WO2021133048A1 - Polycarbonate copolymer comprising units derived from anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol, method for producing same, and molded article comprising same - Google Patents

Polycarbonate copolymer comprising units derived from anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol, method for producing same, and molded article comprising same Download PDF

Info

Publication number
WO2021133048A1
WO2021133048A1 PCT/KR2020/018967 KR2020018967W WO2021133048A1 WO 2021133048 A1 WO2021133048 A1 WO 2021133048A1 KR 2020018967 W KR2020018967 W KR 2020018967W WO 2021133048 A1 WO2021133048 A1 WO 2021133048A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
mmol
polycarbonate copolymer
anhydrosugar alcohol
isosorbide
Prior art date
Application number
PCT/KR2020/018967
Other languages
French (fr)
Korean (ko)
Inventor
유승현
류훈
임준섭
강민구
손용재
장민정
박상현
Original Assignee
주식회사 삼양사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 삼양사 filed Critical 주식회사 삼양사
Publication of WO2021133048A1 publication Critical patent/WO2021133048A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/32General preparatory processes using carbon dioxide
    • C08G64/34General preparatory processes using carbon dioxide and cyclic ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a polycarbonate copolymer, a method for producing the same, and a molded article comprising the same, and more particularly, to a diol component comprising anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol in a specific content ratio and a diester carbonate
  • a polycarbonate copolymer exhibiting significantly improved physical properties (in particular, tensile strength and elongation) compared to a conventional polycarbonate copolymer, and a method for preparing the same, and including the same It is related to the molded article.
  • Polycarbonate resin is a general-purpose thermoplastic engineering plastic having a glass transition temperature of around 150° C., and has excellent mechanical properties such as tensile strength and impact strength, and has numerical stability, heat resistance, and optical transparency.
  • Polycarbonate is usually manufactured by polycondensation of bisphenol A and phosgene, which are petroleum-based raw materials. For this reason, a method for partially or completely replacing polycarbonate manufacturing raw materials with environmentally friendly components has been requested.
  • Anhydrosugar alcohol is an eco-friendly material derived from a natural product, and can be prepared by dehydrating a hydrogenated sugar (eg, hexitol) derived from a natural product such as starch.
  • Hydrogenated sugar also referred to as “sugar alcohol” refers to a compound obtained by adding hydrogen to a reducing end group of a saccharide, generally HOCH 2 (CHOH) n CH 2 OH (where n is an integer of 2 to 5) ), and is classified into tetritol, pentitol, hexitol and heptitol (with 4, 5, 6 and 7 carbon atoms, respectively) according to the number of carbon atoms.
  • hexitol having 6 carbon atoms includes sorbitol, mannitol, iditol, galactitol, and the like, and sorbitol and mannitol are particularly effective substances.
  • Such anhydrosugar alcohol has attracted a lot of attention due to its various application possibilities, and its use in actual industry is also gradually increasing.
  • Korean Patent Application Laid-Open No. 10-2009-0018788 discloses a technique for preparing a polycarbonate copolymer using isosorbide, an anhydrosugar alcohol, and a cyclic diol compound as a diol component
  • Korean Patent Registration No. 10- 1080669 discloses a technique for preparing a polycarbonate copolymer using isosorbide and a linear diol compound as a diol component.
  • the polycarbonate copolymer prepared by the above prior art has poor mechanical properties (particularly, tensile strength and/or elongation) in spite of the improvement of eco-friendliness, so it is difficult to be practically utilized for engineering plastics.
  • anhydrosugar alcohol as a raw material to improve eco-friendliness and at the same time significantly improve mechanical properties such as tensile strength and elongation compared to the prior art, development of a technology capable of producing a polycarbonate copolymer that can be actually used for engineering plastics This is being requested.
  • An object of the present invention including units derived from anhydrosugar alcohol and its derivatives, is excellent in environmental friendliness, and at the same time, mechanical properties such as tensile strength and elongation are significantly improved compared to existing anhydrosugar alcohol-containing polycarbonate resins.
  • the present invention provides a repeating unit derived from a diol component; and a repeating unit derived from a carbonic acid diester component, wherein the diol component comprises (a) 69 to 99 mol% of anhydrosugar alcohol and (b) anhydrosugar alcohol-alkylene glycol based on 100 mol% of the total diol component. 1 to 31 mole % of the polycarbonate copolymer.
  • it comprises the step of reacting a mixture comprising a diol component and a carbonic acid diester component in the presence of a polymerization catalyst, wherein the diol component is based on a total of 100 mol% of the diol component, (a) anhydrosugar alcohol 69 to 99 mol% and (b) anhydrosugar alcohol-alkylene glycol 1 to 31 mol%, a method for preparing a polycarbonate copolymer is provided.
  • a molded article comprising the polycarbonate copolymer of the present invention.
  • the polycarbonate copolymer according to the present invention is prepared by using anhydrosugar alcohol and its derivative anhydrosugar alcohol-alkylene glycol as a raw material, so it is excellent in eco-friendliness and isosorbide and a cyclic or linear diol compound as a diol component It shows significantly improved mechanical properties (particularly, tensile strength and elongation) compared to the existing polycarbonate copolymer prepared using
  • the polycarbonate copolymer of the present invention is prepared from a diol component comprising (a) 69 to 99 mol% of anhydrosugar alcohol and (b) 1 to 31 mol% of anhydrosugar alcohol-alkylene glycol based on 100 mol% of the total diol component. derived repeat units; and a repeating unit derived from a carbonic acid diester component.
  • the anhydrosugar alcohol may be mono-anhydrosugar alcohol, dianhydrosugar alcohol, or a mixture thereof, which may be obtained in the process of preparing anhydrosugar alcohol by dehydrating hydrogenated sugar.
  • Hydrogenated sugar also referred to as “sugar alcohol” refers to a compound obtained by adding hydrogen to a reducing end group of a saccharide, generally HOCH 2 (CHOH) n CH 2 OH (where n is an integer of 2 to 5) ), and is classified into tetritol, pentitol, hexitol and heptitol (with 4, 5, 6 and 7 carbon atoms, respectively) according to the number of carbon atoms.
  • hexitol having 6 carbon atoms includes sorbitol, mannitol, iditol, galactitol, and the like.
  • the monoanhydrosugar alcohol is an anhydrosugar alcohol formed by removing one water molecule from the inside of a hydrogenated sugar, and has a tetraol form having four hydroxyl groups in the molecule.
  • the type of mono-anhydrosugar alcohol that can be used in the present invention is not particularly limited, but may preferably be mono-anhydrosugar hexitol, and more specifically, 1,4-anhydrohexitol, 3,6-anhydrohexitol, 2,5-anhydrohexitol, 1,5-anhydrohexitol, 2,6-anhydrohexitol, or a mixture of two or more thereof.
  • the dianhydrosugar alcohol is an anhydrosugar alcohol formed by removing two water molecules from the inside of a hydrogenated sugar, has a diol form having two hydroxyl groups in the molecule, and can be prepared by using hexitol derived from starch. Since dianhydrosugar alcohol is an eco-friendly material derived from renewable natural resources, research on its manufacturing method has been conducted with a lot of interest from a long time ago. Among these dianhydrosugar alcohols, isosorbide prepared from sorbitol has the widest current industrial application range.
  • the type of dianhydrosugar alcohol that can be used in the present invention is not particularly limited, but preferably dianhydrosugar hexitol, and more specifically 1,4:3,6-dianhydrohexitol.
  • the 1,4:3,6-dianhydrohexitol is isosorbide (1,4:3,6-dianhydrosorbitol), isomannide (1,4:3,6-dianhydromannitol), isoi Died (1,4:3,6-dianhydroiditol) or a mixture of two or more thereof, more preferably isosorbide.
  • the anhydrosugar alcohol-alkylene glycol may be obtained by reacting anhydrosugar alcohol and alkylene oxide.
  • the alkylene oxide may be a linear or branched alkylene oxide having 2 to 18 carbon atoms or a branched alkylene oxide having 3 to 18 carbon atoms, and more specifically, ethylene oxide, propylene oxide, or a combination thereof.
  • anhydrosugar alcohol-alkylene glycol refers to a terminal (eg, one or more terminals) of a mono-anhydrosugar alcohol or a dianhydrosugar alcohol, a hydroxyl group and an alkylene oxide (eg, C2-C18 alkylene oxide, more specifically is an adduct obtained by reacting ethylene oxide, propylene oxide, or a mixture thereof), wherein the hydrogen of the hydroxy group at the terminal (eg, at least one terminal) of the monoanhydride alcohol or the dianhydrosugar alcohol is a hydroxy group in the ring-opened form of the alkylene oxide It refers to a compound substituted with an alkyl group.
  • alkylene oxide eg, C2-C18 alkylene oxide, more specifically is an adduct obtained by reacting ethylene oxide, propylene oxide, or a mixture thereof
  • the anhydrosugar alcohol-alkylene glycol may be a compound represented by the following formula (A).
  • R 1 is each independently hydrogen or alkyl, more specifically hydrogen or alkyl having 1 to 18 carbon atoms,
  • n and n are each independently an integer from 0 to 15, and m+n is an integer from 1 to 25.
  • anhydrosugar alcohol-alkylene glycol may be a compound represented by the following Chemical Formula B.
  • R 1 and R 2 each independently represent a linear or branched alkylene group having 2 to 18 carbon atoms or a branched alkylene group having 3 to 18 carbon atoms, and m and n each independently represent an integer of 0 to 15, provided that m+n represents the integer of 1-30 or the integer of 1-25.
  • R 1 and R 2 each independently represent an ethylene group, a propylene group, or an isopropylene group, and even more specifically, R 1 and R 2 are the same as each other, and m and n are Each independently represents an integer of 0 to 14, provided that m+n represents an integer of 1 to 25 or an integer of 2 to 15.
  • anhydrosugar alcohol-alkylene glycol the following isosorbide-propylene glycol, isosorbide-ethylene glycol, or a mixture thereof may be used.
  • a and b each independently represent an integer from 0 to 15, provided that a+b is an integer from 1 to 30 or an integer from 1 to 25, and more specifically, a and b are each independently An integer of 0 to 14 is represented, with the proviso that a+b may be an integer of 1 to 25 or an integer of 2 to 15.
  • c and d each independently represent an integer of 0 to 15, with the proviso that c+d may be an integer of 1 to 30 or an integer of 1 to 25, and more specifically, c and d are each independently represents an integer from 0 to 14, with the proviso that c+d may be an integer from 1 to 25 or an integer from 2 to 15.
  • the diol component included as a repeating unit in the polycarbonate copolymer of the present invention is, based on 100 mol% of the total diol component, (a) 69 to 99 mol% of anhydrosugar alcohol and (b) anhydrosugar alcohol-alkylene glycol 1 to 31 mole %.
  • the anhydrosugar alcohol content in the diol component is less than 69 mol% based on 100 mol% of the total diol component, the tensile strength of the copolymer is poor, and conversely, when it exceeds 99 mol%, the elongation of the copolymer is poor.
  • anhydrosugar alcohol-alkylene glycol in the diol component is less than 1 mol% based on 100 mol% of the total diol component, the elongation of the copolymer is poor, and conversely, if it exceeds 31 mol%, the tensile strength of the copolymer is decreased get worse
  • the anhydrosugar alcohol content in the diol component is 70 mol% or more, 71 mol% or more, 72 mol% or more, 73 mol% or more, 74 mol% or more, 75 based on 100 mol% of the total diol component.
  • mol% or more 76 mol% or more, 77 mol% or more, 78 mol% or more, 79 mol% or more, or 80 mol% or more, and also 98 mol% or less, 97 mol% or less, 96 mol% or less, 95 mol% or more or less, 94 mol% or less, 93 mol% or less, 92 mol% or less, 91 mol% or less, or 90 mol% or less.
  • the content of anhydrosugar alcohol-alkylene glycol in the diol component is 2 mol% or more, 3 mol% or more, 4 mol% or more, 5 mol% or more, 6 mol% based on 100 mol% of the total diol component. % or more, 7 mol% or more, 8 mol% or more, 9 mol% or more, or 10 mol% or more, and also 30 mol% or less, 29 mol% or less, 28 mol% or less, 27 mol% or less, 26 mol% or less , 25 mol% or less, 24 mol% or less, 23 mol% or less, 22 mol% or less, 21 mol% or less, or 20 mol% or less.
  • the diol component may further include an additional diol selected from (c) an aliphatic diol, an anhydrosugar alcohol and an alicyclic diol other than an anhydrosugar alcohol-alkylene glycol, an aromatic diol, or a mixture thereof. have.
  • the aliphatic diol is ethylene glycol, propanediol (eg, 1,2-propanediol and 1,3-propanediol, etc.), butanediol (eg, 1,2-butanediol, 1,3) -butanediol and 1,4-butanediol, etc.), pentanediol (eg, 1,2-pentanediol, 1,3-pentanediol, 1,4-pentanediol and 1,5-pentanediol, etc.), hexanediol (For example, 1,2-hexanetanediol, 1,3-hexanediol, 1,4-hexanediol, 1,5-hexanediol, 1,6-hexanediol, etc.), diethylene glycol, triethylene glycol , tetraethylene glycol or
  • the alicyclic diol other than the anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol is cyclohexanedimethanol (eg, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, etc.), 2-methyl-1,4-cyclohexanediol, decalindimethanol (e.g., 2,6-decalindimethanol, 1,5-decalindimethanol and 2,3 -decalin dimethanol, etc.), norbornane dimethanol (for example, 2,3-norbornane dimethanol and 2,5-norbornane dimethanol, etc.), adamantanediol (for example, 1,2-a damantanediol, 1,3-adamantanediol, 1,4-adamantanediol, etc.) or a mixture thereof, but is not limited thereto.
  • the aromatic diol is 2,2-bis(4-hydroxyphenyl)propane [hereinafter referred to as bisphenol A], 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane , 2,2-bis (4-hydroxy-3,5-diethylphenyl) propane, 2,2-bis (4-hydroxy- (3,5-diphenyl) phenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, 2,2-bis (4-hydroxyphenyl) pentane, 2,4'-dihydroxy-diphenylmethane, bis (4-hydroxy Phenyl)methane, bis(4-hydroxy-5-nitrophenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 3,3-bis(4-hydroxyphenyl)pentane, 1,1- Bis(4-hydroxyphenyl)cyclohexane, bis(4-hydroxyphenyl)sulfone, 2,4'-di
  • the (c) additional diol compound used in the present invention is not limited to the above examples, and one type of the additional diol compound may be used alone, or two or more types may be mixed and used.
  • the (c) additional diol content in the diol component is 1 mol% or more, 2 mol% or more, 3 mol% or more, 4 mol% or more, 5 mol% based on 100 mol% of the total diol component. % or more, 6 mol% or more, 7 mol% or more, 8 mol% or more, 9 mol% or more, or 10 mol% or more, and also 30 mol% or less, 29 mol% or less, 28 mol% or less, 27 mol% or less , 26 mol% or less, 25 mol% or less, 24 mol% or less, 23 mol% or less, 22 mol% or less, 21 mol% or less, or 20 mol% or less.
  • the diol component further comprises the (c) additional diol, based on 100 mol% of the total diol component, (a) the content of anhydrosugar alcohol may be 69 to 98 mol%, ( b) The content of the anhydrosugar alcohol-alkylene glycol may be 1 to 30 mol%, and the content of the (c) additional diol may be 1 to 30 mol%.
  • the type of the carbonate diester component is not limited as long as the effect of the present invention is not lost, but, for example, it may be selected from dialkyl carbonate, diaryl carbonate, alkylene carbonate, or a combination thereof. .
  • examples of the dialkyl carbonate include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate, diisobutyl carbonate, ethyl normal butyl carbonate and ethyl isobutyl carbonate, and the dia
  • examples of the lyl carbonate include diphenyl carbonate, ditolyl carbonate, bis(chlorophenyl) carbonate and di(m-cresyl) carbonate
  • examples of the alkylene carbonate include ethylene carbonate, trimethylene carbonate, tetramethylene carbonate, 1,2-propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 1,3-pentylene carbonate, 1 ,4-pentylene carbonate, 1,5-pentylene carbonate, 2,3-pentylene carbonate, 2,4-pentylene carbonate and neopent
  • the carbonic acid diester component may be selected from dimethyl carbonate, diethyl carbonate, diphenyl carbonate, ethylene carbonate, or a combination thereof, more preferably diphenyl carbonate.
  • the carbonic acid diester component may be selected from compounds represented by the following formula (C).
  • a and A' are each independently selected from an unsubstituted or halogen-substituted alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 25 carbon atoms, A and A' may be the same as or different from each other.
  • the carbonic acid diester component represented by Formula C is selected from diphenyl carbonate, ditolyl carbonate, bischlorophenyl carbonate, dimethyl carbonate, diethyl carbonate, di-t-butyl carbonate, or mixtures thereof. may be used, but preferably diphenyl carbonate or dimethyl carbonate may be used.
  • the carbonic acid diester component may be used in a molar equivalent of 0.90 to 1.10, preferably in a molar equivalent of 0.96 to 1.04, based on 1 molar equivalent of the total diol component. have.
  • the molar equivalent of the carbonic acid diester component is less than 0.90 with respect to 1 molar equivalent of the total diol component, the OH group at the end of the prepared polycarbonate copolymer is increased, and the thermal stability of the polycarbonate copolymer is deteriorated, or a high molecular weight of a desired level cannot be obtained, and if the molar equivalent of the carbonic acid diester component is more than 1.10, the rate of the transesterification reaction is reduced under the same conditions, or it is not possible to obtain a high molecular weight of a desired level, but also the residual carbonic acid in the prepared polycarbonate copolymer The amount of diester is increased, and due to such residual diester carbonate, an odor is generated during molding using the polycarbonate copolymer, or it is a cause of bad smell of the molded article, which is not preferable.
  • the polycarbonate copolymer of the present invention includes a repeating unit having a structure of Formula 1 below; and a repeating unit having the structure of Formula 2 below.
  • R 1 is each independently hydrogen or alkyl, more specifically hydrogen or alkyl having 1 to 18 carbon atoms,
  • n and n are each independently an integer from 0 to 15, and m+n is an integer from 1 to 25.
  • the polycarbonate copolymer of the present invention may further include a repeating unit having a structure of Formula 3 below.
  • R is an alkylene group having 2 to 12 carbon atoms, a cycloalkylene group having 3 to 30 carbon atoms, an arylene group having 6 to 30 carbon atoms, or a combination thereof.
  • the present invention also comprises the step of reacting a mixture comprising a diol component and a carbonic acid diester component in the presence of a polymerization catalyst, wherein the diol component is based on a total of 100 mol% of the diol component, (a) anhydrosugar alcohol 69 to 99 It provides a method for preparing a polycarbonate copolymer, comprising 1 to 31 mol% of anhydrosugar alcohol-alkylene glycol and (b) anhydrous sugar alcohol.
  • the diol component used in the method for preparing the polycarbonate copolymer is (c) an aliphatic diol, an anhydrosugar alcohol and an anhydrosugar alcohol- an alicyclic diol other than an alkylene glycol, or a mixture thereof. It may further include a diol of.
  • anhydrosugar alcohol anhydrosugar alcohol-alkylene glycol, additional diol and diester carbonate components usable in the method for producing the polycarbonate copolymer of the present invention are as described above.
  • a transesterification catalyst may be used as the polymerization catalyst, and for example, an alkali metal salt compound, an alkaline earth metal salt compound, or a mixture thereof may be used.
  • a polymerization catalyst selected from an alkali metal salt compound, an alkaline earth metal salt compound, or a mixture thereof, a basic boron compound, a basic phosphorus compound, a basic ammonium compound, an amine compound, or a mixture thereof.
  • a polymerization catalyst selected from an alkali metal salt compound, an alkaline earth metal salt compound, or a mixture thereof, a basic boron compound, a basic phosphorus compound, a basic ammonium compound, an amine compound, or a mixture thereof.
  • the alkali metal salt compound used as the polymerization catalyst includes, for example, sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium hydrogen carbonate, cesium hydrogen carbonate, sodium carbonate, Potassium carbonate, lithium carbonate, cesium carbonate, sodium acetate, potassium acetate, lithium acetate, cesium acetate, sodium stearate, potassium stearate, lithium stearate, cesium stearate, sodium borohydride, potassium borohydride, lithium borohydride, hydride Cesium boron, sodium boron phenylide, potassium boron phenylide, lithium boron phenylide, cesium boron phenylide, sodium benzoate, potassium benzoate, lithium benzoate, cesium benzoate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, lithium hydrogen phosphate, Cesium hydrogen phosphate, disodium hydrogen pho
  • the alkaline earth metal salt compound used as the polymerization catalyst includes, for example, calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium hydrogen carbonate, barium hydrogen carbonate, magnesium hydrogen carbonate, strontium hydrogen carbonate, calcium carbonate. , barium carbonate, magnesium carbonate, strontium carbonate, calcium acetate, barium acetate, magnesium acetate, strontium acetate, calcium stearate, barium stearate, magnesium stearate, or strontium stearate.
  • the alkali metal salt compound and alkaline earth metal salt compound mentioned above may be used individually by 1 type, and may use 2 or more types together.
  • examples of the basic boron compound used in combination with the polymerization catalyst described above include tetramethylboron, tetraethylboron, tetrapropylboron, tetrabutylboron, trimethylethylboron, trimethylbenzylboron, trimethylphenylboron, triethylmethyl Sodium salts, potassium salts, lithium salts such as boron, triethylbenzylboron, triethylphenylboron, tributylbenzylboron, tributylphenylboron, tetraphenylboron, benzyltriphenylboron, methyltriphenylboron and butyltriphenylboron , calcium salt, barium salt, magnesium salt, or strontium salt.
  • examples of basic phosphorus compounds include triethylphosphine, tri-n-propylphosphine, triisopropylphosphine, tri-n-butylphosphine, triphenylphosphine, tributylphosphine, or A quaternary phosphonium salt etc. are mentioned.
  • examples of the basic ammonium compound include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylbenzylammonium Hydroxide, trimethylphenylammonium hydroxide, triethylmethylammonium hydroxide, triethylbenzylammonium hydroxide, triethylphenylammonium hydroxide, tributylbenzylammonium hydroxide, tributylphenylammonium hydroxide , tetraphenylammonium hydroxide, benzyltriphenylammonium hydroxide, methyltriphenylammonium hydroxide, or butyltriphenylammonium hydroxide.
  • examples of the amine-based compound include 4-aminopyridine, 2-aminopyridine, N,N-dimethyl-4-aminopyridine, 4-diethylaminopyridine, 2-hydroxypyridine, 2-methoxy and pyridine, 4-methoxypyridine, 2-dimethylaminoimidazole, 2-methoxyimidazole, imidazole, 2-mercaptoimidazole, 2-methylimidazole or aminoquinoline.
  • the above-mentioned basic compound used together with a polymerization catalyst may be used individually by 1 type, and may use 2 or more types together.
  • the physical properties are significantly improved compared to the existing polycarbonate copolymer prepared by using isosorbide and a cyclic or linear diol compound as a diol component while being excellent in eco-friendliness, especially , it is possible to obtain a molded article exhibiting improved tensile strength and elongation at the same time.
  • a molded article comprising the polycarbonate copolymer of the present invention.
  • the molded article may be manufactured by extrusion or injection molding of the polycarbonate copolymer of the present invention.
  • the temperature of the reactor was raised to 240° C. and the pressure was reduced to a pressure of 5 torr or less, and an additional reaction was performed for 1 hour. After the stirring torque of the stirrer reached a predetermined stirring torque, the reaction was terminated. As a result of the reaction, about 99 g of a transparent polycarbonate copolymer having a number average molecular weight of 29,600 g/mol, a polydispersity index (PDI) of 2.0, and a glass transition temperature of 152° C. was obtained.
  • PDI polydispersity index
  • the content of isosorbide was changed from 513.2 mmol to 479.0 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 532.2 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with ethylene of isosorbide.
  • the content of isosorbide was changed from 513.2 mmol to 479.0 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 532.2 mmol, and 57.0 mmol of the ethylene oxide 1 mole adduct of isosorbide was replaced with propylene of isosorbide.
  • the content of isosorbide was changed from 513.2 mmol to 376.4 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 418.2 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with propylene of isosorbide.
  • the content of isosorbide was changed from 513.2 mmol to 342.1 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 488.8 mmol, and 57.0 mmol of the ethylene oxide 1 mole adduct of isosorbide was replaced with ethylene of isosorbide.
  • the content of isosorbide is changed from 513.2 mmol to 205.3 mmol, the content of diphenyl carbonate is changed from 570.2 mmol to 293.3 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide is replaced with ethylene of isosorbide.
  • the content of isosorbide was changed from 513.2 mmol to 376.4 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 537.6 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with propylene of isosorbide.
  • the content of isosorbide was changed from 513.2 mmol to 342.1 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 488.8 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with propylene of isosorbide.
  • the content of isosorbide was changed from 513.2 mmol to 273.7 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 391.0 mmol, and 57.0 mmol of the ethylene oxide 1 mole adduct of isosorbide was replaced with propylene of isosorbide.
  • Example 1 Same as Example 1, except that 28.5 mmol of ethylene oxide 5 mol adduct of isosorbide and 28.5 mmol of 1,4-cyclohexanedimethanol were used instead of 57.0 mmol of 1 mol adduct of ethylene oxide of isosorbide 100 g of a polycarbonate copolymer having a number average molecular weight of 30,000 g/mol, a PDI of 2.0, and a glass transition temperature of 135° C. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 95 MPa and the average elongation was 19%, and the results are shown in Table 1 below.
  • Example 2 A number average was carried out in the same manner as in Example 1, except that 28.5 mmol of an ethylene oxide 5 mole adduct of isosorbide and 28.5 mmol of ethylene glycol were used instead of 57.0 mmol of an ethylene oxide 1 mole adduct of isosorbide. 98 g of a polycarbonate copolymer having a molecular weight of 30,500 g/mol, a PDI of 2.1, and a glass transition temperature of 140°C was obtained.
  • Example 2 In the same manner as in Example 1, except that 28.5 mmol of ethylene oxide 5 mol adduct of isosorbide and 28.5 mmol of 1,6-hexanediol were used instead of 57.0 mmol of 1 mol adduct of ethylene oxide of isosorbide 99 g of a polycarbonate copolymer having a number average molecular weight of 31,000 g/mol, a PDI of 2.2, and a glass transition temperature of 122° C. was obtained.
  • the content of isosorbide was changed from 513.2 mmol to 376.4 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 537.6 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with propylene of isosorbide.
  • a number average molecular weight of 30,600 g/mol, a PDI of 2.3, and a glass transition were carried out in the same manner as in Example 1, except that 53.8 mmol of the oxide 5 mol adduct and 107.5 mmol of 1,4-cyclodimethanol were used.
  • 103 g of a polycarbonate copolymer having a temperature of 114°C was obtained.
  • the content of isosorbide was changed from 513.2 mmol to 376.4 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 537.6 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with propylene of isosorbide.
  • a number average molecular weight of 30,200 g/mol, a PDI of 2.4, and a glass transition temperature of 105° C. was carried out in the same manner as in Example 1, except that 53.8 mmol of an oxide 5 mol adduct and 107.5 mmol of ethylene glycol were used. 95 g of a polycarbonate copolymer was obtained.
  • the content of isosorbide was changed from 513.2 mmol to 376.4 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 537.6 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with propylene of isosorbide.
  • a number average molecular weight of 30,100 g/mol, a PDI of 2.2, and a glass transition temperature were carried out in the same manner as in Example 1 except that 53.8 mmol of the oxide 5 mol adduct and 107.5 mmol of 1,4-butanediol were used. 99 g of a polycarbonate copolymer at 110° C. was obtained.
  • the content of isosorbide was changed from 513.2 mmol to 376.4 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 537.6 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with propylene of isosorbide.
  • a number average molecular weight of 30,600 g/mol, a PDI of 2.2, and a glass transition temperature were carried out in the same manner as in Example 1, except that 53.8 mmol of the oxide 5 mol adduct and 107.5 mmol of 1,6-hexanediol were used. 102 g of a polycarbonate copolymer having a value of 88°C was obtained.
  • the content of isosorbide is changed from 513.2 mmol to 581.6 mmol, the content of diphenyl carbonate is changed from 570.2 mmol to 587.5 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide is replaced with isosorbide
  • a polycarbonate copolymer having a number average molecular weight of 30,000 g/mol, a PDI of 1.9, and a glass transition temperature of 158° C. was carried out in the same manner as in Example 1, except that 5.9 mmol of the 5 mol adduct of ethylene oxide was used. 100 g were obtained.
  • the content of isosorbide is changed from 513.2 mmol to 581.6 mmol of isosorbide, the content of diphenyl carbonate is changed from 570.2 mmol to 587.5 mmol, and 57.0 mmol of ethylene oxide 1 mole adduct of isosorbide is replaced with isosorbide.
  • Poly with a number average molecular weight of 30,100 g/mol, a PDI of 1.9, and a glass transition temperature of 160° C. was carried out in the same manner as in Example 1, except that 5.9 mmol of a 5 mol adduct of sorbide was used. 100 g of carbonate copolymer was obtained.
  • the content of isosorbide was changed from 513.2 mmol to 444.8 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 556.0 mmol, and the content of 1 mole adduct of ethylene oxide of isosorbide was changed from 57.0 mmol to 111.2 mmol 97 g of a polycarbonate copolymer having a number average molecular weight of 30,000 g/mol, a PDI of 2.0, and a glass transition temperature of 146° C. was obtained in the same manner as in Example 1, except for that.
  • the content of isosorbide was changed from 513.2 mmol to 410.6 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 513.2 mmol, and 57.0 mmol of the ethylene oxide 1 mole adduct of isosorbide was replaced with ethylene of isosorbide.
  • the content of isosorbide was changed from 513.2 mmol to 342.1 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 427.7 mmol, and 57.0 mmol of the ethylene oxide 1 mole adduct of isosorbide was replaced with propylene of isosorbide.
  • the content of isosorbide was changed from 513.2 mmol to 239.5 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 299.4 mmol, and 57.0 mmol of the ethylene oxide 1 mole adduct of isosorbide was replaced with propylene of isosorbide.
  • a number average molecular weight of 30,300 g/mol was carried out in the same manner as in Example 1, except that 57.0 mmol of 1,4-cyclohexanedimethanol was used instead of 57.0 mmol of the 1 mol adduct of ethylene oxide of isosorbide.
  • PDI is 2.2
  • a glass transition temperature of 94 g of a polycarbonate copolymer of 156 °C was obtained.
  • the average tensile strength was 82 MPa and the average elongation was 8%, and the results are shown in Table 2 below.
  • Example 2 In the same manner as in Example 1, except that 57.0 mmol of ethylene glycol was used instead of 57.0 mmol of 1 mol adduct of ethylene oxide of isosorbide, the number average molecular weight was 30,200 g/mol, the PDI was 2.1, 90 g of a polycarbonate copolymer having a glass transition temperature of 158° C. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 77 MPa and the average elongation was 3%, and the results are shown in Table 2 below.
  • Example 2 In the same manner as in Example 1, except that 57.0 mmol of 1,4-butanediol was used instead of 57.0 mmol of 1 mol adduct of ethylene oxide of isosorbide, the number average molecular weight was 30,400 g/mol, and PDI was 2.1, and 92 g of a polycarbonate copolymer having a glass transition temperature of 157° C. was obtained.
  • the average tensile strength was 67 MPa and the average elongation was 2%, and the results are shown in Table 2 below.
  • Example 2 It was carried out in the same manner as in Example 1, except that 57.0 mmol of 1,6-hexanediol was used instead of 57.0 mmol of 1 mol adduct of ethylene oxide of isosorbide, and the number average molecular weight was 31,000 g/mol, PDI is 2.3, and 93 g of a polycarbonate copolymer having a glass transition temperature of 147° C. was obtained.
  • the average tensile strength was 59 MPa and the average elongation was 2%, and the results are shown in Table 2 below.
  • the content of isosorbide is changed from 513.2 mmol to 410.6 mmol, the content of diphenyl carbonate is changed from 570.2 mmol to 586.5 mmol, and 1,4-cyclo is replaced by 57.0 mmol of 1 mole adduct of ethylene oxide of isosorbide.
  • 96 g of a polycarbonate copolymer having a number average molecular weight of 30,100 g/mol, a PDI of 2.1, and a glass transition temperature of 130° C. was obtained in the same manner as in Example 1, except that 176.0 mmol of hexanedimethanol was used. did.
  • the content of isosorbide was changed from 513.2 mmol to 444.8 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 635.4 mmol, and 190.6 mmol of ethylene glycol was added instead of 57.0 mmol of the ethylene oxide 1 mole adduct of isosorbide. Except for that, it was carried out in the same manner as in Example 1 to obtain 90 g of a polycarbonate copolymer having a number average molecular weight of 29,500 g/mol, a PDI of 2.2, and a glass transition temperature of 124°C.
  • the content of isosorbide was changed from 513.2 mmol to 410.6 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 586.5 mmol, and 1,4-butanediol was replaced by 57.0 mmol of the 1 mole adduct of ethylene oxide of isosorbide.
  • 89 g of a polycarbonate copolymer having a number average molecular weight of 30,400 g/mol, a PDI of 2.2, and a glass transition temperature of 119° C. was obtained in the same manner as in Example 1, except that 176.0 mmol was used.
  • the content of isosorbide is changed from 513.2 mmol to 410.6 mmol, the content of diphenyl carbonate is changed from 570.2 mmol to 586.5 mmol, and 1,6-hexane is replaced with 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide.
  • 92 g of a polycarbonate copolymer having a number average molecular weight of 31,100 g/mol, a PDI of 2.1, and a glass transition temperature of 96° C. was obtained in the same manner as in Example 1, except that 176.0 mmol of the diol was used.
  • the content of isosorbide is changed from 513.2 mmol to 479.0 mmol, the content of diphenyl carbonate is changed from 570.2 mmol to 598.7 mmol, and 1,6-hexane is replaced with 57.0 mmol of the 1 mole adduct of ethylene oxide of isosorbide.
  • 96 g of a polycarbonate copolymer having a number average molecular weight of 30,200 g/mol, a PDI of 1.9, and a glass transition temperature of 123° C. was obtained in the same manner as in Example 1, except that 119.8 mmol of the diol was used.
  • the content of isosorbide was changed from 513.2 mmol to 615.9 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 618.9 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with ethylene of isosorbide.
  • the content of isosorbide was changed from 513.2 mmol to 615.9 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 618.9 mmol, and 57.0 mmol of the ethylene oxide 1 mole adduct of isosorbide was replaced with isosorbide.
  • a polycarbonate copolymer having a number average molecular weight of 30,100 g/mol, a PDI of 1.9, and a glass transition temperature of 160° C. was carried out in the same manner as in Example 1, except that 3.1 mmol of the 5 mol adduct of propylene oxide was used. 105 g of coalescence was obtained.
  • the content of isosorbide was changed from 513.2 mmol to 342.1 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 503.1 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with ethylene of isosorbide.
  • the content of isosorbide was changed from 513.2 mmol to 342.1 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 503.1 mmol, and 57.0 mmol of the ethylene oxide 1 mole adduct of isosorbide was replaced with propylene of isosorbide.
  • the content of isosorbide was changed from 513.2 mmol to 307.9 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 473.7 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with propylene of isosorbide. It was carried out in the same manner as in Example 1, except that 94.8 mmol of the oxide 5 mol adduct and 71.1 mmol of 1,4-cyclohexanedimethanol were used, the number average molecular weight was 30,000 g/mol, the PDI was 2.3, and the free 105 g of a polycarbonate copolymer having a transition temperature of 127° C. was obtained.
  • the content of isosorbide was changed from 513.2 mmol to 307.9 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 473.7 mmol, and propylene oxide of isosorbide was replaced by 57.0 mmol of the 1 mole adduct of ethylene oxide of isosorbide.
  • a number average molecular weight of 29,600 g/mol, a PDI of 2.2, and a glass transition temperature of 120 was carried out in the same manner as in Example 1, except that 94.8 mmol of the 5-mol adduct and 71.1 mmol of 1,4-butanediol were used. 100 g of a polycarbonate copolymer having a temperature of °C was obtained.
  • EI 5 Ethylene oxide 5 molar adduct of isosorbide
  • the column used at this time was PLgel 5 ⁇ m MIXED-D 300 x 7.5mm (Agilent, Inc.), the column temperature was 35°C, and the developing solvent used was chloroform, which was flowed at 0.5 mL/min, and the standard material was polystyrene ( Aldrich Co.) was used.
  • Tg -Glass transition temperature: Differential scanning calorimetry (DSC Q100, TA Instrument) was used, and specifically, the temperature was raised from 20 °C to 300 °C at a temperature increase rate of 10 °C min, and then rapidly cooled to 20 °C, then 300 again The glass transition temperature was measured by raising the temperature to °C.
  • the polycarbonate copolymers of Examples 1 to 24 according to the present invention all exhibited a high average tensile strength of 80 MPa or more and a high average elongation of 13% or more.

