WO2021134638A1 - 信号发送电路、信号接收电路及便携式监护设备 - Google Patents

信号发送电路、信号接收电路及便携式监护设备 Download PDF

Info

Publication number
WO2021134638A1
WO2021134638A1 PCT/CN2019/130852 CN2019130852W WO2021134638A1 WO 2021134638 A1 WO2021134638 A1 WO 2021134638A1 CN 2019130852 W CN2019130852 W CN 2019130852W WO 2021134638 A1 WO2021134638 A1 WO 2021134638A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
transmission power
electrically connected
processor
Prior art date
Application number
PCT/CN2019/130852
Other languages
English (en)
French (fr)
Inventor
王衡
陈长根
邬闻彬
李向甲
刘彬
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2019/130852 priority Critical patent/WO2021134638A1/zh
Priority to CN201980098379.5A priority patent/CN114097203B/zh
Publication of WO2021134638A1 publication Critical patent/WO2021134638A1/zh
Priority to US17/854,057 priority patent/US20220338131A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • H04L27/06Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the technical field of medical equipment, and more specifically, a signal sending circuit, a signal receiving circuit, and a portable monitoring device.
  • the telemetry system includes: a portable monitoring device, a wireless access point (Access Point, AP for short), and a remote monitoring center.
  • the portable monitoring device can also be called a telemetry box, which is worn on the patient's body and can collect the physiological parameters of the monitored object in real time.
  • the portable monitoring device sends the collected physiological parameters to the remote monitoring center through the wireless access point, and the remote monitoring center performs data processing.
  • the remote monitoring center can also send control instructions to the portable monitoring device through the wireless access point to control the parameter collection process of the portable monitoring device.
  • the two devices use the spectrum resources of the medical dedicated frequency band to communicate, but the spectrum resources are limited and the number of patients is large.
  • a portable monitoring device communicates with a wireless access point It may be interfered by the communication signal of other portable monitoring equipment.
  • the present application provides a signal sending circuit, a signal receiving circuit and a portable monitoring device.
  • the present application provides a signal transmission circuit, including: a processor, a wireless chip module, an amplifying and filtering circuit, and an antenna that are electrically connected in sequence; wherein:
  • the processor is configured to determine the current communication state between the antenna and the wireless access point; determine the current transmission power corresponding to the current communication state; generate a signal generation instruction according to the current transmission power, and combine the Sending a signal generation instruction to the wireless chip module;
  • the wireless chip module is configured to control the power register to generate the communication signal of the current transmission power based on the instruction of the signal generation instruction; send the communication signal to the amplifying and filtering circuit;
  • the amplifying and filtering circuit is used to amplify and filter the communication signal, and send the processed communication signal to an antenna;
  • the antenna is used to send the processed communication signal to the wireless access point.
  • the present application provides a signal transmission circuit, including: a processor, a wireless chip module, an attenuator, an amplifying and filtering circuit, and an antenna that are electrically connected in sequence, and the processor is electrically connected to the attenuator;
  • the processor is configured to determine the current communication state between the antenna and the wireless access point; determine the current adjusted power corresponding to the current communication state; generate a power adjustment instruction according to the current adjusted power, and configure the Sending a power adjustment instruction to the attenuator;
  • the wireless chip module is used to generate a communication signal with a preset transmission power and send the communication signal to the attenuator;
  • the attenuator is configured to adjust the transmission power of the communication signal according to the current adjustment power based on the instruction of the power adjustment instruction; send the adjusted communication signal to the amplifying and filtering circuit;
  • the amplifying and filtering circuit is used to amplify and filter the adjusted communication signal, and send the amplified and filtered communication signal to an antenna;
  • the antenna is used to send the amplified and filtered communication signal to the wireless access point.
  • the present application provides a signal transmission circuit, which is characterized by comprising: a processor, a wireless chip module, an attenuator, an amplifying and filtering circuit, and an antenna, which are electrically connected in sequence, and the processor and the attenuator Electrical connection
  • the processor is configured to determine the current communication state between the antenna and the wireless access point; determine the current transmit power and the current adjusted power corresponding to the current communication state; generate a signal generation instruction according to the current transmit power, And send the signal generation instruction to the wireless chip module; generate a power adjustment instruction according to the current adjustment power, and send the power adjustment instruction to the attenuator;
  • the wireless chip module is configured to control the power register to generate the communication signal of the current transmission power based on the instruction of the signal generation instruction, and send the communication signal to the attenuator;
  • the attenuator is configured to adjust the transmission power of the communication signal according to the current adjustment power based on the instruction of the power adjustment instruction; send the adjusted communication signal to the amplifying and filtering circuit;
  • the amplifying and filtering circuit is used to amplify and filter the adjusted communication signal, and send the amplified and filtered communication signal to an antenna;
  • the antenna is used to send the amplified and filtered communication signal to the wireless access point.
  • the present application provides a signal transmission circuit, including: a processor, a baseband chip, a local oscillator chip, a first switch, a mixing filter circuit, an attenuator, a first amplifying and filtering circuit, a second amplifying and filtering circuit, The second switch and antenna; where:
  • the processor, the baseband chip, and the first input end of the frequency mixing filter circuit are electrically connected; the output end of the frequency mixing filter circuit, the attenuator, and the first amplifying filter circuit are electrically connected in sequence;
  • the first amplifying and filtering circuit is electrically connected to the antenna through the first switching end of the second switch;
  • the processor is electrically connected to the local oscillator chip
  • the local oscillator chip is electrically connected to the second input terminal of the mixing filter circuit through the first switching terminal of the first switch;
  • the local oscillator chip is electrically connected to the second amplifying and filtering circuit through the second switching terminal of the first switch; the second amplifying and filtering circuit is electrically connected to the antenna through the second switching terminal of the second switch;
  • the processor is electrically connected to the first switch, and is used to control the first switching terminal of the first switch to be connected and the second switching terminal to be disconnected; or to control the second switching terminal of the first switch to be connected and the second switching terminal One switch terminal is disconnected;
  • the processor is electrically connected to the second switch, and is used to control the first switching terminal of the second switch to be connected and the second switching terminal to be disconnected; or to control the second switching terminal of the second switch to be connected and the first switching terminal One switch terminal is disconnected;
  • the processor is electrically connected to the attenuator.
  • this application provides a signal receiving circuit, including: a processor, a baseband chip, a local oscillator chip, a narrowband filter, a mixing filter circuit, an amplifying filter circuit, and an antenna; wherein:
  • the antenna, the amplifying and filtering circuit, and the first input end of the mixing and filtering circuit are electrically connected in sequence;
  • the output end of the mixing filter circuit, the narrowband filter, the baseband chip, and the processor are electrically connected in sequence;
  • the processor, the local oscillator chip, and the second input end of the mixing filter circuit are electrically connected in sequence;
  • the antenna is used for receiving communication signals; the amplifying and filtering circuit is used for amplifying and filtering the communication signals received by the antenna; the processor is used for determining the current communication channel of the signal receiving circuit, and controlling the local oscillator
  • the chip uses the frequency point corresponding to the current communication channel to generate a communication signal; the mixing filter circuit is used to mix the amplified and filtered communication signal with the communication signal generated by the local oscillator chip to obtain the communication to be demodulated Signal; the narrowband filter is used to perform narrowband filtering of the communication signal to be demodulated; the baseband chip is used to demodulate the communication signal to be demodulated after the narrowband filtering process, and send the demodulated communication signal to the processor.
  • the present application provides a signal receiving circuit, including: a processor, a baseband chip, an amplifier, a narrowband filter module, and an antenna that are electrically connected in sequence; wherein: the narrowband filter module includes one or more narrowband filters, And different narrow-band filters are used to perform narrow-band filtering processing on communication signals received by different communication channels;
  • the antenna is used to receive communication signals
  • the processor is electrically connected to the narrowband filter module, and is configured to determine the current communication channel of the signal receiving circuit, and send a control instruction to the narrowband filter module so that the narrowband filter module uses the current communication channel to correspond to The narrowband filter of the antenna filters the communication signal received by the antenna;
  • the amplifier is used to amplify the communication signal after the narrowband filtering process
  • the baseband chip is used to demodulate the amplified communication signal and send the demodulated communication signal to the processor.
  • the present application provides a signal receiving circuit, which is characterized by comprising: a processor, a baseband chip, a local oscillator chip, a narrowband filter, a mixing filter circuit, a first amplifying filter circuit, a first switch, and a second Two switches, a second amplifying and filtering circuit and an antenna; among them:
  • the processor, the baseband chip, the narrowband filter, and the output end of the frequency mixing and filtering circuit are electrically connected; the first input end of the frequency mixing and filtering circuit and the first amplifying and filtering circuit are electrically connected in sequence The first amplifying and filtering circuit is electrically connected to the antenna through the first switching end of the second switch;
  • the processor is electrically connected to the local oscillator chip
  • the local oscillator chip is electrically connected to the second input terminal of the mixing filter circuit through the first switching terminal of the first switch; the local oscillator chip is electrically connected to the second input terminal of the mixing filter circuit through the second switching terminal of the first switch.
  • the second amplifying and filtering circuit is electrically connected;
  • the processor is electrically connected to the first switch, and is used to control the first switching terminal of the first switch to be connected and the second switching terminal to be disconnected; or to control the second switching terminal of the first switch to be connected and the second switching terminal One switch terminal is disconnected;
  • the processor is electrically connected to the second switch, and is used to control the first switching terminal of the second switch to be connected and the second switching terminal to be disconnected; or to control the second switching terminal of the second switch to be connected and the first switching terminal One switch terminal is disconnected;
  • the antenna is electrically connected to the first amplifying and filtering circuit through the first switching terminal of the second switch; the antenna is electrically connected to the second amplifying and filtering circuit through the second switching terminal of the second switch.
  • the present application provides a portable monitoring device, which is characterized by comprising: a housing, a physiological parameter acquisition circuit, any one of the above-mentioned signal sending circuits, and any one of the above-mentioned signal receiving circuits; wherein:
  • the physiological parameter collection circuit is used to collect the physiological sign parameters of the monitored object
  • the signal sending circuit is used to send the physiological sign parameters to the wireless access point through the communication signal
  • the signal receiving circuit is used for receiving the communication signal sent by the wireless access point, and filtering the communication signal.
  • Figure 1 is a schematic diagram of a structure of a telemetry system
  • Figure 2 is a circuit diagram of a portable monitoring device
  • FIG. 3 is a schematic diagram of power adjustment of the wireless chip module in the signal transmission circuit
  • FIG. 5 is a schematic diagram of power adjustment of the local oscillator chip in the signal transmission circuit
  • FIG. 6 is a schematic diagram of power adjustment of the baseband chip and the local oscillator chip in the signal transmission circuit
  • Fig. 7 is a schematic diagram of power adjustment of the attenuator in the signal transmission circuit
  • FIG. 8 is a schematic diagram of power adjustment of the wireless chip module and the attenuator in the signal transmission circuit
  • Fig. 9 is a schematic diagram of a structure of a signal transmission circuit
  • Fig. 10 is a schematic diagram of a structure of a signal receiving circuit
  • Figure 11 is a characteristic diagram of a 500Mhz narrowband filter
  • FIG. 12 is another schematic diagram of the structure of the signal receiving circuit
  • Figure 13 is a schematic diagram of another structure of the signal receiving circuit
  • Fig. 14 is a schematic diagram of another structure of the signal receiving circuit.
  • portable monitoring equipment can communicate with wireless access points through wireless resources. For example, as shown in Figure 1, the portable monitoring equipment sends physiological parameters to the remote monitoring center through the wireless access point, or receives the remote monitoring center through wireless access Click the control instructions sent, etc.
  • wireless resource frequency bands need to be occupied, including but not limited to medical dedicated frequency bands.
  • the portable monitoring device includes: a housing, a physiological parameter acquisition circuit, a main controller, a signal sending circuit, and a signal receiving circuit. among them:
  • Physiological parameter collection circuit used to collect the physiological sign parameters of the monitored object
  • the main controller is connected with the physiological parameter acquisition circuit and the radio frequency module, and is used for forwarding the physiological sign parameters collected by the physiological parameter acquisition circuit to the radio frequency module.
  • the main controller may include a processor for processing physiological parameters, such as but not limited to an AM3358 processor.
  • the radio frequency module specifically includes: a signal sending circuit and a signal receiving circuit.
  • the signal sending circuit is used to send the physiological sign parameters to the wireless access point through the communication signal; wherein the transmission power of the communication signal is determined by the signal sending circuit according to the communication state of the portable monitoring device;
  • the signal receiving circuit is used to receive the communication signal sent by the wireless access point, filter the communication signal, and extract the communication data from the communication signal; wherein the filter processing can filter communication channels other than the communication channel used by the signal receiving circuit Interference signal.
  • the specific structure of the signal sending circuit can be any one described below, and the specific structure of the signal receiving circuit can be any existing one or any one described below; or, the specific structure of the signal receiving circuit It can be any one described below, the specific structure of the signal transmission circuit can be any existing one or any one described below; or, the specific structure of the signal transmission circuit can be any one described below, the specific structure of the signal receiving circuit The specific structure of the circuit can be any one described below.
  • the signal sending circuit and the signal receiving circuit can share the same connection structure circuit, but the transmission direction of the communication signal is opposite. One is to generate and send the communication signal through the signal sending circuit, and the other is to receive wireless access through the signal receiving circuit. Click the sent communication signal and analyze it.
  • the portable monitoring device can adjust the power of the transmitted communication signal according to the communication status to reduce the communication interference to other portable monitoring devices; and/or, after receiving the communication signal, it can communicate with other communication channels other than the communication channel.
  • the signal of the channel is filtered to reduce the communication interference of other portable monitoring devices to the portable monitoring device.
