refer to the corresponding descriptions in S404, S405, and S406, and the corresponding descriptions in S505, S506, and S507, respectively, which will not be repeated here.
  • the terminal device can determine the RACH opportunities corresponding to other frequency domain locations based on the information in the SIB1 corresponding to the synchronized broadcast block located at a certain frequency domain location, or the terminal device can determine the RACH opportunities corresponding to other frequency domain locations based on the synchronization at a certain frequency domain location.
  • the information in the SIB1 corresponding to the broadcast block is combined with the information in the synchronous broadcast block located in other frequency domain locations and/or predefined information to determine the RACH opportunity corresponding to other frequency domain locations.
  • the terminal device switches to a new frequency domain location for random access, it does not need to receive SIB1 repeatedly, which shortens the time delay of the terminal device switching frequency domain location, accelerates the random access speed of the terminal device, and reduces the terminal device’s Energy consumption.
  • the design of SIB1 and synchronous broadcast block in the existing scheme can be used.
  • the network device After the terminal device completes random access, the network device sends other frequency domain positions to the terminal device through radio resource control (radio resource control, RRC) signaling or PDCCH.
  • RRC radio resource control
  • PDCCH Physical Downlink Control Channel
  • a terminal device receives a first synchronous broadcast block located at a first frequency domain position from a network device.
  • the terminal device receives the second synchronous broadcast block located in the second frequency domain from the network device.
  • the terminal device receives the SIB1 corresponding to the first synchronous broadcast block from the network device, and the SIB1 corresponding to the first synchronous broadcast block includes indication information of the RACH opportunity corresponding to the first frequency domain position.
  • the terminal device determines the RACH opportunity corresponding to the first frequency domain position according to the indication information of the RACH opportunity corresponding to the first frequency domain position.
  • the terminal device determines the RACH opportunity to which the first synchronous broadcast block is mapped among the RACH opportunities corresponding to the first frequency domain position according to the transmission situation of the synchronous broadcast block located at the first frequency domain position.
  • the network device determines the RACH opportunity to which the first synchronous broadcast block is mapped among the RACH opportunities corresponding to the first frequency domain position according to the transmission situation of the synchronous broadcast block located at the first frequency domain position.
  • the terminal device performs random access on the RACH opportunity to which the first synchronous broadcast block is mapped.
  • the terminal device receives RRC signaling or PDCCH from the network device, and the RRC signaling or PDCCH includes indication information of the RACH opportunity corresponding to the second frequency domain position.
  • RRC signaling or PDCCH may also include indication information of RACH opportunities corresponding to other frequency domain positions.
  • RRC signaling or PDCCH may include indication information of RACH opportunities corresponding to all frequency domain positions, or, The RRC signaling or PDCCH may include indication information of RACH opportunities corresponding to other frequency domain positions except the first frequency domain position.
  • the terminal device may determine which part of the indication information of the RACH opportunity in the SIB1 is the indication information of the RACH opportunity corresponding to the second frequency domain position where the second synchronous broadcast block is located according to the index of the second synchronous broadcast block.
  • the RRC signaling or PDCCH may only include part of the indication information of the RACH opportunity corresponding to the second frequency domain position, and the remaining indication information may be indicated in other ways, such as the first and/or mode Combine the two.
  • the terminal device may determine the remaining indication information according to the indication information of the RACH opportunity at the first frequency domain position through a predefined rule. For example, it may be agreed in advance that part of the indication information of the RACH opportunity corresponding to different frequency domain positions is the same.
  • the RRC signaling or PDCCH may include the indication information of the RACH opportunity corresponding to the second frequency domain position and the first frequency domain position. Corresponding to the different part of the indication information of the RACH opportunity.
  • the RRC signaling or PDCCH may also include the transmission status of the synchronous broadcast block located in the second frequency domain and/or the index of the second synchronous broadcast block.
  • the RRC signaling or PDCCH may also include the transmission status of the synchronized broadcast block corresponding to other frequency domain positions and/or the index of other synchronized broadcast blocks.
  • the RRC signaling or PDCCH may include the synchronization The transmission status and/or index of all synchronized broadcast blocks in the broadcast set, or the RRC signaling or PDCCH may include the transmission status of synchronized broadcast blocks located in other frequency domain locations than the first frequency domain location and/or except The index of other synchronous broadcast blocks other than the first synchronous broadcast block.
  • the terminal device After the terminal device successfully accesses the cell through S707, it may need to perform random access again. For example, the terminal device may need to return from the RRC inactive state to the RRC connected state. At this time, if the terminal device selects the second synchronous broadcast block located in the second frequency domain, it can determine the RACH opportunity to which the second synchronous broadcast block is mapped based on the information received in S708.
  • the terminal device determines the RACH opportunity corresponding to the second frequency domain position according to the indication information of the RACH opportunity corresponding to the second frequency domain position.
  • the terminal device determines the RACH opportunity to which the second synchronous broadcast block is mapped among the RACH opportunities corresponding to the second frequency domain position according to the transmission situation of the synchronous broadcast block located at the second frequency domain position.
  • the network device determines the RACH opportunity to which the second synchronous broadcast block is mapped among the RACH opportunities corresponding to the second frequency domain position according to the transmission situation of the synchronous broadcast block located at the second frequency domain position.
  • the terminal device performs random access on the RACH opportunity to which the second synchronous broadcast block is mapped.
  • S706 and S711 are two steps in FIG. 7, and S706 is located before S707, and S711 is located after S708 and before S712, but S706 and S711 may be one step, and the timing of these steps is not limited to this.
  • S706 can be performed after S707, or simultaneously with S707.
  • S711 can be performed before S708 or even S707, can be performed after S711, or can be performed simultaneously with these steps.
  • the terminal device can learn the RACH opportunities corresponding to other frequency domain positions through RRC signaling or PDCCH after random access. Therefore, if the terminal device needs to perform random access again for some reasons after accessing the cell, even if the synchronous broadcast block selected by the terminal device at this time is a synchronous broadcast block in another frequency domain, there is no need to repeatedly receive SIB, which shortens
  • the time delay for the terminal device to switch the frequency domain position speeds up the random access speed of the terminal device and reduces the energy consumption of the terminal device.
  • terminal equipment that does not perform synchronous broadcast block frequency division multiplexing (including terminal equipment that does not support synchronous broadcast block frequency division multiplexing, and terminal equipment that supports synchronous broadcast block frequency division multiplexing but does not perform synchronous broadcast block frequency division multiplexing The device) will default that the synchronous broadcast blocks in a synchronous broadcast set are all sent on a frequency domain position.
  • Such a terminal device can only select a synchronous broadcast block located at one frequency domain position when performing random access, and cannot select a synchronous broadcast block located at another frequency domain position. In this way, there is no need to modify the design of the SIB1 and the synchronous broadcast block in the existing solution, which reduces the impact on terminal equipment that does not perform synchronous broadcast block frequency division multiplexing.
  • the degree of association (for example, similarity) between RACH opportunities corresponding to different frequency domain positions may affect the time delay of the terminal switching frequency domain positions and/or the energy consumption of the terminal device. For example, if the degree of correlation between the RACH opportunities corresponding to different frequency domain locations is high, then in mode one, the terminal device may spend a shorter time and/or less energy consumption to determine the second frequency domain location RACH opportunity. Or, if the degree of association between the RACH opportunities corresponding to different frequency domain positions is high, then in the second way, the indication information of the RACH opportunities corresponding to other frequency domain positions included in the SIB1 may be less.
  • the indication information of the RACH opportunities corresponding to other frequency domain positions included in the RRC signaling or the PDCCH may be less. Therefore, the RACH opportunity and the indication information of the RACH opportunity can be designed according to this idea.
  • RACH opportunities the following options can be considered. These programs can be used in combination.
  • the time domain positions of the RACH opportunities corresponding to different frequency domain positions may be the same. That is, the time domain position of the RACH opportunity corresponding to the first frequency domain position may be the same as the time domain position of the RACH opportunity corresponding to the second frequency domain position.
  • the time domain position of the RACH opportunity corresponding to the first frequency domain position may be the same as the time domain position of the RACH opportunity corresponding to the second frequency domain position.
  • RACH opportunities corresponding to different frequency domain positions may not overlap. That is, the RACH opportunity corresponding to the first frequency domain position may not overlap with the RACH opportunity corresponding to the second frequency domain position.
  • the non-overlap here is not limited to whether it does not overlap in the time domain or the frequency domain, as long as it does not overlap in the integrated time and frequency domain.
  • the time domain positions of the RACH opportunities corresponding to different frequency domain positions are set to be the same, and the RACH opportunities corresponding to different frequency domain positions are set to non-overlapping, the non-overlapping here is equivalent to non-overlapping in the frequency domain.
  • the RACH opportunities corresponding to adjacent frequency domain positions may be closely arranged in the frequency domain and/or the time domain. That is, the RACH opportunities corresponding to the first frequency domain position may be closely aligned with the RACH opportunities corresponding to the second frequency domain position in the frequency domain and/or the time domain.
  • the time domain positions of the RACH opportunities corresponding to different frequency domain positions are set to be the same, the RACH opportunities corresponding to different frequency domain positions can only be closely arranged in the frequency domain.
  • the adjacent and close arrangement please refer to the corresponding description in S504, which will not be repeated here.
  • the lower RACH opportunity 1 and RACH opportunity 2 are RACH opportunities corresponding to frequency domain position 1
  • the upper RACH opportunity 1 and RACH opportunity 2 are RACH opportunities corresponding to frequency domain position 2. It can be seen that the time domain positions of these 4 RACH opportunities are all the same, and these RACH opportunities do not overlap with each other and are closely arranged in the frequency domain.
  • Solution 1 In the indication information of the RACH opportunity corresponding to different frequency domain positions, the start position of the frequency domain is different, and other information (for example, the number of frequency division multiplexing and time domain information) may be the same. That is, the indication information of the RACH opportunity at the first frequency domain position is compared with the indication information of the RACH opportunity corresponding to the second frequency domain position, and the frequency domain start position of the RACH opportunity corresponding to the first frequency domain position is different from that of the second frequency domain position. The frequency domain start position of the RACH opportunity corresponding to the position is different, and other information may be the same.
  • the time domain positions of the RACH opportunities corresponding to different frequency domain positions can be the same. That is, the time domain position of the RACH opportunity corresponding to the first frequency domain position may be the same as the time domain position of the RACH opportunity corresponding to the second frequency domain position.
  • Solution 3 The number of frequency division multiplexing of RACH opportunities corresponding to different frequency domain positions can be the same. That is, the number of frequency division multiplexing of RACH opportunities corresponding to the first frequency domain position may be the same as the number of frequency division multiplexing of RACH opportunities corresponding to the second frequency domain position.
  • FIG. 8 is a schematic block diagram of a terminal device 800 according to an embodiment of the application.
  • the terminal device 800 includes a processing module 810 and a transceiver module 820.
  • the terminal device 800 may be a terminal device, or may be a chip applied to the terminal device or other combination devices, components, etc. having the above-mentioned terminal device functions.
  • the transceiver module 820 may be a transceiver
  • the transceiver may include an antenna and a radio frequency circuit, etc.
  • the processing module 810 may be a processor
  • the processor may include one or more central processing units (central processing units). unit, CPU).
  • the transceiver module 820 may be a radio frequency unit, and the processing module 810 may be a processor, such as a baseband processor.
  • the transceiver module 820 may be an input/output interface of a chip (such as a baseband chip), and the processing module 810 may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 810 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component, and the transceiver module 820 may be implemented by a transceiver or a transceiver-related circuit component.
  • the processing module 810 may be used to perform all operations performed by the terminal device in the foregoing method embodiments except for the transceiving operations, and/or other processes used to support the technology described herein.
  • the transceiver module 820 may be used to perform all the receiving operations performed by the terminal device in the foregoing method embodiments, and/or used to support other processes of the technology described herein.
  • the transceiver module 820 can be a functional module that can complete both sending and receiving operations.
  • the transceiver module 820 can be used to perform all the sending and receiving operations performed by the terminal device in the foregoing method embodiments, for example, When performing a sending operation, the transceiver module 820 can be considered as a sending module, and when performing a receiving operation, the transceiver module 820 can be considered as a receiving module; or, the transceiver module 820 can also be two functional modules, and the transceiver module can be regarded as These two functional modules are collectively referred to as the sending module and the receiving module.
  • the sending module is used to complete the sending operation.
  • the sending module can be used for all the sending operations performed by the terminal device in the above method embodiment.
  • the receiving module is used to complete the receiving operation.
  • the receiving module may be used to perform all the receiving operations performed by the terminal device in the foregoing method embodiment.
  • the transceiver module 820 is configured to receive the first synchronous broadcast block located in the first frequency domain.
  • the transceiver module 820 is also configured to receive the second synchronous broadcast block located in the second frequency domain.
  • the processing module 810 is configured to determine the random access channel RACH opportunity corresponding to the second frequency domain position.
  • the processing module 810 is further configured to determine the RACH opportunity to which the second synchronous broadcast block is mapped among the RACH opportunities corresponding to the second frequency domain position according to the transmission situation of the synchronous broadcast block located at the second frequency domain position.
  • the transceiver module 820 is also configured to perform random access on the RACH opportunity to which the second synchronous broadcast block is mapped.