Abstract

The present invention relates to a polycarbonate copolymer, a method for producing same, and a molded article comprising same, and more specifically, to: a polycarbonate copolymer exhibiting remarkably improved physical properties (in particular, tensile strength and elongation) compared to a conventional polycarbonate copolymer, by including repeating units derived from a diol component and a carbonic acid diester component containing an anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol in a specific content ratio; a method for producing same; and a molded article comprising same.

Description

무수당 알코올 및 무수당 알코올-알킬렌 글리콜로부터 유래된 단위들을 포함하는 폴리카보네이트 공중합체 및 이의 제조방법, 및 이를 포함하는 성형품Polycarbonate copolymer containing units derived from anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol, method for preparing same, and molded article comprising same
본 발명은 폴리카보네이트 공중합체 및 이의 제조 방법, 및 이를 포함하는 성형품에 관한 것으로, 보다 구체적으로는, 무수당 알코올 및 무수당 알코올-알킬렌 글리콜을 특정 함량 비율로 포함하는 디올 성분과 탄산 디에스테르 성분으로부터 유래된 반복 단위들을 포함함으로써, 종래의 폴리카보네이트 공중합체 대비 현저히 개선된 물성(특히, 인장강도(tensile strength) 및 신율(elongation))을 나타내는 폴리카보네이트 공중합체 및 이의 제조 방법, 및 이를 포함하는 성형품에 관한 것이다.The present invention relates to a polycarbonate copolymer, a method for producing the same, and a molded article comprising the same, and more particularly, to a diol component comprising anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol in a specific content ratio and a diester carbonate By including repeating units derived from the component, a polycarbonate copolymer exhibiting significantly improved physical properties (in particular, tensile strength and elongation) compared to a conventional polycarbonate copolymer, and a method for preparing the same, and including the same It is related to the molded article.
폴리카보네이트 수지는 유리전이온도가 150℃ 부근인 범용 열가소성 엔지니어링 플라스틱으로서, 인장강도 및 충격강도 등의 기계적 물성이 우수하고, 수치 안정성, 내열성 및 광학적 투명성을 갖는 수지이다.Polycarbonate resin is a general-purpose thermoplastic engineering plastic having a glass transition temperature of around 150° C., and has excellent mechanical properties such as tensile strength and impact strength, and has numerical stability, heat resistance, and optical transparency.
폴리카보네이트는 통상 석유계 원료인 비스페놀 A와 포스겐의 중축합에 의해 제조되는데, 석유 자원 고갈의 가속화, 기후 변화에 따른 온실 가스 감축 요구, 원료 가격의 상승, 재생 가능한 원료에 대한 필요성 증가와 같은 다양한 이유로 인하여, 폴리카보네이트 제조 원료를 환경 친화적인 성분으로 부분적으로 또는 완전히 대체하는 방안이 요청되고 있다.Polycarbonate is usually manufactured by polycondensation of bisphenol A and phosgene, which are petroleum-based raw materials. For this reason, a method for partially or completely replacing polycarbonate manufacturing raw materials with environmentally friendly components has been requested.
무수당 알코올은 천연물 유래의 친환경 소재로서, 전분과 같은 천연물로부터 유래된 수소화 당(예컨대, 헥시톨)을 탈수 반응시켜 제조할 수 있다. 수소화 당(“당 알코올”이라고도 함)은 당류가 갖는 환원성 말단기에 수소를 부가하여 얻어지는 화합물을 의미하는 것으로, 일반적으로 HOCH2(CHOH)nCH2OH(여기서, n은 2 내지 5의 정수)의 화학식을 가지며, 탄소수에 따라 테트리톨, 펜티톨, 헥시톨 및 헵티톨(각각, 탄소수 4, 5, 6 및 7)로 분류된다. 그 중에서 탄소수가 6개인 헥시톨에는 소르비톨, 만니톨, 이디톨, 갈락티톨 등이 포함되며, 소르비톨과 만니톨은 특히 효용성이 큰 물질이다. 이러한 무수당 알코올은 그 다양한 활용 가능성으로 인해 많은 관심을 받고 있으며, 실제 산업에의 이용도도 점차 증가하고 있다. Anhydrosugar alcohol is an eco-friendly material derived from a natural product, and can be prepared by dehydrating a hydrogenated sugar (eg, hexitol) derived from a natural product such as starch. Hydrogenated sugar (also referred to as “sugar alcohol”) refers to a compound obtained by adding hydrogen to a reducing end group of a saccharide, generally HOCH 2 (CHOH) n CH 2 OH (where n is an integer of 2 to 5) ), and is classified into tetritol, pentitol, hexitol and heptitol (with 4, 5, 6 and 7 carbon atoms, respectively) according to the number of carbon atoms. Among them, hexitol having 6 carbon atoms includes sorbitol, mannitol, iditol, galactitol, and the like, and sorbitol and mannitol are particularly effective substances. Such anhydrosugar alcohol has attracted a lot of attention due to its various application possibilities, and its use in actual industry is also gradually increasing.
무수당 알코올을 활용하여 폴리카보네이트를 제조하는 기술이 제안된 바 있다. 예컨대, 대한민국공개특허 제10-2009-0018788호에는 무수당 알코올인 이소소르비드와 고리형 디올 화합물을 디올 성분으로 사용하여 폴리카보네이트 공중합체를 제조하는 기술이 기재되어 있으며, 대한민국등록특허 제10-1080669호에는 이소소르비드와 선형 디올 화합물을 디올 성분으로 사용하여 폴리카보네이트 공중합체를 제조하는 기술이 기재되어 있다.A technology for producing polycarbonate using anhydrosugar alcohol has been proposed. For example, Korean Patent Application Laid-Open No. 10-2009-0018788 discloses a technique for preparing a polycarbonate copolymer using isosorbide, an anhydrosugar alcohol, and a cyclic diol compound as a diol component, and Korean Patent Registration No. 10- 1080669 discloses a technique for preparing a polycarbonate copolymer using isosorbide and a linear diol compound as a diol component.
그러나, 상기한 종래 기술들에 의하여 제조된 폴리카보네이트 공중합체는, 친환경성의 향상에도 불구하고 기계적 물성(특히, 인장강도 및/또는 신율)이 열악하여 엔지니어링 플라스틱 용도로 실제 활용되기는 어렵다.However, the polycarbonate copolymer prepared by the above prior art has poor mechanical properties (particularly, tensile strength and/or elongation) in spite of the improvement of eco-friendliness, so it is difficult to be practically utilized for engineering plastics.
따라서, 원료로서 무수당 알코올을 활용하여 친환경성을 향상시키는 동시에 인장강도 및 신율 등의 기계적 물성을 종래 기술 대비 현저히 개선하여 엔지니어링 플라스틱 용도로 실제 활용 가능한 폴리카보네이트 공중합체를 제조할 수 있는 기술의 개발이 요청되고 있다.Therefore, by using anhydrosugar alcohol as a raw material to improve eco-friendliness and at the same time significantly improve mechanical properties such as tensile strength and elongation compared to the prior art, development of a technology capable of producing a polycarbonate copolymer that can be actually used for engineering plastics This is being requested.
본 발명의 목적은, 무수당 알코올 및 그 유도체로부터 유래된 단위를 포함하여 친환경성이 우수한 동시에 인장강도 및 신율 등의 기계적 물성이 기존의 무수당 알코올-함유 폴리카보네이트 수지 대비 현저히 개선된 폴리카보네이트 공중합체 및 이의 제조 방법, 및 이를 포함하는 성형품을 제공하는 것이다.An object of the present invention, including units derived from anhydrosugar alcohol and its derivatives, is excellent in environmental friendliness, and at the same time, mechanical properties such as tensile strength and elongation are significantly improved compared to existing anhydrosugar alcohol-containing polycarbonate resins. To provide a coalescence, a method for manufacturing the same, and a molded article including the same.
상기한 기술적 과제를 해결하고자 본 발명은, 디올 성분으로부터 유래된 반복 단위; 및 탄산 디에스테르 성분으로부터 유래된 반복 단위;를 포함하며, 상기 디올 성분이, 디올 성분 총 100 몰% 기준으로 (a) 무수당 알코올 69 내지 99 몰% 및 (b) 무수당 알코올-알킬렌 글리콜 1 내지 31 몰%를 포함하는, 폴리카보네이트 공중합체를 제공한다.In order to solve the above technical problem, the present invention provides a repeating unit derived from a diol component; and a repeating unit derived from a carbonic acid diester component, wherein the diol component comprises (a) 69 to 99 mol% of anhydrosugar alcohol and (b) anhydrosugar alcohol-alkylene glycol based on 100 mol% of the total diol component. 1 to 31 mole % of the polycarbonate copolymer.
본 발명의 다른 측면에 따르면, 디올 성분 및 탄산 디에스테르 성분을 포함하는 혼합물을 중합 촉매 존재 하에서 반응시키는 단계를 포함하고, 상기 디올 성분이 디올 성분 총 100 몰% 기준으로, (a) 무수당 알코올 69 내지 99 몰% 및 (b) 무수당 알코올-알킬렌 글리콜 1 내지 31 몰%를 포함하는, 폴리카보네이트 공중합체의 제조 방법이 제공된다.According to another aspect of the present invention, it comprises the step of reacting a mixture comprising a diol component and a carbonic acid diester component in the presence of a polymerization catalyst, wherein the diol component is based on a total of 100 mol% of the diol component, (a) anhydrosugar alcohol 69 to 99 mol% and (b) anhydrosugar alcohol-alkylene glycol 1 to 31 mol%, a method for preparing a polycarbonate copolymer is provided.
본 발명의 또 다른 측면에 따르면, 상기 본 발명의 폴리카보네이트 공중합체를 포함하는 성형품이 제공된다.According to another aspect of the present invention, there is provided a molded article comprising the polycarbonate copolymer of the present invention.
본 발명에 따른 폴리카보네이트 공중합체는, 원료로서 무수당 알코올 및 그 유도체인 무수당 알코올-알킬렌 글리콜을 활용하여 제조되므로 친환경성이 우수한 동시에, 이소소르비드와 고리형 또는 선형 디올 화합물을 디올 성분으로 사용하여 제조된 기존의 폴리카보네이트 공중합체와 비교하여 현저히 개선된 기계적 물성(특히, 인장 강도 및 신율)을 나타낸다.The polycarbonate copolymer according to the present invention is prepared by using anhydrosugar alcohol and its derivative anhydrosugar alcohol-alkylene glycol as a raw material, so it is excellent in eco-friendliness and isosorbide and a cyclic or linear diol compound as a diol component It shows significantly improved mechanical properties (particularly, tensile strength and elongation) compared to the existing polycarbonate copolymer prepared using
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 폴리카보네이트 공중합체는, 디올 성분 총 100 몰% 기준으로 (a) 무수당 알코올 69 내지 99 몰% 및 (b) 무수당 알코올-알킬렌 글리콜 1 내지 31 몰%를 포함하는 디올 성분으로부터 유래된 반복 단위; 및 탄산 디에스테르 성분으로부터 유래된 반복 단위;를 포함한다.The polycarbonate copolymer of the present invention is prepared from a diol component comprising (a) 69 to 99 mol% of anhydrosugar alcohol and (b) 1 to 31 mol% of anhydrosugar alcohol-alkylene glycol based on 100 mol% of the total diol component. derived repeat units; and a repeating unit derived from a carbonic acid diester component.
본 발명에 있어서, 상기 무수당 알코올은 일무수당 알코올, 이무수당 알코올 또는 이들의 혼합물일 수 있으며, 이는 수소화 당을 탈수 반응시켜 무수당 알코올을 제조하는 과정에서 수득될 수 있다. 수소화 당(“당 알코올”이라고도 함)은 당류가 갖는 환원성 말단기에 수소를 부가하여 얻어지는 화합물을 의미하는 것으로, 일반적으로 HOCH2(CHOH)nCH2OH(여기서, n은 2 내지 5의 정수)의 화학식을 가지며, 탄소수에 따라 테트리톨, 펜티톨, 헥시톨 및 헵티톨(각각, 탄소수 4, 5, 6 및 7)로 분류된다. 그 중에서 탄소수가 6개인 헥시톨에는 소르비톨, 만니톨, 이디톨, 갈락티톨 등이 포함된다.In the present invention, the anhydrosugar alcohol may be mono-anhydrosugar alcohol, dianhydrosugar alcohol, or a mixture thereof, which may be obtained in the process of preparing anhydrosugar alcohol by dehydrating hydrogenated sugar. Hydrogenated sugar (also referred to as “sugar alcohol”) refers to a compound obtained by adding hydrogen to a reducing end group of a saccharide, generally HOCH 2 (CHOH) n CH 2 OH (where n is an integer of 2 to 5) ), and is classified into tetritol, pentitol, hexitol and heptitol (with 4, 5, 6 and 7 carbon atoms, respectively) according to the number of carbon atoms. Among them, hexitol having 6 carbon atoms includes sorbitol, mannitol, iditol, galactitol, and the like.
상기 일무수당 알코올은 수소화 당의 내부로부터 물 분자 1개가 제거되어 형성되는 무수당 알코올로서, 분자 내 히드록시기가 네 개인 테트라올(tetraol) 형태를 가진다. 본 발명에서 사용 가능한 일무수당 알코올의 종류는 특별히 한정되지 않지만, 바람직하게는 일무수당 헥시톨일 수 있으며, 보다 구체적으로는 1,4-언하이드로헥시톨, 3,6-언하이드로헥시톨, 2,5-언하이드로헥시톨, 1,5-언하이드로헥시톨, 2,6-언하이드로헥시톨 또는 이들 중 2 이상의 혼합물일 수 있다.The monoanhydrosugar alcohol is an anhydrosugar alcohol formed by removing one water molecule from the inside of a hydrogenated sugar, and has a tetraol form having four hydroxyl groups in the molecule. The type of mono-anhydrosugar alcohol that can be used in the present invention is not particularly limited, but may preferably be mono-anhydrosugar hexitol, and more specifically, 1,4-anhydrohexitol, 3,6-anhydrohexitol, 2,5-anhydrohexitol, 1,5-anhydrohexitol, 2,6-anhydrohexitol, or a mixture of two or more thereof.
상기 이무수당 알코올은 수소화 당의 내부로부터 물 분자 2개가 제거되어 형성되는 무수당 알코올로서, 분자 내 히드록시기가 두 개인 디올(diol) 형태를 가지며, 전분에서 유래하는 헥시톨을 활용하여 제조할 수 있다. 이무수당 알코올은 재생 가능한 천연자원으로부터 유래한 친환경 물질이라는 점에서 오래 전부터 많은 관심과 함께 그 제조방법에 관한 연구가 진행되어 오고 있다. 이러한 이무수당 알코올 중에서 소르비톨로부터 제조된 이소소르비드가 현재 산업적 응용범위가 가장 넓다. 본 발명에서 사용 가능한 이무수당 알코올의 종류는 특별히 한정되지 않지만, 바람직하게는 이무수당 헥시톨일 수 있으며, 보다 구체적으로는 1,4:3,6-디언하이드로헥시톨일 수 있다. 상기 1,4:3,6-디언하이드로헥시톨은 이소소르비드(1,4:3,6-디언하이드로소르비톨), 이소만니드(1,4:3,6-디언하이드로만니톨), 이소이디드(1,4:3,6-디언하이드로이디톨) 또는 이들 중 2 이상의 혼합물일 수 있고, 보다 바람직하게는 이소소르비드일 수 있다.The dianhydrosugar alcohol is an anhydrosugar alcohol formed by removing two water molecules from the inside of a hydrogenated sugar, has a diol form having two hydroxyl groups in the molecule, and can be prepared by using hexitol derived from starch. Since dianhydrosugar alcohol is an eco-friendly material derived from renewable natural resources, research on its manufacturing method has been conducted with a lot of interest from a long time ago. Among these dianhydrosugar alcohols, isosorbide prepared from sorbitol has the widest current industrial application range. The type of dianhydrosugar alcohol that can be used in the present invention is not particularly limited, but preferably dianhydrosugar hexitol, and more specifically 1,4:3,6-dianhydrohexitol. The 1,4:3,6-dianhydrohexitol is isosorbide (1,4:3,6-dianhydrosorbitol), isomannide (1,4:3,6-dianhydromannitol), isoi Died (1,4:3,6-dianhydroiditol) or a mixture of two or more thereof, more preferably isosorbide.
본 발명에 있어서, 상기 무수당 알코올-알킬렌 글리콜은 무수당 알코올과 알킬렌 옥사이드를 반응시켜 얻어진 것일 수 있다. In the present invention, the anhydrosugar alcohol-alkylene glycol may be obtained by reacting anhydrosugar alcohol and alkylene oxide.
일 구체예에서, 상기 알킬렌 옥사이드는 탄소수 2 내지 18의 선형 또는 탄소수 3 내지 18의 분지형 알킬렌 옥사이드일 수 있고, 보다 구체적으로는, 에틸렌 옥사이드, 프로필렌 옥사이드 또는 이의 조합일 수 있다.In one embodiment, the alkylene oxide may be a linear or branched alkylene oxide having 2 to 18 carbon atoms or a branched alkylene oxide having 3 to 18 carbon atoms, and more specifically, ethylene oxide, propylene oxide, or a combination thereof.
본 발명에 있어서, “무수당 알코올-알킬렌 글리콜”이란, 일무수당 알코올 또는 이무수당 알코올의 말단(예컨대, 하나 이상의 말단) 히드록시기와 알킬렌 옥사이드(예컨대, C2-C18알킬렌 옥사이드, 보다 구체적으로는, 에틸렌 옥사이드, 프로필렌 옥사이드, 또는 이들의 혼합물)를 반응시켜 얻어지는 부가물로서, 일무수당 알코올 또는 이무수당 알코올의 말단(예컨대, 하나 이상의 말단) 히드록시기의 수소가 알킬렌 옥사이드의 개환 형태인 히드록시알킬 그룹으로 치환된 형태의 화합물을 의미한다.In the present invention, “anhydrosugar alcohol-alkylene glycol” refers to a terminal (eg, one or more terminals) of a mono-anhydrosugar alcohol or a dianhydrosugar alcohol, a hydroxyl group and an alkylene oxide (eg, C2-C18 alkylene oxide, more specifically is an adduct obtained by reacting ethylene oxide, propylene oxide, or a mixture thereof), wherein the hydrogen of the hydroxy group at the terminal (eg, at least one terminal) of the monoanhydride alcohol or the dianhydrosugar alcohol is a hydroxy group in the ring-opened form of the alkylene oxide It refers to a compound substituted with an alkyl group.
일 구체예에서, 무수당 알코올-알킬렌 글리콜은 하기 화학식 A로 표시되는 화합물일 수 있다.In one embodiment, the anhydrosugar alcohol-alkylene glycol may be a compound represented by the following formula (A).
[화학식 A][Formula A]
Figure PCTKR2020018967-appb-I000001
Figure PCTKR2020018967-appb-I000001
상기 화학식 A에서, In the above formula (A),
R1은 각각 독립적으로 수소 또는 알킬이고, 보다 구체적으로는 수소 또는 탄소수 1 내지 18의 알킬이며,R 1 is each independently hydrogen or alkyl, more specifically hydrogen or alkyl having 1 to 18 carbon atoms,
m 및 n은 각각 독립적으로 0 내지 15의 정수이되, m+n은 1 내지 25의 정수이다.m and n are each independently an integer from 0 to 15, and m+n is an integer from 1 to 25.
다른 구체예에서, 상기 무수당 알코올-알킬렌 글리콜은 하기 화학식 B로 표시되는 화합물일 수 있다.In another embodiment, the anhydrosugar alcohol-alkylene glycol may be a compound represented by the following Chemical Formula B.
[화학식 B][Formula B]
Figure PCTKR2020018967-appb-I000002
Figure PCTKR2020018967-appb-I000002
상기 화학식 B에서, R1 및 R2는 각각 독립적으로 탄소수 2 내지 18의 선형 또는 탄소수 3 내지 18의 분지형 알킬렌기를 나타내고, m 및 n은 각각 독립적으로 0 내지 15의 정수를 나타내되, 단 m+n은 1 내지 30의 정수 또는 1 내지 25의 정수를 나타낸다.In Formula B, R 1 and R 2 each independently represent a linear or branched alkylene group having 2 to 18 carbon atoms or a branched alkylene group having 3 to 18 carbon atoms, and m and n each independently represent an integer of 0 to 15, provided that m+n represents the integer of 1-30 or the integer of 1-25.
보다 구체적으로는, 상기 화학식 B에서, R1 및 R2는 각각 독립적으로 에틸렌기, 프로필렌기 또는 이소프로필렌기를 나타내고, 보다 더 구체적으로는, R1 및 R2는 서로 동일하며, m 및 n은 각각 독립적으로 0 내지 14의 정수를 나타내되, 단m+n은 1 내지 25의 정수 또는 2 내지 15의 정수를 나타낸다.More specifically, in Formula B, R 1 and R 2 each independently represent an ethylene group, a propylene group, or an isopropylene group, and even more specifically, R 1 and R 2 are the same as each other, and m and n are Each independently represents an integer of 0 to 14, provided that m+n represents an integer of 1 to 25 or an integer of 2 to 15.
일 구체예에서, 상기 무수당 알코올-알킬렌 글리콜로는 하기 이소소르비드-프로필렌 글리콜, 이소소르비드-에틸렌 글리콜 또는 이들의 혼합물을 사용할 수 있다.In one embodiment, as the anhydrosugar alcohol-alkylene glycol, the following isosorbide-propylene glycol, isosorbide-ethylene glycol, or a mixture thereof may be used.
[이소소르비드-프로필렌 글리콜][Isosorbide-Propylene Glycol]
Figure PCTKR2020018967-appb-I000003
Figure PCTKR2020018967-appb-I000003
상기 화학식에서, a 및 b는 각각 독립적으로 0 내지 15의 정수를 나타내되, 단 a+b는 1 내지 30의 정수 또는 1 내지 25의 정수이고, 보다 구체적으로는, a 및 b는 각각 독립적으로 0 내지 14의 정수를 나타내되, 단 a+b는 1 내지 25의 정수 또는 2 내지 15의 정수일 수 있다.In the above formula, a and b each independently represent an integer from 0 to 15, provided that a+b is an integer from 1 to 30 or an integer from 1 to 25, and more specifically, a and b are each independently An integer of 0 to 14 is represented, with the proviso that a+b may be an integer of 1 to 25 or an integer of 2 to 15.
[이소소르비드-에틸렌 글리콜][Isosorbide-ethylene glycol]
Figure PCTKR2020018967-appb-I000004
Figure PCTKR2020018967-appb-I000004
상기 화학식에서, c 및 d는 각각 독립적으로 0 내지 15의 정수를 나타내되, 단 c+d는 1 내지 30의 정수 또는 1 내지 25의 정수일 수 있으며, 보다 구체적으로는, c 및 d는 각각 독립적으로 0 내지 14의 정수를 나타내되, 단 c+d는 1 내지 25의 정수 또는 2 내지 15의 정수일 수 있다.In the above formula, c and d each independently represent an integer of 0 to 15, with the proviso that c+d may be an integer of 1 to 30 or an integer of 1 to 25, and more specifically, c and d are each independently represents an integer from 0 to 14, with the proviso that c+d may be an integer from 1 to 25 or an integer from 2 to 15.
