WO2021134451A1 - 变焦距光学系统 - Google Patents

变焦距光学系统 Download PDF

Info

Publication number
WO2021134451A1
WO2021134451A1 PCT/CN2019/130446 CN2019130446W WO2021134451A1 WO 2021134451 A1 WO2021134451 A1 WO 2021134451A1 CN 2019130446 W CN2019130446 W CN 2019130446W WO 2021134451 A1 WO2021134451 A1 WO 2021134451A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
focal length
group
optical system
curvature
Prior art date
Application number
PCT/CN2019/130446
Other languages
English (en)
French (fr)
Inventor
唐晗
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Priority to PCT/CN2019/130446 priority Critical patent/WO2021134451A1/zh
Publication of WO2021134451A1 publication Critical patent/WO2021134451A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/15Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective compensation by means of only one movement or by means of only linearly related movements, e.g. optical compensation

Definitions

  • the present invention relates to the field of imaging technology, in particular to a zoom optical system.
  • the existing zoom optical system performs focus switching through a zoom group and a compensation group to achieve clear imaging.
  • the structure of this zoom optical system is relatively complicated and the overall length is relatively long, which cannot meet the development trend of miniaturization and miniaturization of electronic equipment.
  • the object of the present invention is to provide a zoom optical system that can solve the above-mentioned problems.
  • the embodiments of the present invention provide a zoom optical system.
  • the zoom optical system is sequentially provided with a front fixed group, a variable magnification group, a compensation group, an objective lens group, and an image lens along the light incident direction.
  • the focal length of the front fixed group is f group1
  • the focal length of the objective lens group is f group4
  • the on-axis distance from the side surface of the front fixed group to the side surface of the variable magnification group is D12 zoom3, long
  • the on-axis distance between the image side of the zoom group and the side of the compensation group is D23 zoom3 when focusing
  • the on-axis distance from the side of the compensation group image to the object side of the objective lens group is D34 zoom3 when the focal length is short.
  • the on-axis distance from the side of the front fixed group image to the side of the variable magnification group is D12 zoom1
  • the on-axis distance from the side of the variable magnification group image to the side of the compensation group is D23 zoom1 when the focal length is short.
  • the on-axis distance from the image side of the compensation group to the object side of the objective lens group is D34 zoom1, which satisfies the following relationship:
  • the front fixed group includes a first lens
  • variable magnification group and the compensation group can move between the front fixed group and the objective lens group along the optical path direction, so as to realize continuous switching of the focal length;
  • the variable magnification group includes a second lens, a third lens, and a fourth lens arranged along the optical path direction;
  • the compensation group includes a fifth lens, a sixth lens, and a seventh lens arranged along the optical path direction;
  • the objective lens group can move relative to the image plane along the optical path direction for focusing on scenes at different distances, and the objective lens group includes an eighth lens.
  • the focal length of the first lens is f1
  • the short focal length of the zoom optical system is fs
  • the radius of curvature of the object side of the first lens is R1
  • the radius of curvature of the image side of the first lens is R2
  • the on-axis thickness of the first lens is d1 and satisfies the following relationship:
  • the short focal length of the zoom optical system is fs
  • the focal length of the second lens is f2
  • the radius of curvature of the object side of the second lens is R3
  • the radius of curvature of the image side of the second lens is R4, and satisfies the following relationship:
  • the short focal length of the zoom optical system is fs
  • the focal length of the third lens is f3
  • the radius of curvature of the object side of the third lens is R5
  • the radius of curvature of the image side of the third lens is R6
  • the on-axis thickness of the third lens is d5, which satisfies the following relationship:
  • the short focal length of the zoom optical system is fs
  • the focal length of the fourth lens is f4
  • the radius of curvature of the object side of the fourth lens is R7
  • the radius of curvature of the image side of the fourth lens is R8,
  • the on-axis thickness of the fourth lens is d7, and satisfies the following relationship:
  • the short focal length of the zoom optical system is fs
  • the focal length of the fifth lens is f5
  • the radius of curvature of the object side of the fifth lens is R9
  • the radius of curvature of the image side of the fifth lens is R10
  • the on-axis thickness of the fifth lens is d9, and satisfies the following relationship:
  • the short focal length of the zoom optical system is fs
  • the focal length of the sixth lens is f6
  • the radius of curvature of the object side of the sixth lens is R11
  • the radius of curvature of the image side of the sixth lens is R12
  • the on-axis thickness of the sixth lens is d11, which satisfies the following relationship:
  • the short focal length of the zoom optical system is fs
  • the focal length of the seventh lens is f7
  • the radius of curvature of the object side of the seventh lens is R13
  • the radius of curvature of the image side of the seventh lens is R14
  • the on-axis thickness of the seventh lens is d13, and satisfies the following relationship:
  • the short focal length of the zoom optical system is fs
  • the focal length of the eighth lens is f8
  • the radius of curvature of the object side of the sixth lens is R15
  • the radius of curvature of the image side of the sixth lens is R16
  • the on-axis thickness of the sixth lens is d15, which satisfies the following relationship:
  • variable focal length optical system provided by the present invention, through the joint work of the lenses in the variable magnification group and the compensation group, enables the object to form a clear image from a finite distance to an infinite distance.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a zoom optical system provided by the present invention in a short focus state;
  • FIG. 2 is a schematic diagram of the structure of the first embodiment of the zoom optical system provided by the present invention in the mid-focus state;
  • FIG. 3 is a schematic structural diagram of the first embodiment of the zoom optical system provided by the present invention in a telephoto state
  • FIG. 4 is a schematic diagram of axial aberration of the zoom optical system shown in FIG. 1;
  • FIG. 5 is a schematic diagram of axial aberration of the zoom optical system shown in FIG. 2;
  • FIG. 6 is a schematic diagram of axial aberration of the zoom optical system shown in FIG. 3;
  • FIG. 7 is a schematic diagram of the chromatic aberration of magnification of the zoom optical system shown in FIG. 1;
  • FIG. 8 is a schematic diagram of the chromatic aberration of magnification of the zoom optical system shown in FIG. 2;
  • FIG. 9 is a schematic diagram of the chromatic aberration of magnification of the zoom optical system shown in FIG. 3;
  • FIG. 10 is a schematic diagram of field curvature and distortion of the zoom optical system shown in FIG. 1;
  • FIG. 11 is a schematic diagram of field curvature and distortion of the zoom optical system shown in FIG. 2;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the zoom optical system shown in FIG. 3;
  • FIG. 13 is a schematic structural diagram of the second embodiment of the zoom optical system provided by the present invention in a short focus state
  • FIG. 14 is a schematic diagram of the structure of the second embodiment of the zoom optical system provided by the present invention in the mid-focus state;
  • 15 is a schematic structural diagram of the second embodiment of the zoom optical system provided by the present invention in a telephoto state
  • FIG. 16 is a schematic diagram of axial aberration of the zoom optical system shown in FIG. 13;
  • FIG. 17 is a schematic diagram of axial aberration of the zoom optical system shown in FIG. 14;
  • FIG. 18 is a schematic diagram of axial aberration of the zoom optical system shown in FIG. 15;
  • FIG. 19 is a schematic diagram of the chromatic aberration of magnification of the zoom optical system shown in FIG. 13;
  • FIG. 20 is a schematic diagram of chromatic aberration of magnification of the zoom optical system shown in FIG. 14;
  • 21 is a schematic diagram of the chromatic aberration of magnification of the zoom optical system shown in FIG. 15;
  • FIG. 22 is a schematic diagram of field curvature and distortion of the zoom optical system shown in FIG. 13;
  • FIG. 23 is a schematic diagram of field curvature and distortion of the zoom optical system shown in FIG. 14;
  • FIG. 24 is a schematic diagram of field curvature and distortion of the zoom optical system shown in FIG. 15;
  • 25 is a schematic structural diagram of the third embodiment of the zoom optical system provided by the present invention in a short focus state
  • FIG. 26 is a schematic structural diagram of the third embodiment of the zoom optical system provided by the present invention in the middle focus state
  • FIG. 27 is a schematic structural diagram of the third embodiment of the zoom optical system provided by the present invention in a telephoto state
  • FIG. 28 is a schematic diagram of axial aberration of the zoom optical system shown in FIG. 25;
  • FIG. 29 is a schematic diagram of axial aberration of the zoom optical system shown in FIG. 26;
  • FIG. 30 is a schematic diagram of axial aberration of the zoom optical system shown in FIG. 27;
  • FIG. 31 is a schematic diagram of the chromatic aberration of magnification of the zoom optical system shown in FIG. 25;
  • FIG. 32 is a schematic diagram of the chromatic aberration of magnification of the zoom optical system shown in FIG. 26;
  • FIG. 33 is a schematic diagram of the chromatic aberration of magnification of the zoom optical system shown in FIG. 27;
  • FIG. 34 is a schematic diagram of field curvature and distortion of the zoom optical system shown in FIG. 25;
  • 35 is a schematic diagram of field curvature and distortion of the zoom optical system shown in FIG. 26;