  • FIG. 3 shows a structural embodiment of the signal transmission circuit, including: a processor 301, a wireless chip module 302, an amplifying and filtering circuit 303, and an antenna 304; among them: the processor 301, a wireless chip module 302, and an amplifying and filtering circuit 303 and antenna 304 are electrically connected in sequence.
  • the processor 301 is configured to determine the current communication state between the antenna 304 and the wireless access point; determine the current transmission power corresponding to the current communication state; generate a signal generation instruction according to the current transmission power, and send the signal generation instruction to the wireless chip module .
  • the antenna of the signal sending circuit can transmit a communication signal to the wireless access point, and can also receive a communication signal transmitted by the wireless access point.
  • the communication status of the two at different time points may be different. Therefore, the processor determines the current communication status between the antenna and the wireless access point.
  • the communication status can be determined based on various communication parameters, including but not limited to: Received Signal Strength Indication (RSSI), Signal Noise Ratio (Signal Noise Ratio, SNR), and packet loss rate.
  • RSSI Received Signal Strength Indication
  • SNR Signal Noise Ratio
  • packet loss rate packet loss rate
  • the transmission power corresponding to the communication state is determined.
  • the transmission power may be referred to as the current transmission power.
  • a corresponding embodiment is that the signal transmission power is lower when the communication state is better, and the signal transmission power is higher when the communication state is poor. In this way, on the premise of ensuring the normal communication of the device, the communication power consumption of the device and the communication interference to other devices can also be reduced.
  • Another embodiment of the correspondence may be that the correspondence between the communication state and the transmission power is preset, and the current transmission power corresponding to the current communication state is determined according to the correspondence. For example, as shown in Table 1, the corresponding relationship between the transmit power level and the received signal strength indicator is set through the mapping relationship table.
  • the number of transmission power levels, communication parameter values, and transmission power level values in Table 1 are only examples and can be set to other values according to actual needs.
  • the received signal strength indicator RSSI can be replaced with other communication parameters monitored by the processor that can indicate the communication status.
  • the transmission power level can correspond to a specific transmission power value, so that the specific signal transmission power can be determined according to the transmission power level.
  • the transmit power level in Table 1 can be directly replaced with the signal transmit power value.
  • the processor 301 After determining the current transmission power, the processor 301 generates a signal generation instruction to instruct to generate a signal of the current transmission power, for example, the signal generation instruction carries a specific value of the current transmission power. Then, the processor 301 sends the signal generation instruction to the wireless chip module 302.
  • the wireless chip module 302 is configured to control the power register to generate a communication signal of the current transmission power based on the instruction of the signal generation instruction; and send the communication signal to the amplifying filter circuit.
  • the wireless chip module 302 has a power register.
  • the power register can generate a communication signal at a certain transmit power. After the wireless chip module 302 receives a signal generation instruction, it controls the power register to generate a signal to generate a communication signal at the transmit power indicated by the instruction. .
  • the amplifying and filtering circuit 303 is used to amplify and filter the communication signal so that the communication signal meets the transmission requirement, and send the processed communication signal to the antenna 304.
  • the antenna 304 is used to send the processed communication signal to the wireless access point.
  • the transmitted communication signal may include, but is not limited to: a communication signal in the 1.4Ghz frequency band or the 608Mhz frequency band.
  • the communication method of adjusting the signal transmission power according to the real-time communication status can avoid unnecessary waste of power consumption and reduce interference to other communication signals.
  • FIG. 4 shows another structural embodiment of the signal sending circuit, including: a processor 401, a baseband chip 402, a local oscillator chip 403, a mixing filter circuit 404, an amplification filter circuit 405 and an antenna 406.
  • the baseband chip 402 is electrically connected to the first input end of the processor 401 and the frequency mixing filter circuit 404
  • the local oscillator chip 403 is electrically connected to the second input end of the processor 401 and the frequency mixing filter circuit 404
  • the output terminal of the circuit 404 is electrically connected to the amplifying and filtering circuit 405.
  • the functions of the baseband chip 402, the local oscillator chip 403, and the frequency mixing filter circuit 404 are the same as those of the wireless chip module 302 in the embodiment shown in FIG. Specifically, the baseband chip 402 can generate a communication signal with a certain transmission frequency, the local oscillator chip 403 can generate a communication signal with a certain transmission frequency, and the mixing filter circuit 404 is used to mix the two communication signals to obtain the current Transmission power of the communication signal.
  • the communication signal generated by the local oscillator chip 403 may be referred to as a carrier signal
  • the transmission power of the carrier signal may be a certain preset transmission power
  • the local oscillator chip 403 generates the carrier signal according to the preset transmission power.
  • the transmission frequency of the communication signal generated by the baseband chip 402 can be controlled.
  • the specific control method is:
  • the processor 401 determines the current transmission power according to the current communication state, and the current transmission power corresponds to the transmission power of the communication signal that the baseband chip needs to generate.
  • the transmission power may be referred to as the first transmission power or baseband chip transmission power.
  • a mapping relationship table can be set in advance, and the mapping relationship table records the correspondence between the total transmit power, baseband chip transmit power, and the communication state; based on the mapping relationship table, the baseband corresponding to the current communication state can be determined Chip transmit power.
  • the mapping relationship table records the correspondence between the baseband chip transmit power and the communication state, or the mapping relationship table records the total transmit power, the local oscillator chip transmit power, the baseband chip transmit power, and the communication state. relationship.
  • the processor 401 generates a signal generation instruction according to the current transmission power, and the signal generation instruction can carry a first transmission power, and the first transmission power is used to control the transmission power of the communication signal generated by the baseband chip.
  • the processor 401 sends the first signal generation instruction to the baseband chip 402.
  • the baseband chip 402 controls the power register to generate the communication signal of the first transmission power based on the instruction of the first signal generation instruction; in addition, the local oscillator chip 403 generates the carrier signal of the preset transmission power.
  • the frequency mixing filter circuit 404 mixes the communication signal of the first transmission power with the carrier signal of the preset transmission power to obtain the communication signal of the current transmission power.
  • the transmitted communication signals include, but are not limited to: communication signals in the 1.4Ghz frequency band.
  • the mixing filter circuit 404 can generate a communication signal for transmission from two communication signals.
  • the mixing filter circuit 404 can generate a communication signal for transmission from two communication signals.
  • unnecessary waste of power consumption can be avoided and interference to other communication signals can be reduced.
  • the number of baseband chips and local oscillator chips may not be limited to those shown in Figure 4.
  • the output of the baseband chip and the local oscillator chip After the communication signal is processed by the mixing filter circuit, the communication signal of the transmission power corresponding to the current communication state can be obtained.
  • FIG. 5 shows another structural embodiment of the signal sending circuit, which specifically includes: a processor 501, a baseband chip 502, a local oscillator chip 503, a mixing filter circuit 504, an amplifying filter circuit 505 and an antenna 506.
  • the processor 501 in this embodiment does not generate a first signal generation instruction for controlling the baseband chip, but generates a signal for controlling the local oscillator chip according to the current transmit power.
  • the second signal generates instructions.
  • the second signal generation instruction may carry the second transmission power corresponding to the current communication state, and the second transmission power may also be referred to as the local oscillator chip transmission power.
  • How the processor determines the transmit power of the local oscillator chip can refer to the description in the embodiment shown in FIG. 4, for example, set a mapping table to record the correspondence between the communication state and the transmit power of the local oscillator chip, and determine the corresponding local oscillator chip based on the mapping table Transmit power.
  • the processor 501 sends the second signal generation instruction to the local oscillator chip 503.
  • the local oscillator chip 503 controls the power register to generate the carrier signal of the second transmission power based on the instruction of the second signal generation instruction.
  • the baseband chip 502 generates a communication signal with a preset transmission power.
  • the frequency mixing filter circuit 504 performs mixing processing on the communication signal of the preset transmission power and the carrier signal of the second transmission power to obtain the communication signal of the current transmission power.
  • the transmitted communication signals include, but are not limited to: communication signals in the 1.4Ghz frequency band.
  • the preset transmission power may be a preset fixed transmission frequency value.
  • the baseband chip generates a communication signal based on the preset transmission power.
  • the local oscillator chip is adjusted The transmit power of the generated signal.
  • FIG. 6 shows another structural embodiment of the signal sending circuit, which specifically includes: a processor 601, a baseband chip 602, a local oscillator chip 603, a mixing filter circuit 604, an amplifying filter circuit 605 and an antenna 606.
  • the processor 601 in this embodiment can generate two signal generation instructions to respectively control the transmission power of the communication signal generated by the baseband chip and the local oscillator chip. Specifically, the processor 601 generates a first signal generation instruction corresponding to the first transmit power and a second signal generation instruction corresponding to the second transmit power according to the current transmit power.
  • the first transmit power may be referred to as the baseband chip transmit power.
  • the second transmitting power can be called the transmitting power of the local oscillator chip, and the sum of the first transmitting power and the second transmitting power is the current transmitting power.
  • the processor 601 sends the first signal generation instruction to the baseband chip 602 and sends the second signal generation instruction to the local oscillator chip 603.
  • How the processor determines the transmission power of the baseband chip and the transmission power of the local oscillator chip can refer to the description in the embodiment shown in FIG. 4, for example, setting a mapping relationship table to record the correspondence between the communication state and the transmission power of the baseband chip and the transmission power of the local oscillator chip. Then determine the corresponding baseband chip transmit power and local oscillator chip transmit power based on the mapping relationship table.
  • the baseband chip 602 is used to generate the instruction of the instruction based on the first signal and control the power register to generate the communication signal of the first transmit power; the local oscillator chip 603 is used to generate the instruction instruction based on the second signal and control the power register to generate the second transmit Power carrier signal; mixing filter circuit 604 for mixing the communication signal of the first transmission power and the carrier signal of the second transmission power to obtain the communication signal of the current transmission power.
  • the transmitted communication signals include, but are not limited to: communication signals in the 1.4Ghz frequency band.
  • the signal transmission circuit not only adjusts the transmission power of the baseband chip, but also adjusts the transmission power of the local oscillator chip. Through two-way adjustment, the power adjustment of the communication signal transmitted by the antenna is realized.
  • FIG. 7 shows another structural embodiment of the signal sending circuit, which specifically includes: a processor 701, a wireless chip module 702, an attenuator 703, an amplifying and filtering circuit 704, and an antenna 705.
  • the processor 701, the wireless chip module 702, the attenuator 703, the amplifying and filtering circuit 704, and the antenna 705 are electrically connected in sequence, and the processor 701 is electrically connected to the attenuator 703.
  • the processor 701 is configured to determine the current communication state between the antenna 705 and the wireless access point, and determine the current adjusted power corresponding to the current communication state.
  • One way to determine the current adjusted power is to determine the current adjusted power corresponding to the current communication state according to a preset correspondence between the communication state and the adjusted power. For details, referring to the embodiment shown in FIG. 3, the mapping relationship table is set to record the correspondence between the communication state and the adjusted power, so that the mapping relationship table is searched to determine the current adjusted power corresponding to the current communication state.
  • the power determined by the processor 701 in this embodiment is the adjusted power, which is used to adjust the transmission power of the communication signal generated by the preceding circuit, such as increase or decrease, so that the adjusted transmission power meets the expected effect. , That is to avoid unnecessary waste of power consumption, and reduce interference to other communication signals.
  • the processor 701 generates a power adjustment instruction according to the current adjusted power, and sends the power adjustment instruction to the attenuator 703.
  • the wireless chip module 702 generates a communication signal with a preset transmission power, and sends the communication signal to the attenuator 703.
  • the attenuator 703 adjusts the transmission power of the communication signal generated by the wireless chip module 702 according to the current adjustment power based on the instruction of the power adjustment instruction, such as reducing or increasing a certain value.
  • the attenuator 703 sends the adjusted communication signal to the amplifying and filtering circuit 704, and the amplifying and filtering circuit 704 amplifies and filters the adjusted communication signal, and sends the amplified and filtered communication signal to the antenna 705, which sends the antenna 705 to the wireless access point. Send the amplified and filtered communication signal.
  • the attenuator realizes the adjustment of the transmission power of the communication signal, and on the basis of ensuring normal communication, unnecessary waste of power consumption is avoided, and interference to other communication signals is reduced.
  • the wireless chip module 702 may include a wireless chip; in another embodiment, the wireless chip module 702 may include a frequency mixing filter circuit and a plurality of wireless chips.
  • the frequency mixing filter circuit connects the communication of the plurality of wireless chips. After the signal is mixed and filtered, a communication signal with a preset transmit power is obtained.
  • the wireless chip module 702 may specifically include: a baseband chip, a local oscillator chip, and a mixing filter circuit; wherein: the baseband chip is electrically connected to the processor and the first input terminal of the mixing filter circuit; the local oscillator chip is respectively connected to the processor And the second input end of the frequency mixing filter circuit is electrically connected; the output end of the frequency mixing filter circuit is electrically connected with the attenuator.
  • the way that the power register adjusts the transmit power can also be combined with the way the attenuator adjusts the transmit power to jointly adjust the transmit power of the communication signal.
  • FIG. 8 shows another structural embodiment of the signal sending circuit, which specifically includes: a processor 801, a wireless chip module 802, an attenuator 803, an amplifying and filtering circuit 804, and an antenna 805.
  • the difference from the embodiment shown in FIG. 7 is that the processor 801 generates two control instructions to adjust the transmission power of the communication signal generated by the wireless chip module 802 and the attenuator 803 respectively.
  • the processor 801 determines the current communication state between the antenna and the wireless access point; determines the current transmission power and the current adjustment power corresponding to the current communication state; wherein one way of determining the current transmission power and the current adjustment power is according to The preset correspondence relationship between the communication state and the transmission power and the adjustment power determines the current transmission power and the current adjustment power corresponding to the current communication state. More specifically, for example, a preset mapping relationship table may be used to determine the current transmission power and the current adjustment power.