본 발명의 폴리카보네이트 공중합체에 반복 단위로서 포함되는 상기 디올 성분은, 디올 성분 총 100 몰% 기준으로, (a) 무수당 알코올 69 내지 99 몰% 및 (b) 무수당 알코올-알킬렌 글리콜 1 내지 31 몰%를 포함한다.The diol component included as a repeating unit in the polycarbonate copolymer of the present invention is, based on 100 mol% of the total diol component, (a) 69 to 99 mol% of anhydrosugar alcohol and (b) anhydrosugar alcohol-alkylene glycol 1 to 31 mole %.
상기 디올 성분 내의 무수당 알코올 함량이, 디올 성분 총 100 몰% 기준으로, 69 몰% 미만이면 공중합체의 인장 강도가 열악해지며, 반대로 99 몰%를 초과하면 공중합체의 신율이 열악해진다.If the anhydrosugar alcohol content in the diol component is less than 69 mol% based on 100 mol% of the total diol component, the tensile strength of the copolymer is poor, and conversely, when it exceeds 99 mol%, the elongation of the copolymer is poor.
상기 디올 성분 내의 무수당 알코올-알킬렌 글리콜 함량이, 디올 성분 총 100 몰% 기준으로, 1 몰% 미만이면 공중합체의 신율이 열악해지며, 반대로 31 몰%를 초과하면 공중합체의 인장 강도가 열악해진다.If the content of anhydrosugar alcohol-alkylene glycol in the diol component is less than 1 mol% based on 100 mol% of the total diol component, the elongation of the copolymer is poor, and conversely, if it exceeds 31 mol%, the tensile strength of the copolymer is decreased get worse
일 구체예에서, 상기 디올 성분 내의 무수당 알코올 함량은, 디올 성분 총 100 몰% 기준으로, 70 몰% 이상, 71 몰% 이상, 72 몰% 이상, 73 몰% 이상, 74 몰% 이상, 75 몰% 이상, 76 몰% 이상, 77 몰% 이상, 78 몰% 이상, 79 몰% 이상 또는 80 몰% 이상일 수 있고, 또한 98 몰% 이하, 97 몰% 이하, 96 몰% 이하, 95 몰% 이하, 94 몰% 이하, 93 몰% 이하, 92 몰% 이하, 91 몰% 이하 또는 90 몰% 이하일 수 있다.In one embodiment, the anhydrosugar alcohol content in the diol component is 70 mol% or more, 71 mol% or more, 72 mol% or more, 73 mol% or more, 74 mol% or more, 75 based on 100 mol% of the total diol component. mol% or more, 76 mol% or more, 77 mol% or more, 78 mol% or more, 79 mol% or more, or 80 mol% or more, and also 98 mol% or less, 97 mol% or less, 96 mol% or less, 95 mol% or more or less, 94 mol% or less, 93 mol% or less, 92 mol% or less, 91 mol% or less, or 90 mol% or less.
일 구체예에서, 상기 디올 성분 내의 무수당 알코올-알킬렌 글리콜 함량은, 디올 성분 총 100 몰% 기준으로, 2 몰% 이상, 3 몰% 이상, 4 몰% 이상, 5 몰% 이상, 6 몰% 이상, 7 몰% 이상, 8 몰% 이상, 9 몰% 이상 또는 10 몰% 이상일 수 있고, 또한 30 몰% 이하, 29 몰% 이하, 28 몰% 이하, 27 몰% 이하, 26 몰% 이하, 25 몰% 이하, 24 몰% 이하, 23 몰% 이하, 22 몰% 이하, 21 몰% 이하 또는 20 몰% 이하일 수 있다.In one embodiment, the content of anhydrosugar alcohol-alkylene glycol in the diol component is 2 mol% or more, 3 mol% or more, 4 mol% or more, 5 mol% or more, 6 mol% based on 100 mol% of the total diol component. % or more, 7 mol% or more, 8 mol% or more, 9 mol% or more, or 10 mol% or more, and also 30 mol% or less, 29 mol% or less, 28 mol% or less, 27 mol% or less, 26 mol% or less , 25 mol% or less, 24 mol% or less, 23 mol% or less, 22 mol% or less, 21 mol% or less, or 20 mol% or less.
일 구체예에서, 상기 디올 성분은, (c) 지방족 디올, 무수당 알코올과 무수당 알코올-알킬렌 글리콜 이외의 지환족 디올, 방향족 디올 또는 이들의 혼합물로부터 선택되는 추가의 디올을 더 포함할 수 있다. In one embodiment, the diol component may further include an additional diol selected from (c) an aliphatic diol, an anhydrosugar alcohol and an alicyclic diol other than an anhydrosugar alcohol-alkylene glycol, an aromatic diol, or a mixture thereof. have.
일 구체예에서, 상기 지방족 디올은 에틸렌글리콜, 프로판디올(예를 들면, 1,2-프로판디올 및 1,3-프로판디올 등), 부탄디올(예를 들면, 1,2-부탄디올, 1,3-부탄디올 및 1,4-부탄디올 등), 펜탄디올(예를 들면, 1,2-펜탄디올, 1,3-펜탄디올, 1,4-펜탄디올 및 1,5-펜탄디올 등), 헥산디올(예를 들면, 1,2-헥산탄디올, 1,3-헥산디올, 1,4-헥산디올 및 1,5-헥산디올 및 1,6-헥산디올 등), 디에틸렌글리콜, 트리에틸렌글리콜, 테트라에틸렌글리콜 또는 이들의 혼합물로부터 선택되는 것일 수 있으나, 이에 제한되지 않는다. In one embodiment, the aliphatic diol is ethylene glycol, propanediol (eg, 1,2-propanediol and 1,3-propanediol, etc.), butanediol (eg, 1,2-butanediol, 1,3) -butanediol and 1,4-butanediol, etc.), pentanediol (eg, 1,2-pentanediol, 1,3-pentanediol, 1,4-pentanediol and 1,5-pentanediol, etc.), hexanediol (For example, 1,2-hexanetanediol, 1,3-hexanediol, 1,4-hexanediol, 1,5-hexanediol, 1,6-hexanediol, etc.), diethylene glycol, triethylene glycol , tetraethylene glycol or a mixture thereof may be selected, but is not limited thereto.
일 구체예에서, 상기 무수당 알코올과 무수당 알코올-알킬렌 글리콜 이외의 지환족 디올은 사이클로헥산디메탄올(예를 들면, 1,2-사이클로헥산디메탄올, 1,3-사이클로헥산디메탄올, 1,4-사이클로헥산디메탄올 등), 2-메틸-1,4-사이클로헥산디올, 데칼린디메탄올(예를 들면, 2,6-데칼린디메탄올, 1,5-데칼린디메탄올 및 2,3-데칼린디메탄올 등), 노르보르난디메탄올(예를 들면, 2,3-노르보르난디메탄올 및 2,5-노르보르난디메탄올 등), 아다만탄디올(예를 들면, 1,2-아다만탄디올, 1,3-아다만탄디올 및 1,4-아다만탄디올 등) 또는 이들의 혼합물로부터 선택되는 것일 수 있으나, 이에 제한되지 않는다. In one embodiment, the alicyclic diol other than the anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol is cyclohexanedimethanol (eg, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, etc.), 2-methyl-1,4-cyclohexanediol, decalindimethanol (e.g., 2,6-decalindimethanol, 1,5-decalindimethanol and 2,3 -decalin dimethanol, etc.), norbornane dimethanol (for example, 2,3-norbornane dimethanol and 2,5-norbornane dimethanol, etc.), adamantanediol (for example, 1,2-a damantanediol, 1,3-adamantanediol, 1,4-adamantanediol, etc.) or a mixture thereof, but is not limited thereto.
일 구체예에서, 상기 방향족 디올은 2,2-비스(4-히드록시페닐)프로판[이하, 비스페놀 A라 칭함], 2,2-비스(4-히드록시-3,5-디메틸페닐)프로판, 2,2-비스(4-히드록시-3,5-디에틸페닐)프로판, 2,2-비스(4-히드록시-(3,5-디페닐)페닐)프로판, 2,2-비스(4-히드록시-3,5-디브로모페닐)프로판, 2,2-비스(4-히드록시페닐)펜탄, 2,4'-디히드록시-디페닐메탄, 비스(4-히드록시페닐)메탄, 비스(4-히드록시-5-니트로페닐)메탄, 1,1-비스(4-히드록시페닐)에탄, 3,3-비스(4-히드록시페닐)펜탄, 1,1-비스(4-히드록시페닐)시클로헥산, 비스(4-히드록시페닐)술폰, 2,4'-디히드록시 디페닐술폰, 비스(4-히드록시페닐)술파이드, 4,4'-디히드록시디페닐에테르, 4,4'-디히드록시-3,3'-디클로로디페닐에테르, 4,4'-디히드록시-2,5-디에톡시디페닐에테르, 9,9-비스(4-(2-히드록시에톡시)페닐)플루오렌, 9,9-비스(4-(2-히드록시에톡시-2-메틸)페닐)플루오렌, 9,9-비스(4-히드록시페닐)플루오렌, 9,9-비스(4-히드록시-2-메틸페닐)플루오렌 또는 이들의 혼합물로부터 선택되는 것일 수 있으나, 이에 제한되지 않는다. In one embodiment, the aromatic diol is 2,2-bis(4-hydroxyphenyl)propane [hereinafter referred to as bisphenol A], 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane , 2,2-bis (4-hydroxy-3,5-diethylphenyl) propane, 2,2-bis (4-hydroxy- (3,5-diphenyl) phenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, 2,2-bis (4-hydroxyphenyl) pentane, 2,4'-dihydroxy-diphenylmethane, bis (4-hydroxy Phenyl)methane, bis(4-hydroxy-5-nitrophenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 3,3-bis(4-hydroxyphenyl)pentane, 1,1- Bis(4-hydroxyphenyl)cyclohexane, bis(4-hydroxyphenyl)sulfone, 2,4'-dihydroxydiphenylsulfone, bis(4-hydroxyphenyl)sulfide, 4,4'-di Hydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dichlorodiphenyl ether, 4,4'-dihydroxy-2,5-diethoxydiphenyl ether, 9,9-bis ( 4-(2-hydroxyethoxy)phenyl)fluorene, 9,9-bis(4-(2-hydroxyethoxy-2-methyl)phenyl)fluorene, 9,9-bis(4-hydroxy It may be selected from phenyl)fluorene, 9,9-bis(4-hydroxy-2-methylphenyl)fluorene, or a mixture thereof, but is not limited thereto.
본 발명에 사용된 상기 (c) 추가의 디올 화합물은 상기 예시들로 한정하지 않으며, 상기 추가의 디올 화합물은 1 종을 단독으로 사용하여도 되고, 2 종 이상을 혼합하여 사용하여도 된다.The (c) additional diol compound used in the present invention is not limited to the above examples, and one type of the additional diol compound may be used alone, or two or more types may be mixed and used.
일 구체예에서, 상기 디올 성분 내의 상기 (c) 추가의 디올 함량은, 디올 성분 총 100 몰% 기준으로, 1 몰% 이상, 2 몰% 이상, 3 몰% 이상, 4 몰% 이상, 5 몰% 이상, 6 몰% 이상, 7 몰% 이상, 8 몰% 이상, 9 몰% 이상 또는 10 몰% 이상일 수 있고, 또한 30 몰% 이하, 29 몰% 이하, 28 몰% 이하, 27 몰% 이하, 26 몰% 이하, 25 몰% 이하, 24 몰% 이하, 23 몰% 이하, 22 몰% 이하, 21 몰% 이하 또는 20 몰% 이하일 수 있다.In one embodiment, the (c) additional diol content in the diol component is 1 mol% or more, 2 mol% or more, 3 mol% or more, 4 mol% or more, 5 mol% based on 100 mol% of the total diol component. % or more, 6 mol% or more, 7 mol% or more, 8 mol% or more, 9 mol% or more, or 10 mol% or more, and also 30 mol% or less, 29 mol% or less, 28 mol% or less, 27 mol% or less , 26 mol% or less, 25 mol% or less, 24 mol% or less, 23 mol% or less, 22 mol% or less, 21 mol% or less, or 20 mol% or less.
일 구체예에서, 상기 디올 성분이 상기 (c) 추가의 디올을 더 포함할 경우, 전체 디올 성분 100 몰% 기준으로, (a) 무수당 알코올의 함량은 69 내지 98 몰%일 수 있고, (b) 무수당 알코올-알킬렌 글리콜의 함량은 1 내지 30 몰%일 수 있으며, 상기 (c) 추가의 디올의 함량은 1 내지 30 몰%일 수 있다.In one embodiment, when the diol component further comprises the (c) additional diol, based on 100 mol% of the total diol component, (a) the content of anhydrosugar alcohol may be 69 to 98 mol%, ( b) The content of the anhydrosugar alcohol-alkylene glycol may be 1 to 30 mol%, and the content of the (c) additional diol may be 1 to 30 mol%.
본 발명에 있어서, 상기 탄산 디에스테르 성분은 본 발명의 효과를 잃지 않는 한 그 종류가 제한되지 않지만, 예를 들면, 디알킬 카보네이트, 디아릴 카보네이트, 알킬렌 카보네이트 또는 이들의 조합으로부터 선택된 것일 수 있다. In the present invention, the type of the carbonate diester component is not limited as long as the effect of the present invention is not lost, but, for example, it may be selected from dialkyl carbonate, diaryl carbonate, alkylene carbonate, or a combination thereof. .
일 구체예에서, 상기 디알킬 카보네이트의 예로는 디메틸 카보네이트, 디에틸 카보네이트, 디부틸 카보네이트, 디시클로헥실 카보네이트, 디이소부틸 카보네이트, 에틸노말부틸 카보네이트 및 에틸이소부틸 카보네이트 등을 들 수 있고, 상기 디아릴 카보네이트의 예로는 디페닐 카보네이트, 디톨릴 카보네이트, 비스(클로로페닐) 카보네이트 및 디(m-크레실) 카보네이트 등을 들 수 있으며, 상기 알킬렌 카보네이트의 예로는 에틸렌 카보네이트, 트리메틸렌 카보네이트, 테트라메틸렌 카보네이트, 1,2-프로필렌 카보네이트, 1,2-부틸렌 카보네이트, 1,3-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 1,3-펜틸렌 카보네이트, 1,4-펜틸렌 카보네이트, 1,5-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 2,4-펜틸렌 카보네이트 및 네오펜틸렌 카보네이트 등을 들 수 있다.In one embodiment, examples of the dialkyl carbonate include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate, diisobutyl carbonate, ethyl normal butyl carbonate and ethyl isobutyl carbonate, and the dia Examples of the lyl carbonate include diphenyl carbonate, ditolyl carbonate, bis(chlorophenyl) carbonate and di(m-cresyl) carbonate, and examples of the alkylene carbonate include ethylene carbonate, trimethylene carbonate, tetramethylene carbonate, 1,2-propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 1,3-pentylene carbonate, 1 ,4-pentylene carbonate, 1,5-pentylene carbonate, 2,3-pentylene carbonate, 2,4-pentylene carbonate and neopentylene carbonate.
일 구체예에서, 상기 탄산 디에스테르 성분은 디메틸 카보네이트, 디에틸 카보네이트, 디페닐 카보네이트, 에틸렌 카보네이트 또는 이들의 조합으로부터 선택될 수 있으며, 보다 바람직하게는 디페닐 카보네이트일 수 있다.In one embodiment, the carbonic acid diester component may be selected from dimethyl carbonate, diethyl carbonate, diphenyl carbonate, ethylene carbonate, or a combination thereof, more preferably diphenyl carbonate.
일 구체예에서, 상기 탄산 디에스테르 성분은 하기 화학식 C로 표시되는 화합물로부터 선택된 것일 수 있다. In one embodiment, the carbonic acid diester component may be selected from compounds represented by the following formula (C).
[화학식 C][Formula C]
Figure PCTKR2020018967-appb-I000005
Figure PCTKR2020018967-appb-I000005
상기 화학식 C에서, A 및 A'은 각각 독립적으로, 비치환되거나 할로겐-치환된, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 아릴기 또는 탄소수 7 내지 25의 아랄킬기로부터 선택되고, A 및 A'은 서로 동일하거나 상이할 수 있다. In the formula (C), A and A' are each independently selected from an unsubstituted or halogen-substituted alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 25 carbon atoms, A and A' may be the same as or different from each other.
일 구체예에서, 상기 화학식 C로 표시되는 탄산 디에스테르 성분으로는 디페닐 카보네이트, 디톨릴카보네이트, 비스클로로페닐 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 디-t-부틸 카보네이트 또는 이들의 혼합물로부터 선택되는 것을 사용할 수 있으나, 바람직하게는 디페닐 카보네이트 또는 디메틸 카보네이트를 사용할 수 있다.In one embodiment, the carbonic acid diester component represented by Formula C is selected from diphenyl carbonate, ditolyl carbonate, bischlorophenyl carbonate, dimethyl carbonate, diethyl carbonate, di-t-butyl carbonate, or mixtures thereof. may be used, but preferably diphenyl carbonate or dimethyl carbonate may be used.
본 발명의 폴리카보네이트 공중합체를 제조함에 있어서, 탄산 디에스테르 성분은 전체 디올 성분 1 몰당량에 대해, 0.90 내지 1.10의 몰당량으로 사용할 수 있고, 바람직하게는, 0.96 내지 1.04의 몰당량으로 사용할 수 있다. 전체 디올 성분 1 몰당량에 대하여, 탄산 디에스테르 성분의 몰당량이 0.90 미만이면, 제조된 폴리카보네이트 공중합체 말단의 OH기가 증가되어, 폴리카보네이트 공중합체의 열 안정성이 악화되거나, 원하는 수준의 높은 분자량을 얻을 수 없고, 탄산 디에스테르 성분의 몰당량이 1.10 초과이면, 동일 조건 하에서 에스테르 교환 반응의 속도가 저하되거나, 원하는 수준의 높은 분자량을 얻을 수 없을 뿐만 아니라, 제조된 폴리카보네이트 공중합체 내의 잔존 탄산 디에스테르량이 증가되고, 이러한 잔존 탄산 디에스테르로 인해, 폴리카보네이트 공중합체를 이용한 성형 시에 악취가 발생하거나, 성형품의 악취의 원인이 되어 바람직하지 않다.In preparing the polycarbonate copolymer of the present invention, the carbonic acid diester component may be used in a molar equivalent of 0.90 to 1.10, preferably in a molar equivalent of 0.96 to 1.04, based on 1 molar equivalent of the total diol component. have. If the molar equivalent of the carbonic acid diester component is less than 0.90 with respect to 1 molar equivalent of the total diol component, the OH group at the end of the prepared polycarbonate copolymer is increased, and the thermal stability of the polycarbonate copolymer is deteriorated, or a high molecular weight of a desired level cannot be obtained, and if the molar equivalent of the carbonic acid diester component is more than 1.10, the rate of the transesterification reaction is reduced under the same conditions, or it is not possible to obtain a high molecular weight of a desired level, but also the residual carbonic acid in the prepared polycarbonate copolymer The amount of diester is increased, and due to such residual diester carbonate, an odor is generated during molding using the polycarbonate copolymer, or it is a cause of bad smell of the molded article, which is not preferable.
일 구체예에서, 본 발명의 폴리카보네이트 공중합체는 하기 화학식 1의 구조를 갖는 반복 단위; 및 하기 화학식 2의 구조를 갖는 반복 단위;를 포함할 수 있다.In one embodiment, the polycarbonate copolymer of the present invention includes a repeating unit having a structure of Formula 1 below; and a repeating unit having the structure of Formula 2 below.
[화학식 1][Formula 1]
Figure PCTKR2020018967-appb-I000006
Figure PCTKR2020018967-appb-I000006
[화학식 2][Formula 2]
Figure PCTKR2020018967-appb-I000007
Figure PCTKR2020018967-appb-I000007
상기 화학식 2에서, In Formula 2,
R1은 각각 독립적으로 수소 또는 알킬이고, 보다 구체적으로는 수소 또는 탄소수 1 내지 18의 알킬이며,R 1 is each independently hydrogen or alkyl, more specifically hydrogen or alkyl having 1 to 18 carbon atoms,
m 및 n은 각각 독립적으로 0 내지 15의 정수이되, m+n은 1 내지 25의 정수이다.m and n are each independently an integer from 0 to 15, and m+n is an integer from 1 to 25.
또한 일 구체예에서, 본 발명의 폴리카보네이트 공중합체는 하기 화학식 3의 구조를 갖는 반복 단위를 더 포함할 수 있다.Also, in one embodiment, the polycarbonate copolymer of the present invention may further include a repeating unit having a structure of Formula 3 below.
[화학식 3] [Formula 3]
Figure PCTKR2020018967-appb-I000008
Figure PCTKR2020018967-appb-I000008
상기 화학식 3에서, In Formula 3,
R은 탄소수 2 내지 12의 알킬렌기, 탄소수 3 내지 30의 사이클로알킬렌기, 탄소수 6 내지 30의 아릴렌기 또는 이들의 조합이다. R is an alkylene group having 2 to 12 carbon atoms, a cycloalkylene group having 3 to 30 carbon atoms, an arylene group having 6 to 30 carbon atoms, or a combination thereof.
본 발명은 또한, 디올 성분 및 탄산 디에스테르 성분을 포함하는 혼합물을 중합 촉매 존재 하에서 반응시키는 단계를 포함하고, 상기 디올 성분이 디올 성분 총 100 몰% 기준으로, (a) 무수당 알코올 69 내지 99 몰% 및 (b) 무수당 알코올-알킬렌 글리콜 1 내지 31 몰%를 포함하는, 폴리카보네이트 공중합체의 제조 방법을 제공한다.The present invention also comprises the step of reacting a mixture comprising a diol component and a carbonic acid diester component in the presence of a polymerization catalyst, wherein the diol component is based on a total of 100 mol% of the diol component, (a) anhydrosugar alcohol 69 to 99 It provides a method for preparing a polycarbonate copolymer, comprising 1 to 31 mol% of anhydrosugar alcohol-alkylene glycol and (b) anhydrous sugar alcohol.
일 구체예에서, 상기 폴리카보네이트 공중합체의 제조 방법에서 사용되는 상기 디올 성분은 (c) 지방족 디올, 무수당 알코올과 무수당 알코올-알킬렌 글리콜 이외의 지환족 디올 또는 이들의 혼합물로부터 선택되는 추가의 디올을 더 포함할 수 있다.In one embodiment, the diol component used in the method for preparing the polycarbonate copolymer is (c) an aliphatic diol, an anhydrosugar alcohol and an anhydrosugar alcohol- an alicyclic diol other than an alkylene glycol, or a mixture thereof. It may further include a diol of.
본 발명의 폴리카보네이트 공중합체의 제조 방법에 있어서 사용 가능한 무수당 알코올, 무수당 알코올-알킬렌 글리콜, 추가의 디올 및 탄산 디에스테르 성분의 종류 및 그 사용량에 대해서는 앞서 설명한 바와 같다.The types and amounts of anhydrosugar alcohol, anhydrosugar alcohol-alkylene glycol, additional diol and diester carbonate components usable in the method for producing the polycarbonate copolymer of the present invention are as described above.
본 발명의 폴리카보네이트 공중합체 제조 방법에 있어서, 상기 중합 촉매로는 에스테르 교환 촉매를 사용할 수 있고, 예를 들면, 알칼리 금속염 화합물, 알칼리 토금속염 화합물 또는 이들의 혼합물이 사용될 수 있다. In the polycarbonate copolymer manufacturing method of the present invention, a transesterification catalyst may be used as the polymerization catalyst, and for example, an alkali metal salt compound, an alkaline earth metal salt compound, or a mixture thereof may be used.
일 구체예에서, 알칼리 금속염 화합물, 알칼리 토금속염 화합물 또는 이들의 혼합물로부터 선택되는 중합 촉매와 함께, 보조적으로 염기성 붕소 화합물, 염기성 인 화합물, 염기성 암모늄 화합물, 아민계 화합물 또는 이들의 혼합물로부터 선택되는 염기성 화합물을 병용하는 것도 가능하지만, 보조적으로 사용되는 염기성 화합물 없이, 중합 촉매를 단독으로 사용하는 것이 바람직하다.In one embodiment, together with a polymerization catalyst selected from an alkali metal salt compound, an alkaline earth metal salt compound, or a mixture thereof, a basic boron compound, a basic phosphorus compound, a basic ammonium compound, an amine compound, or a mixture thereof. Although it is also possible to use the compounds together, it is preferable to use the polymerization catalyst alone without the auxiliary basic compound used.