  • Fig. 36 is a schematic diagram of field curvature and distortion of the zoom optical system shown in Fig. 27.
  • Fig. 1 shows a zoom optical system 10 according to the first embodiment of the present invention.
  • a front fixed group a variable magnification group, a diaphragm S, a compensation group, an objective lens group, and an image plane Si are arranged in sequence.
  • the total optical length of the optical system 10 is fixed, and a continuous zoom mode is adopted.
  • the front fixed group includes a first lens L1, the first lens L1 is a biconvex lens, that is, the object side and the image side of the first lens L1 are convex surfaces; the variable magnification group and the compensation group can be in front of the fixed group along the optical path direction.
  • variable magnification group includes a second lens L2, a third lens L3, and a fourth lens L4, and the second lens L2, the third lens L3, and the fourth lens L4 are the front Convex and posterior concave lens;
  • the compensation group includes a fifth lens L5, a sixth lens L6, and a seventh lens L7 arranged along the optical path direction.
  • the fifth lens L5 and the sixth lens L6 are biconvex lenses, and the seventh lens L7 is a biconcave lens;
  • objective lens group It can move relative to the image plane Si along the optical path to achieve fine adjustment of the objective lens group for focusing on scenes at different distances.
  • the objective lens group includes an eighth lens L8, and the eighth lens L8 is a biconvex lens. It should be noted that the above-mentioned “front” refers to the side close to the incident end in the optical path direction, and “rear” refers to the side away from the incident end in the optical path direction.
  • the object can be made into a clear image from a finite distance to an infinite distance.
  • the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, the seventh lens and the eighth lens are all aspherical lenses.
  • Part of the lens adopts aspherical lens, which is conducive to correcting high-order aberrations and improving imaging quality.
  • the zoom optical system 10 satisfies the following conditional formula:
  • f group1 is the focal length of the front fixed group
  • f group4 is the focal length of the objective lens group.
  • Conditional formula (1) stipulates the ratio of the focal length of the front fixed group to the focal length of the objective lens group, which is helpful for aberration correction within the range of conditions and improves the imaging quality.
  • the zoom optical system 10 satisfies the following conditional formula:
  • the on-axis distance from the side of the front fixed group image to the side of the variable magnification group is D12 zoom3 at long focus
  • the on-axis distance from the side of the front fixed group image to the side of the variable magnification group at short focus is D12 zoom1.
  • the on-axis distance from the side of the image side of the magnification group to the side of the compensation group is D23 zoom3
  • the on-axis distance from the side of the zoom group image to the side of the compensation group is D23 zoom1 at short focus
  • the side of the compensation group image to the side of the objective lens group at long focus is D12 zoom3 at long focus
  • the on-axis distance of is D34 zoom3, and the on-axis distance from the image side of the compensation group to the object side of the objective lens group is D34 zoom1 at short focus.
  • the above conditional expressions (2), (3), and (4) jointly specify the position range of the movable lens group, and the lens focal length can be adjusted within the condition range.
  • the first lens L1 has a positive refractive power.
  • the short focal length of the zoom optical system 10 is fs
  • the focal length of the first lens L1 is f1
  • the focal length of the first lens L1 is f1
  • the first lens has an appropriate positive refractive power, which is beneficial to reduce system aberrations, and at the same time, is beneficial to the development of ultra-thin and long focal length lenses.
  • it satisfies: 0.85 ⁇ f1/fs ⁇ 1.79.
  • the curvature radius R1 of the object side surface of the first lens L1 and the curvature radius R2 of the image side surface of the first lens L1 satisfy the following relationship: -2.11 ⁇ (R1+R2)/(R1-R2) ⁇ -0.37, which specifies the first lens
  • -2.11 ⁇ (R1+R2)/(R1-R2) ⁇ -0.37 which specifies the first lens
  • the shape of L1 is within the range specified by the conditional formula, as the lens develops toward an ultra-thin and longer focal length, it is beneficial to correct the problem of axial chromatic aberration.
  • the on-axis thickness of the first lens L1 is d1, which satisfies the following relationship: 0.01 ⁇ d1/TTL ⁇ 0.07, which is conducive to achieving ultra-thinness.
  • the second lens L2 has a negative refractive power.
  • the short focal length of the zoom optical system 10 is fs
  • the focal length of the second lens L2 is f2, which satisfies the following relationship: -3.63 ⁇ f2/fs ⁇ -0.59, by controlling the positive refractive power of the second lens L2 in a reasonable range , It is helpful to correct the aberration of the optical system.
  • it satisfies -2.27 ⁇ f2/fs ⁇ -0.74.
  • the curvature radius R3 of the object side surface of the second lens L2 and the curvature radius R4 of the image side surface of the second lens L2 satisfy the following relationship: 0.15 ⁇ (R3+R4)/(R3-R4) ⁇ 4.94, which specifies the second lens L2
  • the on-axis thickness of the second lens L2 is d3, which satisfies the following relationship: 0.01 ⁇ d3/TTL ⁇ 0.02, which is beneficial to realize ultra-thinness.
  • the third lens L3 has a negative refractive power.
  • the short-focus focal length of the zoom optical system 10 is fs
  • the focal length of the third lens L3 is f3
  • the following relationship is satisfied: -2.31 ⁇ f3/fs ⁇ -0.46, through the reasonable distribution of optical power, the system has better imaging Quality and low sensitivity.
  • the curvature radius R5 of the object side surface of the third lens L3 and the curvature radius R6 of the image side surface of the third lens L3 satisfy the following relationship: 0.32 ⁇ (R5+R6)/(R5-R6) ⁇ 5.34, which specifies the shape of the third lens .
  • the degree of deflection of the light passing through the lens can be eased, and aberrations can be effectively reduced.
  • the on-axis thickness of the third lens L3 is d5, which satisfies the following relationship: d5/TTL ⁇ 0.02, which is beneficial to realize ultra-thinness.
  • the fourth lens L4 has a negative refractive power.
  • the short focal length of the zoom optical system 10 is fs
  • the focal length of the fourth lens L4 is f4, which satisfies the following relationship: -552.15 ⁇ f4/fs ⁇ 6.47.
  • the system has better imaging quality and Lower sensitivity.
  • the curvature radius R7 of the object side surface of the fourth lens L4 and the curvature radius R8 of the image side surface of the fourth lens L4 satisfy the following relationship: -37.10 ⁇ (R7+R8)/(R7-R8) ⁇ 104.17, the fourth lens is specified
  • the shape of L4 is within the range, with the development of ultra-thin and wide-angle, it is helpful to correct the aberration of the off-axis angle of view.
  • the on-axis thickness of the fourth lens L4 is d7, which satisfies the following relationship: 0.01 ⁇ d7/TTL ⁇ 0.04, which is beneficial to realize ultra-thinness.
  • the fifth lens L5 has a positive refractive power.
  • the short focal length of the zoom optical system 10 is fs
  • the focal length of the fifth lens L5 is f5, which satisfies the following relationship: 0.25 ⁇ f5/fs ⁇ 1.25.
  • the limitation of the fifth lens L5 can effectively make the light angle of the imaging lens smooth. Reduce tolerance sensitivity. Preferably, 0.41 ⁇ f5/fs ⁇ 1.00.
  • the curvature radius R9 of the object side surface of the fifth lens L5 and the curvature radius R10 of the image side surface of the fifth lens L5 satisfy the following relationship: -1.68 ⁇ (R9+R10)/(R9-R10) ⁇ -0.11.
  • the on-axis thickness of the fifth lens L5 is d9, which satisfies the following relationship: 0.01 ⁇ d9/TTL ⁇ 0.11, which is beneficial to realize ultra-thinness.
  • the sixth lens L6 has a positive refractive power.
  • the short-focus focal length of the zoom optical system 10 is fs
  • the focal length of the sixth lens L6 is f6, which satisfies the following relationship: 0.24 ⁇ f6/fs ⁇ 12.44.
  • the system has better imaging quality and lower sensitivity.
  • the curvature radius R11 of the object side surface of the sixth lens L6 and the curvature radius R12 of the image side surface of the sixth lens L6 satisfy the following relationship: -15.86 ⁇ (R11+R12)/(R11-R12) ⁇ -0.08.
  • the shape of the lens L6 is within the range of conditions, with the development of ultra-thin and long focal length, it is beneficial to correct the aberration of the off-axis angle of view.
  • the on-axis thickness of the sixth lens L6 is d11, which satisfies the following relationship: 0.02 ⁇ d11/TTL ⁇ 0.13, which is conducive to achieving ultra-thinness.
  • the seventh lens L7 has a negative refractive power.
  • the short focal length of the zoom optical system 10 is fs
  • the focal length of the seventh lens L7 is f7, which satisfies the following relationship: -1.15 ⁇ f7/fs ⁇ -0.17.
  • the reasonable distribution of optical power makes the system have better imaging quality And lower sensitivity.
  • the curvature radius R13 of the object side surface of the seventh lens L7 and the curvature radius R14 of the image side surface of the seventh lens L7 satisfy the following relationship: 0.15 ⁇ (R13+R14)/(R13-R14) ⁇ 2.97, the seventh lens L7 is specified
  • the shape is within the range of conditions, with the development of ultra-thin and long focal length, it is helpful to correct the aberration of the off-axis angle of view.
  • the on-axis thickness of the seventh lens L7 is d13, which satisfies the following relationship: 0.01 ⁇ d13/TTL ⁇ 0.15, which is beneficial to realize ultra-thinness.
  • 0.02 ⁇ d9/TTL 0.02 ⁇ d9/TTL ⁇ 0.12.
  • the eighth lens L8 has a positive refractive power.
  • the short focal length of the zoom optical system 10 is fs
  • the focal length of the eighth lens L8 is f8, which satisfies the following relationship: 0.64 ⁇ f8/fs ⁇ 2.72.
  • the system has better imaging quality and comparison.
  • Low sensitivity Preferably, 1.03 ⁇ f8/fs ⁇ 2.18.
  • the curvature radius R15 of the object side surface of the eighth lens L8 and the curvature radius R16 of the image side surface of the eighth lens L8 satisfy the following relationship: -5.04 ⁇ (R15+R16)/(R15-R16) ⁇ -0.09, and the eighth lens is specified
