WO2012032646A1 - Cell culture device and cell culture method - Google Patents

Cell culture device and cell culture method Download PDF

Info

Publication number
WO2012032646A1
WO2012032646A1 PCT/JP2010/065585 JP2010065585W WO2012032646A1 WO 2012032646 A1 WO2012032646 A1 WO 2012032646A1 JP 2010065585 W JP2010065585 W JP 2010065585W WO 2012032646 A1 WO2012032646 A1 WO 2012032646A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell culture
intermediate layer
culture
cell
Prior art date
Application number
PCT/JP2010/065585
Other languages
French (fr)
Japanese (ja)
Inventor
藤山 陽一
陽一 田川
Original Assignee
株式会社島津製作所
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所, 国立大学法人東京工業大学 filed Critical 株式会社島津製作所
Priority to PCT/JP2010/065585 priority Critical patent/WO2012032646A1/en
Priority to JP2012532811A priority patent/JP5700460B2/en
Publication of WO2012032646A1 publication Critical patent/WO2012032646A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters

Definitions

  • the present invention relates to a cell culture device and a cell culture method using the same.
  • Cell culture is generally performed in a state where cells and a liquid medium are contained in a container such as a petri dish.
  • a container such as a petri dish.
  • the application of microdevices manufactured by microfabrication technology has been promoted in the medical and biotechnology research fields, and cell culture using such microdevices has been promoted. (For example, refer to Patent Document 1).
  • a microdevice for cell culture (cell culture device) is formed by forming a culture chamber and a microchannel inside a flat substrate, and performs cell culture by accommodating cells and a medium in the culture chamber. The medium is exchanged using the microchannel.
  • hepatic parenchymal cells constituting 70-80% of the liver and non-parenchymal cells such as sinusoidal endothelial cells are regularly arranged. Signal transduction and fluid circulation between these cells are It plays an important role in maintaining normal liver function.
  • the hepatic parenchymal cells and sinusoidal endothelial cells are arranged side by side, but an extracellular matrix called a dyssel cavity exists between them, and the cell line of hepatic parenchymal cells and the cell line of sinusoidal endothelial cells There is no direct contact. Further, outside the respective cell rows, the hepatic parenchymal cell side is a bile duct and the sinusoidal endothelial cell side is a blood vessel, and drugs and nutrients are supplied from the blood vessel side and discharged to the bile duct side.
  • liver function In order to establish an artificial liver system with liver function, regular arrangement of these cell types and construction of an extracellular matrix are important. However, hepatocytes are difficult to culture for a long period of time, and moreover, it is more difficult to form a tissue close to the liver in vivo. Therefore, an artificial system that can maintain a stable liver function over a long period of time has not yet been constructed.
  • Patent Document 1 In connection with the construction of such an artificial liver system, the present inventors have proposed a biodevice using two types of living cells (Patent Document 1). This uses a porous membrane as an alternative to the extracellular matrix, and by fixing and culturing different cells on both sides of the membrane, signal transmission and substance exchange between the cells on both sides via the porous membrane Or it is made to move.
  • Such a culture device is epoch-making in that it can realize a configuration close to that of a living body as compared with the case of culturing one kind of cell alone, but there is room for further improvement in terms of long-term maintenance of cell functions. was there.
  • the present invention has been made in view of the above points.
  • the object of the present invention is to use a cell culture device capable of maintaining a stable function over a long period of time using two types of biological cells, and the same. It is to provide a cell culture method.
  • the cell culture device which has been made to solve the above problems, a) an intermediate layer consisting of a porous membrane and coated with a scaffold for cell culture; b) a first culture chamber and a second culture chamber formed by partitioning the space inside the device with the intermediate layer; c) a first limiting layer that covers a part of one surface of the intermediate layer and limits a region where the intermediate layer is in contact with the liquid flowing in the first culture chamber; d) a second limiting layer that covers a part of the other surface of the intermediate layer and limits the region where the intermediate layer is in contact with the liquid flowing in the second culture chamber; It is characterized by having.
  • the cell culture device has two culture chambers partitioned by an intermediate layer, and can culture different types of cells simultaneously in each culture chamber.
  • the heterogeneous cells are fixed to both sides of the intermediate layer coated with the scaffold, and signal transmission between the cells and exchange of substances can be performed through the porous membrane constituting the intermediate layer.
  • the cells are suspended in a medium and the suspension is injected into the culture chamber by a syringe or the like.
  • the injected cells are biased to adhere to the vicinity of the entrance of the culture chamber, making it difficult to spread the cells throughout the culture chamber.
  • the cell suspension and the intermediate layer are introduced when cells are introduced into the device by providing the first limited layer and the second limited layer.
  • porous film one made of polycarbonate can be suitably used, but is not limited to this, and is made of polytetrafluoroethylene, mixed cellulose, polyethylene terephthalate (PET), glass fiber, polyether, or fluorine resin. And various types such as cellulose-based, nylon-based, and ceramic-based porous membranes can be used.
  • the porous membrane must be such that it does not pass cells and does not hinder the efficiency of substance exchange and signal transmission between cells. Therefore, it is desirable to use a porous membrane having a thickness of 1 mm or less and an average pore diameter of 0.1 ⁇ m to 10 ⁇ m.
  • the first limited layer and the second limited layer have a plurality of openings that expose the intermediate layer to the liquid flowing through the culture chambers, and the opening area per one opening is 0. It is desirable that the thickness be 0.01 mm 2 to 10 mm 2 .
  • the opening area is smaller than this, the number of cells that can be fixed to the intermediate layer with one opening is reduced, and if it is larger than this, it is difficult to obtain the effect of limiting the adhesion region.
  • the thickness of the limiting layer is suitably 1 mm or less. When larger than this, since the said opening part becomes deep, the efficiency of the liquid exchange around a cell in culture
  • the intermediate layer is formed by stacking a plurality of porous membranes.
  • E-cad-Fc a fusion protein of an extracellular region of E-cadherin and an Fc fragment of an antibody IgG molecule
  • E-cad-Fc a fusion protein of an extracellular region of E-cadherin and an Fc fragment of an antibody IgG molecule
  • polymers containing collagen, fibronectin, laminin, PVLA (poly-Np-vinylbenzyl-D-lactone amide) and the like can be used.
  • the cell culture method according to the present invention is a cell culture method using the cell culture device according to the present invention, wherein different types of cells are fixed to one surface and the other surface of the intermediate layer and cultured. It is characterized by doing.
  • the different cells are typically hepatic parenchymal cells and sinusoidal endothelial cells, but the cell device according to the present invention is not limited to these and can be used for culturing various cells.
  • the cell culture device and the cell culture method according to the present invention it is possible to easily realize an environment close to the living body in the cell culture using two types of living cells, and stable cells.
  • the function can be obtained over a long period of time.
  • FIG. 2 is a cross-sectional view taken along arrow XX in FIG. 1.
  • FIG. which shows the evaluation result of the testosterone hydroxylation ability of the cultured cell in Experimental example 2.
  • FIG. 1 is a plan view of the cell culture device according to the present embodiment
  • FIG. 2 is a cross-sectional view taken along the line XX of FIG. 1
  • FIG. 3 is an exploded perspective view of the cell culture device according to the present embodiment.
  • FIG. 1 for the sake of explanation, a part of the internal structure is shown through.
  • the cell culture device 10 has a configuration in which two porous films 14 and 24, limited layers 13 and 23, and seal layers 12 and 22 are sandwiched between two substrates 11 and 21, respectively. It has become.
  • the dimension and material of each part described below are an example to the last, and this invention is not limited to this.
  • the substrates 11 and 21 are made of PDMS (manufactured by Toray Dow Corning, SILPOT184).
  • a first culture chamber 11a composed of a rectangular recess having a length of 16 mm and a width of 2 mm, and groove-shaped channels 11b and 11c extending from the vicinity of both ends of the first culture chamber 11a. Is formed.
  • the first culture chamber 11a and the channels 11b and 11c all have a depth of 0.1 mm and can be formed by molding.
  • the ends of the two flow paths 11b and 11c communicate with a liquid introduction port 11d or a liquid discharge port 11e each formed of a through hole extending in the thickness direction of the substrate 11.
  • a second culture chamber 21a, flow paths 21b and 21c, a liquid inlet 21d, and a liquid outlet 21e are formed in the substrate 21 in the same manner.
  • the limiting layers 13 and 23 are made of a metal mask made of SUS having a thickness of 0.1 mm, and the central portion thereof has a diameter of 0.5 mm in a region corresponding to the first culture chamber 11a or the second culture chamber 21a, respectively. 30 through-holes 13a and 23a are formed.
  • the through holes 13a and 23a correspond to the openings in the present invention.
  • the shape and number of the openings are not limited to the above, and can be various depending on the type of cells to be cultured and the purpose of the culture.
  • the limiting layers 13 and 23 are made of a material that is difficult to adhere to cells to be cultured (at least those having lower cell adhesion than the porous membranes 14 and 24 coated with a scaffold). desirable. As such a material, in addition to the metal such as SUS, various resins can be used.
  • the seal layers 12 and 22 are made of silicon rubber having a thickness of 0.1 mm, and the length and width are almost the same as those of the substrates 11 and 21.
  • a rectangular hole having substantially the same length and width as the limiting layers 13 and 23 is formed in the center of the sealing layers 12 and 22, and the limiting layer 13 or the limiting layer 23 is fitted into the rectangular holes.
  • the porous membranes 14 and 24 are punched into a rectangle having a width of 2 mm and a length of 14 mm.
  • polycarbonate membrane filters (Millipore Corp., Isopore HTTP04700, filter pore diameter 0.4 ⁇ m, thickness 7-22 ⁇ m) were used as the porous membranes 14, 24.
  • superposed these porous membranes 14 and 24 is equivalent to the intermediate
  • the porous membranes 14 and 24 are each coated with a scaffold according to the type of cells to be cultured.
  • the porous membrane 14 on the first culture chamber 11a side was coated with E-cad-Fc
  • the porous membrane 24 on the second culture chamber 21a side was coated with type I collagen.
  • the method of coating the scaffold material is not particularly limited. For example, after the porous films 14 and 24 are dipped and taken out from the liquefied scaffold material, the scaffold material adhered to the porous films 14 and 24 is solidified. Can be considered.
