WO2021134685A1 - 一种mems陀螺仪 - Google Patents

一种mems陀螺仪 Download PDF

Info

Publication number
WO2021134685A1
WO2021134685A1 PCT/CN2019/130923 CN2019130923W WO2021134685A1 WO 2021134685 A1 WO2021134685 A1 WO 2021134685A1 CN 2019130923 W CN2019130923 W CN 2019130923W WO 2021134685 A1 WO2021134685 A1 WO 2021134685A1
Authority
WO
WIPO (PCT)
Prior art keywords
spiral
mems gyroscope
line
anchor point
spiral line
Prior art date
Application number
PCT/CN2019/130923
Other languages
English (en)
French (fr)
Inventor
马昭
占瞻
李杨
张睿
刘雨微
谭秋喻
黎家健
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2019/130923 priority Critical patent/WO2021134685A1/zh
Publication of WO2021134685A1 publication Critical patent/WO2021134685A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/04Details
    • G01C19/16Suspensions; Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/42Rotary gyroscopes for indicating rate of turn; for integrating rate of turn
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces

Definitions

  • the invention relates to a gyroscope, and relates to a MEMS gyroscope.
  • MEMS gyroscopes are widely used in the consumer electronics market due to their small size, low power consumption, and easy processing. In recent years, with the gradual improvement of the accuracy of MEMS gyroscopes, MEMS resonant gyroscopes are also used in auto driving, etc. Navigation field.
  • the quality factor of the gyroscope is a key parameter that characterizes the energy loss during the resonant operation of the gyroscope, and the quality factor is one of the indirect evaluation indexes of the gyroscope's performance.
  • Common energy loss mechanisms include air damping loss, surface loss, anchor loss, electronic device damping, and thermoelastic damping loss. Since the gyroscope is packaged in a high vacuum, the thermoelastic damping can be considered as the main source of energy loss during operation, and the thermoelastic quality factor Q TED represents the upper limit of the gyroscope's quality factor. Taking a one-dimensional beam as an example, the thermal elastic quality factor Q TED calculation model is:
  • f 0 and f relax are the resonance frequency and the heat release frequency, respectively.
  • E is Young's modulus
  • is the linear coefficient of thermal diffusion.
  • T 0 is the equivalent temperature of the beam
  • C v is the specific heat capacity
  • k is the thermal conductivity
  • h is the width in the direction of flexural deformation. According to the formula, the relationship between Q TED and f 0 /f relax is shown in Figure 1.
  • the heat release frequency f relax of a typical MEMS resonator is >2MHz, which is much greater than the vibration frequency of a typical gyroscope. Therefore, in order to increase Q TED , the heat release frequency f relax of the gyro can be increased. According to the expression of the heat release frequency f relax , the width h of the deformation of the resonator can be reduced, thereby increasing Q TED . Therefore, based on the above analysis, it is concluded that slotting and optimizing the flexible deformation of the entity in the gyroscope structure is an effective solution for improving the Q TED of the gyroscope.
  • MEMS gyroscopes are vibrating gyroscopes based on Coriolis force, common wired vibrating tuning fork type gyroscopes and disc-shaped gyroscopes.
  • the disc type gyroscope has the potential to become a high-performance gyroscope due to its modal self-matching, low temperature drift, and low anchor loss.
  • the quality factor of the disc-shaped gyroscope is low. Therefore, there are currently few disc-shaped gyroscopes that achieve high performance.
  • the purpose of the present invention is to provide a MEMS gyroscope, which overcomes the above-mentioned shortcomings of the prior art and can improve the Q TED of the gyroscope, thereby enabling the disc-type gyroscope to achieve high performance.
  • a MEMS gyroscope of the present invention includes a resonator and a plurality of external electrodes.
  • the external electrodes are distributed in a circular array on the periphery of the resonator.
  • the resonator is an axially symmetric disk-shaped network structure.
  • the sub includes an anchor point structure at the center of the resonator and a spiral structure, the spiral structure is fixedly connected to the anchor structure, and the spiral structure consists of a plurality of spiral units that are interwoven into a net in a circular array according to the anchor structure. shape;
  • the spiral line unit includes a first spiral line and a second spiral line extending in opposite directions from the same starting end on the anchor point structure, and the rotation directions of the first spiral line and the second spiral line are opposite, and the rotation direction of the first spiral line and the second spiral line are opposite.
  • the first spiral line and the second spiral line extend toward the same terminal end and are connected at the terminal end, and the first spiral line and the second spiral line intersect at an intersection located on the side of the starting end away from the terminal end ,
  • the start end, the end end, and the intersection point are collinear, the first helix and the second helix are symmetrical about the connecting line between the start end and the end end, and the anchor point structure covers a part of the In the spiral unit, the external electrode is fixed to the terminal end.
  • two adjacent first spiral lines are parallel and have the same length.
  • the spiral line between the starting point and the intersection point forms a first closed structure
  • the spiral line between the intersection point and the terminal end forms a second closed structure
  • the first closed structure and The second closed structure is a heart-shaped structure with two opposite directions.
  • the spiral structure is a spiral mesh structure formed by the intersection of a plurality of spiral units, and the spiral mesh structure includes polygonal holes.
  • a spoke structure is provided in the hole, and the spoke structure is located at an acute angle portion of the hole and connected to adjacent two sides forming the acute angle.
  • the spiral network structure is in a honeycomb shape
  • the honeycomb spiral structure has a plurality of honeycomb-shaped sub-units
  • the honeycomb-shaped sub-units include a spiral and a diameter along the anchor point structure.