  • the shape of the lens L8 is within the range of conditions, with the development of ultra-thin and long focal length, it is beneficial to correct the aberration of the off-axis angle of view.
  • the on-axis thickness of the eighth lens L8 is d15, which satisfies the following relationship: 0.01 ⁇ d15/TTL ⁇ 0.03, which is beneficial to realize ultra-thinness.
  • the zoom optical system 10 further includes an optical filter GF, and the optical filter GF is disposed between the eighth lens L8 and the image plane Si along the optical path direction.
  • Table 1 lists the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 in this embodiment.
  • Table 2 lists the aspheric coefficients of each aspheric lens in this embodiment, and the definition of each parameter in the table as follows:
  • R The radius of curvature of the optical surface, and the radius of curvature of the center of the lens
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side surface of the fifth lens L5;
  • R10 the radius of curvature of the image side surface of the fifth lens L5;
  • R11 the radius of curvature of the object side surface of the sixth lens L6;
  • R12 the radius of curvature of the image side surface of the sixth lens L6;
  • R13 the radius of curvature of the object side surface of the seventh lens L7;
  • R14 the radius of curvature of the image side surface of the seventh lens L7;
  • R15 the radius of curvature of the object side of the eighth lens L8;
  • R16 the radius of curvature of the image side surface of the eighth lens L8;
  • R17 the radius of curvature of the object side of the optical filter GF
  • R18 the radius of curvature of the image side surface of the optical filter GF
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
  • d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the sixth lens L6;
  • d11 the on-axis thickness of the sixth lens L6;
  • d12 the on-axis distance from the image side surface of the sixth lens L6 to the object side surface of the seventh lens L7;
  • d14 the on-axis distance from the image side surface of the seventh lens L7 to the object side surface of the eighth lens L8;
  • d16 the on-axis distance from the image side surface of the eighth lens L8 to the object side surface of the optical filter GF;
  • d17 the axial thickness of the optical filter GF
  • nd refractive index of d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • nd6 the refractive index of the d-line of the sixth lens L6;
  • nd7 the refractive index of the d-line of the seventh lens L7;
  • nd8 the refractive index of the d-line of the eighth lens L8;
  • ndg the refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF
  • FOV field of view
  • V vertical angle of view
  • ENPD entrance pupil diameter
  • the aspheric surface of each lens surface satisfies the aspheric equation of condition (5), where R is the radius of curvature on the axis, k is the conic coefficient, A4, A6, A8, A10, A12, A14, A16, A18, and A20 are aspheric coefficients.
  • the first lens L1, the second lens L2, the fifth lens L5, the sixth lens L6, and the seventh lens L7 are spherical surfaces.
  • d2, d8, and d14 listed are the distance values when the first embodiment is in the short focus state.
  • the entrance pupil diameter of the imaging optical lens in the short focus state is 3.959mm, the full field of view image height is 2.620mm, and the diagonal field angle is 20.28°; in the medium focus state
  • the entrance pupil diameter is 5.334mm, the full-field image height is 2.620mm, and the diagonal viewing angle is 12.65°;
  • the entrance pupil diameter in the telephoto state is 5.914mm, and the full-field image height is 2.620mm.
  • the angle of view in the angular direction is 10.19°. Wide-angle, ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • FIGS. 1 to 3 are schematic diagrams of the structures in the short focus, medium focus, and long focus states, respectively.
  • Figures 4 to 6 show the wavelengths of 470nm and 510nm, respectively.
  • Figure 7 to Figure 9 respectively show the wavelength of 470nm, 510nm, 555nm, 610nm
  • FIGS. 10 to 12 show schematic diagrams of field curvature and distortion after the light with a wavelength of 555 nm has passed through the zoom optical system 10 of the first embodiment in the short, medium, and long focus states, respectively, and the field curvature S is sagittal
  • the field tune in the direction, T is the field tune in the meridian direction.
  • Table 7 shows the values corresponding to the various values in each of Examples 1, 2, and 3 and the parameters that have been specified in the conditional expressions.
  • the first embodiment satisfies various conditional expressions.
  • the second embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the sixth lens L6, the seventh lens L7, and the eighth lens L8 are front convex and rear concave lenses
  • the fifth lens L5 It is a biconvex lens.
  • the first lens L1 has positive refractive power
  • the second lens L2 has negative refractive power
  • the third lens L3 has negative refractive power
  • the fourth lens L4 has positive refractive power
  • the fifth lens L5 has positive refractive power
  • the sixth lens L6 has With positive refractive power
  • the seventh lens L7 has negative refractive power
  • the eighth lens L8 has positive refractive power.
  • Table 3 lists the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6, the seventh lens L7, the eighth lens L8, and the aperture S1 in this embodiment.
  • Table 4 lists the aspheric coefficients of each aspheric lens in this embodiment.
  • d2, d8, and d14 listed are the distance values when the second embodiment is in the short focus state.
  • the first lens L1, the second lens L2, and the fifth lens L5 are spherical surfaces.
  • the entrance pupil diameter of the imaging optical lens in the short focus state is 4.297mm, the full field of view image height is 2.620mm, and the diagonal field angle is 19.44°; in the medium focus state
  • the entrance pupil diameter is 5.800mm, the full-field image height is 2.620mm, and the diagonal field angle is 12.15°;
  • the entrance pupil diameter in the telephoto state is 6.096mm, and the full-field image height is 2.620mm.
  • the angle of view in the angular direction is 9.79°. Wide-angle, ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • Figures 13-15 the embodiments using the parameters in Table 3-4 are structural schematic diagrams in the short focus, medium focus, and long focus states respectively.
  • Figures 16 to 18 show the wavelengths of 470nm and 510nm, respectively.
  • Figure 19 to Figure 21 respectively show the wavelength of 470nm, 510nm, 555nm, 610nm
  • a schematic diagram of the chromatic aberration of magnification after the 650nm light passes through the zoom optical system 10 in the short-focus, medium-focus, and long-focus states.
  • Figures 22 to 24 show schematic diagrams of field curvature and distortion after the light with a wavelength of 555nm has passed through the zoom optical system 10 of the first embodiment in the short, medium, and long focus states, respectively, and the field curvature S is the sagittal
  • the field tune in the direction, T is the field tune in the meridian direction.
  • Table 7 shows the values corresponding to the various values in each of Examples 1, 2, and 3 and the parameters that have been specified in the conditional expressions.
  • the second embodiment satisfies various conditional expressions.
  • the third embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • the first lens L1, the fifth lens L5, and the sixth lens L6 are biconvex lenses
  • the second lens L2, the third lens L3, and the seventh lens L7 are biconcave lenses
  • the fourth lens L4 and the eighth lens L8 are biconvex lenses. It is a front convex and back concave lens.
  • the first lens L1 has positive refractive power
  • the second lens L2 has negative refractive power
  • the third lens L3 has negative refractive power
  • the fourth lens L4 has positive refractive power
  • the fifth lens L5 has positive refractive power
  • the sixth lens L6 has With positive refractive power
  • the seventh lens L7 has negative refractive power
  • the eighth lens L8 has positive refractive power.
  • Table 5 lists the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6, the seventh lens L7, the eighth lens L8, and the diaphragm in this embodiment.
  • Table 6 lists the aspheric coefficients of each aspheric lens in this embodiment.
  • d2, d8, and d14 listed are the distance values when the third embodiment is in the short focus state.
  • the first lens L1, the second lens L2, the fifth lens L5, the sixth lens L6, and the seventh lens L7 are spherical surfaces.
  • the entrance pupil diameter of the imaging optical lens in the short focus state is 4.447mm, the full field of view image height is 2.620mm, and the diagonal field of view angle is 20.07°; in the medium focus state
  • the entrance pupil diameter is 5.730mm, the full-field image height is 2.620mm, and the diagonal viewing angle is 12.47°;
  • the entrance pupil diameter in the telephoto state is 5.972mm, and the full-field image height is 2.620mm.
  • the angle of view in the angular direction is 10.00°. Wide-angle, ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • Figures 28 to 30 show the wavelengths of 470nm and 510nm, respectively.
  • Figures 31 to 33 show the axial aberration diagrams of light at 555nm, 610nm, and 650nm after passing through the zoom optical system 10 in the short, medium, and long focus states.
  • Figures 31 to 33 show the wavelengths of 470nm, 510nm, 555nm, 610nm, respectively.
  • a schematic diagram of the chromatic aberration of magnification after the 650nm light passes through the zoom optical system 10 in the short-focus, medium-focus, and long-focus states.
  • Table 7 shows the values corresponding to the various values in each of Examples 1, 2, and 3 and the parameters that have been specified in the conditional expressions.
  • the third embodiment satisfies various conditional expressions.
  • Example 1 Example 2
  • Example 3 fs 14.500 15.120 15.120 fm 23.273 24.268 24.213 fl 29.000 30.240 30.240 f1 20.150 22.606 15.996 f2 -26.323 -13.460 -24.423 f3 -16.782 -14.474 -10.489 f4 -4003.080
  • 18.550 65.258 f5 12.111 7.671 9.917 f6 23.167 125.392 7.273 f7 -5.025 -8.713 -3.831 f8
  • 18.633 27.060 27.436 f group1/f group4 1.08 0.84 0.58
  • fs represents the short focal length of the variable focal length optical system
  • fm represents the intermediate focal length of the variable focal length optical system
  • fl represents the long focal length of the variable focal length optical system

