WO2021132397A1 - Separation membrane and method for producing same - Google Patents

Separation membrane and method for producing same Download PDF

Info

Publication number
WO2021132397A1
WO2021132397A1 PCT/JP2020/048296 JP2020048296W WO2021132397A1 WO 2021132397 A1 WO2021132397 A1 WO 2021132397A1 JP 2020048296 W JP2020048296 W JP 2020048296W WO 2021132397 A1 WO2021132397 A1 WO 2021132397A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
voids
average
mass
cellulose ester
Prior art date
Application number
PCT/JP2020/048296
Other languages
French (fr)
Japanese (ja)
Inventor
皓一 高田
弘希 栄村
万里奈 大塚
花川 正行
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2021503174A priority Critical patent/JP7107429B2/en
Priority to KR1020227020845A priority patent/KR20220112792A/en
Priority to CN202080089607.5A priority patent/CN114828992B/en
Publication of WO2021132397A1 publication Critical patent/WO2021132397A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/002Organic membrane manufacture from melts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/18Mixed esters, e.g. cellulose acetate-butyrate
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/24Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives
    • D01F2/28Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives from organic cellulose esters or ethers, e.g. cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/18Pore-control agents or pore formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range

Definitions

  • the present invention relates to a separation membrane and a method for producing the same.
  • separation membranes include water treatment membranes for water purification and wastewater treatment, medical membranes for blood purification, food industry membranes, battery separator membranes, charged membranes, electrolyte membranes for fuel cells, and the like. It is used in various fields.
  • separation membranes are made of polymer.
  • cellulosic resins such as cellulose esters have permeation performance due to their hydrophilicity and chlorine resistance that is resistant to chlorine-based bactericides, so separation membranes such as water treatment membranes. It is widely used as a material for.
  • Patent Document 1 discloses a technique for obtaining a hollow filament-shaped separation membrane by discharging a membrane-forming stock solution containing cellulose triacetate into a coagulating liquid consisting of a solvent, a non-solvent, and water for phase separation.
  • Patent Document 2 discloses a hollow filament-like separation membrane in which hydroxyalkyl cellulose is fixed on the surface in the state of fine particles.
  • an object of the present invention is to provide a separation membrane and a method for producing the same, which have both high separation performance and permeation performance.
  • the present inventors have made it possible to improve the permeation performance while maintaining high separation performance by having the separation membrane containing the cellulose ester having voids satisfying specific conditions. It was found that the present invention was completed.
  • a separation membrane containing a cellulose ester The separation membrane has a plurality of voids in a cross section parallel to the longitudinal direction and the film thickness direction of the membrane.
  • the average depth D of the plurality of voids is 0.7 to 20 ⁇ m.
  • the average length L of the plurality of voids is 3 ⁇ m or more, and
  • a separation membrane in which the average value (l / d) a of the ratio of the length l to the depth d of each void is 2 to 40.
  • the preparation process (2) A molding step of using a filter having a pore size of 40 to 200 ⁇ m and discharging the resin composition from a discharge port to obtain a resin molded product at a draft ratio of 30 to 200. (3) said resin molded product is immersed in a solvent in the range of solubility parameters distance D S 10-25 to cellulose ester, and a dipping process, a manufacturing method of the separation membrane. [10] The method for producing a separation membrane according to the above [9], wherein the temperature of the resin molded product in the dipping step is 50 to 80 ° C.
  • FIG. 1A is a drawing schematically showing a cross section Z and an internal structure of a separation membrane
  • FIG. 1B is a side view of FIG. 1A
  • FIG. 1C is a top view of FIG. 1A.
  • FIG. 2 is an example of an image in which the cross section Z is captured by SEM.
  • FIG. 3 is an image obtained by removing noise from the image of FIG. 2, binarizing the image, and extracting voids.
  • FIG. 4 is an image obtained by further extracting the outline of the void from the image of FIG.
  • the separation membrane of the present invention is a separation membrane containing a cellulose ester, and has a plurality of voids in a cross section parallel to the longitudinal direction and the film thickness direction of the membrane, and the average depth D of the plurality of voids is determined.
  • the average length L of the plurality of voids is 0.7 to 20 ⁇ m
  • the average length L of the plurality of voids is 3 ⁇ m or more
  • the average value (l / d) a of the ratio of the length l and the depth d of each void is It is characterized by being 2 to 40.
  • the mass-based ratio percentage, parts, etc.
  • the weight-based ratio percentage, parts, etc.
  • the resin composition constituting the separation membrane of the present invention contains the cellulose ester shown in (1) below. In addition to (1), the following components (2) to (6) can be contained.
  • the separation membrane of the present invention needs to contain a cellulose ester.
  • the separation membrane of the present invention preferably contains cellulose ester as a main component.
  • the main component here means the component contained most in terms of mass among all the components of the resin composition constituting the separation membrane.
  • the cellulose ester examples include a cellulose ester such as cellulose acetate, cellulose propionate or cellulose butyrate, or a cellulose mixed ester such as cellulose acetate propionate or cellulose acetate butyrate.
  • a cellulose mixed ester is preferable, a cellulose acetate propionate and / or a cellulose acetate butyrate is more preferable, and a cellulose acetate propionate is further preferable.
  • the cellulose acetate propionate here is a cellulose ester having an average degree of substitution of an acetyl group and a propionyl group of 0.1 or more, respectively.
  • the weight average molecular weight (Mw) of the cellulose ester is preferably 50,000 to 250,000.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) is a value calculated by GPC (gel permeation chromatography) measurement. The calculation method will be described in detail in Examples.
  • Each of the exemplified cellulose mixed esters has an acetyl group and another acyl group (propionyl group, butyryl group, etc.).
  • the average degree of substitution of the acetyl group with another acyl group preferably satisfies the following formula. 1.0 ⁇ (average degree of substitution of acetyl group + average degree of substitution of other acyl groups) ⁇ 3.0 0.1 ⁇ (average degree of substitution of acetyl groups) ⁇ 2.6 0.1 ⁇ (average degree of substitution of other acyl groups) ⁇ 2.6
  • the separation membrane may contain only one type of cellulose ester, or may contain two or more types of cellulose esters.
  • the content of the cellulose ester in the separation membrane is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, when all the components of the separation membrane are 100% by mass. ..
  • the membrane strength of the separation membrane becomes sufficient.
  • the content of the cellulose ester in the raw material for producing the separation membrane is preferably 10 to 80% by mass when the total of the components constituting the raw material is 100% by mass.
  • the content is 10% by mass or more, the membrane strength of the separation membrane becomes good.
  • the content is 80% by mass or less, the thermoplasticity and permeation performance of the separation membrane are improved.
  • the content is more preferably 15% by mass or more, and further preferably 20% by mass or more.
  • the content is more preferably 70% by mass or less, further preferably 60% by mass or less, and particularly preferably 45% by mass or less.
  • the resin composition constituting the separation membrane of the present invention may contain a cellulose ester plasticizer.
  • the plasticizer of the cellulose ester is not particularly limited as long as it is a compound that thermally plasticizes the cellulose ester. Further, not only one kind of plasticizer but also two or more kinds of plasticizers may be used in combination.
  • plasticizer for the cellulose ester examples include polyalkylene glycol compounds such as polyethylene glycol and polyethylene glycol fatty acid ester, glycerin compounds such as glycerin fatty acid ester and diglycerin fatty acid ester, citric acid ester compounds, and phosphoric acid ester compounds.
  • a fatty acid ester compound such as adipic acid ester or a caprolactone compound, or a derivative thereof and the like can be mentioned.
  • polyalkylene glycol-based compound examples include polyethylene glycol, polypropylene glycol, polybutylene glycol, and the like having a weight average molecular weight (Mw) of 400 to 4,000.
  • the cellulose ester plasticizer may remain in the separation membrane or may be eluted from the separation membrane.
  • the content of the plasticizer of the cellulose ester is preferably 5 to 40% by mass when the total amount of the components constituting the raw material is 100% by mass. When the content is 5% by mass or more, the thermoplasticity of the cellulose ester becomes good. On the other hand, when the content is 40% by mass or less, the membrane strength of the separation membrane becomes good.
  • the content of the plasticizer of the cellulose ester is more preferably 5 to 35% by mass, further preferably 5 to 30% by mass.
  • the resin composition constituting the separation membrane of the present invention preferably contains an antioxidant.
  • an antioxidant thermal decomposition at the time of melting the polymer during the production of the separation film is suppressed, the membrane strength of the resulting separation film is improved, and the coloring of the separation film is suppressed. Will be done.
  • a phosphorus-based antioxidant is preferable, and a pentaerythritol-based compound is more preferable.
  • examples of the pentaerythritol-based compound include bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite and the like.
  • the content of the antioxidant is preferably 0.005 to 0.500% by mass when the total amount of the components constituting the raw material is 100% by mass.
  • the content of the antioxidant is in the above range, a uniform resin composition can be obtained in the preparation step.
  • the resin composition constituting the separation membrane of the present invention may contain a structure-forming agent.
  • the structure-forming agent in the present invention is not particularly limited as long as it is partially compatible with the cellulose ester or a mixture of the cellulose ester and its plasticizer and can be eluted or decomposed by a solvent that does not dissolve the cellulose ester.
  • the weight average molecular weight of the structure-forming agent is preferably 1000 or more from the viewpoint of appropriately controlling the values of L, D, and (l / d) a, which will be described later. Partial compatibility means that two or more substances are completely compatible under certain conditions, but phase-separated under different conditions.
  • the structure-forming agent is a substance that phase-separates from the cellulose ester when it comes into contact with a solvent that satisfies specific conditions in the dipping step described later. Specific conditions will be described later.
  • the structure-forming agent in the present invention is preferably a hydrophilic compound because it can be easily eluted.
  • the hydrophilic compound means a compound that is soluble in water or has a contact angle with water smaller than that of the cellulose ester contained in the separation membrane.
  • a compound that dissolves in water is particularly preferable because it can be easily eluted.
  • the structure-forming agent examples include PVP-based copolymers such as polyvinylpyrrolidone (hereinafter, “PVP”), PVP / vinyl acetate copolymer, PVP / methyl methacrylate copolymer, polyvinyl alcohol, or Examples include polyester compounds.
  • PVP polyvinylpyrrolidone
  • PVP / vinyl acetate copolymer PVP / methyl methacrylate copolymer
  • polyvinyl alcohol examples include polyester compounds.
  • Mw weight average molecular weight
  • the traces of the structure-forming agent being removed (eluted) become voids in the film, and as a result, the permeation performance is improved.
  • the content of the structure-forming agent is preferably 10 to 80% by mass when the total content of the components constituting the raw material is 100% by mass. When the content is 10% by mass or more, the permeation performance of the separation membrane becomes good. On the other hand, when the content is 80% by mass or less, the film strength becomes good.
  • the content of the structure forming agent is more preferably 20% by mass or more, further preferably 25% by mass or more.
  • the content of the structure-forming agent is more preferably 75% by mass or less, and further preferably 70% by mass or less.
  • the resin composition constituting the separation membrane of the present invention may contain a void-forming agent.
  • the void forming agent refers to a compound that is incompatible with the cellulose ester and is plasticized or melted by heat. By eluting the void-forming agent that is incompatible with the cellulose ester, voids are formed at the site where the void-forming agent was present. Further, when the void forming agent is plasticized or melted by heat, the value of (l / d) a , which is the average value of the ratio of the length l and the depth d of each void formed, can be increased.
  • the void forming agent examples include phthalate ester compounds, trimellitic acid ester compounds, polyalkylene glycol compounds such as polyethylene glycol, polypropylene glycol and polybutylene glycol, and derivatives of these compounds.
  • the weight average molecular weight (Mw) of these compounds is preferably 100,000 to 1,000,000. Since it is easy to control the values of L, D, and (l / d) a described later by showing an appropriate viscosity when heated, the weight average molecular weight (Mw) of the void forming agent is preferably 100,000 to 1,000,000. 10,000 to 500,000 is more preferable, and 100,000 to 300,000 is particularly preferable.
  • the content of the void forming agent is preferably 2 to 20% by mass when the total content of the components constituting the raw material is 100% by mass. When the content is 2% by mass or more, the permeation performance of the separation membrane is good. On the other hand, when the content is 20% by mass or less, the separation performance becomes good.