일 구체예에서, 중합 촉매로서 사용되는 알칼리 금속염 화합물로는, 예를 들어, 수산화나트륨, 수산화칼륨, 수산화리튬, 수산화세슘, 탄산수소나트륨, 탄산수소칼륨, 탄산수소리튬, 탄산수소세슘, 탄산나트륨, 탄산칼륨, 탄산리튬, 탄산세슘, 아세트산나트륨, 아세트산칼륨, 아세트산리튬, 아세트산세슘, 스테아르산 나트륨, 스테아르산 칼륨, 스테아르산 리튬, 스테아르산 세슘, 수소화 붕소 나트륨, 수소화 붕소 칼륨, 수소화 붕소 리튬, 수소화 붕소 세슘, 페닐화 붕소 나트륨, 페닐화 붕소 칼륨, 페닐화 붕소 리튬, 페닐화 붕소 세슘, 벤조산 나트륨, 벤조산 칼륨, 벤조산 리튬, 벤조산 세슘, 인산 수소 2 나트륨, 인산 수소 2 칼륨, 인산 수소 2 리튬, 인산 수소 2 세슘, 아인산 수소 2 나트륨, 아인산 수소 칼륨, 아인산 수소 2 리튬, 아인산 수소 2 세슘, 페닐 인산 2 나트륨, 페닐 인산 2 칼륨, 페닐 인산 2 리튬, 페닐 인산 2 세슘, 나트륨, 칼륨, 리튬, 세슘의 알콜레이트, 페놀레이트, 비스페놀 A의 2 나트륨 염, 2 칼륨염, 2 리튬염 또는 2 세슘염 등을 들 수 있다.In one embodiment, the alkali metal salt compound used as the polymerization catalyst includes, for example, sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium hydrogen carbonate, cesium hydrogen carbonate, sodium carbonate, Potassium carbonate, lithium carbonate, cesium carbonate, sodium acetate, potassium acetate, lithium acetate, cesium acetate, sodium stearate, potassium stearate, lithium stearate, cesium stearate, sodium borohydride, potassium borohydride, lithium borohydride, hydride Cesium boron, sodium boron phenylide, potassium boron phenylide, lithium boron phenylide, cesium boron phenylide, sodium benzoate, potassium benzoate, lithium benzoate, cesium benzoate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, lithium hydrogen phosphate, Cesium hydrogen phosphate, disodium hydrogen phosphite, potassium hydrogen phosphite, lithium hydrogen phosphite, 2 cesium hydrogen phosphite, disodium phenyl phosphate, dipotassium phenyl phosphate, dilithium phenyl phosphate, 2 cesium phenyl phosphate, sodium, potassium, lithium, alcoholate, phenolate of cesium, disodium salt, dipotassium salt, dilithium salt, or dicesium salt of bisphenol A; and the like.
일 구체예에서, 중합 촉매로서 사용되는 알칼리 토금속염 화합물로는, 예를 들어, 수산화칼슘, 수산화바륨, 수산화마그네슘, 수산화스트론튬, 탄산수소칼슘, 탄산수소바륨, 탄산수소마그네슘, 탄산수소스트론튬, 탄산칼슘, 탄산바륨, 탄산마그네슘, 탄산스트론튬, 아세트산칼슘, 아세트산바륨, 아세트산마그네슘, 아세트산스트론튬, 스테아르산 칼슘, 스테아르산 바륨, 스테아르산 마그네슘 또는 스테아르산 스트론튬 등을 들 수 있다.In one embodiment, the alkaline earth metal salt compound used as the polymerization catalyst includes, for example, calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium hydrogen carbonate, barium hydrogen carbonate, magnesium hydrogen carbonate, strontium hydrogen carbonate, calcium carbonate. , barium carbonate, magnesium carbonate, strontium carbonate, calcium acetate, barium acetate, magnesium acetate, strontium acetate, calcium stearate, barium stearate, magnesium stearate, or strontium stearate.
전술한 알칼리 금속염 화합물 및 알칼리 토금속염 화합물은 1 종을 단독으로 사용하여도 되고, 2종 이상을 병용하여도 된다.The alkali metal salt compound and alkaline earth metal salt compound mentioned above may be used individually by 1 type, and may use 2 or more types together.
일 구체예에서, 전술한 중합 촉매와 병용되는 염기성 붕소 화합물의 예로는, 테트라메틸붕소, 테트라에틸붕소, 테트라프로필붕소, 테트라부틸붕소, 트리메틸에틸붕소, 트리메틸벤질붕소, 트리메틸페닐붕소, 트리에틸메틸붕소, 트리에틸벤질붕소, 트리에틸페닐붕소, 트리부틸벤질붕소, 트리부틸페닐붕소, 테트라페닐붕소, 벤질트리페닐붕소, 메틸트리페닐붕소 및 부틸트리페닐붕소 등의 나트륨염, 칼륨염, 리튬염, 칼슘염, 바륨염, 마그네슘염, 또는 스트론튬염 등을 들 수 있다.In one embodiment, examples of the basic boron compound used in combination with the polymerization catalyst described above include tetramethylboron, tetraethylboron, tetrapropylboron, tetrabutylboron, trimethylethylboron, trimethylbenzylboron, trimethylphenylboron, triethylmethyl Sodium salts, potassium salts, lithium salts such as boron, triethylbenzylboron, triethylphenylboron, tributylbenzylboron, tributylphenylboron, tetraphenylboron, benzyltriphenylboron, methyltriphenylboron and butyltriphenylboron , calcium salt, barium salt, magnesium salt, or strontium salt.
일 구체예에서, 염기성 인 화합물의 예로는, 트리에틸포스핀, 트리-n-프로필포스핀, 트리이소프로필포스핀, 트리-n-부틸포스핀, 트리페닐포스핀, 트리부틸포스핀, 또는 4급 포스포늄염 등을 들 수 있다.In one embodiment, examples of basic phosphorus compounds include triethylphosphine, tri-n-propylphosphine, triisopropylphosphine, tri-n-butylphosphine, triphenylphosphine, tributylphosphine, or A quaternary phosphonium salt etc. are mentioned.
일 구체예에서, 염기성 암모늄 화합물의 예로는, 테트라메틸암모늄히드록시드, 테트라에틸암모늄히드록시드, 테트라프로필암모늄히드록시드, 테트라부틸암모늄히드록시드, 트리메틸에틸암모늄히드록시드, 트리메틸벤질암모늄히드록시드, 트리메틸페닐암모늄히드록시드, 트리에틸메틸암모늄히드록시드, 트리에틸벤질암모늄히드록시드, 트리에틸페닐암모늄히드록시드, 트리부틸벤질암모늄히드록시드, 트리부틸페닐암모늄히드록시드, 테트라페닐암모늄히드록시드, 벤질트리페닐암모늄히드록시드, 메틸트리페닐암모늄히드록시드 또는 부틸트리페닐암모늄히드록시드 등을 들 수 있다.In one embodiment, examples of the basic ammonium compound include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylbenzylammonium Hydroxide, trimethylphenylammonium hydroxide, triethylmethylammonium hydroxide, triethylbenzylammonium hydroxide, triethylphenylammonium hydroxide, tributylbenzylammonium hydroxide, tributylphenylammonium hydroxide , tetraphenylammonium hydroxide, benzyltriphenylammonium hydroxide, methyltriphenylammonium hydroxide, or butyltriphenylammonium hydroxide.
일 구체예에서, 아민계 화합물의 예로는, 4-아미노피리딘, 2-아미노피리딘, N,N-디메틸-4-아미노피리딘, 4-디에틸아미노피리딘, 2-히드록시피리딘, 2-메톡시피리딘, 4-메톡시피리딘, 2-디메틸아미노이미다졸, 2-메톡시이미다졸, 이미다졸, 2-메르캅토 이미다졸, 2-메틸이미다졸 또는 아미노퀴놀린 등을 들 수 있다.In one embodiment, examples of the amine-based compound include 4-aminopyridine, 2-aminopyridine, N,N-dimethyl-4-aminopyridine, 4-diethylaminopyridine, 2-hydroxypyridine, 2-methoxy and pyridine, 4-methoxypyridine, 2-dimethylaminoimidazole, 2-methoxyimidazole, imidazole, 2-mercaptoimidazole, 2-methylimidazole or aminoquinoline.
중합 촉매와 함께 병용 사용되는 전술한 염기성 화합물은 1종을 단독으로 사용하여도 되고, 2종 이상을 병용하여도 된다.The above-mentioned basic compound used together with a polymerization catalyst may be used individually by 1 type, and may use 2 or more types together.
본 발명에 따른 폴리카보네이트 공중합체를 사용하면, 친환경성이 우수하면서 이소소르비드와 고리형 또는 선형 디올 화합물을 디올 성분으로 사용하여 제조된 기존의 폴리카보네이트 공중합체와 비교하여 현저히 개선된 물성, 특히, 개선된 인장 강도 및 신율을 동시에 나타내는 성형품을 얻을 수 있다.When the polycarbonate copolymer according to the present invention is used, the physical properties are significantly improved compared to the existing polycarbonate copolymer prepared by using isosorbide and a cyclic or linear diol compound as a diol component while being excellent in eco-friendliness, especially , it is possible to obtain a molded article exhibiting improved tensile strength and elongation at the same time.
따라서, 본 발명의 또 다른 측면에 따르면, 상기 본 발명의 폴리카보네이트 공중합체를 포함하는 성형품이 제공된다.Accordingly, according to another aspect of the present invention, there is provided a molded article comprising the polycarbonate copolymer of the present invention.
상기 성형품은 본 발명의 폴리카보네이트 공중합체를 압출 또는 사출 성형하여 제조될 수 있다. The molded article may be manufactured by extrusion or injection molding of the polycarbonate copolymer of the present invention.
이하, 실시예 및 비교예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나, 본 발명의 범위가 이들로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through Examples and Comparative Examples. However, the scope of the present invention is not limited thereto.
[실시예][Example]
실시예 1Example 1
질소관, 부산물 제거용 트랩 및 감압용 진공 펌프가 연결되어 있고, 교반 토크를 확인할 수 있는 교반기, 온도계 및 히터를 포함하는 250 ml의 4구 반응기에 이소소르비드 513.2 mmol, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol, 디페닐 카보네이트 570.2 mmol 및 마그네슘 아세테이트 4 수화물(전체 디올 총량 대비 100 ppm 사용)을 넣고, 질소 분위기하에서 100℃까지 승온한 후, 필요에 따라 교반하며 반응 원료를 용해하였다. 반응 원료 용해 후 반응기 온도를 160℃까지 승온하여 1 시간 동안 반응시킨 후, 압력을 상압에서 20 torr 수준까지 감압하면서 발생되는 부산물인 페놀을 일부 제거하였다. 513.2 mmol of isosorbide, ethylene oxide of isosorbide in a 250 ml 4-necked reactor including a stirrer, a thermometer and a heater that a nitrogen tube, a trap for removing by-products and a vacuum pump for pressure reduction are connected, and the stirring torque can be checked 57.0 mmol of the 1 mol adduct, 570.2 mmol of diphenyl carbonate, and magnesium acetate tetrahydrate (100 ppm of the total amount of diol used) were added, and the temperature was raised to 100° C. under a nitrogen atmosphere, and the reaction raw materials were dissolved with stirring as necessary. After dissolving the reaction raw material, the reactor temperature was raised to 160° C. and reacted for 1 hour, and then phenol, a by-product, was partially removed while the pressure was reduced from normal pressure to a level of 20 torr.
이어서 반응기 온도를 240℃까지 승온시키고 5 torr 이하의 압력까지 감압하여 1 시간 동안 추가 반응을 진행하였다. 이후 교반기의 교반 토크가 소정의 교반 토크에 도달한 후, 반응을 종료하였다. 반응 결과, 수평균분자량이 29,600 g/mol이며, 다분산 지수(PDI)가 2.0이고, 유리전이온도가 152℃인 투명한 폴리카보네이트 공중합체 약 99g을 수득하였다.Then, the temperature of the reactor was raised to 240° C. and the pressure was reduced to a pressure of 5 torr or less, and an additional reaction was performed for 1 hour. After the stirring torque of the stirrer reached a predetermined stirring torque, the reaction was terminated. As a result of the reaction, about 99 g of a transparent polycarbonate copolymer having a number average molecular weight of 29,600 g/mol, a polydispersity index (PDI) of 2.0, and a glass transition temperature of 152° C. was obtained.
상기 수득된 폴리카보네이트 수지를 이용하여 ASTM D638에 따라 동일한 인장 시편 5개를 제조하였고, 상기 5개의 인장 시편에 대해 만능 시험기 (UTM)를 이용하여 인장 강도 및 신율을 측정한 결과, 5개의 인장강도 측정 값의 평균 인장강도가 97 MPa이었고, 5개의 신율 측정 값의 평균 신율은 18%이었으며, 그 결과를 하기 표 1에 나타내었다.Five identical tensile specimens were prepared according to ASTM D638 using the obtained polycarbonate resin, and the tensile strength and elongation of the five tensile specimens were measured using a universal testing machine (UTM). As a result, five tensile strengths The average tensile strength of the measured values was 97 MPa, and the average elongation of the five measured values of elongation was 18%, and the results are shown in Table 1 below.
실시예 2Example 2
이소소르비드의 함량을 513.2 mmol에서 이소소르비드를 479.0 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 532.2 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 에틸렌 옥사이드 5몰 부가물 53.2 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,800 g/mol이며, PDI가 2.2 이고, 유리전이온도가 142℃인 폴리카보네이트 공중합체 101g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 94 MPa이었고, 평균 신율이 22%이었으며, 그 결과를 하기 표 1에 나타내었다.Change the content of isosorbide from 513.2 mmol to 479.0 mmol of isosorbide, change the content of diphenyl carbonate from 570.2 mmol to 532.2 mmol, and 57.0 mmol of the ethylene oxide 1 mole adduct of isosorbide with isosorbide Poly with a number average molecular weight of 30,800 g/mol, a PDI of 2.2, and a glass transition temperature of 142° C. was carried out in the same manner as in Example 1, except that 53.2 mmol of the 5 mol adduct of sorbide was used. 101 g of carbonate copolymer was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 94 MPa and the average elongation was 22%, and the results are shown in Table 1 below.
실시예 3Example 3
이소소르비드의 함량을 513.2 mmol에서 479.0 mmol으로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 532.2 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 에틸렌 옥사이드 10몰 부가물 53.2 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,900 g/mol이며, PDI가 3.2이고, 유리전이온도가 132℃인 폴리카보네이트 공중합체 112g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 89 MPa이었고, 평균 신율이 26%이었으며, 그 결과를 하기 표 1에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 479.0 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 532.2 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with ethylene of isosorbide. 112 g of polycarbonate copolymer having a number average molecular weight of 30,900 g/mol, a PDI of 3.2, and a glass transition temperature of 132° C. in the same manner as in Example 1, except that 53.2 mmol of the oxide 10 mol adduct was used. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 89 MPa and the average elongation was 26%, and the results are shown in Table 1 below.
실시예 4Example 4
이소소르비드의 함량을 513.2 mmol에서 479.0 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 532.2 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 프로필렌 옥사이드 5몰 부가물 53.2 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,500 g/mol이며, PDI가 2.3이고, 유리전이온도가 145℃인 폴리카보네이트 공중합체 103g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 95 MPa이었고, 평균 신율이 24%이었으며, 그 결과를 하기 표 1에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 479.0 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 532.2 mmol, and 57.0 mmol of the ethylene oxide 1 mole adduct of isosorbide was replaced with propylene of isosorbide. 103 g of a polycarbonate copolymer having a number average molecular weight of 30,500 g/mol, a PDI of 2.3, and a glass transition temperature of 145° C. in the same manner as in Example 1, except that 53.2 mmol of the oxide 5 mol adduct was used. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 95 MPa and the average elongation was 24%, and the results are shown in Table 1 below.
실시예 5Example 5
이소소르비드의 함량을 513.2 mmol에서 376.4 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 418.2 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 프로필렌 옥사이드 25몰 부가물 41.8 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 31,800 g/mol이며, PDI가 3.9이고, 유리전이온도가 125℃인 폴리카보네이트 공중합체 126g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 83 MPa이었고, 평균 신율이 35%이었으며, 그 결과를 하기 표 1에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 376.4 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 418.2 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with propylene of isosorbide. 126 g of a polycarbonate copolymer having a number average molecular weight of 31,800 g/mol, a PDI of 3.9, and a glass transition temperature of 125° C. in the same manner as in Example 1, except that 41.8 mmol of the oxide 25 mol adduct was used. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 83 MPa and the average elongation was 35%, and the results are shown in Table 1 below.
실시예 6Example 6
이소소르비드의 함량을 513.2 mmol에서 342.1 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 488.8 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 에틸렌 옥사이드 5몰 부가물 146.6 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,000 g/mol이며, PDI가 2.2이고, 유리전이온도가 113℃인 폴리카보네이트 공중합체 112g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 86 MPa이었고, 평균 신율이 29%이었으며, 그 결과를 하기 표 1에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 342.1 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 488.8 mmol, and 57.0 mmol of the ethylene oxide 1 mole adduct of isosorbide was replaced with ethylene of isosorbide. 112 g of a polycarbonate copolymer having a number average molecular weight of 30,000 g/mol, a PDI of 2.2, and a glass transition temperature of 113° C. in the same manner as in Example 1, except that 146.6 mmol of the oxide 5 mol adduct was used. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 86 MPa and the average elongation was 29%, and the results are shown in Table 1 below.
실시예 7Example 7
이소소르비드의 함량을 513.2 mmol에서 205.3 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 293.3 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 에틸렌 옥사이드 25몰 부가물 88.0 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 31,300 g/mol이며, PDI가 3.6이고, 유리전이온도가 60℃인 폴리카보네이트 공중합체 140g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 80 MPa이었고, 평균 신율이 42%이었으며, 그 결과를 하기 표 1에 나타내었다.The content of isosorbide is changed from 513.2 mmol to 205.3 mmol, the content of diphenyl carbonate is changed from 570.2 mmol to 293.3 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide is replaced with ethylene of isosorbide. 140 g of polycarbonate copolymer having a number average molecular weight of 31,300 g/mol, a PDI of 3.6, and a glass transition temperature of 60° C. in the same manner as in Example 1, except that 88.0 mmol of the oxide 25 mol adduct was used. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 80 MPa and the average elongation was 42%, and the results are shown in Table 1 below.
실시예 8Example 8
이소소르비드의 함량을 513.2 mmol에서 376.4 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 537.6 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 프로필렌 옥사이드 1몰 부가물 161.3 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,100 g/mol이며, PDI가 2.1이고, 유리전이온도가 134℃인 폴리카보네이트 공중합체 98g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 92 MPa이었고, 평균 신율이 20%이었으며, 그 결과를 하기 표 1에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 376.4 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 537.6 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with propylene of isosorbide. 98 g of a polycarbonate copolymer having a number average molecular weight of 30,100 g/mol, a PDI of 2.1, and a glass transition temperature of 134° C. in the same manner as in Example 1, except that 161.3 mmol of the oxide 1 mole adduct was used. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 92 MPa and the average elongation was 20%, and the results are shown in Table 1 below.
실시예 9Example 9
이소소르비드의 함량을 513.2 mmol에서 342.1 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 488.8 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 프로필렌 옥사이드 5몰 부가물 146.6 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,300 g/mol이며, PDI가 2.4이고, 유리전이온도가 110℃인 폴리카보네이트 공중합체 120g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 87 MPa이었고, 평균 신율이 31%이었으며, 그 결과를 하기 표 1에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 342.1 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 488.8 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with propylene of isosorbide. 120 g of a polycarbonate copolymer having a number average molecular weight of 30,300 g/mol, a PDI of 2.4, and a glass transition temperature of 110° C. in the same manner as in Example 1, except that 146.6 mmol of the oxide 5 mol adduct was used. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 87 MPa and the average elongation was 31%, and the results are shown in Table 1 below.
실시예 10Example 10
이소소르비드의 함량을 513.2 mmol에서 273.7 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 391.0 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 프로필렌 옥사이드 10몰 부가물 117.3 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,200 g/mol이며, PDI가 3.3이고, 유리전이온도가 82℃인 폴리카보네이트 공중합체 130g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 84 MPa이었고, 평균 신율이 35%이었으며, 그 결과를 하기 표 1에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 273.7 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 391.0 mmol, and 57.0 mmol of the ethylene oxide 1 mole adduct of isosorbide was replaced with propylene of isosorbide. 130 g of a polycarbonate copolymer having a number average molecular weight of 30,200 g/mol, a PDI of 3.3, and a glass transition temperature of 82° C. in the same manner as in Example 1, except that 117.3 mmol of the oxide 10 mol adduct was used. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 84 MPa and the average elongation was 35%, and the results are shown in Table 1 below.