  • a connecting beam extending in the direction of the direction, the hole is formed by the connecting beam and the helix end to end to form a hexagonal structure.
  • the connecting beam is a linear beam, and the connecting beam radially connects the nodes formed by the intersection of the spiral elements.
  • a suspended mass is provided in the spiral structure.
  • the suspended mass is connected to the connecting beam, and the suspended mass has an axisymmetric structure and the symmetry axis overlaps the line on which the connecting beam is located.
  • internal electrodes are provided in the spiral structure.
  • the internal electrodes are uniformly distributed in the spiral structure in a circumferential array with the anchor point structure as the center, and the internal electrodes are located inside the suspended mass.
  • the present invention proposes a MEMS gyroscope based on the advantages of the disc type gyroscope; the spiral structure is interwoven into a mesh by the spiral unit in a circular array from the starting point, and the anchor point structure is built-in to simplify the spiral segment. To reduce the process difficulty and facilitate the micro-nano processing, it can also reduce the width h of the deformation of the resonator, thereby increasing the Q TED ; at the same time, the spiral line in the spiral structure is in the driving mode direction due to its arc involute characteristic. Easy to deform and reduce stress concentration; the present invention uses the symmetrical feature of the spiral structure to realize that the gyro driving mode and the detection mode have a large quality factor, the vibration shape is degenerate, and conforms to the Coriolis effect.
  • Fig. 1 is a graph showing the relationship between the thermoelastic quality factor Q TED and f 0 /f relax in the background art of the present invention.
  • Fig. 2 is a schematic diagram of the spiral network structure of the present invention.
  • Fig. 3 is a schematic structural diagram of the spiral network structure in the driving mode of the present invention.
  • Fig. 4 is a schematic structural diagram of the spiral network structure in the detection mode of the present invention.
  • Fig. 5 is a schematic structural diagram of a partial spoke structure of the present invention.
  • Fig. 6 is a structural diagram of the honeycomb spiral structure of the present invention.
  • Fig. 7 is a schematic diagram of the structure of the honeycomb-shaped subunit of the present invention.
  • Fig. 8 is a structural schematic diagram of the honeycomb spiral structure in the driving mode of the present invention.
  • Fig. 9 is a schematic structural diagram of a honeycomb spiral structure in the detection mode of the present invention.
  • Fig. 10 is a schematic diagram of the structure of Fig. 6 with internal electrodes and suspended masses.
  • Fig. 11 is a partial enlarged view of the suspended mass in Fig. 10.
  • Fig. 12 is a structural schematic diagram of a honeycomb spiral structure equipped with suspended masses in the driving mode of the present invention.
  • Fig. 13 is a structural schematic diagram of a honeycomb spiral structure equipped with suspended masses in the detection mode of the present invention.
  • Anchor point structure 1. Anchor point structure; 2. Spiral mesh structure; 21. First spiral; 22. Second spiral; 3. External electrode; 4. Spoke structure; 5. Honeycomb spiral structure; 51. Honeycomb Shape subunit; 52. Connecting beam; 6. Internal electrode; 7. Suspended mass.
  • a MEMS gyroscope of this embodiment includes a resonator and 16 external electrodes 3.
  • the external electrodes 3 are distributed in a circular array on the periphery of the resonator 6, and the resonator is an axially symmetric disk-shaped mesh structure, so
  • the resonator includes an anchor point structure 1 located at the center of the resonator and a spiral structure.
  • the spiral structure is fixedly connected to the anchor point.
  • the spiral structure is composed of 16 spiral units in a circular array according to the starting point.
  • the line unit corresponds to one external electrode 3.
  • the spiral structure is a spiral mesh structure 2 formed by a circumferential array of a plurality of spiral units.
  • the first spiral wires 21 of two adjacent spiral units are parallel and have the same length.
  • the structure further includes a parallelogram hole formed by a plurality of spiral lines, and the spiral line unit includes a first spiral line 21 and a second spiral line extending in opposite directions from the same starting point A on the anchor point structure 1 22.
  • the rotation directions of the first helix 21 and the second helix 22 are opposite, and the first helix 21 and the second helix 22 extend toward the same end C and are connected at the end C, so The first helix 21 and the second helix 32 intersect at an intersection point B located on the side of the starting end A away from the ending end C, the starting end A, the ending end C, and the intersection B
  • the first helix 21 and the second helix 32 are axisymmetrical about the connecting line between the start end A and the end end C.
  • the anchor point structure 1 covers part of the helix unit, and the external electrode 3 is fixed to the terminal C.
  • the two spiral lines between the point A and the point B constitute a first closed structure
  • the two spiral lines between the point B and the point C constitute a second closed structure
  • the first closed structure and the second closed structure The structure is two heart-shaped structures with opposite directions.
  • the heart-shaped structure specifically refers to a shape formed by two C-shaped arcs bent and extended from the same starting point to the same end point.
  • the spiral network structure 2 is composed of a plurality of spiral units, and the spiral units have a high degree of symmetry. At the same time, the spiral has the characteristic of involute arc, which will reduce the concentration of stress.
  • the mesh gyroscope based on the spiral line combination has two modes with the same mode shape.
  • the first mode is the mode shape along 0°/90°, as shown in Figure 3. It is usually called the driving mode; the second mode is the mode shape along 45°/135°, as shown in Figure 4, which is usually called the detection mode; the spiral network structure 2 is due to the involute nature of the spiral arc , It is easy to deform in the driving mode direction, and will reduce the stress concentration.