  • the content of the void forming agent is more preferably 3% by mass or more, further preferably 5% by mass or more, and particularly preferably 10% by mass or more. The content is more preferably 18% by mass or less, and further preferably 15% by mass or less.
  • the resin composition constituting the separation membrane of the present invention may contain additives other than those described in (2) to (5) as long as the effects of the present invention are not impaired.
  • Additives include, for example, cellulose ether, polyacrylonitrile, polyolefin, polyvinyl compound, polycarbonate, poly (meth) acrylate, polysulfone, resin such as polyethersulfone, organic lubricant, crystal nucleating agent, organic particles, inorganic particles, terminal closure.
  • the shape of the separation membrane of the present invention is not particularly limited, but a hollow fiber-shaped separation membrane (hereinafter, “hollow fiber membrane”) or a flat-shaped membrane (hereinafter, “flat membrane”) is preferably adopted. Above all, the hollow fiber membrane can be efficiently filled in the module, and the effective film area per unit volume of the module can be increased, which is more preferable.
  • the thickness of the separation membrane is preferably 10 to 500 ⁇ m from the viewpoint of achieving both permeation performance and membrane strength. Further, the thickness is more preferably 30 ⁇ m or more, and further preferably 50 ⁇ m or more. The thickness is more preferably 400 ⁇ m or less, further preferably 300 ⁇ m or less.
  • the outer diameter of the hollow fiber membrane is preferably 50 to 2500 ⁇ m from the viewpoint of achieving both the effective membrane area when filled in the module and the membrane strength.
  • the outer shape of the hollow fiber membrane is more preferably 100 ⁇ m or more, further preferably 200 ⁇ m or more, and particularly preferably 300 ⁇ m or more. Further, the outer shape is more preferably 2000 ⁇ m or less, further preferably 1500 ⁇ m or less, and particularly preferably 1000 ⁇ m or less.
  • the hollow ratio of the hollow fiber is preferably 15 to 70% from the relationship between the pressure loss of the fluid flowing through the hollow portion and the buckling pressure.
  • the hollow ratio is more preferably 20% or more, further preferably 25% or more. Further, the hollow ratio is more preferably 65% or less, and further preferably 60% or less.
  • the method of setting the outer diameter and the hollow ratio of the hollow fiber in the hollow fiber membrane in the above range is not particularly limited, but can be calculated by, for example, the shape of the discharge hole of the spinneret for producing the hollow fiber, or the take-up speed / discharge speed. It can be adjusted by changing the draft ratio as appropriate.
  • the average depth D, the average length L, and the average value of l / d (l / d) a which is the ratio of the depth d and the length l of each void, are in a specific range. It has a plurality of voids.
  • the depth and length of the voids are values measured in a cross section (hereinafter, "cross section Z") parallel to the longitudinal direction and the film thickness direction of the separation membrane to be measured.
  • cross section Z a cross section
  • the longitudinal direction of the membrane is the direction parallel to the central axis in the hollow fiber membrane, and the mechanical direction at the time of manufacture in the flat membrane.
  • FIG. 1A is a drawing schematically showing a cross section Z and an internal structure of the separation membrane when the separation membrane has a hollow fiber shape.
  • FIG. 1B is a side view of FIG. 1A
  • FIG. 1C is a top view of FIG. 1A.
  • C indicates a central axis
  • the central axis C is parallel to the longitudinal direction of the film.
  • the bidirectional arrow exemplifies the film thickness direction of the hollow fiber membrane, and the dotted line indicates the direction parallel to the film thickness direction.
  • the “void” refers to a recess having an area of 1 ⁇ m 2 or more when the cross section Z is observed with a scanning electron microscope (hereinafter, “SEM”) at a magnification of 2,000 times.
  • SEM scanning electron microscope
  • the detailed observation method is described in (7) Measurement for a plurality of voids and walls in Examples.
  • the "recess” here means a dark part in the image observed by SEM, and the outline of the image captured by SEM is extracted by binarizing (binarizing Huang) using image analysis software. can do. Specifically, first, using imageJ, which is an image analysis software, an image captured by SEM is converted into 8 bits, and all pixels are replaced with the center value of 3 ⁇ 3 pixels in the vicinity of the pixel.
  • the obtained image can be processed as a Mask display by setting Size to 0-Infinity and Circularity to 0-1 in the ImageJ Analysis Particles command, so that an image in which the recesses are extracted can be acquired. Based on the image obtained in this way, the contour of the concave portion can be extracted. Specifically, in the ImageJ Analysis Particles command, the size is set to 0-Infinity and the Circularity is set to 0-1 and the contour of the concave portion can be extracted by processing as a Barre Outline display.
  • the void extraction can be carried out by setting the lower limit of the size so that the recesses of 1 ⁇ m 2 or more are included in the above-mentioned extraction of the recesses.
  • the contour of the void can be extracted by performing the same processing as the extraction of the contour of the concave portion described above.
  • the contour may be referred to as an outer edge.
  • FIG. 2 An example of an image captured by SEM is shown in FIG. 2, an image of FIG. 2 is noise-removed and binarized to extract voids in FIG. 3, and an image obtained by extracting the outline of voids from the image of FIG. 3 is shown in FIG. , Respectively.
  • the recessed area ratio of the separation membrane of the present invention is preferably 50 to 85%, more preferably 60 to 80%.
  • the recesses here are not limited to recesses having an area of 1 ⁇ m 2 or more, that is, voids, and recesses having an area of less than 1 ⁇ m 2 , that is, pores are also targeted.
  • the concave portion here can also be extracted by removing noise and binarizing (binarizing Huang) the image captured by SEM using image analysis software such as ImageJ. it can.
  • “Void depth d” refers to a void to be measured when the cross-section Z is observed at a magnification of 2,000 times using an SEM and the film thickness direction of the separation membrane is the depth direction.
  • the "gap length l" is a straight line capable of directly connecting two points on the outer edge of the gap to be measured when the cross section Z is observed at a magnification of 2,000 times using the same SEM. Of these, the length of the longest straight line.
  • the straight line that can directly connect two points on the outer edge means a straight line that connects two points on the outer edge and does not pass over the other outer edge.
  • the average value (l / d) a of l / d which is the ratio of the length l to the depth d of each void, is calculated as l / d for each void in 30 randomly selected voids. , The value obtained by taking the arithmetic mean value.
  • the average depth D of a plurality of voids is an arithmetic mean value obtained by measuring the depths of 30 randomly selected voids when the cross section Z is observed at a magnification of 2,000 times using an SEM. The value calculated as. Further, the average length L of a plurality of voids is calculated by measuring the lengths of 30 randomly selected voids when the cross section Z is observed at a magnification of 2,000 times using the same SEM. A value calculated as an average value.
  • the value of the average value (l / d) a of l / d which is the ratio of the length l to the depth d of each void, needs to be 2 to 40.
  • the value of (l / d) a is preferably 3 to 20, more preferably 4 to 20, and even more preferably 8 to 20. Among them, setting it to 4 to 20 makes it possible to achieve both particularly high transmission performance and high separation performance, and setting it to 8 to 20 achieves both extremely high transparency and high separation performance. be able to.
  • the average depth D of the plurality of voids needs to be 0.7 to 20 ⁇ m in order to appropriately disperse the voids and reduce the substantial thickness of the separation membrane.
  • the average depth D of the plurality of voids is preferably 0.8 ⁇ m or more, more preferably 1.0 ⁇ m or more.
  • the average depth D of the plurality of voids is preferably 5.0 ⁇ m or less, more preferably 2.0 ⁇ m or less.
  • the average length L of the plurality of voids needs to be 3 ⁇ m or more in order to appropriately disperse the voids.
  • the average length L of the plurality of voids is preferably 4 ⁇ m or more, more preferably 5 ⁇ m or more, and further preferably 10 ⁇ m or more. Further, the average length L of the plurality of voids is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the longitudinal direction of the plurality of voids is preferably along the longitudinal direction of the separation membrane. Since the longitudinal directions of the plurality of voids are substantially parallel, even if the separation membrane is bent in the longitudinal directions of the plurality of voids, the stress is easily dispersed and the membrane strength of the separation membrane is increased.
  • the cross section Z was observed at a magnification of 2,000 times using SEM, the direction of the length l of each void in the 30 randomly selected voids and the angle formed by the longitudinal direction of the membrane were calculated, and the arithmetic was performed.
  • the average value (hereinafter, sometimes referred to as "angle in the longitudinal direction of a plurality of voids") is within 20 °, it is determined that the longitudinal direction of the plurality of voids is along the longitudinal direction of the separation membrane. can do.
  • the longitudinal angle of the plurality of voids is preferably within 15 °, more preferably within 10 °.
  • occupancy of a plurality of voids in the cross section of the separation membrane of the present invention parallel to the longitudinal direction and the film thickness direction is 15 to 15 in order to appropriately disperse the voids while further suppressing the substantial thickness of the separation membrane. It is preferably 55%, more preferably 18 to 50%, even more preferably 20 to 50%, particularly preferably 30 to 50%, and most preferably 40 to 50%. preferable.
  • the "occupancy rate of a plurality of voids" is the sum of the areas of all the voids occupying the area S 0 of the entire observation range when the cross section Z is observed at a magnification of 2,000 times using SEM. It refers to the percentage of a certain S 1.
  • the average thickness of the wall portion in the cross section Z of the separation membrane is 0.7 to 5.0 ⁇ m in order to obtain good separation performance by appropriately dispersing the voids while further suppressing the substantial thickness of the separation membrane.
  • 1.0 to 4.0 ⁇ m is more preferable, and 1.0 to 3.0 ⁇ m is even more preferable. Above all, by setting it to 1.0 to 3.0 ⁇ m, it is possible to achieve both particularly excellent transmission performance and separation performance.
  • the "wall portion" of the hollow fiber membrane refers to a portion other than the void when the cross section Z is observed at a magnification of 2,000 times using an SEM (FIG. 1).
  • the "average thickness of the wall portion” is a straight line that passes through the center of the observed image and is perpendicular to the longitudinal direction of the separation membrane, and is parallel to each other at intervals of 20 ⁇ m on both sides of the straight line. When subtracted, it means the average value of the length of each wall on these straight lines.
  • the separation membrane of the present invention preferably has an average pore diameter of 0.050 to 0.500 ⁇ m on at least one surface in order to further enhance the separation performance and the water permeability.
  • the average pore diameter of the surface pores is more preferably 0.080 ⁇ m or more, further preferably 0.090 ⁇ m or more, particularly preferably 0.095 ⁇ m or more, and most preferably 0.100 ⁇ m or more.
  • the average pore diameter of the surface pores is more preferably 0.450 ⁇ m or less, further preferably 0.400 ⁇ m or less.
  • the surface hole refers to a recess in an image obtained by imaging the surface of the separation membrane at a magnification of 10,000 using SEM.
  • the "recess” here means a dark part in the image observed by SEM, and the image captured by SEM is noise-removed and binarized (Hang binarized) by using image analysis software such as ImageJ. This makes it possible to extract the outline.
  • image analysis software such as ImageJ. This makes it possible to extract the outline.
  • the specific method for extracting the contour of the recess is as described above.
  • the detailed observation method is described in (3) Shape of surface hole of the example.
  • the average pore diameter of the surface pores may be referred to as the surface pore diameter.
  • the average minor axis X, the average major axis Y, and the average value (y / x) a of the ratio of the major axis to the minor axis of the surface holes are in a specific range on at least one surface. Is preferable.
  • the average minor axis X is the arithmetic mean of the minor axis x when each surface hole is regarded as an ellipse.
  • the average major axis Y is the arithmetic mean of the major axis when each surface hole is regarded as an ellipse.
  • the average value (y / x) a is the arithmetic mean of the minor axis x of each surface hole divided by the major axis y.
  • the average minor axis X, the average major axis Y, and the average value (y / x) a of the ratio of the major axis to the minor axis of the surface holes are images obtained by imaging the surface of the separation membrane at a magnification of 10,000 using an SEM. Is obtained by analyzing using image analysis software such as ImageJ. Specifically, in ImageJ's Set Measurements, after selecting Fit Ellipse, the ImageJ Analysis Particles command is executed for the recesses extracted in the same manner as described above.