  • Such coating with a scaffold may be performed at the manufacturing stage of the cell culture device, or may be performed by a user who has purchased the cell culture device.
  • each of the above layers is sterilized and the porous membranes 14 and 24 are coated with a scaffold, and then the substrate 21, the seal layer 22, the limiting layer 23, and the porous membrane 24.
  • the porous film 14, the limiting layer 13, the seal layer 12, and the substrate 11 are superposed in this order.
  • the substrates 11 and 21 are configured such that the surface on which the first culture chamber 11a is formed faces the surface on which the second culture chamber 21a is formed.
  • the limiting layers 13 and 23 are fitted into the holes in the center of the sealing layers 12 and 22, the sealing layer 12 and the limiting layer 13, and the sealing layer 22 and the limiting layer 23 respectively. It will be arranged at the same position in the thickness direction.
  • the substrate 11 and the seal layer 12, the substrate 21 and the seal layer 22, and the seal layers 12 and 22 are adsorbed by the self-adsorption property of the silicon rubber constituting the seal layers 12 and 22.
  • the Therefore, the substrate 11 and the substrate 21 can be fixed to each other with the porous films 14 and 24 and the limiting layers 13 and 23 sandwiched therebetween.
  • hepatic parenchymal cells are introduced from the liquid inlet 11d into the first culture chamber 11a, and sinusoidal endothelial cells are introduced from the liquid inlet 21d into the second culture chamber 21a.
  • Each cell is fixed to the surface of the porous membranes 14 and 24, respectively.
  • the cell culture device 10 is first placed so that the first culture chamber 11a side is facing upward, the liver parenchymal cells are suspended in the medium, and the suspension is injected into the first culture chamber 11a with a syringe or the like. To do.
  • the injected cells sink by gravity and adhere to the porous membrane 14.
  • the cell culture device 10 is placed so that the second culture chamber 21a side is up, and sinusoidal endothelial cells are injected into the second culture chamber 21a in the same manner and adhered to the porous membrane 24.
  • Part of the porous membranes 14 and 24 is masked by the limiting layers 13 and 23 so that the liquid in the first culture chamber 11a or the second culture chamber 21a can be contacted only at the through holes 13a and 23a. It has become. For this reason, some of the cells introduced together with the medium from the liquid inlets 11d and 21d as described above enter the through holes 13a and 23a near the upstream of the culture chamber and adhere to the porous membranes 14 and 24. The remaining cells float in the medium or fall on the surfaces of the limiting layers 13 and 23. Since the limiting layers 13 and 23 are less likely to adhere cells than the porous membranes 14 and 24, these cells ride on the flow of the medium and flow downstream of the culture chambers 11a and 21a.
  • one of the through-holes 13a and 23a enters, and adheres to the porous films 14 and 24 there.
  • the cells injected into the device are cultured as in the past. It is possible to prevent the cells from being biased to adhere to the vicinity of the entrance of the chamber and to spread the cells throughout the culture chamber. Further, since the cells gather inside the through holes 13a and 23a, stable cell functions can be exhibited even when culturing cells that form a tight junction with the surrounding cells.
  • FIG. 4 shows an outline of a cell culture system using the cell culture device 10 according to the present example.
  • This is a combination of the cell culture device 10 and a liquid feeding mechanism for continuously feeding a medium to the cell culture device 10.
  • the liquid feeding mechanism is configured to operate the medium storage units 31 and 41, the medium supply pipes 32 and 42, the medium discharge pipes 33 and 43, the waste liquid storage units 34 and 44, the liquid feed pumps 35 and 45, and the liquid feed pumps 35 and 45.
  • the control part 50 which controls is provided.
  • One end of each of the medium supply pipes 32 and 42 is inserted into the medium reservoirs 31 and 41, and the other end is inserted into the liquid introduction ports 11d and 21d of the cell culture device 10, respectively.
  • One ends of the medium discharge pipes 33 and 43 are respectively inserted into the liquid discharge ports 11e and 21e of the cell culture device 10, and the other ends are respectively inserted into the waste liquid storage portions 34 and 44.
  • a medium suitable for culturing hepatocytes is stored in the medium reservoir 31, and a medium suitable for culturing sinusoidal endothelial cells is stored in the medium reservoir 41.
  • the medium stored in the medium storage unit 31 is sucked by the liquid feed pump 35 and sent to the cell culture device 10 through the medium supply pipe 32.
  • the medium supplied to the cell culture device 10 passes through the first culture chamber 11a, and is discharged to the waste liquid storage part 34 through the medium discharge pipe 33 connected to the liquid discharge port 11e.
  • the culture medium stored in the culture medium storage unit 41 is sucked by the liquid feed pump 45, passes through the culture medium supply pipe 42, passes through the second culture chamber 21 a, and is discharged to the waste liquid storage part 44 through the culture medium discharge pipe 43. Is done.
  • the culture medium is exposed to the outside from the liquid inlets 11d and 21d or the liquid outlets 11e and 21e. Although it does not leak out, in order to prevent liquid leakage more reliably, it is desirable to fix the cell culture device 10 by sandwiching it from above and below with an appropriate jig.
  • the porous membranes 14 and 24 can realize an ordered arrangement of cells instead of the extracellular matrix, and signal transmission and substance exchange between cells can be realized. It can be secured. Furthermore, the culture media in the first culture chamber 11a and the second culture chamber 21a play roles similar to bile and blood, respectively, and can exhibit functions close to the living body such as metabolism and drug uptake / discharge.
  • the cell culture device 10 by restricting the region to which the cells can be adhered by the limiting layers 13 and 23, the cells are biased and adhered near the entrances of the culture chambers 11a and 21a.
  • the cells can be adhered to the culture chambers 11a and 21a in a desired pattern suitable for function expression.
  • two porous membranes 14 and 24 it becomes possible to use different scaffolding materials according to the types of cells cultured in the first culture chamber 11a and the second culture chamber 21a. As a result, an environment closer to the living body can be established inside the device, and cell culture can be performed in a state where expression of liver function is maintained for a long period of time.
  • the substrates 11 and 21 are fixed to each other by the seal layers 12 and 22.
  • the seal layers 12 and 22 are not provided and the self-adsorption property of the PDMS constituting the substrates 11 and 21 is not provided.
  • the substrates 11 and 21 may be fixed to each other. In this case, in order to obtain stronger adhesion, it is desirable to activate and bond the bonding surfaces of the substrates 11 and 21 with oxygen plasma or ultraviolet rays.
  • the cell culture device according to the present invention can be used as an artificial organ such as the above-described hybrid type artificial liver, and can also be used as a reaction container when performing a drug metabolism test using cells.
  • an artificial organ such as the above-described hybrid type artificial liver
  • the cell culture device of the present invention can also be used for culturing other cells.
  • Example 1 In the cell culture device 10 as shown in FIGS. 1 to 3, cell culture was performed by changing the material of the porous membranes 14 and 24, and the difference in liver function was evaluated.
  • the porous membranes 14 and 24 three types of porous membranes each made of polycarbonate, polytetrafluoroethylene, or mixed cellulose were used, and each was coated with type I collagen and used in the experiment.
  • the liver function on the first day of culture was evaluated by examining the hydroxylation ability of testosterone by CYP (cytochrome P450). Specifically, first, about 3 ⁇ 10 3 liver parenchymal cells were seeded in the first culture chamber, and about 3 ⁇ 10 3 sinusoidal endothelial cells were seeded in the second culture chamber. Then, a culture medium containing testosterone at a concentration of 0.25 mM is poured into the first culture chamber, a culture medium containing no testosterone is poured into the second culture chamber, and the culture is conducted to the medium (waste liquid) discharged from the first culture chamber. The concentration of testosterone hydroxide contained was measured by HPLC. Each medium was continuously fed to each culture chamber at a flow rate of 40 ⁇ L / hr.
  • the hydroxylation pattern (that is, the abundance ratio of various hydroxylated testosterone in the waste liquid) in the case of using the above three kinds of porous membranes was compared with the hydroxylation pattern by liver microsomes.
  • the hydroxylation pattern by liver microsomes was determined by adding the same medium as that introduced into the first culture chamber to the liver microsome fraction, incubating for 24 hours, collecting the supernatant, and containing various hydroxides by HPLC. Determined by measuring the amount.
  • 16 ⁇ -OHT, 2 ⁇ -OHT, 16 ⁇ -OHT, 6 ⁇ -OHT, and 7 ⁇ -OHT mean testosterone in which the 16 ⁇ , 2 ⁇ , 16 ⁇ , 6 ⁇ , and 7 ⁇ positions are hydroxylated, respectively.
  • a porous membrane made of polycarbonate was used, a hydroxylation pattern closest to liver microsomes was obtained.
  • the cell culture device used in this example uses a polycarbonate porous membrane as the porous membranes 14 and 24, and a scaffold material to be coated on the porous membrane 14 on the liver parenchymal cell side (that is, the first culture chamber 11a side) is used. Except for the changed points, the second embodiment is the same as the first embodiment.
  • As the liver parenchymal cell side coating six types of type I collagen, type IV collagen, fibronectin, laminin, PVLA, and E-cad-Fc were used.
  • hepatocellular parenchymal cells were seeded on the first culture chamber side and about 3 ⁇ 10 3 sinusoidal endothelial cells were seeded on the second culture chamber side, and cell culture was performed. Hydroxylation ability and urea synthesis ability (capability of decomposing ammonia to synthesize urea) on the first day, the fourth day, and the seventh day of the culture were evaluated.
  • the testosterone hydroxylation ability was discharged from the first culture chamber by culturing by flowing a medium containing testosterone in the first culture chamber and a medium not containing testosterone in the second culture chamber, as in Experimental Example 1 above.
  • the concentration of testosterone hydroxide contained in the medium was evaluated by measuring with HPLC.
  • the ability to synthesize urea was obtained by flowing a medium containing NH 4 Cl at a concentration of 2.0 mM in the first culture chamber, and a medium not containing NH 4 Cl flowing in the second culture chamber, On day 7, the urea concentration in the medium discharged from the first culture chamber was evaluated by measuring by HPLC. In each case, each medium was continuously fed to each culture chamber at a flow rate of 40 ⁇ L / hr.
  • FIG. 7 shows the evaluation results of testosterone hydroxylation ability
  • FIG. 8 shows the evaluation results of urea synthesis ability.
  • type I collagen that is, the same as the sinusoidal endothelial cell side. Testosterone hydroxylating ability was higher than when the coating was applied.
  • the porous membrane is made of type IV collagen, fibronectin, laminin, PVLA, or E-cad-Fc rather than the case where the porous membrane on the hepatocyte side is coated with type I collagen.
  • the urea synthesis ability was maintained for a longer period of time (that is, the urea synthesis ability on the seventh day of culture increased).