  • the processor 801 generates a signal generation instruction according to the current transmission power, and sends the signal generation instruction to the wireless chip module 802 to instruct the wireless chip module 802 to generate a communication signal of which power; the processor 801 generates a power adjustment instruction according to the current adjustment power, The power adjustment instruction is sent to the attenuator 803 to instruct the attenuator 803 how to attenuate the communication signal generated by the wireless chip module 802.
  • the wireless chip module 802 may specifically include a baseband chip, a local oscillator chip, and a mixing filter circuit. Therefore, referring to the description of the embodiments shown in FIG. 4, FIG. 5, and FIG. , Local oscillator chip and the combination of the two for power adjustment. For the specific adjustment method, please refer to the above description, which will not be repeated here.
  • FIG. 9 shows another structural embodiment of the signal sending circuit, which specifically includes: a processor 901, a baseband chip 902, a local oscillator chip 903, a first switch 904, a mixing filter circuit 905, an attenuator 906, and a first An amplifying and filtering circuit 907, a second amplifying and filtering circuit 908, a second switch 909, and an antenna 910. among them:
  • the processor 901, the baseband chip 902, and the first input end of the frequency mixing and filtering circuit 905 are electrically connected; the output end of the frequency mixing and filtering circuit 905, the attenuator 906, and the first amplifying and filtering circuit 907 are electrically connected in turn; the first amplifying and filtering circuit 907 Electrically connected to the antenna 910 through the first switching end of the second switch 909;
  • the processor 901 is electrically connected to the local oscillator chip 903; the local oscillator chip 903 is electrically connected to the second input terminal of the mixing filter circuit 905 through the first switching terminal of the first switch 904; the local oscillator chip 903 is electrically connected to the second input terminal of the first switch 904
  • the two switching ends are electrically connected to the second amplifying and filtering circuit 908.
  • the second amplifying and filtering circuit 908 is electrically connected to the antenna 910 through the second switching end of the second switch 909.
  • the processor 901 is electrically connected to the attenuator 906.
  • the processor 901 is electrically connected to the first switch 904, and the processor 901 is electrically connected to the second switch 909.
  • the processor 901 can form two signal sending circuits with different structures by controlling the disconnection and connection of the first switch 904 and the second switch 909. specifically:
  • the processor 901 sends a switching signal to the first switch 904, so that the first switching terminal of the first switch 904 is connected and the second switching terminal is disconnected; and the processor 901 sends a switching signal to the first switch 904 , So that the first switching terminal of the second switch 909 is connected and the second switching terminal is disconnected.
  • the local oscillator chip 903 is connected to the mixing filter circuit 905, and can send a communication signal for mixing to the mixing filter circuit 905.
  • the mixing filter circuit 905 combines the communication signal of the baseband chip 902 with the communication signal of the local oscillator chip 903. The mixing is performed, and the mixed communication signal is processed by the attenuator 906 and the first amplifying and filtering circuit 907 and then transmitted by the antenna 910.
  • This type of circuit structure can transmit, but is not limited to, communication signals in the 1.4Ghz frequency band.
  • the processor adjusts the transmission power of the communication signal transmitted by the antenna by controlling any one or more of the baseband chip 902, the local oscillator chip 903, and the attenuator 906, specifically Refer to the above description for the adjustment process, which is not repeated here.
  • the processor 901 sends a switching signal to the first switch 904, so that the second switching terminal of the first switch 904 is connected and the first switching terminal is disconnected; and the processor 901 sends a switching signal to the first switch 904 Signal so that the second switching terminal of the second switch 909 is connected and the first switching terminal is disconnected.
  • the communication signal of the local oscillator chip 903 has not undergone mixing processing, and is transmitted by the antenna 910 after processing by the second amplifying and filtering circuit 908.
  • This type of circuit structure can transmit, but is not limited to, communication signals in the 608Mhz frequency band.
  • the processor controls the baseband chip 902, such as controlling the power register in the baseband chip 902, to adjust the transmission power of the communication signal transmitted by the antenna.
  • the baseband chip 902 controls the baseband chip 902, such as controlling the power register in the baseband chip 902, to adjust the transmission power of the communication signal transmitted by the antenna.
  • This application also provides a signal receiving circuit to filter the received communication signal to eliminate the influence of interference with the communication signal.
  • FIG. 10 shows a structural embodiment of the signal receiving circuit, including: a processor 1001, a baseband chip 1002, a local oscillator chip 1003, a narrowband filter 1004, a mixing filter circuit 1005, an amplifying filter circuit 1006, and an antenna 1007;
  • the first input terminals of the antenna 1007, the amplifying and filtering circuit 1006, and the mixing and filtering circuit 1005 are electrically connected in sequence.
  • the output end of the mixing filter circuit 1005, the narrowband filter 1004, the baseband chip 1002, and the processor 1001 are electrically connected in sequence.
  • the processor 1001, the local oscillator chip 1002, and the second input terminal of the mixing filter circuit 1005 are electrically connected in sequence.
  • the antenna 1007 is used to receive communication signals.
  • the amplifying and filtering circuit 1006 is used to amplify and filter the communication signal received by the antenna.
  • the processor 1001 is used to determine the current communication channel of the signal receiving circuit, and control the local oscillator chip 1003 to use the local oscillator frequency corresponding to the current communication channel to generate a communication signal.
  • the local oscillator frequency point is also the frequency of the communication signal generated by the local oscillator chip.
  • the local oscillator chip 1003 can generate communication signals of different frequencies according to different communication channels. For example, as shown in Table 2, the local oscillator frequency points used by the local oscillator chip 1003 under different channels are different. Of course, Table 2 is only an example, and other frequency points can be used in practical applications.
  • the processor 1001 may send the local oscillator frequency point corresponding to the current communication signal to the local oscillator chip 1003. Or in another implementation manner, the processor 1001 may send the channel label of the current communication channel to the local oscillator chip 1003, and the local oscillator chip 1003 determines the local oscillator frequency point corresponding to the channel label.
  • the local oscillator chip 1003 uses the local oscillator frequency corresponding to the current communication channel to generate a communication signal, and sends the communication signal to the mixing filter circuit. Under different communication channels, the demodulation frequency of the baseband chip 1002 can be maintained at a fixed value, such as the 500Mhz baseband frequency in Table 2.
  • the signal receiving process is: the communication signal received by the antenna 1007 is amplified and filtered by the amplifying and filtering circuit 1006, and the mixing and filtering circuit 1005 mixes the amplified and filtered communication signal with the communication signal generated by the local oscillator chip 1003 , The communication signal to be demodulated is obtained; the narrowband filter 1004 is used for narrowband filtering the communication signal to be demodulated; the baseband chip 1002 demodulates the communication signal to be demodulated after the narrowband filtering process, and sends the demodulated communication signal To the processor 1001.
  • the signal receiving circuit can perform interference processing on, but not limited to, communication signals in the 1.4Ghz frequency band.
  • the frequency of the communication signal generated by the local oscillator chip 1003 corresponds to the current communication channel.
  • the mixing filter circuit 1005 uses the communication signal to mix the communication signal received by the antenna, the communication of the current communication channel is After the signal is mixed, the communication signal with the same demodulation frequency of the baseband chip can be obtained, but after the communication signal of the non-current communication channel is mixed, the communication signal with a different demodulation frequency of the baseband chip can be obtained.
  • the local oscillator chip can generate 895.5Mhz communication signals.
  • What the antenna receives on communication channel 1 is a communication signal of 1395.5Mhz (the air interface frequency is the frequency at which the antenna receives the communication signal), and after mixing the communication signal of 895.5Mhz, the communication signal to be demodulated is 500Mhz to be demodulated.
  • the 1396.3Mhz communication signal received by the antenna on the communication channel 2 is mixed with the 895.5Mhz communication signal to obtain a 500.8Mhz communication signal to be demodulated.
  • the communication signal to be demodulated needs to be sent to the baseband chip 1002 for demodulation processing.
  • the baseband chip 1002 works at a certain demodulation frequency point. This demodulation frequency point can be called the baseband frequency point.
  • the received communication signal to be demodulated has the same frequency as the baseband frequency point to achieve a better demodulation effect. . Therefore, a narrowband filter is provided in the front stage of the baseband chip 1002, and the narrowband filter can suppress the interference of communication signals of other frequencies other than the baseband frequency.
  • the narrowband filter is a 500Mhz narrowband filter, so that the communication signal to be demodulated at frequencies other than 500Mhz, such as 500.8Mhz, can be filtered.
  • the characteristics of the 500Mhz narrowband filter are shown in Figure 11. It has a strong suppression effect on communication signals at other frequency points, thereby increasing the adjacent channel anti-interference ability.
  • FIG. 12 shows another schematic structure of the signal receiving circuit, which specifically includes: a processor 1201, a baseband chip 1202, an amplifier 1203, a narrowband filter module 1204, and an antenna 1205. It should be noted that the positional relationship between the amplifier 1203 and the narrowband filter module 1204 is not limited to that shown in Figure 12, and the positions of the two in the circuit structure can also be exchanged.
  • the processor 1201, the baseband chip 1202, the amplifier 1203, the narrowband filter module 1204, and the antenna 1205 are electrically connected in sequence.
  • the antenna 1205 is used to receive communication signals
  • the processor 1201 is electrically connected to the narrowband filter module 1204 for determining the current communication channel of the signal receiving circuit, and sends a control command to the narrowband filter module 1204 so that the narrowband filter module 1204 uses the narrowband filter corresponding to the current communication channel to receive the antenna 1205
  • the received communication signal is filtered.
  • the narrowband filtering module includes one or more narrowband filters, and different narrowband filters are used to perform narrowband filtering processing on communication signals received by different communication channels.
  • Different narrowband filters can obtain communication signals of different frequencies after interference is eliminated, that is to say, in which communication channel the signal receiving circuit works, interference signals of other frequencies besides the communication channel are excluded.
  • each narrowband filter in the narrowband filter module 1204 can correspond to a switch. After determining the current communication channel of the signal receiving circuit, the processor 1201 can send an instruction to the narrowband filter module 1204 to instruct the switch corresponding to the current communication channel to be closed. In order to make the narrowband filter corresponding to the current communication channel work.
  • the amplifier 1203 is used to amplify the communication signal after the narrowband filtering process
  • the baseband chip 1202 is used to demodulate the amplified communication signal and send the demodulated communication signal to the processor 1201.
  • the signal receiving process is: the communication signal received by the antenna 1205 is sent to the narrowband filter module 1204, the processor 1201 determines the current communication channel of the signal receiving circuit, and sends a control command to the narrowband filter module 1204 to enable the narrowband filter module 1204 uses the narrowband filter corresponding to the current communication channel to filter the communication signal received by the antenna 1205.
  • the filtered communication signal is amplified by the amplifier 1203
  • the communication signal to be demodulated is obtained.
  • the baseband chip 1202 demodulates the communication signal to be demodulated, and sends the demodulated communication signal to the processor 1201.
  • the signal receiving circuit can perform interference processing on, but not limited to, communication signals in the 608Mhz frequency band.
  • this signal receiving circuit adds a wideband filter 1303 to filter out interference signals that belong to different frequency bands, such as 1.4Ghz frequency band, from the communication signal to be demodulated.
  • the narrowband filtering module 1305 is used to filter out interference signals that belong to the same frequency band as the communication signal to be demodulated but belong to different communication channels. For the description of other module units, refer to the description of FIG. 12, which is not repeated here.
  • the positions of the wideband filter 1303 and the narrowband filter module 1305 in the signal receiving circuit are not limited to those shown in FIG. 13, and their positions in the circuit structure can also be exchanged, that is, the communication signals received by the antenna 1306 are sequentially After a wideband filter 1303, an amplifier 1304, a narrowband filter module 1305, a baseband chip 1302, and a processor 1301.
  • the broadband filter can also be set to multiple, and multiple broadband filters are used as a broadband filter module to filter out a variety of interference signals in different frequency bands.
  • the narrowband filter module which will not be repeated here. .
  • FIG 14 shows another schematic structure of the signal receiving circuit, which specifically includes: a processor 1401, a baseband chip 1402, a local oscillator chip 1403, a narrowband filter 1404, a mixing filter circuit 1405, and a first amplifying filter circuit 1406 ,
  • the output ends of the processor 1401, the baseband chip 1402, the narrowband filter 1404, and the frequency mixing and filtering circuit 1405 are electrically connected; the first input of the frequency mixing and filtering circuit 1405 and the first amplifying and filtering circuit 1406 are electrically connected in turn; the first amplifying and filtering circuit 1406 is electrically connected to the antenna through the first switching end of the second switch 1408;
  • the processor 1401 is electrically connected to the local oscillator chip 1403;
  • the local oscillator chip 1403 is electrically connected to the second input terminal of the mixing filter circuit 1405 through the first switching terminal of the first switch 1407; the local oscillator chip 1403 is electrically connected to the second amplifying filter circuit 1409 through the second switching terminal of the first switch 1407. connection;
  • the processor 1401 is electrically connected to the first switch 1407, and is used to control the first switching terminal of the first switch 1407 to be connected and the second switching terminal to be disconnected; or to control the second switching terminal of the first switch 1407 to be connected and the first switching terminal to be disconnected open;
  • the processor 1401 is electrically connected to the second switch 1408, and is used to control the first switching terminal of the second switch 1408 to be connected and the second switching terminal to be disconnected; or to control the second switching terminal of the second switch 1408 to be connected and the first switching terminal to be disconnected open;
  • the antenna 1410 is electrically connected to the first amplifying and filtering circuit 1406 through the first switching terminal of the second switch 1408; the antenna 1410 is electrically connected to the second amplifying and filtering circuit 1409 through the second switching terminal of the second switch 1408.
  • the processor 1401 controls the first switching terminal of the first switch 1407 to be connected and the second switching terminal to disconnect, and the processor 1401 controls the first switching terminal of the second switch 1408 to connect and the second switching terminal to disconnect, so that the antenna 1410 passes through the
  • the first switching end of the second switch 1408 is electrically connected to the first amplifying and filtering circuit 1406 to form a form of signal receiving circuit;
  • the processor 1401 controls the second switching terminal of the first switch 1407 to be connected and the first switching terminal to disconnect, and the processor 1401 controls the second switching terminal of the second switch 1408 to connect and the first switching terminal to disconnect, so that the antenna 1410 passes through the first switching terminal.
  • the second switching end of the second switch 1408 is electrically connected to the second amplifying and filtering circuit 1409 to form another form of signal receiving circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