  • the minor axis x and the major axis y of each surface hole are calculated, and the average minor axis X and the average major axis Y can be obtained by arithmetically averaging each of them. Further, by obtaining y / x for each surface hole and performing an arithmetic mean, the average value (y / x) a of the ratio of the major axis to the minor axis can be obtained.
  • the average minor diameter X of the surface holes is preferably 0.030 to 0.250 ⁇ m in order to further enhance the separation performance and the water permeability. It is more preferably 0.040 to 0.160 ⁇ m, and even more preferably 0.045 to 0.160 ⁇ m.
  • the average major axis Y of the surface holes is preferably 0.060 to 0.450 ⁇ m, more preferably 0.070 to 0.240 ⁇ m, in order to further enhance the separation performance and the water permeability. It is more preferably 075 to 0.240 ⁇ m, and particularly preferably 0.085 to 0.240 ⁇ m.
  • the average value (y / x) a of the ratio of the major axis to the minor axis of the surface hole is preferably 1.00 to 1.50 in order to further enhance the separation performance and the water permeability. It is more preferably 00 to 1.40, further preferably 1.00 to 1.35, and particularly preferably 1.30 to 1.35.
  • the separation membrane of the present invention preferably has a membrane permeation flux of 0.10 to 20 m 3 / m 2 / h at 50 kPa and 25 ° C., preferably 0.25 to 15 m 3 / m 2 / h. It is more preferably 0.30 to 10 m 3 / m 2 / h, and particularly preferably 0.50 to 7.00 m 3 / m 2 / h.
  • the calculation method will be described in detail in Examples.
  • the separation performance of polystyrene latex particles having an average particle size of 0.2 ⁇ m is preferably 50% or more, more preferably 90% or more, further preferably 95% or more. It is particularly preferably 99% or more.
  • the calculation method will be described in detail in Examples.
  • the method for producing a separation membrane of the present invention includes the following (1) to (3).
  • (3) The resin molded product, the solubility parameter distance D S for the cellulose ester is immersed in a solvent in the range of 10 to 25, the immersion step.
  • the method for producing the separation membrane of the present invention will be specifically described by taking the case where the separation membrane is a hollow fiber membrane as an example.
  • 10 to 80% by mass of cellulose ester, 10 to 80% by mass of a structure forming agent, and 2 to 20% by mass of a void forming agent were used.
  • the mixture containing is melt-kneaded.
  • the mixture preferably contains 15 to 75% by mass of a cellulose ester, 20 to 75% by mass of a structure forming agent, and 3 to 18% by mass of a void forming agent, and 20 to 60% by mass of the cellulose ester.
  • it contains 25 to 70% by mass of a structure forming agent and 5 to 15% by mass of a void forming agent, 20 to 60% by mass of a cellulose ester, 25 to 70% by mass of a structure forming agent, and 10%. It is particularly preferable to contain ⁇ 15% by mass of the void forming agent.
  • the apparatus used for melting and kneading the mixture is not particularly limited, and a kneader, a roll mill, a Banbury mixer, or a mixer such as a single-screw or twin-screw extruder can be used. Above all, it is preferable to use a twin-screw extruder from the viewpoint of improving the dispersibility of the structure-forming agent and the plasticizer, and from the viewpoint of being able to remove volatile substances such as water and low molecular weight substances, a twin-screw extruder with a vent hole is used. Is more preferred.
  • a twin-screw extruder having a screw having a flight portion and a kneading disc portion may be used, but in order to reduce the strength of kneading, a twin-screw extruder having a screw having only the flight portion may be used. It is preferable to use it.
  • the resin composition obtained in the preparation step may be pelletized once and melted again to be used for melt film formation, or may be directly led to a mouthpiece and used for melt film formation.
  • pelletizing once it is preferable to dry the pellets and use a resin composition having a water content of 200 ppm (mass basis) or less. Deterioration of the resin can be suppressed by setting the water content to 200 ppm (mass standard) or less.
  • the molding step is a step of forming a resin molded product by discharging the resin composition obtained in the preparation step from the discharge port.
  • the molding step may be, for example, a step of discharging into air from a discharge port having a double annular nozzle having a gas flow path in the center and cooling with a cooling device to form a resin molded product. Absent.
  • the pore size of the filter is preferably 40 to 200 ⁇ m, more preferably 70 to 150 ⁇ m, in order to increase the values of l, L and (l / d) a and suppress the bonding between voids. It is more preferably 70 to 120 ⁇ m.
  • the resin molded product or hollow fiber cooled by the cooling device may be wound by the winding device.
  • the draft ratio values calculated by the winding device (winding speed) / (discharge speed from the discharge port) increase the values of l, L and (l / d) a , and also.
  • it is preferably 30 to 200, more preferably 50 to 150, and particularly preferably 100 to 150. ..
  • the void forming agent contained in the resin composition is stretched, and the values of l, L and (l / d) a are set.
  • the solubility parameter distance D S to cellulose ester as a raw material is in a solvent 10-25, a step of impregnating the resin molded product.
  • a solvent or a mixed solvent having an appropriate affinity for the cellulose ester it is possible to suppress extreme swelling and plasticization of the resin. Therefore, the solvent permeates the resin molded product while maintaining the shape of the resin.
  • the plasticizer and the structure-forming agent are eluted while phase separation occurs in the resin molded product. The longer or higher the immersion time and temperature of the solvent, the larger the surface pore diameter, and the larger the abundance ratio and size of the voids and pores in the cross section Z tend to be.
  • Non-Patent Document 1 the affinity between the cellulose ester and the solvent can be estimated by the three-dimensional Hansen solubility parameter (Non-Patent Document 1). Specifically, the smaller solubility parameter distance D S obtained from the following equation (1), the cellulose ester, a high affinity for the solvent.
  • ⁇ Ad , ⁇ Ap and ⁇ Ah are the dispersion term, the polarity term and the hydrogen bond term of the solubility parameter of the cellulose ester, and ⁇ Bd , ⁇ Bp and ⁇ Bh are the dispersion terms of the solubility parameter of the solvent or the mixed solvent. , Polarity term and hydrogen bond term.
  • the solubility parameter ( ⁇ Mixture ) of the mixed solvent can be obtained by the following formula (2).
  • ⁇ i and ⁇ i are volume fractions and solubility parameters of the component i, and hold for each of the dispersion term, the polarity term, and the hydrogen bond term.
  • the "volume fraction of the component i" means the ratio of the volume of the component i before mixing to the sum of the volumes of all the components before mixing.
  • the three-dimensional Hansen solubility parameter of the solvent the value described in Non-Patent Document 1 was used.
  • the three-dimensional Hansen solubility parameter of a solvent or polymer not described in the above software can be calculated by the Hansen sphere method using the above software.
  • the present inventors have found that the solvent having the above solubility parameter distance D S 10-25, by impregnating the resin molded product, average depth D of the depth d and a plurality of voids of the void is increased, We obtained the unexpected finding that large films with d and D can be obtained. Then, it was found that the effect of substantially reducing the film thickness can be obtained more remarkably. The reason why such an effect is obtained is not clear, but it is presumed as follows. That is, since the void forming agent is incompatible with the cellulose ester, the void forming agent is dispersed in the cellulose ester after the molding step and before the dipping step, and the solubility in the cellulose ester in the dipping step. It is presumed that the void-forming agent swells with a solvent having a parameter distance D s of 10 to 25 to obtain a film having a large d and D.
  • the temperature of the resin molded product in the dipping step is preferably 50 to 80 ° C.
  • the voids in the cross section Z have (l / d) a of 2 to 40, but the ratio of the major axis to the minor axis of the surface hole. It was found that the average value (y / x) a of is as low as 1.0 to 1.5, that is, close to a circle. The reason for this is presumed as follows.
  • the thread temperature is 50 to 80 ° C.
  • the molecules are relatively easy to move, but at this time, the surface is in a state where the molecules are particularly easy to move as compared with the inside, so that the resin molded product is immersed.
  • the plasticizing is further promoted by immersing in a solvent in the process, the structure-forming agent stretched by the filter holes and the draft returns to the original shape on the surface and approaches a circular shape. ..
  • the solvent for immersing the resin molded product a solvent such as D S of 13 to 25 preferred.
  • a solvent such as D S is 4 to 12
  • a mixed solvent of water Preferably, for example, .gamma.-butyrolactone (hereinafter, gamma-BL), acetone, acetonitrile, 1,4 Examples thereof include a mixed solvent of water and at least one selected from the group consisting of dioxane, methyl acetate and tetrahydrofuran.
  • solvents such as D S is 4 to 12, by using a mixed solvent of water, the film strength of the separation membrane to be obtained becomes good.
  • the obtained separation membrane can be used as it is, but it is preferable to hydrophilize the surface of the membrane with, for example, an alcohol-containing aqueous solution or an alkaline aqueous solution before use. If the void forming agent remains even after the steps up to this point, it is preferable to provide a step of removing the void forming agent.
  • a method for removing the void forming agent for example, the cellulose ester is not dissolved or decomposed, but is immersed in a solution that dissolves or decomposes the void forming agent.
  • Each characteristic value in the example was obtained by the following method.
  • (1) Average Degree of Substitution of Cellulose Mixed Ester The method for calculating the average degree of substitution of a cellulose mixed ester in which an acetyl group and other acyl groups are bonded to cellulose is as follows. 0.9 g of the cellulose mixed ester dried at 80 ° C. for 8 hours was weighed, 35 mL of acetone and 15 mL of dimethyl sulfoxide were added and dissolved, and then 50 mL of acetone was further added. 30 mL of 0.5 N-sodium hydroxide aqueous solution was added with stirring, and saponification was performed for 2 hours.
  • Cellulose ester (A) The following were prepared as cellulose esters.
  • Cellulose ester (A1) To 100 parts by mass of cellulose (cotton linter), 240 parts by mass of acetic acid and 67 parts by mass of propionic acid were added and mixed at 50 ° C. for 30 minutes. After cooling the mixture to room temperature, 172 parts by mass of acetic anhydride and 168 parts by mass of propionic anhydride cooled in an ice bath were added as an esterifying agent, and 4 parts by mass of sulfuric acid was added as an esterification catalyst, and the mixture was stirred for 150 minutes. An esterification reaction was carried out. In the esterification reaction, when it exceeded 40 ° C., it was cooled in a water bath.
  • Cellulose ester (A2) Cellulose acetate propionate (average degree of substitution of acetyl group: 0.2, average degree of substitution of propionyl group: 2.5, weight average molecular weight (Mw): 185,000)
  • Example 1 40% by mass of cellulose ester (A1), 26.9% by mass of plasticizer (B), 30% by mass of structure forming agent (C), 3% by mass of void forming agent (D), and antioxidant (E). 0.1% by mass was melt-kneaded at 220 ° C. with a twin-screw extruder, homogenized and then pelletized to obtain a resin composition. This resin composition was vacuum dried at 80 ° C. for 8 hours.
  • the dried resin composition is supplied to a twin-screw extruder equipped with a screw consisting only of a flight portion, melt-kneaded at 220 ° C., and then introduced into a melt-spinning pack having a spinning temperature of 220 ° C. to discharge the amount. Under the condition of 10 g / min, the spinner was spun below the outer annular portion of the discharge mouthpiece having one mouthpiece hole (double circular tube type, discharge hole diameter 2.6 mm, slit width 0.35 mm). The spun hollow fiber was guided to a cooling device, cooled by a cooling air at 25 ° C. and a wind speed of 1.5 m / sec, and wound with a winder so that the draft ratio was 30.
  • a metal filter having a pore diameter (filter diameter) of 200 ⁇ m was used as the filter in the molten spinning pack.
  • the wound hollow fiber (resin molded product) is heated to 30 ° C., immersed in an aqueous acetone solution having a volume fraction of 40% for 1 hour, and further immersed in water for 1 hour or more to obtain a plasticizer (B) and a structure.
  • the forming agent (C) and the void forming agent (D) were eluted to obtain a separation membrane.
  • the physical characteristics of the obtained separation membrane are shown in Table 1.
  • Examples 2 to 9 and Comparative Examples 1 to 6 A separation membrane was obtained in the same manner as in Example 1 except that the composition and production conditions of the resin composition were changed as shown in Tables 1 and 2, respectively. The physical characteristics of the obtained separation membrane are shown in Tables 1 and 2. In Comparative Example 1, no voids were observed, and in Comparative Example 2, spinning was not possible due to yarn breakage.