Abstract

一种变焦距光学系统(10),涉及光学镜头领域。变焦距光学系统(10)沿光线入射方向,依次设置有前固定组、变倍组、补偿组、物镜组以及像面(Si),前固定组的焦距为f group1,物镜组的焦距为f group4,长焦时,前固定组像侧面到变倍组物侧面的轴上距离为D12 zoom3,变倍组像侧面到补偿组物侧面的轴上距离为D23 zoom3,补偿组像侧面到物镜组物侧面的轴上距离为D34 zoom3,短焦时,前固定组像侧面到变倍组物侧面的轴上距离为D12 zoom1,变倍组像侧面到补偿组物侧面的轴上距离为D23 zoom1,补偿组像侧面到物镜组物侧面的轴上距离为D34 zoom1,满足下列关系式:0.50≤f group1/f group4≤1.10;2.00≤D12 zoom3/D12 zoom1≤4.00;8.00≤D23 zoom1/D23 zoom3≤15.00;2.00≤D34 zoom3/D34 zoom1≤4.00。变焦距光学系统(10)能够适应小型化、微型化电子设备的发展趋势,且成像性能好。

Description

变焦距光学系统 技术领域
本发明涉及成像技术领域,尤其涉及一种变焦距光学系统。
背景技术
随着电子设备如手机、相机等小型化的发展,其上的成像设备的小型化也成为一种趋势。现有的变焦距光学系统通过变倍组和补偿组进行焦距切换,以实现清晰成像。然而,这种变焦距光学系统的结构比较复杂,且整体长度较长,无法满足小型化、微型化电子设备的发展趋势。
技术问题
针对上述问题,本发明的目的在于提供一种变焦距光学系统,能够解决上述问题。
技术解决方案
为解决上述技术问题,本发明的实施方式提供了一种变焦距光学系统,所述变焦距光学系统,沿光线入射方向,依次设置有前固定组、变倍组、补偿组、物镜组以及像面,所述前固定组的焦距为f group1,所述物镜组的焦距为f group4,长焦时所述前固定组像侧面到所述变倍组物侧面的轴上距离为D12 zoom3,长焦时所述变倍组像侧面到所述补偿组物侧面的轴上距离为D23 zoom3,长焦时所述补偿组像侧面到所述物镜组物侧面的轴上距离为D34 zoom3,短焦时所述前固定组像侧面到所述变倍组物侧面的轴上距离为D12 zoom1,短焦时所述变倍组像侧面到所述补偿组物侧面的轴上距离为D23 zoom1,短焦时所述补偿组像侧面到所述物镜组物侧面的轴上距离为D34 zoom1,满足下列关系式:
0.50≤f group1/f group4≤1.10;
2.00≤D12 zoom3/D12 zoom1≤4.00;
8.00≤D23 zoom1/D23 zoom3≤15.00;
2.00≤D34 zoom3/D34 zoom1≤4.00。
优选的,所述前固定组包括第一透镜;
所述变倍组与所述补偿组沿所述光路方向能够在所述前固定组与所述物镜组之间移动,以实现焦距连续切换;
所述变倍组包括沿光路方向设置的第二透镜、第三透镜以及第四透镜;
所述补偿组包括沿光路方向设置的第五透镜、第六透镜以及第七透镜;
所述物镜组能够沿所述光路方向相对于所述像面移动,以用于不同距离场景的对焦,所述物镜组包括第八透镜。
优选的,所述第一透镜的焦距为f1,所述变焦距光学系统的短焦焦距为fs,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,且满足下列关系式:
0.53≤f1/fs≤2.24;
-2.11≤(R1+R2)/(R1-R2)≤-0.37;
0.01≤d1/TTL≤0.07。
优选的,所述变焦距光学系统的短焦焦距为fs,所述第二透镜的焦距为f2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,且满足下列关系式:
-3.63≤f2/fs≤-0.59;
0.15≤(R3+R4)/(R3-R4)≤4.94;
0.01≤d3/TTL≤0.02。
优选的,所述变焦距光学系统的短焦焦距为fs,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,满足下列关系式:
-2.31≤f3/fs≤-0.46;
0.32≤(R5+R6)/(R5-R6)≤5.34;
d5/TTL≤0.02。
优选的,所述变焦距光学系统的短焦焦距为fs,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,且满足下列关系式:
-552.15≤f4/fs≤6.47;
-37.10≤(R7+R8)/(R7-R8)≤104.17;
0.01≤d7/TTL≤0.04。
优选的,所述变焦距光学系统的短焦焦距为fs,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,且满足下列关系式:
0.25≤f5/fs≤1.25;
-1.68≤(R9+R10)/(R9-R10)≤-0.11;
0.01≤d9/TTL≤0.11。
优选的,所述变焦距光学系统的短焦焦距为fs,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,满足下列关系式:
0.24≤f6/fs≤12.44;
-15.86≤(R11+R12)/(R11-R12)≤-0.08;
0.02≤d11/TTL≤0.13。
优选的,所述变焦距光学系统的短焦焦距为fs,所述第七透镜的焦距为f7,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14, 所述第七透镜的轴上厚度为d13,且满足下列关系式:
-1.15≤f7/fs≤-0.17;
0.15≤(R13+R14)/(R13-R14)≤2.97;
0.01≤d13/TTL≤0.15。
优选的,所述变焦距光学系统的短焦焦距为fs,所述第八透镜的焦距为f8,所述第六透镜物侧面的曲率半径为R15,所述第六透镜像侧面的曲率半径为R16,所述第六透镜的轴上厚度为d15,满足下列关系式:
0.64≤f8/fs≤2.72;
-5.04≤(R15+R16)/(R15-R16)≤-0.09;
0.01≤d15/TTL≤0.03。
有益效果
本发明的有益效果在于:本发明所提供的变焦距光学系统,通过变倍组和补偿组中各透镜的共同工作,使物体在有限距离至无穷远距离时均能够成清晰的图像。
附图说明
图1是本发明所提供的变焦距光学系统的第一实施例在短焦状态时的结构示意图;
图2是本发明所提供的变焦距光学系统的第一实施例在中焦状态时的结构示意图;
图3是本发明所提供的变焦距光学系统的第一实施例在长焦状态时的结构示意图;
图4是图1所示变焦距光学系统的轴向像差示意图;
图5是图2所示变焦距光学系统的轴向像差示意图;
图6是图3所示变焦距光学系统的轴向像差示意图;
图7是图1所示变焦距光学系统的倍率色差示意图;
图8是图2所示变焦距光学系统的倍率色差示意图;
图9是图3所示变焦距光学系统的倍率色差示意图;
图10是图1所示变焦距光学系统的场曲及畸变示意图;
图11是图2所示变焦距光学系统的场曲及畸变示意图;
图12是图3所示变焦距光学系统的场曲及畸变示意图;
图13是本发明所提供的变焦距光学系统的第二实施例在短焦状态时的结构示意图;
图14是本发明所提供的变焦距光学系统的第二实施例在中焦状态时的结构示意图;
图15是本发明所提供的变焦距光学系统的第二实施例在长焦状态时的结构示意图;
图16是图13所示变焦距光学系统的轴向像差示意图;
图17是图14所示变焦距光学系统的轴向像差示意图;
图18是图15所示变焦距光学系统的轴向像差示意图;
图19是图13所示变焦距光学系统的倍率色差示意图;
图20是图14所示变焦距光学系统的倍率色差示意图;
图21是图15所示变焦距光学系统的倍率色差示意图;
图22是图13所示变焦距光学系统的场曲及畸变示意图;
图23是图14所示变焦距光学系统的场曲及畸变示意图;
图24是图15所示变焦距光学系统的场曲及畸变示意图;
图25是本发明所提供的变焦距光学系统的第三实施例在短焦状态时的结构示意图;
图26是本发明所提供的变焦距光学系统的第三实施例在中焦状态时的结构示意图;
图27是本发明所提供的变焦距光学系统的第三实施例在长焦状态时的结构示意图;
图28是图25所示变焦距光学系统的轴向像差示意图;
图29是图26所示变焦距光学系统的轴向像差示意图;
图30是图27所示变焦距光学系统的轴向像差示意图;
图31是图25所示变焦距光学系统的倍率色差示意图;
图32是图26所示变焦距光学系统的倍率色差示意图;
图33是图27所示变焦距光学系统的倍率色差示意图;
图34是图25所示变焦距光学系统的场曲及畸变示意图;
图35是图26所示变焦距光学系统的场曲及畸变示意图;
图36是图27所示变焦距光学系统的场曲及畸变示意图。
本发明的实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种变焦距光学系统10。图1所示为本发明第一实施方式的变焦距光学系统10,沿光线入射方向,依次设置有前固定组、变倍组、光阑S、补偿组、物镜组以及像面Si,变焦距光学系统10的光学总长度固定不变,采用连续变焦方式。具体地,前固定组包括第一透镜L1,第一透镜L1为双凸透镜,即第一透镜L1的物侧面和像侧面均为凸面;变倍组与补偿组沿光路方向能够在前固定组与物镜组之间移动,以实现焦距连续切换,其中,变倍组包括第二透镜L2、第三透镜L3、以及第四透镜L4,第二透镜L2、第三透镜L3以及第四透镜L4为前凸后凹透镜;补偿组包括沿光路方向设置的第五透镜L5、第六透镜L6以及第七透镜L7,第五透镜L5和第六透镜L6为双凸透镜,第七透镜L7为双凹透镜;物镜组能够沿光路方向相对于像面Si移动,以实现物镜组的微调,用于不同距离场景的对焦,物镜组包括第八透镜L8,第八透镜L8为双凸透镜。需要说明的是,上述“前”指沿光路方向靠近入射端的一侧,“后”指沿光路方向远离入射端的一侧。
上述结构中,通过变倍组和补偿组中各透镜的共同工作,使物体在有限距离至无穷远距离时均能够成清晰的图像。
第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜以及第八透镜均为非球面透镜。部分镜片采用非球面透镜,有利于校正高阶像差,提高成像品质。
上述实施例中,变焦距光学系统10满足以下条件式:
0.50≤f group1/f group4≤1.10;     (1)
其中,f group1为前固定组的焦距,f group4为物镜组的焦距。条件式(1)规定了前固定组焦距和物镜组焦距的比值,在条件范围内有助于像差校正,提高成像质量。
上述实施例中,变焦距光学系统10满足以下条件式:
2.00≤D12 zoom3/D12 zoom1≤4.00;    (2)
8.00≤D23 zoom1/D23 zoom3≤15.00;    (3)
2.00≤D34 zoom3/D34 zoom1≤4.00;  (4)
其中,长焦时前固定组像侧面到变倍组物侧面的轴上距离为D12 zoom3,短焦时前固定组像侧面到变倍组物侧面的轴上距离为D12 zoom1,长焦时变倍组像侧面到补偿组物侧面的轴上距离为D23 zoom3,短焦时变倍组像侧面到补偿组物侧面的轴上距离为D23 zoom1,长焦时补偿组像侧面到物镜组物侧面的轴上距离为D34 zoom3,短焦时补偿组像侧面到物镜组物侧面的轴上距离为D34 zoom1。上述条件式(2)、(3)、(4)共同规定了可动透镜组的位置范围,在条件范围内可调节镜头焦距。
上述实施例中,第一透镜L1具有正屈折力。
变焦距光学系统10的短焦焦距为fs,第一透镜L1的焦距为f1,满足下列关系式:0.53≤f1/fs≤2.24,规定了第一透镜L1的焦距f1与整体短焦焦距的比值。在规定的范围内时,第一透镜具有适当的正屈折力,有利于减小系统像差,同时 有利于镜头向超薄化、长焦距化发展。优选的,满足:0.85≤f1/fs≤1.79。
第一透镜L1物侧面的曲率半径R1,第一透镜L1像侧面的曲率半径R2,满足下列关系式:-2.11≤(R1+R2)/(R1-R2)≤-0.37,规定了第一透镜L1的形状,在条件式规定范围内时,随着镜头向超薄长焦距化发展,有利于补正轴上色像差问题。优选的,-1.32≤R1+R2)/(R1-R2)≤-0.46。
第一透镜L1的轴上厚度为d1,满足下列关系式:0.01≤d1/TTL≤0.07,有利于实现超薄化。优选的,0.02≤d1/TTL≤0.06。
本实施方式中,第二透镜L2具有负屈折力。
变焦距光学系统10的短焦焦距为fs,第二透镜L2的焦距为f2,满足下列关系式:-3.63≤f2/fs≤-0.59,通过将第二透镜L2的正光焦度控制在合理范围,有利于矫正光学系统的像差。优选的,满足-2.27≤f2/fs≤-0.74。
第二透镜L2物侧面的曲率半径R3,第二透镜L2像侧面的曲率半径R4,满足下列关系式:0.15≤(R3+R4)/(R3-R4)≤4.94,规定了第二透镜L2的形状,在范围内时,随着镜头向超薄长焦距化发展,有利于补正轴上色像差问题。优选的,0.25≤(R3+R4)/(R3-R4)≤3.95。
第二透镜L2的轴上厚度为d3,满足下列关系式:0.01≤d3/TTL≤0.02,有利于实现超薄化。
本实施方式中,第三透镜L3具有负屈折力。
变焦距光学系统10的短焦焦距为fs,第三透镜L3焦距f3,以及满足下列关系式:-2.31≤f3/fs≤-0.46,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的,-1.45≤f3/fs≤-0.58。
第三透镜L3物侧面的曲率半径R5,第三透镜L3像侧面的曲率半径R6,满足下列关系式:0.32≤(R5+R6)/(R5-R6)≤5.34,规定了第三透镜的形状,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选的,0.51≤(R5+R6)/(R5-R6)≤4.28。
第三透镜L3的轴上厚度为d5,满足下列关系式:d5/TTL≤0.02,有利于实现超薄化。
本实施方式中,第四透镜L4具有负屈折力。
变焦距光学系统10的短焦焦距为fs,第四透镜L4焦距f4,满足下列关系式:-552.15≤f4/fs≤6.47,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的,-345.09≤f4/fs≤5.18。
第四透镜L4物侧面的曲率半径R7,第四透镜L4像侧面的曲率半径R8,满足下列关系式:-37.10≤(R7+R8)/(R7-R8)≤104.17,规定的是第四透镜L4的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选的,-23.19≤(R7+R8)/(R7-R8)≤83.33。
第四透镜L4的轴上厚度为d7,满足下列关系式:0.01≤d7/TTL≤0.04,有利于实现超薄化。优选的,0.01≤d7/TTL≤0.03。
本实施方式中,第五透镜L5具有正屈折力。
变焦距光学系统10的短焦焦距为fs,第五透镜L5焦距f5,满足下列关系式:0.25≤f5/fs≤1.25,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。优选的,0.41≤f5/fs≤1.00。
第五透镜L5物侧面的曲率半径R9,第五透镜L5像侧面的曲率半径R10,满足下列关系式:-1.68≤(R9+R10)/(R9-R10)≤-0.11,规定的是第五透镜L5的形状,在条件范围内时,随着超薄长焦距化发展,有利于补正轴外画角的像差等问题。优选的,-1.05≤(R9+R10)/(R9-R10)≤-0.13。
第五透镜L5的轴上厚度为d9,满足下列关系式:0.01≤d9/TTL≤0.11,有利于实现超薄化。优选的,0.01≤d9/TTL≤0.09。
本实施方式中,第六透镜L6具有正屈折力。
变焦距光学系统10的短焦焦距为fs,第六透镜L6的焦距为f6,满足下列关系式:0.24≤f6/fs≤12.44,在条件式范围内,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的,0.38≤f6/fs≤9.95。
第六透镜L6物侧面的曲率半径R11,第六透镜L6像侧面的曲率半径R12,满足下列关系式:-15.86≤(R11+R12)/(R11-R12)≤-0.08,规定的是第六透镜L6的形状,在条件范围内时,随着超薄长焦距化发展,有利于补正轴外画角的像差等问题。优选的,-9.92≤(R11+R12)/(R11-R12)≤-0.10。
第六透镜L6的轴上厚度为d11,满足下列关系式:0.02≤d11/TTL≤0.13,有利于实现超薄化。优选的,0.03≤d11/TTL≤0.10。
本实施方式中,第七透镜L7具有负屈折力。
变焦距光学系统10的短焦焦距为fs,第七透镜L7焦距f7,满足下列关系式:-1.15≤f7/fs≤-0.17,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的,-0.72≤f7/fs≤-0.21。
第七透镜L7物侧面的曲率半径R13,第七透镜L7像侧面的曲率半径R14,满足下列关系式:0.15≤(R13+R14)/(R13-R14)≤2.97,规定的是第七透镜L7的形状,在条件范围内时,随着超薄长焦距化发展,有利于补正轴外画角的像差等问题。优选的,0.24≤(R13+R14)/(R13-R14)≤2.38。
第七透镜L7的轴上厚度为d13,满足下列关系式:0.01≤d13/TTL≤0.15,有利于实现超薄化。优选的,0.02≤d9/TTL≤0.12。
本实施方式中,第八透镜L8具有正屈折力。
变焦距光学系统10的短焦焦距为fs,第八透镜L8焦距f8,满足下列关系式:0.64≤f8/fs≤2.72,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的,1.03≤f8/fs≤2.18。
第八透镜L8物侧面的曲率半径R15,第八透镜L8像侧面的曲率半径R16,满足下列关系式:-5.04≤(R15+R16)/(R15-R16)≤-0.09,规定的是第八透镜L8的形状,在条件范围内时,随着超薄长焦距化发展,有利于补正轴外画角的像差等问题。 优选的,-3.15≤(R15+R16)/(R15-R16)≤-0.11。
第八透镜L8的轴上厚度为d15,满足下列关系式:0.01≤d15/TTL≤0.03,有利于实现超薄化。优选的,0.01≤d15/TTL≤0.02。
通常,变焦距光学系统10还包括光学过滤片GF,沿光路方向,光学过滤片GF设置于第八透镜L8与像面Si之间。
以下述第一实施例的具体参数设置说明本发明所述的变焦距光学系统,其中,表1列出该实施例中第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8、光圈S1的参数,表2列出该实施例中各非球面头镜面的非球面系数,表中各参数的定义如下:
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:第六透镜L6的物侧面的曲率半径;
R12:第六透镜L6的像侧面的曲率半径;
R13:第七透镜L7的物侧面的曲率半径;
R14:第七透镜L7的像侧面的曲率半径;
R15:第八透镜L8的物侧面的曲率半径;
R16:第八透镜L8的像侧面的曲率半径;
R17:光学过滤片GF的物侧面的曲率半径;
R18:光学过滤片GF的像侧面的曲率半径;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的轴上距离;
d:光阑S1到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;
d13:第七透镜L7的轴上厚度;
d14:第七透镜L7的像侧面到第八透镜L8的物侧面的轴上距离;
d15:第八透镜L8的轴上厚度;
d16:第八透镜L8的像侧面到光学过滤片GF的物侧面的轴上距离;
d17:光学过滤片GF的轴上厚度;
d18:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
nd7:第七透镜L7的d线的折射率;
nd8:第八透镜L8的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
v7:第七透镜L7的阿贝数;
v8:第八透镜L8的阿贝数;
vg:光学过滤片GF的阿贝数;
f:变焦距光学系统的焦距;
f1:第一透镜L1的焦距;
f2:第二透镜L2的焦距;