一种便携式监护设备,包括:外壳、生理参数采集电路、信号发送电路以及信号接收电路;其中:所述生理参数采集电路,用于采集监测对象的生理体征参数;所述信号发送电路,用于根据当前的通信状态确定通信信号的发射频率,将生理体征参数通过该发射频率的通信信号向无线接入点发送;所述信号接收电路,用于接收无线接入点发送的通信信号,对所述当前通信信道的通信信号进行滤波处理,以抑制其他通信信号的干扰信号。

Description

信号发送电路、信号接收电路及便携式监护设备 技术领域
本申请涉及医疗设备技术领域,更具体地,是信号发送电路、信号接收电路及便携式监护设备。
背景技术
在医疗领域中,可以通过遥测系统实现对病患对象的实时监测。如图1所示,遥测系统包括:便携式监护设备、无线接入点(Access Point,简称AP)以及远程监控中心。便携式监护设备也可以称为遥测盒子,佩戴于病患对象身上,可以实时采集监测对象的生理体征参数。便携式监护设备通过无线接入点将采集到的生理体征参数发送至远程监控中心,由远程监控中心进行数据处理。另外,远程监控中心也可以通过无线接入点向便携式监护设备发送控制指令,以控制便携式监护设备的参数采集过程。
需要说明的是,便携式监护设备与无线接入点的通信过程,可能存在干扰。具体地,两种设备使用医疗专用频段的频谱资源进行通信,但该频谱资源有限,病患对象数量较多便携式监护设备较多的情况下,某个便携式监护设备与无线接入点进行通信时可能受到其他便携式监护设备通信信号的干扰。
发明内容
有鉴于此,本申请提供了一种信号发送电路、信号接收电路以及便携式监护设备。
第一方面,本申请提供了一种信号发送电路,包括:依次电连接的处理器、无线芯片模块、放大滤波电路以及天线;其中:
所述处理器,用于确定所述天线与无线接入点之间的当前通信状态;确定所述当前通信状态对应的当前发射功率;根据所述当前发射功率生成信号生成指令,并将所述信号生成指令发送至所述无线芯片模块;
所述无线芯片模块,用于基于所述信号生成指令的指示,控制功率寄存器生成所述当前发射功率的通信信号;将所述通信信号发送至所述放大滤波电路;
所述放大滤波电路,用于将所述通信信号进行放大滤波处理,并将处理后的通信信号发送至天线;
所述天线,用于向所述无线接入点发送所述处理后的通信信号。
第二方面,本申请提供了一种信号发送电路,包括:依次电连接的处理器,无线芯片模块、衰减器、放大滤波电路以及天线,且所述处理器与所述衰减器电连接;
所述处理器,用于确定所述天线与无线接入点之间的当前通信状态;确定所述当前通信状态对应的当前调整功率;根据所述当前调整功率生成功率调整指令,并将所述功率调整指令发送至所述衰减器;
所述无线芯片模块,用于生成预设发射功率的通信信号,并将所述通信信号发送至所述衰减器;
所述衰减器,用于基于所述功率调整指令的指示,按照所述当前调整功率对所述通信信号的发射功率进行调整;将调整后的通信信号发送至所述放大滤波电路;
所述放大滤波电路,用于将所述调整后的通信信号进行放大滤波,并将放大滤波后的通信信号发送至天线;
所述天线,用于向所述无线接入点发送所述放大滤波后的通信信号。
第三方面,本申请提供了一种信号发送电路,其特征在于,包括:依次电连接的处理器,无线芯片模块、衰减器、放大滤波电路以及天线,且所述处理器与所述衰减器电连接;
所述处理器,用于确定所述天线与无线接入点之间的当前通信状态;确定所述当前通信状态对应的当前发射功率以及当前调整功率;根据所述当前发射功率生成信号生成指令,并将所述信号生成指令发送至所述无线芯片模块;根据所述当前调整功率生成功率调整指令,并将所述功率调整指令发送至所述衰减器;
所述无线芯片模块,用于基于所述信号生成指令的指示,控制功率寄存器生成所述当前发射功率的通信信号,并将所述通信信号发送至所述衰减器;
所述衰减器,用于基于所述功率调整指令的指示,按照所述当前调整功率对所述通信信号的发射功率进行调整;将调整后的通信信号发送至所述放大滤波电路;
所述放大滤波电路,用于将所述调整后的通信信号进行放大滤波,并将放大滤波后的通信信号发送至天线;
所述天线,用于向所述无线接入点发送所述放大滤波后的通信信号。
第四方面,本申请提供了一种信号发送电路,包括:处理器、基带芯片、本振芯片、第一开关、混频滤波电路、衰减器、第一放大滤波电路、第二放大滤波电路、第二开关以及天线;其中:
所述处理器、所述基带芯片、所述混频滤波电路的第一输入端电连接;所述混频滤波电路的输出端、所述衰减器、所述第一放大滤波电路依次电连接;所述第一放大滤波电路通过所述第二开关的第一切换端与所述天线电连接;
所述处理器与所述本振芯片电连接;
本振芯片通过所述第一开关的第一切换端与所述混频滤波电路的第二输入端电连接;
本振芯片通过所述第一开关的第二切换端与所述第二放大滤波电路电连接;所述第二放大滤波电路通过所述第二开关的第二切换端与所述天线电连接;
所述处理器与所述第一开关电连接,用于控制所述第一开关的第一切换端连通且第二切换端断开;或者控制所述第一开关的第二切换端连通且第一切换端断开;
所述处理器与所述第二开关电连接,用于控制所述第二开关的第一切换端连通且第二切换端断开;或者控制所述第二开关的第二切换端连通且第一切换端断开;
所述处理器与所述衰减器电连接。
第五方面,本申请提供了一种信号接收电路,包括:处理器、基带芯片、本振芯片、窄带滤波器、混频滤波电路、放大滤波电路以及天线;其中:
所述天线、所述放大滤波电路以及所述混频滤波电路的第一输入端依次电连接;
所述混频滤波电路的输出端、所述窄带滤波器、所述基带芯片以及所述处理器依次电连接;
所述处理器、所述本振芯片以及所述混频滤波电路的第二输入端依次电连接;
所述天线,用于接收通信信号;所述放大滤波电路,用于对天线接收到的通信信号进行放大滤波;所述处理器用于确定所述信号接收电路的当前通信信道,控制所述本振芯片使用与所述当前通信信道对应的频点生成通信信号;所述混频滤波电路用于将放大滤波后的通信信号与所述本振芯片生成的通信信号进行混频,得到待解调通信信号;所述窄带滤波器用于对待解调通信信号进行窄带滤波;所述基带芯片用于对窄带滤波处理后的待解调通信信号进行解调,并将解调后的通信信号发送至所述处理器。
第六方面,本申请提供了一种信号接收电路,包括:依次电连接的处理器、基带芯片、放大器、窄带滤波模块以及天线;其中:所述窄带滤波模块包括一个或多个窄带滤波器,且不同的窄带滤波器用于为不同通信信道接收到的通信信号进行窄带滤波处理;
所述天线,用于接收通信信号;
所述处理器与所述窄带滤波模块电连接,用于确定所述信号接收电路的当前通信信道,向所述窄带滤波模块发送控制指令,以使所述窄带滤波模块使用所述当前通信信道对应的窄带滤波器对天线接收到的通信信号进行滤波处理;
所述放大器,用于对窄带滤波处理后的通信信号进行放大;
所述基带芯片,用于对放大后的通信信号进行解调,并将解调后的通信信号发送至处理器。
第七方面,本申请提供了一种信号接收电路,其特征在于,包括:处理器、基带芯片、本振芯片、窄带滤波器、混频滤波电路、第一放大滤波电路、第一开关、第二开关、第二放大滤波电路以及天线;其中:
所述处理器、所述基带芯片、所述窄带滤波器、所述混频滤波电路的输出端电连接;所述混频滤波电路的第一输入端、所述第一放大滤波电路依次电连接;所述第一放大滤波电路通过所述第二开关的第一切换端与所述天线电连接;
所述处理器与所述本振芯片电连接;
所述本振芯片通过所述第一开关的第一切换端与所述混频滤波电路的第二输入端电连接;所述本振芯片通过所述第一开关的第二切换端与所述第二放大滤波电路电连接;
所述处理器与所述第一开关电连接,用于控制所述第一开关的第一切换端 连通且第二切换端断开;或者控制所述第一开关的第二切换端连通且第一切换端断开;
所述处理器与所述第二开关电连接,用于控制所述第二开关的第一切换端连通且第二切换端断开;或者控制所述第二开关的第二切换端连通且第一切换端断开;
所述天线通过所述第二开关的第一切换端与所述第一放大滤波电路电连接;所述天线通过所述第二开关的第二切换端与所述第二放大滤波电路电连接。
第八方面,本申请提供了一种便携式监护设备,其特征在于,包括:外壳、生理参数采集电路、上述任意一种信号发送电路、上述任意一种信号接收电路;其中:
所述生理参数采集电路,用于采集监测对象的生理体征参数;
所述信号发送电路,用于将生理体征参数通过通信信号向无线接入点发送;
所述信号接收电路,用于接收无线接入点发送的通信信号,对所述通信信号进行滤波处理。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为遥测系统的一种结构示意图;
图2为便携式监护设备的一种电路结构图;
图3为对信号发送电路中的无线芯片模块进行功率调整的一种示意图;
图4为对信号发送电路中的基带芯片进行功率调整的一种示意图;
图5为对信号发送电路中的本振芯片进行功率调整的一种示意图;
图6为对信号发送电路中的基带芯片以及本振芯片进行功率调整的一种示意图;
图7为对信号发送电路中的衰减器进行功率调整的一种示意图;
图8为对信号发送电路中的无线芯片模块以及衰减器进行功率调整的一种示意图;
图9为信号发送电路的一种结构示意图;
图10为信号接收电路的一种结构示意图;
图11为500Mhz窄带滤波器的特性示意图;
图12为信号接收电路的另一结构示意图;
图13为信号接收电路的又一结构示意图;
图14为信号接收电路的又一结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
医疗领域中,便携式监护设备可以通过无线资源与无线接入点通信,例如图1所示,便携式监护设备通过无线接入点向远程监控中心发送生理体征参数,或者接收远程监控中心通过无线接入点发送的控制指令等。设备之间使用无线资源通信时,需要占用无线资源频段,包括但不限定于医疗专用频段。
可以理解的是,在便携式监护设备较为密集连接无线接入点的场景中,由于无线频谱资源的有限性,导致便携式监护设备之间产生通信干扰。一种解决通信干扰的方式是,便携式监护设备采用跳频或跳时间片的通信技术,然而这种动态调整不仅影响通信稳定性,而且频谱资源和时间片资源也可能并不足以支持密集场景中大量的便携式监护设备和无线接入点使用,从而导致通信断开。
本申请提供了一种便携式监护设备,如图2所示,该便携式监护设备包括:外壳、生理参数采集电路、主控制器、信号发送电路以及信号接收电路。其中:
生理参数采集电路,用于采集监测对象的生理体征参数;
主控制器,与生理参数采集电路及射频模块相连,用于将生理参数采集电路采集的生理体征参数转发至射频模块。主控制器可以包括用于处理生理体征参数的处理器,例如但不局限于AM3358处理器。
射频模块具体包括:信号发送电路以及信号接收电路。
信号发送电路,用于将生理体征参数通过通信信号向无线接入点发送;其中通信信号的发射功率为信号发送电路根据便携式监护设备的通信状态确定出的;
信号接收电路,用于接收无线接入点发送的通信信号,对通信信号进行滤波处理,以及从通信信号中提取通信数据;其中滤波处理可以过滤信号接收电路使用的通信信道之外的其他通信信道的干扰信号。
需要说明的是,信号发送电路的具体结构可以是下文说明的任意一种、信号接收电路的具体结构可以是现有的任意一种或者下文说明的任意一种;或者,信号接收电路的具体结构可以是下文说明的任意一种、信号发送电路的具体结构可以是现有的任意一种或下文说明的任意一种;或者,信号发送电路的具体结构可以是下文说明的任意一种、信号接收电路的具体结构可以是下文说明的任意一种。另外,信号发送电路以及信号接收电路可以共用相同连接结构的电路,只不过是通信信号的传输方向相反,一个是通过信号发送电路生成通信信号并发送出去,一个是通过信号接收电路接收无线接入点发送的通信信号并进行解析。
基于上述说明可知,本便携式监护设备可以根据通信状态调整所发射的通信信号的功率,以减少对其他便携式监护设备的通信干扰;和/或,接收到通信信号后对通信信道之外的其他通信信道的信号进行滤波处理,以减少其他便携式监护设备对本便携式监护设备的通信干扰。
以下结合图示说明信号发送电路以及信号接收电路的具体结构。
见图3,其示出了信号发送电路的一个结构实施例,包括:处理器301、无线芯片模块302、放大滤波电路303以及天线304;其中:处理器301、无线芯片模块302、放大滤波电路303以及天线304依次电连接。
处理器301,用于确定天线304与无线接入点之间的当前通信状态;确定当前通信状态对应的当前发射功率;根据当前发射功率生成信号生成指令,并将信号生成指令发送至无线芯片模块。