  • the separation membranes obtained in Examples 1 to 9 all have a membrane permeation flux of 0.1 m 3 / m 2 / h or more and a separation performance of 50% or more, and have a high membrane permeation flux. It had both separation performance.
  • Comparative Example 2 spinning was not possible due to yarn breakage, and a separation membrane could not be obtained.
  • the separation membranes of Comparative Examples 1, 3 to 6 in which the shapes of the plurality of voids do not satisfy the requirements of the present invention show a low value in at least one of the membrane permeation flux and the separation performance, and are separated from the high membrane permeation flux. It was not possible to achieve both performance.
  • the separation membrane of the present invention is a water treatment membrane for producing industrial water or drinking water from seawater, irrigation, sewage, drainage, etc., a medical membrane for artificial kidney, plasma separation, etc., for fruit juice concentration, etc. It can be suitably used as a membrane for the food / beverage industry, a gas separation membrane for separating exhaust gas, carbon dioxide gas, etc., or a membrane for the electronic industry such as a fuel cell separator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention provides a separation membrane which contains a cellulose ester, while having a plurality of voids in a cross-section that is parallel to the longitudinal direction and the membrane thickness direction of the membrane, wherein: the average depth D of the plurality of voids is from 0.7 to 20 μm; the average length L of the plurality of voids is 3 μm or more; and the average of the ratios of respective lengths l to respective depth d of the voids, namely (l/d)a is from 2 to 40.

Description

分離膜及びその製造方法Separation membrane and its manufacturing method
 本発明は、分離膜及びその製造方法に関する。 The present invention relates to a separation membrane and a method for producing the same.
 近年、分離膜は、浄水処理、排水処理等の水処理用膜、血液浄化等の医療用膜、食品工業用膜、電池用のセパレータ膜、荷電膜、又は、燃料電池用の電解質膜等、様々な方面で利用されている。 In recent years, separation membranes include water treatment membranes for water purification and wastewater treatment, medical membranes for blood purification, food industry membranes, battery separator membranes, charged membranes, electrolyte membranes for fuel cells, and the like. It is used in various fields.
 大部分の分離膜はポリマーを素材としている。その中でも、セルロースエステルをはじめとするセルロース系樹脂は、その親水性に起因する透過性能や、塩素系の殺菌剤に強いという耐塩素性能を有することから、水処理用膜をはじめとする分離膜の素材として広く用いられている。 Most separation membranes are made of polymer. Among them, cellulosic resins such as cellulose esters have permeation performance due to their hydrophilicity and chlorine resistance that is resistant to chlorine-based bactericides, so separation membranes such as water treatment membranes. It is widely used as a material for.
 例えば特許文献1には、セルローストリアセテートを含む製膜原液を、溶媒、非溶媒及び水からなる凝固液中に吐出して相分離させることで、中空糸状の分離膜を得る技術が開示されている。
 また特許文献2には、表面にヒドロキシアルキルセルロースが微粒子の状態で固着された、中空糸状の分離膜が開示されている。
For example, Patent Document 1 discloses a technique for obtaining a hollow filament-shaped separation membrane by discharging a membrane-forming stock solution containing cellulose triacetate into a coagulating liquid consisting of a solvent, a non-solvent, and water for phase separation. ..
Further, Patent Document 2 discloses a hollow filament-like separation membrane in which hydroxyalkyl cellulose is fixed on the surface in the state of fine particles.
日本国特開2011-235204号公報Japanese Patent Application Laid-Open No. 2011-235204 日本国特開2015-157278号公報Japanese Patent Application Laid-Open No. 2015-157278
 しかしながら、セルロースエステルを素材として用いた従来の分離膜は、分離性能を高めるために空隙のサイズを小さくしているため、透過性能を高めるためには膜の厚みを薄くする必要があり、その結果として分離膜に欠点が発生し易いという問題を抱えるものであった。 However, in the conventional separation membrane using cellulose ester as a material, the size of the voids is reduced in order to improve the separation performance, so that it is necessary to reduce the thickness of the membrane in order to improve the permeation performance, and as a result. As a result, there is a problem that defects are likely to occur in the separation membrane.
 そこで本発明は、高い分離性能と透過性能との双方を備える、分離膜およびその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a separation membrane and a method for producing the same, which have both high separation performance and permeation performance.
 本発明者らは、上記課題を解決するべく鋭意検討した結果、セルロースエステルを含有する分離膜が特定条件を満たす空隙を有することで、高い分離性能を維持しつつ透過性能をも高めることが可能であることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have made it possible to improve the permeation performance while maintaining high separation performance by having the separation membrane containing the cellulose ester having voids satisfying specific conditions. It was found that the present invention was completed.
 すなわち、本発明は以下の[1]~[10]に関する。
[1]セルロースエステルを含有する分離膜であって、
 前記分離膜が、膜の長手方向および膜厚方向に平行な断面において、複数の空隙を有し、
 前記複数の空隙の平均深さDが、0.7~20μmであり、
 前記複数の空隙の平均長さLが、3μm以上であり、かつ、
 各空隙の長さlと深さdの比の平均値(l/d)の値が、2~40である、分離膜。
[2]前記断面における、前記複数の空隙の占有率が、15~55%である、前記[1]に記載の分離膜。
[3]前記断面における、壁部の平均厚みが、0.7~5.0μmである、前記[1]又は[2]に記載の分離膜。
[4]少なくとも一方の表面において、表面孔の平均孔径が、0.050~0.500μmである、前記[1]~[3]のいずれか一に記載の分離膜。
[5]少なくとも一方の表面において、表面孔の平均短径Xが、0.030~0.250μmであり、前記表面孔の平均長径Yが、0.060~0.450μmであり、長径と短径の比の平均値(y/x)の値が、1.00~1.50である、前記[1]~[4]のいずれか一に記載の分離膜。
[6]前記複数の空隙の長手方向が、前記分離膜の長手方向に沿っている、前記[1]~[5]のいずれか一に記載の分離膜。
[7]前記セルロースエステルとして、セルロースアセテートプロピオネート及び/又はセルロースアセテートブチレートを含有する、前記[1]~[6]のいずれか一に記載の分離膜。
[8]中空糸形状である、前記[1]~[7]のいずれか一に記載の分離膜。
[9](1)10~80質量%のセルロースエステルと、10~80質量%の構造形成剤と、2~20質量%の空隙形成剤と、を含有する混合物を溶融混練して、樹脂組成物を得る、調製工程と、
 (2)40~200μmの孔径を有するフィルターを使用し、前記樹脂組成物を吐出口金から吐出して、30~200のドラフト比で樹脂成形物を得る、成形工程と、
 (3)前記樹脂成形物を、セルロースエステルに対する溶解度パラメータ距離Dが10~25の範囲の溶媒に浸漬させる、浸漬工程と、を備える、分離膜の製造方法。
[10]前記浸漬工程における前記樹脂成形物の温度が50~80℃である、前記[9]に記載の分離膜の製造方法。
That is, the present invention relates to the following [1] to [10].
[1] A separation membrane containing a cellulose ester.
The separation membrane has a plurality of voids in a cross section parallel to the longitudinal direction and the film thickness direction of the membrane.
The average depth D of the plurality of voids is 0.7 to 20 μm.
The average length L of the plurality of voids is 3 μm or more, and
A separation membrane in which the average value (l / d) a of the ratio of the length l to the depth d of each void is 2 to 40.
[2] The separation membrane according to the above [1], wherein the occupancy rate of the plurality of voids in the cross section is 15 to 55%.
[3] The separation membrane according to the above [1] or [2], wherein the average thickness of the wall portion in the cross section is 0.7 to 5.0 μm.
[4] The separation membrane according to any one of [1] to [3] above, wherein the average pore diameter of the surface pores is 0.050 to 0.500 μm on at least one surface.
[5] On at least one surface, the average minor axis X of the surface holes is 0.030 to 0.250 μm, and the average major axis Y of the surface holes is 0.060 to 0.450 μm. The separation membrane according to any one of the above [1] to [4], wherein the average value (y / x) a of the diameter ratio is 1.00 to 1.50.
[6] The separation membrane according to any one of [1] to [5], wherein the longitudinal direction of the plurality of voids is along the longitudinal direction of the separation membrane.
[7] The separation membrane according to any one of [1] to [6] above, which contains cellulose acetate propionate and / or cellulose acetate butyrate as the cellulose ester.
[8] The separation membrane according to any one of the above [1] to [7], which has a hollow fiber shape.
[9] (1) A mixture containing 10 to 80% by mass of cellulose ester, 10 to 80% by mass of a structure forming agent, and 2 to 20% by mass of a void forming agent is melt-kneaded to form a resin composition. Getting things, the preparation process,
(2) A molding step of using a filter having a pore size of 40 to 200 μm and discharging the resin composition from a discharge port to obtain a resin molded product at a draft ratio of 30 to 200.
(3) said resin molded product is immersed in a solvent in the range of solubility parameters distance D S 10-25 to cellulose ester, and a dipping process, a manufacturing method of the separation membrane.
[10] The method for producing a separation membrane according to the above [9], wherein the temperature of the resin molded product in the dipping step is 50 to 80 ° C.
 本発明によれば、高い分離性能及び透過性能を兼ね備える、分離膜およびその製造方法の提供が可能となる。 According to the present invention, it is possible to provide a separation membrane and a method for producing the same, which have both high separation performance and permeation performance.
図1の(a)は、断面Zおよび分離膜の内部構造を模式的に示す図面であり、(b)は(a)の側面図であり、(c)は(a)の上面図である。FIG. 1A is a drawing schematically showing a cross section Z and an internal structure of a separation membrane, FIG. 1B is a side view of FIG. 1A, and FIG. 1C is a top view of FIG. 1A. .. 図2は、断面ZをSEMで撮像した画像の一例である。FIG. 2 is an example of an image in which the cross section Z is captured by SEM. 図3は、図2の画像をノイズ除去、二値化し、空隙を抽出した画像である。FIG. 3 is an image obtained by removing noise from the image of FIG. 2, binarizing the image, and extracting voids. 図4は、図3の画像から、さらに空隙の輪郭を抽出した画像である。FIG. 4 is an image obtained by further extracting the outline of the void from the image of FIG.
 本発明の分離膜は、セルロースエステルを含有する分離膜であって、膜の長手方向および膜厚方向に平行な断面において、複数の空隙を有し、上記複数の空隙の平均深さDが、0.7~20μmであり、上記複数の空隙の平均長さLが、3μm以上であり、かつ、各空隙の長さlと深さdの比の平均値(l/d)の値が、2~40であることを特徴とする。本明細書において、質量基準の割合(百分率、部など)は、重量基準の割合(百分率、部など)と同じである。 The separation membrane of the present invention is a separation membrane containing a cellulose ester, and has a plurality of voids in a cross section parallel to the longitudinal direction and the film thickness direction of the membrane, and the average depth D of the plurality of voids is determined. The average length L of the plurality of voids is 0.7 to 20 μm, the average length L of the plurality of voids is 3 μm or more, and the average value (l / d) a of the ratio of the length l and the depth d of each void is It is characterized by being 2 to 40. In the present specification, the mass-based ratio (percentage, parts, etc.) is the same as the weight-based ratio (percentage, parts, etc.).
 (分離膜を構成する樹脂組成物)
 本発明の分離膜を構成する樹脂組成物は、以下の(1)に示すセルロースエステルを含有する。また、(1)以外に、以下の(2)~(6)に示す成分を含有することができる。
(Resin composition constituting the separation membrane)
The resin composition constituting the separation membrane of the present invention contains the cellulose ester shown in (1) below. In addition to (1), the following components (2) to (6) can be contained.
 (1)セルロースエステル
 本発明の分離膜は、セルロースエステルを含有する必要がある。なお本発明の効果をより高めるためには、本発明の分離膜は、セルロースエステルを主成分として含有することが好ましい。ここでいう主成分とは、分離膜を構成する樹脂組成物の全成分の中で、質量基準で最も多く含まれる成分をいう。
(1) Cellulose ester The separation membrane of the present invention needs to contain a cellulose ester. In order to further enhance the effect of the present invention, the separation membrane of the present invention preferably contains cellulose ester as a main component. The main component here means the component contained most in terms of mass among all the components of the resin composition constituting the separation membrane.