f3:第三透镜L3的焦距;
f4:第四透镜L4的焦距;
f5:第五透镜L5的焦距;
f6:第六透镜L6的焦距;
f7:第七透镜L7的焦距;
f8:第八透镜L8的焦距;
FOV:视场角;
H:水平视场角;
V:垂直视场角;
ENPD:入瞳直径;
y=(x 2/R)/[1+{1-(k+1)(x 2/R 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20      (5)
其中,为了方便起见,各个透镜面的非球面满足条件(5)的非球面方程,式中,R是轴上的曲率半径,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。本实施例中,第一透镜L1、第二透镜L2、第五透镜L5、第六透镜L6、第七透镜L7为球面。
【表1】
Figure PCTCN2019130446-appb-000001
Figure PCTCN2019130446-appb-000002
需要说明的是,表1中,列出的d2、d8、d14为第一实施例处于短焦状态时的距离值,在中焦状态时,d2=2.419,d8=3.403,d14=6.874;在长焦状态时,d2=3.061,d8=0.677,d14=8.958。
【表2】
Figure PCTCN2019130446-appb-000003
Figure PCTCN2019130446-appb-000004
在本实施方式中,所述摄像光学镜头在短焦状态时的入瞳直径为3.959mm,全视场像高为2.620mm,对角线方向的视场角为20.28°;中焦状态时的入瞳直径为5.334mm,全视场像高为2.620mm,对角线方向的视场角为12.65°;长焦状态时的入瞳直径为5.914mm,全视场像高为2.620mm,对角线方向的视场角为10.19°。广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
如图1至图3所示,为采用表1-2中参数的实施例分别在短焦、中焦以及长焦状态时的结构示意图,图4至图6分别示出了波长为470nm、510nm、555nm、610nm、650nm的光经过短焦、中焦以及长焦状态的变焦距光学系统10后的轴向像差图,图7至图9分别示出了波长为470nm、510nm、555nm、610nm、650nm的光经过短焦、中焦以及长焦状态的变焦距光学系统10后的倍率色差示意图。图10至图12分别示出了波长为555nm的光分别经过短焦、中焦以及长焦状态的第一实施方式的变焦距光学系统10后的场曲及畸变示意图,场曲S是弧矢方向的场曲,T是子午方向的场曲。由图1至3可以看出,由短焦向中焦、长焦的变焦过程中,变倍组逐渐远离前固定组,变倍组和补偿组的距离逐渐缩小,补偿组逐渐远离物镜组。由图4-12能够看出,采用本发明提供的实施例能够得到更好地图像质量。
后出现的表7示出各实例1、2、3中各种数值与条件式中已规定的参数所对应的值。
如表7所示,第一实施方式满足各条件式。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
本实施方式中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第六透镜L6、第七透镜L7以及第八透镜L8为为前凸后凹透镜,第五透镜L5为双凸透镜。第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有正屈折力,第六透镜L6具有正屈折力,第七透镜L7具有负屈折力,第八透镜L8具有正屈折力。
表3列出该实施例中第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8、光圈S1的参数,表4列出该实施例中各非球面头镜面的非球面系数。
【表3】
Figure PCTCN2019130446-appb-000005
Figure PCTCN2019130446-appb-000006
需要说明的是,表3中,列出的d2、d8、d14为第二实施例处于短焦状态时的距离值,在中焦状态时,d2=3.142,d8=3.851,d14=6.982;在长焦状态时,d2=3.933,d8=1.139,d14=8.904。
【表4】
本实施例中,第一透镜L1、第二透镜L2、第五透镜L5为球面。
Figure PCTCN2019130446-appb-000007
在本实施方式中,所述摄像光学镜头在短焦状态时的入瞳直径为4.297mm,全视场像高为2.620mm,对角线方向的视场角为19.44°;中焦状态时的入瞳直径 为5.800mm,全视场像高为2.620mm,对角线方向的视场角为12.15°;长焦状态时的入瞳直径为6.096mm,全视场像高为2.620mm,对角线方向的视场角为9.79°。广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
如图13至图15所示,为采用表3-4中参数的实施例分别在短焦、中焦以及长焦状态时的结构示意图,图16至图18分别示出了波长为470nm、510nm、555nm、610nm、650nm的光经过短焦、中焦以及长焦状态的变焦距光学系统10后的轴向像差图,图19至图21分别示出了波长为470nm、510nm、555nm、610nm、650nm的光经过短焦、中焦以及长焦状态的变焦距光学系统10后的倍率色差示意图。图22至图24分别示出了波长为555nm的光分别经过短焦、中焦以及长焦状态的第一实施方式的变焦距光学系统10后的场曲及畸变示意图,场曲S是弧矢方向的场曲,T是子午方向的场曲。由图1至3可以看出,由短焦向中焦、长焦的变焦过程中,变倍组逐渐远离前固定组,变倍组和补偿组的距离逐渐缩小,补偿组逐渐远离物镜组。由图16-24能够看出,采用本发明提供的实施例能够得到更好地图像质量。
后出现的表7示出各实例1、2、3中各种数值与条件式中已规定的参数所对应的值。
如表7所示,第二实施方式满足各条件式。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
本实施方式中,第一透镜L1、第五透镜L5以及第六透镜L6为双凸透镜,第二透镜L2、第三透镜L3以及第七透镜L7为双凹透镜,第四透镜L4以及第八透镜L8为为前凸后凹透镜。第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有正屈折力,第六透镜L6具有正屈折力,第七透镜L7具有负屈折力,第八透镜L8具有正屈折力。
表5列出该实施例中第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8、光阑S1的参数,表6列出该实施例中各非球面头镜面的非球面系数。
【表5】
Figure PCTCN2019130446-appb-000008
Figure PCTCN2019130446-appb-000009
需要说明的是,表5中,列出的d2、d8、d14为第三实施例处于短焦状态时的距离值,在中焦状态时,d2=1.789,d8=3.450,d14=6.019;在长焦状态时,d2=2.252,d8=1.085,d14=7.921。
【表6】
本实施例中,第一透镜L1、第二透镜L2、第五透镜L5、第六透镜L6、第七透镜L7为球面。
Figure PCTCN2019130446-appb-000010
在本实施方式中,所述摄像光学镜头在短焦状态时的入瞳直径为4.447mm,全视场像高为2.620mm,对角线方向的视场角为20.07°;中焦状态时的入瞳直径为5.730mm,全视场像高为2.620mm,对角线方向的视场角为12.47°;长焦状态时的入瞳直径为5.972mm,全视场像高为2.620mm,对角线方向的视场角为10.00°。广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
如图25至图27所示,为采用表5-6中参数的实施例分别在短焦、中焦以及长焦状态时的结构示意图,图28至图30分别示出了波长为470nm、510nm、555nm、610nm、650nm的光经过短焦、中焦以及长焦状态的变焦距光学系统10后的轴向像差图,图31至图33分别示出了波长为470nm、510nm、555nm、 610nm、650nm的光经过短焦、中焦以及长焦状态的变焦距光学系统10后的倍率色差示意图。图34至图36分别示出了波长为555nm的光分别经过短焦、中焦以及长焦状态的第一实施方式的变焦距光学系统10后的场曲及畸变示意图,场曲S是弧矢方向的场曲,T是子午方向的场曲。由图25至27可以看出,由短焦向中焦、长焦的变焦过程中,变倍组逐渐远离前固定组,变倍组和补偿组的距离逐渐缩小,补偿组逐渐远离物镜组。由图28-36能够看出,采用本发明提供的实施例能够得到更好地图像质量。
后出现的表7示出各实例1、2、3中各种数值与条件式中已规定的参数所对应的值。
如表7所示,第三实施方式满足各条件式。
【表7】
参数及条件式 实施例1 实施例2 实施例3
fs 14.500 15.120 15.120
fm 23.273 24.268 24.213
fl 29.000 30.240 30.240
f1 20.150 22.606 15.996
f2 -26.323 -13.460 -24.423
f3 -16.782 -14.474 -10.489
f4 -4003.080 18.550 65.258
f5 12.111 7.671 9.917
f6 23.167 125.392 7.273
f7 -5.025 -8.713 -3.831
f8 18.633 27.060 27.436
f group1/f group4 1.08 0.84 0.58
D12 zoom3/D12 zoom1 3.40 3.93 2.50
D23 zoom1/D23 zoom3 13.33 8.30 9.05
D34 zoom3/D34 zoom1 3.23 2.53 3.92
上表中,fs表示变焦距光学系统的短焦焦距,fm表示变焦距光学系统的中焦焦距,fl表示变焦距光学系统的长焦焦距。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (10)