Abstract

A cell culture device, comprising: an intermediate layer consisting of two porous membranes (14, 24); a first culture chamber (11a) and a second culture chamber (21a), said culture chambers being partitioned by the intermediate layer; and limiting layers (13, 23) which are positioned on both sides of the intermediate layer and provided with multiple openings (13a, 23a) for exposing the intermediate layer to a liquid flowing between the culture chambers (11a, 21a). Since the intermediate layer consists of the two porous membranes (14, 24), different scaffolds, which are suitable for the type of cells to be cultured, can be coated on both sides of the intermediate layer. Since areas to which cells can be adhered are limited by the limiting layers (13, 23), the cells can be fixed to the intermediate layer in a desired pattern that is suitable for the expression of the function thereof. Thus, an environment closer to the in vivo environment can be constructed in the device and cells can be cultured over a long period of time while sustaining the cell function.

Description

細胞培養デバイス及び細胞培養方法Cell culture device and cell culture method
 本発明は、細胞培養デバイス、及びそれを用いた細胞培養方法に関する。 The present invention relates to a cell culture device and a cell culture method using the same.
 細胞培養は、一般的にシャーレ等の容器に細胞及び液体状の培地を収容した状態で行われる。しかし、近年、半導体製造分野での微細加工技術の進歩に伴って医療やバイオテクノロジーの研究分野でも微細加工技術によって製造されたマイクロデバイスの応用が進められており、こうしたマイクロデバイスを用いた細胞培養が行われるようになっている(例えば、特許文献1を参照)。 Cell culture is generally performed in a state where cells and a liquid medium are contained in a container such as a petri dish. However, in recent years, with the progress of microfabrication technology in the semiconductor manufacturing field, the application of microdevices manufactured by microfabrication technology has been promoted in the medical and biotechnology research fields, and cell culture using such microdevices has been promoted. (For example, refer to Patent Document 1).
 細胞培養用のマイクロデバイス(細胞培養デバイス)は、平板状基材の内部に培養室と微小流路を形成して成るものであり、該培養室に細胞及び培地を収容して細胞培養を行い、前記微小流路を利用して培地の交換を行うものとなっている。 A microdevice for cell culture (cell culture device) is formed by forming a culture chamber and a microchannel inside a flat substrate, and performs cell culture by accommodating cells and a medium in the culture chamber. The medium is exchanged using the microchannel.
 ところで、近年、人工臓器の開発に期待が寄せられており、その一環である人工肝臓の開発についても数多くの研究がなされている。しかし、肝臓は判明しているだけで500種類以上の代謝反応を行っており、こうした肝臓の機能を人工的な装置のみで完全に補うことは極めて困難である。そこで、人工装置と生体の肝細胞とを組み合わせた、いわゆるハイブリッド型の人工肝臓が考案され、その開発が進められている。 By the way, in recent years, there has been an expectation for the development of an artificial organ, and many studies have been made on the development of an artificial liver, which is a part of the development. However, since only the liver is known, it performs over 500 kinds of metabolic reactions, and it is extremely difficult to completely supplement such liver functions with only an artificial device. Therefore, a so-called hybrid type artificial liver combining an artificial device and a living hepatocyte has been devised, and its development is underway.
 生体の肝臓においては、肝臓の70-80%を構成する肝実質細胞と、類洞内皮細胞などの非実質細胞とが規則正しく配置されており、これらの細胞間におけるシグナル伝達や体液の循環が、正常な肝機能を維持するために重要な役割を果たしている。 In the liver of a living body, hepatic parenchymal cells constituting 70-80% of the liver and non-parenchymal cells such as sinusoidal endothelial cells are regularly arranged. Signal transduction and fluid circulation between these cells are It plays an important role in maintaining normal liver function.
 前記の肝実質細胞と類洞内皮細胞は並列に並んでいるが、両者の間にはディッセ腔と呼ばれる細胞外マトリックスが存在しており、肝実質細胞の細胞列と類洞内皮細胞の細胞列とは直接接触していない。また、それぞれの細胞列の外側は、肝実質細胞側が胆管、類洞内皮細胞側が血管となっており、薬物や栄養物は血管側から供給されて胆管側に排出される。 The hepatic parenchymal cells and sinusoidal endothelial cells are arranged side by side, but an extracellular matrix called a dyssel cavity exists between them, and the cell line of hepatic parenchymal cells and the cell line of sinusoidal endothelial cells There is no direct contact. Further, outside the respective cell rows, the hepatic parenchymal cell side is a bile duct and the sinusoidal endothelial cell side is a blood vessel, and drugs and nutrients are supplied from the blood vessel side and discharged to the bile duct side.
 肝機能を有する人工肝臓システムを確立するためには、こうした細胞種の規則正しい配置と細胞外マトリックスの構築が重要である。しかし、肝細胞は長期間の培養が困難であり、その上、生体内の肝臓に近い組織を形成することは更に困難である。そのため、長期間に亘って安定な肝機能を維持できる人工システムは未だ構築されていない。 In order to establish an artificial liver system with liver function, regular arrangement of these cell types and construction of an extracellular matrix are important. However, hepatocytes are difficult to culture for a long period of time, and moreover, it is more difficult to form a tissue close to the liver in vivo. Therefore, an artificial system that can maintain a stable liver function over a long period of time has not yet been constructed.
国際公開WO2009/099066号パンフレットInternational Publication WO2009 / 099066 Pamphlet
 こうした人工肝臓システムの構築に関連して、本発明者らは、2種類の生体細胞を利用したバイオデバイスを提案している(特許文献1)。これは、細胞外マトリックスの代替物として多孔質膜を利用し、その膜の両側に異なる細胞を固定して培養することにより、多孔質膜を介して両側の細胞間で信号伝達や物質の交換又は移動を行わせるようにしたものである。 In connection with the construction of such an artificial liver system, the present inventors have proposed a biodevice using two types of living cells (Patent Document 1). This uses a porous membrane as an alternative to the extracellular matrix, and by fixing and culturing different cells on both sides of the membrane, signal transmission and substance exchange between the cells on both sides via the porous membrane Or it is made to move.
 このような培養デバイスは、1種類の細胞を単独で培養する場合に比べて生体内に近い構成を実現できる点で画期的であるが、細胞機能の長期維持の点で更なる改善の余地があった。 Such a culture device is epoch-making in that it can realize a configuration close to that of a living body as compared with the case of culturing one kind of cell alone, but there is room for further improvement in terms of long-term maintenance of cell functions. was there.
 本発明は上記の点に鑑みて成されたものであり、その目的とするところは2種類の生体細胞を利用して安定した機能を長期間に亘って維持できる細胞培養デバイス及びそれを用いた細胞培養方法を提供することである。 The present invention has been made in view of the above points. The object of the present invention is to use a cell culture device capable of maintaining a stable function over a long period of time using two types of biological cells, and the same. It is to provide a cell culture method.
 上記課題を解決するために成された本発明に係る細胞培養デバイスは、
 a)多孔質膜から成り、細胞培養用の足場材によってコーティングされる中間層と、
 b)デバイス内部の空間を前記中間層で仕切ることによって形成される第1培養室及び第2培養室と、
 c)前記中間層の一方の面の一部を覆って該中間層が前記第1培養室内を流通する液体と接する領域を限定する第1限定層と、
 d)前記中間層の他方の面の一部を覆って該中間層が前記第2培養室内を流通する液体と接する領域を限定する第2限定層と、
 を有することを特徴としている。
The cell culture device according to the present invention, which has been made to solve the above problems,
a) an intermediate layer consisting of a porous membrane and coated with a scaffold for cell culture;
b) a first culture chamber and a second culture chamber formed by partitioning the space inside the device with the intermediate layer;
c) a first limiting layer that covers a part of one surface of the intermediate layer and limits a region where the intermediate layer is in contact with the liquid flowing in the first culture chamber;
d) a second limiting layer that covers a part of the other surface of the intermediate layer and limits the region where the intermediate layer is in contact with the liquid flowing in the second culture chamber;
It is characterized by having.
 上記本発明に係る細胞培養デバイスは、中間層で仕切られた2つの培養室を有し、各培養室において異種の細胞を同時に培養することができるものである。前記異種の細胞は、足場材でコーティングされた中間層の両側にそれぞれ固定され、該中間層を構成する多孔質膜を介して細胞間の信号伝達や物質の交換などを行うことができる。従来、こうした細胞培養デバイスの内部に細胞を導入する際には、培地に細胞を懸濁して該懸濁液をシリンジ等によって培養室に注入していた。しかしながら、この場合、注入した細胞が培養室の入口付近に偏って付着してしまい、細胞を培養室全体に行き渡らせるのが困難であった。特に、細胞の種類によっては周囲の細胞とタイトジャンクションを形成した状態でないと機能を発揮できないものがあり、培養室内に細胞密度が低い領域が多く存在すると、安定した機能を得ることができない場合があった。これに対し、上記構成から成る本発明の細胞培養デバイスによれば、前記第1限定層及び第2限定層を設けたことにより、デバイス内に細胞を導入する際に細胞懸濁液と中間層とが接触する領域を限定することができるため、培養室内で細胞が付着する領域を最適に設計することができる。これにより、生体内により近い環境を容易に実現することができ、安定した細胞機能を長期間に亘って得ることが可能となる。 The cell culture device according to the present invention has two culture chambers partitioned by an intermediate layer, and can culture different types of cells simultaneously in each culture chamber. The heterogeneous cells are fixed to both sides of the intermediate layer coated with the scaffold, and signal transmission between the cells and exchange of substances can be performed through the porous membrane constituting the intermediate layer. Conventionally, when cells are introduced into such a cell culture device, the cells are suspended in a medium and the suspension is injected into the culture chamber by a syringe or the like. However, in this case, the injected cells are biased to adhere to the vicinity of the entrance of the culture chamber, making it difficult to spread the cells throughout the culture chamber. In particular, depending on the type of cell, there are those that can not function unless they form a tight junction with the surrounding cells, and if there are many areas with low cell density in the culture chamber, stable function may not be obtained. there were. On the other hand, according to the cell culture device of the present invention having the above-described configuration, the cell suspension and the intermediate layer are introduced when cells are introduced into the device by providing the first limited layer and the second limited layer. Can be limited, so that a region to which cells adhere can be optimally designed in the culture chamber. As a result, an environment closer to the living body can be easily realized, and a stable cell function can be obtained over a long period of time.
 前記多孔質膜としては、ポリカーボネートから成るものを好適に用いることができるが、これに限らず、ポリテトラフルオロエチレン、混合セルロース、ポリエチレンテレフタレート(PET)、グラスファイバー、ポリエーテル、又はフッ素系樹脂から成るものや、セルロース系、ナイロン系、セラミック系の多孔質膜など、種々のものを用いることができる。また、前記多孔質膜は、細胞を通過させることなく且つ細胞間での物質交換や信号伝達の効率を妨げないものとする必要がある。そのため、該多孔質膜としては、厚さが1mm以下で、平均孔径が0.1μm~10μmのものを用いることが望ましい。 As the porous film, one made of polycarbonate can be suitably used, but is not limited to this, and is made of polytetrafluoroethylene, mixed cellulose, polyethylene terephthalate (PET), glass fiber, polyether, or fluorine resin. And various types such as cellulose-based, nylon-based, and ceramic-based porous membranes can be used. In addition, the porous membrane must be such that it does not pass cells and does not hinder the efficiency of substance exchange and signal transmission between cells. Therefore, it is desirable to use a porous membrane having a thickness of 1 mm or less and an average pore diameter of 0.1 μm to 10 μm.