  • the transceiver module 820 is further configured to receive the system information block type SIB1 corresponding to the first synchronous broadcast block, and the SIB1 includes the indication information of the RACH opportunity corresponding to the first frequency domain position; wherein, the processing module 810 It is specifically used to determine the RACH opportunity corresponding to the second frequency domain position according to the indication information of the RACH opportunity corresponding to the first frequency domain position.
  • the processing module 810 is specifically configured to determine the second frequency according to the indication information of the RACH opportunity corresponding to the first frequency domain position, and the index of the first synchronous broadcast block and the index of the second synchronous broadcast block.
  • the index of the first synchronous broadcast block is the index of the first synchronous broadcast block that only considers the order in the frequency domain
  • the index of the second synchronous broadcast block is the index of the second synchronous broadcast block that only considers the frequency.
  • the index of the first synchronous broadcast block is the index of the first synchronous broadcast block considering the order in the frequency domain and the time domain
  • the index of the second synchronous broadcast block is the index of the second synchronous broadcast block. The index of the order in the frequency domain and the time domain.
  • the index of the first synchronous broadcast block and the index of the second synchronous broadcast block are included in SIB1; or, the index of the first synchronous broadcast block is included in the first synchronous broadcast block.
  • the index of the second synchronous broadcast block is included in the second synchronous broadcast block.
  • the transceiver module 820 is further configured to receive the system information block type one SIB1 corresponding to the first synchronous broadcast block, and the SIB1 includes the indication information of the RACH opportunity corresponding to the first frequency domain position; where the second frequency The indication information of the RACH opportunity corresponding to the domain position is included in at least one of the following items: SIB1, and the second synchronous broadcast block; wherein, the processing module 810 is specifically configured to according to the indication information of the RACH opportunity corresponding to the second frequency domain position , To determine the RACH opportunity corresponding to the second frequency domain position.
  • the transceiver module 820 is further configured to receive the system information block type SIB1 corresponding to the first synchronous broadcast block, and the SIB1 includes the indication information of the RACH opportunity corresponding to the first frequency domain position; the processing module 810 also uses In order to determine the RACH opportunity corresponding to the first frequency domain position according to the indication information of the RACH opportunity corresponding to the first frequency domain position; The RACH opportunity corresponding to the frequency domain position determines the RACH opportunity to which the first synchronous broadcast block is mapped; the transceiver module 820 is also used to perform random access at the RACH opportunity to which the first synchronous broadcast block is mapped; the transceiver module 820 is also used to Receive radio resource control RRC signaling or physical downlink control channel PDCCH.
  • SIB1 includes the indication information of the RACH opportunity corresponding to the first frequency domain position
  • the processing module 810 also uses In order to determine the RACH opportunity corresponding to the first frequency domain position according to the indication information of the RACH opportunity corresponding to the first frequency domain position;
  • the RRC signaling or PDCCH includes the indication information of the RACH opportunity corresponding to the second frequency domain position; wherein, the processing module 810 is specifically configured to correspond to the second frequency domain position
  • the indication information of the RACH opportunity in the second frequency domain determines the RACH opportunity corresponding to the second frequency domain position.
  • FIG. 9 is a schematic block diagram of a network device 900 according to an embodiment of the application.
  • the network device 900 includes a processing module 910 and a transceiver module 920.
  • the network device 900 may be a network device, or may be a chip applied to the network device or other combination devices or components having the functions of the above-mentioned network device.
  • the transceiver module 920 may be a transceiver
  • the transceiver may include an antenna and a radio frequency circuit, etc.
  • the processing module 910 may be a processor
  • the processor may include one or more central processing units (central processing units). unit, CPU).
  • the transceiver module 920 may be a radio frequency unit, and the processing module 910 may be a processor, such as a baseband processor.
  • the transceiver module 920 may be an input/output interface of a chip (such as a baseband chip), and the processing module 910 may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 910 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component, and the transceiver module 920 may be implemented by a transceiver or a transceiver-related circuit component.
  • the processing module 910 may be used to perform all operations performed by the network device in the foregoing method embodiments except for the transceiving operation, and/or other processes used to support the technology described herein.
  • the transceiver module 920 may be used to perform all the receiving operations performed by the network device in the foregoing method embodiments, and/or used to support other processes of the technology described herein.
  • the transceiver module 920 may be a functional module that can perform both sending and receiving operations.
  • the transceiver module 920 may be used to perform all the sending and receiving operations performed by the network device in the foregoing method embodiment, for example, When performing a sending operation, the transceiver module 920 can be regarded as a sending module, and when performing a receiving operation, the transceiver module 920 can be regarded as a receiving module; or, the transceiver module 920 can also be two functional modules, and the transceiver module can be regarded as These two functional modules are collectively referred to as the sending module and the receiving module.
  • the sending module is used to complete the sending operation.
  • the sending module can be used for all the sending operations performed by the network device in the above method embodiment.
  • the receiving module is used to complete the receiving operation.
  • the receiving module may be used to perform all the receiving operations performed by the network device in the foregoing method embodiment.
  • the transceiver module 920 is configured to send the first synchronous broadcast block located in the first frequency domain.
  • the transceiver module 920 is also configured to send a second synchronous broadcast block located in a second frequency domain.
  • the processing module 910 is configured to determine the RACH opportunity to which the first synchronous broadcast block is mapped from the random access channel RACH opportunity corresponding to the first frequency domain position according to the sending situation of the synchronous broadcast block located at the first frequency domain position.
  • the processing module 910 is further configured to determine the RACH opportunity to which the second synchronous broadcast block is mapped among the RACH opportunities corresponding to the second frequency domain position according to the transmission situation of the synchronous broadcast block located at the second frequency domain position.
  • the first synchronous broadcast block includes the index of the first synchronous broadcast block
  • the second synchronous broadcast block includes the index of the second synchronous broadcast block
  • the transceiver module 920 is further configured to send the first synchronous broadcast
  • the system information block type 1 SIB1 corresponding to the block, the SIB1 includes the indication information of the RACH opportunity corresponding to the first frequency domain position, and the index of the first synchronous broadcast block and the index of the second synchronous broadcast block.
  • the index of the first synchronous broadcast block is the index of the first synchronous broadcast block that only considers the order in the frequency domain
  • the index of the second synchronous broadcast block is the index of the second synchronous broadcast block that only considers the frequency.
  • the index of the first synchronous broadcast block is the index of the first synchronous broadcast block considering the order in the frequency domain and the time domain
  • the index of the second synchronous broadcast block is the index of the second synchronous broadcast block. The index of the order in the frequency domain and the time domain.
  • the transceiver module 920 is further configured to send the system information block type-1 SIB1 corresponding to the first synchronous broadcast block, and the SIB1 includes the indication information of the RACH opportunity corresponding to the first frequency domain position; wherein, the second frequency
  • the indication information of the RACH opportunity corresponding to the domain location is included in at least one of the following items: SIB1, and the second synchronous broadcast block.
  • the transceiver module 920 is further configured to send the system information block type one SIB1 corresponding to the first synchronous broadcast block, and the SIB1 includes the indication information of the RACH opportunity corresponding to the first frequency domain position; the transceiver module 920 also uses In the case that the terminal device performs random access on the RACH opportunity to which the first synchronous broadcast block is mapped, the radio resource control RRC signaling or the physical downlink control channel PDCCH is sent to the terminal device, and the RRC signaling or PDCCH includes The indication information of the RACH opportunity corresponding to the second frequency domain position.
  • the embodiment of the present application also provides a communication device, and the communication device may be a terminal device or a circuit.
  • the communication device can be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 10 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 10 only one memory and processor are shown in FIG. 10. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with transceiving functions can be regarded as the transceiving unit of the terminal device (the transceiving unit can be a functional unit that can realize the sending and receiving functions; or the transceiving unit can also be It includes two functional units, namely a receiving unit capable of realizing the receiving function and a transmitting unit capable of realizing the transmitting function), and the processor with the processing function is regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1010 and a processing unit 1020.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1010 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1010 as the sending unit, that is, the transceiver unit 1010 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1010 is used to perform the sending and receiving operations on the terminal device side in the foregoing method embodiment, and the processing unit 1020 is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • the device may include a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit and/or a communication interface;
  • the processing unit is an integrated processor or microprocessor or integrated circuit.
  • the communication device in this embodiment is a terminal device
  • the device shown in FIG. 11 can be referred to.
  • the channel encoder and the channel decoder are shown in FIG. 11, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • Fig. 12 shows another form of this embodiment.
  • the processing device 1200 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as the modulation subsystem therein.
  • the modulation subsystem may include a processor 1203 and an interface 1204.
  • the modulation subsystem includes a memory 1206, a processor 1203, and a program stored in the memory 1206 and running on the processor.
  • the terminal device in the above method embodiment is implemented. method.
  • the memory 1206 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1200, as long as the memory 1206 can be connected to the processor 1203. .
  • the device 1300 includes one or more radio frequency units, such as a remote radio unit (RRU) 1310 and one or more baseband units (BBU) (also referred to as a digital unit, digital unit, DU) 1320 .
  • RRU 1310 may be called a transceiver module, and the transceiver module may include a transmitting module and a receiving module, or the transceiver module may be a module capable of implementing the transmitting function and the receiving function.
  • the transceiver module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 1311 and a radio frequency unit 1312.
  • the RRU 1310 part is mainly used for receiving and sending radio frequency signals and the conversion between radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the BBU1310 part is mainly used for baseband processing and control of the base station.
  • the RRU 1310 and the BBU 1320 can be physically set together, or physically separated, that is, a distributed base station.
  • the BBU 1320 is the control center of the base station, and can also be called a processing module. It is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU 1320 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 1320 can be composed of one or more single boards, and multiple single boards can jointly support a single access standard radio access network (such as an LTE network), and can also support different access standard radio access networks. Access to the network (such as LTE network, 5G network or other networks).
  • the BBU 1320 also includes a memory 1321 and a processor 1322.
  • the memory 1321 is used to store necessary instructions and data.
  • the processor 1322 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation flow of the network device in the foregoing method embodiment.
  • the memory 1321 and the processor 1322 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the embodiment of the present application provides a communication system.
  • the communication system may include the network equipment involved in the foregoing method embodiments and the terminal equipment involved in the foregoing method embodiments.
  • the terminal device is, for example, the terminal device 800 in FIG. 8.
  • the network device is, for example, the network device 900 in FIG. 9.
  • the embodiments of the present application also provide a computer-readable storage medium that stores a computer program.
  • the computer program When executed by a computer, the computer can implement the process related to the terminal device in the foregoing method embodiment.
  • the embodiments of the present application also provide a computer-readable storage medium for storing a computer program.
  • the computer program When executed by a computer, the computer can implement the process related to the network device in the foregoing method embodiment.
  • the embodiments of the present application also provide a computer program product, which is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the process related to the terminal device in the above method embodiment.
  • the embodiments of the present application also provide a computer program product for storing a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the process related to the network device in the foregoing method embodiment.
