WO2021132586A1 - Liver cell culture membrane, drug transport ability evaluation kit provided therewith, and drug transport ability evaluation method - Google Patents

Liver cell culture membrane, drug transport ability evaluation kit provided therewith, and drug transport ability evaluation method Download PDF

Info

Publication number
WO2021132586A1
WO2021132586A1 PCT/JP2020/048793 JP2020048793W WO2021132586A1 WO 2021132586 A1 WO2021132586 A1 WO 2021132586A1 JP 2020048793 W JP2020048793 W JP 2020048793W WO 2021132586 A1 WO2021132586 A1 WO 2021132586A1
Authority
WO
WIPO (PCT)
Prior art keywords
drug
hepatocyte
test solution
culture membrane
transport
Prior art date
Application number
PCT/JP2020/048793
Other languages
French (fr)
Japanese (ja)
Inventor
琢男 荻原
健太 溝井
映子 松本
Original Assignee
学校法人高崎健康福祉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人高崎健康福祉大学 filed Critical 学校法人高崎健康福祉大学
Priority to JP2021531421A priority Critical patent/JP7136509B2/en
Publication of WO2021132586A1 publication Critical patent/WO2021132586A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Definitions

  • the present invention is used to evaluate the drug transport capacity as to how predominantly either the systemic circulation in which the administered drug is transferred from the liver to the blood vessels or the bile excretion in the bile duct is caused.
  • Drugs administered into the body are absorbed from the gastrointestinal tract via gastrointestinal cells and reach the liver via the portal vein.
  • FIG. 3 schematically shows the state of absorption, distribution, metabolism, and excretion of a drug administered in vivo and absorbed in the gastrointestinal tract without being conjugated in the liver or after being conjugated in the enterohepatic circulation or systemic circulation.
  • the drug that reaches the liver is excreted unchanged from the liver together with bile, returns to the digestive tract via the bile duct (bile excretion), is absorbed again from the digestive tract, and partly from the liver. It enters the systemic circulation via blood vessels and reaches the target site (Fig. (A)).
  • liver is conjugated by the liver, excreted together with bile, returned to the digestive tract via the bile duct, then deconjugated and absorbed again via the gastrointestinal cells (enterohepatic circulation).
  • a part of the liver enters the systemic circulation via blood vessels and reaches the target site (Fig. (B)).
  • Fig. (B) Alternatively, it is metabolized in the liver and excreted in urine and bile.
  • Drugs with a long half-life in the body are greatly involved in enterohepatic circulation.
  • such drugs are absorbed from the gastrointestinal tract, such as the intestinal tract, and some of them enter the systemic circulation, but most of them undergo glucuronidation in the liver and are excreted in the intestinal tract together with bile before entering the intestine. Hydrolyzed by the bacteria, the glucuronidation is disengaged and absorbed again from the intestinal tract, part of which enters the systemic circulation.
  • enterohepatic circulation by repeating this, the drug effect is exhibited for a long time.
  • the action of intestinal bacteria is inhibited, making enterohepatic circulation difficult.
  • organic anionic compounds such as azithromycin and atorvastatin
  • organic cationic compounds such as carvegylol and clomiphene, temocapril and moxifloxacin are drugs whose unchanged form is excreted in the bile.
  • amphoteric compounds such as digitoxin and neutral compounds such as probucol, which are also greatly involved in enterohepatic circulation and take a long time to be excreted in manure.
  • bile may be easily excreted.
  • whether the administered drug is superior to bile excretion in the liver or systemic transfer to blood vessels depends on the physical properties of the drug, the species difference of the target animal, and the susceptibility to conjugation such as glucuronic acid conjugation. It differs greatly due to various factors such as the contribution of the transporter and its action, the susceptibility to the formation of micelles in bile, and the degree of transfer to bile.
  • Patent Document 1 provides an in-vitro method for characterizing the excretion of chemical entities in the gallbladder, a) a step of providing a cell culture containing hepatocytes forming at least one gallbladder canal, b) the above. Step of contacting the cell culture with the first chemical entity for a time sufficient to allow the hepatocytes of the culture to take up the chemical entity, c) at least one of the above without lysing the hepatocytes. The step of destroying one gallbladder and detecting the amount of the first chemical entity and / or its metabolite released by the at least one gallbladder, and d) lysing the hepatocytes and by the hepatocytes. A method comprising the step of detecting the amount of said first chemical entity and / or its metabolite released is disclosed.
  • Patent Document 2 describes a method in which hepatocytes are cultured on an oxygen-permeable substrate to form a bile canaliculus, and the oxygen concentration in the medium is 4.0% or more and 12.5% or less.
  • a method for assaying compound transport in which hepatocytes are cultured to produce cultured hepatocytes in which hepatocytes are formed to form bile canaliculi, and the obtained cultured hepatocytes are used to evaluate the transport of compounds. , Is disclosed.
  • the cultured hepatocytes are washed with a washing solution to remove the compound, and then subjected to a metabolic reaction in a reaction solution containing no compound.
  • the components in the reaction solution (cultured hepatocyte extracellular fluid) and / or the bile canaliculus fluid are analyzed to test the metabolic properties of the compound.
  • Patent Documents 1 and 2 form a bile canaliculus, and the amount of a drug whose transport capacity should be measured by destroying the bile duct and lysing hepatocytes is detected, or the amount of a drug taken into the bile canaliculus. Is to be detected.
  • a model that does not require destruction or lysis of cells or the like and can evaluate whether bile excretion or systemic transfer is superior by direct measurement of the concentration.
  • the present inventors have no orientation when culturing epithelial cells and parenchymal cells such as hepatocytes in a normal petri dish, but hepatocytes forming a membranous cell layer obtained by culturing hepatocytes on a porous plastic film. It was found that the culture membrane has an orientation in which the lower side in contact with the porous plastic film is on the blood side and the upper side not in contact with the porous plastic film is on the bile duct side, and further, drug transport having this hepatocyte culture membrane.
  • the present invention has been completed by finding that the ability evaluation kit and the drug transport ability evaluation method using the kit provide an evaluation model as to which of bile excretion and systemic transfer is superior.
  • the present invention has been made to solve the above-mentioned problems, and as one of the important factors for absorption, distribution, metabolism, and excretion of the target drug, the administered drug is transferred from the liver to the blood vessels in the whole body and the bile duct.
  • Hepatocyte culture membrane which is used to easily and directly evaluate the drug transport capacity of how predominantly any of the bile excretion transferred to bile is caused in vitro. It is an object of the present invention to provide a provided drug transport capacity evaluation kit, a drug transport capacity evaluation method, and an orientation-enhanced hepatocyte medium that imparts vascular-side and bile duct-side orientation to a hepatocyte culture membrane.
  • the hepatocyte culture membrane of the present invention made to achieve the above object is hepatocyte, bile duct cancer cell, free hepatocyte, animal-derived fresh humanized hepatocyte, and iPS cell induced by hepatocyte. And / or at least one of ES cells, organoids, and immortalized cells forms a membranous cell layer cultured in a membrane on a porous plastic film, and the cells form the membrane. It is characterized by having an orientation in which the lower side of the hepatocyte layer is on the blood vessel side and the upper side of the membranous cell layer is on the bile duct side.
  • the drug transport ability evaluation kit of the present invention made to achieve the above object includes a hepatocyte culture membrane-supporting insert container in which the hepatocyte culture membrane is provided at the bottom and stores the first test solution, and the hepatocyte culture membrane. It has a well into which a cell culture membrane-supporting insert container is inserted, and is provided with a well plate for accommodating a second test solution into which the hepatocyte culture membrane is immersed.
  • the porous plastic film is made of any plastic selected from, for example, fluororesin, polycarbonate, polyolefin, polyester, polyurethane, polyamide, polyimide, cellulose, and regenerated cellulose. It is a thing.
  • the porous plastic film has a porous size smaller than the size of the hepatocytes, or the porous plastic film is sealed with an impermeable material and opened in a pattern. (Patterning).
  • the porous plastic film is coated with collagen and / or fibronectin.
  • At least one of the first test solution and the second test solution contains bile acid.
  • the drug transport capacity evaluation method of the present invention made to achieve the above object uses the drug transport capacity evaluation kit, the first test solution inside the hepatocyte culture membrane-supporting insert container, and the liver.
  • the drug to be measured is added to any of the second test solution outside the cell culture membrane-supporting insert container and inside the well of the well plate to obtain the membranous cell layer and the porous plastic film.
  • the drug transport ability is evaluated by measuring the transport amount of the drug to be measured over time and calculating the transport rate through the hepatocyte culture membrane.
  • the drug transport ability evaluation method of the present invention made to achieve the above object is specifically described as follows. Induced to hepatocytes, bile duct cancer cells, free hepatocytes, animal-derived humanized fresh hepatocytes, and hepatocytes on a porous plastic film provided at the bottom of the insert container tube containing the first test solution. By seeding and culturing at least one of iPS cells and / or ES cells, organoids, and immortalized cells to form a membranous cell layer, the membranous cell layer is formed.
  • a hepatocyte culture membrane-bearing insert container is prepared by forming a hepatocyte culture membrane having an orientation that is on the blood vessel side below the membranous cell layer and on the bile duct side above the membranous cell layer.
  • the first test solution containing the drug whose drug transport capacity is to be measured is contained in the hepatocyte culture membrane-supporting insert container, and the well of the well plate contains the second test solution which does not contain the drug to be measured.
  • the first test solution containing no drug to be measured is contained in the hepatocyte culture membrane-supporting insert container, and the second test solution containing the drug to be measured is contained in the well of the well plate.
  • the bile duct side transport amount measuring step for measuring the transport amount of the drug to be measured from the blood side to the bile duct side.
  • This drug transport evaluation method is performed during the blood transport amount measurement step, and further by adding a transporter inhibitor to the first test solution and the second test solution, and during the bile duct side transport amount measurement step. Further, a transporter inhibitor was added to the first test solution and the second test solution, and the bile duct side transport amount measurement step was also performed for them, and the inhibitor was not added in the drug transport capacity calculation step.
  • the ratio of the blood-side transport rate and the bile duct-side transport rate to the ratio of the blood-side transport rate and the bile duct-side transport rate with the addition of the inhibitor is calculated to determine the drug transport capacity of the drug to be measured. It may be something like that.
  • the orientation-enhanced hepatocyte medium of the present invention made to achieve the above object is induced into hepatocytes, bile duct cancer cells, free hepatocytes, animal-derived fresh humanized hepatocytes, and hepatocytes.
  • At least one of iPS cells and / or ES cells, organoids, and immortalized cells is cultured on a porous plastic film to form a membranous cell layer, and below the membranous cell layer.
  • It is a hepatocyte medium for expressing orientation on the blood vessel side and on the bile duct side on the upper side of the membranous cell layer, and is characterized by having a culture component and bile acid.
  • the hepatocyte culture membrane of the present invention forms a membranous cell layer in which cells derived from hepatocytes or induced by hepatocytes are cultured in a membranous manner on a porous plastic film, thereby forming a membranous cell layer below the membranous cell layer, that is,.
  • the porous plastic film side has an orientation toward the blood vessel side, and the upper side of the membranous cell layer has the orientation toward the bile duct side, and is a monolayer film. Therefore, it does not form a three-dimensional mass or multiple layers of cells as in the case of culturing in a normal petri dish. Nor does it intentionally form bile ducts or bile canaliculi. Since this hepatocyte culture membrane has orientation, it is suitable for examining whether the drug to be measured is dominant in bile excretion or systemic transfer.
  • a hepatocyte culture membrane is used, for example, when developing a new drug or evaluating an existing drug, the drug to be measured, such as those drugs or their metabolites, is excreted in bile or is excreted in blood vessels (sinusoids). It is possible to construct a simple and highly reproducible evaluation system that can easily evaluate whether or not it is pushed back to the) side.
  • This hepatocyte culture membrane can express stable orientation at low cost by using easily available cells.
  • the drug transport ability evaluation kit of the present invention has an oriented hepatocyte culture membrane, the drug to be measured does not permeate into the bile canaliculus or bile canaliculus, but the membranous cell layer of the monolayer membrane. By measuring the degree of permeation of the drug, it is possible to evaluate whether the drug to be measured is superior in bile excretion or systemic transfer.
  • this drug transport ability evaluation kit and drug transport ability evaluation method include the amount of the drug to be measured from the bile duct side to the blood side in the hepatocellular culture membrane and the amount of the drug to be measured from the blood side to the bile duct side. It is used to easily evaluate the drug transport capacity by comparing with.
  • the membranous cell layer in the hepatocyte culture membrane is oriented so that it is on the vascular side on the lower side, that is, on the porous plastic film side, and on the bile duct side on the upper side, at the cell culture stage. It can be enhanced. Therefore, if a hepatocyte culture membrane is prepared using an orientation-enhanced hepatocyte culture membrane, the physical properties of the drug to be measured can be determined by a drug transport capacity evaluation kit having the hepatocyte culture membrane and a drug transport capacity evaluation method using the kit. In particular, the pharmacokinetics in humans regarding whether bile excretion is likely to occur from the liver or systemic transfer is easily and accurately grasped from in vitro data that correctly reflects it.
  • the hepatocyte culture membrane of the present invention The hepatocyte culture membrane of the present invention, the drug transport ability evaluation kit provided with the hepatocyte culture membrane, and the drug transport ability evaluation method will be described in detail with reference to FIG.
  • the hepatocyte culture membrane 14 has a porous plastic film 13 and a membranous cell layer 12 in which cells 12a are cultured in a membrane shape on the porous plastic film 13.
  • the drug transport capacity evaluation kit 1 is a hepatocyte culture membrane-supporting insert container in which the hepatocyte culture membrane 14 is provided at the bottom of a non-permeable plastic insert container cylinder 11 with the membranous cell layer 12 on the inner air side to close the container.
  • a non-permeable plastic well plate 20 having a well 21 into which the hepatocyte culture membrane-supporting insert container 10 is inserted is provided.
  • the first test solution 15 is added to the hepatocyte culture membrane-supported insert container 10 and stored, and the second test solution 25 is added to and stored in the well 21 of the well plate 20. ..
  • the hepatocyte culture membrane 14 of the hepatocyte culture membrane-supporting insert container 10 is immersed in the second test solution 25.
  • the cells 12a include, for example, hepatocyte cancer cells, bile duct cancer cells, free hepatocytes, animal-derived fresh humanized hepatocytes, hepatocyte-induced iPS cells and / or ES cells, organoids, and immortalized cells. At least one of the cells with. Precursor cells that become liver-like cells when differentiated are called liver organoids.
  • liver cancer cells include commercially available liver cancer cell lines, such as human liver cancer-derived cell line HepG2 (JCRB cell bank (National Research and Development Corporation Pharmaceutical Infrastructure, Health and Nutrition Research Institute), etc.), and well-differentiated human liver blastoma-derived cell line HuH. -7 (JCRB, etc.) is preferably used, but human liver cancer-derived cell line HepaRG (KAC Co., Ltd.), PLC-PRF-5 (Cosmo Bio Co., Ltd., etc.), human liver adenomas cell line SK-HEP -1 (Cosmo Bio Co., Ltd., etc.) may be used.
  • human liver cancer-derived cell line HepG2 JCRB cell bank (National Research and Development Corporation Pharmaceutical Infrastructure, Health and Nutrition Research Institute), etc.
  • HuH. -7 JCRB, etc.
  • human liver cancer-derived cell line HepaRG KAC Co., Ltd.
  • PLC-PRF-5 Cosmo Bio Co., Ltd., etc.
  • cholangiocarcinoma cells include commercially available liver cancer cell lines, for example, cholangiocarcinoma cell line TFK-1 (National University Corporation Tohoku University Institute of Aging Medicine Medical Cell Resource Center) and human immortalized cholangiocarcinoma cell line MMNK-1 (JCRB). ), Immortalized human hepatic endothelial cell line (JCRB), sinus endothelial cancer cells.
  • free hepatocytes include primary free hepatocytes (primary hepatocytes), for example, human hepatocyte strain Change-Live (Cosmo Bio Co., Ltd., etc.).
  • animal-derived fresh humanized hepatocytes examples include PXB-cell (PhoenixBio) and animal-derived hepatocytes (Public Interest Incorporated Foundation, Experimental Animal Central Research Institute) in which human cells are engrafted in immunodeficient animals.
  • PXB-cell PanoenixBio
  • animal-derived hepatocytes Public Interest Incorporated Foundation, Experimental Animal Central Research Institute
  • iPS cells include iCell hepatocytes (Fujifilm Co., Ltd.) and Cellartis (Takara Bio Inc.).
  • hepatocytes parenchymal cells
  • the porous plastic film 13 preferably on the horizontal porous plastic film 13
  • cultured in a medium whereby the cells are cultured on the porous plastic film 13.
  • hepatocytes are less likely to form a membrane having orientation (polarity) like endothelial cells even when cultured on a porous plastic film, and the membranous cell layer 12 having excellent orientation is It was not known.
  • this membranous cell layer 12 is a monolayer membranous one in which cells 12a proliferate in a monolayer without gaps, and each cell is a blood vessel in the membranous cell layer 12 on the porous plastic film side.
  • a specific drug can be preferentially transferred to the blood vessel side or the bile duct side. It has become. Also, like the liver, it selectively transfers a specific drug or glucose to the blood vessel side, or exhales the specific drug without allowing it to permeate.
  • the blood vessel side is located below the membranous cell layer 12, and the bile duct side is located above the membranous cell layer 12, which is a substrate for the transporter MRP2, which is a protein exhaled by the liver.
  • Drugs such as BSP (bromosulfophthaline: bile excretion marker), which enter the enterohepatic circulation at a rate of almost 100%, exhibit high orientation because they are transferred more to the bile duct side than to the vascular side. Is shown.
  • the orientation becomes more remarkable. Due to such orientation by using the hepatocyte culture membrane 14, excretion in bile, hepatic metabolism, and hepatotoxicity can be investigated.