 前記第1限定層及び第2限定層は、前記各培養室内を流通する液体に対して前記中間層を露出させる複数の開口部を有するものであり、該開口部1つ当たりの開口面積が0.01mm~10mmであるものとすることが望ましい。 The first limited layer and the second limited layer have a plurality of openings that expose the intermediate layer to the liquid flowing through the culture chambers, and the opening area per one opening is 0. It is desirable that the thickness be 0.01 mm 2 to 10 mm 2 .
 開口面積がこれより小さいと一つの開口部で中間層に固定できる細胞の数が少なくなり、これより大きいと接着領域の限定による効果が得られ難くなる。また、限定層の厚さは、1mm以下が適当である。これより大きいと、前記の開口部が深くなるために培養中における細胞周辺の液交換の効率が低下する。 If the opening area is smaller than this, the number of cells that can be fixed to the intermediate layer with one opening is reduced, and if it is larger than this, it is difficult to obtain the effect of limiting the adhesion region. The thickness of the limiting layer is suitably 1 mm or less. When larger than this, since the said opening part becomes deep, the efficiency of the liquid exchange around a cell in culture | cultivation falls.
 また、本発明に係る細胞培養デバイスは、前記中間層が複数枚の多孔質膜を重ねて成るものとすることが望ましい。 In the cell culture device according to the present invention, it is preferable that the intermediate layer is formed by stacking a plurality of porous membranes.
 これにより、第1培養室側の多孔質膜と第2培養室側の多孔質膜にそれぞれ培養細胞の種類に応じた異なる足場材をコーティングすることが可能となり、生体内に一層近い環境を実現することが可能となる。 This makes it possible to coat different scaffolds according to the type of cultured cells on the porous membrane on the first culture chamber side and the porous membrane on the second culture chamber side, realizing an environment closer to the living body. It becomes possible to do.
 なお、前記足場材としては、E-cad-Fc(E-カドヘリンの細胞外領域と、抗体IgG分子のFcフラグメントの融合タンパク質)を好適に用いることができるが、この他、一般に足場材として用いられるコラーゲンやフィブロネクチン、ラミニン、PVLA(ポリ-N-p-ビニルベンジル-D-ラクトンアミド)等を含む高分子を用いることができる。 As the scaffold, E-cad-Fc (a fusion protein of an extracellular region of E-cadherin and an Fc fragment of an antibody IgG molecule) can be preferably used, but in addition, it is generally used as a scaffold. And polymers containing collagen, fibronectin, laminin, PVLA (poly-Np-vinylbenzyl-D-lactone amide) and the like can be used.
 また、本発明に係る細胞培養方法は、上記本発明に係る細胞培養デバイスを用いた細胞培養方法であって、前記中間層の一方の面と他方の面に異なる種類の細胞を固定して培養することを特徴としている。 The cell culture method according to the present invention is a cell culture method using the cell culture device according to the present invention, wherein different types of cells are fixed to one surface and the other surface of the intermediate layer and cultured. It is characterized by doing.
 ここで、前記異なる細胞とは、典型的には肝実質細胞と類洞内皮細胞であるが、本発明に係る細胞デバイスはこれらに限らず種々の細胞の培養に用いることができる。 Here, the different cells are typically hepatic parenchymal cells and sinusoidal endothelial cells, but the cell device according to the present invention is not limited to these and can be used for culturing various cells.
 以上で説明したように、本発明に係る細胞培養デバイス及び細胞培養方法によれば、2種類の生体細胞を利用した細胞培養において生体内に近い環境を容易に実現することができ、安定した細胞機能を長期間に亘って得ることが可能となる。 As described above, according to the cell culture device and the cell culture method according to the present invention, it is possible to easily realize an environment close to the living body in the cell culture using two types of living cells, and stable cells. The function can be obtained over a long period of time.
本発明の一実施例に係る細胞培養デバイスの平面図。The top view of the cell culture device which concerns on one Example of this invention. 図1のX-X矢視断面図。FIG. 2 is a cross-sectional view taken along arrow XX in FIG. 1. 同実施例に係る細胞培養デバイスの分解斜視図。The disassembled perspective view of the cell culture device which concerns on the Example. 同実施例の細胞培養デバイスを含む細胞培養システムの概略構成図。The schematic block diagram of the cell culture system containing the cell culture device of the Example. 実験例1における培養細胞のテストステロン水酸化能の評価結果を示すグラフ。The graph which shows the evaluation result of the testosterone hydroxylation ability of the cultured cell in Experimental example 1. FIG. 実験例1における培養細胞と肝ミクロソームの水酸化パターンを示すグラフ。The graph which shows the hydroxylation pattern of the cultured cell and liver microsome in Experimental example 1. FIG. 実験例2における培養細胞のテストステロン水酸化能の評価結果を示すグラフ。The graph which shows the evaluation result of the testosterone hydroxylation ability of the cultured cell in Experimental example 2. FIG. 実験例2における培養細胞の尿素合成能の評価結果を示すグラフ。The graph which shows the evaluation result of the urea synthetic ability of the cultured cell in Experimental example 2. FIG.
 以下、本発明を実施するための形態について実施例を用いて説明する。図1は本実施例に係る細胞培養デバイスの平面図であり、図2は、図1のX-X矢視断面図、図3は本実施例に係る細胞培養デバイスの分解斜視図である。なお、図1では説明のため内部構造の一部を透過させて図示している。 Hereinafter, modes for carrying out the present invention will be described using examples. 1 is a plan view of the cell culture device according to the present embodiment, FIG. 2 is a cross-sectional view taken along the line XX of FIG. 1, and FIG. 3 is an exploded perspective view of the cell culture device according to the present embodiment. In FIG. 1, for the sake of explanation, a part of the internal structure is shown through.
 本実施例に係る細胞培養デバイス10は、2枚の基板11、21の間に、各2枚の多孔質膜14、24、限定層13、23、及びシール層12、22を挟み込んだ構成となっている。なお、以下に述べる各部の寸法及び材質はあくまで一例であり、本発明はこれに限定されるものではない。 The cell culture device 10 according to the present embodiment has a configuration in which two porous films 14 and 24, limited layers 13 and 23, and seal layers 12 and 22 are sandwiched between two substrates 11 and 21, respectively. It has become. In addition, the dimension and material of each part described below are an example to the last, and this invention is not limited to this.
 基板11、21は、PDMS(東レダウコーニング社製、SILPOT184)から成る。基板11の一方の面には、長さ16mm、幅2mmの長方形の凹部から成る第1培養室11aと、該第1培養室11aの両端部付近から延出する溝状の流路11b、11cが形成されている。これらの第1培養室11a及び、流路11b、11cはいずれも0.1mmの深さを有しており、型取りによって形成することができる。前記2本の流路11b、11cの先端は、それぞれ基板11の厚さ方向に延びる貫通孔から成る液導入口11d又は液排出口11eに連通している。更に、基板21にも同様にして第2培養室21a、流路21b、21c、液導入口21d、及び液排出口21eが形成される。 The substrates 11 and 21 are made of PDMS (manufactured by Toray Dow Corning, SILPOT184). On one surface of the substrate 11, there are a first culture chamber 11a composed of a rectangular recess having a length of 16 mm and a width of 2 mm, and groove-shaped channels 11b and 11c extending from the vicinity of both ends of the first culture chamber 11a. Is formed. The first culture chamber 11a and the channels 11b and 11c all have a depth of 0.1 mm and can be formed by molding. The ends of the two flow paths 11b and 11c communicate with a liquid introduction port 11d or a liquid discharge port 11e each formed of a through hole extending in the thickness direction of the substrate 11. Further, a second culture chamber 21a, flow paths 21b and 21c, a liquid inlet 21d, and a liquid outlet 21e are formed in the substrate 21 in the same manner.
 限定層13、23は、厚さ0.1mmのSUS製のメタルマスクから成り、その中央部には、それぞれ前記第1培養室11a又は第2培養室21aに対応する領域内に直径0.5mmの貫通孔13a、23aが30個形成されている。この貫通孔13a、23aが本発明における開口部に相当する。開口部の形状や数は上記に限らず、培養対象とする細胞の種類や培養の目的に応じて種々のものとすることができる。なお、限定層13、23としては、培養対象とする細胞が付着しにくい素材(少なくとも足場材をコーティングした多孔質膜14、24よりも細胞の付着性が低いもの)から成るものを用いることが望ましい。このような素材としては、上記SUS等の金属のほか、各種樹脂等を用いることができる。 The limiting layers 13 and 23 are made of a metal mask made of SUS having a thickness of 0.1 mm, and the central portion thereof has a diameter of 0.5 mm in a region corresponding to the first culture chamber 11a or the second culture chamber 21a, respectively. 30 through- holes 13a and 23a are formed. The through holes 13a and 23a correspond to the openings in the present invention. The shape and number of the openings are not limited to the above, and can be various depending on the type of cells to be cultured and the purpose of the culture. The limiting layers 13 and 23 are made of a material that is difficult to adhere to cells to be cultured (at least those having lower cell adhesion than the porous membranes 14 and 24 coated with a scaffold). desirable. As such a material, in addition to the metal such as SUS, various resins can be used.
 シール層12、22は、厚さ0.1mmのシリコンゴムから成り、長さ及び幅は基板11、21とほぼ同一である。シール層12、22の中央には、限定層13、23とほぼ同一の長さ及び幅を有する長方形の孔が形成されており、この長方形の孔に限定層13又は限定層23が嵌め込まれる。 The seal layers 12 and 22 are made of silicon rubber having a thickness of 0.1 mm, and the length and width are almost the same as those of the substrates 11 and 21. A rectangular hole having substantially the same length and width as the limiting layers 13 and 23 is formed in the center of the sealing layers 12 and 22, and the limiting layer 13 or the limiting layer 23 is fitted into the rectangular holes.
 多孔質膜14、24は、幅2mm、長さ14mmの長方形に打ち抜かれている。本実施例では、多孔質膜14、24としてポリカーボネートメンブレンフィルター(ミリポア社製、Isopore HTTP04700、フィルタ孔径0.4μm、厚さ7-22μm)を使用した。なお、これらの多孔質膜14、24を重ね合わせたものが本発明における中間層に相当する。 The porous membranes 14 and 24 are punched into a rectangle having a width of 2 mm and a length of 14 mm. In this example, polycarbonate membrane filters (Millipore Corp., Isopore HTTP04700, filter pore diameter 0.4 μm, thickness 7-22 μm) were used as the porous membranes 14, 24. In addition, what overlap | superposed these porous membranes 14 and 24 is equivalent to the intermediate | middle layer in this invention.
 前記の多孔質膜14、24には、それぞれ培養しようとする細胞の種類に応じた足場材がコーティングされる。本実施例では、第1培養室11a側の多孔質膜14をE-cad-Fcでコーティングし、第2培養室21a側の多孔質膜24をI型コラーゲンでコーティングした。足場材のコーティング方法は特に限定しないが、例えば、液状化した足場材に多孔質膜14、24を浸漬して取り出した後、該多孔質膜14、24に付着した足場材を固化させるといった方法が考えられる。なお、こうした足場材によるコーティングは、細胞培養デバイスの製造段階で行ってもよく、細胞培養デバイスを購入したユーザが行うようにしてもよい。 The porous membranes 14 and 24 are each coated with a scaffold according to the type of cells to be cultured. In this example, the porous membrane 14 on the first culture chamber 11a side was coated with E-cad-Fc, and the porous membrane 24 on the second culture chamber 21a side was coated with type I collagen. The method of coating the scaffold material is not particularly limited. For example, after the porous films 14 and 24 are dipped and taken out from the liquefied scaffold material, the scaffold material adhered to the porous films 14 and 24 is solidified. Can be considered. Such coating with a scaffold may be performed at the manufacturing stage of the cell culture device, or may be performed by a user who has purchased the cell culture device.