  • processors mentioned in the embodiments of this application may be a CPU, other general-purpose processors, digital signal processors (digital signal processors, DSP), application specific integrated circuits (ASICs), ready-made Field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the above-mentioned units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法及装置。终端设备从网络设备接收位于第一频域位置的第一同步广播块,并从网络设备接收位于第二频域位置的第二同步广播块。终端设备确定第二频域位置对应的随机接入信道机会。终端设备根据位于第二频域位置的同步广播块的发送情况,在第二频域位置对应的随机接入信道机会中确定第二同步广播块被映射到的随机接入信道机会,从而在第二同步广播块被映射到的随机接入信道机会上进行随机接入。相应地,网络设备也根据位于第二频域位置的同步广播块的发送情况,在第二频域位置对应的随机接入信道机会中确定第二同步广播块被映射到的随机接入信道机会。通过这种方式,在应用同步广播块频分复用时,网络设备能够获知终端设备所选择的同步广播块。

Description

一种通信方法及装置 技术领域
本申请涉及移动通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在现有方案中,一个同步广播集中的同步广播块均在一个频域位置上被发送。为了降低网络设备的功耗,可以应用同步广播块频分复用,即,同一个同步广播集中的同步广播块可以位于多个频域位置。
当终端设备进行随机接入时,会选择一个同步广播块,在该同步广播块被映射到的随机接入信道机会进行随机接入。在应用了同步广播块频分复用的情况下,如果沿用现有的同步广播块与随机接入信道机会的映射方式,网络设备可能无法获知终端设备所选择的同步广播块。
发明内容
本申请实施例提供一种通信方法、装置及设备,用于在应用同步广播块频分复用时,使得网络设备能够获知终端设备所选择的同步广播块。
第一方面,提供第一种通信方法,该方法包括:接收位于第一频域位置的第一同步广播块;接收位于第二频域位置的第二同步广播块;确定第二频域位置对应的随机接入信道RACH机会;根据位于第二频域位置的同步广播块的发送情况,在第二频域位置对应的RACH机会中确定第二同步广播块被映射到的RACH机会;在第二同步广播块被映射到的RACH机会上进行随机接入。
该方法可由第一通信装置执行,第一通信装置可以是终端设备,或者设置在终端设备中的用于实现终端设备的功能的芯片,或者用于实现终端设备的功能的其他部件。
通过该方法,能够在应用同步广播块频分复用时,使得网络设备获知终端设备所选择的同步广播块。
在一种可选的实施方式中,该方法还包括:接收第一同步广播块对应的系统信息块类型一SIB1,SIB1包括第一频域位置对应的RACH机会的指示信息;其中,确定第二频域位置对应的RACH机会,包括:根据第一频域位置对应的RACH机会的指示信息,确定第二频域位置对应的RACH机会。
通过这种方式,终端设备即使切换到新的频域位置进行随机接入,也无需重复接收SIB1,缩短了终端设备切换频域位置的时延,加快终端设备的随机接入速度,且降低了终端设备的能耗。
在一种可选的实施方式中,根据第一频域位置对应的RACH机会的指示信息,确定第二频域位置对应的RACH机会,包括:根据第一频域位置对应的RACH机会的指示信息、以及第一同步广播块的索引和第二同步广播块的索引,确定第二频域位置对应的RACH机会。
在一种可选的实施方式中,第一同步广播块的索引为第一同步广播块的仅考虑频域上的顺序的索引,第二同步广播块的索引为第二同步广播块的仅考虑频域上的顺序的索引; 或者,第一同步广播块的索引为第一同步广播块的考虑频域和时域上的顺序的索引,第二同步广播块的索引为第二同步广播块的考虑频域和时域上的顺序的索引。
在一种可选的实施方式中,第一同步广播块的索引和第二同步广播块的索引被包括在SIB1中;或者,第一同步广播块的索引被包括在第一同步广播块中,第二同步广播块的索引被包括在第二同步广播块中。
在一种可选的实施方式中,该方法还包括:接收第一同步广播块对应的系统信息块类型一SIB1,SIB1包括第一频域位置对应的RACH机会的指示信息;其中,第二频域位置对应的RACH机会的指示信息被包括在下述项的至少一项中:SIB1、以及第二同步广播块;其中,确定第二频域位置对应的RACH机会,包括:根据第二频域位置对应的RACH机会的指示信息,确定第二频域位置对应的RACH机会。
通过这种方式,终端设备同样即使切换到新的频域位置进行随机接入,也无需重复接收SIB1,缩短了终端设备切换频域位置的时延,加快终端设备的随机接入速度,且降低了终端设备的能耗。
在一种可选的实施方式中,第二频域位置的同步广播块的发送情况被包括在SIB1中。
在一种可选的实施方式中,该方法还包括:接收第一同步广播块对应的系统信息块类型一SIB1,SIB1包括第一频域位置对应的RACH机会的指示信息;根据第一频域位置对应的RACH机会的指示信息,确定第一频域位置对应的RACH机会;根据位于第一频域位置的同步广播块的发送情况,在第一频域位置对应的RACH机会中确定第一同步广播块被映射到的RACH机会;在第一同步广播块被映射到的RACH机会进行随机接入;接收无线资源控制RRC信令或物理下行链路控制信道PDCCH,RRC信令或PDCCH包括第二频域位置对应的RACH机会的指示信息;其中,确定第二频域位置对应的RACH机会,包括:根据第二频域位置对应的RACH机会的指示信息,确定第二频域位置对应的RACH机会。
通过这种方式,终端设备同样即使切换到新的频域位置进行随机接入,也无需重复接收SIB1,缩短了终端设备切换频域位置的时延,加快终端设备的随机接入速度,且降低了终端设备的能耗。此外,减少了对不进行同步广播块频分复用的终端设备的影响。
在一种可选的实施方式中,第二频域位置的SSB的发送情况和/或第二同步广播块的索引被包括在RRC信令或PDCCH中。
在一种可选的实施方式中,第二频域位置对应的RO的指示信息包括下述项的至少一项:第二频域位置对应的RO的全部指示信息中除了与第一频域位置对应的RO的指示信息相同的指示信息之外的指示信息;第二频域位置对应的RO的频域起始位置;第二频域位置对应的RO的频分复用数目。
在一种可选的实施方式中,满足下述项的至少一项:第一频域位置对应的RO与第二频域位置对应的RO的时域位置相同;第一频域位置对应的RO与第二频域位置对应的RO不重叠;第一频域位置对应的RO与第二频域位置对应的RO在频域和/或时域上紧密排列;第一频域位置对应的RO的指示信息与第二频域位置对应的RO的指示信息相比,第一频域位置对应的RO的频域起始位置与第二频域位置对应的RO的频域起始位置不同,其余指示信息相同;第一频域位置对应的RO的频分复用数目与位于第二频域位置的SSB对应的RO的频分复用数目相同。
第二方面,提供第二种通信方法,该方法包括:发送位于第一频域位置的第一同步广播块;发送位于第二频域位置的第二同步广播块;根据位于第一频域位置的同步广播块的发送情况,在第一频域位置对应的随机接入信道RACH机会中确定第一同步广播块被映射到的RACH机会;根据位于第二频域位置的同步广播块的发送情况,在第二频域位置对应的RACH机会中确定第二同步广播块被映射到的RACH机会。
该方法可由第二通信装置执行,第二通信装置可以是网络设备,或者设置在网络设备中的用于实现网络设备的功能的芯片,或者用于实现网络设备的功能的其他部件。
在一种可选的实施方式中,第一同步广播块包括第一同步广播块的索引,第二同步广播块包括第二同步广播块的索引;或者,该方法还包括:发送第一同步广播块对应的系统信息块类型一SIB1,SIB1包括第一频域位置对应的RACH机会的指示信息、以及第一同步广播块的索引和第二同步广播块的索引。
在一种可选的实施方式中,第一同步广播块的索引为第一同步广播块的仅考虑频域上的顺序的索引,第二同步广播块的索引为第二同步广播块的仅考虑频域上的顺序的索引;或者,第一同步广播块的索引为第一同步广播块的考虑频域和时域上的顺序的索引,第二同步广播块的索引为第二同步广播块的考虑频域和时域上的顺序的索引。
在一种可选的实施方式中,该方法还包括:发送第一同步广播块对应的系统信息块类型一SIB1,SIB1包括第一频域位置对应的RACH机会的指示信息;其中,第二频域位置对应的RACH机会的指示信息被包括在下述项的至少一项中:SIB1、以及第二同步广播块。
在一种可选的实施方式中,第二频域位置的同步广播块的发送情况被包括在SIB1中。
在一种可选的实施方式中,该方法还包括:发送第一同步广播块对应的系统信息块类型一SIB1,SIB1包括第一频域位置对应的RACH机会的指示信息;在终端设备在第一同步广播块被映射到的RACH机会上进行随机接入的情况下,向终端设备发送无线资源控制RRC信令或物理下行链路控制信道PDCCH,RRC信令或PDCCH包括第二频域位置对应的RACH机会的指示信息。
在一种可选的实施方式中,第二频域位置的SSB的发送情况和/或第二同步广播块的索引被包括在RRC信令或PDCCH中。
在一种可选的实施方式中,第二频域位置对应的RO的指示信息包括下述项的至少一项:第二频域位置对应的RO的全部指示信息中除了与第一频域位置对应的RO的指示信息相同的指示信息之外的指示信息;第二频域位置对应的RO的频域起始位置;第二频域位置对应的RO的频分复用数目。
在一种可选的实施方式中,满足下述项的至少一项:第一频域位置对应的RO与第二频域位置对应的RO的时域位置相同;第一频域位置对应的RO与第二频域位置对应的RO不重叠;第一频域位置对应的RO与第二频域位置对应的RO在频域和/或时域上紧密排列;第一频域位置对应的RO的指示信息与第二频域位置对应的RO的指示信息相比,第一频域位置对应的RO的频域起始位置与第二频域位置对应的RO的频域起始位置不同,其余指示信息相同;第一频域位置对应的RO的频分复用数目与位于第二频域位置的SSB对应的RO的频分复用数目相同。
关于第二方面或各种实施方式的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第三方面,提供一种通信装置,该通信装置可以是如前所述的第一通信装置。该通信 装置用于执行上述第一方面或任一可能的实施方式中的方法。该通信装置可以是终端设备,或者设置在终端设备中的芯片或其他部件。具体地,该通信装置可以包括用于执行第一方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。该收发模块也可以通过收发器实现,该处理模块也可以通过处理器实现。如果该通信装置为终端设备,则收发器可以通过终端设备中的天线、馈线和编解码器等实现。或者,如果该通信装置为设置在终端设备中的芯片,则收发器可以是芯片中的通信接口,该通信接口与终端设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第四方面,提供一种通信装置,该通信装置可以是如前所述的第二通信装置。该通信装置用于执行上述第二方面或任一可能的实施方式中的方法。该通信装置可以是网络设备,或者设置在网络设备中的芯片或其他部件。具体地,该通信装置可以包括用于执行第二方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。该收发模块也可以通过收发器实现,该处理模块也可以通过处理器实现。如果该通信装置为网络设备,则收发器可以通过网络设备中的天线、馈线和编解码器等实现。或者,如果该通信装置为设置在网络设备中的芯片,则收发器可以是芯片中的通信接口,该通信接口与网络设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第五方面,提供一种通信装置,该通信装置可以是如前所述的第一通信装置。该通信装置包括处理器。可选的,该通信装置还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第一方面或各种可能的实施方式所描述的方法。或者,该通信装置也可以不包括存储器,存储器可以位于该通信装置外部。可选的,该通信装置还可以包括通信接口,用于与其他装置或设备进行通信。处理器、存储器和通信接口相互耦合,用于实现上述第一方面或各种可能的实施方式所描述的方法。例如,当处理器执行该存储器存储的计算机指令时,使得该通信装置执行上述第一方面或任意一种可能的实施方式中的方法。该通信装置可以是终端设备,或者设置在终端设备中的芯片或其他部件。如果该通信装置为终端设备,则收发器可以通过终端设备中的天线、馈线和编解码器等实现。或者,如果该通信装置为设置在终端设备中的芯片,则收发器可以是芯片中的通信接口,该通信接口与终端设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第六方面,提供一种通信装置,该通信装置可以是如前所述的第二通信装置。该通信装置包括处理器。可选的,该通信装置还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第二方面或各种可能的实施方式所描述的方法。或者,该通信装置也可以不包括存储器,存储器可以位于该通信装置外部。可选的,该通信装置还可以包括通信接口,用于与其他装置或设备进行通信。处理器、存储器和通信接口相互耦合,用于实现上述第二方面或各种可能的实施方式所描述的方法。例如,当处理器执行该存储器存储的计算机指令时,使得该通信装置执行上述第二方面或任意一种可能的实施方式中的方法。该通信装置可以是网络设备,或者设置在网络设备中的芯片或其他部件。如果该通信装置为网络设备,则收发器可以通过网络设备中的天线、馈线和编解码器等实现。或者,如果该通信装置为设置在网络设备中的芯片,则收发器可以是芯片中的通信接口,该通信接口与网络设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第七方面,提供一种通信系统,该通信系统包括第三方面所述的通信装置或第五方面所述的通信装置,以及,包括第四方面所述的通信装置或第六方面所述的通信装置。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机 指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第一方面或任意一种可能的实施方式中所述的方法。
第九方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第二方面或任意一种可能的实施方式中所述的方法。
第十方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第一方面或的任意一种可能的实施方式中所述的方法。
第十一方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第二方面或的任意一种可能的实施方式中所述的方法。
附图说明
图1A为不应用同步广播块频分复用时,同步广播块的时频域位置的示意图;
图1B为不应用同步广播块频分复用时,同步广播块与随机接入信道机会的映射关系的示意图;
图1C为不应用同步广播块频分复用时,同步广播块与随机接入信道机会的映射关系的另一示意图;
图2A为应用同步广播块频分复用时,同步广播块的时频域位置的示意图;
图2B为应用同步广播块频分复用时,同步广播块与随机接入信道机会的映射关系的又一示意图;
图2C为应用同步广播块频分复用时,同步广播块与随机接入信道机会的映射关系的示意图;
图2D为应用同步广播块频分复用时,同步广播块与随机接入信道机会的映射关系的另一示意图;
图3为本申请实施例的一种应用场景示意图;