  • the hepatocyte culture membrane 14 composed of these membranous cell layers 12 and the porous plastic film 13 is a test target drug for which it should be examined whether bile excretion from the liver or systemic transfer is dominant.
  • the ratio may vary depending on the drug to be measured, but is 1.3 or more, preferably 1.8 or more, more preferably 2.0 or more, and even more preferably 5.0 or more. This ratio is expressed by the following mathematical formula (1).
  • bromosulfophthalene migrates in HepG2 cells by a multidrug resistance-associated protein 2 (MRP2) excretory transporter expressed on the bile duct side, and thus inhibits MK-571. Is used as an inhibitor.
  • MRP2 multidrug resistance-associated protein 2
  • rhodamine 123 is used instead of BSP, and verapamil is used as an inhibitor.
  • hepatocytes are cultured in a normal petri dish or a plastic well plate, they do not show orientation because they are randomly present, and they gradually form colonies or form a three-dimensional mass or multiple layers. It will form.
  • hepatocytes are used in a normal liquid medium or a solid medium, preferably a commercially available or time-prepared liquid medium, for example, Dalbecco-modified Eagle's medium as a culture component, and FBS (bovine) as a conditioning component.
  • a liquid medium containing fetal serum is used.
  • the liquid medium include commercially available DMEM (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.).
  • such a liquid medium further contains bile acid as an additive because the orientation of the hepatocyte culture membrane 14 is further improved.
  • Bile acids are steroids with a tetracyclic structure that are widely found in the bile of mammals and the like, and have a basic structure in which 1 to 3 hydroxy groups are bonded to the mother nucleus of colacic acid.
  • cholic acid and Primary bile acids such as kenodeoxycholic acid, secondary bile acids such as deoxycholic acid and lithocholic acid that are converted by intestinal bacteria, conjugated bile acids in which they are amide-bonded to glycine or taurine, taurocholic acid, taurokenodeoxycholic Examples include acids, glycodeoxycholic acids, tauroursodeoxycholic acids, and / or lithocholic acids.
  • Bile acids may be single or plural.
  • the bile acid is contained in the liquid medium at a concentration of, for example, preferably 1 ⁇ M to 300 ⁇ M, more preferably 100 ⁇ M.
  • DMSO dimethyl sulfoxide
  • active vitamin D active vitamin D
  • azacitidine active vitamin D
  • corhitin riphanpicin in liquid medium
  • riphanpicin in place of bile acids or with bile acids.
  • a differentiation promoter that expresses enzymes and transporters, such as dexamethasone, and additives that induce orientation, such as vitamin A and cobalt chloride, may be contained.
  • Examples of the material of the porous plastic film 13 in the hepatocellular culture membrane 14 include a fluorine-containing resin such as polytetrafluoroethylene (PTFE), polycarbonate, polyolefin such as polyethylene, polypropylene and polystyrene, and polyester such as polyethylene terephthalate. , Polyurethane, polyamide, polyimide, cellulose, and regenerated cellulose.
  • the porous plastic film 13 may be a plastic film or a non-woven fabric.
  • the porosity of the porous plastic film 13 is smaller than the size of individual hepatocytes, which is about 10 ⁇ m, and hepatocytes cannot pass through, while the molecule of the drug to be measured or its hydrate in the test solution permeates.
  • the pores are larger than the molecular diameter of the molecule or hydrate so that it can be formed.
  • the porous pore diameter is, for example, 0.1 to 10 ⁇ m, preferably 0.3 to 8 ⁇ m, and more preferably the average pore diameter of the porous plastic film 13 attached to a commercially available empty kit is 0.3 ⁇ m. It is 0.4 ⁇ m, 1.0 ⁇ m, 3.0 ⁇ m, 5 ⁇ m or 8.0 ⁇ m.
  • the thickness of the porous plastic film 13 is, for example, 1 to 100 ⁇ m, preferably 10 to 30 ⁇ m.
  • the porous plastic film 13 may have been subjected to tissue culture treatment that optimizes cell adhesion and proliferation, and may be coated with collagen and / or fibronectin. Further, the porous plastic film may be patterned. In the collagen-coated porous plastic film, the adhesiveness of cells 12a is improved by collagen.
  • the insert container cylinder 11 having the porous plastic film 13 attached to the bottom of the cylinder and the well plate 20 having the wells 21 used for producing the drug transport ability evaluation kit 1 commercially available ones are used.
  • the porous plastic film 13 closes the bottom of the insert container cylinder 11 by heat fusion or adhesive adhesion.
  • the upper end peripheral edge of the insert container cylinder 11 is a collar that is wider than the upper end edge of the well 21. As a result, these are suspended so that the insert container cylinder 11 comes to the center of the insert container cylinder 11 when it is inserted into the well 21.
  • the insert container cylinder 11 has a cylindrical shape with the same diameter in the lower half and a tubular shape and / or rib in which the upper half slightly expands toward the upper side so as to prevent the capillary phenomenon of the liquid medium from the side wall surface of the well 21. It has a tubular shape.
  • Examples of the insert container cylinder 11 and the well plate 20 to which the porous plastic film 13 is attached and the lid 30 for closing the well plate 20 from contamination with germs during culturing include transwells, snapwells, and falcon culture inserts (all of them). (Product name manufactured by Corning Co., Ltd.) and ad-MED Vitrigel (trade name manufactured by Kanto Chemical Co., Inc.) can be mentioned.
  • the first test solution 15 is poured into the inside of the hepatocyte culture membrane-supporting insert container 10. Further, the second test solution 25 is poured into the well 21 of the well plate 20 outside the hepatocyte culture membrane-supporting insert container 10.
  • the basic composition liquid of the first test liquid 15 and the second test liquid 25 is a buffer solution.
  • the buffer solution is not particularly limited as long as the hepatocellular culture membrane is not damaged, but is a phosphate buffer solution having a pH of 7.4, a phosphate buffered saline solution having a pH of 7.4, and a physiological isotonic buffer salt solution (Hanks balanced salt solution:). WBSS-HEPES (pH 7.4)).
  • the first test solution 15 should be examined as to whether the administered drug is likely to enter bile excretion on the bile duct side or systemic transfer on the vascular side.
  • the second test solution 25 and after a while, the amount of the drug to be measured transferred through the hepatocyte culture membrane 14 composed of the membranous cell layer 12 and the porous plastic film 13.
  • the measurement may be quantified by measuring the concentration by an optical method, such as fluorescence intensity, or transmittance or absorbance at a specific measurement wavelength such as ultraviolet light, or high performance liquid chromatography (HPLC) or liquid. It may be measured by a chromatograph tandem mass spectrometer (LC-MS / MS). If necessary, it may be quantified using a calibration curve of different standard concentrations and their transmittances and absorbances in advance.
  • an optical method such as fluorescence intensity, or transmittance or absorbance at a specific measurement wavelength such as ultraviolet light, or high performance liquid chromatography (HPLC) or liquid. It may be measured by a chromat
  • the first step is the step of preparing the hepatocyte culture membrane-supported insert container. Specifically, first, a porous plastic film 13 provided at the bottom of an empty insert container cylinder 11 for accommodating the first test liquid 15 at the time of drug transport capacity evaluation, for example, Transwell (manufactured by Corning Co., Ltd.).
  • Cell 12a which is a hepatocyte such as hepatocyte cell, for example, HepG2 cell, is seeded on a collagen-coated polytetrafluoroethylene membrane having a pore size of 3.0 ⁇ m at the bottom of the insert container tube of (trade name). To do.
  • a normal culture solution for example, DMEM
  • a normal culture solution for example, DMEM
  • the culture medium was replaced to include, for example, bile acids such as cholic acid, deoxycholic acid, taurocholic acid, kenodeoxycholic acid, taurokenodeoxycholic acid, glycodeoxycholic acid, tauroursodeoxycholic acid, or lithocholic acid at a concentration of 100 ⁇ M.
  • Cells 12a were cultured in the same culture medium for 1 to 4 weeks, for example, 7th day, 14th day, or 21st day, except that they were contained, and appropriately, for example, 4th day, 7th day, 10th day 14
  • the cells 12a are continuously cultured by exchanging with the same bile acid-containing culture medium at an appropriate time such as the day, the cells 12a proliferate and become a membranous cell layer 12 with the porous plastic film 13, and the hepatocellular culture is performed.
  • the film 14 is formed.
  • the membranous cell layer 12 is a monolayer membrane in which cells 12a are grown in a monolayer without gaps. As a result, a hepatocyte culture membrane 14 composed of the membranous cell layer 12 and the porous plastic film 13 is formed.
  • the membranous cell layer 12 is oriented so that the lower side of the membranous cell layer 12, that is, the side of the porous plastic film 13 is the blood vessel side, and the upper side of the membranous cell layer 12, that is, the side opposite to the porous plastic film 13 is the bile duct side. Has sex. Whether the porous plastic film 13 is superior to bile excretion from the liver or systemic transfer is to be examined.
  • the drug is either front or back of the porous plastic film 13.
  • the direction from the blood side B to the bile duct side A is easier to permeate than the direction from the bile duct side A to the blood side B. ing.
  • the hepatocyte culture membrane-supporting insert container 10 on which the oriented hepatocyte culture membrane is formed is prepared.
  • Another step is the step of preparing and preparing the well plate 20. Specifically, it has a well 21 into which the hepatocyte culture membrane-supporting insert container 1 is inserted, and is empty for containing a second test solution in which the hepatocyte culture membrane 14 is immersed in the evaluation of drug transport capacity.
  • Well plate 20 is prepared.
  • Such a well plate 20 is a commercially available well plate having multiple wells such as 1 well, 6 wells, 12 wells or 24 wells of Transwell (trade name manufactured by Corning Inc.).
  • the drug transport ability evaluation kit 1 including the hepatocyte culture membrane-supported insert container 10 and the well plate 20 is produced.
  • the blood side transport volume measurement step and the bile duct side transport volume measurement step are performed, and then the drug transport capacity calculation step is performed. Specifically, on the 7th day of culture, which is the time to perform the drug transport ability evaluation method, the culture solution collected in the hollow of the insert container cylinder 11 of the hepatocyte culture membrane-supporting insert container 10 is taken out.
  • the blood transport volume measurement step is performed as follows.
  • the drug to be measured for drug transport ability is contained in a buffer solution to prepare the first test solution 15.
  • the first test solution 15 containing the drug whose drug transport capacity is to be measured is slowly poured into the hepatocyte culture membrane-supporting insert container 10 so that the membrane cell layer 12 does not come off, and is contained therein.
  • a second test solution 25 composed of only a buffer solution containing no drug to be measured is prepared.
  • the second test solution 25 is poured into the well 21 of the well plate 20, and the hepatocyte culture membrane 14 is immersed in the second test solution 25. Then, the amount of the drug to be measured from the bile duct side A to the blood side B is measured.
  • the concentration of the drug to be measured in the first test solution 15 and the concentration of the drug to be measured in the second test solution 25 are measured, and the amount transported to the blood side is quantified.
  • the drug to be measured is Rho123, which is a standard substrate of transporter P-gp and is a fluorescent substance
  • the concentration is measured from the amount of fluorescence.
  • the bile duct side transport amount measurement step is performed as follows. Using the same hepatocyte culture membrane-supporting insert container 10 and well plate 20, the hollow and well 21 of the insert container cylinder 11 are washed with a buffer solution, or a new hepatocyte culture membrane-supporting insert container 10 and well plate are used. Prepare 20. Another first test solution 15 consisting of only a buffer solution containing no drug to be measured is prepared, and slowly poured into the hepatocyte culture membrane-supporting insert container 10 so that the membranous cell layer 12 does not peel off, and the container is contained. On the other hand, another drug to be measured for drug transport capacity is contained in a buffer solution to prepare another second test solution 25.
  • the second test solution 25 is poured into the well 21 of the well plate 20, and the hepatocyte culture membrane 14 is immersed in the second test solution 25. Then, the amount of the drug to be measured from the blood side B to the bile duct side A is measured in the same manner.
  • the measurement of the transport amount may be a quantification by high performance liquid chromatography using a concentration-area calibration curve, a quantification using LC-MS / MS, or a specific color quantification, for example, a ratio by fluorescence absorption. It may be color quantitative.
  • the measurement may be performed by a radioactive isotope. The measurement sensitivity depends on the measurement method.
  • the drug transport capacity calculation step is performed as follows.
  • the inclination AtoB is obtained from a linear approximation formula with the horizontal axis as time and the vertical axis as the amount of transport from the bile duct side A to the blood side B, and the transport rate per unit area of the cell.
  • (Cm / sec) is calculated, while in the same way, the slope BtoA is calculated from a linear approximation formula with the horizontal axis as time and the vertical axis as the amount of transport from the blood side B to the bile duct side A, and per unit area of the cell.
  • Example 1 As shown in FIG. 2, specific examples of the hepatocyte culture membrane 14, the drug transport ability evaluation kit 1, and the drug transport ability evaluation method are shown below with respect to an example using HepG2 cells (JCRB).
  • DMEM high glucose
  • FBS manufactured by biosera
  • deoxycholic acid manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • BSP manufactured by MP Biochemicals
  • HepG2 was cultured in DMEM supplemented with 10% FBS.
  • the 12-well inserts were seeded at approximately 2 ⁇ 10 5 pieces / cm 2 , and the medium was replaced with a medium supplemented with 100 ⁇ M bile acid only on the bile duct side on the 1st and 4th days after seeding, and the medium was replaced on the blood vessel side. It was used in the following experiments on the 7th day of culture. [Transportation experiment] HBSS-HEPES (pH 7.4) was used as the transport buffer. The substrate drug was 24 ⁇ MBSP. The membrane resistance value of the cultured plate was measured using Millicell ERM2 (manufactured by Merck Millipore) to confirm the formation of the cell layer on the membrane. Well inserts were washed with 0.9% NaCl.
  • the substrate drug (BSP) of the transporter was used as the transport substance, and in the case of transport from the A side to the B side, the substrate drug was used as the first test solution and the transport buffer was used as the second test solution. In the case of transport from the B side to the A side, the transport buffer was used as the first test solution and the substrate drug was used as the second test solution.
  • the work was carried out on a 37 ° C. water bath. In the case of a 12-well insert, the amount of buffer was 0.5 mL for the first test solution and 1.5 mL for the second test solution. After 15, 30, 45 and 60 minutes, 10% of the liquid volume was collected from the opposite side to which the transport drug was added. An equal amount of buffer collected each time was added.
  • the concentration of the collected sample was measured by HPLC (manufactured by Shimadzu Corporation, trade name: DIOD E ARRAY DETECTOR SPD-M20A as a detector set).
  • HPLC manufactured by Shimadzu Corporation, trade name: DIOD E ARRAY DETECTOR SPD-M20A as a detector set.
  • the transport speed (P (cm / sec)) in each transport direction (A to B, B to A) is calculated, and the Efflux ratio (P of B to A / P of A to B) is calculated. Calculated.
  • the calculation method is as follows. (In formula (3), Q: amount of substance (mol), t: time (sec), A: hepatocyte culture membrane area (cm 2 ), C 0 : addition concentration ( ⁇ M))
  • the results are shown in Table 1.
  • Example 2 The examples using HuH-7 cells (JCRB) and the examples performed according to Example 1 are shown in detail below.
  • DMEM low glucose
  • Rho123 manufactured by SIGMA
  • verapamil manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • HuH-7 was cultured in DMEM (low glucose) supplemented with 10% FBS.
  • the 24-well inserts were sown at approximately 2 ⁇ 10 5 pcs / cm 2 , and the medium was changed 1 day and 4 days after sowing. It was used in the following experiments on the 7th day of culture.
  • the substrate drug was 10 ⁇ M Rho123 and the inhibitor was 100 ⁇ M verapamil.
  • the membrane resistance value of the cultured plate was measured using Millicell ERM2 (manufactured by Merck Millipore) to confirm the formation of the cell layer on the membrane. Well inserts were washed with 0.9% NaCl.
  • the transport buffer was used as the first test solution and the second test solution, and incubated at 37 ° C. for 10 minutes. Then, the substrate drug (Rho123) of the transporter was used as a transport substance, and in the case of transport from the A side to the B side, the substrate drug was used as the first test solution and the transport buffer was used as the second test solution.
  • the transport buffer was used as the first test solution and the substrate drug was used as the second test solution.
  • the solution containing the inhibitor was used as the first test solution and the second test solution, and incubated at 37 ° C. for 10 minutes.
  • the transport buffer containing the inhibitor was used as the second test solution.
  • the transport buffer containing the inhibitor was used as the first test solution, and the solution containing the substrate drug and the inhibitor was used as the second test solution. All work was done on a 37 ° C water bath.
  • the collected sample was measured with a fluorescence plate reader (manufactured by Perkin Elmer, product name: ARVO MX) at an excitation wavelength of 485 nm and a fluorescence wavelength of 535 nm.
  • Other conditions were in accordance with Example 1.
  • the hepatocyte culture membrane of the present invention a drug transport ability evaluation kit provided with the hepatocyte culture membrane, and a drug transport ability evaluation method using the same are used for examining the pharmacokinetics of a drug.
  • 1 is a drug transport capacity evaluation kit
  • 10 is a hepatocyte culture membrane-supporting insert container
  • 11 is an insert container tube
  • 12 is a membranous cell layer
  • 12a is a cell
  • 13 is a porous plastic film
  • 14 is a hepatocyte culture membrane
  • 15 Is the first test solution
  • 20 is the well plate
  • 21 is the well
  • 25 is the second test solution
  • 30 is the lid
  • A is the bile duct side
  • B is the blood vessel side.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided are a liver cell culture membrane and a drug transport ability evaluation kit that are to be used for in vitro, easily and directly evaluating drug transport ability, i.e., between the migration of an administered drug from the liver into blood vessels followed by whole body migration and the migration of the drug into bile in the bile duct followed by biliary excretion, which is more dominantly induced and to what extent, as one of important factors of distribution, metabolism and excretion. The liver cell culture membrane 14 comprises a membrane-type cell layer 12 which is formed by cells 12a, such as liver cancer cells, cultured in a membrane form on a porous plastic film 13, wherein the cells 12a have such an orientation property that the blood vessel side becomes the bottom side of the membrane-type cell layer 12 while the bile duct side becomes the top side of the membrane-type cell layer 12. The drug transport ability evaluation kit 1 is provided with: a liver cell culture membrane-holding insert container 10 containing the liver cell culture membrane 14, which is disposed on the bottom thereof, and housing a first test solution 15; and a well plate 20 comprising a well 21, into which the insert container is inserted, and housing a second test solution 25 in which the liver cell culture membrane 14 is to be immersed.