具体地,信号发送电路的天线可以向无线接入点发射通信信号,也可以接收无线接入点发射的通信信号。不同时间点两者的通信状态可能不同,因此,处理器确定天线与无线接入点当前的通信状态。通信状态可以基于各种通信参 数确定,包括但不限定于:接收的信号强度指示(Received Signal Strength Indication,简称RSSI)、信噪比(Signal Noise Ratio,简称SNR)、丢包率等。
根据当前的通信状态,确定该通信状态对应的发射功率,为了便于描述,该发射功率可以称为当前发射功率。对应的一种体现为,通信状态较佳的情况下信号发射功率较低,通信状态较差的情况下信号发射功率较高。这样,在保证设备正常通信的前提下,还可以降低设备的通信功耗以及降低对其他设备的通信干扰。
对应的另一种体现可以为,预先设置通信状态与发射功率之间的对应关系,根据该对应关系确定当前通信状态对应的当前发射功率。例如表1所示,通过映射关系表设置发射功率等级与接收的信号强度指示的对应关系。
表1
发射功率等级 RSSI
1级 RSSI<-60
2级 -60<RSSI<-50
3级 -50<RSSI<-40
4级 RSSI>-40
需要说明的是,表1中的发射功率等级个数、通信参数数值、发射功率等级值仅仅是示例说明,可以根据实际需求设置为其他数值。另外,接收的信号强度指示RSSI可以替换为处理器监测的其他可以表示通信状态的通信参数。发射功率等级可以与具体的发射功率数值对应,从而根据发射功率等级可以确定出具体的信号发射功率。或者,表1中的发射功率等级可以直接替换为信号发射功率值。
确定出当前发射功率后,处理器301生成信号生成指令以指示生成该当前发射功率的信号,例如信号生成指令中携带当前发射功率的具体数值。然后,处理器301将信号生成指令发送至无线芯片模块302。
无线芯片模块302,用于基于信号生成指令的指示,控制功率寄存器生成当前发射功率的通信信号;将通信信号发送至放大滤波电路。
具体地,无线芯片模块302具有功率寄存器,功率寄存器可以生成某发射功率下的通信信号,无线芯片模块302接收到信号生成指令后,控制功率寄存器生成信号生成指令所指示的发射功率下的通信信号。
放大滤波电路303,用于将通信信号进行放大滤波处理,以使通信信号达到发射要求,并将处理后的通信信号发送至天线304。
天线304,用于向无线接入点发送处理后的通信信号。例如,发射的通信信号可以包括但不限定于:1.4Ghz频段或608Mhz频段的通信信号。
由上述说明可知,相比于使用固定的信号发射功率通信,根据实时的通信状态调整信号发射功率的通信方式,可以避免不必要的功耗浪费,且减少对其他通信信号的干扰。
见图4,其示出了信号发送电路的另一结构实施例,包括:处理器401、基带芯片402、本振芯片403、混频滤波电路404、放大滤波电路405以及天线406。其中:基带芯片402分别与处理器401及混频滤波电路404的第一输入端电连接;本振芯片403分别与处理器401及混频滤波电路404的第二输入端电连接;混频滤波电路404的输出端与放大滤波电路405电连接。
需要说明的是,基带芯片402、本振芯片403、混频滤波电路404的功能与图3所示实施例中的无线芯片模块302相同,即用于得到当前发射功率的通信信号。具体地,基带芯片402可以生成一路某发射频率的通信信号,本振芯片403可以生成一路某发射频率的通信信号,混频滤波电路404用于对该两路通信信号进行混频,从而得到当前发射功率的通信信号。
其中,本振芯片403生成的通信信号可以称为载波信号,载波信号的发射功率可以是预设的某发射功率,本振芯片403按照该预设的发射功率生成载波信号。为了实现发射功率的调整,可以对基带芯片402生成通信信号的发射频率进行控制,具体的控制方式为:
处理器401根据当前通信状态确定当前发射功率,该当前发射功率对应基带芯片需要生成的通信信号的发射功率。为了便于描述,可以将该发射功率称为第一发射功率或者基带芯片发射功率。例如,可以预先设置映射关系表,该映射关系表中记录有总发射功率、基带芯片发射功率、通信状态三者之间的对应关系;基于该映射关系表可以确定出当前通信状态所对应的基带芯片发射功率。或者,映射关系表记录基带芯片发射功率与通信状态两者之间的对应关系,或者,映射关系表记录总发射功率、本振芯片发射功率、基带芯片发射功率与通信状态四者之间的对应关系。
处理器401根据当前发射功率生成信号生成指令,该信号生成指令可以携 带第一发射功率,第一发射功率用于控制基带芯片所生成的通信信号的发射功率。处理器401将第一信号生成指令发送至基带芯片402。
基带芯片402基于第一信号生成指令的指示,控制功率寄存器生成第一发射功率的通信信号;另外,本振芯片403生成预设发射功率的载波信号。混频滤波电路404将第一发射功率的通信信号与预设发射功率的载波信号进行混频处理,得到当前发射功率的通信信号。
当前发射功率的通信信号经过放大滤波电路405的放大滤波处理后,通过天线406向无线接入点发射。其中发射的通信信号包括但不限定于:1.4Ghz频段的通信信号。
本实施例提供的信号发送电路中,混频滤波电路404可以将两路通信信号生成用于发射的通信信号。本实施例通过调整基带芯片402发射的一路通信信号,调整天线406发射的通信信号的功率,可以避免不必要的功耗浪费,且减少对其他通信信号的干扰。
需要说明的是,基带芯片和本振芯片的个数可以并不局限于图4所示,在包括多个基带芯片和/或多个本振芯片的情况下,基带芯片与本振芯片输出的通信信号经过混频滤波电路的处理,可以得到与当前通信状态对应的发射功率的通信信号。
见图5,其示出了信号发送电路的又一结构实施例,具体包括:处理器501、基带芯片502、本振芯片503、混频滤波电路504、放大滤波电路505以及天线506。
需要说明的是,与图4所示实施例不同的是,本实施例中处理器501并非生成用于控制基带芯片的第一信号生成指令,而是根据当前发射功率生成用于控制本振芯片的第二信号生成指令。第二信号生成指令可以携带与当前通信状态对应的第二发射功率,第二发射功率也可以称为本振芯片发射功率。处理器如何确定本振芯片发射功率,可以参照图4所示实施例中的说明,例如设置映射关系表记录通信状态与本振芯片发射功率的对应关系,基于映射关系表确定对应的本振芯片发射功率。
处理器501将第二信号生成指令发送至本振芯片503。本振芯片503基于第二信号生成指令的指示,控制功率寄存器生成第二发射功率的载波信号。
基带芯片502生成预设发射功率的通信信号。
混频滤波电路504将预设发射功率的通信信号与第二发射功率的载波信号 进行混频处理,得到当前发射功率的通信信号。
当前发射功率的通信信号经过放大滤波电路405的放大滤波处理后,通过天线406向无线接入点发射。其中发射的通信信号包括但不限定于:1.4Ghz频段的通信信号。
在本实施例中,预设发射功率可以是预先设置的某固定发射频率值,基带芯片基于该预设发射功率生成通信信号,当需要调整天线发射的通信信号的发射频率时,调整本振芯片所生成的信号的发射功率。
见图6,其示出了信号发送电路的又一结构实施例,具体包括:处理器601、基带芯片602、本振芯片603、混频滤波电路604、放大滤波电路605以及天线606。
与图4以及图5所示实施例不同的是,本实施例中处理器601可以生成两路信号生成指令,分别控制基带芯片与本振芯片所生成通信信号的发射功率。具体地,处理器601根据当前发射功率,生成第一发射功率对应的第一信号生成指令以及第二发射功率对应的第二信号生成指令,其中第一发射功率可以称为基带芯片发射功率,第二发射功率可以称为本振芯片发射功率,第一发射功率与第二发射功率之和为当前发射功率。处理器601将第一信号生成指令发送至基带芯片602以及将第二信号生成指令发送至本振芯片603。
处理器如何确定基带芯片发射功率以及本振芯片发射功率,可以参照图4所示实施例中的说明,例如设置映射关系表记录通信状态与基带芯片发射功率及本振芯片发射功率的对应关系,进而基于映射关系表确定对应的基带芯片发射功率以及本振芯片发射功率。
基带芯片602,用于基于第一信号生成指令的指示,控制功率寄存器生成第一发射功率的通信信号;本振芯片603,用于基于第二信号生成指令的指示,控制功率寄存器生成第二发射功率的载波信号;混频滤波电路604,用于将第一发射功率的通信信号与第二发射功率的载波信号进行混频处理,得到当前发射功率的通信信号。
当前发射功率的通信信号经过放大滤波电路605的放大滤波处理后,通过天线606向无线接入点发射。其中发射的通信信号包括但不限定于:1.4Ghz频段的通信信号。
在本实施例中,信号发送电路既对基带芯片的发射功率进行调整,也对本振芯片的发射功率进行调整。通过两路调整,实现对天线发射通信信号的功率 调整。
在实际应用中,除了可以使用功率寄存器调整通信信号的发射功率外,或者可以对衰减器进行控制,调整通信信号的发射功率。见图7,其示出了信号发送电路的又一结构实施例,具体包括:处理器701,无线芯片模块702、衰减器703、放大滤波电路704以及天线705。
处理器701,无线芯片模块702、衰减器703、放大滤波电路704以及天线705依次电连接,且处理器701与衰减器703电连接。
处理器701,用于确定天线705与无线接入点之间的当前通信状态,并确定当前通信状态对应的当前调整功率。当前调整功率的一种确定实现方式是,根据通信状态与调整功率之间的预设对应关系,确定当前通信状态对应的当前调整功率。具体可以参见图3所示的实施例,设置映射关系表记录通信状态与调整功率之间的对应关系,从而查找该映射关系表确定当前通信状态对应的当前调整功率。
需要说明的是,本实施例中处理器701确定的功率为调整功率,用于对前级电路生成的通信信号的发射功率进行调整,如提高或者降低,以使调整后的发射功率满足预期效果,即避免不必要的功耗浪费,且减少对其他通信信号的干扰。
处理器701根据当前调整功率生成功率调整指令,并将功率调整指令发送至衰减器703。另外,无线芯片模块702生成预设发射功率的通信信号,并将通信信号发送至衰减器703。
衰减器703基于功率调整指令的指示,按照当前调整功率对无线芯片模块702生成的通信信号的发射功率进行调整,如降低或者提高一定的数值。
衰减器703将调整后的通信信号发送至放大滤波电路704,放大滤波电路704将调整后的通信信号进行放大滤波,并将放大滤波后的通信信号发送至天线705,天线705向无线接入点发送放大滤波后的通信信号。
可见,本实施例通过衰减器实现了对通信信号发送功率的调整,在保证正常通信的基础上,避免不必要的功耗浪费,且减少对其他通信信号的干扰。
在一个实施例中,无线芯片模块702可以包括一个无线芯片;在另一个实施例中,无线芯片模块702可以包括混频滤波电路以及多个无线芯片,混频滤波电路将多个无线芯片的通信信号进行混频滤波处理后,得到预设发射功率的 通信信号。例如,无线芯片模块702具体可以包括:基带芯片、本振芯片以及混频滤波电路;其中:基带芯片分别与处理器及混频滤波电路的第一输入端电连接;本振芯片分别与处理器及混频滤波电路的第二输入端电连接;混频滤波电路的输出端与衰减器电连接。
在实际应用中,还可以将功率寄存器调整发射功率的方式,与衰减器调整发射功率的方式进行结合,共同调整通信信号的发射功率。见图8,其示出了信号发送电路的又一结构实施例,具体包括:处理器801,无线芯片模块802、衰减器803、放大滤波电路804以及天线805。
与图7所示实施例不同的是,处理器801生成两路控制指令,分别调整无线芯片模块802以及衰减器803生成的通信信号的发射功率。
具体地,处理器801确定天线与无线接入点之间的当前通信状态;确定当前通信状态对应的当前发射功率以及当前调整功率;其中当前发射功率以及当前调整功率的一种确定方式为,根据通信状态与发射功率以及调整功率之间的预设对应关系,确定当前通信状态对应的当前发射功率以及当前调整功率。更具体例如,可以使用预先设置的映射关系表来确定当前发射功率以及当前调整功率。
处理器801根据当前发射功率生成信号生成指令,并将信号生成指令发送至无线芯片模块802,以指示无线芯片模块802生成何种功率的通信信号;处理器801根据当前调整功率生成功率调整指令,并将功率调整指令发送至衰减器803,以指示衰减器803如何对无线芯片模块802生成的通信信号进行衰减。
在一个或多个实施例中,无线芯片模块802可以具体包括基带芯片、本振芯片以及混频滤波电路,从而参照图4、图5以及图6所示实施例的说明,可以分别对基带芯片、本振芯片以及两者的结合进行功率调整。具体的调整方式可以参见上述说明,此处并不赘述。