图4为本申请实施例提供的一种通信方法的流程图;
图5为本申请实施例提供的另一种通信方法的流程图;
图6为本申请实施例提供的又一种通信方法的流程图;
图7为本申请实施例提供的再一种通信方法的流程图;
图8为本申请实施例提供的一种终端设备的示意性框图;
图9为本申请实施例提供的一种网络设备的示意性框图;
图10为本申请实施例提供的通信装置的示意性框图;
图11为本申请实施例提供的通信装置的另一示意性框图;
图12为本申请实施例提供的通信装置的又一示意性框图;
图13为本申请实施例提供的通信装置的再一示意性框图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实 施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,也可以理解为,能够与基站进行数据通信的都可以看作终端设备。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种V2X技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node  B),或者也可以包括第五代移动通信技术(the 5th generation,5G)新无线(new radio,NR)系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)。
3)同步广播块可以是同步信号和物理广播信道(synchronizationsignal/physical broadcastchannel,SS/PBCH)块,也可以被称为同步信号块(synchronizationsignal block,SSB)。SS/PBCH块由广播信道(broadcastchannel,BCH)和同步信号组合而成,其中,同步信号包括主同步信号(primary synchronizationsignal,PSS)和辅同步信号(secondary synchronization signal,SSS)。
4)随机接入信道(random access channel,RACH)机会(occasion)为终端设备进行随机接入的位置。在进行随机接入之前,终端设备首先需要进行小区搜索以获取同步广播块。接下来,终端设备需要选择一个同步广播块,并在该同步广播块对应的RACH机会上进行随机接入,这样网络设备就可以获知终端设备所选择的同步广播块。这种同步广播块与RACH机会之间的对应关系可以被称为同步广播块被映射到RACH机会。主系统信息块(master information block,MIB)是在同步广播块内的BCH上进行广播的,因此,获取到同步广播块就可以获取到该同步广播块对应的MIB。MIB中配置有关于调度系统信息块类型一(system information block type 1,SIB1)的物理下行控制信道(physical downlink control channel,PDCCH)的参数。为了确定同步广播块被映射到的RACH机会,终端设备需要对调度SIB1的PDCCH进行检测以获取SIB1。SIB1中配置有关于同步广播块可能被映射到的全部RACH机会的参数。终端设备需要在这些RACH机会中确定出同步广播块实际被映射到的RACH机会,其中一个映射原则是同步广播块需要被映射到连续的有效RACH机会。
5)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系,但也可以表示前后关联对象是一种“和”的关系,以本申请中的描述或本领域技术人员的理解为准。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一信令和第二信令,只是为了区分不同的信令,而并不是表示这两个信令的内容、发送顺序、优先级或者重要程度等的不同。
前文介绍了本申请实施例所涉及到的一些名词概念,下面介绍本申请实施例涉及的技术特征。
在现有方案中,一个5毫秒的半帧内最多可以发送的同步广播块的数量为固定值(例如,4、8或64),这些同步广播块可选的RACH机会的资源是相同的,终端设备和网络设备会根据将这些同步广播块的实际发送情况来确定这些同步广播块实际被映射到的RACH机会。下面为了简洁起见,将这些同步广播块的集合称为同步广播集,或者说,这些同步 广播块属于同一个同步广播集。应理解的是,下面的描述中所说的同步广播集并不一定被限定在5毫秒的半帧内。在现有方案中,一个同步广播集中的同步广播块均在一个频域位置上被发送。例如,如图1A所示,一个同步广播集中的4个同步广播块在同一个频域位置、4个不同的时域位置上被发送,可以依照时域位置将这4个同步广播块表示为同步广播块#0、同步广播块#1、同步广播块#2和同步广播块#3。
如上所述,同步广播块与RACH机会之间具有映射关系。在现有方案中,按照一个同步广播集中的同步广播块的时域位置和实际发送情况,将这些同步广播块依次映射到连续的有效RACH机会。例如,假设一个同步广播块被映射到一个RACH机会,且RACH机会的频分复用数目为4,当一个同步广播集中的4个同步广播块均被发送时,如图1B所示,同步广播块#0被映射到RACH机会1,同步广播块#1被映射到RACH机会2,同步广播块#2被映射到RACH机会3,同步广播块#3被映射到RACH机会4。可以看出,实际发送的同步广播块被映射到的RACH机会是连续的。
然而,一个同步广播集中的同步广播块可能不会被全部发送。如果没有任何同步广播块被映射到某个RACH机会,那么这个RACH机会将不会用于随机接入。例如,当同步广播块#0未被发送时,该同步广播集中第一个被发送的同步广播块为同步广播块#1,此时,如图1C所示,同步广播块#1被映射到RACH机会1,同步广播块#2被映射到RACH机会2,同步广播块#3被映射到RACH机会3,RACH机会4未被利用。可以看出,即使存在未被发送的同步广播块,实际发送的同步广播块被映射到的RACH机会也仍然是连续的。
如果一个同步广播集中的同步广播块可以在多个频率位置上被发送,可以减少同步广播块在时域上的发送次数,从而增加网络设备关断的概率,有利于网络设备的节能。这种方式可以称为同步广播块频分复用(frequency division multiplexing,FDM)。当应用同步广播块频分复用时,如图2A所示,一个同步广播集中的4个同步广播块在两个不同的频域位置、两个不同的时域位置上被发送,可以依照频域位置和时域位置将这4个同步广播块表示为位于频域位置1的同步广播块#0、位于频域位置2的同步广播块#0、位于频域位置1的同步广播块#1和位于频域位置2的同步广播块#1。
然而,当应用同步广播块频分复用时,若沿用现有的映射方案,按照同步广播块的时域位置和实际发送情况将其映射到连续的有效RACH机会,当一个同步广播集中的4个同步广播块均被发送时,由于位于频域位置1的同步广播块#0和位于频域位置2的同步广播块#0的时域位置相同,位于频域位置1的同步广播块#1和位于频域位置2的同步广播块#1的时域位置相同,因此,如图2B所示,位于频域位置1的同步广播块#0和位于频域位置2的同步广播块#0均被映射到RACH机会1,位于频域位置1的同步广播块#1和位于频域位置2的同步广播块#1均被映射到RACH机会2,RACH机会3和RACH机会4未被利用。若终端设备在RACH机会1进行随机接入,网络设备无法区分终端设备选择的同步广播块是位于频域位置1的同步广播块#0,还是位于频域位置2的同步广播块#0。
为了解决这个问题,可以使得位于不同频域位置的同步广播块所对应的SIB1指示不同的RACH机会(下面将位于某个频域位置的同步广播块所对应的SIB1指示的RACH机会称为该频域位置对应的RACH机会),这样,位于不同的频域位置的同步广播块可以实现独立映射,即,位于某个频域位置的同步广播块仅被映射到该频域位置对应的RACH机会。例如,当一个同步广播集中的4个同步广播块均被发送时,如图2C所示,位于频域位置1的同步广播块#0和同步广播块#1分别被映射到频域位置1对应的RACH机会1和 RACH机会2,位于频域位置2的同步广播块#0和同步广播块#1分别被映射到频域位置2对应的RACH机会1和RACH机会2。又例如,当位于频域位置1的同步广播块#0未被发送时,如图2D所示,位于频域位置2的同步广播块#0和同步广播块#1分别被映射到频域位置2对应的RACH机会1和RACH机会2,作为频域位置1上的第一个被发送的同步广播块,位于频域位置1的同步广播块#1被映射到频域位置1对应的RACH机会1,频域位置1对应的RACH机会2未被利用。可以看出,无论是否有同步广播块未被发送,针对单个频域位置而言,实际发送的同步广播块被映射到的RACH机会都是连续的。通过这种映射方式,网络设备能够识别出终端设备所选择的同步广播块。
另外,在终端设备进行随机接入前,需要判断是否有同步信号的参考信号接收功率(synchronization signalreference signal received power,SS-RSRP)高于规定阈值的同步广播块。如果有这样的同步广播块,就选择该同步广播块,并在该同步广播块被映射到的RACH机会上进行随机接入。如果没有这样的同步广播块,就选择任意一个同步广播块,并在该同步广播块被映射到的RACH机会上进行随机接入。
在某些情况下,终端设备可能会在选择了一个同步广播块并获取到该同步广播块对应的SIB1之后,又重新选择属于同一个同步广播集的另一个同步广播块进行随机接入。例如,快速移动中的终端设备可能尚未进行随机接入,其当前选择的同步广播块的SS-RSRP就已发生变化,需要再次选择同步广播块。又例如,终端设备可能会在随机接入失败后选择另一个同步广播块进行随机接入。如上所述,SIB1用于指示同步广播块可能被映射到的RACH机会。
当一个同步广播集中的同步广播块均在一个频域位置上发送时,若终端设备重新选择同步广播块,由于新选择的同步广播块与之前选择的同步广播块可选的RACH机会的资源是相同的。因此,终端设备可以沿用之前获取到SIB1,在该SIB1所指示的同步广播块可能被映射到的RACH机会中确定新选择的同步广播块被映射到的RACH机会。即,终端设备无需再次获取同步广播块可能被映射到的RACH机会。
然而,当应用同步广播块频分复用时,若终端设备重新选择同步广播块,且新选择的同步广播块与之前选择的同步广播块位于不同的频域位置,这两个同步广播块可能被映射到的RACH机会就不相同了。此时,终端设备需要对新选择的同步广播块进行解码,从中获取调度该同步广播块对应的SIB1的PDCCH的信息,通过对PDCCH进行检测来获得新的SIB1,这样才能从这个新的SIB1中获取新选择的同步广播块可能被映射到的RACH机会。这样的方式会导致终端设备切换频域位置的时延较长,影响终端设备的随机接入速度,且增加了终端设备的能耗。
鉴于此,提供本申请实施例的技术方案。本申请实施例提供的技术方案可以应用于第四代移动通信技术(the 4th generation,4G)4G系统中,例如LTE系统,或可以5G系统中,例如NR系统,或者还可以应用于下一代移动通信系统或其他类似的通信系统,具体的不做限制。
下面介绍本申请实施例所应用的一种网络架构,请参考图3。
图3包括网络设备和终端设备,终端设备与一个网络设备连接。当然图3中的终端设备的数量只是举例,在实际应用中,网络设备可以为多个终端设备提供服务。图3中的网络设备,以及多个终端设备中的部分终端设备或全部终端设备中的每个终端设备都可以实施本申请实施例所提供的技术方案。另外,图3中的终端设备以手机为例,在实际应用中 不限于此。
图3中的网络设备例如为接入网设备,例如基站,或者也可以是RSU等设备。其中,基站在不同的系统对应不同的设备,例如在4G系统中可以对应eNB,在5G系统中可以对应gNB。当然本申请实施例所提供的技术方案也可以应用于未来的移动通信系统中,因此图3中的网络设备也可以对应未来的移动通信系统中的接入网设备。
下面结合附图介绍本申请实施例提供的技术方案。
本申请实施例提供一种通信方法,图4为该方法的流程图。在下文的介绍过程中,以该方法应用于图3所示的网络架构为例。
在S401,终端设备从网络设备接收位于第一频域位置的第一同步广播块。
在S402,终端设备从网络设备接收位于第二频域位置的第二同步广播块。
应理解的是,虽然在图4中S401位于S402之前,但这些步骤的时序不限于此。S401可以在S402之后进行,也可以与S402同时进行。
频域位置也可被称为频点,可以用标记同步广播块的信道号来表示,例如全球同步信道号(Global Synchronization Channel Number,GSCN)。
第一同步广播块和第二同步广播块可以属于同一个同步广播集。在该同步广播集中,除了第一同步广播块和第二同步广播块以外,还可以包括位于第一频域位置的其他同步广播块和/或位于第二频域位置的其他同步广播块。此外,在该同步广播集中,还可以包括位于其他频域位置的同步广播块。
以图2A为例,第一频域位置可以是频域位置1,第二频域位置可以是频域位置2。第一同步广播块可以是位于频域位置1的同步广播块#1,第二同步广播块可以是位于频域位置2的同步广播块#1。
在S403,终端设备确定第二频域位置对应的RACH机会。本实施例中存在不同的确定第二频域位置对应的RACH机会的方式,后面将会对此进行具体介绍。
如上所述,不同的频域位置的同步广播块与RACH机会的映射是彼此独立的。即,分别存在第一频域位置对应的RACH机会和第二频域位置对应的RACH机会。位于第一频域位置的同步广播块仅会被映射到第一频域位置对应的RACH机会,位于第二频域位置的同步广播块仅会被映射到第二频域位置对应的RACH机会。以图2C为例,频域位置1对应的RACH机会为下方的RACH机会1和RACH机会2,频域位置2对应的RACH机会为上方的RACH机会1和RACH机会2。
在S404,终端设备根据位于第二频域位置的同步广播块的发送情况,在第二频域位置对应的RACH机会中确定第二同步广播块被映射到的RACH机会。
在S405,网络设备根据位于第二频域位置的同步广播块的发送情况,在第二频域位置对应的RACH机会中确定第二同步广播块被映射到的RACH机会。
关于如何根据同步广播块的发送情况来确定同步广播块被映射到的RACH机会,可以参照上文中的对应描述,在此不再赘述。应理解的是,同步广播块与RACH机会的映射关系并不一定是一一对应的,一个同步广播块可以被映射到多个RACH机会,多个同步广播块也可以被映射到一个RACH机会。
位于第二频域位置的同步广播块可以是指该同步广播集中位于第二频域位置的全部同步广播块。同步广播块的发送情况是指同步广播块是否被实际发送。从图2C和图2D中可以看出,当位于同一个同步广播集中的同步广播块的发送情况不同时,被发送的同步广 播块与RACH机会的映射关系不同。
位于第二频域位置的同步广播块的发送情况可以被包括在第一同步广播块对应的SIB1中。除此之外,第一同步广播块对应的SIB1中还可以包括位于其他频域位置的同步广播块的发送情况,比如,第一同步广播块对应的SIB1中可以包括该同步广播集中的所有同步广播块的发送情况,或者,第一同步广播块对应的SIB1中可以包括位于除了第一频域位置之外的其他频域位置的同步广播块的发送情况。为了减少对不进行同步广播块频分复用的终端设备的影响,第二频域位置的同步广播块的发送情况可以被包括在第一同步广播块对应的SIB1的保留位中。或者,可以将SIB1划分为第一部分和第二部分,不进行同步广播块频分复用的终端设备仅解码第一部分,进行同步广播块频分复用的终端设备解码第一部分和第二部分,第二频域位置的同步广播块的发送情况可以被包括第二部分(即,仅被进行同步广播块频分复用的终端设备解码的部分)中。
在S406,终端设备在第二同步广播块被映射到的RACH机会上进行随机接入。