  • the detection principle of the mesh gyroscope based on the combination of spirals under the action of the external angular velocity ⁇ can be expressed as: under the excitation of the external driving force, the gyroscope vibrates according to the driving mode. At this time, when the gyro is affected by the external angular velocity ⁇ , the angular velocity ⁇ will produce a resultant Coriolis force in the direction of 45°/135°. Under the action of the resultant Coriolis force, the gyro will move along the direction of 45°/135° to detect the modulus. The vibration mode of the state is vibrating. By detecting the vibration displacement of the spiral network structure 2 in the detection mode, the magnitude of the angular velocity ⁇ can be obtained.
  • a number of external electrodes 3 are distributed on the outside of the spiral mesh structure 2, and an external capacitor is formed between the external electrodes 3 and the spiral mesh structure 2, which is realized by the external capacitor: a) It is required to generate the vibration mode that forces the gyroscope to drive the mode B) Detect the displacement in the detection direction; c) Adjust the frequency of the driving mode and the detection mode by the external electrode 3; d) Suppress the quadrature error of the gyroscope.
  • the structure of this embodiment is roughly the same as that of embodiment 1, except that the spoke structure 4 is provided in the hole formed by the intersection of the spiral structure 2 and the spoke structure 4 is located at the acute angle part of the hole and forms the acute angle. Specifically, the spoke structure 4 is located at the acute angles on the left and right sides of the parallelogram hole, and the spoke structure 4 is a straight beam. After the spoke structure 4 is added, the parallelogram hole structure is Hexagons with obtuse angles, and other deformation improvements made to the spoke structure 4 to deform holes with an acute angle structure into holes with an obtuse angle structure are all within the protection scope of the present invention.
  • the spoke structure 4 can reduce the difficulty of micro-nano processing, weaken the impact of the acute angle structure at the mesh node in the spiral network structure 2 on the performance, and can adjust the driving mode and the detection mode by changing the size of the spoke structure 4 everywhere. Frequency in order to achieve an accurate match of the modal.
  • the spiral structure proposed in this embodiment is a honeycomb spiral structure 5.
  • the honeycomb spiral structure 5 is formed by a deformation process of the spiral mesh structure 2.
  • the deformation process includes the use of connecting beams 52 to connect the spiral along the radial direction of the anchor point structure.
  • the nodes of the mesh structure 2 and the spiral lines intersecting between the circumferentially adjacent connecting beams 52 are removed, thereby forming a honeycomb-shaped sub-unit surrounded by the left and right connecting beams 52 and the upper and lower spiral units, the honeycomb-shaped sub-units include spirals And a connecting beam 52 extending in the radial direction of the anchor point structure.
  • the hole is surrounded by the connecting beam 52 and the spiral line end to end to form a hexagonal structure.
  • the connecting beam 52 is a straight beam.
  • honeycomb spiral structure 5 there are 6 layers of honeycomb-shaped sub-unit belts, and the honeycomb-shaped sub-unit belts of each layer are composed of 16 honeycomb-shaped sub-units 51.
  • the honeycomb-shaped sub-units 51 consist of connecting beams 52 and
  • the connecting beam 52 is a straight beam, and the connecting beam 52 radially connects the nodes formed by the intersection of the helix elements.
  • the honeycomb gyroscope based on the combination of the helixes has two modes with the same vibration shape, as shown in Figure 8.
  • the first mode is the mode shape along 0°/90°; as shown in Figure 9, the second mode is the mode shape along 45°/135°, the gyro structure is detected under the action of the external angular velocity ⁇
  • the principle can be compared to Example 1.
  • the honeycomb spiral structure 5 of this embodiment can reduce the difficulty of micro-nano processing, and weaken the influence of the acute angle structure at the mesh node in the spiral network structure 2 on the performance.
  • the structure of this embodiment is roughly the same as that of the third embodiment.
  • the difference lies in that the suspended mass 7 is provided in the spiral structure, and the suspended mass 7 is located in the non-deformed area of the spiral structure.
  • the suspended mass 7 is a butterfly-shaped symmetrical structure with a small middle and two large ends.
  • the suspended mass 7 is adapted to the size of the honeycomb-shaped subunit 51 in which it is located.
  • the center of gravity of the suspended mass 7 is connected to the connecting beam 52, and one of the suspended masses is
  • the left half of the block 7 and the right half of the other adjacent suspended mass 7 can be filled with a honeycomb-shaped subunit 51, and the suspended masses 7 are arranged in sequence to form a sensitive mass ring with the anchor point structure 1 as the center.
  • This embodiment is provided with 3 layers of sensitive mass ring belts; the spiral structure is provided with internal electrodes 6, which are similar to the suspended mass 7, and the internal electrodes 6 are evenly distributed in a circumferential array with the anchor point structure 1 as the center An internal electrode ring belt is formed in the spiral structure.
  • a layer of internal electrode ring belt is provided, and the internal electrode 6 is located inside the suspended mass 7.
  • This embodiment also has two modes with the same mode shape, as shown in Fig. 12, the first mode is the mode along 0°/90°; as shown in Fig. 13, the second mode is along 45°.
  • the mode shape of °/135°, the detection principle of the gyro structure under the action of the external angular velocity ⁇ can be compared to Embodiment 3.
  • the effective quality of the structure can be improved, and the thermoelastic quality factor Q TED can be improved; the working capacitance is increased, so that the driving and detecting effect of the external electrode 3 on the resonator of this embodiment is greatly improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