 本実施例の細胞培養デバイス10を組み立てる際には、上記各層を滅菌処理し、多孔質膜14、24に足場材をコーティングした後に、基板21、シール層22、限定層23、多孔質膜24、多孔質膜14、限定層13、シール層12、及び基板11をこの順に重ね合わせる。このとき、基板11、21は、第1培養室11aが形成された面と第2培養室21aが形成された面とが対向するようにする。なお、上述のように、限定層13、23はシール層12、22の中央部の孔に嵌め込まれるため、シール層12と限定層13、及びシール層22と限定層23それぞれ細胞培養デバイス10の厚さ方向の同一位置に配置されることとなる。 When assembling the cell culture device 10 of the present embodiment, each of the above layers is sterilized and the porous membranes 14 and 24 are coated with a scaffold, and then the substrate 21, the seal layer 22, the limiting layer 23, and the porous membrane 24. The porous film 14, the limiting layer 13, the seal layer 12, and the substrate 11 are superposed in this order. At this time, the substrates 11 and 21 are configured such that the surface on which the first culture chamber 11a is formed faces the surface on which the second culture chamber 21a is formed. As described above, since the limiting layers 13 and 23 are fitted into the holes in the center of the sealing layers 12 and 22, the sealing layer 12 and the limiting layer 13, and the sealing layer 22 and the limiting layer 23 respectively. It will be arranged at the same position in the thickness direction.
 以上のようにして各層を重ね合わせると、シール層12、22を構成するシリコンゴムの自己吸着性によって基板11とシール層12、基板21とシール層22、及びシール層12、22同士が吸着される。そのため、多孔質膜14、24及び限定層13、23を挟み込んだ状態で基板11と基板21を互いに固定することができる。 When the layers are overlapped as described above, the substrate 11 and the seal layer 12, the substrate 21 and the seal layer 22, and the seal layers 12 and 22 are adsorbed by the self-adsorption property of the silicon rubber constituting the seal layers 12 and 22. The Therefore, the substrate 11 and the substrate 21 can be fixed to each other with the porous films 14 and 24 and the limiting layers 13 and 23 sandwiched therebetween.
 上記の細胞培養デバイス10によって細胞培養を行う際には、液導入口11dから第1培養室11aに肝実質細胞を、液導入口21dから第2培養室21aに類洞内皮細胞を導入して各細胞をそれぞれ多孔質膜14、24の表面に固定する。具体的には、まず第1培養室11a側が上に来るような向きに細胞培養デバイス10を置き、肝実質細胞を培地に懸濁してその懸濁液をシリンジ等で第1培養室11aに注入する。注入された細胞は重力により沈んで多孔質膜14に接着される。その後、第2培養室21a側が上になるように細胞培養デバイス10を置き、同様にして類洞内皮細胞を第2培養室21aに注入し、多孔質膜24に接着させる。 When cell culture is performed by the cell culture device 10 described above, hepatic parenchymal cells are introduced from the liquid inlet 11d into the first culture chamber 11a, and sinusoidal endothelial cells are introduced from the liquid inlet 21d into the second culture chamber 21a. Each cell is fixed to the surface of the porous membranes 14 and 24, respectively. Specifically, the cell culture device 10 is first placed so that the first culture chamber 11a side is facing upward, the liver parenchymal cells are suspended in the medium, and the suspension is injected into the first culture chamber 11a with a syringe or the like. To do. The injected cells sink by gravity and adhere to the porous membrane 14. Thereafter, the cell culture device 10 is placed so that the second culture chamber 21a side is up, and sinusoidal endothelial cells are injected into the second culture chamber 21a in the same manner and adhered to the porous membrane 24.
 なお、多孔質膜14、24は、その一部が限定層13、23によってマスクされ、貫通孔13a、23aの部分でのみ第1培養室11a又は第2培養室21a内の液体と接触できるようになっている。このため、上記のように液導入口11d、21dから培地と共に導入された細胞は、その一部が培養室の上流付近の貫通孔13a、23aに入って多孔質膜14、24に接着するが、残りの細胞は培地中を浮遊するか限定層13、23の表面に落ちることとなる。限定層13、23は多孔質膜14、24に比べて細胞が接着され難いため、これらの細胞は培地の流れに乗って各培養室11a、21aの下流側へ流れて行く。そして、その過程でいずれかの貫通孔13a、23aに入り、そこで多孔質膜14、24に接着する。このように、本実施例に係る培養デバイスでは、細胞が多孔質膜14、24と接触できる部分が限定層13、23によって限定されているため、従来のようにデバイス内に注入した細胞が培養室の入口付近に偏って接着されるのを防ぎ、培養室全体に細胞を行き渡らせることができる。また、細胞が貫通孔13a、23aの内部に集まるため、周囲の細胞とタイトジャンクションを形成するような細胞を培養する場合にも安定した細胞機能を発揮させることができる。 Part of the porous membranes 14 and 24 is masked by the limiting layers 13 and 23 so that the liquid in the first culture chamber 11a or the second culture chamber 21a can be contacted only at the through holes 13a and 23a. It has become. For this reason, some of the cells introduced together with the medium from the liquid inlets 11d and 21d as described above enter the through holes 13a and 23a near the upstream of the culture chamber and adhere to the porous membranes 14 and 24. The remaining cells float in the medium or fall on the surfaces of the limiting layers 13 and 23. Since the limiting layers 13 and 23 are less likely to adhere cells than the porous membranes 14 and 24, these cells ride on the flow of the medium and flow downstream of the culture chambers 11a and 21a. Then, in the process, one of the through- holes 13a and 23a enters, and adheres to the porous films 14 and 24 there. As described above, in the culture device according to the present embodiment, since the portions where the cells can contact the porous membranes 14 and 24 are limited by the limiting layers 13 and 23, the cells injected into the device are cultured as in the past. It is possible to prevent the cells from being biased to adhere to the vicinity of the entrance of the chamber and to spread the cells throughout the culture chamber. Further, since the cells gather inside the through holes 13a and 23a, stable cell functions can be exhibited even when culturing cells that form a tight junction with the surrounding cells.
 図4に本実施例に係る細胞培養デバイス10を用いた細胞培養システムの概略を示す。これは、上記の細胞培養デバイス10と、該細胞培養デバイス10に培地を連続送液する送液機構を組み合わせたものである。該送液機構は、培地貯留部31、41、培地供給管32、42、培地排出管33、43、廃液収容部34、44、送液ポンプ35、45、及び送液ポンプ35、45の動作を制御する制御部50を備えている。培地供給管32、42の一端はそれぞれ培地貯留部31、41に挿入され、他端はそれぞれ細胞培養デバイス10の液導入口11d、21dに挿入される。培地排出管33、43の一端はそれぞれ細胞培養デバイス10の液排出口11e、21eに挿入され、他端はそれぞれ廃液収容部34、44に挿入される。 FIG. 4 shows an outline of a cell culture system using the cell culture device 10 according to the present example. This is a combination of the cell culture device 10 and a liquid feeding mechanism for continuously feeding a medium to the cell culture device 10. The liquid feeding mechanism is configured to operate the medium storage units 31 and 41, the medium supply pipes 32 and 42, the medium discharge pipes 33 and 43, the waste liquid storage units 34 and 44, the liquid feed pumps 35 and 45, and the liquid feed pumps 35 and 45. The control part 50 which controls is provided. One end of each of the medium supply pipes 32 and 42 is inserted into the medium reservoirs 31 and 41, and the other end is inserted into the liquid introduction ports 11d and 21d of the cell culture device 10, respectively. One ends of the medium discharge pipes 33 and 43 are respectively inserted into the liquid discharge ports 11e and 21e of the cell culture device 10, and the other ends are respectively inserted into the waste liquid storage portions 34 and 44.
 培地貯留部31には肝実質細胞の培養に適した培地が貯留され、培地貯留部41には類洞内皮細胞の培養に適した培地が貯留されている。培地貯留部31に貯留された培地は、送液ポンプ35によって吸引され、培地供給管32を通って細胞培養デバイス10に送られる。細胞培養デバイス10に供給された培地は、第1培養室11aを通過し、液排出口11eに接続された培地排出管33を介して廃液収容部34に排出される。同様に培地貯留部41に貯留された培地は、送液ポンプ45によって吸引され、培地供給管42を経て、第2培養室21aを通過し、培地排出管43を通って廃液収容部44に排出される。 A medium suitable for culturing hepatocytes is stored in the medium reservoir 31, and a medium suitable for culturing sinusoidal endothelial cells is stored in the medium reservoir 41. The medium stored in the medium storage unit 31 is sucked by the liquid feed pump 35 and sent to the cell culture device 10 through the medium supply pipe 32. The medium supplied to the cell culture device 10 passes through the first culture chamber 11a, and is discharged to the waste liquid storage part 34 through the medium discharge pipe 33 connected to the liquid discharge port 11e. Similarly, the culture medium stored in the culture medium storage unit 41 is sucked by the liquid feed pump 45, passes through the culture medium supply pipe 42, passes through the second culture chamber 21 a, and is discharged to the waste liquid storage part 44 through the culture medium discharge pipe 43. Is done.
 なお、第1培養室11a及び第2培養室21aは、自己吸着性を有するシール層12、22によってシールされるため、液導入口11d、21d又は液排出口11e、21e以外から培地が外部に漏れ出すことはないが、より確実に液漏れを防止するためには、適当なジグによって細胞培養デバイス10を上下から挟み込むようにして固定することが望ましい。 In addition, since the first culture chamber 11a and the second culture chamber 21a are sealed by the self-adsorbing sealing layers 12 and 22, the culture medium is exposed to the outside from the liquid inlets 11d and 21d or the liquid outlets 11e and 21e. Although it does not leak out, in order to prevent liquid leakage more reliably, it is desirable to fix the cell culture device 10 by sandwiching it from above and below with an appropriate jig.
 上記本実施例に係る細胞培養デバイス10によれば、多孔質膜14、24が細胞外マトリックスの代わりとなって細胞の規則正しい配列を実現することができ、且つ細胞間の信号伝達や物質交換も確保できる。更に、第1培養室11a及び第2培養室21a内の培地は、それぞれ胆汁及び血液と似た役割を果たし、代謝や薬物の取り込み排出といった生体内に近い機能を発揮させることができる。 According to the cell culture device 10 according to the above-described embodiment, the porous membranes 14 and 24 can realize an ordered arrangement of cells instead of the extracellular matrix, and signal transmission and substance exchange between cells can be realized. It can be secured. Furthermore, the culture media in the first culture chamber 11a and the second culture chamber 21a play roles similar to bile and blood, respectively, and can exhibit functions close to the living body such as metabolism and drug uptake / discharge.
 また、上記の通り、本実施例に係る細胞培養デバイス10によれば、限定層13、23によって細胞が接着できる領域を制限したことにより、培養室11a、21aの入口付近に細胞が偏って接着されるのを防ぎ、細胞をその機能発現に適した所望のパターンで培養室11a、21a内に接着させることができる。また更に、多孔質膜14、24を2枚設けたことにより、第1培養室11aと第2培養室21aとで培養する細胞の種類に応じた異なる足場材を使用することが可能となる。これにより、生体内により近い環境をデバイス内部に構築することができ、長期間に亘って肝機能の発現を維持した状態で細胞培養を行うことが可能となる。 In addition, as described above, according to the cell culture device 10 according to the present example, by restricting the region to which the cells can be adhered by the limiting layers 13 and 23, the cells are biased and adhered near the entrances of the culture chambers 11a and 21a. The cells can be adhered to the culture chambers 11a and 21a in a desired pattern suitable for function expression. Furthermore, by providing two porous membranes 14 and 24, it becomes possible to use different scaffolding materials according to the types of cells cultured in the first culture chamber 11a and the second culture chamber 21a. As a result, an environment closer to the living body can be established inside the device, and cell culture can be performed in a state where expression of liver function is maintained for a long period of time.