Description

肝細胞培養膜、それを備えた薬物輸送能評価キット、及び薬物輸送能評価方法Hepatocyte culture membrane, drug transport capacity evaluation kit equipped with it, and drug transport capacity evaluation method
 本発明は、投与した薬物が肝臓から血管に移行した全身循環と胆管での胆汁へ移行した胆汁排泄との何れかがどの程度優位に惹き起こされるかについての薬物輸送能を評価するために用いられる、肝細胞培養膜、それを備えた薬物輸送能評価キット、及び薬物輸送能評価方法、並びに肝細胞培養膜に血管側及び胆管側の配向性(極性)を付与する配向性増強肝細胞培地に関するものである。 The present invention is used to evaluate the drug transport capacity as to how predominantly either the systemic circulation in which the administered drug is transferred from the liver to the blood vessels or the bile excretion in the bile duct is caused. Hepatocyte culture membrane, drug transport capacity evaluation kit provided with it, drug transport capacity evaluation method, and orientation-enhanced hepatocyte medium that imparts vascular-side and bile duct-side orientation (polarity) to the hepatocyte culture membrane. It is about.
 体内に投与された薬物、例えば患者に経口投与された薬物は、消化管内から消化管細胞を介して吸収され門脈を経て肝臓に到達する。 Drugs administered into the body, for example, drugs orally administered to patients, are absorbed from the gastrointestinal tract via gastrointestinal cells and reach the liver via the portal vein.
 生体内に投与され消化管で吸収された薬物が肝臓で抱合されずに又は抱合されたのち腸肝循環し又は全身循環する吸収、分布、代謝、排泄の状態を模式的に示した図3を参照して説明すると、肝臓に到達された薬物は、肝臓から未変化のまま胆汁とともに排泄され胆管を経て消化管に戻り(胆汁排泄)、再度消化管から吸収されたり、また一部が肝臓から血管を経て全身循環に入り、標的部位に到達する(同図(a))。若しくは、肝臓で抱合されて胆汁とともに排泄され胆管を経て消化管に戻ってから脱抱合されて再度消化管細胞を介して吸収されたりする(腸肝循環)。また一部が肝臓から血管を経て全身循環に入り、標的部位に到達する(同図(b))。或いは肝臓で代謝され尿や胆汁中に排泄される。 FIG. 3 schematically shows the state of absorption, distribution, metabolism, and excretion of a drug administered in vivo and absorbed in the gastrointestinal tract without being conjugated in the liver or after being conjugated in the enterohepatic circulation or systemic circulation. To explain with reference, the drug that reaches the liver is excreted unchanged from the liver together with bile, returns to the digestive tract via the bile duct (bile excretion), is absorbed again from the digestive tract, and partly from the liver. It enters the systemic circulation via blood vessels and reaches the target site (Fig. (A)). Alternatively, it is conjugated by the liver, excreted together with bile, returned to the digestive tract via the bile duct, then deconjugated and absorbed again via the gastrointestinal cells (enterohepatic circulation). In addition, a part of the liver enters the systemic circulation via blood vessels and reaches the target site (Fig. (B)). Alternatively, it is metabolized in the liver and excreted in urine and bile.
 体内での半減期が長い薬物、例えばモルヒネは、腸肝循環が大きく関わっている。具体的には、このような薬物は、消化管例えば腸管から吸収され、その一部が全身循環に入るもののその多くが肝臓でグルクロン酸抱合を受け、胆汁とともに腸管に排泄された後、腸内細菌によって加水分解を受けてグルクロン酸抱合がはずれ、再び腸管から吸収され、その一部が全身循環に入る。これが繰り返されることによって腸肝循環している結果、長時間の薬効発現を奏するようになる。抗生物質を併用すると腸内細菌の作用が阻害されて腸肝循環し難くなってしまう。 Drugs with a long half-life in the body, such as morphine, are greatly involved in enterohepatic circulation. Specifically, such drugs are absorbed from the gastrointestinal tract, such as the intestinal tract, and some of them enter the systemic circulation, but most of them undergo glucuronidation in the liver and are excreted in the intestinal tract together with bile before entering the intestine. Hydrolyzed by the bacteria, the glucuronidation is disengaged and absorbed again from the intestinal tract, part of which enters the systemic circulation. As a result of enterohepatic circulation by repeating this, the drug effect is exhibited for a long time. When used in combination with antibiotics, the action of intestinal bacteria is inhibited, making enterohepatic circulation difficult.
 また、腸肝循環を起こす薬物のうち、未変化体が胆汁排泄される薬物として、アジスロマイシンやアトルバスタチンのような有機アニオン系化合物、カルベジロールやクロミフェンのような有機カチオン系化合物、テモカプリルやモキシフロキサシンのような両性化合物、ジギトキシンやプロブコールのような中性化合物が挙げられ、これらも腸肝循環が大きく関わり、糞尿への排泄に時間がかかる。 Among the drugs that cause enterohepatic circulation, organic anionic compounds such as azithromycin and atorvastatin, organic cationic compounds such as carvegylol and clomiphene, temocapril and moxifloxacin are drugs whose unchanged form is excreted in the bile. These include amphoteric compounds such as digitoxin and neutral compounds such as probucol, which are also greatly involved in enterohepatic circulation and take a long time to be excreted in manure.
 一方、分子量が300~500よりも小さい薬物は、胆汁排泄率が低いものが多いことが知られており、腸肝循環よりもむしろ全身循環が大きく関わっており、その分、薬効持続時間が短い。ラットでは分子量が300~380付近を境に大きいほど、モルモットでは分子量が330~430付近を境に大きいほど、またウサギでは分子量が410~500付近を境に大きいほど、投与量に対する胆汁排泄率が高くなることが知られている。 On the other hand, it is known that many drugs having a molecular weight smaller than 300 to 500 have a low bile excretion rate, and the systemic circulation is more involved than the enterohepatic circulation. .. The larger the molecular weight is around 300 to 380 in rats, the larger the molecular weight is around 330 to 430 in guinea pigs, and the larger the molecular weight is around 410 to 500 in rabbits, the higher the bile excretion rate with respect to the dose. It is known to be expensive.
 新規薬物の開発や既存薬物の評価の際に、それら薬物、又はそれらの代謝産物の胆汁排泄が、薬物の全体的クリアランスで重要な役割を果たすことが分かってきた。 It has been found that bile excretion of these drugs or their metabolites plays an important role in the overall clearance of the drugs during the development of new drugs and the evaluation of existing drugs.
 しかし、ヒトの場合、吸収、分布、代謝、排泄の機構が一層複雑である。しかも、低分子量でも胆汁排泄され易いことがある。さらに、投与された薬物が、肝臓での胆汁排泄と、血管への全身移行との何れかが優位となるかは、薬物の物性や投与対象動物の種差、グルクロン酸抱合などの抱合の受け易さ、トランスポーターの寄与やその作用程度、胆汁でのミセルの形成の受け易さ、胆汁への移行の程度など各種要因の所為で、大きく異なる。 However, in the case of humans, the mechanisms of absorption, distribution, metabolism, and excretion are more complicated. Moreover, even with a low molecular weight, bile may be easily excreted. Furthermore, whether the administered drug is superior to bile excretion in the liver or systemic transfer to blood vessels depends on the physical properties of the drug, the species difference of the target animal, and the susceptibility to conjugation such as glucuronic acid conjugation. It differs greatly due to various factors such as the contribution of the transporter and its action, the susceptibility to the formation of micelles in bile, and the degree of transfer to bile.
 従来、ヒトでの胆汁排泄と全身移行との何れかが優位となるかを評価するためには、in vivoでの動物実験から類推していたが、簡易に評価するために、近年、in vitroでの実験から類推する手法が開発されている。 In the past, in order to evaluate whether biliary excretion or systemic transfer in humans was superior, it was inferred from animal experiments in vivo, but in recent years, in vitro for easy evaluation. A method has been developed that can be inferred from the experiments in.
 例えば、特許文献1に、化学実体の胆汁中排泄を特徴付けるin vitroの方法であって、a)少なくとも1つの胆細管を形成している肝細胞を含む細胞培養物を提供するステップ、b)前記細胞培養物を第1の化学実体と、前記培養物の肝細胞による前記化学実体の取り込みを可能にするのに十分な時間、接触させるステップ、c)前記肝細胞を溶解させることなく前記少なくとも1つの胆細管を破壊し、前記少なくとも1つの胆細管によって放出される前記第1の化学実体および/またはその代謝産物の量を検出するステップ、ならびにd)前記肝細胞を溶解させ、前記肝細胞によって放出される前記第1の化学実体および/またはその代謝産物の量を検出するステップを含む方法が、開示されている。 For example, Patent Document 1 provides an in-vitro method for characterizing the excretion of chemical entities in the gallbladder, a) a step of providing a cell culture containing hepatocytes forming at least one gallbladder canal, b) the above. Step of contacting the cell culture with the first chemical entity for a time sufficient to allow the hepatocytes of the culture to take up the chemical entity, c) at least one of the above without lysing the hepatocytes. The step of destroying one gallbladder and detecting the amount of the first chemical entity and / or its metabolite released by the at least one gallbladder, and d) lysing the hepatocytes and by the hepatocytes. A method comprising the step of detecting the amount of said first chemical entity and / or its metabolite released is disclosed.
 また、特許文献2に、酸素透過性の基板上で肝細胞を培養して毛細胆管を形成させる方法であって培地中の酸素濃度が4.0%以上12.5%以下である低酸素濃度中で肝細胞を培養する方法により、肝細胞を培養して毛細胆管を形成した培養肝細胞を製造し、得られた培養肝細胞を用いて化合物の輸送を評価する、化合物の輸送検定方法が、開示されている。この方法は、化合物を添加して、該毛細胆管への取り込みを行った後、洗浄液で該培養肝細胞を洗って該化合物を除去し、化合物を含まない反応液中で代謝反応に供した後、反応液(培養肝細胞外液)中及び/又は毛細胆管液中の成分を分析して、化合物の代謝特性を検定するというものである。 Further, Patent Document 2 describes a method in which hepatocytes are cultured on an oxygen-permeable substrate to form a bile canaliculus, and the oxygen concentration in the medium is 4.0% or more and 12.5% or less. A method for assaying compound transport, in which hepatocytes are cultured to produce cultured hepatocytes in which hepatocytes are formed to form bile canaliculi, and the obtained cultured hepatocytes are used to evaluate the transport of compounds. , Is disclosed. In this method, after adding a compound and taking it into the bile canaliculus, the cultured hepatocytes are washed with a washing solution to remove the compound, and then subjected to a metabolic reaction in a reaction solution containing no compound. , The components in the reaction solution (cultured hepatocyte extracellular fluid) and / or the bile canaliculus fluid are analyzed to test the metabolic properties of the compound.
 特許文献1及び2の何れも毛細胆管を形成させるものであり、胆細管を破壊・肝細胞を溶解して輸送能を測定すべき薬物の量を検出したり、毛細胆管へ薬物の取り込みによる量を検出したりするものである。しかし、細胞等の破壊や溶解を必要とせず、濃度の直接的な測定により、胆汁排泄と全身移行との何れかが優位となるかを評価できるモデルが求められていた。 Both Patent Documents 1 and 2 form a bile canaliculus, and the amount of a drug whose transport capacity should be measured by destroying the bile duct and lysing hepatocytes is detected, or the amount of a drug taken into the bile canaliculus. Is to be detected. However, there has been a demand for a model that does not require destruction or lysis of cells or the like and can evaluate whether bile excretion or systemic transfer is superior by direct measurement of the concentration.
 本発明者らは、上皮細胞も肝細胞のような実質細胞も通常のシャーレで培養すると配向性を有しないが、肝細胞を多孔質プラスチックフィルム上で培養した膜状細胞層を形成した肝細胞培養膜によって、多孔質プラスチックフィルムに接している下側が血液側、多孔質プラスチックフィルムに接していない上側が胆管側となる配向性を有することを見出し、さらに、この肝細胞培養膜を有する薬物輸送能評価キット、及びそれを用いた薬物輸送能評価方法により、胆汁排泄と全身移行との何れかが優位となるかの評価モデルとなることを見出し、本発明を完成させた。 The present inventors have no orientation when culturing epithelial cells and parenchymal cells such as hepatocytes in a normal petri dish, but hepatocytes forming a membranous cell layer obtained by culturing hepatocytes on a porous plastic film. It was found that the culture membrane has an orientation in which the lower side in contact with the porous plastic film is on the blood side and the upper side not in contact with the porous plastic film is on the bile duct side, and further, drug transport having this hepatocyte culture membrane. The present invention has been completed by finding that the ability evaluation kit and the drug transport ability evaluation method using the kit provide an evaluation model as to which of bile excretion and systemic transfer is superior.
特表2017-527283号公報Special Table 2017-527283 特開2014-223061号公報Japanese Unexamined Patent Publication No. 2014-223061
 本発明は前記の課題を解決するためになされたもので、対象薬物の吸収、分布、代謝、排泄の重要なファクターの一つとして、投与した薬物が肝臓から血管に移行した全身移行と胆管での胆汁へ移行した胆汁排泄との何れかがどの程度優位に惹き起こされるかについての薬物輸送能を、in vitroで簡易にかつ直接的に評価するのに用いられる、肝細胞培養膜、それを備えた薬物輸送能評価キット、及び薬物輸送能評価方法、並びに肝細胞培養膜に血管側及び胆管側の配向性を付与する配向性増強肝細胞培地を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and as one of the important factors for absorption, distribution, metabolism, and excretion of the target drug, the administered drug is transferred from the liver to the blood vessels in the whole body and the bile duct. Hepatocyte culture membrane, which is used to easily and directly evaluate the drug transport capacity of how predominantly any of the bile excretion transferred to bile is caused in vitro. It is an object of the present invention to provide a provided drug transport capacity evaluation kit, a drug transport capacity evaluation method, and an orientation-enhanced hepatocyte medium that imparts vascular-side and bile duct-side orientation to a hepatocyte culture membrane.
 前記の目的を達成するためになされた本発明の肝細胞培養膜は、肝癌細胞と、胆管癌細胞と、遊離肝細胞と、動物由来ヒト化新鮮肝細胞と、肝細胞に誘導されるiPS細胞及び/又はES細胞と、オルガノイドと、不死化細胞との少なくとも何れかの細胞が、多孔質プラスチックフィルム上で膜状に培養された膜状細胞層を形成しており、前記細胞が、前記膜状細胞層の下側で血管側となり、前記膜状細胞層の上側で胆管側となる配向性を有していることを特徴とする。 The hepatocyte culture membrane of the present invention made to achieve the above object is hepatocyte, bile duct cancer cell, free hepatocyte, animal-derived fresh humanized hepatocyte, and iPS cell induced by hepatocyte. And / or at least one of ES cells, organoids, and immortalized cells forms a membranous cell layer cultured in a membrane on a porous plastic film, and the cells form the membrane. It is characterized by having an orientation in which the lower side of the hepatocyte layer is on the blood vessel side and the upper side of the membranous cell layer is on the bile duct side.
 前記の目的を達成するためになされた本発明の薬物輸送能評価キットは、前記肝細胞培養膜が底に設けられており第一被検液を収める肝細胞培養膜担持インサート容器と、前記肝細胞培養膜担持インサート容器が挿入されているウェルを有しており前記肝細胞培養膜が浸漬される第二被検液を収めるウェルプレートとを、備えていることを特徴とする。 The drug transport ability evaluation kit of the present invention made to achieve the above object includes a hepatocyte culture membrane-supporting insert container in which the hepatocyte culture membrane is provided at the bottom and stores the first test solution, and the hepatocyte culture membrane. It has a well into which a cell culture membrane-supporting insert container is inserted, and is provided with a well plate for accommodating a second test solution into which the hepatocyte culture membrane is immersed.
 この薬物輸送能評価キットは、前記多孔質プラスチックフィルムが、例えば含フッ素樹脂、ポリカーボネート、ポリオレフィン、ポリエステル、ポリウレタン、ポリアミド、ポリイミド、セルロース、及び再生セルロースから選ばれる何れかのプラスチックで形成されているというものである。 According to the drug transport ability evaluation kit, the porous plastic film is made of any plastic selected from, for example, fluororesin, polycarbonate, polyolefin, polyester, polyurethane, polyamide, polyimide, cellulose, and regenerated cellulose. It is a thing.
 この薬物輸送能評価キットは、前記多孔質プラスチックフィルムが前記肝細胞の大きさよりも小さな多孔を有し、又は多孔質プラスチックフィルムに不透性の材質でシールしたものをパターン状に開口させたもの(パターニング)である。 In this drug transport ability evaluation kit, the porous plastic film has a porous size smaller than the size of the hepatocytes, or the porous plastic film is sealed with an impermeable material and opened in a pattern. (Patterning).
 この薬物輸送能評価キットは、前記多孔質プラスチックフィルムが、コラーゲン、及び/又はフィブロネクチンでコーティングされていることが好ましい。 In this drug transport ability evaluation kit, it is preferable that the porous plastic film is coated with collagen and / or fibronectin.
 この薬物輸送能評価キットは、前記第一被検液と、前記第二被検液との少なくとも何れかに胆汁酸が含有されていることが好ましい。 In this drug transport ability evaluation kit, it is preferable that at least one of the first test solution and the second test solution contains bile acid.
 前記の目的を達成するためになされた本発明の薬物輸送能評価方法は、前記薬物輸送能評価キットを用い、前記肝細胞培養膜担持インサート容器の内部の前記第一被検液と、前記肝細胞培養膜担持インサート容器の外部にあって前記ウェルプレートの前記ウェルの内部の前記第二被検液との何れかに、測定対象薬物を加え、前記膜状細胞層と前記多孔質プラスチックフィルムとの前記肝細胞培養膜を介して、前記測定対象薬物の輸送量を経時的に測定し、輸送速度を算出することにより、薬物輸送能を評価するというものである。 The drug transport capacity evaluation method of the present invention made to achieve the above object uses the drug transport capacity evaluation kit, the first test solution inside the hepatocyte culture membrane-supporting insert container, and the liver. The drug to be measured is added to any of the second test solution outside the cell culture membrane-supporting insert container and inside the well of the well plate to obtain the membranous cell layer and the porous plastic film. The drug transport ability is evaluated by measuring the transport amount of the drug to be measured over time and calculating the transport rate through the hepatocyte culture membrane.
 前記の目的を達成するためになされた本発明の薬物輸送能評価方法は、具体的には、
 第一被検液を収めるインサート容器筒の底に設けられた多孔質プラスチックフィルム上で、肝癌細胞と、胆管癌細胞と、遊離肝細胞と、動物由来ヒト化新鮮肝細胞と、肝細胞に誘導されるiPS細胞及び/又はES細胞と、オルガノイドと、不死化細胞との少なくとも何れかの細胞を、播種し、培養して、膜状細胞層にすることにより、前記膜状細胞層が、前記膜状細胞層の下側で血管側となり、前記膜状細胞層の上側で胆管側となる配向性を有している肝細胞培養膜を形成して、肝細胞培養膜担持インサート容器を調製する工程と、
 前記肝細胞培養膜担持インサート容器を挿入するウェルを有しており前記肝細胞培養膜が浸漬される第二被検液を収めるウェルプレートを調製する工程と、
 前記肝細胞培養膜担持インサート容器に、薬物輸送能の測定対象薬物を含有させた前記第一被検液を収め、前記ウェルプレートの前記ウェルに、前記測定対象薬物を含有しない前記第二被検液を収め、前記肝細胞培養膜を前記第二被検液に浸漬した後、前記胆管側から前記血液側への前記測定対象薬物の輸送量を測定する血液側輸送量測定工程と、
 前記肝細胞培養膜担持インサート容器に、前記測定対象薬物を含有しない前記第一被検液を収め、前記ウェルプレートの前記ウェルに、前記測定対象薬物を含有させた前記第二被検液を収め、前記肝細胞培養膜を前記第二被検液に浸漬した後、前記血液側から前記胆管側への前記測定対象薬物の輸送量を測定する胆管側輸送量測定工程と、
 それぞれの輸送量を経時的に測定することで輸送速度を算出する工程と、
 それら血液側輸送速度及び胆管側輸送速度の比を算出して、前記測定対象薬の薬物輸送能を求める薬物輸送能算出工程とを、
有しているというものである。
Specifically, the drug transport ability evaluation method of the present invention made to achieve the above object is specifically described as follows.
Induced to hepatocytes, bile duct cancer cells, free hepatocytes, animal-derived humanized fresh hepatocytes, and hepatocytes on a porous plastic film provided at the bottom of the insert container tube containing the first test solution. By seeding and culturing at least one of iPS cells and / or ES cells, organoids, and immortalized cells to form a membranous cell layer, the membranous cell layer is formed. A hepatocyte culture membrane-bearing insert container is prepared by forming a hepatocyte culture membrane having an orientation that is on the blood vessel side below the membranous cell layer and on the bile duct side above the membranous cell layer. Process and
A step of preparing a well plate for containing a second test solution in which the hepatocyte culture membrane-supporting insert container is inserted and in which the hepatocyte culture membrane is immersed.
The first test solution containing the drug whose drug transport capacity is to be measured is contained in the hepatocyte culture membrane-supporting insert container, and the well of the well plate contains the second test solution which does not contain the drug to be measured. A blood-side transport amount measurement step of measuring the transport amount of the drug to be measured from the bile duct side to the blood side after containing the liquid and immersing the hepatocyte culture membrane in the second test solution.