一种MEMS陀螺仪,包括谐振子(6)和多个外部电极(3),该外部电极(3)呈圆周阵列分布在谐振子(6)外围,谐振子(6)为轴心对称的圆盘形网状结构,谐振子(6)包括位于谐振子(6)中心的锚点结构(1)和螺旋线结构,螺旋线结构与锚点结构(1)固定连接,螺旋线结构由多个螺旋线单元依锚点结构(1)进行圆周阵列交织成网状;该陀螺仪基于圆盘型陀螺的优势,把螺旋线结构由螺旋线单元依起点进行圆周阵列组成构成,内置锚点,简化螺旋线段等手段以降低工艺难度,便于微纳加工,同时可降低谐振器变形量的宽度h,进而增大QTED;该陀螺仪利用螺旋线结构的对称特征,实现陀螺驱动模态与检测模态具有大品质因数,振型简并,且符合哥氏效应。

Description

一种MEMS陀螺仪 【技术领域】
本发明涉及陀螺仪,具有涉及一种MEMS陀螺仪。
【背景技术】
MEMS陀螺仪由于其尺寸小,低功耗和易加工等优势在消费电子市场具有非常广泛的应用,近年来,随着MEMS陀螺仪精度的逐步提升,MEMS谐振陀螺仪也应用在汽车自动驾驶等导航领域。
陀螺仪品质因数是表征陀螺谐振工作时能量损失的关键参数,品质因数是间接评价陀螺性能指标之一。常见的能量损失机制包括,空气阻尼损失,表面损失,锚点损失,电子器件阻尼以及热弹性阻尼损失。由于陀螺采用高真空封装,所以热弹性阻尼可认为是工作时的主要能量损失源,热弹性品质因数Q TED代表了陀螺仪品质因数的上限。以一维梁为例,热弹性品质因数Q TED计算模型为:
Figure PCTCN2019130923-appb-000001
Figure PCTCN2019130923-appb-000002
其中,f 0与f relax分别是谐振频率与热释放频率。E为杨氏模量,α为热扩散的线性系数。T 0为梁的等效温度,C v为比热容,k为热导率,h为挠曲变形方向的宽度。通过公式可知,Q TED随f 0/f relax的变化关系如图1所示。
对于陀螺仪常用的硅材料,典型的MEMS谐振器的热释放频率f relax>2MHz,远远大于典型陀螺仪的振动频率。所以,为增大Q TED,可提升陀螺的热释放频率f relax。又依据热释放频率f relax的表达式,可降低谐振器变形量的宽度h,进而增大Q TED。因而,综上分析得出,将陀螺结构中挠性变形的实体进行开槽、开孔优化,是提升陀螺Q TED的有效方案。
MEMS陀螺是基于哥氏力的振动陀螺,常见的有线振动音叉型陀螺,圆 盘形陀螺两类。其中圆盘型陀螺由于模态自匹配,低温度漂移,低锚点损失等特性,有成为高性能陀螺仪的潜质。但是受限于空间布局小,导致圆盘形陀螺品质因数低,因此目前较少有圆盘型陀螺达到高性能。
【发明内容】
本发明的目的在于提供一种MEMS陀螺仪,其克服了现有技术的上述缺陷,可提升陀螺Q TED,进而使圆盘型陀螺达到高性能。
本发明的一种MEMS陀螺仪,包括谐振子和多个外部电极,所示外部电极呈圆周阵列分布在谐振子外围,所述谐振子为轴心对称的圆盘形网状结构,所述谐振子包括位于谐振子中心的锚点结构和螺旋线结构,所述螺旋线结构与锚点结构固定连接,所述螺旋线结构由多个螺旋线单元依所述锚点结构进行圆周阵列交织成网状;
所述螺旋线单元包括自所述锚点结构上的同一起点端朝相反方向延伸的第一螺旋线和第二螺旋线,所述第一螺旋线和第二螺旋线的旋转方向相反,所述第一螺旋线与第二螺旋线朝同一终止端延伸并在所述终止端相连,所述第一螺旋线与所述第二螺旋相交于位于所述起点端远离所述终止端一侧的交点,所述起点端、所述终止端及所述交点共线,所述第一螺旋线与第二螺旋线关于起始端与终止端之间的连线轴对称,所述锚点结构覆盖部分所述螺旋线单元,所述外部电极固定于所述终止端。
作为本发明的进一步改进,相邻两所述第一螺旋线平行且长度相等。
作为本发明的进一步改进,所述起点端与交点之间的螺旋线构成第一封闭结构,所述交点与所述终止端之间的螺旋线构成第二封闭结构,所述第一封闭结构和第二封闭结构为两个方向相反的心形结构。
作为本发明的进一步改进,所述螺旋线结构为多个螺旋线单元相交形成的螺旋网状结构,所述螺旋网状结构包括多边形的孔洞。
作为本发明的进一步改进,所述孔洞内设有辐条结构,所述辐条结构位于孔洞的锐角部分且与形成所述锐角的相邻两侧边相连。