见图9,其示出了信号发送电路的又一结构实施例,具体包括:处理器901、基带芯片902、本振芯片903、第一开关904、混频滤波电路905、衰减器906、第一放大滤波电路907、第二放大滤波电路908、第二开关909以及天线910。其中:
处理器901、基带芯片902、混频滤波电路905的第一输入端电连接;混频滤波电路905的输出端、衰减器906、第一放大滤波电路907依次电连接; 第一放大滤波电路907通过第二开关909的第一切换端与天线910电连接;
处理器901与本振芯片903电连接;本振芯片903通过第一开关904的第一切换端与混频滤波电路905的第二输入端电连接;本振芯片903通过第一开关904的第二切换端与第二放大滤波电路908电连接。第二放大滤波电路908通过第二开关909的第二切换端与天线910电连接。处理器901与衰减器906电连接。
处理器901与第一开关904电连接,且处理器901与第二开关909电连接。处理器901可以通过控制第一开关904以及第二开关909的断开以及连通,形成两种不同结构的信号发送电路。具体地:
一种情况下,处理器901向第一开关904发送切换信号,以使第一开关904的第一切换端连通且第二切换端断开;并且,处理器901向第一开关904发送切换信号,以使第二开关909的第一切换端连通且第二切换端断开。这样,本振芯片903与混频滤波电路905相连,可以向混频滤波电路905发送用于混频的通信信号,混频滤波电路905将基带芯片902的通信信号与本振芯片903的通信信号进行混频,混频后的通信信号经过衰减器906以及第一放大滤波电路907的处理后由天线910发射。
此种形式的电路结构可以发射但不局限于1.4Ghz频段的通信信号。
需要说明的是,在此种形式的电路结构下,处理器通过控制基带芯片902、本振芯片903、衰减器906中的任意一个或多个对天线发射的通信信号的发射功率进行调整,具体调整过程参照上述说明,此处并不赘述。
另一种情况下,处理器901向第一开关904发送切换信号,以使第一开关904的第二切换端连通且第一切换端断开;并且,处理器901向第一开关904发送切换信号,以使第二开关909的第二切换端连通且第一切换端断开。这样,本振芯片903的通信信号并未经过混频处理,经过第二放大滤波电路908的处理后由天线910发射。
此种形式的电路结构可以发射但不局限于608Mhz频段的通信信号。
需要说明的是,在此种形式的电路结构下,处理器通过控制基带芯片902,如控制基带芯片902内的功率寄存器,实现对天线发射的通信信号的发射功率的调整,具体调整过程参照上述说明,此处并不赘述。
本申请还提供了信号接收电路,对接收到的通信信号进行滤波处理,以消除干扰通信信号的影响。
见图10,其示出了信号接收电路的一种结构实施例,包括:处理器1001、基带芯片1002、本振芯片1003、窄带滤波器1004、混频滤波电路1005、放大滤波电路1006以及天线1007;其中:
天线1007、放大滤波电路1006以及混频滤波电路1005的第一输入端依次电连接。混频滤波电路1005的输出端、窄带滤波器1004、基带芯片1002以及处理器1001依次电连接。处理器1001、本振芯片1002以及混频滤波电路1005的第二输入端依次电连接。
天线1007,用于接收通信信号。放大滤波电路1006,用于对天线接收到的通信信号进行放大滤波。
处理器1001用于确定信号接收电路的当前通信信道,并控制本振芯片1003使用与当前通信信道对应的本振频点生成通信信号。其中,本振频点也即本振芯片生成的通信信号的频率。本振芯片1003可以根据不同的通信信道生成不同频率的通信信号。例如表2所示,本振芯片1003在不同的信道下使用的本振频点是不同的。当然,表2仅仅是示例说明,在实际应用中可以使用其他数值的频点。
表2
频段 信道 空口频点(Mhz) 本振频点(Mhz) 基带频点(Mhz)
1395~1400 1 1395.5 895.5 500
  2 1396.3 896.3 500
  3 1397.1 897.1 500
  4 1397.9 897.9 500
  5 1398.7 898.7 500
  6 1399.5 899.5 500
1427~1432 7 1427.5 927.5 500
  8 1428.3 928.3 500
  9 1429.1 929.1 500
  10 1429.9 929.9 500
  11 1430.7 930.7 500
  12 1431.5 931.5 500
在一种实现方式中,处理器1001可以向本振芯片1003发送当前通信信号对应的本振频点。或者在另一种实现方式中,处理器1001可以向本振芯片1003发送当前通信信道的信道标号,本振芯片1003确定与该信道标号对应的本振频点。
本振芯片1003使用与当前通信信道对应的本振频点生成通信信号,并将该通信信号发送至混频滤波电路。在不同的通信信道下,基带芯片1002的解调频点可以保持为固定值,如表2的500Mhz基带频点。
基于该信号接收电路,信号接收过程为:天线1007接收的通信信号经过放大滤波电路1006的放大滤波处理,混频滤波电路1005将放大滤波的通信信号与本振芯片1003生成的通信信号进行混频,得到待解调通信信号;窄带滤波器1004用于对待解调通信信号进行窄带滤波;基带芯片1002对窄带滤波处理后的待解调通信信号进行解调,并将解调后的通信信号发送至处理器1001。该信号接收电路可以对但不局限于1.4Ghz频段的通信信号进行干扰处理。
需要说明的是,本振芯片1003生成的通信信号的频率是与当前通信信道对应的,混频滤波电路1005使用该通信信号对天线接收到的通信信号进行混频时,对当前通信信道的通信信号混频后,可以得到与基带芯片的解调频点相同的通信信号,但是对非当前通信信道的通信信号混频后,可以得到与基带芯片的解调频点不同的通信信号。
例如表2所示,假设基带芯片的解调频点固定为500Mhz,且假设信号接收电路的当前通信信道为1,则本振芯片可以生成895.5Mhz的通信信号。天线在通信信道1接收的是1395.5Mhz的通信信号(空口频点为天线接收通信信号的频率),经过895.5Mhz的通信信号混频后得到的是500Mhz的待解调通信信号。但是,天线在通信信道2接收到的1396.3Mhz的通信信号,经过895.5Mhz的通信信号混频后得到的是500.8Mhz的待解调通信信号。
待解调的通信信号需要发送至基带芯片1002进行解调处理。解调时,基带芯片1002工作在某个解调频点,该解调频点可以称为基带频点,接收到的待解调通信信号的频率与基带频点相同,才能达到较好的解调效果。因此,在基带芯片1002的前级设置窄带滤波器,窄带滤波器可以抑制该基带频点之外的其他频率的通信信号的干扰。例如,基带芯片的解调频点为500Mhz,则窄 带滤波器为500Mhz窄带滤波器,从而可以对500Mhz之外的其他频率如500.8Mhz的待解调通信信号进行滤波处理。
500Mhz窄带滤波器的特性如图11所示,其对其他频点的通信信号具有较强的抑制作用,从而增加邻道抗扰能力。
见图12,其示出了信号接收电路的另一结构示意,具体包括:处理器1201、基带芯片1202、放大器1203、窄带滤波模块1204以及天线1205。需要说明的是,放大器1203与窄带滤波模块1204的位置关系并不局限于图示12所示,还可以将两者在电路结构中的位置进行交换。
其中,处理器1201、基带芯片1202、放大器1203、窄带滤波模块1204以及天线1205依次电连接。
天线1205,用于接收通信信号;
处理器1201与窄带滤波模块1204电连接,用于确定信号接收电路的当前通信信道,向窄带滤波模块1204发送控制指令,以使窄带滤波模块1204使用当前通信信道对应的窄带滤波器对天线1205接收到的通信信号进行滤波处理。
其中:窄带滤波模块包括一个或多个窄带滤波器,且不同的窄带滤波器用于为不同通信信道接收到的通信信号进行窄带滤波处理。不同的窄带滤波器可以得到排除干扰后的不同频率的通信信号,也就是说,信号接收电路工作在哪个通信信道下,则排除该通信信道之外的其他频率的干扰信号。
另外,窄带滤波模块1204中每个窄带滤波器可以对应一个开关,处理器1201在确定信号接收电路的当前通信信道后,可以向窄带滤波模块1204发送指令,以指示当前通信信道对应的开关闭合,以使当前通信信道对应的窄带滤波器工作。
放大器1203,用于对窄带滤波处理后的通信信号进行放大;
基带芯片1202,用于对放大后的通信信号进行解调,并将解调后的通信信号发送至处理器1201。
基于该信号接收电路,信号接收过程为:天线1205接收的通信信号发送至窄带滤波模块1204,处理器1201确定信号接收电路的当前通信信道,向窄带滤波模块1204发送控制指令,以使窄带滤波模块1204使用当前通信信道对应的窄带滤波器对天线1205接收到的通信信号进行滤波处理。滤波处理后的通信信号 经过放大器1203的放大后,得到待解调通信信号。基带芯片1202对待解调通信信号进行解调,并将解调后的通信信号发送至处理器1201。该信号接收电路可以对但不局限于608Mhz频段的通信信号进行干扰处理。
见13,其示出了信号接收电路的又一结构示意,具体包括:处理器1301、基带芯片1302、宽带滤波器1303、放大器1304、窄带滤波模块1305以及天线1306。需要说明的是,该信号接收电路与图12所示的信号接收电路相比,增加了宽带滤波器1303,用于滤除与待解调通信信号属于不同频段如1.4Ghz频段的干扰信号。窄带滤波模块1305用于滤除与待解调通信信号属于相同频段但属于不同通信信道的干扰信号。有关其他模块单元的说明可以参照图12的说明,此处并不赘述。
需要说明的是,此信号接收电路中的宽带滤波器1303与窄带滤波模块1305的位置并不局限于图13所示,还可以交换其在电路结构中的位置,即天线1306接收的通信信号依次经过宽带滤波器1303、放大器1304、窄带滤波模块1305、基带芯片1302以及处理器1301。另外,宽带滤波器也可以设置为多个,多个宽带滤波器作为宽带滤波模块,用于滤除多种不同频段的干扰信号,其具体结构的设置可以参照窄带滤波模块,此处并不赘述。
见图14,其示出了信号接收电路的又一结构示意,具体包括:处理器1401、基带芯片1402、本振芯片1403、窄带滤波器1404、混频滤波电路1405、第一放大滤波电路1406、第一开关1407、第二开关1408、第二放大滤波电路1409以及天线1410;其中:
处理器1401、基带芯片1402、窄带滤波器1404、混频滤波电路1405的输出端电连接;混频滤波电路1405的第一输入端、第一放大滤波电路1406依次电连接;第一放大滤波电路1406通过第二开关1408的第一切换端与天线电连接;
处理器1401与本振芯片1403电连接;
本振芯片1403通过第一开关1407的第一切换端与混频滤波电路1405的第二输入端电连接;本振芯片1403通过第一开关1407的第二切换端与第二放大滤波电路1409电连接;
处理器1401与第一开关1407电连接,用于控制第一开关1407的第一切换端连通且第二切换端断开;或者控制第一开关1407的第二切换端连通且第 一切换端断开;
处理器1401与第二开关1408电连接,用于控制第二开关1408的第一切换端连通且第二切换端断开;或者控制第二开关1408的第二切换端连通且第一切换端断开;
天线1410通过第二开关1408的第一切换端与第一放大滤波电路1406电连接;天线1410通过第二开关1408的第二切换端与第二放大滤波电路1409电连接。
基于上述的连接结构,通过处理器的控制信号实现两种不同结构的信号接收电路。具体地:
处理器1401控制第一开关1407的第一切换端连通且第二切换端断开,并且处理器1401控制第二开关1408的第一切换端连通且第二切换端断开,从而天线1410通过第二开关1408的第一切换端与第一放大滤波电路1406电连接,形成一种形式的信号接收电路;
处理器1401控制第一开关1407的第二切换端连通且第一切换端断开,并且处理器1401控制第二开关1408的第二切换端连通且第一切换端断开,从而天线1410通过第二开关1408的第二切换端与第二放大滤波电路1409电连接,形成另一种形式的信号接收电路。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括上述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本 发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (18)