The first test solution containing no drug to be measured is contained in the hepatocyte culture membrane-supporting insert container, and the second test solution containing the drug to be measured is contained in the well of the well plate. After immersing the hepatocyte culture membrane in the second test solution, the bile duct side transport amount measuring step for measuring the transport amount of the drug to be measured from the blood side to the bile duct side.
The process of calculating the transportation speed by measuring each transportation amount over time, and
A drug transport capacity calculation step for calculating the ratio of the blood transport rate and the bile duct transport rate to obtain the drug transport capacity of the drug to be measured.
It is to have.
 この薬物輸送評価方法は、前記血液側輸送量測定工程中、さらに前記第一被検液と前記第二被検液とにトランスポーターのインヒビターを添加して行い、前記胆管側輸送量測定工程中、さらに前記第一被検液と前記第二被検液とにトランスポーターのインヒビターを添加して行い、それらについても胆管側輸送量測定工程を行い、前記薬物輸送能算出工程で、インヒビター未添加でのそれら血液側輸送速度及び胆管側輸送速度の比と、インヒビター添加でのそれら血液側輸送速度及び胆管側輸送速度の比との比を算出して、前記測定対象薬の薬物輸送能を求めるというものであってもよい。 This drug transport evaluation method is performed during the blood transport amount measurement step, and further by adding a transporter inhibitor to the first test solution and the second test solution, and during the bile duct side transport amount measurement step. Further, a transporter inhibitor was added to the first test solution and the second test solution, and the bile duct side transport amount measurement step was also performed for them, and the inhibitor was not added in the drug transport capacity calculation step. The ratio of the blood-side transport rate and the bile duct-side transport rate to the ratio of the blood-side transport rate and the bile duct-side transport rate with the addition of the inhibitor is calculated to determine the drug transport capacity of the drug to be measured. It may be something like that.
 前記の目的を達成するためになされた本発明の配向性増強肝細胞培地は、肝癌細胞と、胆管癌細胞と、遊離肝細胞と、動物由来ヒト化新鮮肝細胞と、肝細胞に誘導されるiPS細胞及び/又はES細胞と、オルガノイドと、不死化細胞との少なくとも何れかの細胞を、多孔質プラスチックフィルム上で培養して膜状細胞層を形成し、前記膜状細胞層の下側で血管側となり前記膜状細胞層の上側で胆管側となる配向性を発現させるための肝細胞培地であって、培養成分と、胆汁酸とを有していることを特徴とする。 The orientation-enhanced hepatocyte medium of the present invention made to achieve the above object is induced into hepatocytes, bile duct cancer cells, free hepatocytes, animal-derived fresh humanized hepatocytes, and hepatocytes. At least one of iPS cells and / or ES cells, organoids, and immortalized cells is cultured on a porous plastic film to form a membranous cell layer, and below the membranous cell layer. It is a hepatocyte medium for expressing orientation on the blood vessel side and on the bile duct side on the upper side of the membranous cell layer, and is characterized by having a culture component and bile acid.
 本発明の肝細胞培養膜は、肝細胞由来又は肝細胞に誘導される細胞を多孔質プラスチックフィルム上で膜状に培養した膜状細胞層を形成することによって、膜状細胞層の下側即ち多孔質プラスチックフィルム側で血管側となり膜状細胞層の上側で胆管側となる配向性を発現したものであり、単層膜となっている。そのため、通常のシャーレで培養したときのように細胞の三次元的な塊乃至複数層を形成していない。また、胆細管や毛細胆管を意図的に形成するものでもない。この肝細胞培養膜は、配向性を有しているので、測定対象薬物が胆汁排泄と全身移行との何れかが優位となるかを、検討するのに適している。 The hepatocyte culture membrane of the present invention forms a membranous cell layer in which cells derived from hepatocytes or induced by hepatocytes are cultured in a membranous manner on a porous plastic film, thereby forming a membranous cell layer below the membranous cell layer, that is,. The porous plastic film side has an orientation toward the blood vessel side, and the upper side of the membranous cell layer has the orientation toward the bile duct side, and is a monolayer film. Therefore, it does not form a three-dimensional mass or multiple layers of cells as in the case of culturing in a normal petri dish. Nor does it intentionally form bile ducts or bile canaliculi. Since this hepatocyte culture membrane has orientation, it is suitable for examining whether the drug to be measured is dominant in bile excretion or systemic transfer.
 従って、肝細胞培養膜を用いれば、例えば新規薬物の開発や既存薬物の評価の際に、それら薬物又はそれらの代謝産物のような測定対象薬物が、胆汁に排泄されるか、血管(類洞)側に押し戻されるかを簡便に評価できる、簡易で再現性の良い評価系を構築することができる。 Therefore, if a hepatocyte culture membrane is used, for example, when developing a new drug or evaluating an existing drug, the drug to be measured, such as those drugs or their metabolites, is excreted in bile or is excreted in blood vessels (sinusoids). It is possible to construct a simple and highly reproducible evaluation system that can easily evaluate whether or not it is pushed back to the) side.
 この肝細胞培養膜は、入手し易い細胞を用いて、安価に、安定した配向性を発現させることができるものである。 This hepatocyte culture membrane can express stable orientation at low cost by using easily available cells.
 本発明の薬物輸送能評価キットは、配向性を有する肝細胞培養膜を有していることにより、測定対象薬物が胆細管や毛細胆管へ透過するのではなく、単層膜の膜状細胞層を透過する程度を測定することによって、測定対象薬物が胆汁排泄と全身移行との何れかが優位となるかを、評価できる。 Since the drug transport ability evaluation kit of the present invention has an oriented hepatocyte culture membrane, the drug to be measured does not permeate into the bile canaliculus or bile canaliculus, but the membranous cell layer of the monolayer membrane. By measuring the degree of permeation of the drug, it is possible to evaluate whether the drug to be measured is superior in bile excretion or systemic transfer.
 この薬物輸送能評価キット及びそれを用いた薬物輸送能評価方法によれば、測定対象薬物の吸収、分布、代謝、排泄の重要なファクターの一つとして、測定対象薬物をヒトに投与したとき肝臓から血管に移行した全身循環と胆管での胆汁へ移行した腸肝循環との何れの循環がどの程度優位に惹き起こされるかについての薬物輸送能を、in vitroで簡易にかつ直接的に評価するのに用いられることができる。さらに、この薬物輸送能評価キット及び薬物輸送能評価方法によれば、肝細胞培養膜を用いているから肝臓の働きを反映できるので、直接的にin vivoの評価を行わなくても、間接的にin vivoでの結果を正しく推定することができる。 According to this drug transport ability evaluation kit and the drug transport ability evaluation method using the kit, the liver when the drug to be measured is administered to humans as one of the important factors of absorption, distribution, metabolism and excretion of the drug to be measured. Easily and directly evaluate in vitro the drug transport capacity of which circulation, the systemic circulation transferred from blood vessels to blood vessels or the enterohepatic circulation transferred to bile ducts, is caused predominantly. Can be used for. Furthermore, according to this drug transport capacity evaluation kit and drug transport capacity evaluation method, the function of the liver can be reflected because the hepatocyte culture membrane is used, so that it is not necessary to directly evaluate in vivo, but indirectly. The result in vivo can be estimated correctly.
 また、この薬物輸送能評価キット及び薬物輸送能評価方法は、肝細胞培養膜での胆管側から血液側への測定対象薬物の輸送量と、血液側から胆管側への測定対象薬物の輸送量とを比較して、簡便に薬物輸送能を評価するのに用いられる。 In addition, this drug transport ability evaluation kit and drug transport ability evaluation method include the amount of the drug to be measured from the bile duct side to the blood side in the hepatocellular culture membrane and the amount of the drug to be measured from the blood side to the bile duct side. It is used to easily evaluate the drug transport capacity by comparing with.
 本発明の配向性増強肝細胞培地は、肝細胞培養膜での膜状細胞層が、下側即ち多孔質プラスチックフィルム側で血管側となり上側で胆管側となる配向性を、細胞の培養段階で増強させることができる。そのため、配向性増強肝細胞培地を用いて肝細胞培養膜を調製すれば、その肝細胞培養膜を有する薬物輸送能評価キット及びそれを用いた薬物輸送能評価方法で、測定対象薬物の物性、とりわけ肝臓から胆汁排泄に入り易いか全身移行に入り易いかについてのヒトでの薬物動態について、正しく反映したin vitroのデータから簡便かつ迅速に正確に把握することができる。 In the orientation-enhanced hepatocyte medium of the present invention, the membranous cell layer in the hepatocyte culture membrane is oriented so that it is on the vascular side on the lower side, that is, on the porous plastic film side, and on the bile duct side on the upper side, at the cell culture stage. It can be enhanced. Therefore, if a hepatocyte culture membrane is prepared using an orientation-enhanced hepatocyte culture membrane, the physical properties of the drug to be measured can be determined by a drug transport capacity evaluation kit having the hepatocyte culture membrane and a drug transport capacity evaluation method using the kit. In particular, the pharmacokinetics in humans regarding whether bile excretion is likely to occur from the liver or systemic transfer is easily and accurately grasped from in vitro data that correctly reflects it.
本発明を適用する肝細胞培養膜を有する薬物輸送能評価キットの模式断面図である。It is a schematic cross-sectional view of the drug transport ability evaluation kit which has the hepatocyte culture membrane to which this invention is applied. 本発明を適用する薬物輸送能評価キットの模式断面図と、それを用いた薬物輸送能評価方法による測定結果を示すグラフである。It is a schematic cross-sectional view of the drug transport ability evaluation kit to which this invention is applied, and the graph which shows the measurement result by the drug transport ability evaluation method using it. 生体内に投与され消化管で吸収された薬物が肝臓で抱合されずに又は抱合されたのち腸肝循環し又は全身循環する吸収、分布、代謝、排泄の状態を模式的に示した図である。It is a figure which schematically showed the state of absorption, distribution, metabolism, and excretion that a drug administered in a living body and absorbed in the gastrointestinal tract is not conjugated in the liver or is conjugated and then enterohepatic circulation or systemic circulation. ..
 以下、発明を実施するための形態を詳細に説明するが、本発明の範囲はこれらの形態に限定されるものではない。 Hereinafter, embodiments for carrying out the invention will be described in detail, but the scope of the present invention is not limited to these embodiments.
 本発明の肝細胞培養膜、それを備えた薬物輸送能評価キット、及び薬物輸送能評価方法について、図1を参照しながら、詳細に説明する。 The hepatocyte culture membrane of the present invention, the drug transport ability evaluation kit provided with the hepatocyte culture membrane, and the drug transport ability evaluation method will be described in detail with reference to FIG.
 肝細胞培養膜14は、多孔質プラスチックフィルム13と、その上で膜状に細胞12aが培養された膜状細胞層12とを有するものである。 The hepatocyte culture membrane 14 has a porous plastic film 13 and a membranous cell layer 12 in which cells 12a are cultured in a membrane shape on the porous plastic film 13.
 薬物輸送能評価キット1は、膜状細胞層12を内空側にして肝細胞培養膜14が非透過性プラスチック製インサート容器筒11の底に設けられて塞いでいる肝細胞培養膜担持インサート容器10と、その肝細胞培養膜担持インサート容器10が挿入されているウェル21を有している非透過性プラスチック製ウェルプレート20とを、備えている。薬物輸送能評価方法による測定時には、肝細胞培養膜担持インサート容器10に第一被検液15が加えられて収められ、ウェルプレート20のウェル21に第二被検液25が加えられて収められる。そのとき、ウェル21中で、肝細胞培養膜担持インサート容器10の肝細胞培養膜14は、第二被検液25に浸漬される。 The drug transport capacity evaluation kit 1 is a hepatocyte culture membrane-supporting insert container in which the hepatocyte culture membrane 14 is provided at the bottom of a non-permeable plastic insert container cylinder 11 with the membranous cell layer 12 on the inner air side to close the container. A non-permeable plastic well plate 20 having a well 21 into which the hepatocyte culture membrane-supporting insert container 10 is inserted is provided. At the time of measurement by the drug transport ability evaluation method, the first test solution 15 is added to the hepatocyte culture membrane-supported insert container 10 and stored, and the second test solution 25 is added to and stored in the well 21 of the well plate 20. .. At that time, in the well 21, the hepatocyte culture membrane 14 of the hepatocyte culture membrane-supporting insert container 10 is immersed in the second test solution 25.
 細胞12aは、例えば、肝癌細胞と、胆管癌細胞と、遊離肝細胞と、動物由来ヒト化新鮮肝細胞と、肝細胞に誘導されるiPS細胞及び/又はES細胞と、オルガノイドと、不死化細胞との少なくとも何れかの細胞が、挙げられる。分化したら肝臓様細胞になる前駆体細胞は肝オルガノイドと呼ばれている。 The cells 12a include, for example, hepatocyte cancer cells, bile duct cancer cells, free hepatocytes, animal-derived fresh humanized hepatocytes, hepatocyte-induced iPS cells and / or ES cells, organoids, and immortalized cells. At least one of the cells with. Precursor cells that become liver-like cells when differentiated are called liver organoids.
 肝癌細胞としては、市販の肝癌細胞株、例えばヒト肝癌由来細胞株HepG2(JCRB細胞バンク(国立研究開発法人医薬基盤・健康・栄養研究所)など)、高分化型ヒト肝芽腫由来細胞株HuH-7(JCRBなど)が好ましく用いられるが、ヒト肝癌由来細胞株HepaRG(株式会社ケー・エー・シー)、PLC-PRF-5(コスモ・バイオ株式会社など)、ヒト肝臓腺腫細胞株SK-HEP-1(コスモ・バイオ株式会社など)を用いてもよい。
 胆管癌細胞としては、市販の肝癌細胞株、例えば、胆管癌細胞株TFK-1(国立大学法人東北大学加齢医学研究所医用細胞資源センター)、ヒト不死化胆管由来細胞株MMNK-1(JCRB)、不死化ヒト肝内皮細胞株(JCRB)、類洞内皮癌細胞が挙げられる。
 遊離肝細胞としては、初代遊離肝細胞(プライマリー肝細胞)、例えばヒト肝細胞株Chang-Liver(コスモ・バイオ株式会社など)が挙げられる。
 動物由来ヒト化新鮮肝細胞としては、例えばPXB-cell(PhoenixBio社)、免疫不全動物にヒト細胞が生着した動物由来肝細胞(公益財団法人実験動物中央研究所)が挙げられる。
 また、肝細胞に誘導される前駆体培養細胞である場合、人工多能性幹細胞:iPS細胞としては、例えばiCell肝細胞(富士フイルム株式会社)、Cellartis(タカラバイオ株式会社)が挙げられる。
Examples of liver cancer cells include commercially available liver cancer cell lines, such as human liver cancer-derived cell line HepG2 (JCRB cell bank (National Research and Development Corporation Pharmaceutical Infrastructure, Health and Nutrition Research Institute), etc.), and well-differentiated human liver blastoma-derived cell line HuH. -7 (JCRB, etc.) is preferably used, but human liver cancer-derived cell line HepaRG (KAC Co., Ltd.), PLC-PRF-5 (Cosmo Bio Co., Ltd., etc.), human liver adenomas cell line SK-HEP -1 (Cosmo Bio Co., Ltd., etc.) may be used.
Examples of cholangiocarcinoma cells include commercially available liver cancer cell lines, for example, cholangiocarcinoma cell line TFK-1 (National University Corporation Tohoku University Institute of Aging Medicine Medical Cell Resource Center) and human immortalized cholangiocarcinoma cell line MMNK-1 (JCRB). ), Immortalized human hepatic endothelial cell line (JCRB), sinus endothelial cancer cells.
Examples of free hepatocytes include primary free hepatocytes (primary hepatocytes), for example, human hepatocyte strain Change-Live (Cosmo Bio Co., Ltd., etc.).
Examples of animal-derived fresh humanized hepatocytes include PXB-cell (PhoenixBio) and animal-derived hepatocytes (Public Interest Incorporated Foundation, Experimental Animal Central Research Institute) in which human cells are engrafted in immunodeficient animals.
In addition, in the case of precursor cultured cells induced by hepatocytes, examples of induced pluripotent stem cells: iPS cells include iCell hepatocytes (Fujifilm Co., Ltd.) and Cellartis (Takara Bio Inc.).
 これらの肝細胞(実質細胞)は、多孔質プラスチックフィルム13上、好ましくは水平な多孔質プラスチックフィルム13上で、細胞を播種し、培地を用いて培養することにより、細胞が多孔質プラスチックフィルム13上で均一に隙間なく増殖した培養細胞12aの単層膜となって、多孔質プラスチックフィルムを覆う。肝細胞は、内皮細胞に比べ、多孔質プラスチックフィルム上で培養しても、内皮細胞のような配向性(極性)を有する膜を形成し難く、配向性に優れた膜状細胞層12は、知られていなかった。しかし、この膜状細胞層12は、細胞12aが単層に隙間なく並んで増殖した単層膜状のものであり、各細胞が膜状細胞層12中で、多孔質プラスチックフィルム側にて血管側のトランスポーター等を発現し、一方、多孔質プラスチックフィルムと反対側にて胆管側のトランスポーター等を発現していることにより、特定の薬物を血管側又は胆管側に優先的に移送できるようになっている。また、肝臓同様に、特定の薬物やグルコースを選択的に血管側に移送したり、特定の薬物を透過させずに吐き出したりする。これにより、肝臓と同様に、第一相(解毒系)、第二相(抱合系)、第三相(排出系)のように作用する。それにより、膜状細胞層12の下側で血管側となり、膜状細胞層12の上側で胆管側となる配向性を示すようになり、肝臓で吐き出しタンパクであるトランスポーターMRP2の基質であってほぼ100%の割合にて腸肝循環に入るBSP(ブロモスルホフタレイン:胆汁排泄マーカー)のような薬物は、血管側よりも胆管側に多く移送されることから高い配向性を発現していることが示される。培養細胞12aは、多孔質プラスチックフィルム13上で培養すると、とりわけ胆汁酸含有培養液で培養すると、配向性が一層顕著になる。肝細胞培養膜14を用いることによるこのような配向性によって、胆汁中排泄、肝代謝、肝毒性について、検討することが可能である。 These hepatocytes (parenchymal cells) are seeded on the porous plastic film 13, preferably on the horizontal porous plastic film 13, and cultured in a medium, whereby the cells are cultured on the porous plastic film 13. It becomes a monolayer film of cultured cells 12a that have grown uniformly and without gaps on the surface, and covers the porous plastic film. Compared to endothelial cells, hepatocytes are less likely to form a membrane having orientation (polarity) like endothelial cells even when cultured on a porous plastic film, and the membranous cell layer 12 having excellent orientation is It was not known. However, this membranous cell layer 12 is a monolayer membranous one in which cells 12a proliferate in a monolayer without gaps, and each cell is a blood vessel in the membranous cell layer 12 on the porous plastic film side. By expressing the transporter on the side and the transporter on the bile duct side on the opposite side of the porous plastic film, a specific drug can be preferentially transferred to the blood vessel side or the bile duct side. It has become. Also, like the liver, it selectively transfers a specific drug or glucose to the blood vessel side, or exhales the specific drug without allowing it to permeate. As a result, it acts like the first phase (detoxification system), the second phase (conjugation system), and the third phase (excretory system) in the same manner as the liver. As a result, the blood vessel side is located below the membranous cell layer 12, and the bile duct side is located above the membranous cell layer 12, which is a substrate for the transporter MRP2, which is a protein exhaled by the liver. Drugs such as BSP (bromosulfophthaline: bile excretion marker), which enter the enterohepatic circulation at a rate of almost 100%, exhibit high orientation because they are transferred more to the bile duct side than to the vascular side. Is shown. When the cultured cells 12a are cultured on the porous plastic film 13, particularly when they are cultured in a bile acid-containing culture medium, the orientation becomes more remarkable. Due to such orientation by using the hepatocyte culture membrane 14, excretion in bile, hepatic metabolism, and hepatotoxicity can be investigated.
 これらの膜状細胞層12と多孔質プラスチックフィルム13とからなる肝細胞培養膜14は、肝臓からの胆汁排泄と全身移行との何れかに優位に入るか検討すべき測定対象薬物が、被検液中で、膜状細胞層12の血液側Bから胆管側Aへの向きへの輸送速度(PBtoA)と、胆管側Aから血液側Bへの向きへの輸送速度(PAtoB)との比が、測定対象薬物によって変動し得るが、1.3以上、好ましくは1.8以上、より好ましくは2.0以上、より一層好ましくは5.0以上となっている。この比は、下記数式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
The hepatocyte culture membrane 14 composed of these membranous cell layers 12 and the porous plastic film 13 is a test target drug for which it should be examined whether bile excretion from the liver or systemic transfer is dominant. In the liquid, the transport rate of the membranous cell layer 12 from the blood side B to the bile duct side A (P BtoA ) and the transport rate from the bile duct side A to the blood side B ( PAtoB ). The ratio may vary depending on the drug to be measured, but is 1.3 or more, preferably 1.8 or more, more preferably 2.0 or more, and even more preferably 5.0 or more. This ratio is expressed by the following mathematical formula (1).