실시예 11Example 11
이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 에틸렌 옥사이드 5몰 부가물 28.5 mmol 및 1,4-사이클로헥산디메탄올 28.5 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,000 g/mol이며, PDI가 2.0이고, 유리전이온도가 135℃인 폴리카보네이트 공중합체 100g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 95 MPa이었고, 평균 신율이 19%이었으며, 그 결과를 하기 표 1에 나타내었다.Same as Example 1, except that 28.5 mmol of ethylene oxide 5 mol adduct of isosorbide and 28.5 mmol of 1,4-cyclohexanedimethanol were used instead of 57.0 mmol of 1 mol adduct of ethylene oxide of isosorbide 100 g of a polycarbonate copolymer having a number average molecular weight of 30,000 g/mol, a PDI of 2.0, and a glass transition temperature of 135° C. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 95 MPa and the average elongation was 19%, and the results are shown in Table 1 below.
실시예 12Example 12
이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 에틸렌 옥사이드 5몰 부가물 28.5 mmol 및 에틸렌 글리콜 28.5 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,500 g/mol이며, PDI가 2.1이고, 유리전이온도가 140℃인 폴리카보네이트 공중합체 98g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 94 MPa이었고, 평균 신율이 16%이었으며, 그 결과를 하기 표 1에 나타내었다.A number average was carried out in the same manner as in Example 1, except that 28.5 mmol of an ethylene oxide 5 mole adduct of isosorbide and 28.5 mmol of ethylene glycol were used instead of 57.0 mmol of an ethylene oxide 1 mole adduct of isosorbide. 98 g of a polycarbonate copolymer having a molecular weight of 30,500 g/mol, a PDI of 2.1, and a glass transition temperature of 140°C was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 94 MPa and the average elongation was 16%, and the results are shown in Table 1 below.
실시예 13Example 13
이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 에틸렌 옥사이드 5몰 부가물 28.5 mmol 및 1,4-부탄디올 28.5 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,400 g/mol이며, PDI가 2.0이고, 유리전이온도가 130℃인 폴리카보네이트 공중합체 99g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 89 MPa이었고, 평균 신율이 20%이었으며, 그 결과를 하기 표 1에 나타내었다.It was carried out in the same manner as in Example 1, except that 28.5 mmol of an ethylene oxide 5-mol adduct of isosorbide and 28.5 mmol of 1,4-butanediol were used instead of 57.0 mmol of an ethylene oxide 1-mol adduct of isosorbide Thus, 99 g of a polycarbonate copolymer having a number average molecular weight of 30,400 g/mol, a PDI of 2.0, and a glass transition temperature of 130° C. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 89 MPa and the average elongation was 20%, and the results are shown in Table 1 below.
실시예 14Example 14
이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 에틸렌 옥사이드 5몰 부가물 28.5 mmol 및 1,6-헥산디올 28.5 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 31,000 g/mol이며, PDI가 2.2이고, 유리전이온도가 122℃인 폴리카보네이트 공중합체 99g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 90 MPa이었고, 평균 신율이 25%이었으며, 그 결과를 하기 표 1에 나타내었다.In the same manner as in Example 1, except that 28.5 mmol of ethylene oxide 5 mol adduct of isosorbide and 28.5 mmol of 1,6-hexanediol were used instead of 57.0 mmol of 1 mol adduct of ethylene oxide of isosorbide 99 g of a polycarbonate copolymer having a number average molecular weight of 31,000 g/mol, a PDI of 2.2, and a glass transition temperature of 122° C. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 90 MPa and the average elongation was 25%, and the results are shown in Table 1 below.
실시예 15Example 15
이소소르비드의 함량을 513.2 mmol에서 376.4 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 537.6 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 프로필렌 옥사이드 5몰 부가물 53.8 mmol 및 1,4-사이클로디메탄올 107.5 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,600 g/mol이며, PDI가 2.3이고, 유리전이온도가 114℃인 폴리카보네이트 공중합체 103g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 88 MPa이었고, 평균 신율이 28%이었으며, 그 결과를 하기 표 1에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 376.4 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 537.6 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with propylene of isosorbide. A number average molecular weight of 30,600 g/mol, a PDI of 2.3, and a glass transition were carried out in the same manner as in Example 1, except that 53.8 mmol of the oxide 5 mol adduct and 107.5 mmol of 1,4-cyclodimethanol were used. 103 g of a polycarbonate copolymer having a temperature of 114°C was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 88 MPa and the average elongation was 28%, and the results are shown in Table 1 below.
실시예 16Example 16
이소소르비드의 함량을 513.2 mmol에서 376.4 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 537.6 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 프로필렌 옥사이드 5몰 부가물 53.8 mmol 및 에틸렌 글리콜 107.5 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,200 g/mol이며, PDI가 2.4이고, 유리전이온도가 105℃인 폴리카보네이트 공중합체 95g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 85 MPa이었고, 평균 신율이 22%이었으며, 그 결과를 하기 표 1에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 376.4 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 537.6 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with propylene of isosorbide. A number average molecular weight of 30,200 g/mol, a PDI of 2.4, and a glass transition temperature of 105° C. was carried out in the same manner as in Example 1, except that 53.8 mmol of an oxide 5 mol adduct and 107.5 mmol of ethylene glycol were used. 95 g of a polycarbonate copolymer was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 85 MPa and the average elongation was 22%, and the results are shown in Table 1 below.
실시예 17Example 17
이소소르비드의 함량을 513.2 mmol에서 376.4 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 537.6 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 프로필렌 옥사이드 5몰 부가물 53.8 mmol 및 1,4-부탄디올 107.5 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,100 g/mol이며, PDI가 2.2이고, 유리전이온도가 110℃인 폴리카보네이트 공중합체 99g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 86 MPa이었고, 평균 신율이 27%이었으며, 그 결과를 하기 표 1에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 376.4 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 537.6 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with propylene of isosorbide. A number average molecular weight of 30,100 g/mol, a PDI of 2.2, and a glass transition temperature were carried out in the same manner as in Example 1 except that 53.8 mmol of the oxide 5 mol adduct and 107.5 mmol of 1,4-butanediol were used. 99 g of a polycarbonate copolymer at 110° C. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 86 MPa and the average elongation was 27%, and the results are shown in Table 1 below.
실시예 18Example 18
이소소르비드의 함량을 513.2 mmol에서 376.4 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 537.6 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 프로필렌 옥사이드 5몰 부가물 53.8 mmol 및 1,6-헥산디올 107.5 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,600 g/mol이며, PDI가 2.2이고, 유리전이온도가 88℃인 폴리카보네이트 공중합체 102g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 85 MPa이었고, 평균 신율이 30%이었으며, 그 결과를 하기 표 1에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 376.4 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 537.6 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with propylene of isosorbide. A number average molecular weight of 30,600 g/mol, a PDI of 2.2, and a glass transition temperature were carried out in the same manner as in Example 1, except that 53.8 mmol of the oxide 5 mol adduct and 107.5 mmol of 1,6-hexanediol were used. 102 g of a polycarbonate copolymer having a value of 88°C was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 85 MPa and the average elongation was 30%, and the results are shown in Table 1 below.
실시예 19Example 19
이소소르비드의 함량을 513.2 mmol에서 581.6 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 587.5 mmol로 변경하며, , 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 에틸렌 옥사이드 5몰 부가물 5.9 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,000 g/mol이며, PDI가 1.9이고, 유리전이온도가 158℃인 폴리카보네이트 공중합체 100g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 105 MPa이었고, 평균 신율이 14%이었으며, 그 결과를 하기 표 1에 나타내었다.The content of isosorbide is changed from 513.2 mmol to 581.6 mmol, the content of diphenyl carbonate is changed from 570.2 mmol to 587.5 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide is replaced with isosorbide A polycarbonate copolymer having a number average molecular weight of 30,000 g/mol, a PDI of 1.9, and a glass transition temperature of 158° C. was carried out in the same manner as in Example 1, except that 5.9 mmol of the 5 mol adduct of ethylene oxide was used. 100 g were obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 105 MPa and the average elongation was 14%, and the results are shown in Table 1 below.
실시예 20Example 20
이소소르비드의 함량을 513.2 mmol에서 이소소르비드를 581.6 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 587.5 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 프로필렌 옥사이드 5몰 부가물 5.9 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,100 g/mol이며, PDI가 1.9이고, 유리전이온도가 160℃인 폴리카보네이트 공중합체 100g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 106 MPa이었고, 평균 신율이 13%이었으며, 그 결과를 하기 표 1에 나타내었다.The content of isosorbide is changed from 513.2 mmol to 581.6 mmol of isosorbide, the content of diphenyl carbonate is changed from 570.2 mmol to 587.5 mmol, and 57.0 mmol of ethylene oxide 1 mole adduct of isosorbide is replaced with isosorbide. Poly with a number average molecular weight of 30,100 g/mol, a PDI of 1.9, and a glass transition temperature of 160° C. was carried out in the same manner as in Example 1, except that 5.9 mmol of a 5 mol adduct of sorbide was used. 100 g of carbonate copolymer was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 106 MPa and the average elongation was 13%, and the results are shown in Table 1 below.
실시예 21Example 21
이소소르비드의 함량을 513.2 mmol에서 444.8 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 556.0 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물의 함량을 57.0 mmol에서 111.2 mmol로 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,000 g/mol이며, PDI가 2.0이고, 유리전이온도가 146℃인 폴리카보네이트 공중합체 97g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 95 MPa이었고, 평균 신율이 22%이었으며, 그 결과를 하기 표 1에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 444.8 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 556.0 mmol, and the content of 1 mole adduct of ethylene oxide of isosorbide was changed from 57.0 mmol to 111.2 mmol 97 g of a polycarbonate copolymer having a number average molecular weight of 30,000 g/mol, a PDI of 2.0, and a glass transition temperature of 146° C. was obtained in the same manner as in Example 1, except for that. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 95 MPa and the average elongation was 22%, and the results are shown in Table 1 below.
실시예 22Example 22
이소소르비드의 함량을 513.2 mmol에서 410.6 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 513.2 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 에틸렌 옥사이드 5몰 부가물 102.6 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,300 g/mol이며, PDI가 2.4이고, 유리전이온도가 125℃인 폴리카보네이트 공중합체 107g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 91 MPa이었고, 평균 신율이 28%이었으며, 그 결과를 하기 표 1에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 410.6 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 513.2 mmol, and 57.0 mmol of the ethylene oxide 1 mole adduct of isosorbide was replaced with ethylene of isosorbide. 107 g of polycarbonate copolymer having a number average molecular weight of 30,300 g/mol, a PDI of 2.4, and a glass transition temperature of 125° C. in the same manner as in Example 1, except that 102.6 mmol of the oxide 5 mol adduct was used. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 91 MPa and the average elongation was 28%, and the results are shown in Table 1 below.
실시예 23Example 23
이소소르비드의 함량을 513.2 mmol에서 342.1 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 427.7 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 프로필렌 옥사이드 10몰 부가물 85.5 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,400 g/mol이며, PDI가 3.0이고, 유리전이온도가 104℃인 폴리카보네이트 공중합체 119g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 85 MPa이었고, 평균 신율이 26%이었으며, 그 결과를 하기 표 1에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 342.1 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 427.7 mmol, and 57.0 mmol of the ethylene oxide 1 mole adduct of isosorbide was replaced with propylene of isosorbide. 119 g of a polycarbonate copolymer having a number average molecular weight of 30,400 g/mol, a PDI of 3.0, and a glass transition temperature of 104° C. in the same manner as in Example 1, except that 85.5 mmol of the oxide 10 mol adduct was used. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 85 MPa and the average elongation was 26%, and the results are shown in Table 1 below.
실시예 24Example 24
이소소르비드의 함량을 513.2 mmol에서 239.5 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 299.4 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 프로필렌 옥사이드 25몰 부가물 59.9 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,800 g/mol이며, PDI가 3.5이고, 유리전이온도가 81℃인 폴리카보네이트 공중합체 135g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 82 MPa이었고, 평균 신율이 32%이었으며, 그 결과를 하기 표 1에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 239.5 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 299.4 mmol, and 57.0 mmol of the ethylene oxide 1 mole adduct of isosorbide was replaced with propylene of isosorbide. 135 g of a polycarbonate copolymer having a number average molecular weight of 30,800 g/mol, a PDI of 3.5, and a glass transition temperature of 81° C. in the same manner as in Example 1, except that 59.9 mmol of the oxide 25 mol adduct was used. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 82 MPa and the average elongation was 32%, and the results are shown in Table 1 below.
[비교예][Comparative example]
비교예 1Comparative Example 1
이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 1,4-사이클로헥산디메탄올 57.0 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,300 g/mol이며, PDI가 2.2이고, 유리전이온도가 156℃인 폴리카보네이트 공중합체 94g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 82 MPa이었고, 평균 신율이 8%이었으며, 그 결과를 하기 표 2에 나타내었다.A number average molecular weight of 30,300 g/mol was carried out in the same manner as in Example 1, except that 57.0 mmol of 1,4-cyclohexanedimethanol was used instead of 57.0 mmol of the 1 mol adduct of ethylene oxide of isosorbide. , PDI is 2.2, and a glass transition temperature of 94 g of a polycarbonate copolymer of 156 ℃ was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 82 MPa and the average elongation was 8%, and the results are shown in Table 2 below.
비교예 2Comparative Example 2
이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 에틸렌 글리콜 57.0 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,200 g/mol이며, PDI가 2.1이고, 유리전이온도가 158℃인 폴리카보네이트 공중합체 90g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 77 MPa이었고, 평균 신율이 3%이었으며, 그 결과를 하기 표 2에 나타내었다.In the same manner as in Example 1, except that 57.0 mmol of ethylene glycol was used instead of 57.0 mmol of 1 mol adduct of ethylene oxide of isosorbide, the number average molecular weight was 30,200 g/mol, the PDI was 2.1, 90 g of a polycarbonate copolymer having a glass transition temperature of 158° C. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 77 MPa and the average elongation was 3%, and the results are shown in Table 2 below.
비교예 3Comparative Example 3
이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 1,4-부탄디올 57.0 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,400 g/mol이며, PDI가 2.1이고, 유리전이온도가 157℃인 폴리카보네이트 공중합체 92g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 67 MPa이었고, 평균 신율이 2%이었으며, 그 결과를 하기 표 2에 나타내었다.In the same manner as in Example 1, except that 57.0 mmol of 1,4-butanediol was used instead of 57.0 mmol of 1 mol adduct of ethylene oxide of isosorbide, the number average molecular weight was 30,400 g/mol, and PDI was 2.1, and 92 g of a polycarbonate copolymer having a glass transition temperature of 157° C. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 67 MPa and the average elongation was 2%, and the results are shown in Table 2 below.
비교예 4Comparative Example 4
이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 1,6-헥산디올 57.0 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 31,000 g/mol이며, PDI가 2.3이고, 유리전이온도가 147℃인 폴리카보네이트 공중합체 93g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 59 MPa이었고, 평균 신율이 2%이었으며, 그 결과를 하기 표 2에 나타내었다.It was carried out in the same manner as in Example 1, except that 57.0 mmol of 1,6-hexanediol was used instead of 57.0 mmol of 1 mol adduct of ethylene oxide of isosorbide, and the number average molecular weight was 31,000 g/mol, PDI is 2.3, and 93 g of a polycarbonate copolymer having a glass transition temperature of 147° C. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 59 MPa and the average elongation was 2%, and the results are shown in Table 2 below.