 セルロースエステルとしては、例えば、セルロースアセテート、セルロースプロピオネート若しくはセルロースブチレート等のセルロースエステル、又は、セルロースアセテートプロピオネート若しくはセルロースアセテートブチレート等のセルロース混合エステルが挙げられる。中でも、樹脂成形物の加工性、得られる分離膜の膜強度の観点から、セルロース混合エステルが好ましく、セルロースアセテートプロピオネート及び/又はセルロースアセテートブチレートがより好ましく、セルロースアセテートプロピオネートがさらに好ましい。ここでのセルロースアセテートプロピオネートとは、アセチル基とプロピオニル基との平均置換度が、それぞれ0.1以上のセルロースエステルである。 Examples of the cellulose ester include a cellulose ester such as cellulose acetate, cellulose propionate or cellulose butyrate, or a cellulose mixed ester such as cellulose acetate propionate or cellulose acetate butyrate. Among them, from the viewpoint of processability of the resin molded product and the film strength of the obtained separation film, a cellulose mixed ester is preferable, a cellulose acetate propionate and / or a cellulose acetate butyrate is more preferable, and a cellulose acetate propionate is further preferable. .. The cellulose acetate propionate here is a cellulose ester having an average degree of substitution of an acetyl group and a propionyl group of 0.1 or more, respectively.
 セルロースエステルの重量平均分子量(Mw)は、5万~25万であることが好ましい。重量平均分子量(Mw)が5万以上であることで、分離膜製造時に溶融する際のセルロースエステルの熱分解が抑制され、かつ、分離膜の膜強度を実用レベルに容易に到達させることができる。重量平均分子量(Mw)が25万以下であることで、溶融粘度が高くなり過ぎないので、安定した溶融製膜が可能となる。なお、重量平均分子量(Mw)とは、GPC(ゲル浸透クロマトグラフィー)測定により算出される値である。その算出方法については、実施例にて詳細に説明する。 The weight average molecular weight (Mw) of the cellulose ester is preferably 50,000 to 250,000. When the weight average molecular weight (Mw) is 50,000 or more, the thermal decomposition of the cellulose ester at the time of melting during the production of the separation membrane is suppressed, and the membrane strength of the separation membrane can be easily reached to a practical level. .. When the weight average molecular weight (Mw) is 250,000 or less, the melt viscosity does not become too high, so that stable melt film formation becomes possible. The weight average molecular weight (Mw) is a value calculated by GPC (gel permeation chromatography) measurement. The calculation method will be described in detail in Examples.
 例示した各セルロース混合エステルは、アセチル基と他のアシル基(プロピオニル基、ブチリル基等)とを有する。分離膜に含有されるセルロース混合エステルにおいて、アセチル基と他のアシル基との平均置換度は、下記式を満たすことが好ましい。
 1.0≦(アセチル基の平均置換度+他のアシル基の平均置換度)≦3.0
 0.1≦(アセチル基の平均置換度)≦2.6
 0.1≦(他のアシル基の平均置換度)≦2.6
Each of the exemplified cellulose mixed esters has an acetyl group and another acyl group (propionyl group, butyryl group, etc.). In the cellulose mixed ester contained in the separation membrane, the average degree of substitution of the acetyl group with another acyl group preferably satisfies the following formula.
1.0 ≤ (average degree of substitution of acetyl group + average degree of substitution of other acyl groups) ≤ 3.0
0.1 ≤ (average degree of substitution of acetyl groups) ≤ 2.6
0.1 ≤ (average degree of substitution of other acyl groups) ≤ 2.6
 上記式が満たされることで、分離膜の透過性能と、分離膜を構成する樹脂組成物を溶融する際の熱流動性とが良好となる。なお、平均置換度とは、セルロースのグルコース単位当たりに存在する3つの水酸基の内、アシル基(アセチル基+他のアシル基)が化学的に結合した数をいう。
 分離膜は1種類のセルロースエステルのみを含有しても構わないし、2種類以上のセルロースエステルを含有しても構わない。
When the above formula is satisfied, the permeation performance of the separation membrane and the heat fluidity when melting the resin composition constituting the separation membrane are improved. The average degree of substitution refers to the number of acyl groups (acetyl group + other acyl groups) chemically bonded among the three hydroxyl groups existing per glucose unit of cellulose.
The separation membrane may contain only one type of cellulose ester, or may contain two or more types of cellulose esters.
 分離膜中のセルロースエステルの含有量は、分離膜の全成分を100質量%としたときに、70~100質量%が好ましく、80~100質量%がより好ましく、90~100質量%がさらに好ましい。分離膜のセルロースエステルの含有量が70質量%以上であることで、分離膜の膜強度が十分なものとなる。 The content of the cellulose ester in the separation membrane is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, when all the components of the separation membrane are 100% by mass. .. When the content of the cellulose ester in the separation membrane is 70% by mass or more, the membrane strength of the separation membrane becomes sufficient.
 また分離膜を製造する原料中のセルロースエステルの含有量は、原料を構成する成分の全体を100質量%としたときに、10~80質量%が好ましい。含有量が10質量%以上であることで、分離膜の膜強度が良好なものとなる。一方で、含有量が80質量%以下であることで、分離膜の熱可塑性及び透過性能が良好なものとなる。含有量は15質量%以上であることがより好ましく、20質量%以上であることがさらに好ましい。また、含有量は70質量%以下であることがより好ましく、60質量%以下であることがさらに好ましく、45質量%以下であることが特に好ましい。 Further, the content of the cellulose ester in the raw material for producing the separation membrane is preferably 10 to 80% by mass when the total of the components constituting the raw material is 100% by mass. When the content is 10% by mass or more, the membrane strength of the separation membrane becomes good. On the other hand, when the content is 80% by mass or less, the thermoplasticity and permeation performance of the separation membrane are improved. The content is more preferably 15% by mass or more, and further preferably 20% by mass or more. The content is more preferably 70% by mass or less, further preferably 60% by mass or less, and particularly preferably 45% by mass or less.
 (2)セルロースエステルの可塑剤
 本発明の分離膜を構成する樹脂組成物は、セルロースエステルの可塑剤を含有することができる。
 セルロースエステルの可塑剤は、セルロースエステルを熱可塑化する化合物であれば特に限定されない。また、1種類の可塑剤だけでなく、2種類以上の可塑剤が併用されても構わない。
(2) Cellulose Ester Plasticizer The resin composition constituting the separation membrane of the present invention may contain a cellulose ester plasticizer.
The plasticizer of the cellulose ester is not particularly limited as long as it is a compound that thermally plasticizes the cellulose ester. Further, not only one kind of plasticizer but also two or more kinds of plasticizers may be used in combination.
 セルロースエステルの可塑剤としては、例えば、ポリエチレングリコール若しくはポリエチレングリコール脂肪酸エステル等のポリアルキレングリコール系化合物、グリセリン脂肪酸エステル若しくはジグリセリン脂肪酸エステル等のグリセリン系化合物、クエン酸エステル系化合物、リン酸エステル系化合物若しくはアジピン酸エステル等の脂肪酸エステル系化合物又はカプロラクトン系化合物、あるいは、それらの誘導体等が挙げられる。 Examples of the plasticizer for the cellulose ester include polyalkylene glycol compounds such as polyethylene glycol and polyethylene glycol fatty acid ester, glycerin compounds such as glycerin fatty acid ester and diglycerin fatty acid ester, citric acid ester compounds, and phosphoric acid ester compounds. Alternatively, a fatty acid ester compound such as adipic acid ester or a caprolactone compound, or a derivative thereof and the like can be mentioned.
 ポリアルキレングリコール系化合物としては、例えば、重量平均分子量(Mw)が400~4,000である、ポリエチレングリコール、ポリプロピレングリコール又はポリブチレングリコール等が挙げられる。 Examples of the polyalkylene glycol-based compound include polyethylene glycol, polypropylene glycol, polybutylene glycol, and the like having a weight average molecular weight (Mw) of 400 to 4,000.
 セルロースエステルの可塑剤は、分離膜を形成した後は、分離膜中に残存しても構わないし、分離膜から溶出させても構わない。 また、セルロースエステルの可塑剤の含有量は、原料を構成する成分の全体を100質量%としたときに、5~40質量%が好ましい。
 含有量が5質量%以上であることで、セルロースエステルの熱可塑性が良好なものとなる。一方で、含有量が40質量%以下であることで、分離膜の膜強度が良好なものとなる。セルロースエステルの可塑剤の含有量は、5~35質量%がより好ましく、5~30質量%がさらに好ましい。
After forming the separation membrane, the cellulose ester plasticizer may remain in the separation membrane or may be eluted from the separation membrane. The content of the plasticizer of the cellulose ester is preferably 5 to 40% by mass when the total amount of the components constituting the raw material is 100% by mass.
When the content is 5% by mass or more, the thermoplasticity of the cellulose ester becomes good. On the other hand, when the content is 40% by mass or less, the membrane strength of the separation membrane becomes good. The content of the plasticizer of the cellulose ester is more preferably 5 to 35% by mass, further preferably 5 to 30% by mass.
 (3)酸化防止剤
 本発明の分離膜を構成する樹脂組成物は、酸化防止剤を含有することが好ましい。樹脂組成物が酸化防止剤を含有することで、分離膜の製造時にポリマーを溶融する際の熱分解が抑制され、その結果として得られる分離膜の膜強度が向上し、分離膜の着色が抑制される。
(3) Antioxidant The resin composition constituting the separation membrane of the present invention preferably contains an antioxidant. When the resin composition contains an antioxidant, thermal decomposition at the time of melting the polymer during the production of the separation film is suppressed, the membrane strength of the resulting separation film is improved, and the coloring of the separation film is suppressed. Will be done.
 酸化防止剤としては、リン系の酸化防止剤が好ましく、ペンタエリスリトール系化合物がより好ましい。ペンタエリスリトール系化合物としては、例えば、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト等が挙げられる。 As the antioxidant, a phosphorus-based antioxidant is preferable, and a pentaerythritol-based compound is more preferable. Examples of the pentaerythritol-based compound include bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite and the like.
 酸化防止剤の含有量は、原料を構成する成分の全体を100質量%としたときに、0.005~0.500質量%が好ましい。酸化防止剤の含有量が上記範囲にあることで、調製工程において、均一な樹脂組成物を得ることができる。 The content of the antioxidant is preferably 0.005 to 0.500% by mass when the total amount of the components constituting the raw material is 100% by mass. When the content of the antioxidant is in the above range, a uniform resin composition can be obtained in the preparation step.
 (4)構造形成剤
 本発明の分離膜を構成する樹脂組成物は、構造形成剤を含有することができる。
 本発明における構造形成剤は、セルロースエステル、又は、セルロースエステルとその可塑剤との混合物と部分相溶し、かつ、セルロースエステルを溶かさない溶媒により溶出又は分解可能であれば特に限定されない。構造形成剤の重量平均分子量は、後述するL、D、(l/d)の値を適切に制御する観点から1000以上が好ましい。
 部分相溶とは、2種類以上の物質が、ある条件下では完全相溶するが、別の条件下では相分離することをいう。構造形成剤は、後述の浸漬工程において、特定の条件を満たす溶媒と接触することで、セルロースエステルと相分離する物質である。具体的な条件は後述する。
(4) Structure-forming agent The resin composition constituting the separation membrane of the present invention may contain a structure-forming agent.
The structure-forming agent in the present invention is not particularly limited as long as it is partially compatible with the cellulose ester or a mixture of the cellulose ester and its plasticizer and can be eluted or decomposed by a solvent that does not dissolve the cellulose ester. The weight average molecular weight of the structure-forming agent is preferably 1000 or more from the viewpoint of appropriately controlling the values of L, D, and (l / d) a, which will be described later.
Partial compatibility means that two or more substances are completely compatible under certain conditions, but phase-separated under different conditions. The structure-forming agent is a substance that phase-separates from the cellulose ester when it comes into contact with a solvent that satisfies specific conditions in the dipping step described later. Specific conditions will be described later.