  1. 一种信号发送电路,其特征在于,包括:依次电连接的处理器、无线芯片模块、放大滤波电路以及天线;其中:
    所述处理器,用于确定所述天线与无线接入点之间的当前通信状态;确定所述当前通信状态对应的当前发射功率;根据所述当前发射功率生成信号生成指令,并将所述信号生成指令发送至所述无线芯片模块;
    所述无线芯片模块,用于基于所述信号生成指令的指示,控制功率寄存器生成所述当前发射功率的通信信号;将所述通信信号发送至所述放大滤波电路;
    所述放大滤波电路,用于将所述通信信号进行放大滤波处理,并将处理后的通信信号发送至天线;
    所述天线,用于向所述无线接入点发送所述处理后的通信信号。
  2. 如权利要求1所述的信号发送电路,其特征在于,所述无线芯片模块包括:基带芯片、本振芯片以及混频滤波电路;其中:所述基带芯片分别与所述处理器及所述混频滤波电路的第一输入端电连接;所述本振芯片分别与所述处理器及所述混频滤波电路的第二输入端电连接;所述混频滤波电路的输出端与所述放大滤波电路电连接;
    所述处理器根据所述当前发射功率生成信号生成指令,并将所述信号生成指令发送至所述无线芯片模块时,具体用于:根据所述当前发射功率生成第一信号生成指令,并将所述第一信号生成指令发送至所述基带芯片;
    所述无线芯片模块基于所述信号生成指令的指示,控制功率寄存器生成所述当前发射功率的通信信号时,具体包括:
    所述基带芯片,用于基于所述第一信号生成指令的指示,控制功率寄存器生成第一发射功率的通信信号;
    所述本振芯片,用于生成预设发射功率的载波信号;
    所述混频滤波电路,用于将所述第一发射功率的通信信号与所述预设发射功率的载波信号进行混频处理,得到所述当前发射功率的通信信号。
  3. 如权利要求1所述的信号发送电路,其特征在于,所述无线芯片模块包括:基带芯片、本振芯片以及混频滤波电路;其中:所述基带芯片分别与所 述处理器及所述混频滤波电路的第一输入端电连接;所述本振芯片分别与所述处理器及所述混频滤波电路的第二输入端电连接;所述混频滤波电路的输出端与所述放大滤波电路电连接;
    所述处理器根据所述当前发射功率生成信号生成指令,并将所述信号生成指令发送至所述无线芯片模块时,具体用于:根据所述当前发射功率生成第二信号生成指令,并将所述第二信号生成指令发送至所述本振芯片;
    所述无线芯片模块基于所述信号生成指令的指示,控制功率寄存器生成所述当前发射功率的通信信号时,具体包括:
    所述基带芯片,用于生成预设发射功率的通信信号;
    所述本振芯片,用于基于所述第二信号生成指令的指示,控制功率寄存器生成第二发射功率的载波信号;
    所述混频滤波电路,用于将所述预设发射功率的通信信号与所述第二发射功率的载波信号进行混频处理,得到所述当前发射功率的通信信号。
  4. 如权利要求1所述的信号发送电路,其特征在于,所述无线芯片模块包括:基带芯片、本振芯片以及混频滤波电路;其中:所述基带芯片分别与所述处理器及所述混频滤波电路的第一输入端电连接;所述本振芯片分别与所述处理器及所述混频滤波电路的第二输入端电连接;所述混频滤波电路的输出端与所述放大滤波电路电连接;
    所述处理器根据所述当前发射功率生成信号生成指令,并将所述信号生成指令发送至所述无线芯片模块时,具体用于:根据所述当前发射功率,生成第一发射功率对应的第一信号生成指令以及第二发射功率对应的第二信号生成指令,其中所述第一发射功率与所述第二发射功率之和为所述当前发射功率;将所述第一信号生成指令发送至所述基带芯片以及将所述第二信号生成指令发送至所述本振芯片;
    所述无线芯片模块基于所述信号生成指令的指示,生成所述当前发射功率的通信信号时,具体包括:
    所述基带芯片,用于基于所述第一信号生成指令的指示,控制功率寄存器生成所述第一发射功率的通信信号;
    所述本振芯片,用于基于所述第二信号生成指令的指示,控制功率寄存器生成所述第二发射功率的载波信号;
    所述混频滤波电路,用于将所述第一发射功率的通信信号与所述第二发射功率的载波信号进行混频处理,得到所述当前发射功率的通信信号。
  5. 如权利要求1所述的信号发送电路,其特征在于,所述确定所述当前通信状态对应的当前发射功率时,具体用于:
    根据通信状态与发射功率之间的预设对应关系,确定所述当前通信状态对应的当前发射功率。
  6. 一种信号发送电路,其特征在于,包括:依次电连接的处理器,无线芯片模块、衰减器、放大滤波电路以及天线,且所述处理器与所述衰减器电连接;
    所述处理器,用于确定所述天线与无线接入点之间的当前通信状态;确定所述当前通信状态对应的当前调整功率;根据所述当前调整功率生成功率调整指令,并将所述功率调整指令发送至所述衰减器;
    所述无线芯片模块,用于生成预设发射功率的通信信号,并将所述通信信号发送至所述衰减器;
    所述衰减器,用于基于所述功率调整指令的指示,按照所述当前调整功率对所述通信信号的发射功率进行调整;将调整后的通信信号发送至所述放大滤波电路;
    所述放大滤波电路,用于将所述调整后的通信信号进行放大滤波,并将放大滤波后的通信信号发送至天线;
    所述天线,用于向所述无线接入点发送所述放大滤波后的通信信号。
  7. 如权利要求6所述的信号发送电路,其特征在于,所述无线芯片模块包括:基带芯片、本振芯片以及混频滤波电路;其中:所述基带芯片分别与所述处理器及所述混频滤波电路的第一输入端电连接;所述本振芯片分别与所述处理器及所述混频滤波电路的第二输入端电连接;所述混频滤波电路的输出端与所述衰减器电连接。
  8. 如权利要求6所述的信号发送电路,其特征在于,所述处理器确定所述当前通信状态对应的当前调整功率时,具体用于:
    根据通信状态与调整功率之间的预设对应关系,确定所述当前通信状态对应的当前调整功率。
  9. 一种信号发送电路,其特征在于,包括:依次电连接的处理器,无线芯片模块、衰减器、放大滤波电路以及天线,且所述处理器与所述衰减器电连接;
    所述处理器,用于确定所述天线与无线接入点之间的当前通信状态;确定所述当前通信状态对应的当前发射功率以及当前调整功率;根据所述当前发射功率生成信号生成指令,并将所述信号生成指令发送至所述无线芯片模块;根据所述当前调整功率生成功率调整指令,并将所述功率调整指令发送至所述衰减器;
    所述无线芯片模块,用于基于所述信号生成指令的指示,控制功率寄存器生成所述当前发射功率的通信信号,并将所述通信信号发送至所述衰减器;
    所述衰减器,用于基于所述功率调整指令的指示,按照所述当前调整功率对所述通信信号的发射功率进行调整;将调整后的通信信号发送至所述放大滤波电路;
    所述放大滤波电路,用于将所述调整后的通信信号进行放大滤波,并将放大滤波后的通信信号发送至天线;
    所述天线,用于向所述无线接入点发送所述放大滤波后的通信信号。
  10. 如权利要求9所述的信号发送电路,其特征在于,所述无线芯片模块包括:基带芯片、本振芯片以及混频滤波电路;其中:所述基带芯片分别与所述处理器及所述混频滤波电路的第一输入端电连接;所述本振芯片分别与所述处理器及所述混频滤波电路的第二输入端电连接;所述混频滤波电路的输出端与所述放大滤波电路电连接;
    所述处理器根据所述当前发射功率生成信号生成指令,并将所述信号生成指令发送至所述无线芯片模块时,具体用于:根据所述当前发射功率生成第一信号生成指令,并将所述第一信号生成指令发送至所述基带芯片;
    所述无线芯片模块基于所述信号生成指令的指示,控制功率寄存器生成所述当前发射功率的通信信号时,具体包括:
    所述基带芯片,用于基于所述第一信号生成指令的指示,控制功率寄存器生成第一发射功率的通信信号;
    所述本振芯片,用于生成预设发射功率的通信信号;
    所述混频滤波电路,用于将所述第一发射功率的通信信号与所述预设发射 功率的通信信号进行混频处理,得到所述当前发射功率的通信信号。
  11. 如权利要求9所述的信号发送电路,其特征在于,所述无线芯片模块包括:基带芯片、本振芯片以及混频滤波电路;其中:所述基带芯片分别与所述处理器及所述混频滤波电路的第一输入端电连接;所述本振芯片分别与所述处理器及所述混频滤波电路的第二输入端电连接;所述混频滤波电路的输出端与所述放大滤波电路电连接;
    所述处理器根据所述当前发射功率生成信号生成指令,并将所述信号生成指令发送至所述无线芯片模块时,具体用于:根据所述当前发射功率生成第二信号生成指令,并将所述第二信号生成指令发送至所述本振芯片;
    所述无线芯片模块基于所述信号生成指令的指示,控制功率寄存器生成所述当前发射功率的通信信号时,具体包括:
    所述基带芯片,用于生成预设发射功率的通信信号;
    所述本振芯片,用于基于所述第二信号生成指令的指示,控制功率寄存器生成第二发射功率的载波信号;
    所述混频滤波电路,用于将所述预设发射功率的通信信号与所述第二发射功率的载波信号进行混频处理,得到所述当前发射功率的通信信号。
  12. 如权利要求9所述的信号发送电路,其特征在于,所述无线芯片模块包括:基带芯片、本振芯片以及混频滤波电路;其中:所述基带芯片分别与所述处理器及所述混频滤波电路的第一输入端电连接;所述本振芯片分别与所述处理器及所述混频滤波电路的第二输入端电连接;所述混频滤波电路的输出端与所述放大滤波电路电连接;
    所述处理器根据所述当前发射功率生成信号生成指令,并将所述信号生成指令发送至所述无线芯片模块时,具体用于:根据所述当前发射功率,生成第一发射功率对应的第一信号生成指令以及第二发射功率对应的第二信号生成指令,其中所述第一发射功率与所述第二发射功率之和为所述当前发射功率;将所述第一信号生成指令发送至所述基带芯片以及将所述第二信号生成指令发送至所述本振芯片;
    所述无线芯片模块基于所述信号生成指令的指示,生成所述当前发射功率的通信信号时,具体包括:
    所述基带芯片,用于基于所述第一信号生成指令的指示,控制功率寄存器 生成所述第一发射功率的通信信号;
    所述本振芯片,用于基于所述第二信号生成指令的指示,控制功率寄存器生成所述第二发射功率的载波信号;
    所述混频滤波电路,用于将所述第一发射功率的通信信号与所述第二发射功率的载波信号进行混频处理,得到所述当前发射功率的通信信号。
  13. 如权利要求9所述的信号发送电路,其特征在于,所述处理器确定所述当前通信状态对应的当前发射功率以及当前调整功率时,具体用于:
    根据通信状态与发射功率以及调整功率之间的预设对应关系,确定所述当前通信状态对应的当前发射功率以及当前调整功率。
  14. 一种信号发送电路,其特征在于,包括:处理器、基带芯片、本振芯片、第一开关、混频滤波电路、衰减器、第一放大滤波电路、第二放大滤波电路、第二开关以及天线;其中:
    所述处理器、所述基带芯片、所述混频滤波电路的第一输入端电连接;所述混频滤波电路的输出端、所述衰减器、所述第一放大滤波电路依次电连接;所述第一放大滤波电路通过所述第二开关的第一切换端与所述天线电连接;
    所述处理器与所述本振芯片电连接;
    本振芯片通过所述第一开关的第一切换端与所述混频滤波电路的第二输入端电连接;
    本振芯片通过所述第一开关的第二切换端与所述第二放大滤波电路电连接;所述第二放大滤波电路通过所述第二开关的第二切换端与所述天线电连接;
    所述处理器与所述第一开关电连接,用于控制所述第一开关的第一切换端连通且第二切换端断开;或者控制所述第一开关的第二切换端连通且第一切换端断开;
    所述处理器与所述第二开关电连接,用于控制所述第二开关的第一切换端连通且第二切换端断开;或者控制所述第二开关的第二切换端连通且第一切换端断开;
    所述处理器与所述衰减器电连接。
  15. 一种信号接收电路,其特征在于,包括:处理器、基带芯片、本振芯片、窄带滤波器、混频滤波电路、放大滤波电路以及天线;其中:
    所述天线、所述放大滤波电路以及所述混频滤波电路的第一输入端依次电连接;
    所述混频滤波电路的输出端、所述窄带滤波器、所述基带芯片以及所述处理器依次电连接;
    所述处理器、所述本振芯片以及所述混频滤波电路的第二输入端依次电连接;
    所述天线,用于接收通信信号;所述放大滤波电路,用于对天线接收到的通信信号进行放大滤波;所述处理器用于确定所述信号接收电路的当前通信信道,控制所述本振芯片使用与所述当前通信信道对应的频点生成通信信号;所述混频滤波电路用于将放大滤波后的通信信号与所述本振芯片生成的通信信号进行混频,得到待解调通信信号;所述窄带滤波器用于对待解调通信信号进行窄带滤波;所述基带芯片用于对窄带滤波处理后的待解调通信信号进行解调,并将解调后的通信信号发送至所述处理器。
  16. 一种信号接收电路,其特征在于,包括:依次电连接的处理器、基带芯片、放大器、窄带滤波模块以及天线;其中:所述窄带滤波模块包括一个或多个窄带滤波器,且不同的窄带滤波器用于为不同通信信道接收到的通信信号进行窄带滤波处理;
    所述天线,用于接收通信信号;
    所述处理器与所述窄带滤波模块电连接,用于确定所述信号接收电路的当前通信信道,向所述窄带滤波模块发送控制指令,以使所述窄带滤波模块使用所述当前通信信道对应的窄带滤波器对天线接收到的通信信号进行滤波处理;
    所述放大器,用于对窄带滤波处理后的通信信号进行放大;
    所述基带芯片,用于对放大后的通信信号进行解调,并将解调后的通信信号发送至处理器。
  17. 一种信号接收电路,其特征在于,包括:处理器、基带芯片、本振芯片、窄带滤波器、混频滤波电路、第一放大滤波电路、第一开关、第二开关、第二放大滤波电路以及天线;其中:
    所述处理器、所述基带芯片、所述窄带滤波器、所述混频滤波电路的输出 端电连接;所述混频滤波电路的第一输入端、所述第一放大滤波电路依次电连接;所述第一放大滤波电路通过所述第二开关的第一切换端与所述天线电连接;
    所述处理器与所述本振芯片电连接;
    所述本振芯片通过所述第一开关的第一切换端与所述混频滤波电路的第二输入端电连接;所述本振芯片通过所述第一开关的第二切换端与所述第二放大滤波电路电连接;
    所述处理器与所述第一开关电连接,用于控制所述第一开关的第一切换端连通且第二切换端断开;或者控制所述第一开关的第二切换端连通且第一切换端断开;
    所述处理器与所述第二开关电连接,用于控制所述第二开关的第一切换端连通且第二切换端断开;或者控制所述第二开关的第二切换端连通且第一切换端断开;
    所述天线通过所述第二开关的第一切换端与所述第一放大滤波电路电连接;所述天线通过所述第二开关的第二切换端与所述第二放大滤波电路电连接。
  18. 一种便携式监护设备,其特征在于,包括:外壳、生理参数采集电路、权利要求1-14任意一项所述的信号发送电路、权利要求15-17任意一项所述的信号接收电路;其中:
    所述生理参数采集电路,用于采集监测对象的生理体征参数;
    所述信号发送电路,用于将生理体征参数通过通信信号向无线接入点发送;
    所述信号接收电路,用于接收无线接入点发送的通信信号,对所述通信信号进行滤波处理。
PCT/CN2019/130852 2019-12-31 2019-12-31 信号发送电路、信号接收电路及便携式监护设备 WO2021134638A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/130852 WO2021134638A1 (zh) 2019-12-31 2019-12-31 信号发送电路、信号接收电路及便携式监护设备
CN201980098379.5A CN114097203B (zh) 2019-12-31 2019-12-31 信号发送电路、信号接收电路及便携式监护设备
US17/854,057 US20220338131A1 (en) 2019-12-31 2022-06-30 Signal transmitting circuit, signal receiving circuit, and portable monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130852 WO2021134638A1 (zh) 2019-12-31 2019-12-31 信号发送电路、信号接收电路及便携式监护设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/854,057 Continuation US20220338131A1 (en) 2019-12-31 2022-06-30 Signal transmitting circuit, signal receiving circuit, and portable monitoring device