作为本发明的进一步改进,所述螺旋网状结构呈蜂窝状,所述蜂窝形螺旋线结构具有多个蜂窝形子单元,所述蜂窝形子单元包括螺旋线及沿所述 锚点结构的径向延伸的连接梁,所述孔洞由所述连接梁和螺旋线首尾相接构成围成且呈六边形结构。
作为本发明的进一步改进,所述连接梁为直线梁,所述连接梁径向连接螺旋线单元相交形成的节点。
作为本发明的进一步改进,所述螺旋线结构内设有悬挂质量块。
作为本发明的进一步改进,所述悬挂质量块与连接梁连接,所述悬挂质量块为轴对称结构且对称轴与连接梁所在的直线重叠。
作为本发明的进一步改进,所述螺旋线结构内设有内部电极。
作为本发明的进一步改进,所述内部电极以锚点结构为中心圆周阵列均匀分布在螺旋线结构内,所述内部电极位于所述悬挂质量块的内侧。
本发明的有益效果是:本发明基于圆盘型陀螺的优势,提出了一种MEMS陀螺仪;螺旋线结构由螺旋线单元依起点进行圆周阵列交织成网状,内置锚点结构,简化螺旋线段等手段以降低工艺难度,便于微纳加工,同时可降低谐振器变形量的宽度h,进而增大Q TED;同时螺旋线结构中螺旋线由于其圆弧渐开的特性,在驱动模态方向容易变形,会减少应力集中;本发明利用螺旋线结构的对称特征,实现陀螺驱动模态与检测模态具有大品质因数,振型简并,且符合哥氏效应。
【附图说明】
图1是本发明的背景技术中热弹性品质因数Q TED随f 0/f relax的变化关系图。
图2是本发明的螺旋网状结构示意图。
图3是本发明驱动模态下的螺旋网状结构的结构示意图。
图4是本发明检测模态下的螺旋网状结构的结构示意图。
图5是本发明局部辐条结构的结构示意图。
图6是本发明蜂窝形螺旋线结构的结构示意图。
图7是本发明的蜂窝形子单元的结构示意图。
图8是本发明驱动模态下蜂窝形螺旋线结构的结构示意图。
图9是本发明检测模态下蜂窝形螺旋线结构的结构示意图。
图10是图6中设有内部电极与悬挂质量块的结构示意图。
图11是图10中悬挂质量块的局部放大图。
图12是本发明驱动模态下装有悬挂质量块的蜂窝形螺旋线结构的结构示意图。
图13是本发明检测模态下装有悬挂质量块的蜂窝形螺旋线结构的结构示意图。
其中,1、锚点结构;2、螺旋网状结构;21、第一螺旋线;22、第二螺旋线;3、外部电极;4、辐条结构;5、蜂窝形螺旋线结构;51、蜂窝形子单元;52、连接梁;6、内部电极;7、悬挂质量块。
【具体实施方式】
下面结合附图对本发明的4个实施例进行详细描述。
实施1,如图2-4所述示:
本实施例的一种MEMS陀螺仪,包括谐振子和16个外部电极3,外部电极3呈圆周阵列分布在谐振子6外围,所述谐振子为轴心对称的圆盘形网状结构,所述谐振子包括位于谐振子中心的锚点结构1和螺旋线结构,所述螺旋线结构与锚点固定连接,所述螺旋线结构由16个螺旋线单元依起点进行圆周阵列组成,每个螺旋线单元对应一个外部电极3。
参照图2,所述螺旋线结构为多个螺旋线单元圆周阵列交织成的螺旋网状结构2,相邻两个螺旋线单元所述第一螺旋线21平行且长度相等,所述螺旋网状结构还包括由多个螺旋线构成的平行四边形的孔洞,所述螺旋线单元包括自所述锚点结构1上的同一起点端A点朝相反方向延伸的第一螺旋线21和第二螺旋线22,所述第一螺旋线21和第二螺旋线22的旋转方向相反,所述第一螺旋线21与第二螺旋线22朝同一终止端C延伸并在所述终止端C点相连,所述第一螺旋线21与所述第二螺旋32相交于位于所述起点端A远离所述终止端C一侧的交点B点,所述起点端A、所述终止端C及所述交点B共线,所述第一螺旋线21与第二螺旋线32关于起始端A与终止端C之间的连线轴对称,所述锚点结构1覆盖部分所述螺旋线单元,所述外部电极3固定于所述终止端C。所述A点与B点之间的两条螺 旋线构成第一封闭结构,所述B点与C点之间的两条螺旋线构成第二封闭结构,所述第一封闭结构和第二封闭结构为两个方向相反的心形结构,心形结构具体在本实施例中是指由两条C形弧线自同一起点朝同一终点弯折延伸围成的形状。本实施例中螺旋网状结构2由于由多个螺旋线单元组成,螺旋线单元的具有高度的对称性,同时螺旋线具有圆弧渐开的特性,会减少应力的集中。