  1. 一种变焦距光学系统,其特征在于,所述变焦距光学系统,沿光线入射方向,依次设置有前固定组、变倍组、补偿组、物镜组以及像面,所述前固定组的焦距为f group1,所述物镜组的焦距为f group4,长焦时所述前固定组像侧面到所述变倍组物侧面的轴上距离为D12 zoom3,长焦时所述变倍组像侧面到所述补偿组物侧面的轴上距离为D23 zoom3,长焦时所述补偿组像侧面到所述物镜组物侧面的轴上距离为D34 zoom3,短焦时所述前固定组像侧面到所述变倍组物侧面的轴上距离为D12 zoom1,短焦时所述变倍组像侧面到所述补偿组物侧面的轴上距离为D23 zoom1,短焦时所述补偿组像侧面到所述物镜组物侧面的轴上距离为D34 zoom1,满足下列关系式:
    0.50≤f group1/f group4≤1.10;
    2.00≤D12 zoom3/D12 zoom1≤4.00;
    8.00≤D23 zoom1/D23 zoom3≤15.00;
    2.00≤D34 zoom3/D34 zoom1≤4.00。
  2. 根据权利要求1所述的变焦距光学系统,其特征在于,所述前固定组包括第一透镜;
    所述变倍组与所述补偿组沿所述光路方向能够在所述前固定组与所述物镜组之间移动,以实现焦距连续切换;
    所述变倍组包括沿光路方向设置的第二透镜、第三透镜以及第四透镜;
    所述补偿组包括沿光路方向设置的第五透镜、第六透镜以及第七透镜;
    所述物镜组能够沿所述光路方向相对于所述像面移动,以用于不同距离场景的对焦,所述物镜组包括第八透镜。
  3. 根据权利要求2所述的变焦距光学系统,其特征在于,所述第一透镜的焦距为f1,所述变焦距光学系统的短焦焦距为fs,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,且满足下列关系式:
    0.53≤f1/fs≤2.24;
    -2.11≤(R1+R2)/(R1-R2)≤-0.37;
    0.01≤d1/TTL≤0.07。
  4. 根据权利要求2所述的摄像光学镜头,其特征在于,所述变焦距光学系统的短焦焦距为fs,所述第二透镜的焦距为f2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,且满足下列关系式:
    -3.63≤f2/fs≤-0.59;
    0.15≤(R3+R4)/(R3-R4)≤4.94;
    0.01≤d3/TTL≤0.02。
  5. 根据权利要求2所述的摄像光学镜头,其特征在于,所述变焦距光学系统的短焦焦距为fs,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,满足下列关系式:
    -2.31≤f3/fs≤-0.46;
    0.32≤(R5+R6)/(R5-R6)≤5.34;
    d5/TTL≤0.02。
  6. 根据权利要求2所述的摄像光学镜头,其特征在于,所述变焦距光学系统的短焦焦距为fs,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,且满足下列关系式:
    -552.15≤f4/fs≤6.47;
    -37.10≤(R7+R8)/(R7-R8)≤104.17;
    0.01≤d7/TTL≤0.04。
  7. 根据权利要求2所述的摄像光学镜头,其特征在于,所述变焦距光学系统的短焦焦距为fs,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,且满足下列关系式:
    0.25≤f5/fs≤1.25;
    -1.68≤(R9+R10)/(R9-R10)≤-0.11;
    0.01≤d9/TTL≤0.11。
  8. 根据权利要求2所述的摄像光学镜头,其特征在于,所述变焦距光学系统的短焦焦距为fs,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,满足下列关系式:
    0.24≤f6/fs≤12.44;
    -15.86≤(R11+R12)/(R11-R12)≤-0.08;
    0.02≤d11/TTL≤0.13。
  9. 根据权利要求2所述的摄像光学镜头,其特征在于,所述变焦距光学系统的短焦焦距为fs,所述第七透镜的焦距为f7,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,所述第七透镜的轴上厚度为d13,且满足下列关系式:
    -1.15≤f7/fs≤-0.17;
    0.15≤(R13+R14)/(R13-R14)≤2.97;
    0.01≤d13/TTL≤0.15。
  10. 根据权利要求2所述的摄像光学镜头,其特征在于,所述变焦距光学系统的短焦焦距为fs,所述第八透镜的焦距为f8,所述第六透镜物侧面的曲率半径为R15,所述第六透镜像侧面的曲率半径为R16,所述第六透镜的轴上厚度为d15,满足下列关系式:
    0.64≤f8/fs≤2.72;
    -5.04≤(R15+R16)/(R15-R16)≤-0.09;
    0.01≤d15/TTL≤0.03。
PCT/CN2019/130446 2019-12-31 2019-12-31 变焦距光学系统 WO2021134451A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130446 WO2021134451A1 (zh) 2019-12-31 2019-12-31 变焦距光学系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130446 WO2021134451A1 (zh) 2019-12-31 2019-12-31 变焦距光学系统