 以上、実施例を用いて本発明を実施するための形態について説明を行ったが、本発明はこれに限定されるものではなく、本発明の趣旨の範囲で適宜変更が許容されるものである。例えば、上記の例ではシール層12、22によって基板11、21を互いに固定する構成としたが、このようなシール層12、22を設けず、基板11、21を構成するPDMSの自己吸着性によって基板11、21同士を互いに固定させるようにしてもよい。なお、この場合、より強固な接着性を得るために、基板11、21の接合面を酸素プラズマや紫外線により活性化して接合させることが望ましい。 As mentioned above, although the form for implementing this invention using the Example was demonstrated, this invention is not limited to this, A change is suitably accept | permitted in the range of the meaning of this invention. . For example, in the above example, the substrates 11 and 21 are fixed to each other by the seal layers 12 and 22. However, the seal layers 12 and 22 are not provided and the self-adsorption property of the PDMS constituting the substrates 11 and 21 is not provided. The substrates 11 and 21 may be fixed to each other. In this case, in order to obtain stronger adhesion, it is desirable to activate and bond the bonding surfaces of the substrates 11 and 21 with oxygen plasma or ultraviolet rays.
 なお、本発明に係る細胞培養デバイスは、上述のハイブリッド型人工肝臓のような人工臓器として利用することができるほか、細胞による薬物代謝試験などを行う際の反応容器としても利用することもできる。また、上記の例では肝実質細胞と類洞内皮細胞の共培養を行う場合を説明したが、本発明の細胞培養デバイスは、その他の細胞の培養に使用することもできる。 In addition, the cell culture device according to the present invention can be used as an artificial organ such as the above-described hybrid type artificial liver, and can also be used as a reaction container when performing a drug metabolism test using cells. In the above example, the case where hepatocytes and sinusoidal endothelial cells are co-cultured has been described. However, the cell culture device of the present invention can also be used for culturing other cells.
 以下、本発明に係る細胞培養デバイスを用いた細胞培養実験について説明する。 Hereinafter, a cell culture experiment using the cell culture device according to the present invention will be described.
 [実験例1]
 図1~3のような細胞培養デバイス10において、多孔質膜14、24の材質を変えて細胞培養を行い、肝機能の差を評価した。多孔質膜14、24としては、それぞれ、ポリカーボネート、ポリテトラフルオロエチレン、又は混合セルロースから成る3種類の多孔質膜を使用し、いずれもI型コラーゲンでコーティングした上で実験に使用した。
[Experimental Example 1]
In the cell culture device 10 as shown in FIGS. 1 to 3, cell culture was performed by changing the material of the porous membranes 14 and 24, and the difference in liver function was evaluated. As the porous membranes 14 and 24, three types of porous membranes each made of polycarbonate, polytetrafluoroethylene, or mixed cellulose were used, and each was coated with type I collagen and used in the experiment.
 本実験例では、CYP(シトクロムP450)によるテストステロンの水酸化能を調べることにより、培養1日目における肝機能を評価した。具体的には、まず、第1培養室に肝実質細胞を3×10個程度播種し、第2培養室には類洞内皮細胞を3×10個程度播種した。そして、第1培養室にテストステロンを0.25mMの濃度で含む培地を流し、第2培養室にテストステロンを含まない培地を流して培養を行い、第1培養室から排出された培地(廃液)に含まれる水酸化テストステロンの濃度をHPLCによって測定した。なお、前記の各培地はそれぞれ40μL/hrの流速で各培養室に連続送液した。 In this experimental example, the liver function on the first day of culture was evaluated by examining the hydroxylation ability of testosterone by CYP (cytochrome P450). Specifically, first, about 3 × 10 3 liver parenchymal cells were seeded in the first culture chamber, and about 3 × 10 3 sinusoidal endothelial cells were seeded in the second culture chamber. Then, a culture medium containing testosterone at a concentration of 0.25 mM is poured into the first culture chamber, a culture medium containing no testosterone is poured into the second culture chamber, and the culture is conducted to the medium (waste liquid) discharged from the first culture chamber. The concentration of testosterone hydroxide contained was measured by HPLC. Each medium was continuously fed to each culture chamber at a flow rate of 40 μL / hr.
 その結果、図5に示すように、多孔質膜14、24としてポリカーボネートから成る多孔質膜を用いた場合に最も高いテストステロン水酸化能が得られることが分かった。 As a result, as shown in FIG. 5, it was found that the highest testosterone hydroxylation ability was obtained when a porous film made of polycarbonate was used as the porous films 14 and 24.
 更に、上記3種類の多孔質膜を用いた場合における水酸化パターン(即ち、前記廃液中における各種水酸化テストステロンの存在比)を肝ミクロソームによる水酸化パターンと比較した。なお、肝ミクロソームによる水酸化パターンは、肝ミクロソーム画分に第1培養室に導入したものと同じ培地を添加し、24時間インキュベートした後、上清を回収してHPLCで各種水酸化物の含有量を測定することによって求めた。 Furthermore, the hydroxylation pattern (that is, the abundance ratio of various hydroxylated testosterone in the waste liquid) in the case of using the above three kinds of porous membranes was compared with the hydroxylation pattern by liver microsomes. The hydroxylation pattern by liver microsomes was determined by adding the same medium as that introduced into the first culture chamber to the liver microsome fraction, incubating for 24 hours, collecting the supernatant, and containing various hydroxides by HPLC. Determined by measuring the amount.
 上記水酸化パターンの比較結果を図6に示す。なお、図中の16β-OHT、2α-OHT、16α-OHT、6β-OHT、7α-OHTは、それぞれ16β、2α、16α、6β、7α位が水酸化されたテストステロンを意味している。同図から明らかなように、ポリカーボネートから成る多孔質膜を用いた場合に、最も肝ミクロソームに近い水酸化パターンが得られることが分かった。 The comparison result of the above hydroxylation pattern is shown in FIG. In the figure, 16β-OHT, 2α-OHT, 16α-OHT, 6β-OHT, and 7α-OHT mean testosterone in which the 16β, 2α, 16α, 6β, and 7α positions are hydroxylated, respectively. As is apparent from the figure, it was found that when a porous membrane made of polycarbonate was used, a hydroxylation pattern closest to liver microsomes was obtained.
 [実験例2]
 別途行った予備実験により、類洞内皮細胞を培養するための足場材としてはI型コラーゲンが適していることが分かったため、肝実質細胞側の足場材のみを変えて細胞培養を行い、その際の肝機能を評価した。
[Experiment 2]
In a separate preliminary experiment, it was found that type I collagen is suitable as a scaffold for culturing sinusoidal endothelial cells. Therefore, only the scaffold on the liver parenchymal cell side was changed, and cell culture was performed. The liver function was evaluated.
 本実施例で使用した細胞培養デバイスは、多孔質膜14、24としてポリカーボネート多孔質膜を使用し、肝実質細胞側(即ち第1培養室11a側)の多孔質膜14にコーティングする足場材を変えた点以外は、実施例1と同様である。前記肝実質細胞側のコーティングとしては、I型コラーゲン、IV型コラーゲン、フィブロネクチン、ラミニン、PVLA、及びE-cad-Fcの6種類を使用した。 The cell culture device used in this example uses a polycarbonate porous membrane as the porous membranes 14 and 24, and a scaffold material to be coated on the porous membrane 14 on the liver parenchymal cell side (that is, the first culture chamber 11a side) is used. Except for the changed points, the second embodiment is the same as the first embodiment. As the liver parenchymal cell side coating, six types of type I collagen, type IV collagen, fibronectin, laminin, PVLA, and E-cad-Fc were used.
 実験例1と同様に、第1培養室側に肝実質細胞を、第2培養室側に類洞内皮細胞をそれぞれ3×10個程度播種して細胞培養を行い、培養1日目におけるテストステロン水酸化能、並びに培養1日目、4日目、及び7日目における尿素合成能(アンモニアを分解して尿素を合成する能力)を評価した。 Similar to Experimental Example 1, hepatocellular parenchymal cells were seeded on the first culture chamber side and about 3 × 10 3 sinusoidal endothelial cells were seeded on the second culture chamber side, and cell culture was performed. Hydroxylation ability and urea synthesis ability (capability of decomposing ammonia to synthesize urea) on the first day, the fourth day, and the seventh day of the culture were evaluated.
 テストステロン水酸化能は、上記実験例1と同様に、第1培養室にテストステロンを含む培地を、第2培養室にテストステロンを含まない培地を流して培養を行い、第1培養室から排出された培地に含まれる水酸化テストステロンの濃度をHPLCで測定することにより評価した。尿素合成能は、第1培養室にNHClを2.0mMの濃度で含む培地を、第2培養室にはNHClを含まない培地を流し、培養1日目、4日目、及び7日目において第1培養室から排出された培地中の尿素濃度をHPLCで測定することによって評価した。なお、いずれの場合も各培地は40μL/hrの流速で各培養室に連続送液した。 The testosterone hydroxylation ability was discharged from the first culture chamber by culturing by flowing a medium containing testosterone in the first culture chamber and a medium not containing testosterone in the second culture chamber, as in Experimental Example 1 above. The concentration of testosterone hydroxide contained in the medium was evaluated by measuring with HPLC. The ability to synthesize urea was obtained by flowing a medium containing NH 4 Cl at a concentration of 2.0 mM in the first culture chamber, and a medium not containing NH 4 Cl flowing in the second culture chamber, On day 7, the urea concentration in the medium discharged from the first culture chamber was evaluated by measuring by HPLC. In each case, each medium was continuously fed to each culture chamber at a flow rate of 40 μL / hr.
 以上によるテストステロン水酸化能の評価結果を図7に、尿素合成能の評価結果を図8に示す。図7に示すように、肝実質細胞側の多孔質膜をPVLAでコーティングした場合とE-cad-Fcでコーティングした場合において、I型コラーゲンでコーティングした場合(即ち、類洞内皮細胞側と同一のコーティングを施した場合)よりも高いテストステロン水酸化能が得られた。 FIG. 7 shows the evaluation results of testosterone hydroxylation ability and FIG. 8 shows the evaluation results of urea synthesis ability. As shown in FIG. 7, when the porous membrane on the liver parenchymal cell side was coated with PVLA and E-cad-Fc, it was coated with type I collagen (that is, the same as the sinusoidal endothelial cell side). Testosterone hydroxylating ability was higher than when the coating was applied.
 また、図8に示すように、肝実質細胞側の多孔質膜をI型コラーゲンでコーティングした場合よりも、該多孔質膜をIV型コラーゲン、フィブロネクチン、ラミニン、PVLA、又はE-cad-Fcでコーティングした場合に、より長期間に亘って尿素合成能が維持される(即ち培養7日目の尿素合成能が高くなる)ことが確認された。 In addition, as shown in FIG. 8, the porous membrane is made of type IV collagen, fibronectin, laminin, PVLA, or E-cad-Fc rather than the case where the porous membrane on the hepatocyte side is coated with type I collagen. In the case of coating, it was confirmed that the urea synthesis ability was maintained for a longer period of time (that is, the urea synthesis ability on the seventh day of culture increased).
 このように、テストステロン水酸化能及び尿素合成能の両方について、コーティングの種類により異なった結果が得られた。このことは、各培養室において細胞の種類に応じた適当な足場材をコーティングすることの有効性を示している。 Thus, different results were obtained for both testosterone hydroxylation ability and urea synthesis ability depending on the type of coating. This indicates the effectiveness of coating an appropriate scaffold according to the cell type in each culture chamber.
10…細胞培養デバイス
11、21…基板
11a…第1培養室
21a…第2培養室
11d、21d…液導入口
11e、21e…液排出口
12、22…シール層
13、23…限定層
13a、23a…貫通孔
14、24…多孔質膜
31、41…培地貯留部
32、42…培地供給管
33、43…培地排出管
34、44…廃液収容部
35、45…送液ポンプ
50…制御部
DESCRIPTION OF SYMBOLS 10 ... Cell culture device 11, 21 ... Board | substrate 11a ... 1st culture chamber 21a ... 2nd culture chamber 11d, 21d ... Liquid inlet 11e, 21e ... Liquid outlet 12, 22 ... Seal layer 13, 23 ... Limitation layer 13a, 23a ... through holes 14, 24 ... porous membranes 31, 41 ... medium reservoirs 32, 42 ... medium supply pipes 33, 43 ... medium discharge pipes 34, 44 ... waste liquid storage parts 35, 45 ... feed pump 50 ... control part