由于螺旋网状结构2的对称性,基于螺旋线组合的网状陀螺拥有两个振型相同的模态,第一个模态为沿0°/90°的振型,如图3所示,通常称为驱动模态;第二个模态为沿45°/135°的振型,如图4所示,通常称为检测模态;螺旋网状结构2由于螺旋线圆弧渐开的特性,在驱动模态方向容易变形,且会减少应力集中。
基于螺旋线组合的网状陀螺在外部角速度ω的作用下的检测原理可表述为:在外部驱动力激励下,陀螺按照驱动模态进行振动。此时,当陀螺受到外界角速度ω的作用时,角速度ω将产生45°/135°方向的哥氏力合力,在哥氏力合力的作用下,陀螺将沿45°/135°方向以检测模态的振型进行振动。通过检测螺旋网状结构2在检测模态的下的振动位移,即可获得角速度ω的大小。
在螺旋网状结构2的外部分布有若干外部电极3,外部电极3与螺旋网状结构2之间形成外部电容,通过外部电容实现:a)产生迫使陀螺以驱动模态的振型振动所需要的驱动力;b)检测检测方向的位移;c)通过外部电极3调控,使驱动模态与检测模态的频率相同;d)抑制陀螺仪的正交误差。
实施2,如图2和图5所述示:
本实施例与实施例1的结构大致相同,不同之处在于:所述螺旋线结构2相交形成的孔洞内设有辐条结构4,所述辐条结构4位于孔洞的锐角部分且与形成所述锐角的相邻两侧边相连;具体地,辐条结构4位于平行四边形的孔洞左右两侧的锐角处,辐条结构4为直梁状,添加辐条结构4后,所述平行四边形的孔洞结构为均为钝角的六边形,对辐条结构4做出 的其他变形改进使具有锐角结构的孔洞变形为钝角结构的孔洞的技术方案均属于本发明的保护范围。辐条结构4可以降低微纳加工难度,削弱螺旋网状结构2中的网节点处锐角结构对性能的影响,并且可通过改变各处辐条结构4的尺寸,进而调节驱动模态与检测模态的频率,以达到模态的精确匹配。
实施3,如图6-9所述示:
本实施例提出的螺旋线结构为蜂窝形螺旋线结构5,蜂窝形螺旋线结构5由螺旋网状结构2变形处理构成,变形处理包括使用连接梁52沿所述锚点结构的径向连接螺旋网状结构2的节点和去除周向相邻连接梁52之间相交的螺旋线,从而形成左右两个连接梁52与上下螺旋线单元所围成蜂窝形子单元,所述蜂窝形子单元包括螺旋线及沿所述锚点结构的径向延伸的连接梁52,所述孔洞由所述连接梁52和螺旋线首尾相接构成围成且呈六边形结构,连接梁52为直线梁,所述蜂窝形螺旋线结构5中有6层蜂窝形子单元环带,每层的蜂窝形子单元环带均为16个蜂窝形子单元51组成,所述由蜂窝形子单元51由连接梁52与螺旋线单元所组成;连接梁52为直线梁,连接梁52径向连接螺旋线单元相交形成的节点,基于螺旋线组合的蜂窝形陀螺拥有两个振型相同的模态,如图8所示,第一个模态为沿0°/90°的振型;如图9所示,第二个模态为沿45°/135°的振型,陀螺结构在外部角速度ω的作用下的检测原理可类比实施例1。
本实施例的蜂窝形螺旋线结构5可降低微纳加工难度,削弱螺旋网状结构2中的网节点处锐角结构对性能的影响。
实施4,如图10-13所述示:
本实施例与实施例3的结构大致相同,不同之处在于:所述螺旋线结构内设有悬挂质量块7,悬挂质量块7位于螺旋线结构的非变形区域。所述悬挂质量块7为中间小两头大的蝴蝶状对称结构,悬挂质量块7与所在的蜂窝形子单元51大小相适应,悬挂质量块7的重心点与连接梁52连接,其中一个悬挂质量块7的左半边部分与另一个相邻悬挂质量块7的右半边部分可填充一个蜂窝形子单元51,依次设置悬挂质量块7,从而形成以锚 点结构1为中心的敏感质量块环带,本实施例设有3层的敏感质量块环带;所述螺旋线结构内设有内部电极6,与悬挂质量块7相仿,所述内部电极6以锚点结构1为中心圆周阵列均匀分布在螺旋线结构内形成内部电极环带,本实施例设有1层的内部电极环带,所述内部电极6位于所述悬挂质量块7的内侧。
本实施例同样拥有两个振型相同的模态,如图12所示,第一个模态为沿0°/90°的振型;如图13所示,第二个模态为沿45°/135°的振型,陀螺结构在外部角速度ω的作用下的检测原理可类比实施例3。
通过在蜂窝形陀螺内增加悬挂质量块7,可以提高结构的有效质量,提高热弹性品质因数Q TED;增加工作电容,使外部电极3对本实施例的谐振子的驱动、检测效果大幅提升。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (11)