 本発明における構造形成剤は、親水性化合物であることが、容易に溶出できる点から好ましい。ここで、親水性化合物とは、水に溶解するか、又は、水に対する接触角が、分離膜に含有されるセルロースエステルよりも小さい化合物のことをいう。親水性化合物の中でも、水に溶解する化合物が、容易に溶出できる点から特に好ましい。 The structure-forming agent in the present invention is preferably a hydrophilic compound because it can be easily eluted. Here, the hydrophilic compound means a compound that is soluble in water or has a contact angle with water smaller than that of the cellulose ester contained in the separation membrane. Among the hydrophilic compounds, a compound that dissolves in water is particularly preferable because it can be easily eluted.
 構造形成剤としては、例えば、ポリビニルピロリドン(以下、「PVP」)、PVP/酢酸ビニル共重合体、PVP/メタクリル酸メチル共重合体等のPVPをベースとする共重合体、ポリビニルアルコール、又は、ポリエステル系化合物等が挙げられる。
 構造形成剤としてPVPを用いる場合、熱架橋が生じると分離膜から溶出させることが困難になるため、分子間架橋が比較的進行しにくく、かつ架橋しても溶出することが可能である観点から、重量平均分子量(Mw)は2万以下であることが好ましい。また、上記のPVPをベースとする共重合体を用いることも、熱架橋が抑制される点で好ましい。
Examples of the structure-forming agent include PVP-based copolymers such as polyvinylpyrrolidone (hereinafter, “PVP”), PVP / vinyl acetate copolymer, PVP / methyl methacrylate copolymer, polyvinyl alcohol, or Examples include polyester compounds.
When PVP is used as a structure-forming agent, it is difficult to elute it from the separation membrane when thermal cross-linking occurs, so that intermolecular cross-linking is relatively difficult to proceed and it is possible to elute even if cross-linked. The weight average molecular weight (Mw) is preferably 20,000 or less. It is also preferable to use the above-mentioned PVP-based copolymer because thermal cross-linking is suppressed.
 後述する浸漬工程以降の工程において、構造形成剤の少なくとも一部を溶出させることで、構造形成剤が抜けた(溶出した)跡が膜中における空隙となり、その結果、透過性能が良好となる。 By eluting at least a part of the structure-forming agent in the steps after the dipping step described later, the traces of the structure-forming agent being removed (eluted) become voids in the film, and as a result, the permeation performance is improved.
 構造形成剤の含有量は、原料を構成する成分の全体を100質量%としたときに、10~80質量%であることが好ましい。
 含有量が10質量%以上であることで、分離膜の透過性能が良好なものとなる。一方で、含有量が80質量%以下であることで、膜強度が良好なものとなる。構造形成剤の含有量は、20質量%以上がより好ましく、25質量%以上がさらに好ましい。また構造形成剤の含有量は、75質量%以下がより好ましく、70質量%以下がさらに好ましい。
The content of the structure-forming agent is preferably 10 to 80% by mass when the total content of the components constituting the raw material is 100% by mass.
When the content is 10% by mass or more, the permeation performance of the separation membrane becomes good. On the other hand, when the content is 80% by mass or less, the film strength becomes good. The content of the structure forming agent is more preferably 20% by mass or more, further preferably 25% by mass or more. The content of the structure-forming agent is more preferably 75% by mass or less, and further preferably 70% by mass or less.
 (5)空隙形成剤
 本発明の分離膜を構成する樹脂組成物は、空隙形成剤を含有することができる。ここで空隙形成剤とは、セルロースエステルと相溶せず、かつ、熱によって可塑化、又は、溶融する化合物をいう。セルロースエステルと相溶しない空隙形成剤を溶出させることで、空隙形成剤が存在した部位に空隙が形成される。また空隙形成剤が熱によって可塑化又は溶融することで、形成される各空隙の長さlと深さdの比の平均値である(l/d)の値を大きくすることができる。
(5) Void-forming agent The resin composition constituting the separation membrane of the present invention may contain a void-forming agent. Here, the void forming agent refers to a compound that is incompatible with the cellulose ester and is plasticized or melted by heat. By eluting the void-forming agent that is incompatible with the cellulose ester, voids are formed at the site where the void-forming agent was present. Further, when the void forming agent is plasticized or melted by heat, the value of (l / d) a , which is the average value of the ratio of the length l and the depth d of each void formed, can be increased.
 空隙形成剤としては、例えば、フタル酸エステル化合物、トリメリット酸エステル系化合物又はポリエチレングリコール、ポリプロピレングリコール若しくはポリブチレングリコール等のポリアルキレングリコール系化合物、あるいはこれら化合物の誘導体が挙げられる。これらの化合物の重量平均分子量(Mw)は10万~100万が好ましい。加熱時に適度な粘性を示すことにより、後述するL、D、(l/d)の値を制御しやすいため、空隙形成剤の重量平均分子量(Mw)は10万~100万が好ましく、10万~50万がより好ましく、10~30万が特に好ましい。 Examples of the void forming agent include phthalate ester compounds, trimellitic acid ester compounds, polyalkylene glycol compounds such as polyethylene glycol, polypropylene glycol and polybutylene glycol, and derivatives of these compounds. The weight average molecular weight (Mw) of these compounds is preferably 100,000 to 1,000,000. Since it is easy to control the values of L, D, and (l / d) a described later by showing an appropriate viscosity when heated, the weight average molecular weight (Mw) of the void forming agent is preferably 100,000 to 1,000,000. 10,000 to 500,000 is more preferable, and 100,000 to 300,000 is particularly preferable.
 空隙形成剤の含有量は、原料を構成する成分の全体を100質量%としたときに、2~20質量%であることが好ましい。含有量が2質量%以上であることで、分離膜の透過性能が良好なものとなる。一方で、含有量が20質量%以下であることで、分離性能が良好なものとなる。空隙形成剤の含有量は、3質量%以上がより好ましく、5質量%以上がさらに好ましく、10質量%以上が特に好ましい。また、含有量は18質量%以下がより好ましく、15質量%以下がさらに好ましい。 The content of the void forming agent is preferably 2 to 20% by mass when the total content of the components constituting the raw material is 100% by mass. When the content is 2% by mass or more, the permeation performance of the separation membrane is good. On the other hand, when the content is 20% by mass or less, the separation performance becomes good. The content of the void forming agent is more preferably 3% by mass or more, further preferably 5% by mass or more, and particularly preferably 10% by mass or more. The content is more preferably 18% by mass or less, and further preferably 15% by mass or less.
 (6)添加剤
 本発明の分離膜を構成する樹脂組成物は、本発明の効果を損なわない範囲で、(2)~(5)に記載した以外の添加剤を含有しても構わない。
(6) Additives The resin composition constituting the separation membrane of the present invention may contain additives other than those described in (2) to (5) as long as the effects of the present invention are not impaired.
 添加剤としては、例えば、セルロースエーテル、ポリアクリロニトリル、ポリオレフィン、ポリビニル化合物、ポリカーボネート、ポリ(メタ)アクリレート、ポリスルホン若しくはポリエーテルスルホン等の樹脂、有機滑剤、結晶核剤、有機粒子、無機粒子、末端封鎖剤、鎖延長剤、紫外線吸収剤、赤外線吸収剤、着色防止剤、艶消し剤、抗菌剤、制電剤、消臭剤、難燃剤、耐候剤、帯電防止剤、抗酸化剤、イオン交換剤、消泡剤、着色顔料、蛍光増白剤又は染料等が挙げられる。 Additives include, for example, cellulose ether, polyacrylonitrile, polyolefin, polyvinyl compound, polycarbonate, poly (meth) acrylate, polysulfone, resin such as polyethersulfone, organic lubricant, crystal nucleating agent, organic particles, inorganic particles, terminal closure. Agents, chain extenders, UV absorbers, infrared absorbers, color inhibitors, matting agents, antibacterial agents, antistatic agents, deodorants, flame retardants, weather resistant agents, antistatic agents, antioxidants, ion exchangers , Antifoaming agents, color pigments, fluorescent whitening agents, dyes and the like.
 (分離膜の形状)
 本発明の分離膜の形状は特に限定されないが、中空糸形状の分離膜(以下、「中空糸膜」)、又は、平面形状の膜(以下、「平膜」)が好ましく採用される。中でも、中空糸膜は効率良くモジュールに充填することが可能であり、モジュールの単位体積当たりの有効膜面積を大きくとることができるためより好ましい。
(Shape of separation membrane)
The shape of the separation membrane of the present invention is not particularly limited, but a hollow fiber-shaped separation membrane (hereinafter, “hollow fiber membrane”) or a flat-shaped membrane (hereinafter, “flat membrane”) is preferably adopted. Above all, the hollow fiber membrane can be efficiently filled in the module, and the effective film area per unit volume of the module can be increased, which is more preferable.
 分離膜の厚みは、透過性能と膜強度とを両立させる観点から、10~500μmであることが好ましい。また、厚みは30μm以上がより好ましく、50μm以上がさらに好ましい。厚みは400μm以下がより好ましく、300μm以下がさらに好ましい。 The thickness of the separation membrane is preferably 10 to 500 μm from the viewpoint of achieving both permeation performance and membrane strength. Further, the thickness is more preferably 30 μm or more, and further preferably 50 μm or more. The thickness is more preferably 400 μm or less, further preferably 300 μm or less.
 中空糸膜の場合、モジュールに充填した際の有効膜面積と、膜強度とを両立させる観点から、中空糸膜の外径が50~2500μmであることが好ましい。中空糸膜の外形は100μm以上がより好ましく、200μm以上がさらに好ましく、300μm以上が特に好ましい。また、外形は2000μm以下がより好ましく、1500μm以下がさらに好ましく、1000μm以下であることが特に好ましい。 In the case of a hollow fiber membrane, the outer diameter of the hollow fiber membrane is preferably 50 to 2500 μm from the viewpoint of achieving both the effective membrane area when filled in the module and the membrane strength. The outer shape of the hollow fiber membrane is more preferably 100 μm or more, further preferably 200 μm or more, and particularly preferably 300 μm or more. Further, the outer shape is more preferably 2000 μm or less, further preferably 1500 μm or less, and particularly preferably 1000 μm or less.
 また、中空糸膜の場合、中空部を流れる流体の圧損と、座屈圧との関係から、中空糸の中空率が15~70%であることが好ましい。中空率は20%以上がより好ましく、25%以上がさらに好ましい。また、中空率は65%以下がより好ましく、60%以下がさらに好ましい。 Further, in the case of the hollow fiber membrane, the hollow ratio of the hollow fiber is preferably 15 to 70% from the relationship between the pressure loss of the fluid flowing through the hollow portion and the buckling pressure. The hollow ratio is more preferably 20% or more, further preferably 25% or more. Further, the hollow ratio is more preferably 65% or less, and further preferably 60% or less.
 中空糸膜における中空糸の外径や中空率を上記範囲とする方法は特に限定されないが、例えば、中空糸を製造する紡糸口金の吐出孔の形状、又は、巻取速度/吐出速度で算出できるドラフト比を適宜変更することで調整できる。 The method of setting the outer diameter and the hollow ratio of the hollow fiber in the hollow fiber membrane in the above range is not particularly limited, but can be calculated by, for example, the shape of the discharge hole of the spinneret for producing the hollow fiber, or the take-up speed / discharge speed. It can be adjusted by changing the draft ratio as appropriate.