비교예 5Comparative Example 5
이소소르비드의 함량을 513.2 mmol에서 410.6 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 586.5 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 1,4-사이클로헥산디메탄올 176.0 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,100 g/mol이며, PDI가 2.1이고, 유리전이온도가 130℃인 폴리카보네이트 공중합체 96g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 80 MPa이었고, 평균 신율이 10%이었으며, 그 결과를 하기 표 2에 나타내었다.The content of isosorbide is changed from 513.2 mmol to 410.6 mmol, the content of diphenyl carbonate is changed from 570.2 mmol to 586.5 mmol, and 1,4-cyclo is replaced by 57.0 mmol of 1 mole adduct of ethylene oxide of isosorbide. 96 g of a polycarbonate copolymer having a number average molecular weight of 30,100 g/mol, a PDI of 2.1, and a glass transition temperature of 130° C. was obtained in the same manner as in Example 1, except that 176.0 mmol of hexanedimethanol was used. did. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 80 MPa and the average elongation was 10%, and the results are shown in Table 2 below.
비교예 6Comparative Example 6
이소소르비드의 함량을 513.2 mmol에서 444.8 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 635.4 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 에틸렌 글리콜 190.6 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 29,500 g/mol이며, PDI가 2.2이고, 유리전이온도가 124℃인 폴리카보네이트 공중합체 90g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 72 MPa이었고, 평균 신율이 5%이었으며, 그 결과를 하기 표 2에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 444.8 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 635.4 mmol, and 190.6 mmol of ethylene glycol was added instead of 57.0 mmol of the ethylene oxide 1 mole adduct of isosorbide. Except for that, it was carried out in the same manner as in Example 1 to obtain 90 g of a polycarbonate copolymer having a number average molecular weight of 29,500 g/mol, a PDI of 2.2, and a glass transition temperature of 124°C. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 72 MPa and the average elongation was 5%, and the results are shown in Table 2 below.
비교예 7Comparative Example 7
이소소르비드의 함량을 513.2 mmol에서 410.6 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 586.5 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 1,4-부탄디올 176.0 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,400 g/mol이며, PDI가 2.2이고, 유리전이온도가 119℃인 폴리카보네이트 공중합체 89g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 65 MPa이었고, 평균 신율이 4%이었으며, 그 결과를 하기 표 2에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 410.6 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 586.5 mmol, and 1,4-butanediol was replaced by 57.0 mmol of the 1 mole adduct of ethylene oxide of isosorbide. 89 g of a polycarbonate copolymer having a number average molecular weight of 30,400 g/mol, a PDI of 2.2, and a glass transition temperature of 119° C. was obtained in the same manner as in Example 1, except that 176.0 mmol was used. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 65 MPa and the average elongation was 4%, and the results are shown in Table 2 below.
비교예 8Comparative Example 8
이소소르비드의 함량을 513.2 mmol에서 410.6 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 586.5 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 1,6-헥산디올 176.0 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 31,100 g/mol이며, PDI가 2.1이고, 유리전이온도가 96℃인 폴리카보네이트 공중합체 92g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 52 MPa이었고, 평균 신율이 7%이었으며, 그 결과를 하기 표 2에 나타내었다.The content of isosorbide is changed from 513.2 mmol to 410.6 mmol, the content of diphenyl carbonate is changed from 570.2 mmol to 586.5 mmol, and 1,6-hexane is replaced with 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide. 92 g of a polycarbonate copolymer having a number average molecular weight of 31,100 g/mol, a PDI of 2.1, and a glass transition temperature of 96° C. was obtained in the same manner as in Example 1, except that 176.0 mmol of the diol was used. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 52 MPa and the average elongation was 7%, and the results are shown in Table 2 below.
비교예 9Comparative Example 9
이소소르비드의 함량을 513.2 mmol에서 479.0 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 598.7 mmol로 변경하며, , 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 1,4-부탄디올 119.8 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 29,400 g/mol이며, PDI가 2.0이고, 유리전이온도가 138℃인 폴리카보네이트 공중합체 92g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 74 MPa이었고, 평균 신율이 6%이었으며, 그 결과를 하기 표 2에 나타내었다.Change the content of isosorbide from 513.2 mmol to 479.0 mmol, and change the content of diphenyl carbonate from 570.2 mmol to 598.7 mmol, 1,4- in place of 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide 92 g of a polycarbonate copolymer having a number average molecular weight of 29,400 g/mol, a PDI of 2.0, and a glass transition temperature of 138° C. was obtained in the same manner as in Example 1, except that 119.8 mmol of butanediol was used. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 74 MPa and the average elongation was 6%, and the results are shown in Table 2 below.
비교예 10Comparative Example 10
이소소르비드의 함량을 513.2 mmol에서 479.0 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 598.7 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 1,6-헥산디올 119.8 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,200 g/mol이며, PDI가 1.9이고, 유리전이온도가 123℃인 폴리카보네이트 공중합체 96g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 63 MPa이었고, 평균 신율이 5%이었으며, 그 결과를 하기 표 2에 나타내었다.The content of isosorbide is changed from 513.2 mmol to 479.0 mmol, the content of diphenyl carbonate is changed from 570.2 mmol to 598.7 mmol, and 1,6-hexane is replaced with 57.0 mmol of the 1 mole adduct of ethylene oxide of isosorbide. 96 g of a polycarbonate copolymer having a number average molecular weight of 30,200 g/mol, a PDI of 1.9, and a glass transition temperature of 123° C. was obtained in the same manner as in Example 1, except that 119.8 mmol of the diol was used. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 63 MPa and the average elongation was 5%, and the results are shown in Table 2 below.
비교예 11Comparative Example 11
이소소르비드의 함량을 513.2 mmol에서 615.9 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 618.9 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 에틸렌 옥사이드 5몰 부가물 3.1 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 29,900 g/mol이며, PDI가 1.8이고, 유리전이온도가 160℃인 폴리카보네이트 공중합체 104g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 81 MPa이었고, 평균 신율이 3%이었으며, 그 결과를 하기 표 2에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 615.9 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 618.9 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with ethylene of isosorbide. 104 g of a polycarbonate copolymer having a number average molecular weight of 29,900 g/mol, a PDI of 1.8, and a glass transition temperature of 160° C. in the same manner as in Example 1, except that 3.1 mmol of the oxide 5 mol adduct was used. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 81 MPa and the average elongation was 3%, and the results are shown in Table 2 below.
비교예 12Comparative Example 12
이소소르비드의 함량을 513.2 mmol에서 615.9 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 618.9 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 대신하여 이소소르비드의 프로필렌 옥사이드 5몰 부가물 3.1 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,100 g/mol이며, PDI가 1.9이고, 유리전이온도가 160℃인 폴리카보네이트 공중합체 105g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 82 MPa이었고, 평균 신율이 2%이었으며, 그 결과를 하기 표 2에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 615.9 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 618.9 mmol, and 57.0 mmol of the ethylene oxide 1 mole adduct of isosorbide was replaced with isosorbide. A polycarbonate copolymer having a number average molecular weight of 30,100 g/mol, a PDI of 1.9, and a glass transition temperature of 160° C. was carried out in the same manner as in Example 1, except that 3.1 mmol of the 5 mol adduct of propylene oxide was used. 105 g of coalescence was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 82 MPa and the average elongation was 2%, and the results are shown in Table 2 below.
비교예 13Comparative Example 13
이소소르비드의 함량을 513.2 mmol에서 342.1 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 503.1 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 에틸렌 옥사이드 5몰 부가물 161.0 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,200 g/mol이며, PDI가 2.3이고, 유리전이온도가 112℃인 폴리카보네이트 공중합체 117g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 71 MPa이었고, 평균 신율이 11%이었으며, 그 결과를 하기 표 2에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 342.1 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 503.1 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with ethylene of isosorbide. 117 g of polycarbonate copolymer having a number average molecular weight of 30,200 g/mol, a PDI of 2.3, and a glass transition temperature of 112° C. in the same manner as in Example 1, except that 161.0 mmol of the oxide 5 mol adduct was used. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 71 MPa and the average elongation was 11%, and the results are shown in Table 2 below.
비교예 14Comparative Example 14
이소소르비드의 함량을 513.2 mmol에서 342.1 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 503.1 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 프로필렌 옥사이드 5몰 부가물 161.0 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,000 g/mol이며, PDI가 2.4이고, 유리전이온도가 115℃인 폴리카보네이트 공중합체 130g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 70 MPa이었고, 평균 신율이 10%이었으며, 그 결과를 하기 표 2에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 342.1 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 503.1 mmol, and 57.0 mmol of the ethylene oxide 1 mole adduct of isosorbide was replaced with propylene of isosorbide. 130 g of a polycarbonate copolymer having a number average molecular weight of 30,000 g/mol, a PDI of 2.4, and a glass transition temperature of 115° C. in the same manner as in Example 1, except that 161.0 mmol of the oxide 5 mol adduct was used. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 70 MPa and the average elongation was 10%, and the results are shown in Table 2 below.
비교예 15Comparative Example 15
이소소르비드의 함량을 513.2 mmol에서 307.9 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 473.7 mmol로 변경하며, 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 프로필렌 옥사이드 5몰 부가물 94.8 mmol 및 1,4-사이클로헥산디메탄올 71.1 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 30,000 g/mol이며, PDI가 2.3이고, 유리전이온도가 127℃인 폴리카보네이트 공중합체 105g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 76 MPa이었고, 평균 신율이 12%이었으며, 그 결과를 하기 표 2에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 307.9 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 473.7 mmol, and 57.0 mmol of the ethylene oxide 1 molar adduct of isosorbide was replaced with propylene of isosorbide. It was carried out in the same manner as in Example 1, except that 94.8 mmol of the oxide 5 mol adduct and 71.1 mmol of 1,4-cyclohexanedimethanol were used, the number average molecular weight was 30,000 g/mol, the PDI was 2.3, and the free 105 g of a polycarbonate copolymer having a transition temperature of 127° C. was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 76 MPa and the average elongation was 12%, and the results are shown in Table 2 below.
비교예 16Comparative Example 16
이소소르비드의 함량을 513.2 mmol에서 307.9 mmol로 변경하고, 디페닐 카보네이트의 함량을 570.2 mmol에서 473.7 mmol로 변경하며 이소소르비드의 에틸렌 옥사이드 1몰 부가물 57.0 mmol을 대신하여 이소소르비드의 프로필렌 옥사이드 5몰 부가물 94.8 mmol 및 1,4-부탄디올 71.1 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 수평균분자량이 29,600 g/mol이며, PDI가 2.2이고, 유리전이온도가 120℃인 폴리카보네이트 공중합체 100g을 수득하였다. 실시예 1과 동일한 방법으로 상기 수득된 폴리카보네이트 공중합체의 인장 강도 및 신율을 측정한 결과, 평균 인장강도가 72 MPa이었고, 평균 신율이 9%이었으며, 그 결과를 하기 표 2에 나타내었다.The content of isosorbide was changed from 513.2 mmol to 307.9 mmol, the content of diphenyl carbonate was changed from 570.2 mmol to 473.7 mmol, and propylene oxide of isosorbide was replaced by 57.0 mmol of the 1 mole adduct of ethylene oxide of isosorbide. A number average molecular weight of 29,600 g/mol, a PDI of 2.2, and a glass transition temperature of 120 was carried out in the same manner as in Example 1, except that 94.8 mmol of the 5-mol adduct and 71.1 mmol of 1,4-butanediol were used. 100 g of a polycarbonate copolymer having a temperature of ℃ was obtained. As a result of measuring the tensile strength and elongation of the obtained polycarbonate copolymer in the same manner as in Example 1, the average tensile strength was 72 MPa and the average elongation was 9%, and the results are shown in Table 2 below.
[성분 설명][Ingredient Description]
ISB: 이소소르비드ISB: isosorbide
EI 1: 이소소르비드의 에틸렌 옥사이드 1몰 부가물EI 1: 1 mole adduct of ethylene oxide of isosorbide
EI 5: 이소소르비드의 에틸렌 옥사이드 5몰 부가물EI 5: Ethylene oxide 5 molar adduct of isosorbide
EI 10: 이소소르비드의 에틸렌 옥사이드 10몰 부가물EI 10: 10 mole adduct of ethylene oxide of isosorbide
EI 25: 이소소르비드의 에틸렌 옥사이드 25몰 부가물EI 25: 25 mole adduct of ethylene oxide of isosorbide
PI 1: 이소소르비드의 프로필렌 옥사이드 1몰 부가물PI 1: 1 mole adduct of propylene oxide of isosorbide
PI 5: 이소소르비드의 프로필렌 옥사이드 5몰 부가물PI 5: Propylene oxide 5 molar adduct of isosorbide
PI 10: 이소소르비드의 프로필렌 옥사이드 10몰 부가물PI 10: 10 molar adduct of propylene oxide of isosorbide
PI 25: 이소소르비드의 프로필렌 옥사이드 25몰 부가물PI 25: 25 mole adduct of propylene oxide of isosorbide
1,4-CHDM: 1,4-시클로헥산디메탄올1,4-CHDM: 1,4-cyclohexanedimethanol
EG: 에틸렌 글리콜EG: ethylene glycol
1,4-BD: 1,4-부탄디올1,4-BD: 1,4-butanediol
1,6-HD: 1,6-헥산디올1,6-HD: 1,6-hexanediol
DPC: 디페닐카보네이트DPC: diphenyl carbonate
Mg(Ac)2·4H2O: 마그네슘 아세테이트 4 수화물Mg(Ac) 2 .4H 2 O: magnesium acetate tetrahydrate
[물성 측정 방법][Method of measuring physical properties]
- 수평균 분자량 (Mn) 및 다분산 지수 (PDI): 상기 실시예 및 비교예에서 제조된 각각의 폴리카보네이트 공중합체를 클로로포름에 1 내지 3 중량%로 용해시킨 후, 겔 투과 크로마토그래피(Gel Permeation Chromatography, GPC) 장치(애질런트 社)를 이용하여 수평균 분자량(Mn) 및 다분산 지수(PDI)를 측정하였다. 이 때 사용된 컬럼은 PLgel 5μm MIXED-D 300 x 7.5mm(애질런트 社)이고, 컬럼 온도는 35℃이며, 사용된 전개 용매는 클로로포름으로서, 0.5 mL/min 흘려서 사용하였으며, 표준 물질로는 폴리스티렌(알드리치 社)을 사용하였다. - Number average molecular weight (Mn) and polydispersity index (PDI): Each of the polycarbonate copolymers prepared in Examples and Comparative Examples was dissolved in chloroform in an amount of 1 to 3% by weight, followed by gel permeation chromatography (Gel Permeation) A number average molecular weight (Mn) and a polydispersity index (PDI) were measured using a Chromatography, GPC) apparatus (Agilent, Inc.). The column used at this time was PLgel 5μm MIXED-D 300 x 7.5mm (Agilent, Inc.), the column temperature was 35°C, and the developing solvent used was chloroform, which was flowed at 0.5 mL/min, and the standard material was polystyrene ( Aldrich Co.) was used.
- 유리전이온도 (Tg): 시차주사열량계 (DSC Q100, TA Instrument)를 이용하였으며, 구체적으로 10℃분의 승온 속도로 20℃에서 300℃까지 승온시켰고, 이후 20℃까지 급냉한 후, 다시 300℃까지 승온시켜 유리전이온도를 측정하였다.-Glass transition temperature (Tg): Differential scanning calorimetry (DSC Q100, TA Instrument) was used, and specifically, the temperature was raised from 20 °C to 300 °C at a temperature increase rate of 10 °C min, and then rapidly cooled to 20 °C, then 300 again The glass transition temperature was measured by raising the temperature to ℃.
- 인장 강도 및 신율: ASTM D638에 의거하여, UTM (Instron사, Instron 5967 제품)을 이용하여 5 mm/분의 속도로 인장 강도 및 신율을 측정하였다. 구체적으로 실시예 및 비교예에서 제조된 각 시편에 대해 총 5회의 인장 강도 및 신율을 측정하였고, 각 시편의 5회 측정 결과값의 평균값을 계산하였다.- Tensile strength and elongation: According to ASTM D638, tensile strength and elongation were measured at a rate of 5 mm/min using UTM (Instron, Instron 5967). Specifically, a total of five tensile strength and elongation were measured for each specimen prepared in Examples and Comparative Examples, and the average value of the five measurement results of each specimen was calculated.
Figure PCTKR2020018967-appb-I000009
Figure PCTKR2020018967-appb-I000009
Figure PCTKR2020018967-appb-I000010
Figure PCTKR2020018967-appb-I000010
Figure PCTKR2020018967-appb-I000011
Figure PCTKR2020018967-appb-I000012
Figure PCTKR2020018967-appb-I000011
Figure PCTKR2020018967-appb-I000012
상기 표 1에 기재된 바와 같이, 본 발명에 따른 실시예 1 내지 24의 폴리카보네이트 공중합체들은 모두 80 MPa 이상의 높은 평균 인장강도 및 13% 이상의 높은 평균 신율을 나타내었다. As shown in Table 1, the polycarbonate copolymers of Examples 1 to 24 according to the present invention all exhibited a high average tensile strength of 80 MPa or more and a high average elongation of 13% or more.
반면 상기 표 2에 나타난 바와 같이, 비교예 1 내지 10의 폴리카보네이트 공중합체의 경우, 평균 신율이 10% 이하로 실시예의 폴리카보네이트 공중합체에 비해 열악하였고, 평균 인장 강도 또한 최대 82 MPa로 실시예의 폴리카보네이트 공중합체에 비해 열악하였다. 또한 비교예 11 및 12의 폴리카보네이트 공중합체의 경우, 평균 신율이 3% 이하로 매우 열악하였고, 비교예 13 내지 16의 폴리카보네이트 공중합체의 경우, 평균 인장 강도가 76 MPa 이하로 열악하였다.On the other hand, as shown in Table 2, in the case of the polycarbonate copolymers of Comparative Examples 1 to 10, the average elongation was 10% or less, which was poor compared to the polycarbonate copolymer of the Example, and the average tensile strength was also up to 82 MPa. It was inferior to the polycarbonate copolymer. In addition, in the case of the polycarbonate copolymers of Comparative Examples 11 and 12, the average elongation was very poor at 3% or less, and in the case of the polycarbonate copolymers of Comparative Examples 13 to 16, the average tensile strength was poor at 76 MPa or less.