应理解的是,虽然在图4中S405位于S406之前,但这些步骤的时序不限于此。S405可以在S406之后进行,也可以与S406同时进行。例如,网络设备可以先确定其实际发送的同步广播块与RACH机会的映射关系,当终端设备在第二同步广播块被映射到的RACH机会上进行随机接入时,根据这些映射关系中第二同步广播块被映射到的RACH机会的映射关系推断出终端设备所选择的同步广播块。或者,网络设备也可以在终端设备在第二同步广播块被映射到的RACH机会上进行随机接入时,判定第二同步广播块被映射到的RACH机会属于哪个频域位置对应的RACH机会,再确定该频域位置上实际发送的同步广播块与RACH机会的映射关系,再根据这些映射关系中第二同步广播块被映射到的RACH机会的映射关系推断出终端设备所选择的同步广播块。
通过这种方式,网络设备能够获知终端设备所选择的同步广播块。
如上所述,在S404,终端设备确定第二频域位置对应的RACH机会。下面将具体介绍使得终端设备能够确定第二频域位置对应的RACH机会的方式。
方式一
按照现有方案,每个同步广播块对应的SIB1中包括该同步广播块所在的频域位置对应的RACH机会的指示信息,可以沿用该方案,使终端设备能够根据该频域位置对应的RACH机会的指示信息推断出其他频域位置对应的RACH机会。图5为该方式的流程图。
在S501,终端设备从网络设备接收位于第一频域位置的第一同步广播块。
在S502,终端设备从网络设备接收位于第二频域位置的第二同步广播块。
关于S501和S502的具体描述,分别可以参考S401和S402中的对应描述,在此不再赘述。
在S503,终端设备从网络设备接收第一同步广播块对应的SIB1,第一同步广播块对应的SIB1包括第一频域位置对应的RACH机会的指示信息。
RACH机会的指示信息可以包括频域信息和/或时域信息。例如,RACH机会的指示信息可以包括频域起始位置、频分复用数目和时域位置。频域起始位置可以是这些RACH机会中频域位置最低的RACH机会的频域位置。频分复用数目为频域上复用RACH机会的数目。以图2C为例,频域位置1对应的RACH机会的指示信息中,频域起始位置为频域位置1对应的RACH机会1的频域位置,频分复用数目为2。
在S504,终端设备根据第一频域位置对应的RACH机会的指示信息,确定第二频域 位置对应的RACH机会。
关于如何基于第一频域位置对应的RACH机会的指示信息推断出第二频域位置对应的RACH机会,本实施例中存在下述方案。这些方案之间可以结合使用,例如,可以分别将不同的方案应用于RACH机会在频域位置和时域位置,还可以分别将不同的方案应用于RACH机会的频域起始位置和频分复用数目。此外,各个方案中的示例也可以结合使用。
方案一:终端设备可以根据第一频域位置对应的RACH机会的指示信息,结合预定义规则,确定第二频域位置对应的RACH机会。预定义规则可以是指不同的频域位置对应的RACH机会的频域和/或时域位置之间的关联关系,或者,不同的频域位置对应的RACH机会的指示信息之间的关联关系。
例如,可以预先约定不同的频域位置对应的RACH机会的时域位置相同。终端设备据此可以推断出,第一频域位置对应的RACH机会的时域位置可以与第二频域位置对应的RACH机会的时域位置相同。当一个频域位置对应的RACH机会为多个时,可以是不同频域位置对应的RACH机会作为一个整体的时域位置相同,也可以是每一个RACH机会的时域位置均相同。
又例如,可以预先约定不同的频域位置对应的RACH机会的指示信息中,除了频域的起始位置之外的其他信息(例如,频分复用数目和时域位置)相同。终端设备据此可以推断出,第一频域位置的的RACH机会的指示信息与第二频域位置对应的RACH机会的指示信息相比,除了频域起始位置之外的其他信息相同。
再例如,可以预先约定不同的频域位置对应的RACH机会的频分复用数目相同。终端设备据此可以推断出,第一频域位置对应的RACH机会的频分复用数目与第二频域位置对应的RACH机会的频分复用数目相同。
方案二:终端设备可以根据第一频域位置对应的RACH机会的指示信息、以及第一同步广播块的索引和第二同步广播块的索引,结合预定义规则,确定第二频域位置对应的RACH机会。关于预定义规则的具体描述,可以参考上面的方案一中的对应描述,在此不再赘述。
第一同步广播块的索引为可以是第一同步广播块的仅考虑频域上的顺序的索引,第二同步广播块的索引可以是第二同步广播块的仅考虑频域上的顺序的索引。这种索引可以被简称为频域索引。以图2C为例,位于频域位置1的同步广播块#0和同步广播块#1的频域索引可以为0,位于频域位置2的同步广播块#0和同步广播块#1的频域索引可以为1。或者,第一同步广播块的索引可以是第一同步广播块的考虑频域和时域上的顺序的索引,第二同步广播块的索引可以是第二同步广播块的考虑频域和时域上的顺序的索引。这种索引可以被简称为绝对索引。以图2C为例,位于频域位置1的同步广播块#0的绝对索引可以为0,位于频域位置1的同步广播块#1的绝对索引可以为1,位于频域位置2的同步广播块#0的绝对索引可以为2,位于频域位置2的同步广播块#1的绝对索引可以为3。此外,任何能体现出某个频域位置在一个同步广播块所涉及的所有频域位置中的排序的信息,都可以被用于替代同步广播块的索引。
例如,可以预先约定不同的频域位置对应的RACH机会的时域位置和频分复用数目相同,且相邻的频域位置对应的RACH机会在频域上是紧密排列的。应理解的是,相邻的频域位置不一定在频域上连续,只要两个频域位置之间没有间隔其他用于发送同步广播块的频域位置就可以视作相邻。在频域紧密排列的RACH机会也不一定在频域上连续,具有子 载波间隔等固定间隔可以被视为紧密排列。在这种情况下,假如已知第一频域位置对应的RACH机会的时域位置,则可以直接确定出第二频域位置对应的RACH机会的时域位置。至于频域位置,如果第一频域位置的频域索引为0,第二频域位置的频域索引为1,则第一频域位置对应的RACH机会与第二频域位置对应的RACH机会是紧密排列的。在已经获知第一频域位置对应的RACH机会的频域起始位置和频分复用数目的情况下,可以据此推断出第二频域位置对应的RACH机会的频域起始位置,而第二频域位置的频分复用数目可以直接根据第一频域位置的频分复用数目被确定出。或者,如果第一频域位置的频域索引为1,第二频域位置的频域索引为3,也可以根据第一频域位置对应的RACH机会的频域起始位置和频分复用数目推断出第一频域位置对应的RACH机会与第二频域位置对应的RACH机会在频域上的间隔,从而确定出第二频域位置对应的RACH机会的频域起始位置。
终端设备在确定第二频域位置对应的RACH机会时,可以将RACH的子载波间隔和/或物理上行共享信道(physical uplink shared channel,PUSCH)的子载波间隔作为考虑因素。例如,不同的频点对应的RACH机会的频域和/或时域位置之间的差值可以是一个表达式,该表达式与RACH的子载波间隔和/或PUSCH的子载波间隔有关。
第一同步广播块的索引和第二同步广播块的索引可以被包括在同步广播块和/或SIB1中。当第一同步广播块的索引和第二同步广播块的索引被包括在同步广播块中时,可以是被包括在同步广播块的载荷和/或保留位中。当第一同步广播块的索引和第二同步广播块的索引被包括在SIB1中时,可以是被包括在SIB1的保留位和/或仅被进行同步广播块频分复用的终端设备解码的部分中。
例如,第一同步广播块的索引和第二同步广播块的索引可以分别被包括在第一同步广播块和第二同步广播块的载荷中。或者,第一同步广播块的索引被包括在第一同步广播块的载荷中,第二同步广播块的索引则被包括在第一同步广播块对应的SIB1中。当然,第二同步广播块的索引会被包括在第二同步广播块的载荷中,第一同步广播块的索引会被包括在第二同步广播块对应的SIB1中,但在本申请的实施例中,终端设备无需获取第二同步广播块对应的SIB1就可以进行随机接入。又或者,第一同步广播块的索引和第二同步广播块的索引可以均被包括在第一同步广播块对应的SIB1中。除此之外,第一同步广播块对应的SIB1中还可以包括其他同步广播块的索引,比如,第一同步广播块对应的SIB1中可以包括该同步广播集中的所有同步广播块的索引,或者,第一同步广播块对应的SIB1中可以包括除了第一同步广播块以外的其他同步广播块的索引。
这里,终端设备可以先根据第一频域位置对应的RACH机会的指示信息确定出第一频域位置对应的RACH机会,再根据第一频域位置对应的RACH机会确定第二频域位置对应的RACH机会。也可以直接根据第一频域位置对应的RACH机会的指示信息来确定第二频域位置对应的RACH机会。本申请对此不做限定。
在S505,终端设备根据位于第二频域位置的同步广播块的发送情况,在第二频域位置对应的RACH机会中确定第二同步广播块被映射到的RACH机会。
在S506,网络设备根据位于第二频域位置的同步广播块的发送情况,在第二频域位置对应的RACH机会中确定第二同步广播块被映射到的RACH机会。
在S507,终端设备在第二同步广播块被映射到的RACH机会上进行随机接入。
关于S505、S506和S507的具体描述,分别可以参考S404、S405和S406中的对应描 述,在此不再赘述。此外,虽然在图5中S506位于S503之后,但这些步骤的时序不限于此。S506可以在S503之前进行,也可以与S503同时进行。例如,网络设备可以先确定其实际发送的同步广播块与RACH机会的映射关系,当终端设备在第二同步广播块被映射到的RACH机会上进行随机接入时,根据这些映射关系中第二同步广播块被映射到的RACH机会的映射关系推断出终端设备所选择的同步广播块。或者,网络设备也可以在终端设备在第二同步广播块被映射到的RACH机会上进行随机接入时,判定第二同步广播块被映射到的RACH机会属于哪个频域位置对应的RACH机会,再确定该频域位置上实际发送的同步广播块与RACH机会的映射关系,再根据这些映射关系中第二同步广播块被映射到的RACH机会的映射关系推断出终端设备所选择的同步广播块。
通过这种方式,终端设备能够根据某个频域位置对应的RACH机会推断出其他频域位置对应的RACH机会。因此,终端设备即使切换到新的频域位置进行随机接入,也无需重复接收SIB1,缩短了终端设备切换频域位置的时延,加快终端设备的随机接入速度,且降低了终端设备的能耗。
方式二
可以对现有方案中SIB1中包括的内容进行扩展,使得每个同步广播块对应的SIB1中不但包括该同步广播块所在的频域位置对应的RACH机会的指示信息,还包括其他频域位置对应的RACH机会的全部或部分指示信息。或者,可以对现有方案中同步广播块中包括的内容进行扩展,使得每个同步广播块中包括该同步广播块所在的频域位置对应的RACH机会的全部或部分指示信息。在仅包括部分指示信息的情况下,终端设备可以是通过预定义等方式获知其余指示信息。图6为该方式的流程图。
在S601,终端设备从网络设备接收位于第一频域位置的第一同步广播块。
在S602,终端设备从网络设备接收位于第二频域位置的第二同步广播块。
关于S601和S602的具体描述,分别可以参考S401和S402中的对应描述,在此不再赘述。
在S603,终端设备从网络设备接收第一同步广播块对应的SIB1,第一同步广播块对应的SIB1包括第一频域位置对应的RACH机会的指示信息。此外,第一同步广播块对应的SIB1还可以包括第二频域位置对应的RACH机会的指示信息,在下面的方案一中对此进行详细描述。或者,第二频域位置对应的RACH机会的指示信息也可以被包括在第二SSB中,在下面的方案二中对此进行详细描述。这些方案之间可以结合使用,例如,可以分别将不同的方案应用于RACH机会在频域位置和时域位置,还可以分别将不同的方案应用于RACH机会的频域起始位置和频分复用数目。此外,各个方案中的示例也可以结合使用。
关于RACH机会的指示信息的具体描述,可以参考S503中的对应描述,在此不再赘述。
方案一:第二频域位置对应的RACH机会的指示信息可以被包括在第一同步广播块对应的SIB1中。当然,第二频域位置对应的RACH机会的指示信息也会被包括在第二同步广播块对应的SIB1中,但在本申请的实施例中,终端设备无需获取第二同步广播块对应的SIB1就可以进行随机接入。除了第二频域位置对应的RACH机会的指示信息,第一同步广播块对应的SIB1中还可以包括其他频域位置对应的RACH机会的指示信息,比如, 第一同步广播块对应的SIB1中可以包括所有频域位置对应的RACH机会的指示信息,或者,第一同步广播块对应的SIB1中可以包括除了第一频域位置之外的其他频域位置对应的RACH机会的指示信息。终端设备可以根据第二同步广播块的索引,判断SIB1中的哪部分RACH机会的指示信息是第二同步广播块所位于的第二频域位置对应的RACH机会的指示信息。
第二频域位置对应的RACH机会的指示信息可以被包括在SIB1的保留位和/或仅被进行同步广播块频分复用的终端设备解码的部分中。例如,第一频域位置对应的RACH机会的指示信息可以被包括在SIB1的常规位中,第二频域位置对应的RACH机会的指示信息可以被包括在SIB1的保留位中。又例如,第一频域位置对应的RACH机会的指示信息可以被包括在SIB1的第一部分(即,既能被不进行同步广播块频分复用的终端设备解码又能被进行频分复用的终端设备解码的部分)中,第二频域位置对应的RACH机会的指示信息可以被包括在SIB1的第二部分(即,仅被进行同步广播块频分复用的终端设备解码的部分)中。
方案二:第二频域位置对应的RACH机会的指示信息可以被包括在第二同步广播块中。相应地,第一频域位置对应的RACH机会的指示信息也可以被包括在第一同步广播块中,本实施例中的终端设备可能会、也可能无需从第一同步广播块中获取第一频域位置对应的RACH机会的指示信息。从整个系统的角度看,第一同步广播块中的第一频域位置对应的RACH机会的指示信息可以被重新选择了第一同步广播块的其他终端设备使用。
第二频域位置对应的RACH机会的指示信息可以被包括在第二同步广播块的载荷和/或保留位中。相应地,第一频域位置对应的RACH机会的指示信息也可以被包括在第一同步广播块的载荷和/或保留位中。
无论是哪种方案,其中所说的第二频域位置对应的RACH机会的指示信息都可以仅是第二频域位置对应的RACH机会的部分指示信息,其余的指示信息可以通过其他方式被指示,比如与方式一相结合。作为示例而非限定,终端设备可以根据第一频域位置的RACH机会的指示信息,通过预定义规则,确定其余的指示信息。例如,可以预先约定不同的频域位置对应的RACH机会的部分指示信息相同,此时,第一同步广播块对应的SIB1中可以包括第一频域位置对应的RACH机会的指示信息、以及第二频域位置对应的RACH机会的指示信息中与第一频域位置对应的RACH机会的指示信息不同的部分。当然,第一频域位置对应的RACH机会的指示信息中与第二频域位置对应的RACH机会的指示信息相同的部分实质上也是第二频域位置对应的RACH机会的指示信息,上述描述只是为了说明无需在SIB中重复包括这部分通用于不同的频域位置对应的RACH机会的信息。
例如,可以预先约定第一频域位置对应的RACH机会与第二频域位置对应的RACH机会的频分复用数目和时域位置相同,则第一频域位置对应的RACH机会的指示信息可以包括第一频域位置对应的RACH机会的频域起始位置、频分复用数目和时域位置,第二频域位置对应的RACH机会的指示信息可以包括第二频域位置对应的频域起始位置。如果结合方案一中的示例,SIB1的第一部分可以包括第一频域位置对应的RACH机会的频域起始位置、频分复用数目和时域位置,SIB1的第二部分可以包括第二频域位置对应的频分复用数目和频域起始位置。
又例如,可以预先约定第一频域位置对应的RACH机会与第二频域位置对应的RACH机会的时域位置相同,则第一频域位置对应的RACH机会的指示信息可以包括第一频域位 置对应的RACH机会的频域起始位置、频分复用数目和时域位置,第二频域位置对应的RACH机会的指示信息可以包括第二频域位置对应的频分复用数目和频域起始位置。如果结合方案二中的示例,SIB1的第一部分可以包括第一频域位置对应的RACH机会的频域起始位置、频分复用数目和时域位置,第二同步广播块可以包括第二频域位置对应的频分复用数目和频域起始位置。
在S604,终端设备根据第二频域位置对应的RACH机会的指示信息,确定第二频域位置对应的RACH机会。
在S605,终端设备根据位于第二频域位置的同步广播块的发送情况,在第二频域位置对应的RACH机会中确定第二同步广播块被映射到的RACH机会。