Figure JPOXMLDOC01-appb-M000001
 上記の指標のほかに、さらに加えて、インヒビター(阻害物質)例えばトランスポーターのインヒビターを添加した場合の輸送速度の比を求めるとき、血液側Bから胆管側Aへの向きへの輸送速度(PBtoA)と、胆管側Aから血液側Bへの向きへの輸送速度(PAtoB)との比を、さらに阻害物質を添加したときの血液側Bから胆管側Aへの向きへの輸送速度(PBtoA )と、胆管側Aから血液側Bへの向きへの輸送速度(PAtoB )との比で割った時の値が、測定対象薬物によって変動し得るが、1.3以上、好ましくは1.8以上、より好ましくは2.0以上、より一層好ましくは5.0以上となっていてもよい。この比は、下記数式で表される。
Figure JPOXMLDOC01-appb-M000002
In addition to the above indicators, when determining the ratio of the transport rate when an inhibitor (inhibitor) such as a transporter inhibitor is added, the transport rate from the blood side B to the bile duct side A (P). and BtoA), transport speed from the canalicular a the ratio between the transport rate of the orientation of the blood side B (P AtoB), to further inhibit the orientation of the material from the blood side B upon addition of the canalicular a ( and P BtoA i), the value obtained by dividing the ratio of the rate of transport of the canalicular a to the orientation of the blood side B (P AtoB i) is, may vary by the measurement target drug, 1.3 or more, It may be preferably 1.8 or more, more preferably 2.0 or more, and even more preferably 5.0 or more. This ratio is expressed by the following formula.
Figure JPOXMLDOC01-appb-M000002
 式(1)の値が1以上であって双方の配向性が認められるときに、インヒビターを添加して輸送速度の比(PBtoA )/(PAtoB )を求めた時には、その値が小さくなり配向性が認められなくなったり減少したりするので、移動を配向する方向にトランスポーターが機能していることが分かる。 When the value of the formula (1) is 1 or more and the orientation of both is recognized, when an inhibitor is added to obtain the transport rate ratio (P BtoA i ) / ( PAtoB i ), the value is It can be seen that the transporter is functioning in the direction of orientation of movement because it becomes smaller and the orientation is not recognized or decreased.
 一方、インヒビターを添加して輸送速度の比を求めた方が良い場合は、数式(1)の(PBtoA)/(PAtoB)の値が1未満となったとき、例えば測定対象薬物が血液方向へ向かい易い場合が挙げられる。具体的には、インヒビターを添加して輸送速度を測定すると、数式(2)の値が大きく得られた場合に、一見、血液方向へ向かっているように見えるが、胆汁排泄も機能していることが示される。この場合、測定対象薬物の移動を阻害するインヒビターを用いる必要がある。より具体的には、ブロモスルホフタレイン(BSP)は、HepG2細胞中で、多剤耐性関連タンパク質2(MRP2)という胆管側に発現する排泄トランスポーターで移動するから、それを阻害するMK-571をインヒビターとして用いる。他の例として、MRP2でなくP糖タンパク質(P-gp)の場合には、BSPの代わりにローダミン123(Rho123)を用い、インヒビターとしてベラパミルを用いることとなる。 On the other hand, when it is better to add an inhibitor to obtain the transport rate ratio, when the value of (P BtoA ) / ( PAtoB ) in the formula (1) becomes less than 1, for example, the drug to be measured is blood. There are cases where it is easy to go in the direction. Specifically, when the transport rate is measured by adding an inhibitor, when the value of the formula (2) is large, it seems that the blood is heading toward the blood, but bile excretion is also functioning. Is shown. In this case, it is necessary to use an inhibitor that inhibits the movement of the drug to be measured. More specifically, bromosulfophthalene (BSP) migrates in HepG2 cells by a multidrug resistance-associated protein 2 (MRP2) excretory transporter expressed on the bile duct side, and thus inhibits MK-571. Is used as an inhibitor. As another example, in the case of P-glycoprotein (P-gp) instead of MRP2, rhodamine 123 (Rho123) is used instead of BSP, and verapamil is used as an inhibitor.
 これらの肝細胞を、通常のシャーレ、プラスチック製ウェルプレートで培養したとしても、ランダムに存在することから、配向性を示さないばかりか、次第にコロニーを形成したり三次元的な塊乃至複数層を形成したりしてしまう。 Even if these hepatocytes are cultured in a normal petri dish or a plastic well plate, they do not show orientation because they are randomly present, and they gradually form colonies or form a three-dimensional mass or multiple layers. It will form.
 従って、この肝細胞培養膜14を調製するには、多孔質プラスチックフィルム13上で肝細胞を培養することが重要である。 Therefore, in order to prepare this hepatocyte culture membrane 14, it is important to culture hepatocytes on the porous plastic film 13.
 この肝細胞培養膜14を調製する際、肝細胞を通常の液体培地又は固体培地、好ましくは市販の又は用時調製の液体培地、例えば培養成分として、ダルベッコ改変イーグル培地、調整成分としてFBS(ウシ胎児血清)を含有する液体培地が用いられる。液体培地として、市販のDMEM(富士フィルム和光純薬株式会社製)が挙げられる。 When preparing the hepatocyte culture membrane 14, hepatocytes are used in a normal liquid medium or a solid medium, preferably a commercially available or time-prepared liquid medium, for example, Dalbecco-modified Eagle's medium as a culture component, and FBS (bovine) as a conditioning component. A liquid medium containing fetal serum) is used. Examples of the liquid medium include commercially available DMEM (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.).
 このような液体培地は、添加物として、胆汁酸をさらに含有していると、肝細胞培養膜14の配向性が一層向上するので、一層好ましい。胆汁酸は、哺乳類などの胆汁に広範に認められる四環構造のステロイドであり、コラン酸母核に1~3個のヒドロキシ基が結合した基本構造を持つもので、具体的にはコール酸やケノデオキシコール酸のような一次胆汁酸、それが腸内細菌で変換されるデオキシコール酸やリトコール酸のような二次胆汁酸、それらがグリシン又はタウリンとアミド結合した抱合胆汁酸、タウロコール酸、タウロケノデオキシコール酸、グリコデオキシコール酸、タウロウルソデオキシコール酸、及び/又はリトコール酸が挙げられる。胆汁酸は、単一種又は複数種であってもよい。 It is more preferable that such a liquid medium further contains bile acid as an additive because the orientation of the hepatocyte culture membrane 14 is further improved. Bile acids are steroids with a tetracyclic structure that are widely found in the bile of mammals and the like, and have a basic structure in which 1 to 3 hydroxy groups are bonded to the mother nucleus of colacic acid. Specifically, cholic acid and Primary bile acids such as kenodeoxycholic acid, secondary bile acids such as deoxycholic acid and lithocholic acid that are converted by intestinal bacteria, conjugated bile acids in which they are amide-bonded to glycine or taurine, taurocholic acid, taurokenodeoxycholic Examples include acids, glycodeoxycholic acids, tauroursodeoxycholic acids, and / or lithocholic acids. Bile acids may be single or plural.
 液体培地中、胆汁酸は、例えば好ましくは1μM~300μM、一層好ましくは100μMの濃度で含有されている。 The bile acid is contained in the liquid medium at a concentration of, for example, preferably 1 μM to 300 μM, more preferably 100 μM.
 肝細胞培養膜14の配向性を向上させるために、液体培地中、胆汁酸に代え、又は胆汁酸と共に、他の添加物、例えばジメチルスルホキシド(DMSO)、活性型ビタミンD、アザシチジン、コルヒチン、リファンピシン、およびデキサメタゾンのように酵素やトランスポーターを発現させる分化促進剤、配向性を誘導する添加剤、例えばビタミンAや塩化コバルトを含有していてもよい。 To improve the orientation of the hepatocyte culture membrane 14, other additives such as dimethyl sulfoxide (DMSO), active vitamin D, azacitidine, corhitin, riphanpicin in liquid medium, in place of bile acids or with bile acids. , And a differentiation promoter that expresses enzymes and transporters, such as dexamethasone, and additives that induce orientation, such as vitamin A and cobalt chloride, may be contained.
 肝細胞培養膜14中の多孔質プラスチックフィルム13の素材としては、例えばポリテトラフルオロエチレン(PTFE)のような含フッ素樹脂、ポリカーボネート、ポリエチレンやポリプロピレンやポリスチレンのようなポリオレフィン、ポリエチレンテレフタレートのようなポリエステル、ポリウレタン、ポリアミド、ポリイミド、セルロース、及び再生セルロースが挙げられる。多孔質プラスチックフィルム13は、プラスチックフィルムであってもよく不織布であってもよい。 Examples of the material of the porous plastic film 13 in the hepatocellular culture membrane 14 include a fluorine-containing resin such as polytetrafluoroethylene (PTFE), polycarbonate, polyolefin such as polyethylene, polypropylene and polystyrene, and polyester such as polyethylene terephthalate. , Polyurethane, polyamide, polyimide, cellulose, and regenerated cellulose. The porous plastic film 13 may be a plastic film or a non-woven fabric.
 多孔質プラスチックフィルム13の多孔は、個々の肝細胞の大きさである約10μmよりも小さくて肝細胞が通過できず、一方、被検液中の測定対象薬物の分子又はその水和物が透過できるようにその分子乃至水和物の分子径よりも大きな孔となっている。具体的には、その多孔の孔径は、例えば0.1~10μm、好ましくは0.3~8μm、より好ましくは市販の空のキットに付された多孔質プラスチックフィルム13の平均孔径0.3μm、0.4μm、1.0μm、3.0μm、5μm又は8.0μmとなっている。多孔質プラスチックフィルム13の厚さは、例えば1~100μm、好ましくは10~30μmである。 The porosity of the porous plastic film 13 is smaller than the size of individual hepatocytes, which is about 10 μm, and hepatocytes cannot pass through, while the molecule of the drug to be measured or its hydrate in the test solution permeates. The pores are larger than the molecular diameter of the molecule or hydrate so that it can be formed. Specifically, the porous pore diameter is, for example, 0.1 to 10 μm, preferably 0.3 to 8 μm, and more preferably the average pore diameter of the porous plastic film 13 attached to a commercially available empty kit is 0.3 μm. It is 0.4 μm, 1.0 μm, 3.0 μm, 5 μm or 8.0 μm. The thickness of the porous plastic film 13 is, for example, 1 to 100 μm, preferably 10 to 30 μm.
 多孔質プラスチックフィルム13は、細胞接着と増殖を最適化した組織培養処理済みとなっていてもよく、コラーゲン及び/又はフィブロネクチンでコーティングされていてもよい。また、多孔質プラスチックフィルムはパターニング処理されていてもよい。コラーゲンコーティング多孔質プラスチックフィルムは、コラーゲンによって細胞12aの接着性が向上している。 The porous plastic film 13 may have been subjected to tissue culture treatment that optimizes cell adhesion and proliferation, and may be coated with collagen and / or fibronectin. Further, the porous plastic film may be patterned. In the collagen-coated porous plastic film, the adhesiveness of cells 12a is improved by collagen.
 薬物輸送能評価キット1を作製するのに用いられる、筒底に多孔質プラスチックフィルム13が貼られたインサート容器筒11と、ウェル21を有するウェルプレート20とは、市販のものが用いられる。多孔質プラスチックフィルム13は、インサート容器筒11の筒底で熱融着又は接着剤接着によって、筒底を塞いでいる。インサート容器筒11の上端周縁は、ウェル21の上端縁よりも広がった鍔となっている。それによって、これらは、インサート容器筒11が、ウェル21に挿入された時にその真ん中にくるように吊り下げ式となっている。インサート容器筒11は、ウェル21側壁面との間で液体培地の毛細管現象を防ぐように、下半分が同径の円筒状で上半分が上ほど僅に広がる筒状及び/又はリブを有した筒状となっている。このような多孔質プラスチックフィルム13が貼られたインサート容器筒11、及びウェルプレート20と、培養時に雑菌が混入しないように塞ぐ蓋30としては、例えばトランズウェル、スナップウェル、ファルコンカルチャーインサート(何れもコーニング社製の商品名)、ad-MEDビトリゲル(関東化学株式会社製の商品名)が挙げられる。 As the insert container cylinder 11 having the porous plastic film 13 attached to the bottom of the cylinder and the well plate 20 having the wells 21 used for producing the drug transport ability evaluation kit 1, commercially available ones are used. The porous plastic film 13 closes the bottom of the insert container cylinder 11 by heat fusion or adhesive adhesion. The upper end peripheral edge of the insert container cylinder 11 is a collar that is wider than the upper end edge of the well 21. As a result, these are suspended so that the insert container cylinder 11 comes to the center of the insert container cylinder 11 when it is inserted into the well 21. The insert container cylinder 11 has a cylindrical shape with the same diameter in the lower half and a tubular shape and / or rib in which the upper half slightly expands toward the upper side so as to prevent the capillary phenomenon of the liquid medium from the side wall surface of the well 21. It has a tubular shape. Examples of the insert container cylinder 11 and the well plate 20 to which the porous plastic film 13 is attached and the lid 30 for closing the well plate 20 from contamination with germs during culturing include transwells, snapwells, and falcon culture inserts (all of them). (Product name manufactured by Corning Co., Ltd.) and ad-MED Vitrigel (trade name manufactured by Kanto Chemical Co., Inc.) can be mentioned.
 薬物輸送能評価キット1中、肝細胞培養膜14中の膜状細胞層12は、長期の保存・維持が困難である。そのため、薬物輸送能評価方法の測定の直前に、用時、肝細胞培養膜14を調製し、薬物輸送能評価キット1を作製することが好ましい。 It is difficult to store and maintain the membranous cell layer 12 in the hepatocyte culture membrane 14 in the drug transport ability evaluation kit 1 for a long period of time. Therefore, it is preferable to prepare the hepatocyte culture membrane 14 at the time of use to prepare the drug transport capacity evaluation kit 1 immediately before the measurement of the drug transport capacity evaluation method.
 この薬物輸送能評価キット1を用いた薬物輸送能評価方法は、図2(a)を参照して説明すると、以下のようにして行われる。 The drug transport capacity evaluation method using this drug transport capacity evaluation kit 1 will be described as follows with reference to FIG. 2 (a).
 薬物輸送能評価キット1中、肝細胞培養膜担持インサート容器10の内部に、第一被検液15を注ぎ込む。また、肝細胞培養膜担持インサート容器10の外部にあってウェルプレート20のウェル21の内部に第二被検液25を注ぎ込む。 In the drug transport ability evaluation kit 1, the first test solution 15 is poured into the inside of the hepatocyte culture membrane-supporting insert container 10. Further, the second test solution 25 is poured into the well 21 of the well plate 20 outside the hepatocyte culture membrane-supporting insert container 10.
 第一被検液15と第二被検液25との基本組成液は、緩衝液である。緩衝液として、肝細胞培養膜を損傷しない限り特に限定されないが、pH7.4のリン酸緩衝液、pH7.4のリン酸緩衝生理食塩水、生理的等張緩衝塩溶液(ハンクス平衡塩溶液:HBSS-HEPES(pH7.4))が挙げられる。 The basic composition liquid of the first test liquid 15 and the second test liquid 25 is a buffer solution. The buffer solution is not particularly limited as long as the hepatocellular culture membrane is not damaged, but is a phosphate buffer solution having a pH of 7.4, a phosphate buffered saline solution having a pH of 7.4, and a physiological isotonic buffer salt solution (Hanks balanced salt solution:). WBSS-HEPES (pH 7.4)).
 薬物輸送能評価方法を行う際には、投与した薬物が胆管側での胆汁排泄に入り易いか血管側での全身移行に入り易いかを検討すべき測定対象薬物を、第一被検液15と第二被検液25との何れかに加え、暫時の後、膜状細胞層12と多孔質プラスチックフィルム13とからなる肝細胞培養膜14を介して、測定対象薬物が移動する量を、測定する。測定には、光学的手法、例えば蛍光強度、又は紫外線のような特定の測定波長での透過率又は吸光度で濃度を測定して定量してもよく、或いは高速液体クロマトグラフィー(HPLC)や、液体クロマトグラフタンデム質量分析装置(LC-MS/MS)で測定してもよい。必要に応じて予め異なる標準濃度とそれの透過率や吸光度との検量線を用いて定量してもよい。 When performing the drug transport capacity evaluation method, the first test solution 15 should be examined as to whether the administered drug is likely to enter bile excretion on the bile duct side or systemic transfer on the vascular side. And the second test solution 25, and after a while, the amount of the drug to be measured transferred through the hepatocyte culture membrane 14 composed of the membranous cell layer 12 and the porous plastic film 13. Measure. The measurement may be quantified by measuring the concentration by an optical method, such as fluorescence intensity, or transmittance or absorbance at a specific measurement wavelength such as ultraviolet light, or high performance liquid chromatography (HPLC) or liquid. It may be measured by a chromatograph tandem mass spectrometer (LC-MS / MS). If necessary, it may be quantified using a calibration curve of different standard concentrations and their transmittances and absorbances in advance.
 この薬物輸送能評価キット1を用いた薬物輸送能評価方法に関し、肝細胞培養膜14の調製工程、薬物輸送能評価キット1の作製工程、及びその後の薬物輸送能評価工程の一連の工程の一例について、より具体的に説明すると、以下の通りである。 Regarding the drug transport capacity evaluation method using this drug transport capacity evaluation kit 1, an example of a series of steps of a hepatocyte culture membrane 14 preparation step, a drug transport capacity evaluation kit 1 production step, and a subsequent drug transport capacity evaluation step. More specifically, it is as follows.
 最初の工程は、肝細胞培養膜担持インサート容器を調製する工程である。具体的には、先ず、薬物輸送能評価の際に第一被検液15を収めるための空のインサート容器筒11の底に設けられた多孔質プラスチックフィルム13、例えばトランズウェル(コーニング社製の商品名)のインサート容器筒の底にあって例えばポアサイズ3.0μmでありコラーゲンコートされたポリテトラフルオロエチレン製のメンブレン上で、肝癌細胞例えばHepG2細胞のような肝細胞である細胞12aを、播種する。 The first step is the step of preparing the hepatocyte culture membrane-supported insert container. Specifically, first, a porous plastic film 13 provided at the bottom of an empty insert container cylinder 11 for accommodating the first test liquid 15 at the time of drug transport capacity evaluation, for example, Transwell (manufactured by Corning Co., Ltd.). Cell 12a, which is a hepatocyte such as hepatocyte cell, for example, HepG2 cell, is seeded on a collagen-coated polytetrafluoroethylene membrane having a pore size of 3.0 μm at the bottom of the insert container tube of (trade name). To do.
 雑菌が混入しないように蓋30で覆いつつ、播種した細胞12aごと多孔質プラスチックフィルム13上で、インサート容器筒11の筒内部に通常の培養液、例えばDMEMを入れて、培養する。1日後、培養液を交換して、胆汁酸として例えばコール酸、デオキシコール酸、タウロコール酸、ケノデオキシコール酸、タウロケノデオキシコール酸、グリコデオキシコール酸、タウロウルソデオキシコール酸、又はリトコール酸を100μMの濃度で含有させたこと以外は同様な培養液で細胞12aを1~4週間、例えば7日目、14日目、又は21日目まで培養し、適宜例えば4日目、7日目、10日目14日目など適当な時期に同様の胆汁酸含有培養液と交換して細胞12aを培養し続けると、細胞12aは増殖しつつ多孔質プラスチックフィルム13で、膜状細胞層12になり、肝細胞培養膜14が形成される。 While covering with a lid 30 so as not to be contaminated with various germs, put a normal culture solution, for example, DMEM, into the inside of the insert container cylinder 11 on the porous plastic film 13 together with the seeded cells 12a, and culture the cells. One day later, the culture medium was replaced to include, for example, bile acids such as cholic acid, deoxycholic acid, taurocholic acid, kenodeoxycholic acid, taurokenodeoxycholic acid, glycodeoxycholic acid, tauroursodeoxycholic acid, or lithocholic acid at a concentration of 100 μM. Cells 12a were cultured in the same culture medium for 1 to 4 weeks, for example, 7th day, 14th day, or 21st day, except that they were contained, and appropriately, for example, 4th day, 7th day, 10th day 14 When the cells 12a are continuously cultured by exchanging with the same bile acid-containing culture medium at an appropriate time such as the day, the cells 12a proliferate and become a membranous cell layer 12 with the porous plastic film 13, and the hepatocellular culture is performed. The film 14 is formed.
 この膜状細胞層12は、細胞12aが単層に隙間なく並んで増殖した単層膜状のものである。これにより、膜状細胞層12と多孔質プラスチックフィルム13とからなる肝細胞培養膜14が形成される。この膜状細胞層12は、膜状細胞層12の下側即ち多孔質プラスチックフィルム13側で血管側となり、膜状細胞層12の上側即ち多孔質プラスチックフィルム13と反対側で胆管側となる配向性を有している。多孔質プラスチックフィルム13は、肝臓からの胆汁排泄と全身移行との何れかに優位に入るか検討すべき測定対象薬物が溶解した被検液から、その薬物は、多孔質プラスチックフィルム13を表裏何れでも自在に透過するが、膜状細胞層12の配向性のために、血液側Bから胆管側Aへの向きの方が胆管側Aから血液側Bへの向きよりも透過し易いものとなっている。このことにより、配向性を有した肝細胞培養膜を形成した肝細胞培養膜担持インサート容器10が、調製される。 The membranous cell layer 12 is a monolayer membrane in which cells 12a are grown in a monolayer without gaps. As a result, a hepatocyte culture membrane 14 composed of the membranous cell layer 12 and the porous plastic film 13 is formed. The membranous cell layer 12 is oriented so that the lower side of the membranous cell layer 12, that is, the side of the porous plastic film 13 is the blood vessel side, and the upper side of the membranous cell layer 12, that is, the side opposite to the porous plastic film 13 is the bile duct side. Has sex. Whether the porous plastic film 13 is superior to bile excretion from the liver or systemic transfer is to be examined. From the test solution in which the drug to be measured is dissolved, the drug is either front or back of the porous plastic film 13. However, due to the orientation of the membranous cell layer 12, the direction from the blood side B to the bile duct side A is easier to permeate than the direction from the bile duct side A to the blood side B. ing. As a result, the hepatocyte culture membrane-supporting insert container 10 on which the oriented hepatocyte culture membrane is formed is prepared.