Claims (14)

  1. 디올 성분으로부터 유래된 반복 단위; 및 탄산 디에스테르 성분으로부터 유래된 반복 단위;를 포함하며,repeating units derived from a diol component; and a repeating unit derived from a carbonic acid diester component;
    상기 디올 성분이, 디올 성분 총 100 몰% 기준으로 (a) 무수당 알코올 69 내지 99 몰% 및 (b) 무수당 알코올-알킬렌 글리콜 1 내지 31 몰%를 포함하는,The diol component comprises (a) 69 to 99 mol% of anhydrosugar alcohol and (b) 1 to 31 mol% of anhydrosugar alcohol-alkylene glycol based on 100 mol% of the total diol component,
    폴리카보네이트 공중합체.polycarbonate copolymer.
  2. 제1항에 있어서, 무수당 알코올이 이소소르비드(1,4:3,6-디언하이드로소르비톨), 이소만니드(1,4:3,6-디언하이드로만니톨), 이소이디드(1,4:3,6-디언하이드로이디톨) 또는 이들의 혼합물로부터 선택된 것인, 폴리카보네이트 공중합체.According to claim 1, wherein the anhydrosugar alcohol is isosorbide (1,4:3,6-dianhydrosorbitol), isomannide (1,4:3,6-dianhydromannitol), isoidide (1,4) : 3,6-dianhydroiditol) or a mixture thereof, a polycarbonate copolymer.
  3. 제1항에 있어서, 무수당 알코올-알킬렌 글리콜이 무수당 알코올과 알킬렌 옥사이드를 반응시켜 얻어진 것인, 폴리카보네이트 공중합체.The polycarbonate copolymer according to claim 1, wherein the anhydrosugar alcohol-alkylene glycol is obtained by reacting anhydrosugar alcohol and alkylene oxide.
  4. 제3항에 있어서, 알킬렌 옥사이드가 탄소수 2 내지 18의 선형 또는 탄소수 3 내지 18의 분지형 알킬렌 옥사이드인, 폴리카보네이트 공중합체.The polycarbonate copolymer according to claim 3, wherein the alkylene oxide is a linear or branched alkylene oxide having 2 to 18 carbon atoms or 3 to 18 carbon atoms.
  5. 제1항에 있어서, 디올 성분이 (c) 지방족 디올, 무수당 알코올과 무수당 알코올-알킬렌 글리콜 이외의 지환족 디올, 방향족 디올 또는 이들의 혼합물로부터 선택되는 추가의 디올을 더 포함하는, 폴리카보네이트 공중합체.The poly according to claim 1, wherein the diol component further comprises (c) an additional diol selected from aliphatic diols, cycloaliphatic diols other than anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol, aromatic diol or mixtures thereof. carbonate copolymer.
  6. 제5항에 있어서, 디올 성분이, 전체 디올 성분 100 몰% 기준으로, (a) 무수당 알코올 69 내지 98 몰%, (b) 무수당 알코올-알킬렌 글리콜 1 내지 30 몰% 및 상기 (c) 추가의 디올 1 내지 30 몰%를 포함하는, 폴리카보네이트 공중합체.According to claim 5, wherein the diol component, based on 100 mol% of the total diol component, (a) 69 to 98 mol% of anhydrosugar alcohol, (b) 1 to 30 mol% of anhydrosugar alcohol-alkylene glycol, and (c) ) further from 1 to 30 mole % of a diol.
  7. 제1항에 있어서, 탄산 디에스테르 성분이 디알킬 카보네이트, 디아릴 카보네이트, 알킬렌 카보네이트 또는 이들의 조합으로부터 선택된 것인, 폴리카보네이트 공중합체.The polycarbonate copolymer of claim 1 , wherein the carbonic acid diester component is selected from dialkyl carbonates, diaryl carbonates, alkylene carbonates, or combinations thereof.
  8. 제1항에 있어서, 탄산 디에스테르 성분이 하기 화학식 C로 표시되는 화합물로부터 선택된 것인, 폴리카보네이트 공중합체:The polycarbonate copolymer according to claim 1, wherein the carbonic acid diester component is selected from compounds represented by the following formula (C):
    [화학식 C][Formula C]
    Figure PCTKR2020018967-appb-I000013
    Figure PCTKR2020018967-appb-I000013
    상기 화학식 C에서, A 및 A'은 각각 독립적으로, 비치환되거나 할로겐-치환된, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 아릴기 또는 탄소수 7 내지 25의 아랄킬기로부터 선택되고, A 및 A'은 서로 동일하거나 상이하다. In the formula (C), A and A' are each independently selected from an unsubstituted or halogen-substituted alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 25 carbon atoms, A and A' is the same as or different from each other.
  9. 제1항에 있어서, 하기 화학식 1의 구조를 갖는 반복 단위; 및 하기 화학식 2의 구조를 갖는 반복 단위;를 포함하는, 폴리카보네이트 공중합체:According to claim 1, wherein the repeating unit having the structure of the formula (1); And a repeating unit having a structure of Formula 2; Containing, polycarbonate copolymer:
    [화학식 1][Formula 1]
    Figure PCTKR2020018967-appb-I000014
    Figure PCTKR2020018967-appb-I000014
    [화학식 2][Formula 2]
    Figure PCTKR2020018967-appb-I000015
    Figure PCTKR2020018967-appb-I000015
    상기 화학식 2에서, In Formula 2,
    R1은 각각 독립적으로 수소 또는 알킬이고,R 1 is each independently hydrogen or alkyl,
    m 및 n은 각각 독립적으로 0 내지 15의 정수이되, m+n은 1 내지 25의 정수이다.m and n are each independently an integer from 0 to 15, and m+n is an integer from 1 to 25.
  10. 제9항에 있어서, 하기 화학식 3의 구조를 갖는 반복 단위를 더 포함하는, 폴리카보네이트 공중합체:The polycarbonate copolymer according to claim 9, further comprising a repeating unit having a structure of the following formula (3):
    [화학식 3][Formula 3]
    Figure PCTKR2020018967-appb-I000016
    Figure PCTKR2020018967-appb-I000016
    상기 화학식 3에서, In Formula 3,
    R은 탄소수 2 내지 12의 알킬렌기, 탄소수 3 내지 30의 사이클로알킬렌기, 탄소수 6 내지 30의 아릴렌기 또는 이들의 조합이다. R is an alkylene group having 2 to 12 carbon atoms, a cycloalkylene group having 3 to 30 carbon atoms, an arylene group having 6 to 30 carbon atoms, or a combination thereof.
  11. 디올 성분 및 탄산 디에스테르 성분을 포함하는 혼합물을 중합 촉매 존재 하에서 반응시키는 단계를 포함하고,A step of reacting a mixture comprising a diol component and a carbonic acid diester component in the presence of a polymerization catalyst,
    상기 디올 성분이 디올 성분 총 100 몰% 기준으로, (a) 무수당 알코올 69 내지 99 몰% 및 (b) 무수당 알코올-알킬렌 글리콜 1 내지 31 몰%를 포함하는,The diol component comprises (a) 69 to 99 mol% of anhydrosugar alcohol and (b) 1 to 31 mol% of anhydrosugar alcohol-alkylene glycol based on 100 mol% of the total diol component,
    폴리카보네이트 공중합체의 제조 방법.A method for producing a polycarbonate copolymer.
  12. 제11항에 있어서, 디올 성분이 (c) 지방족 디올, 무수당 알코올과 무수당 알코올-알킬렌 글리콜 이외의 지환족 디올, 방향족 디올 또는 이들의 혼합물로부터 선택되는 추가의 디올을 더 포함하는, 폴리카보네이트 공중합체의 제조 방법.12. The poly according to claim 11, wherein the diol component further comprises (c) an additional diol selected from aliphatic diols, cycloaliphatic diols other than anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol, aromatic diol or mixtures thereof. A method for preparing a carbonate copolymer.
  13. 제12항에 있어서, 디올 성분이, 전체 디올 성분 100 몰% 기준으로, (a) 무수당 알코올 69 내지 98 몰%, (b) 무수당 알코올-알킬렌 글리콜 1 내지 30 몰% 및 상기 (c) 추가의 디올 1 내지 30 몰%를 포함하는, 폴리카보네이트 공중합체의 제조 방법.The method according to claim 12, wherein the diol component comprises (a) 69 to 98 mol% of anhydrosugar alcohol, (b) 1 to 30 mol% of anhydrosugar alcohol-alkylene glycol, and (c) based on 100 mol% of the total diol component. ) further comprising 1 to 30 mole % of a diol.
  14. 제1항 내지 제10항 중 어느 한 항의 폴리카보네이트 공중합체를 포함하는 성형품.A molded article comprising the polycarbonate copolymer of any one of claims 1 to 10.
PCT/KR2020/018967 2019-12-24 2020-12-23 Polycarbonate copolymer comprising units derived from anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol, method for producing same, and molded article comprising same WO2021133048A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190173732A KR102303199B1 (en) 2019-12-24 2019-12-24 Polycarbonate copolymer comprising units derived from anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol, method for preparing the same, and molded article comprising the same
KR10-2019-0173732 2019-12-24