Publications (1)

Publication Number Publication Date
WO2021134451A1 true WO2021134451A1 (zh) 2021-07-08

Family

ID=76687186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130446 WO2021134451A1 (zh) 2019-12-31 2019-12-31 变焦距光学系统

Country Status (1)

Country Link
WO (1) WO2021134451A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1979247A (zh) * 2005-12-07 2007-06-13 索尼株式会社 变焦透镜和图像拍摄设备
US8305693B1 (en) * 2011-04-25 2012-11-06 Zoom Precision Optical Electronic Co., Ltd. Zoom lens system with wide angle of view
CN104965298A (zh) * 2015-06-30 2015-10-07 东莞市宇瞳光学科技有限公司 一种体积小的广角变焦镜头
CN106501924A (zh) * 2015-09-07 2017-03-15 富士胶片株式会社 变焦透镜以及摄像装置
CN108983403A (zh) * 2017-06-01 2018-12-11 瑞声声学科技(苏州)有限公司 变焦距光学系统
CN109116529A (zh) * 2018-08-22 2019-01-01 哈尔滨新光光电科技有限公司 一种高分辨率微小型可见光变焦光学系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1979247A (zh) * 2005-12-07 2007-06-13 索尼株式会社 变焦透镜和图像拍摄设备
US8305693B1 (en) * 2011-04-25 2012-11-06 Zoom Precision Optical Electronic Co., Ltd. Zoom lens system with wide angle of view
CN104965298A (zh) * 2015-06-30 2015-10-07 东莞市宇瞳光学科技有限公司 一种体积小的广角变焦镜头
CN106501924A (zh) * 2015-09-07 2017-03-15 富士胶片株式会社 变焦透镜以及摄像装置
CN108983403A (zh) * 2017-06-01 2018-12-11 瑞声声学科技(苏州)有限公司 变焦距光学系统
CN109116529A (zh) * 2018-08-22 2019-01-01 哈尔滨新光光电科技有限公司 一种高分辨率微小型可见光变焦光学系统

Similar Documents

Publication Publication Date Title
WO2021031241A1 (zh) 摄像光学镜头
WO2022021453A1 (zh) 摄像光学镜头
WO2022047997A1 (zh) 摄像光学镜头
WO2022047998A1 (zh) 摄像光学镜头
WO2022047999A1 (zh) 摄像光学镜头
WO2022077599A1 (zh) 摄像光学镜头
WO2022067954A1 (zh) 摄像光学镜头
WO2022077597A1 (zh) 摄像光学镜头
WO2022021457A1 (zh) 摄像光学镜头
WO2022088252A1 (zh) 摄像光学镜头
WO2022021456A1 (zh) 摄像光学镜头
CN109828351B (zh) 摄像光学镜头
WO2022067948A1 (zh) 摄像光学镜头
WO2022088250A1 (zh) 摄像光学镜头
WO2022088356A1 (zh) 摄像光学镜头
WO2022067950A1 (zh) 摄像光学镜头
WO2022057040A1 (zh) 摄像光学镜头
WO2022021455A1 (zh) 摄像光学镜头
WO2022007022A1 (zh) 摄像光学镜头
WO2022088363A1 (zh) 摄像光学镜头
WO2022134178A1 (zh) 摄像光学镜头
WO2022077596A1 (zh) 摄像光学镜头
WO2022077608A1 (zh) 摄像光学镜头
WO2022088251A1 (zh) 摄像光学镜头
WO2022088253A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958114

Country of ref document: EP

Kind code of ref document: A1