Publications (1)

Publication Number Publication Date
WO2021134638A1 true WO2021134638A1 (zh) 2021-07-08

Family

ID=76686147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130852 WO2021134638A1 (zh) 2019-12-31 2019-12-31 信号发送电路、信号接收电路及便携式监护设备

Country Status (3)

Country Link
US (1) US20220338131A1 (zh)
CN (1) CN114097203B (zh)
WO (1) WO2021134638A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070064843A1 (en) * 2005-09-16 2007-03-22 Vavelidis Konstantinos D Method and system for mobile cellular television tuner utilizing current-steering variable gain at RF
CN102045133A (zh) * 2009-10-23 2011-05-04 中国科学院计算技术研究所 用于无线传感器网络节点的芯片及芯片上的数字基带系统
CN104081661A (zh) * 2012-01-31 2014-10-01 美国亚德诺半导体公司 独立控制前端增益和基带增益的方法和装置
CN104301982A (zh) * 2013-07-19 2015-01-21 中兴通讯股份有限公司 一种自适应可控功率式wifi调整方法及装置
CN207819906U (zh) * 2018-01-19 2018-09-04 无锡士康通讯技术有限公司 支持多种调制解调方式的高线性度窄带大功率数传电台

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7558556B1 (en) * 1999-10-21 2009-07-07 Broadcom Corporation Adaptive radio transceiver with subsampling mixers
KR20030031294A (ko) * 2001-10-13 2003-04-21 엘지전자 주식회사 이동통신 기지국의 최종송신전력 측정 장치
WO2004015884A2 (en) * 2002-08-07 2004-02-19 Aleron, Inc. Harmonic ultra-wideband high data-rate communications
CN101286761B (zh) * 2007-04-11 2011-08-24 中兴通讯股份有限公司 一种跳频实现方法及其装置和收发信机
JP2008283637A (ja) * 2007-05-14 2008-11-20 Tdk Corp 無線通信装置
CN101349740B (zh) * 2008-07-29 2011-09-07 北京航空航天大学 通用卫星导航信号干扰源及其信号产生方法
CN101425816A (zh) * 2008-09-26 2009-05-06 中国科学院微电子研究所 一种用于无线超宽带的收发机及其收发信号的方法
CN102752010B (zh) * 2011-04-21 2016-06-15 沈阳中科微电子有限公司 一种用于通信基站的收发模块
CN106850083B (zh) * 2017-03-24 2020-02-07 京信通信系统(中国)有限公司 一种抑制本振泄露信号的方法、电路板及通信设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070064843A1 (en) * 2005-09-16 2007-03-22 Vavelidis Konstantinos D Method and system for mobile cellular television tuner utilizing current-steering variable gain at RF
CN102045133A (zh) * 2009-10-23 2011-05-04 中国科学院计算技术研究所 用于无线传感器网络节点的芯片及芯片上的数字基带系统
CN104081661A (zh) * 2012-01-31 2014-10-01 美国亚德诺半导体公司 独立控制前端增益和基带增益的方法和装置
CN104301982A (zh) * 2013-07-19 2015-01-21 中兴通讯股份有限公司 一种自适应可控功率式wifi调整方法及装置
CN207819906U (zh) * 2018-01-19 2018-09-04 无锡士康通讯技术有限公司 支持多种调制解调方式的高线性度窄带大功率数传电台

Also Published As

Publication number Publication date
CN114097203A (zh) 2022-02-25
CN114097203B (zh) 2024-02-23
US20220338131A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
JP4494650B2 (ja) 共有機能ブロックcdma/gsm通信トランシーバ用システム及びプロセス
US9204488B2 (en) Wireless communication transmitting and receiving system
TW589810B (en) Wireless communication circuit architecture
CN105610453A (zh) 一种高增益窄带射频接收机
CN108988890A (zh) 一种基于ad9371的宽带无线射频电路
Ye et al. 26.2 An Ultra-Low-Power receiver using transmitted-reference and shifted limiters for in-band interference resilience
CN111211861B (zh) 一种移动终端的信号干扰方法
CN107623544B (zh) 一种智能直放站及基于智能直放站的通信方法
CN110149121B (zh) 一种可调超宽带零中频收发机射频模拟前端
CN103067036B (zh) 一种非连续频谱的射频接收装置及其方法
JP2012257030A (ja) 信号切替装置
CN104378138B (zh) 一种抑制射频互扰的方法、装置和多模多待通信终端
WO2021134638A1 (zh) 信号发送电路、信号接收电路及便携式监护设备
CN110365369B (zh) 一种支持长距离传输的电力载波通信系统
TWI474639B (zh) 無線區域網路通信裝置及相關的信號處理電路與方法
CN209283218U (zh) 自动增益控制零中频接收机
CN207096458U (zh) 实现卫星导航抗干扰天线的射频接收通道电路
CN107276601B (zh) 一种信号处理方法、接收端设备及发射端设备
CN112822131A (zh) 邻信道抑制电路及邻信道抑制方法
CN106211193B (zh) 一种电磁波绿色覆盖装置及方法
CN114337694A (zh) 射频L-PA Mid器件、射频收发系统和通信设备
CN107167818A (zh) 一种实现卫星导航抗干扰天线的射频接收通道电路
CN206294171U (zh) 一种超宽带高性能频率扩展电路
CN110311705A (zh) 一种信号处理电路、终端设备及信号处理方法
CN215646784U (zh) 一种射频前端电路及移动终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958158

Country of ref document: EP

Kind code of ref document: A1