Publications (1)

Publication Number Publication Date
WO2021133048A1 true WO2021133048A1 (en) 2021-07-01

Family

ID=76575646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018967 WO2021133048A1 (en) 2019-12-24 2020-12-23 Polycarbonate copolymer comprising units derived from anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol, method for producing same, and molded article comprising same

Country Status (2)

Country Link
KR (1) KR102303199B1 (en)
WO (1) WO2021133048A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230013667A (en) * 2021-07-15 2023-01-27 주식회사 삼양사 Polycarbonate resin composition with excellent optical properties and article comprising the same
KR20230097888A (en) * 2021-12-24 2023-07-03 주식회사 삼양사 Biodegradable polycarbonate copolymer comprising units derived from anhydrosugar alcohol, anhydrosugar alcohol-alkylene glycol and aromatic diol, method for preparing the same, and molded article comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090018788A (en) * 2006-06-19 2009-02-23 미쓰비시 가가꾸 가부시키가이샤 Polycarbonate copolymer and process for production thereof
KR101080669B1 (en) * 2003-06-16 2011-11-08 데이진 가부시키가이샤 Polycarbonate and process for producing the same
KR20130116376A (en) * 2011-03-31 2013-10-23 미쓰비시 가가꾸 가부시키가이샤 Method for manufacturing polycarbonate resin, polycarbonate resin, polycarbonate-resin film, and methods for manufacturing polycarbonate-resin pellets and polycarbonate-resin films
KR20150004084A (en) * 2013-07-02 2015-01-12 주식회사 삼양사 Isosorbide-aromatic polycarbonate copolymer and method for preparing the same
JP2015209387A (en) * 2014-04-25 2015-11-24 三洋化成工業株式会社 Diol composition and production method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101080669B1 (en) * 2003-06-16 2011-11-08 데이진 가부시키가이샤 Polycarbonate and process for producing the same
KR20090018788A (en) * 2006-06-19 2009-02-23 미쓰비시 가가꾸 가부시키가이샤 Polycarbonate copolymer and process for production thereof
KR20130116376A (en) * 2011-03-31 2013-10-23 미쓰비시 가가꾸 가부시키가이샤 Method for manufacturing polycarbonate resin, polycarbonate resin, polycarbonate-resin film, and methods for manufacturing polycarbonate-resin pellets and polycarbonate-resin films
KR20150004084A (en) * 2013-07-02 2015-01-12 주식회사 삼양사 Isosorbide-aromatic polycarbonate copolymer and method for preparing the same
JP2015209387A (en) * 2014-04-25 2015-11-24 三洋化成工業株式会社 Diol composition and production method thereof

Also Published As

Publication number Publication date
KR102303199B1 (en) 2021-09-17
KR20210082290A (en) 2021-07-05

Similar Documents

Publication Publication Date Title
WO2016117872A1 (en) Novel method for preparing highly transparent and highly heat-resistant polycarbonate ester
WO2021133048A1 (en) Polycarbonate copolymer comprising units derived from anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol, method for producing same, and molded article comprising same
WO2019147051A1 (en) Bio-based polycarbonate ester and preparation method therefor
WO2015002427A1 (en) Polyorganosiloxane compound, method for preparing same, and copolycarbonate resin comprising same
WO2011126195A1 (en) Precise control of molecular weight and chain shape in carbon dioxide/epoxide alternating copolymerization and preparation of low-molecular-weight poly(alkylene carbonate) thereby
EP2773689A1 (en) Polysiloxane-polycarbonate copolymer and method of manufacturing the same
WO2020085686A1 (en) Polymerizable composition, and copolycarbonate ester and method for producing same
WO2020055178A1 (en) Diol compound, polycarbonate, and method for producing same
WO2012060516A1 (en) Polycarbonate resin and thermoplastic resin composition including polycarbonate resin
WO2013100494A1 (en) Method of preparing polysiloxane-polycarbonate copolymer
EP2614101A2 (en) Preparation of poly(alkylene carbonate) containing cross-linked high molecular weight chains
WO2013100606A1 (en) Flame-retardant thermoplastic resin composition and molded article thereof
WO2013062307A1 (en) Eco-friendly poly(alkylene carbonate) resin composition for high-transparency and high-gloss sheet
WO2014204146A1 (en) Thermoplastic copolymer resin having excellent flame retardancy and transparency and preparation method therefor
WO2020060148A1 (en) Polysiloxane-polycarbonate copolymer having high impact resistance, flame resistance and transparency, and preparation method therefor
WO2020013507A1 (en) Bio-based polycarbonate ester resin for eyeglass frame
WO2017164504A1 (en) Poly(lactic acid) resin composition and molded product comprising same
WO2015178676A1 (en) Polysiloxane-polycarbonate copolymer having enhanced transparency and impact resistance and preparation method therefor
WO2014092243A1 (en) Polycarbonate resin, production method for same, and moulded article comprising same
WO2020085662A1 (en) Highly bio-based polycarbonate ester and method for producing same
WO2023121395A1 (en) Biodegradable polycarbonate copolymer comprising units derived from anhydrosugar alcohol, anhydrosugar alcohol-alkylene glycol, and aromatic diol, method for producing same, and molded product comprising same
EP0584740B1 (en) Soft polycarbonate resin
WO2019066292A1 (en) Highly heat-resistant polycarbonate ester and preparation method therefor
WO2016093581A2 (en) Aliphatic polycarbonates and production methods from cyclic carbonates thereof
WO2013176349A1 (en) Novel polysiloxane, method for preparing same and polycarbonate-polysiloxane copolymer comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906020

Country of ref document: EP

Kind code of ref document: A1