在S606,网络设备根据位于第二频域位置的同步广播块的发送情况,在第二频域位置对应的RACH机会中确定第二同步广播块被映射到的RACH机会。
在S607,终端设备在第二同步广播块被映射到的RACH机会上进行随机接入。
关于S605、S606和S607的具体描述,分别可以参考S404、S405和S406中的对应描述、以及S505、S506和S507中的对应描述,在此不再赘述。
通过这种方式,终端设备能够根据位于某个频域位置的同步广播块对应的SIB1中的信息确定出其他频域位置对应的RACH机会,或者,终端设备能够根据位于某个频域位置的同步广播块对应的SIB1中的信息,结合位于其他频域位置的同步广播块中的信息和/或预定义的信息确定出其他频域位置对应的RACH机会。因此,终端设备即使切换到新的频域位置进行随机接入,也无需重复接收SIB1,缩短了终端设备切换频域位置的时延,加快终端设备的随机接入速度,且降低了终端设备的能耗。
方式三
可以沿用现有方案中SIB1和同步广播块的设计,在终端设备完成随机接入后,网络设备通过无线资源控制(radio resource control,RRC)信令或PDCCH向终端设备发送其他频域位置对应的RACH机会的指示信息。图7为该方式的流程图。
在S701,终端设备从网络设备接收位于第一频域位置的第一同步广播块。
在S702,终端设备从网络设备接收位于第二频域位置的第二同步广播块。
关于S701和S702的具体描述,分别可以参考S401和S402中的对应描述,在此不再赘述。
在S703,终端设备从网络设备接收第一同步广播块对应的SIB1,第一同步广播块对应的SIB1包括第一频域位置对应的RACH机会的指示信息。
关于S703的具体描述,分别可以参考S503中的对应描述,在此不再赘述。
在S704,终端设备根据第一频域位置对应的RACH机会的指示信息,确定第一频域位置对应的RACH机会。
在S705,终端设备根据位于第一频域位置的同步广播块的发送情况,在第一频域位置对应的RACH机会中确定第一同步广播块被映射到的RACH机会。
在S706,网络设备根据位于第一频域位置的同步广播块的发送情况,在第一频域位置对应的RACH机会中确定第一同步广播块被映射到的RACH机会。
在S707,终端设备在第一同步广播块被映射到的RACH机会上进行随机接入。
关于S705、S706和S707的具体描述,分别可以参考S404、S405和S406中的对应描述,在此不再赘述。
在S708,终端设备从网络设备接收RRC信令或PDCCH,RRC信令或PDCCH包括第二频域位置对应的RACH机会的指示信息。除此之外,RRC信令或PDCCH中还可以包括其他频域位置对应的RACH机会的指示信息,比如,RRC信令或PDCCH中可以包括所有频域位置对应的RACH机会的指示信息,或者,RRC信令或PDCCH中可以包括除了第一频域位置之外的其他频域位置对应的RACH机会的指示信息。终端设备可以根据第二同步广播块的索引,判断SIB1中的哪部分RACH机会的指示信息是第二同步广播块所位于的第二频域位置对应的RACH机会的指示信息。
这里,与方式二中类似,RRC信令或PDCCH中可以仅包括第二频域位置对应的RACH机会的部分指示信息,其余的指示信息可以通过其他方式被指示,比如与方式一和/或方式二相结合。作为示例而非限定,终端设备可以根据第一频域位置的RACH机会的指示信息,通过预定义规则,确定其余的指示信息。例如,可以预先约定不同的频域位置对应的RACH机会的部分指示信息相同,此时,RRC信令或PDCCH中可以包括第二频域位置对应的RACH机会的指示信息中与第一频域位置对应的RACH机会的指示信息不同的部分。
RRC信令或PDCCH还可以包括位于第二频域位置的同步广播块的发送情况和/或第二同步广播块的索引。除此之外,RRC信令或PDCCH中还可以包括位于位于其他频域位置对应的同步广播块的发送情况和/或其他同步广播块的索引,比如,RRC信令或PDCCH中可以包括该同步广播集中的所有同步广播块的发送情况和/或索引,或者,RRC信令或PDCCH中可以包括位于除了第一频域位置之外的其他频域位置的同步广播块的发送情况和/或除了第一同步广播块以外的其他同步广播块的索引。
关于同步广播块的发送情况和同步广播块的索引的具体描述,分别可以参考S404和S504中的对应描述,在此不再赘述。
终端设备在通过S707成功接入小区后,可能需要再次进行随机接入,例如,终端设备可能需要从RRC非激活态返回RRC连接态。此时,如果终端设备选择了位于第二频域位置的第二同步广播块,可以基于在S708中接收到的信息确定第二同步广播块被映射到的RACH机会。
具体地,在S709,终端设备根据根据第二频域位置对应的RACH机会的指示信息,确定第二频域位置对应的RACH机会。
在S710,终端设备根据位于第二频域位置的同步广播块的发送情况,在第二频域位置对应的RACH机会中确定第二同步广播块被映射到的RACH机会。
在S711,网络设备根据位于第二频域位置的同步广播块的发送情况,在第二频域位置对应的RACH机会中确定第二同步广播块被映射到的RACH机会。
在S712,终端设备在第二同步广播块被映射到的RACH机会上进行随机接入。
关于S710、S711和S712的具体描述,分别可以参考S404、S405和S406中的对应描述、以及S505、S506和S507中的对应描述,在此不再赘述。应理解的是,虽然在图7中S706和S711是两个步骤,且S706位于S707之前,S711位于S708之后、S712之前,但S706和S711可以是一个步骤,且这些步骤的时序不限于此。S706可以在S707之后进行,也可以与S707同时进行。S711可以在S708、甚至S707之前进行,可以在S711之后进行,也可以与这些步骤同时进行。
通过这种方式,终端设备能够在随机接入后通过RRC信令或PDCCH获知其他频域位置对应的RACH机会。因此,如果终端设备在接入小区后因为某些原因需要再次进行随机 接入,即使此时终端设备所选的同步广播块为其他频域位置的同步广播块,也无需重复接收SIB,缩短了终端设备切换频域位置的时延,加快终端设备的随机接入速度,且降低了终端设备的能耗。
此外,不进行同步广播块频分复用的终端设备(包括不支持同步广播块频分复用的终端设备、以及支持同步广播块频分复用但不进行同步广播块频分复用的终端设备)会默认一个同步广播集中的同步广播块均在一个频域位置上发送。这样的终端设备在进行随机接入时只能选择位于一个频域位置的同步广播块,无法选择位于其他频域位置的同步广播块。这种方式无需修改现有方案中针对SIB1和同步广播块的设计,减少了对不进行同步广播块频分复用的终端设备的影响。
在本申请实施例中,不同的频域位置对应的RACH机会之间的关联程度(例如,相似度)有可能会影响到终端切换频域位置的时延和/或终端设备的能耗。例如,不同的频域位置对应的RACH机会之间的关联程度如果较高,则在方式一中,终端设备可能会花费较短的时间和/或较少的能耗来确定第二频域位置的RACH机会。或者,不同的频域位置对应的RACH机会之间的关联程度如果较高,则在方式二中,SIB1中包括的其他频域位置对应的RACH机会的指示信息可能会较少。或者,不同的频域位置对应的RACH机会之间的关联程度如果较高,则在方式三中,RRC信令或PDCCH中包括的其他频域位置对应的RACH机会的指示信息可能会较少。因此,可以按照这个思路来设计RACH机会、以及RACH机会的指示信息。
关于RACH机会,可以考虑下述方案。这些方案之间可以结合使用。
方案一:不同的频域位置对应的RACH机会的时域位置可以是相同的。即,第一频域位置对应的RACH机会的时域位置可以与第二频域位置对应的RACH机会的时域位置相同。关于RACH机会的时域位置相同的具体描述,可以参考S504中的对应描述,在此不再赘述。
方案二:不同的频域位置对应的RACH机会可以是不重叠的。即,第一频域位置对应的RACH机会可以与第二频域位置对应的RACH机会不重叠。这里的不重叠并不限定为是在时域上不重叠还是在频域上不重叠,只要综合时频域来看不重叠即可。当然,如果将不同的频域位置对应的RACH机会的时域位置设置为相同,且将不同的频域位置对应的RACH机会设置为不重叠,这里的不重叠等同于在频域上不重叠。
方案三:相邻的频域位置对应的RACH机会可以是在频域和/或时域上紧密排列的。即,第一频域位置对应的RACH机会可以与第二频域位置对应的RACH机会是在频域和/或时域上紧密排列的。当然,如果将不同的频域位置对应的RACH机会的时域位置设置为相同,不同的频域位置对应的RACH机会只能是在频域上紧密排列。关于相邻和紧密排列的具体描述,可以参考S504中的对应描述,在此不再赘述。
以图2C为例,下方的RACH机会1和RACH机会2为频域位置1对应的RACH机会,上方的RACH机会1和RACH机会2为频域位置2对应的RACH机会。可以看出,这4个RACH机会的时域位置均是相同的,且这些RACH机会彼此之间不重叠并在频域上紧密排列。
关于RACH机会的指示信息,可以考虑下述方案。这些方案之间可以结合使用。
方案一:不同的频域位置对应的RACH机会的指示信息中,频域的起始位置不同,其他信息(例如,频分复用数目和时域信息)可以相同。即,第一频域位置的的RACH机会 的指示信息与第二频域位置对应的RACH机会的指示信息相比,第一频域位置对应的RACH机会的频域起始位置与第二频域位置对应的RACH机会的频域起始位置不同,其他信息可以相同。
方案二:不同的频域位置对应的RACH机会的时域位置可以相同。即,第一频域位置对应的RACH机会的时域位置可以与第二频域位置对应的RACH机会的时域位置相同。
方案三:不同的频域位置对应的RACH机会的频分复用数目可以相同。即,第一频域位置对应的RACH机会的频分复用数目可以与第二频域位置对应的RACH机会的频分复用数目相同。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图8为本申请实施例提供的终端设备800的示意性框图。终端设备800包括处理模块810和收发模块820。示例性地,终端设备800可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当终端设备800是终端设备时,收发模块820可以是收发器,收发器可以包括天线和射频电路等,处理模块810可以是处理器,处理器中可以包括一个或多个中央处理单元(central processing unit,CPU)。当终端设备800是具有上述终端设备功能的部件时,收发模块820可以是射频单元,处理模块810可以是处理器,例如基带处理器。当终端设备800是芯片系统时,收发模块820可以是芯片(例如基带芯片)的输入输出接口、处理模块810可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块810可以由处理器或处理器相关电路组件实现,收发模块820可以由收发器或收发器相关电路组件实现。
处理模块810可以用于执行上述方法实施例中由终端设备所执行的除了收发操作之外的全部操作,和/或用于支持本文所描述的技术的其它过程。收发模块820可以用于执行上述方法实施例中由终端设备所执行的全部接收操作,和/或用于支持本文所描述的技术的其它过程。
收发模块820可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块820可以用于执行上述方法实施例中由终端设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块820是发送模块,而在执行接收操作时,可以认为收发模块820是接收模块;或者,收发模块820也可以是两个功能模块,收发模块可以视为这两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于上述方法实施例中由终端设备所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行上述方法实施例中由终端设备所执行的全部接收操作。
收发模块820用于接收位于第一频域位置的第一同步广播块。
收发模块820还用于接收位于第二频域位置的第二同步广播块。
处理模块810用于确定第二频域位置对应的随机接入信道RACH机会。
处理模块810还用于根据位于第二频域位置的同步广播块的发送情况,在第二频域位置对应的RACH机会中确定第二同步广播块被映射到的RACH机会。
收发模块820还用于在第二同步广播块被映射到的RACH机会上进行随机接入。
作为一种可选的实施方式,收发模块820还用于接收第一同步广播块对应的系统信息块类型一SIB1,SIB1包括第一频域位置对应的RACH机会的指示信息;其中,处理模块 810具体用于根据第一频域位置对应的RACH机会的指示信息,确定第二频域位置对应的RACH机会。
作为一种可选的实施方式,处理模块810具体用于根据第一频域位置对应的RACH机会的指示信息、以及第一同步广播块的索引和第二同步广播块的索引,确定第二频域位置对应的RACH机会。
作为一种可选的实施方式,第一同步广播块的索引为第一同步广播块的仅考虑频域上的顺序的索引,第二同步广播块的索引为第二同步广播块的仅考虑频域上的顺序的索引;或者,第一同步广播块的索引为第一同步广播块的考虑频域和时域上的顺序的索引,第二同步广播块的索引为第二同步广播块的考虑频域和时域上的顺序的索引。
作为一种可选的实施方式,第一同步广播块的索引和第二同步广播块的索引被包括在SIB1中;或者,第一同步广播块的索引被包括在第一同步广播块中,第二同步广播块的索引被包括在第二同步广播块中。
作为一种可选的实施方式,收发模块820还用于接收第一同步广播块对应的系统信息块类型一SIB1,SIB1包括第一频域位置对应的RACH机会的指示信息;其中,第二频域位置对应的RACH机会的指示信息被包括在下述项的至少一项中:SIB1、以及第二同步广播块;其中,处理模块810具体用于根据第二频域位置对应的RACH机会的指示信息,确定第二频域位置对应的RACH机会。
作为一种可选的实施方式,收发模块820还用于接收第一同步广播块对应的系统信息块类型一SIB1,SIB1包括第一频域位置对应的RACH机会的指示信息;处理模块810还用于根据第一频域位置对应的RACH机会的指示信息,确定第一频域位置对应的RACH机会;处理模块810还用于根据位于第一频域位置的同步广播块的发送情况,在第一频域位置对应的RACH机会中确定第一同步广播块被映射到的RACH机会;收发模块820还用于在第一同步广播块被映射到的RACH机会进行随机接入;收发模块820还用于接收无线资源控制RRC信令或物理下行链路控制信道PDCCH,RRC信令或PDCCH包括第二频域位置对应的RACH机会的指示信息;其中,处理模块810具体用于根据第二频域位置对应的RACH机会的指示信息,确定第二频域位置对应的RACH机会。
图9为本申请实施例提供的网络设备900的示意性框图。网络设备900包括处理模块910和收发模块920。示例性地,网络设备900可以是网络设备,也可以是应用于网络设备中的芯片或者其他具有上述网络设备功能的组合器件、部件等。当网络设备900是网络设备时,收发模块920可以是收发器,收发器可以包括天线和射频电路等,处理模块910可以是处理器,处理器中可以包括一个或多个中央处理单元(central processing unit,CPU)。当网络设备900是具有上述网络设备功能的部件时,收发模块920可以是射频单元,处理模块910可以是处理器,例如基带处理器。当网络设备900是芯片系统时,收发模块920可以是芯片(例如基带芯片)的输入输出接口、处理模块910可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块910可以由处理器或处理器相关电路组件实现,收发模块920可以由收发器或收发器相关电路组件实现。
处理模块910可以用于执行上述方法实施例中由网络设备所执行的除了收发操作之外的全部操作,和/或用于支持本文所描述的技术的其它过程。收发模块920可以用于执行上述方法实施例中由网络设备所执行的全部接收操作,和/或用于支持本文所描述的技术的其它过程。