 もう一つの工程は、ウェルプレート20を準備して調製する工程である。具体的には、肝細胞培養膜担持インサート容器1を挿入するウェル21を有しており、薬物輸送能評価の際に肝細胞培養膜14が浸漬される第二被検液を収めるための空のウェルプレート20を準備する。このようなウェルプレート20は、例えばトランズウェル(コーニング社製の商品名)の1ウェル、6ウェル、12ウェル又は24ウェルのような多ウェルを有する市販のウェルプレートである。 Another step is the step of preparing and preparing the well plate 20. Specifically, it has a well 21 into which the hepatocyte culture membrane-supporting insert container 1 is inserted, and is empty for containing a second test solution in which the hepatocyte culture membrane 14 is immersed in the evaluation of drug transport capacity. Well plate 20 is prepared. Such a well plate 20 is a commercially available well plate having multiple wells such as 1 well, 6 wells, 12 wells or 24 wells of Transwell (trade name manufactured by Corning Inc.).
 これにより、肝細胞培養膜担持インサート容器10とウェルプレート20とからなる薬物輸送能評価キット1が作製される。 As a result, the drug transport ability evaluation kit 1 including the hepatocyte culture membrane-supported insert container 10 and the well plate 20 is produced.
 引き続き、薬物輸送能を評価するため、血液側輸送量測定工程、及び胆管側輸送量測定工程を行ってから、薬物輸送能算出工程を行う。具体的には、薬物輸送能評価方法を行う用時となる培養7日目に、肝細胞培養膜担持インサート容器10のインサート容器筒11の中空に溜まった培養液を取り出す。 Subsequently, in order to evaluate the drug transport capacity, the blood side transport volume measurement step and the bile duct side transport volume measurement step are performed, and then the drug transport capacity calculation step is performed. Specifically, on the 7th day of culture, which is the time to perform the drug transport ability evaluation method, the culture solution collected in the hollow of the insert container cylinder 11 of the hepatocyte culture membrane-supporting insert container 10 is taken out.
 次いで、血液側輸送量測定工程を次のようにして行う。薬物輸送能の測定対象薬物を、緩衝液に含有させて、第一被検液15を調製する。肝細胞培養膜担持インサート容器10に、薬物輸送能の測定対象薬物を含有させた第一被検液15を、膜状細胞層12が剥がれないようにゆっくりと注ぎ込んで、収める。一方、測定対象薬物を含有しない緩衝液のみからなる第二被検液25を調製する。ウェルプレート20のウェル21に、第二被検液25を注ぎ込んで、収め、肝細胞培養膜14を第二被検液25に浸漬する。その後、胆管側Aから血液側Bへの測定対象薬物の輸送量を測定する。測定には、第一被検液15中の測定対象薬物の濃度と、第二被検液25中の測定対象薬物の濃度とを、測定し、血液側への輸送量を定量する。例えば測定対象薬物が、トランスポーターP-gpの標準的な基質であって蛍光物質であるRho123であると、蛍光量から、濃度を測定する。 Next, the blood transport volume measurement step is performed as follows. The drug to be measured for drug transport ability is contained in a buffer solution to prepare the first test solution 15. The first test solution 15 containing the drug whose drug transport capacity is to be measured is slowly poured into the hepatocyte culture membrane-supporting insert container 10 so that the membrane cell layer 12 does not come off, and is contained therein. On the other hand, a second test solution 25 composed of only a buffer solution containing no drug to be measured is prepared. The second test solution 25 is poured into the well 21 of the well plate 20, and the hepatocyte culture membrane 14 is immersed in the second test solution 25. Then, the amount of the drug to be measured from the bile duct side A to the blood side B is measured. For the measurement, the concentration of the drug to be measured in the first test solution 15 and the concentration of the drug to be measured in the second test solution 25 are measured, and the amount transported to the blood side is quantified. For example, when the drug to be measured is Rho123, which is a standard substrate of transporter P-gp and is a fluorescent substance, the concentration is measured from the amount of fluorescence.
 次いで、胆管側輸送量測定工程を次のようにして行う。同一の肝細胞培養膜担持インサート容器10とウェルプレート20とを用いてインサート容器筒11の中空及びウェル21を緩衝液で洗浄し、又は新たに別な肝細胞培養膜担持インサート容器10とウェルプレート20を準備する。測定対象薬物を含有しない緩衝液のみからなる別な第一被検液15を調製し、肝細胞培養膜担持インサート容器10に、膜状細胞層12が剥がれないようにゆっくりと注ぎ込んで、収める。一方、薬物輸送能の測定対象薬物を、緩衝液に含有させて、別な第二被検液25を調製する。ウェルプレート20のウェル21に、第二被検液25を注ぎ込んで、収め、肝細胞培養膜14を第二被検液25に浸漬する。その後、血液側Bから胆管側Aへの測定対象薬物の輸送量を、同様にして測定する。輸送量の測定は、濃度-面積の検量線を用いた高速液体クロマトグラフィーによる定量であってもよく、LC-MS/MSを用いた定量であってもよく、比色定量例えば蛍光吸収による比色定量であってもよい。放射性同位体による測定であってもよい。測定感度は、測定方法に依る。 Next, the bile duct side transport amount measurement step is performed as follows. Using the same hepatocyte culture membrane-supporting insert container 10 and well plate 20, the hollow and well 21 of the insert container cylinder 11 are washed with a buffer solution, or a new hepatocyte culture membrane-supporting insert container 10 and well plate are used. Prepare 20. Another first test solution 15 consisting of only a buffer solution containing no drug to be measured is prepared, and slowly poured into the hepatocyte culture membrane-supporting insert container 10 so that the membranous cell layer 12 does not peel off, and the container is contained. On the other hand, another drug to be measured for drug transport capacity is contained in a buffer solution to prepare another second test solution 25. The second test solution 25 is poured into the well 21 of the well plate 20, and the hepatocyte culture membrane 14 is immersed in the second test solution 25. Then, the amount of the drug to be measured from the blood side B to the bile duct side A is measured in the same manner. The measurement of the transport amount may be a quantification by high performance liquid chromatography using a concentration-area calibration curve, a quantification using LC-MS / MS, or a specific color quantification, for example, a ratio by fluorescence absorption. It may be color quantitative. The measurement may be performed by a radioactive isotope. The measurement sensitivity depends on the measurement method.
 最後に、薬物輸送能算出工程を、次のようにして行う。胆管側Aから血液側Bへの測定対象薬物の輸送量と、血液側Bから胆管側Aへの測定対象薬物の輸送量の比を算出する。具体的には、複数例(例えばn=3)で、胆管側Aから血液側Bへの測定対象薬物の輸送量と、血液側Bから胆管側Aへの測定対象薬物の輸送量とを、所定時間毎例えば15分毎に測定し、横軸を時間、縦軸を胆管側Aから血液側Bへの輸送量とする一次近似式から、傾きAtoBを求めて細胞の単位面積当たりの輸送速度(cm/sec)を算出し、一方、同様にして横軸を時間、縦軸を血液側Bから胆管側Aへの輸送量とする一次近似式から傾きBtoAを求めて細胞の単位面積当たりの輸送速度(cm/sec)を算出する。それらの傾きの比即ち(傾きBtoA)/(傾きAtoB)を算出して、測定対象薬の薬物輸送能を求める。 Finally, the drug transport capacity calculation step is performed as follows. The ratio of the amount of the drug to be measured from the bile duct side A to the blood side B and the amount of the drug to be measured from the blood side B to the bile duct side A is calculated. Specifically, in a plurality of cases (for example, n = 3), the amount of the drug to be measured from the bile duct side A to the blood side B and the amount of the drug to be measured from the blood side B to the bile duct side A are determined. Measured every predetermined time, for example, every 15 minutes, the inclination AtoB is obtained from a linear approximation formula with the horizontal axis as time and the vertical axis as the amount of transport from the bile duct side A to the blood side B, and the transport rate per unit area of the cell. (Cm / sec) is calculated, while in the same way, the slope BtoA is calculated from a linear approximation formula with the horizontal axis as time and the vertical axis as the amount of transport from the blood side B to the bile duct side A, and per unit area of the cell. Calculate the transport speed (cm / sec). The ratio of these slopes, that is, (slope BtoA ) / (slope AtoB ) is calculated to determine the drug transport capacity of the drug to be measured.
 以下、本発明の肝細胞培養膜、それを備えた薬物輸送能評価キットを調製し、それを用いて薬物輸送能評価方法を行った実施例について、以下に詳細に述べる。 Hereinafter, an example in which the hepatocyte culture membrane of the present invention and the drug transport ability evaluation kit provided with the hepatocyte culture membrane were prepared and the drug transport ability evaluation method was performed using the kit will be described in detail below.
(実施例1)
 図2に示すようにして、HepG2細胞(JCRB)を用いた例について、肝細胞培養膜14、薬物輸送能評価キット1、薬物輸送能評価方法の具体的な実施例を以下に示す。
[材料]
 試薬として、DMEM(high glucose)(富士フィルム和光純薬株式会社製)、FBS(biosera社製)、デオキシコール酸(富士フィルム和光純薬株式会社製)、BSP(MP Biochemicals社製)を用いた。
[細胞培養]
 HepG2は、DMEMに10%のFBSを添加した培地で培養した。12ウェルインサートにおよそ2×10個/cmで播種をし、播種後1日と4日目に胆管側のみ胆汁酸100μMを添加した培地に交換、血管側は培地を交換した。培養7日目に以下の実験に使用した。
[輸送実験]
 トランスポートバッファーはHBSS-HEPES(pH7.4)を使用した。
 基質薬物は、24μMBSPとした。
 培養したプレートを膜上細胞層形成の確認のため、Millicell ERM2(Merck Millipore社製)を用いて膜抵抗値を測定した。
 ウェルインサートを0.9%NaClで洗浄した。
 トランスポーターの基質薬物(BSP)を輸送物質とし、A側からB側の輸送の場合は基質薬物を第一被検液とし、トランスポートバッファーを第二被検液とした。B側からA側の輸送の場合はトランスポートバッファーを第一被検液とし、基質薬物を第二被検液とした。作業は37℃水浴上で行った。
 バッファー量は12wellインサートの場合は第一被検液0.5mL、第二被検液1.5mLとした。
 輸送薬物を添加した反対側から、15、30、45、60分後、液量の10%を採取した。その都度採取した等量のバッファーを添加した。
 採取したサンプルについて、HPLC(株式会社島津製作所製、商品名:DIODE ARRAY DETECTOR SPD-M20Aを検出器とするシステム一式)を用いて濃度を測定した。
[計算法]
 得られた濃度より、それぞれの輸送方向(A to B,B to A)の輸送速度(P(cm/sec))を算出し、Efflux ratio(B to AのP/A to BのP)を算出した。計算法は以下の通りである。
Figure JPOXMLDOC01-appb-M000003
(数式(3)中、Q:物質量(mol)、t:時間(sec)、A:肝細胞培養膜面積(cm)、C:添加濃度(μM)である)
Figure JPOXMLDOC01-appb-M000004
 その結果を表1に示す。
(Example 1)
As shown in FIG. 2, specific examples of the hepatocyte culture membrane 14, the drug transport ability evaluation kit 1, and the drug transport ability evaluation method are shown below with respect to an example using HepG2 cells (JCRB).
[material]
DMEM (high glucose) (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), FBS (manufactured by biosera), deoxycholic acid (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), BSP (manufactured by MP Biochemicals) were used as reagents. ..
[Cell culture]
HepG2 was cultured in DMEM supplemented with 10% FBS. The 12-well inserts were seeded at approximately 2 × 10 5 pieces / cm 2 , and the medium was replaced with a medium supplemented with 100 μM bile acid only on the bile duct side on the 1st and 4th days after seeding, and the medium was replaced on the blood vessel side. It was used in the following experiments on the 7th day of culture.
[Transportation experiment]
HBSS-HEPES (pH 7.4) was used as the transport buffer.
The substrate drug was 24 μMBSP.
The membrane resistance value of the cultured plate was measured using Millicell ERM2 (manufactured by Merck Millipore) to confirm the formation of the cell layer on the membrane.
Well inserts were washed with 0.9% NaCl.
The substrate drug (BSP) of the transporter was used as the transport substance, and in the case of transport from the A side to the B side, the substrate drug was used as the first test solution and the transport buffer was used as the second test solution. In the case of transport from the B side to the A side, the transport buffer was used as the first test solution and the substrate drug was used as the second test solution. The work was carried out on a 37 ° C. water bath.
In the case of a 12-well insert, the amount of buffer was 0.5 mL for the first test solution and 1.5 mL for the second test solution.
After 15, 30, 45 and 60 minutes, 10% of the liquid volume was collected from the opposite side to which the transport drug was added. An equal amount of buffer collected each time was added.
The concentration of the collected sample was measured by HPLC (manufactured by Shimadzu Corporation, trade name: DIOD E ARRAY DETECTOR SPD-M20A as a detector set).
[Calculation method]
From the obtained concentration, the transport speed (P (cm / sec)) in each transport direction (A to B, B to A) is calculated, and the Efflux ratio (P of B to A / P of A to B) is calculated. Calculated. The calculation method is as follows.
Figure JPOXMLDOC01-appb-M000003
(In formula (3), Q: amount of substance (mol), t: time (sec), A: hepatocyte culture membrane area (cm 2 ), C 0 : addition concentration (μM))
Figure JPOXMLDOC01-appb-M000004
The results are shown in Table 1.
(実施例2)
 HuH-7細胞(JCRB)を用いた例について、実施例1に準じて行った実施例について、以下に詳細に示す。
[材料]
 試薬として、DMEM(low glucose)(SIGMA社製)、Rho123(SIGMA社製)、ベラパミル(富士フィルム和光純薬株式会社製)、その他の材料は、実施例1に準じた。
[細胞培養]
 HuH-7は、DMEM(low glucose)に10%のFBSを添加した培地で培養した。
 24ウェルインサートにおよそ2×10個/cmで播種をし、播種後1日と4日目に培地交換を行った。培養7日目に以下の実験に使用した。
[輸送実験]
 基質薬物は10μMRho123とし、阻害物質は100μMベラパミルとした。
培養したプレートを膜上細胞層形成の確認のため、Millicell ERM2(Merck Millipore社製)を用いて膜抵抗値を測定した。
 ウェルインサートを0.9%NaClで洗浄した。
 阻害剤無添加の場合にはトランスポートバッファーを第一被検液、第二被検液として、37℃水浴上で10分間インキュベートした。
 その後、トランスポーターの基質薬物(Rho123)を輸送物質とし、A側からB側の輸送の場合は基質薬物を第一被検液とし、トランスポートバッファーを第二被検液とした。B側からA側の輸送の場合はトランスポートバッファーを第一被検液とし、基質薬物を第二被検液とした。
 阻害剤を添加する場合は、阻害物質を含む溶液を第一被検液、第二被検液として、37℃水浴上で10分間インキュベートした。
 その後、A側からB側の輸送の場合は基質薬物と阻害物質を含む溶液を第一被検液とし、阻害物質を含むトランスポートバッファーを第二被検液とした。B側からA側の輸送の場合は阻害物質を含むトランスポートバッファーを第一被検液とし、基質薬物と阻害物質を含む溶液を第二被検液とした。
すべての作業は37℃水浴上で行った。
 採取したサンプルについて蛍光プレートリーダー(Perkin Elmer社製、製品名:ARVO MX)励起波長485nm/蛍光波長535nmで測定した。
 その他の条件は実施例1に準じた。
[計算法]
 得られた濃度より、それぞれの輸送方向(A to B、B to A)の輸送速度(P(cm/sec))を算出し、Efflux ratio(B to AのP/A to BのP)を算出した。さらに基質薬物のみのときのEfflux ratio(ER)を阻害物質存在下でのEfflux ratio(ER)で割った値を算出した。計算法は、以下の通りである。
Figure JPOXMLDOC01-appb-M000005
(数式(3)中、n:インヒビター無添加、i:インヒビター添加を示す)
 その結果を表1に示す。
(Example 2)
The examples using HuH-7 cells (JCRB) and the examples performed according to Example 1 are shown in detail below.
[material]
As reagents, DMEM (low glucose) (manufactured by SIGMA), Rho123 (manufactured by SIGMA), verapamil (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and other materials were in accordance with Example 1.
[Cell culture]
HuH-7 was cultured in DMEM (low glucose) supplemented with 10% FBS.
The 24-well inserts were sown at approximately 2 × 10 5 pcs / cm 2 , and the medium was changed 1 day and 4 days after sowing. It was used in the following experiments on the 7th day of culture.
[Transportation experiment]
The substrate drug was 10 μM Rho123 and the inhibitor was 100 μM verapamil.
The membrane resistance value of the cultured plate was measured using Millicell ERM2 (manufactured by Merck Millipore) to confirm the formation of the cell layer on the membrane.
Well inserts were washed with 0.9% NaCl.
When no inhibitor was added, the transport buffer was used as the first test solution and the second test solution, and incubated at 37 ° C. for 10 minutes.
Then, the substrate drug (Rho123) of the transporter was used as a transport substance, and in the case of transport from the A side to the B side, the substrate drug was used as the first test solution and the transport buffer was used as the second test solution. In the case of transport from the B side to the A side, the transport buffer was used as the first test solution and the substrate drug was used as the second test solution.
When the inhibitor was added, the solution containing the inhibitor was used as the first test solution and the second test solution, and incubated at 37 ° C. for 10 minutes.
Then, in the case of transport from the A side to the B side, the solution containing the substrate drug and the inhibitor was used as the first test solution, and the transport buffer containing the inhibitor was used as the second test solution. In the case of transport from the B side to the A side, the transport buffer containing the inhibitor was used as the first test solution, and the solution containing the substrate drug and the inhibitor was used as the second test solution.
All work was done on a 37 ° C water bath.
The collected sample was measured with a fluorescence plate reader (manufactured by Perkin Elmer, product name: ARVO MX) at an excitation wavelength of 485 nm and a fluorescence wavelength of 535 nm.
Other conditions were in accordance with Example 1.
[Calculation method]
From the obtained concentration, the transport speed (P (cm / sec)) in each transport direction (A to B, B to A) is calculated, and the Efflux ratio (P of B to A / P of A to B) is calculated. Calculated. Further, the value obtained by dividing the Efflux ratio (ER n ) when only the substrate drug was used by the Efflux ratio (ER i) in the presence of the inhibitor was calculated. The calculation method is as follows.
Figure JPOXMLDOC01-appb-M000005
(In formula (3), n: no inhibitor added, i: inhibitor added)
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1から明らかな通り、実施例1及び2の肝細胞培養膜、それを備えた薬物輸送能評価キット、それを用いた薬物輸送能評価方法によれば、肝臓からの胆汁排泄と全身移行との何れかに優位に入るかについて、in vitroの実験系で、in vivo特にヒトでの動態に対応したモデルとして、適切かつ簡便で迅速に調べることができることが、確かめられた。 As is clear from Table 1, according to the hepatocyte culture membranes of Examples 1 and 2, the drug transport capacity evaluation kit provided with the hepatocyte culture membrane, and the drug transport capacity evaluation method using the hepatocyte culture membrane, bile excretion from the liver and systemic transfer were observed. It was confirmed in an in vitro experimental system that it can be investigated appropriately, easily, and quickly as a model corresponding to in vivo dynamics, especially in humans, to determine which of these is superior.
 本発明の肝細胞培養膜、それを備えた薬物輸送能評価キット、それを用いた薬物輸送能評価方法は、薬物の体内動態を検討するのに用いられる。 The hepatocyte culture membrane of the present invention, a drug transport ability evaluation kit provided with the hepatocyte culture membrane, and a drug transport ability evaluation method using the same are used for examining the pharmacokinetics of a drug.
 1は薬物輸送能評価キット、10は肝細胞培養膜担持インサート容器、11はインサート容器筒、12は膜状細胞層、12aは細胞、13は多孔質プラスチックフィルム、14は肝細胞培養膜、15は第一被検液、20はウェルプレート、21はウェル、25は第二被検液、30は蓋、Aは胆管側、Bは血管側である。 1 is a drug transport capacity evaluation kit, 10 is a hepatocyte culture membrane-supporting insert container, 11 is an insert container tube, 12 is a membranous cell layer, 12a is a cell, 13 is a porous plastic film, 14 is a hepatocyte culture membrane, 15 Is the first test solution, 20 is the well plate, 21 is the well, 25 is the second test solution, 30 is the lid, A is the bile duct side, and B is the blood vessel side.