Claims (6)

  1.  a)多孔質膜から成り、細胞培養用の足場材によってコーティングされる中間層と、
     b)デバイス内部の空間を前記中間層で仕切ることによって形成される第1培養室及び第2培養室と、
     c)前記中間層の一方の面の一部を覆って該中間層が前記第1培養室内を流通する液体と接する領域を限定する第1限定層と、
     d)前記中間層の他方の面の一部を覆って該中間層が前記第2培養室内を流通する液体と接する領域を限定する第2限定層と、
     を有することを特徴とする細胞培養デバイス。
    a) an intermediate layer consisting of a porous membrane and coated with a scaffold for cell culture;
    b) a first culture chamber and a second culture chamber formed by partitioning the space inside the device with the intermediate layer;
    c) a first limiting layer that covers a part of one surface of the intermediate layer and limits a region where the intermediate layer is in contact with the liquid flowing in the first culture chamber;
    d) a second limiting layer that covers a part of the other surface of the intermediate layer and limits the region where the intermediate layer is in contact with the liquid flowing in the second culture chamber;
    A cell culture device comprising:
  2.  前記第1限定層及び第2限定層が、前記各培養室内を流通する液体に対して前記中間層を露出させる複数の開口部を有するものであり、該開口部1つ当たりの開口面積が0.01mm~10mmであることを特徴とする請求項1に記載の細胞培養デバイス。 The first limited layer and the second limited layer have a plurality of openings for exposing the intermediate layer to the liquid flowing through the culture chambers, and the opening area per one opening is 0. The cell culture device according to claim 1, wherein the cell culture device is 0.01 mm 2 to 10 mm 2 .
  3.  前記中間層が複数枚の多孔質膜を重ねて成るものであることを特徴とする請求項1又は2に記載の細胞培養デバイス。 The cell culture device according to claim 1 or 2, wherein the intermediate layer is formed by stacking a plurality of porous membranes.
  4.  前記複数枚の多孔質膜の内、第1培養室側の多孔質膜と第2培養室側の多孔質膜がそれぞれ異なる足場材でコーティングされていることを特徴とする請求項3に記載の細胞培養デバイス。 The porous membrane on the first culture chamber side and the porous membrane on the second culture chamber side among the plurality of porous membranes are coated with different scaffolds, respectively. Cell culture device.
  5.  請求項1~4のいずれかに係る細胞培養デバイスを用いた細胞培養方法であって、
     前記中間層の一方の面と他方の面に異なる種類の細胞を固定して培養することを特徴とする細胞培養方法。
    A cell culture method using the cell culture device according to any one of claims 1 to 4,
    A cell culturing method, wherein different types of cells are fixed and cultured on one side and the other side of the intermediate layer.
  6.  前記異なる細胞が肝実質細胞と内皮細胞であることを特徴とする請求項5に記載の細胞培養方法。 The cell culture method according to claim 5, wherein the different cells are liver parenchymal cells and endothelial cells.
PCT/JP2010/065585 2010-09-10 2010-09-10 Cell culture device and cell culture method WO2012032646A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/065585 WO2012032646A1 (en) 2010-09-10 2010-09-10 Cell culture device and cell culture method
JP2012532811A JP5700460B2 (en) 2010-09-10 2010-09-10 Cell culture device and cell culture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/065585 WO2012032646A1 (en) 2010-09-10 2010-09-10 Cell culture device and cell culture method

Publications (1)

Publication Number Publication Date
WO2012032646A1 true WO2012032646A1 (en) 2012-03-15

Family

ID=45810267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065585 WO2012032646A1 (en) 2010-09-10 2010-09-10 Cell culture device and cell culture method

Country Status (2)