收发模块920可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块920可以用于执行上述方法实施例中由网络设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块920是发送模块,而在执行接收操作时,可以认为收发模块920是接收模块;或者,收发模块920也可以是两个功能模块,收发模块可以视为这两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于上述方法实施例中由网络设备所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行上述方法实施例中由网络设备所执行的全部接收操作。
收发模块920用于发送位于第一频域位置的第一同步广播块。
收发模块920还用于发送位于第二频域位置的第二同步广播块。
处理模块910用于根据位于第一频域位置的同步广播块的发送情况,在第一频域位置对应的随机接入信道RACH机会中确定第一同步广播块被映射到的RACH机会。
处理模块910还用于根据位于第二频域位置的同步广播块的发送情况,在第二频域位置对应的RACH机会中确定第二同步广播块被映射到的RACH机会。
作为一种可选的实施方式,第一同步广播块包括第一同步广播块的索引,第二同步广播块包括第二同步广播块的索引;或者,收发模块920还用于发送第一同步广播块对应的系统信息块类型一SIB1,SIB1包括第一频域位置对应的RACH机会的指示信息、以及第一同步广播块的索引和第二同步广播块的索引。
作为一种可选的实施方式,第一同步广播块的索引为第一同步广播块的仅考虑频域上的顺序的索引,第二同步广播块的索引为第二同步广播块的仅考虑频域上的顺序的索引;或者,第一同步广播块的索引为第一同步广播块的考虑频域和时域上的顺序的索引,第二同步广播块的索引为第二同步广播块的考虑频域和时域上的顺序的索引。
作为一种可选的实施方式,收发模块920还用于发送第一同步广播块对应的系统信息块类型一SIB1,SIB1包括第一频域位置对应的RACH机会的指示信息;其中,第二频域位置对应的RACH机会的指示信息被包括在下述项的至少一项中:SIB1、以及第二同步广播块。
作为一种可选的实施方式,收发模块920还用于发送第一同步广播块对应的系统信息块类型一SIB1,SIB1包括第一频域位置对应的RACH机会的指示信息;收发模块920还用于在终端设备在第一同步广播块被映射到的RACH机会上进行随机接入的情况下,向终端设备发送无线资源控制RRC信令或物理下行链路控制信道PDCCH,RRC信令或PDCCH包括第二频域位置对应的RACH机会的指示信息。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置为终端设备时,图10示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图10中,终端设备以手机作为例子。如图10所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种 类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图10中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元(收发单元可以是一个功能单元,该功能单元能够实现发送功能和接收功能;或者,收发单元也可以包括两个功能单元,分别为能够实现接收功能的接收单元和能够实现发送功能的发送单元),将具有处理功能的处理器视为终端设备的处理单元。如图10所示,终端设备包括收发单元1010和处理单元1020。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1010中用于实现接收功能的器件视为接收单元,将收发单元1010中用于实现发送功能的器件视为发送单元,即收发单元1010包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1010用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1020用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本实施例中的通信装置为终端设备时,可以参照图11所示的设备。虽然图11中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图12示出本实施例的另一种形式。处理装置1200中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1203,接口1204。作为另一种变形,该调制子系统包括存储器1206、处理器1203及存储在存储器1206上并可在处理器上运行的程序,处理器1203执行该程序时实现上述方法实施例中终端设备侧的方法。需要注意的是,存储器1206可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1200中,只要存储器1206可以连接到处理器1203即可。
本申请实施例中的装置为网络设备时,该装置可以如图13所示。装置1300包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1310和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1320。RRU1310可以称为收发模块,该收发模块可以包括发送模块和接收模块,或者,该收发模块可以是一个能够实现发送功能和接收功能的模块。可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1311和射频单元1312。RRU 1310部分主要用于 射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。BBU1310部分主要用于进行基带处理,对基站进行控制等。RRU 1310与BBU1320可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
BBU 1320为基站的控制中心,也可以称为处理模块,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如BBU 1320可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,BBU 1320可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网络,5G网络或其他网络)。BBU 1320还包括存储器1321和处理器1322。存储器1321用以存储必要的指令和数据。处理器1322用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。存储器1321和处理器1322可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例提供一种通信系统。该通信系统可以包括上述方法实施例中所涉及的网络设备,以及包括上述方法实施例中所涉及的终端设备。终端设备例如为图8中的终端设备800。网络设备例如为图9中的网络设备900。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,该计算机可以实现上述方法实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,该计算机可以实现上述方法实施例中与网络设备相关的流程。
本申请实施例还提供一种计算机程序产品,该计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,该计算机可以实现上述方法实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,该计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,该计算机可以实现上述方法实施例中与网络设备相关的流程。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、 同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
上述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例中方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应该以权利要求的保护范围为准。

Claims (27)

  1. 一种通信方法,其特征在于,包括:
    接收位于第一频域位置的第一同步广播块;
    接收位于第二频域位置的第二同步广播块;
    确定所述第二频域位置对应的随机接入信道RACH机会;
    根据位于所述第二频域位置的同步广播块的发送情况,在所述第二频域位置对应的RACH机会中确定所述第二同步广播块被映射到的RACH机会;
    在所述第二同步广播块被映射到的RACH机会上进行随机接入。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    接收所述第一同步广播块对应的系统信息块类型一SIB1,所述SIB1包括所述第一频域位置对应的RACH机会的指示信息;其中,
    确定所述第二频域位置对应的RACH机会,包括:
    根据所述第一频域位置对应的RACH机会的指示信息,确定所述第二频域位置对应的RACH机会。
  3. 根据权利要求2所述的方法,其特征在于,根据所述第一频域位置对应的RACH机会的指示信息,确定所述第二频域位置对应的RACH机会,包括:
    根据所述第一频域位置对应的RACH机会的指示信息、以及所述第一同步广播块的索引和所述第二同步广播块的索引,确定所述第二频域位置对应的RACH机会。
  4. 根据权利要求3所述的方法,其特征在于,所述第一同步广播块的索引为所述第一同步广播块的仅考虑频域上的顺序的索引,所述第二同步广播块的索引为所述第二同步广播块的仅考虑频域上的顺序的索引;或者,
    所述第一同步广播块的索引为所述第一同步广播块的考虑频域和时域上的顺序的索引,所述第二同步广播块的索引为所述第二同步广播块的考虑频域和时域上的顺序的索引。
  5. 根据权利要求2至4任意一项所述的方法,其特征在于,所述第一同步广播块的索引和所述第二同步广播块的索引被包括在所述SIB1中;或者,
    所述第一同步广播块的索引被包括在所述第一同步广播块中,所述第二同步广播块的索引被包括在所述第二同步广播块中。
  6. 根据权利要求1所述的方法,其特征在于,还包括:
    接收所述第一同步广播块对应的系统信息块类型一SIB1,所述SIB1包括所述第一频域位置对应的RACH机会的指示信息;其中,
    所述第二频域位置对应的RACH机会的指示信息被包括在下述项的至少一项中:所述SIB1、以及所述第二同步广播块;其中,
    确定所述第二频域位置对应的RACH机会,包括:
    根据所述第二频域位置对应的RACH机会的指示信息,确定所述第二频域位置对应的RACH机会。
  7. 根据权利要求1所述的方法,其特征在于,还包括:
    接收所述第一同步广播块对应的系统信息块类型一SIB1,所述SIB1包括所述第一频域位置对应的RACH机会的指示信息;
    根据所述第一频域位置对应的RACH机会的指示信息,确定所述第一频域位置对应的RACH机会;
    根据位于所述第一频域位置的同步广播块的发送情况,在所述第一频域位置对应的RACH机会中确定所述第一同步广播块被映射到的RACH机会;
    在所述第一同步广播块被映射到的RACH机会进行随机接入;
    接收无线资源控制RRC信令或物理下行链路控制信道PDCCH,所述RRC信令或所述PDCCH包括所述第二频域位置对应的RACH机会的指示信息;其中,
    确定所述第二频域位置对应的RACH机会,包括:
    根据所述第二频域位置对应的RACH机会的指示信息,确定所述第二频域位置对应的RACH机会。
  8. 一种通信方法,其特征在于,包括:
    发送位于第一频域位置的第一同步广播块;
    发送位于第二频域位置的第二同步广播块;
    根据位于所述第一频域位置的同步广播块的发送情况,在所述第一频域位置对应的随机接入信道RACH机会中确定所述第一同步广播块被映射到的RACH机会;
    根据位于所述第二频域位置的同步广播块的发送情况,在所述第二频域位置对应的RACH机会中确定所述第二同步广播块被映射到的RACH机会。
  9. 根据权利要求8所述的方法,其特征在于,所述第一同步广播块包括所述第一同步广播块的索引,所述第二同步广播块包括所述第二同步广播块的索引;或者,
    所述方法还包括:
    发送所述第一同步广播块对应的系统信息块类型一SIB1,所述SIB1包括所述第一频域位置对应的RACH机会的指示信息、以及所述第一同步广播块的索引和所述第二同步广播块的索引。
  10. 根据权利要求9所述的方法,其特征在于,所述第一同步广播块的索引为所述第一同步广播块的仅考虑频域上的顺序的索引,所述第二同步广播块的索引为所述第二同步广播块的仅考虑频域上的顺序的索引;或者,
    所述第一同步广播块的索引为所述第一同步广播块的考虑频域和时域上的顺序的索引,所述第二同步广播块的索引为所述第二同步广播块的考虑频域和时域上的顺序的索引。
  11. 根据权利要求8所述的方法,其特征在于,还包括:
    发送所述第一同步广播块对应的系统信息块类型一SIB1,所述SIB1包括所述第一频域位置对应的RACH机会的指示信息;其中,
    所述第二频域位置对应的RACH机会的指示信息被包括在下述项的至少一项中:所述SIB1、以及所述第二同步广播块。
  12. 根据权利要求8所述的方法,其特征在于,还包括:
    发送所述第一同步广播块对应的系统信息块类型一SIB1,所述SIB1包括所述第一频域位置对应的RACH机会的指示信息;
    在终端设备在所述第一同步广播块被映射到的RACH机会上进行随机接入的情况下,向所述终端设备发送无线资源控制RRC信令或物理下行链路控制信道PDCCH,所述RRC信令或所述PDCCH包括所述第二频域位置对应的RACH机会的指示信息。
  13. 一种通信装置,其特征在于,包括:
    收发模块,用于接收位于第一频域位置的第一同步广播块;
    所述收发模块,还用于:接收位于第二频域位置的第二同步广播块;
    处理模块,用于确定所述第二频域位置对应的随机接入信道RACH机会;
    所述处理模块,还用于:根据位于所述第二频域位置的同步广播块的发送情况,在所述第二频域位置对应的RACH机会中确定所述第二同步广播块被映射到的RACH机会;
    所述收发模块,还用于:在所述第二同步广播块被映射到的RACH机会上进行随机接入。
  14. 根据权利要求13所述的装置,其特征在于,所述收发模块,还用于:接收所述第一同步广播块对应的系统信息块类型一SIB1,所述SIB1包括所述第一频域位置对应的RACH机会的指示信息;其中,
    所述处理模块,具体用于:根据所述第一频域位置对应的RACH机会的指示信息,确定所述第二频域位置对应的RACH机会。
  15. 根据权利要求14所述的装置,其特征在于,所述处理模块,具体用于:根据所述第一频域位置对应的RACH机会的指示信息、以及所述第一同步广播块的索引和所述第二同步广播块的索引,确定所述第二频域位置对应的RACH机会。
  16. 根据权利要求15所述的装置,其特征在于,所述第一同步广播块的索引为所述第一同步广播块的仅考虑频域上的顺序的索引,所述第二同步广播块的索引为所述第二同步广播块的仅考虑频域上的顺序的索引;或者,