Claims (10)

  1.  肝癌細胞と、胆管癌細胞と、遊離肝細胞と、動物由来ヒト化新鮮肝細胞と、肝細胞に誘導されるiPS細胞及び/又はES細胞と、オルガノイドと、不死化細胞との少なくとも何れかの細胞が、多孔質プラスチックフィルム上で膜状に培養された膜状細胞層を形成しており、前記細胞が、前記膜状細胞層の下側で血管側となり、前記膜状細胞層の上側で胆管側となる配向性を有していることを特徴とする肝細胞培養膜。 At least one of hepatocyte, bile duct cancer cell, free hepatocyte, animal-derived fresh humanized hepatocyte, iPS cell and / or ES cell induced by hepatocyte, organoid, and immortalized cell. The cells form a membranous cell layer cultured in a membranous manner on a porous plastic film, and the cells are on the vascular side below the membranous cell layer and on the upper side of the membranous cell layer. A hepatocyte culture membrane characterized by having orientation on the bile duct side.
  2.  請求項1に記載の肝細胞培養膜が底に設けられており第一被検液を収める肝細胞培養膜担持インサート容器と、前記肝細胞培養膜担持インサート容器が挿入されているウェルを有しており前記肝細胞培養膜が浸漬される第二被検液を収めるウェルプレートとを、備えていることを特徴とする薬物輸送能評価キット。 The hepatocyte culture membrane according to claim 1 is provided at the bottom and has a hepatocyte culture membrane-supporting insert container for containing the first test solution and a well into which the hepatocyte culture membrane-supporting insert container is inserted. A drug transport ability evaluation kit comprising a well plate containing a second test solution in which the hepatocyte culture membrane is immersed.
  3.  前記多孔質プラスチックフィルムが、含フッ素樹脂、ポリカーボネート、ポリオレフィン、ポリエステル、ポリウレタン、ポリアミド、ポリイミド、セルロース、及び再生セルロースから選ばれる何れかのプラスチックで形成されていることを特徴とする請求項2に記載の薬物輸送能評価キット。 The second aspect of claim 2, wherein the porous plastic film is made of any plastic selected from a fluororesin, polycarbonate, polyolefin, polyester, polyurethane, polyamide, polyimide, cellulose, and regenerated cellulose. Drug transport capacity evaluation kit.
  4.  前記多孔質プラスチックフィルムが前記肝細胞の大きさよりも小さな多孔を有し、又はその多孔の開口部がパターン状に配列されていることを特徴とする請求項2に記載の薬物輸送能評価キット。 The drug transport ability evaluation kit according to claim 2, wherein the porous plastic film has a porous size smaller than the size of the hepatocyte, or the openings of the porous structure are arranged in a pattern.
  5.  前記多孔質プラスチックフィルムが、コラーゲン、及び/又はフィブロネクチンでコーティングされていることを特徴とする請求項2に記載の薬物輸送能評価キット。 The drug transport ability evaluation kit according to claim 2, wherein the porous plastic film is coated with collagen and / or fibronectin.
  6.  前記第一被検液と、前記第二被検液との少なくとも何れかに胆汁酸が含有されていることを特徴とする請求項2に記載の薬物輸送能評価キット。 The drug transport ability evaluation kit according to claim 2, wherein at least one of the first test solution and the second test solution contains bile acid.
  7.  請求項2~6の何れかに記載の薬物輸送能評価キットを用い、前記肝細胞培養膜担持インサート容器の内部の前記第一被検液と、前記肝細胞培養膜担持インサート容器の外部にあって前記ウェルプレートの前記ウェルの内部の前記第二被検液との何れかに、測定対象薬物を加え、前記膜状細胞層と前記多孔質プラスチックフィルムとの前記肝細胞培養膜を介して、前記測定対象薬物の輸送量を経時的に測定し、輸送速度を算出することにより、薬物輸送能を評価することを特徴とする薬物輸送能評価方法。 Using the drug transport ability evaluation kit according to any one of claims 2 to 6, the first test solution inside the hepatocyte culture membrane-supporting insert container and the outside of the hepatocyte culture membrane-supporting insert container. The drug to be measured is added to any of the second test solution inside the well of the well plate, and the hepatocyte culture membrane of the membranous cell layer and the porous plastic film is passed through. A method for evaluating a drug transport ability, which comprises evaluating the drug transport capacity by measuring the transport amount of the drug to be measured over time and calculating the transport speed.
  8.  第一被検液を収めるインサート容器筒の底に設けられた多孔質プラスチックフィルム上で、肝癌細胞と、胆管癌細胞と、遊離肝細胞と、動物由来ヒト化新鮮肝細胞と、肝細胞に誘導されるiPS細胞及び/又はES細胞と、オルガノイドと、不死化細胞との少なくとも何れかの細胞を、播種し、培養して、膜状細胞層にすることにより、前記膜状細胞層が、前記膜状細胞層の下側で血管側となり、前記膜状細胞層の上側で胆管側となる配向性を有している肝細胞培養膜を形成して、肝細胞培養膜担持インサート容器を調製する工程と、
     前記肝細胞培養膜担持インサート容器を挿入するウェルを有しており前記肝細胞培養膜が浸漬される第二被検液を収めるウェルプレートを調製する工程と、
     前記肝細胞培養膜担持インサート容器に、薬物輸送能の測定対象薬物を含有させた前記第一被検液を収め、前記ウェルプレートの前記ウェルに、前記測定対象薬物を含有しない前記第二被検液を収め、前記肝細胞培養膜を前記第二被検液に浸漬した後、前記胆管側から前記血液側への前記測定対象薬物の輸送量を測定する血液側輸送量測定工程と、
     前記肝細胞培養膜担持インサート容器に、前記測定対象薬物を含有しない前記第一被検液を収め、前記ウェルプレートの前記ウェルに、前記測定対象薬物を含有させた前記第二被検液を収め、前記肝細胞培養膜を前記第二被検液に浸漬した後、前記血液側から前記胆管側への前記測定対象薬物の輸送量を測定する胆管側輸送量測定工程と、
     それぞれの輸送量を経時的に測定することで輸送速度を算出する工程と、
     それら血液側輸送速度及び胆管側輸送速度の比を算出して、前記測定対象薬の薬物輸送能を求める薬物輸送能算出工程とを、
    有していることを特徴とする薬物輸送能評価方法。
    Induced to hepatocytes, bile duct cancer cells, free hepatocytes, animal-derived humanized fresh hepatocytes, and hepatocytes on a porous plastic film provided at the bottom of the insert container tube containing the first test solution. By seeding and culturing at least one of iPS cells and / or ES cells, organoids, and immortalized cells to form a membranous cell layer, the membranous cell layer is formed. A hepatocyte culture membrane-bearing insert container is prepared by forming a hepatocyte culture membrane having an orientation that is on the blood vessel side below the membranous cell layer and on the bile duct side above the membranous cell layer. Process and
    A step of preparing a well plate for containing a second test solution in which the hepatocyte culture membrane-supporting insert container is inserted and in which the hepatocyte culture membrane is immersed.
    The first test solution containing the drug whose drug transport capacity is to be measured is contained in the hepatocyte culture membrane-supporting insert container, and the well of the well plate contains the second test solution which does not contain the drug to be measured. A blood-side transport amount measurement step of measuring the transport amount of the drug to be measured from the bile duct side to the blood side after containing the liquid and immersing the hepatocyte culture membrane in the second test solution.
    The first test solution containing no drug to be measured is contained in the hepatocyte culture membrane-supporting insert container, and the second test solution containing the drug to be measured is contained in the well of the well plate. After immersing the hepatocyte culture membrane in the second test solution, the bile duct side transport amount measuring step for measuring the transport amount of the drug to be measured from the blood side to the bile duct side.
    The process of calculating the transportation speed by measuring each transportation amount over time, and
    A drug transport capacity calculation step for calculating the ratio of the blood transport rate and the bile duct transport rate to obtain the drug transport capacity of the drug to be measured.
    A drug transport ability evaluation method characterized by having.
  9.  前記血液側輸送量測定工程中、さらに前記第一被検液と前記第二被検液とにトランスポーターのインヒビターを添加して行い、前記胆管側輸送量測定工程中、さらに前記第一被検液と前記第二被検液とにトランスポーターのインヒビターを添加して行い、それらについても胆管側輸送量測定工程を行い、前記薬物輸送能算出工程で、インヒビター未添加でのそれら血液側輸送速度及び胆管側輸送速度の比と、インヒビター添加でのそれら血液側輸送速度及び胆管側輸送速度の比との比を算出して、前記測定対象薬の薬物輸送能を求めることを特徴とする請求項10に記載の薬物輸送評価方法。 During the blood-side transport amount measurement step, a transporter inhibitor is further added to the first test solution and the second test solution, and during the bile duct-side transport amount measurement step, the first test is further performed. A transporter inhibitor was added to the solution and the second test solution, and the bile duct side transport amount measurement step was also performed for them. In the drug transport capacity calculation step, the blood transport rate without the inhibitor added. The claim is characterized in that the ratio of the bile duct side transport rate to the ratio of the blood side transport rate and the bile duct side transport rate with the addition of the inhibitor is calculated to obtain the drug transport capacity of the drug to be measured. 10. The drug transport evaluation method according to 10.
  10.  肝癌細胞と、胆管癌細胞と、遊離肝細胞と、動物由来ヒト化新鮮肝細胞と、肝細胞に誘導されるiPS細胞及び/又はES細胞と、オルガノイドと、不死化細胞との少なくとも何れかの細胞を、多孔質プラスチックフィルム上で培養して膜状細胞層を形成し、前記膜状細胞層の下側で血管側となり前記膜状細胞層の上側で胆管側となる配向性を発現させるための肝細胞培地であって、培養成分と、胆汁酸とを有していることを特徴とする、配向性増強肝細胞培地。 At least one of hepatocyte, bile duct cancer cell, free hepatocyte, animal-derived fresh humanized hepatocyte, iPS cell and / or ES cell induced by hepatocyte, organoid, and immortalized cell. In order to culture cells on a porous plastic film to form a membranous cell layer, and to express an orientation in which the lower side of the membranous cell layer is the blood vessel side and the upper side of the membranous cell layer is the bile duct side. An orientation-enhanced hepatocyte medium, which comprises a culture component and bile acid.
PCT/JP2020/048793 2019-12-27 2020-12-25 Liver cell culture membrane, drug transport ability evaluation kit provided therewith, and drug transport ability evaluation method WO2021132586A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021531421A JP7136509B2 (en) 2019-12-27 2020-12-25 Hepatocyte culture membrane, drug transport ability evaluation kit comprising the same, and drug transport ability evaluation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019239313 2019-12-27
JP2019-239313 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021132586A1 true WO2021132586A1 (en) 2021-07-01