Country Link
JP (1) JP5700460B2 (en)
WO (1) WO2012032646A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2788469A1 (en) * 2011-12-07 2014-10-15 A4TEC - Association for The Advancement of Tissue Engineering and Cell Based Technologies and Therapies Single-step method and device for the generation of stratified tubular tissue substitutes
WO2015159333A1 (en) * 2014-04-14 2015-10-22 株式会社島津製作所 Cell culturing device, cell culturing system and cell culturing method
WO2015169287A1 (en) * 2014-05-08 2015-11-12 Universitätsklinikum Jena Method and devices for the in vitro production of arrangements of cell layers
JP2016214148A (en) * 2015-05-20 2016-12-22 住友電気工業株式会社 Cell culture carrier, and cell sheet including the same
WO2017096192A1 (en) 2015-12-04 2017-06-08 President And Fellows Of Harvard College Devices for simulating a function of a liver tissue and methods of use and manufacturing thereof
JP6205507B1 (en) * 2016-05-19 2017-09-27 光次 斉藤 Culturing apparatus and culturing method, and cultured organ produced by this culturing method
JP2019518443A (en) * 2016-05-11 2019-07-04 ユニヴェルシテ グルノーブル アルプ Process for cell co-culture chip and its manufacture
WO2019168118A1 (en) * 2018-03-02 2019-09-06 富士フイルム株式会社 Microfluidic channel device
US10472612B2 (en) 2011-02-28 2019-11-12 President And Fellows Of Harvard College Cell culture system
JP2020010641A (en) * 2018-07-18 2020-01-23 株式会社島津製作所 Cell culture apparatus and cell seeding method
CN111205959A (en) * 2018-11-21 2020-05-29 株式会社岛津制作所 Cell evaluation device and cell evaluation system
CN111269833A (en) * 2018-12-05 2020-06-12 中国科学院大连化学物理研究所 Human pancreatic island organoid model construction method based on organ chip
WO2021132586A1 (en) * 2019-12-27 2021-07-01 学校法人高崎健康福祉大学 Liver cell culture membrane, drug transport ability evaluation kit provided therewith, and drug transport ability evaluation method
CN114317272A (en) * 2021-12-07 2022-04-12 上海前瞻创新研究院有限公司 Multi-cell co-culture device and cell culture method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7010942B2 (en) * 2017-06-09 2022-02-10 富士フイルム株式会社 Microchannel device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278083A (en) * 1991-02-28 1992-10-02 W R Grace & Co Method for forming massive cell body controlled in cell number and cell culture substrate for use therein
WO2005100549A1 (en) * 2004-04-14 2005-10-27 Kanazawa University Technology Licensing Organization Ltd. Method of proliferating organ-specific stem cell and proliferation apparatus therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4294425B2 (en) * 2003-09-10 2009-07-15 独立行政法人農業・食品産業技術総合研究機構 Cell culture plate
JP4456393B2 (en) * 2004-03-26 2010-04-28 大日本印刷株式会社 Cell culture substrate manufacturing method and cell culture substrate manufacturing apparatus
WO2007126127A1 (en) * 2006-04-28 2007-11-08 Kuraray Co., Ltd. Cell culture container and method of producing the same
JPWO2009099066A1 (en) * 2008-02-04 2011-05-26 株式会社島津製作所 Biodevice manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278083A (en) * 1991-02-28 1992-10-02 W R Grace & Co Method for forming massive cell body controlled in cell number and cell culture substrate for use therein
WO2005100549A1 (en) * 2004-04-14 2005-10-27 Kanazawa University Technology Licensing Organization Ltd. Method of proliferating organ-specific stem cell and proliferation apparatus therefor

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11884938B2 (en) 2011-02-28 2024-01-30 President And Fellows Of Harvard College Cell culture system
US10655098B2 (en) 2011-02-28 2020-05-19 President And Fellows Of Harvard College Cell culture system
US10472612B2 (en) 2011-02-28 2019-11-12 President And Fellows Of Harvard College Cell culture system
EP2788469A1 (en) * 2011-12-07 2014-10-15 A4TEC - Association for The Advancement of Tissue Engineering and Cell Based Technologies and Therapies Single-step method and device for the generation of stratified tubular tissue substitutes
WO2015159333A1 (en) * 2014-04-14 2015-10-22 株式会社島津製作所 Cell culturing device, cell culturing system and cell culturing method
JPWO2015159333A1 (en) * 2014-04-14 2017-04-13 株式会社島津製作所 Cell culture device, cell culture system and cell culture method
US10301586B2 (en) 2014-04-14 2019-05-28 Shimadzu Corporation Cell culturing device, cell culturing system and cell culturing method
US10731119B2 (en) 2014-05-08 2020-08-04 Universitaetsklinikum Jena Method and devices for the in vitro production of arrangements of cell layers
WO2015169287A1 (en) * 2014-05-08 2015-11-12 Universitätsklinikum Jena Method and devices for the in vitro production of arrangements of cell layers
JP2017514524A (en) * 2014-05-08 2017-06-08 ウニヴェルジテーツクリニークム イェーナ Method and device for in vitro production of cell layer sequences
US20170226457A1 (en) * 2014-05-08 2017-08-10 Universitaetsklinikum Jena Method and Devices for the In Vitro Production of Arrangements of Cell Layers
JP2016214148A (en) * 2015-05-20 2016-12-22 住友電気工業株式会社 Cell culture carrier, and cell sheet including the same
EP3383996A4 (en) * 2015-12-04 2019-10-02 President and Fellows of Harvard College Devices for simulating a function of a liver tissue and methods of use and manufacturing thereof
GB2562396B (en) * 2015-12-04 2022-04-13 Harvard College Devices for simulating a function of a liver tissue and methods of use and manufacturing thereof
AU2016362491B2 (en) * 2015-12-04 2021-04-29 President And Fellows Of Harvard College Devices for simulating a function of a liver tissue and methods of use and manufacturing thereof
WO2017096192A1 (en) 2015-12-04 2017-06-08 President And Fellows Of Harvard College Devices for simulating a function of a liver tissue and methods of use and manufacturing thereof
US11857958B2 (en) 2016-05-11 2024-01-02 Universite Grenoble Alpes Cell co-culture chip and process for the production thereof
JP2019518443A (en) * 2016-05-11 2019-07-04 ユニヴェルシテ グルノーブル アルプ Process for cell co-culture chip and its manufacture
JP6205507B1 (en) * 2016-05-19 2017-09-27 光次 斉藤 Culturing apparatus and culturing method, and cultured organ produced by this culturing method
JPWO2019168118A1 (en) * 2018-03-02 2021-01-14 富士フイルム株式会社 Micro flow path device
CN111788147A (en) * 2018-03-02 2020-10-16 富士胶片株式会社 Microchannel device
EP3744678A4 (en) * 2018-03-02 2021-03-03 FUJIFILM Corporation Microfluidic channel device
JP7011034B2 (en) 2018-03-02 2022-02-10 富士フイルム株式会社 Microchannel device
WO2019168118A1 (en) * 2018-03-02 2019-09-06 富士フイルム株式会社 Microfluidic channel device
JP7158679B2 (en) 2018-07-18 2022-10-24 株式会社島津製作所 Cell culture device and cell seeding method
JP2020010641A (en) * 2018-07-18 2020-01-23 株式会社島津製作所 Cell culture apparatus and cell seeding method
JP2020080697A (en) * 2018-11-21 2020-06-04 株式会社島津製作所 Device for cell evaluation and system for cell evaluation
CN111205959A (en) * 2018-11-21 2020-05-29 株式会社岛津制作所 Cell evaluation device and cell evaluation system
US11549092B2 (en) 2018-11-21 2023-01-10 Shimadzu Corporation Cell evaluation device and cell evaluation system
JP7162836B2 (en) 2018-11-21 2022-10-31 株式会社島津製作所 Cell evaluation device and cell evaluation system
CN111269833A (en) * 2018-12-05 2020-06-12 中国科学院大连化学物理研究所 Human pancreatic island organoid model construction method based on organ chip
JP7136509B2 (en) 2019-12-27 2022-09-13 学校法人高崎健康福祉大学 Hepatocyte culture membrane, drug transport ability evaluation kit comprising the same, and drug transport ability evaluation method
JPWO2021132586A1 (en) * 2019-12-27 2021-07-01
WO2021132586A1 (en) * 2019-12-27 2021-07-01 学校法人高崎健康福祉大学 Liver cell culture membrane, drug transport ability evaluation kit provided therewith, and drug transport ability evaluation method
CN114317272A (en) * 2021-12-07 2022-04-12 上海前瞻创新研究院有限公司 Multi-cell co-culture device and cell culture method
CN114317272B (en) * 2021-12-07 2024-01-12 上海前瞻创新研究院有限公司 Culture device for multicellular co-culture and cell culture method

Also Published As

Publication number Publication date
JP5700460B2 (en) 2015-04-15
JPWO2012032646A1 (en) 2013-12-12

Similar Documents

Publication Publication Date Title
JP5700460B2 (en) Cell culture device and cell culture method
Tehranirokh et al. Microfluidic devices for cell cultivation and proliferation
Ashammakhi et al. Kidney-on-a-chip: untapped opportunities
Caplin et al. Microfluidic organ‐on‐a‐chip technology for advancement of drug development and toxicology
Walker et al. Microenvironment design considerations for cellular scale studies
Gupta et al. Microfluidics‐based 3D cell culture models: Utility in novel drug discovery and delivery research
Leclerc et al. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large‐scale culture of hepatocytes
Inamdar et al. Microfluidic cell culture models for tissue engineering
JP6823792B2 (en) Cell culture device and cell culture method
WO2009099066A1 (en) Biodevice
JP5686310B2 (en) Cell culture device, cell culture system, and cell culture method
US20110082563A1 (en) Microscale multiple-fluid-stream bioreactor for cell culture
EP1815244A1 (en) Cell culture device
WO2000078920A9 (en) Methods and devices for cell culturing and organ assist systems
US10961494B2 (en) Cell culture device and cell culture method
Zhang et al. Recent Advances in Microfluidic Platforms for Programming Cell‐Based Living Materials
Li et al. Selective stamp bonding of PDMS microfluidic devices to polymer substrates for biological applications
US7393687B2 (en) Biomimetic 3-dimensional scaffold with metabolic stream separation for bioartificial liver device
CN110257243B (en) Micro-fluidic chip printing nozzle and biological 3D printing system
CN112739812A (en) Stacked recycling bioreactor
JPWO2019054288A1 (en) Cell culture device and cell culture method
US20120183990A1 (en) Microfluidic system and method for producing same
JP5731421B2 (en) Cell culture devices
CN113174332B (en) Bionic kidney organ chip structure and bionic liver kidney chip structure
Khademhosseini Micro and nanoengineering of the cell microenvironment: technologies and applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012532811

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856992

Country of ref document: EP

Kind code of ref document: A1