    所述第一同步广播块的索引为所述第一同步广播块的考虑频域和时域上的顺序的索引,所述第二同步广播块的索引为所述第二同步广播块的考虑频域和时域上的顺序的索引。
  17. 根据权利要求14至16任意一项所述的装置,其特征在于,所述第一同步广播块的索引和所述第二同步广播块的索引被包括在所述SIB1中;或者,
    所述第一同步广播块的索引被包括在所述第一同步广播块中,所述第二同步广播块的索引被包括在所述第二同步广播块中。
  18. 根据权利要求13所述的装置,其特征在于,所述收发模块,还用于:接收所述第一同步广播块对应的系统信息块类型一SIB1,所述SIB1包括所述第一频域位置对应的RACH机会的指示信息;其中,
    所述第二频域位置对应的RACH机会的指示信息被包括在下述项的至少一项中:所述SIB1、以及所述第二同步广播块;其中,
    所述处理模块,具体用于:根据所述第二频域位置对应的RACH机会的指示信息,确定所述第二频域位置对应的RACH机会。
  19. 根据权利要求13所述的装置,其特征在于,所述收发模块,还用于:接收所述第一同步广播块对应的系统信息块类型一SIB1,所述SIB1包括所述第一频域位置对应的RACH机会的指示信息;
    所述处理模块,还用于:根据所述第一频域位置对应的RACH机会的指示信息,确定所述第一频域位置对应的RACH机会;
    所述处理模块,还用于:根据位于所述第一频域位置的同步广播块的发送情况,在所述第一频域位置对应的RACH机会中确定所述第一同步广播块被映射到的RACH机会;
    所述收发模块,还用于:在所述第一同步广播块被映射到的RACH机会进行随机接入;
    所述收发模块,还用于:接收无线资源控制RRC信令或物理下行链路控制信道PDCCH,所述RRC信令或所述PDCCH包括所述第二频域位置对应的RACH机会的指示信息;其中,
    所述处理模块,具体用于:根据所述第二频域位置对应的RACH机会的指示信息,确定所述第二频域位置对应的RACH机会。
  20. 一种通信装置,其特征在于,包括:
    收发模块,用于发送位于第一频域位置的第一同步广播块;
    所述收发模块,还用于:发送位于第二频域位置的第二同步广播块;
    处理模块,用于根据位于所述第一频域位置的同步广播块的发送情况,在所述第一频域位置对应的随机接入信道RACH机会中确定所述第一同步广播块被映射到的RACH机会;
    所述处理模块,还用于:根据位于所述第二频域位置的同步广播块的发送情况,在所述第二频域位置对应的RACH机会中确定所述第二同步广播块被映射到的RACH机会。
  21. 根据权利要求20所述的装置,其特征在于,所述第一同步广播块包括所述第一同步广播块的索引,所述第二同步广播块包括所述第二同步广播块的索引;或者,
    所述收发模块,还用于:发送所述第一同步广播块对应的系统信息块类型一SIB1,所述SIB1包括所述第一频域位置对应的RACH机会的指示信息、以及所述第一同步广播块的索引和所述第二同步广播块的索引。
  22. 根据权利要求21所述的装置,其特征在于,所述第一同步广播块的索引为所述第一同步广播块的仅考虑频域上的顺序的索引,所述第二同步广播块的索引为所述第二同步广播块的仅考虑频域上的顺序的索引;或者,
    所述第一同步广播块的索引为所述第一同步广播块的考虑频域和时域上的顺序的索引,所述第二同步广播块的索引为所述第二同步广播块的考虑频域和时域上的顺序的索引。
  23. 根据权利要求20所述的装置,其特征在于,所述收发模块,还用于:发送所述第一同步广播块对应的系统信息块类型一SIB1,所述SIB1包括所述第一频域位置对应的RACH机会的指示信息;其中,
    所述第二频域位置对应的RACH机会的指示信息被包括在下述项的至少一项中:所述SIB1、以及所述第二同步广播块。
  24. 根据权利要求20所述的装置,其特征在于,所述收发模块,还用于:发送所述第一同步广播块对应的系统信息块类型一SIB1,所述SIB1包括所述第一频域位置对应的RACH机会的指示信息;
    所述收发模块,还用于:在终端设备在所述第一同步广播块被映射到的RACH机会上进行随机接入的情况下,向所述终端设备发送无线资源控制RRC信令或物理下行链路控制信道PDCCH,所述RRC信令或所述PDCCH包括所述第二频域位置对应的RACH机会的指示信息。
  25. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,所述计算机程序代码被计算机运行时,使得所述计算机执行根据权利要求1至12任意一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,所述指令被运行时,使得通信设备执行根据权利要求1至12任意一项所述的方法。
  27. 一种通信装置,其特征在于,所述装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,使得所述装置执行根据权利要求1至12任意一项所述的方法。
PCT/CN2019/130946 2019-12-31 2019-12-31 一种通信方法及装置 WO2021134702A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/130946 WO2021134702A1 (zh) 2019-12-31 2019-12-31 一种通信方法及装置
CN201980103227.XA CN114846884A (zh) 2019-12-31 2019-12-31 一种通信方法及装置
EP19958556.3A EP4072096A4 (en) 2019-12-31 2019-12-31 COMMUNICATION METHOD AND APPARATUS
US17/853,269 US20220338275A1 (en) 2019-12-31 2022-06-29 Communication Method and Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130946 WO2021134702A1 (zh) 2019-12-31 2019-12-31 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/853,269 Continuation US20220338275A1 (en) 2019-12-31 2022-06-29 Communication Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2021134702A1 true WO2021134702A1 (zh) 2021-07-08

Family

ID=76687018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130946 WO2021134702A1 (zh) 2019-12-31 2019-12-31 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20220338275A1 (zh)
EP (1) EP4072096A4 (zh)
CN (1) CN114846884A (zh)
WO (1) WO2021134702A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023066006A1 (zh) * 2021-10-18 2023-04-27 华为技术有限公司 一种随机接入方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190104552A1 (en) * 2017-09-29 2019-04-04 Electronics And Telecommunications Research Institute Ssb to rach resource associations and related rach configuration contents in multi-beam system
CN110546981A (zh) * 2017-06-16 2019-12-06 华为技术有限公司 在无线网络中使用随机接入的无线通信
CN110546990A (zh) * 2019-07-25 2019-12-06 北京小米移动软件有限公司 速率匹配的指示方法、装置、设备及存储介质
CN110603793A (zh) * 2017-05-03 2019-12-20 Lg 电子株式会社 用于发送随机接入信道信号的方法、用户设备、用于接收随机接入信道信号的方法和基站

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10869258B2 (en) * 2017-10-10 2020-12-15 Qualcomm Incorporated Beam specific backoff indicator
US11147104B2 (en) * 2018-05-11 2021-10-12 Apple Inc. PRACH resource selection
US11013036B2 (en) * 2018-06-14 2021-05-18 Samsung Electronics Co., Ltd. Method and apparatus on enhancements of NR random access for unlicensed operations
US11595998B2 (en) * 2018-08-20 2023-02-28 Qualcomm Incorporated Separation of synchronization signal blocks for access and backhaul random access channel transmissions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603793A (zh) * 2017-05-03 2019-12-20 Lg 电子株式会社 用于发送随机接入信道信号的方法、用户设备、用于接收随机接入信道信号的方法和基站
CN110546981A (zh) * 2017-06-16 2019-12-06 华为技术有限公司 在无线网络中使用随机接入的无线通信
US20190104552A1 (en) * 2017-09-29 2019-04-04 Electronics And Telecommunications Research Institute Ssb to rach resource associations and related rach configuration contents in multi-beam system
CN110546990A (zh) * 2019-07-25 2019-12-06 北京小米移动软件有限公司 速率匹配的指示方法、装置、设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ITL: "Initial access and mobility for NR-U", 3GPP DRAFT; R1-1811443_NR-U IA, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chengdu, China; 20181008 - 20181012, 29 September 2018 (2018-09-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051518846 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023066006A1 (zh) * 2021-10-18 2023-04-27 华为技术有限公司 一种随机接入方法及装置

Also Published As

Publication number Publication date
EP4072096A4 (en) 2022-12-21
CN114846884A (zh) 2022-08-02
US20220338275A1 (en) 2022-10-20
EP4072096A1 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
US20210329431A1 (en) Feedback Channel Sending Method And Apparatus, And Feedback Channel Receiving Method And Apparatus
US20210250159A1 (en) Resource configuration method and apparatus
EP3846561A1 (en) Communication method and apparatus, and device
US20160270012A1 (en) Method and apparatus for transmitting d2d signals
WO2021208821A1 (zh) 一种通信方法和通信装置
US20180324834A1 (en) Scheduling UEs with Mixed TTI Length
CN114208100A (zh) 每监测跨段的非重叠cce和盲解码的最大数量
JP2020523902A (ja) 通信方法、ネットワークデバイス、およびユーザ機器
US20240023043A1 (en) Synchronization method in unlicensed spectrum and apparatus
WO2020147728A1 (zh) 一种通信方法及设备
WO2021027893A1 (zh) 一种dmrs端口确定方法及通信装置
WO2020221326A1 (zh) 一种资源调度的方法及通信装置
CN111867095A (zh) 一种通信方法与终端装置
US20210235506A1 (en) Information processing method and apparatus
WO2021051364A1 (zh) 一种通信方法、装置及设备
US20220346012A1 (en) Signal sending and receiving method, apparatus, and device
WO2021072759A1 (zh) 一种通信方法及装置
WO2021026929A1 (zh) 一种通信方法及装置
WO2021036569A1 (zh) 一种通信方法及装置
WO2020233370A1 (zh) 一种通信方法及设备
WO2018141091A1 (zh) 发送信息的方法、接收信息的方法和装置
WO2021134702A1 (zh) 一种通信方法及装置
WO2023131235A1 (zh) 一种传输信息的方法、装置及系统
WO2021031026A1 (zh) 一种下行控制信息dci的传输方法及装置
WO2022082767A1 (zh) 一种通信方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958556

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019958556

Country of ref document: EP

Effective date: 20220708

NENP Non-entry into the national phase

Ref country code: DE