 (分離膜の断面構造)
 本発明の分離膜は、平均深さD、平均長さL、および、各空隙の深さdと長さlの比であるl/dの平均値(l/d)の値が特定範囲となる、複数の空隙を有する。空隙の深さと長さとは、測定対象となる分離膜の、長手方向および膜厚方向に平行な断面(以下、「断面Z」)において測定される値である。ここで、膜の長手方向とは中空糸膜においては中心軸と平行な方向のことであり、平膜においては製造時の機械方向のことである。図1の(a)は、分離膜が中空糸形状である場合において、断面Zおよび分離膜の内部構造を模式的に示す図面である。図1の(b)は(a)の側面図であり、(c)は(a)の上面図である。図1において、Cは中心軸を示し、中心軸Cは膜の長手方向に平行である。また図1の(c)において、双方向矢印は中空糸膜の膜厚方向を例示するものであり、点線は該膜厚方向に平行な方向を示す。
(Cross-sectional structure of separation membrane)
In the separation membrane of the present invention, the average depth D, the average length L, and the average value of l / d (l / d) a , which is the ratio of the depth d and the length l of each void, are in a specific range. It has a plurality of voids. The depth and length of the voids are values measured in a cross section (hereinafter, "cross section Z") parallel to the longitudinal direction and the film thickness direction of the separation membrane to be measured. Here, the longitudinal direction of the membrane is the direction parallel to the central axis in the hollow fiber membrane, and the mechanical direction at the time of manufacture in the flat membrane. FIG. 1A is a drawing schematically showing a cross section Z and an internal structure of the separation membrane when the separation membrane has a hollow fiber shape. FIG. 1B is a side view of FIG. 1A, and FIG. 1C is a top view of FIG. 1A. In FIG. 1, C indicates a central axis, and the central axis C is parallel to the longitudinal direction of the film. Further, in FIG. 1 (c), the bidirectional arrow exemplifies the film thickness direction of the hollow fiber membrane, and the dotted line indicates the direction parallel to the film thickness direction.
 ここで「空隙」とは、断面Zを、走査型電子顕微鏡(以下、「SEM」)を用いて2,000倍の倍率で観察した場合における、面積が1μm以上の凹部をいう。詳細な観察方法は実施例の、(7)複数の空隙及び壁部についての測定に記載する。なおここでいう「凹部」とは、SEMで観察した画像における暗部をいい、SEMで撮像した画像を、画像解析ソフトを用いて二値化(Huangの二値化)することによりその輪郭を抽出することができる。
 具体的には、まず、画像解析ソフトであるimageJを用いて、SEMで撮像した画像を8ビット化し、全ピクセルをそのピクセルの近傍3×3ピクセルの中央値に置き換えるノイズ除去(ImageJにおけるDespeckle)を10回行った後、Huangの二値化を行う。続いて、得られた画像を、ImageJのAnalyze Particlesコマンドにおいて、Sizeを0-Infinity、Circularityを0-1と設定し、Masks表示として処理することで、凹部を抽出した画像を取得できる。このようにして得られた画像を元に、凹部の輪郭を抽出することができる。具体的には、ImageJのAnalyze Particlesコマンドにおいて、Sizeを0-Infinity、Circularityを0-1と設定し、Bare Outlines表示として処理することで、凹部の輪郭を抽出することができる。
 また、空隙の抽出は、上述の凹部の抽出において、1μm以上の凹部が含まれるようにSizeの下限を設定することで、実施できる。例えば、1μm=100ピクセルの画像においては、下限を100ピクセルとすることで空隙を抽出できる。このようにして得られた画像において、上述の凹部の輪郭の抽出と同様に処理することで、空隙の輪郭を抽出できる。なお、本願では輪郭のことを外縁と呼ぶことがある。
Here, the “void” refers to a recess having an area of 1 μm 2 or more when the cross section Z is observed with a scanning electron microscope (hereinafter, “SEM”) at a magnification of 2,000 times. The detailed observation method is described in (7) Measurement for a plurality of voids and walls in Examples. The "recess" here means a dark part in the image observed by SEM, and the outline of the image captured by SEM is extracted by binarizing (binarizing Huang) using image analysis software. can do.
Specifically, first, using imageJ, which is an image analysis software, an image captured by SEM is converted into 8 bits, and all pixels are replaced with the center value of 3 × 3 pixels in the vicinity of the pixel. After 10 times, Hung is binarized. Subsequently, the obtained image can be processed as a Mask display by setting Size to 0-Infinity and Circularity to 0-1 in the ImageJ Analysis Particles command, so that an image in which the recesses are extracted can be acquired. Based on the image obtained in this way, the contour of the concave portion can be extracted. Specifically, in the ImageJ Analysis Particles command, the size is set to 0-Infinity and the Circularity is set to 0-1 and the contour of the concave portion can be extracted by processing as a Barre Outline display.
Further, the void extraction can be carried out by setting the lower limit of the size so that the recesses of 1 μm 2 or more are included in the above-mentioned extraction of the recesses. For example, in an image of 1 μm 2 = 100 pixels 2 , the void can be extracted by setting the lower limit to 100 pixels 2. In the image thus obtained, the contour of the void can be extracted by performing the same processing as the extraction of the contour of the concave portion described above. In the present application, the contour may be referred to as an outer edge.
 SEMで撮像した画像の一例を図2に、図2の画像をノイズ除去、二値化し、空隙を抽出したものを図3に、さらに図3の画像から空隙の輪郭を抽出したものを図4に、それぞれ示す。 An example of an image captured by SEM is shown in FIG. 2, an image of FIG. 2 is noise-removed and binarized to extract voids in FIG. 3, and an image obtained by extracting the outline of voids from the image of FIG. 3 is shown in FIG. , Respectively.
 断面Zを、SEMを用いて5,000倍の倍率で観察した場合において、観察範囲全体に占める全ての凹部の面積の和の割合を「凹部面積率」とする場合、透過流束及び分離性能をさらに高めるため、本発明の分離膜の凹部面積率は、50~85%であることが好ましく、60~80%であることがより好ましい。なおここでの凹部は、面積が1μm以上の凹部すなわち空隙に限られず、面積が1μm未満の凹部すなわち細孔も、併せて対象とするものである。ここでの凹部も、上述と同様に、SEMで撮像した画像を、ImageJなどの画像解析ソフトを用いてノイズ除去、二値化(Huangの二値化)することによりその輪郭を抽出することができる。 When the cross section Z is observed at a magnification of 5,000 times using SEM, when the ratio of the sum of the areas of all the recesses to the entire observation range is defined as the "recess area ratio", the permeation flux and separation performance The recessed area ratio of the separation membrane of the present invention is preferably 50 to 85%, more preferably 60 to 80%. The recesses here are not limited to recesses having an area of 1 μm 2 or more, that is, voids, and recesses having an area of less than 1 μm 2 , that is, pores are also targeted. Similarly to the above, the concave portion here can also be extracted by removing noise and binarizing (binarizing Huang) the image captured by SEM using image analysis software such as ImageJ. it can.
 「空隙の深さd」とは、SEMを用いて2,000倍の倍率で断面Zを観察した場合において、分離膜の膜厚方向を深さ方向とした場合の、測定対象となる空隙についての、深さ方向の最大長さをいう。また「空隙の長さl」とは、同じくSEMを用いて2,000倍の倍率で断面Zを観察した場合において、測定対象となる空隙の外縁上の二点を直接結ぶことが可能な直線の内、最長となる直線の長さをいう。ここで、外縁上の二点を直接結ぶことが可能な直線とは、外縁上の二点を結んだ直線が、他の外縁上を通らない直線のことをいう。各空隙の長さlと深さdとの比であるl/dの平均値(l/d)は、無作為に選択した30個の空隙において、各空隙に対してl/dを求め、その算術平均値をとった値である。 "Void depth d" refers to a void to be measured when the cross-section Z is observed at a magnification of 2,000 times using an SEM and the film thickness direction of the separation membrane is the depth direction. The maximum length in the depth direction. Further, the "gap length l" is a straight line capable of directly connecting two points on the outer edge of the gap to be measured when the cross section Z is observed at a magnification of 2,000 times using the same SEM. Of these, the length of the longest straight line. Here, the straight line that can directly connect two points on the outer edge means a straight line that connects two points on the outer edge and does not pass over the other outer edge. The average value (l / d) a of l / d, which is the ratio of the length l to the depth d of each void, is calculated as l / d for each void in 30 randomly selected voids. , The value obtained by taking the arithmetic mean value.
 複数の空隙の平均深さDとは、SEMを用いて2,000倍の倍率で断面Zを観察した場合において、無作為に選択した30個の空隙の深さを測定し、その算術平均値として算出される値をいう。また複数の空隙の平均長さLとは、同じくSEMを用いて2,000倍の倍率で断面Zを観察した場合において、無作為に選択した30個の空隙の長さを測定し、その算術平均値として算出される値をいう。 The average depth D of a plurality of voids is an arithmetic mean value obtained by measuring the depths of 30 randomly selected voids when the cross section Z is observed at a magnification of 2,000 times using an SEM. The value calculated as. Further, the average length L of a plurality of voids is calculated by measuring the lengths of 30 randomly selected voids when the cross section Z is observed at a magnification of 2,000 times using the same SEM. A value calculated as an average value.
 各空隙の長さlと深さdとの比であるl/dの平均値(l/d)の値は、2~40である必要がある。(l/d)の値がこの範囲にあることで、分離膜の実質的な厚みを低減しながら、空隙が適度に分散されるため、分離膜が優れた透過性能及び分離性能を発現するものと推測される。(l/d)の値は、3~20であることが好ましく、4~20であることがより好ましく、8~20であることがさらに好ましい。なかでも、4~20とすることで、特に高い透過性能と、高い分離性能とを両立することができ、8~20とすることで、非常に高い透過性と、高い分離性能とを両立することができる。 The value of the average value (l / d) a of l / d, which is the ratio of the length l to the depth d of each void, needs to be 2 to 40. When the value of (l / d) a is in this range, the voids are appropriately dispersed while reducing the substantial thickness of the separation membrane, so that the separation membrane exhibits excellent permeation performance and separation performance. It is presumed to be. The value of (l / d) a is preferably 3 to 20, more preferably 4 to 20, and even more preferably 8 to 20. Among them, setting it to 4 to 20 makes it possible to achieve both particularly high transmission performance and high separation performance, and setting it to 8 to 20 achieves both extremely high transparency and high separation performance. be able to.
 複数の空隙の平均深さDは、空隙を適度に分散させつつ、分離膜の実質的な厚みを低減するため、0.7~20μmである必要がある。複数の空隙の平均深さDは、0.8μm以上が好ましく、1.0μm以上がより好ましい。また、複数の空隙の平均深さDは、5.0μm以下が好ましく、2.0μm以下がより好ましい。 The average depth D of the plurality of voids needs to be 0.7 to 20 μm in order to appropriately disperse the voids and reduce the substantial thickness of the separation membrane. The average depth D of the plurality of voids is preferably 0.8 μm or more, more preferably 1.0 μm or more. The average depth D of the plurality of voids is preferably 5.0 μm or less, more preferably 2.0 μm or less.
 複数の空隙の平均長さLは、空隙を適度に分散させるため、3μm以上である必要がある。複数の空隙の平均長さLは4μm以上が好ましく、5μm以上がより好ましく、10μm以上であることがさらに好ましい。また、複数の空隙の平均長さLは50μm以下であることが好ましく、30μm以下であることがより好ましい。 The average length L of the plurality of voids needs to be 3 μm or more in order to appropriately disperse the voids. The average length L of the plurality of voids is preferably 4 μm or more, more preferably 5 μm or more, and further preferably 10 μm or more. Further, the average length L of the plurality of voids is preferably 50 μm or less, and more preferably 30 μm or less.
 複数の空隙の長手方向は、分離膜の長手方向に沿っていることが好ましい。複数の空隙の長手方向が略平行であることで、分離膜が複数の空隙の長手方向において曲げられても、応力が分散しやすく、かつ、分離膜の膜強度が高くなる。SEMを用いて2,000倍の倍率で断面Zを観察し、無作為に選択した30個の空隙における各空隙の長さlの方向と、膜の長手方向が成す角度を算出し、その算術平均値(以下、「複数の空隙の長手方向の角度」と呼ぶことがある。)が、20°以内である場合、複数の空隙の長手方向が、分離膜の長手方向に沿っていると判断することができる。上記複数の空隙の長手方向の角度は、15°以内であることが好ましく、10°以内であることがより好ましい。 The longitudinal direction of the plurality of voids is preferably along the longitudinal direction of the separation membrane. Since the longitudinal directions of the plurality of voids are substantially parallel, even if the separation membrane is bent in the longitudinal directions of the plurality of voids, the stress is easily dispersed and the membrane strength of the separation membrane is increased. The cross section Z was observed at a magnification of 2,000 times using SEM, the direction of the length l of each void in the 30 randomly selected voids and the angle formed by the longitudinal direction of the membrane were calculated, and the arithmetic was performed. When the average value (hereinafter, sometimes referred to as "angle in the longitudinal direction of a plurality of voids") is within 20 °, it is determined that the longitudinal direction of the plurality of voids is along the longitudinal direction of the separation membrane. can do. The longitudinal angle of the plurality of voids is preferably within 15 °, more preferably within 10 °.