  1. 一种MEMS陀螺仪,包括谐振子和多个外部电极,所述外部电极呈圆周阵列分布在谐振子外围,其特征在于:所述谐振子为轴心对称的圆盘形网状结构,所述谐振子包括位于谐振子中心的锚点结构和螺旋线结构,所述螺旋线结构与锚点结构固定连接,所述螺旋线结构由多个螺旋线单元依所述锚点结构进行圆周阵列交织成网状;
    所述螺旋线单元包括自所述锚点结构上的同一起点端朝相反方向延伸的第一螺旋线和第二螺旋线,所述第一螺旋线和第二螺旋线的旋转方向相反,所述第一螺旋线与第二螺旋线朝同一终止端延伸并在所述终止端相连,所述第一螺旋线与所述第二螺旋相交于位于所述起点端远离所述终止端一侧的交点,所述起点端、所述终止端及所述交点共线,所述第一螺旋线与第二螺旋线关于起始端与终止端之间的连线轴对称,所述锚点结构覆盖部分所述螺旋线单元,所述外部电极固定于所述终止端。
  2. 根据权利要求1所述的一种MEMS陀螺仪,其特征在于:相邻两所述第一螺旋线平行且长度相等。
  3. 根据权利要求1所述的一种MEMS陀螺仪,其特征在于:所述起点端与交点之间的螺旋线构成第一封闭结构,所述交点与所述终止端之间的螺旋线构成第二封闭结构,所述第一封闭结构和第二封闭结构为两个方向相反的心形结构。
  4. 根据权利要求1所述的一种MEMS陀螺仪,其特征在于:所述螺旋线结构为多个螺旋线单元相交形成的螺旋网状结构,所述螺旋网状结构包括多边形的孔洞。
  5. 根据权利要求4所述的一种MEMS陀螺仪,其特征在于:所述孔洞内设有辐条结构,所述辐条结构位于孔洞的锐角部分且与形成所述锐角的相邻两侧边相连。
  6. 根据权利要求4所述的一种MEMS陀螺仪,其特征在于:所述螺旋网状结构呈蜂窝状,所述蜂窝形螺旋线结构具有多个蜂窝形子单元,所述蜂 窝形子单元包括螺旋线及沿所述锚点结构的径向延伸的连接梁,所述孔洞由所述连接梁和螺旋线首尾相接构成围成且呈六边形结构。
  7. 根据权利要求6所述的一种MEMS陀螺仪,其特征在于:所述连接梁为直线梁,所述连接梁径向连接螺旋线单元相交形成的节点。
  8. 根据权利要求6的所述的一种MEMS陀螺仪,其特征在于:所述螺旋线结构内设有悬挂质量块。
  9. 根据权利要求8所述的一种MEMS陀螺仪,其特征在于:所述悬挂质量块与连接梁连接,所述悬挂质量块为轴对称结构且对称轴与连接梁所在的直线重叠。
  10. 根据权利要求1-9任意一项所述的一种MEMS陀螺仪,其特征在于:所述螺旋线结构内设有内部电极。
  11. 根据权利要求10所述的一种MEMS陀螺仪,其特征在于:所述内部电极以锚点结构为中心圆周阵列均匀分布在螺旋线结构内,所述内部电极位于所述悬挂质量块的内侧。
PCT/CN2019/130923 2019-12-31 2019-12-31 一种mems陀螺仪 WO2021134685A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130923 WO2021134685A1 (zh) 2019-12-31 2019-12-31 一种mems陀螺仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130923 WO2021134685A1 (zh) 2019-12-31 2019-12-31 一种mems陀螺仪