Family

ID=76575320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048793 WO2021132586A1 (en) 2019-12-27 2020-12-25 Liver cell culture membrane, drug transport ability evaluation kit provided therewith, and drug transport ability evaluation method

Country Status (2)

Country Link
JP (1) JP7136509B2 (en)
WO (1) WO2021132586A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053972A (en) * 2005-08-25 2007-03-08 Fujifilm Corp Method for preparing superposed cell cultured product using polymer membrane
JP2007082528A (en) * 2005-08-25 2007-04-05 Fujifilm Corp Stratified cell culture using polymer membrane
WO2007139144A1 (en) * 2006-05-30 2007-12-06 Fujifilm Corporation Cell chip
WO2010082385A1 (en) * 2009-01-16 2010-07-22 財団法人実験動物中央研究所 Mouse having human hepatocytes transplanted therein
WO2011024592A1 (en) * 2009-08-26 2011-03-03 国立大学法人東京大学 Method for culture of hepatocytes
WO2012032646A1 (en) * 2010-09-10 2012-03-15 株式会社島津製作所 Cell culture device and cell culture method
JP2016214149A (en) * 2015-05-20 2016-12-22 住友電気工業株式会社 Cell culture carrier, and cell sheet including the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053972A (en) * 2005-08-25 2007-03-08 Fujifilm Corp Method for preparing superposed cell cultured product using polymer membrane
JP2007082528A (en) * 2005-08-25 2007-04-05 Fujifilm Corp Stratified cell culture using polymer membrane
WO2007139144A1 (en) * 2006-05-30 2007-12-06 Fujifilm Corporation Cell chip
WO2010082385A1 (en) * 2009-01-16 2010-07-22 財団法人実験動物中央研究所 Mouse having human hepatocytes transplanted therein
WO2011024592A1 (en) * 2009-08-26 2011-03-03 国立大学法人東京大学 Method for culture of hepatocytes
WO2012032646A1 (en) * 2010-09-10 2012-03-15 株式会社島津製作所 Cell culture device and cell culture method
JP2016214149A (en) * 2015-05-20 2016-12-22 住友電気工業株式会社 Cell culture carrier, and cell sheet including the same

Also Published As

Publication number Publication date
JPWO2021132586A1 (en) 2021-07-01
JP7136509B2 (en) 2022-09-13

Similar Documents

Publication Publication Date Title
Stucki et al. Medium throughput breathing human primary cell alveolus-on-chip model
JP5818001B2 (en) Hepatocyte culture method
Vellonen et al. A critical assessment of in vitro tissue models for ADME and drug delivery
US11248199B2 (en) Artificial placenta and methods of preparation
Moya et al. A reconfigurable in vitro model for studying the blood–brain barrier
De Gregorio et al. Intestine-liver axis on-chip reveals the intestinal protective role on hepatic damage by emulating ethanol first-pass metabolism
JP6704604B2 (en) Hepatocyte culture device that promotes accumulation and excretion of liver metabolites into the bile canaliculus-like structure, and evaluation of candidate compounds with excretion sensitivity in bile or blood using the hepatocyte culture device and liver metabolites of the candidate compounds Method
KR102621919B1 (en) Novel multi-organ chip to establish differentiation of iPSC-derived cells into organ equivalents
Wang et al. Paper supported long-term 3D liver co-culture model for the assessment of hepatotoxic drugs
US20210301261A1 (en) Human liver microphysiology platform and self assembly liver acinus model and methods of their use
‘t Hart et al. Co-culture of glomerular endothelial cells and podocytes in a custom-designed glomerulus-on-a-chip model improves the filtration barrier integrity and affects the glomerular cell phenotype
WO2021132586A1 (en) Liver cell culture membrane, drug transport ability evaluation kit provided therewith, and drug transport ability evaluation method
US10837002B2 (en) Artificial peritoneal tissue and method for producing same
Miklavc et al. Existence of exocytotic hemifusion intermediates with a lifetime of up to seconds in type II pneumocytes
AU2021390584A1 (en) Engineering of organoid culture for enhanced organogenesis in a dish
JP7396678B2 (en) Novel microfluidic device incorporating blood and urine circuits to mimic homeostatic biomimetic systems
US10001472B2 (en) 3D determination of cell chirality
US20180179493A1 (en) Multilayer sheet of cells
Karra et al. The effect of membrane properties on cell growth in an ‘Airway barrier on a chip’
Englezakis Development of a bioartificial kidney (BAK) as a renal transport model
Pires Permeability Through Caco-2 Cell Monolayers as a Model for BBB: Implementation and Preliminary Evaluation Using Model Compounds
Manigandan et al. Self-Standing Photo-Crosslinked Hydrogel Construct: in vitro Microphysiological Vascular Model
Rivera Microphysiological System with Continuous Control and Sensing of Oxygen Elucidates Hypoxic Intestinal Epithelial Stem Cell Fates
JP2020529871A (en) A device that can function as a blood-brain barrier model
Shuler et al. Animal surrogate systems for toxicity testing

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021531421

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904441

Country of ref document: EP

Kind code of ref document: A1