Publications (1)

Publication Number Publication Date
WO2021134685A1 true WO2021134685A1 (zh) 2021-07-08

Family

ID=76686153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130923 WO2021134685A1 (zh) 2019-12-31 2019-12-31 一种mems陀螺仪

Country Status (1)

Country Link
WO (1) WO2021134685A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104807452A (zh) * 2015-04-29 2015-07-29 东南大学 蜂窝式mems谐振硅微陀螺仪及其加工方法
CN104990546A (zh) * 2015-08-07 2015-10-21 中国人民解放军国防科学技术大学 蜂巢状盘形振动陀螺
US20190049247A1 (en) * 2017-08-08 2019-02-14 Hrl Laboratories, Llc High quality factor mems silicon flower-of-life vibratory gyroscope
CN109596116A (zh) * 2018-12-19 2019-04-09 中国人民解放军国防科技大学 带周期分布子系统的蜂巢状盘形mems振动陀螺
CN109839104A (zh) * 2019-01-17 2019-06-04 苏州大学 单芯片多敏感单元的中心轴对称mems陀螺仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104807452A (zh) * 2015-04-29 2015-07-29 东南大学 蜂窝式mems谐振硅微陀螺仪及其加工方法
CN104990546A (zh) * 2015-08-07 2015-10-21 中国人民解放军国防科学技术大学 蜂巢状盘形振动陀螺
US20190049247A1 (en) * 2017-08-08 2019-02-14 Hrl Laboratories, Llc High quality factor mems silicon flower-of-life vibratory gyroscope
CN109596116A (zh) * 2018-12-19 2019-04-09 中国人民解放军国防科技大学 带周期分布子系统的蜂巢状盘形mems振动陀螺
CN109839104A (zh) * 2019-01-17 2019-06-04 苏州大学 单芯片多敏感单元的中心轴对称mems陀螺仪

Similar Documents

Publication Publication Date Title
US10746548B2 (en) Ring gyroscope structural features
US8408060B2 (en) Piezoelectric transducers and inertial sensors using piezoelectric transducers
EP3665437B1 (en) High quality factor mems silicon flower-of-life vibratory gyroscope
CN105486297B (zh) 一种圆盘多环内s形柔性梁谐振陀螺及其制备方法
CN105940283B (zh) 改进的环形陀螺仪结构和陀螺仪
US8011245B2 (en) Sensing element of coriolis force gyroscope
US5331242A (en) Vibrating tine resonators and methods for torsional and normal dynamic vibrating mode
CN111156982A (zh) Mems陀螺仪
CN111156980A (zh) Mems陀螺仪
CN106643685A (zh) 一种全新的u形折叠梁硅微环形振动陀螺
EP2828618B1 (en) Vibratory ring structure
CN111504294B (zh) 伪扩展模式mems环陀螺仪
CN105371832B (zh) 一种圆盘多环内双梁孤立圆环谐振陀螺及其制备方法
JP5761350B2 (ja) 振動子および振動ジャイロ
JP4375819B2 (ja) 2軸ジャイロスコープ
CN106643686A (zh) 一种全对称折叠弹性梁硅微环形振动陀螺谐振子结构
CN111156979B (zh) 一种mems陀螺仪
WO2021134685A1 (zh) 一种mems陀螺仪
RU151978U1 (ru) Чувствительный элемент волнового твердотельного гироскопа
CN111854722B (zh) 曲折柔性环的嵌套环式微机电振动陀螺
CN115347878A (zh) 微机械谐振器
KR20190014933A (ko) 전방향 음향 센서
Li et al. A novel honeycomb-like disk resonant gyroscope
JP7223371B2 (ja) 振動ジャイロ
WO2021134678A1 (zh) Mems陀螺仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958133

Country of ref document: EP

Kind code of ref document: A1