 本発明の分離膜の、長手方向および膜厚方向に平行な断面における、複数の空隙の占有率は、分離膜の実質的な厚みをさらに抑制しながら、空隙を適度に分散させるため、15~55%であることが好ましく、18~50%であることがより好ましく、20~50%であることがさらに好ましく、30~50%であることが特に好ましく、40~50%であることが最も好ましい。ここで「複数の空隙の占有率」とは、SEMを用いて2,000倍の倍率で断面Zを観察した場合において、観察範囲全体の面積Sに占める、全ての空隙の面積の和であるSの割合をいう。 The occupancy of a plurality of voids in the cross section of the separation membrane of the present invention parallel to the longitudinal direction and the film thickness direction is 15 to 15 in order to appropriately disperse the voids while further suppressing the substantial thickness of the separation membrane. It is preferably 55%, more preferably 18 to 50%, even more preferably 20 to 50%, particularly preferably 30 to 50%, and most preferably 40 to 50%. preferable. Here, the "occupancy rate of a plurality of voids" is the sum of the areas of all the voids occupying the area S 0 of the entire observation range when the cross section Z is observed at a magnification of 2,000 times using SEM. It refers to the percentage of a certain S 1.
 分離膜の断面Zにおける、壁部の平均厚みは、分離膜の実質的な厚みをさらに抑制しながら、空隙を適度に分散させて良好な分離性能を得るため、0.7~5.0μmが好ましく、1.0~4.0μmがより好ましく、1.0~3.0μmがさらに好ましい。なかでも、1.0~3.0μmとすることで、特に優れた透過性能と、分離性能を両立することができる。ここで、中空糸膜の「壁部」とは、SEMを用いて2,000倍の倍率で断面Zを観察した場合における、空隙以外の部位をいう(図1)。また「壁部の平均厚み」とは、上記観察において、観察画像の中心を通過する、分離膜の長手方向に対し垂直な方向の直線を引き、さらにその両隣に、20μm間隔で互いに平行な直線を引いた場合において、これらの直線上におけるそれぞれの壁部の長さの、平均値をいう。 The average thickness of the wall portion in the cross section Z of the separation membrane is 0.7 to 5.0 μm in order to obtain good separation performance by appropriately dispersing the voids while further suppressing the substantial thickness of the separation membrane. Preferably, 1.0 to 4.0 μm is more preferable, and 1.0 to 3.0 μm is even more preferable. Above all, by setting it to 1.0 to 3.0 μm, it is possible to achieve both particularly excellent transmission performance and separation performance. Here, the "wall portion" of the hollow fiber membrane refers to a portion other than the void when the cross section Z is observed at a magnification of 2,000 times using an SEM (FIG. 1). In the above observation, the "average thickness of the wall portion" is a straight line that passes through the center of the observed image and is perpendicular to the longitudinal direction of the separation membrane, and is parallel to each other at intervals of 20 μm on both sides of the straight line. When subtracted, it means the average value of the length of each wall on these straight lines.
 (表面孔の形状)
 本発明の分離膜は、分離性能と透水性能とをさらに高めるために、少なくとも一方の表面において表面孔の平均孔径が0.050~0.500μmであることが好ましい。表面孔の平均孔径は0.080μm以上がより好ましく、0.090μm以上がさらに好ましく、0.095μm以上が特に好ましく、0.100μm以上が最も好ましい。また、表面孔の平均孔径は0.450μm以下がより好ましく、0.400μm以下がさらに好ましい。ここで、表面孔は、SEMを用いて10,000倍で分離膜の表面を撮像した画像における凹部をいう。なおここでいう「凹部」とは、SEMで観察した画像における暗部をいい、SEMで撮像した画像を、ImageJなどの画像解析ソフトを用いてノイズ除去、二値化(Huangの二値化)することによりその輪郭を抽出することができる。凹部の輪郭の具体的な抽出方法は、上述の通りである。詳細な観察方法は実施例の、(3)表面孔の形状に記載する。なお、表面孔の平均孔径を、表面孔径と呼ぶことがある。
(Shape of surface hole)
The separation membrane of the present invention preferably has an average pore diameter of 0.050 to 0.500 μm on at least one surface in order to further enhance the separation performance and the water permeability. The average pore diameter of the surface pores is more preferably 0.080 μm or more, further preferably 0.090 μm or more, particularly preferably 0.095 μm or more, and most preferably 0.100 μm or more. The average pore diameter of the surface pores is more preferably 0.450 μm or less, further preferably 0.400 μm or less. Here, the surface hole refers to a recess in an image obtained by imaging the surface of the separation membrane at a magnification of 10,000 using SEM. The "recess" here means a dark part in the image observed by SEM, and the image captured by SEM is noise-removed and binarized (Hang binarized) by using image analysis software such as ImageJ. This makes it possible to extract the outline. The specific method for extracting the contour of the recess is as described above. The detailed observation method is described in (3) Shape of surface hole of the example. The average pore diameter of the surface pores may be referred to as the surface pore diameter.
 本発明の分離膜は、少なくとも一方の表面において、表面孔の平均短径X、平均長径Y、および、長径と短径の比の平均値(y/x)の値が、特定範囲であることが好ましい。なお平均短径Xとは、各表面孔を楕円と見なした時の短径xの算術平均のことである。平均長径Yとは、各表面孔を楕円と見なした時の長径の算術平均のことである。平均値(y/x)とは、各表面孔の短径xを長径yで割った値の算術平均のことである。表面孔の平均短径X、平均長径Y、および、長径と短径の比の平均値(y/x)の値は、SEMを用いて10,000倍で分離膜の表面を撮像した画像を、ImageJなどの画像解析ソフトを用いて解析することで求められる。具体的には、ImageJのSet Measurementsにおいて、Fit Ellipseを選択した上で、上述と同様にして抽出した凹部について、ImageJのAnalyze Particlesコマンドを実行する。これにより、各表面孔の短径x、および、長径yが算出されるので、それぞれを算術平均することで、平均短径X、および、平均長径Yを求めることができる。さらに、各表面孔についてy/xを求め、算術平均することで、長径と短径の比の平均値(y/x)を求めることができる。 In the separation membrane of the present invention, the average minor axis X, the average major axis Y, and the average value (y / x) a of the ratio of the major axis to the minor axis of the surface holes are in a specific range on at least one surface. Is preferable. The average minor axis X is the arithmetic mean of the minor axis x when each surface hole is regarded as an ellipse. The average major axis Y is the arithmetic mean of the major axis when each surface hole is regarded as an ellipse. The average value (y / x) a is the arithmetic mean of the minor axis x of each surface hole divided by the major axis y. The average minor axis X, the average major axis Y, and the average value (y / x) a of the ratio of the major axis to the minor axis of the surface holes are images obtained by imaging the surface of the separation membrane at a magnification of 10,000 using an SEM. Is obtained by analyzing using image analysis software such as ImageJ. Specifically, in ImageJ's Set Measurements, after selecting Fit Ellipse, the ImageJ Analysis Particles command is executed for the recesses extracted in the same manner as described above. As a result, the minor axis x and the major axis y of each surface hole are calculated, and the average minor axis X and the average major axis Y can be obtained by arithmetically averaging each of them. Further, by obtaining y / x for each surface hole and performing an arithmetic mean, the average value (y / x) a of the ratio of the major axis to the minor axis can be obtained.
 前記表面孔の平均短径Xは、分離性能と透水性能とをさらに高めるために、0.030~0.250μmであることが好ましい。0.040~0.160μmであることがより好ましく、0.045~0.160μmであることがさらに好ましい。 The average minor diameter X of the surface holes is preferably 0.030 to 0.250 μm in order to further enhance the separation performance and the water permeability. It is more preferably 0.040 to 0.160 μm, and even more preferably 0.045 to 0.160 μm.
 前記表面孔の平均長径Yは、分離性能と透水性能とをさらに高めるために、0.060~0.450μmであることが好ましく、0.070~0.240μmであることがより好ましく、0.075~0.240μmであることがさらに好ましく、0.085~0.240μmであることが特に好ましい。 The average major axis Y of the surface holes is preferably 0.060 to 0.450 μm, more preferably 0.070 to 0.240 μm, in order to further enhance the separation performance and the water permeability. It is more preferably 075 to 0.240 μm, and particularly preferably 0.085 to 0.240 μm.
 前記表面孔の長径と短径の比の平均値(y/x)の値は、分離性能と透水性能とをさらに高めるために、1.00~1.50であることが好ましく、1.00~1.40であることがより好ましく、1.00~1.35であることがさらに好ましく、1.30~1.35であることが特に好ましい。 The average value (y / x) a of the ratio of the major axis to the minor axis of the surface hole is preferably 1.00 to 1.50 in order to further enhance the separation performance and the water permeability. It is more preferably 00 to 1.40, further preferably 1.00 to 1.35, and particularly preferably 1.30 to 1.35.
 (膜透過流束)
 本発明の分離膜は、50kPa、25℃における膜透過流束が、0.10~20m/m/hであることが好ましく、0.25~15m/m/hであることがより好ましく、0.30~10m/m/hであることがさらに好ましく、0.50~7.00m/m/hであることが特に好ましい。その算出方法については、実施例にて詳細に説明する。
(Membrane permeation flux)
The separation membrane of the present invention preferably has a membrane permeation flux of 0.10 to 20 m 3 / m 2 / h at 50 kPa and 25 ° C., preferably 0.25 to 15 m 3 / m 2 / h. It is more preferably 0.30 to 10 m 3 / m 2 / h, and particularly preferably 0.50 to 7.00 m 3 / m 2 / h. The calculation method will be described in detail in Examples.
 (分離性能)
 本発明の分離膜は、平均粒径0.2μmのポリスチレンラテックス粒子の分離性能が50%以上である事が好ましく、90%以上であることがより好ましく、95%以上である事がさらに好ましく、99%以上であることが特に好ましい。その算出方法については、実施例にて詳細に説明する。
(Separation performance)
In the separation membrane of the present invention, the separation performance of polystyrene latex particles having an average particle size of 0.2 μm is preferably 50% or more, more preferably 90% or more, further preferably 95% or more. It is particularly preferably 99% or more. The calculation method will be described in detail in Examples.
 (分離膜の製造方法)
 本発明の分離膜の製造方法は、次の(1)~(3)を備える。
(1)10~80質量%以下のセルロースエステルと、10~80質量%の構造形成剤と、2~20質量%の空隙形成剤と、を含む混合物を溶融混練して、樹脂組成物を得る、調製工程。
(2)40~200μmの径を有するフィルターを使用し、上記樹脂組成物を吐出口金から吐出して、30~200のドラフト比で樹脂成形物を得る、成形工程。
(3)上記樹脂成形物を、セルロースエステルに対する溶解度パラメータ距離Dが10~25の範囲の溶媒に浸漬させる、浸漬工程。
(Manufacturing method of separation membrane)
The method for producing a separation membrane of the present invention includes the following (1) to (3).
(1) A mixture containing 10 to 80% by mass or less of cellulose ester, 10 to 80% by mass of a structure forming agent, and 2 to 20% by mass of a void forming agent is melt-kneaded to obtain a resin composition. , Preparation process.
(2) A molding step of using a filter having a diameter of 40 to 200 μm and discharging the resin composition from a discharge port to obtain a resin molded product at a draft ratio of 30 to 200.
(3) The resin molded product, the solubility parameter distance D S for the cellulose ester is immersed in a solvent in the range of 10 to 25, the immersion step.
 次に、本発明の分離膜の製造方法を、分離膜が中空糸膜の場合を例に、具体的に説明する。
 本発明の分離膜を製造するための樹脂組成物を得る調製工程では、10~80質量%のセルロースエステルと、10~80質量%の構造形成剤と、2~20質量%の空隙形成剤とを含む混合物が溶融混練される。混合物は、15~75質量%のセルロースエステルと、20~75質量%の構造形成剤と、3~18質量%の空隙形成剤とを含むことが好ましく、20~60質量%のセルロースエステルと、25~70質量%の構造形成剤と、5~15質量%の空隙形成剤とを含むことがより好ましく、20~60質量%のセルロースエステルと、25~70質量%の構造形成剤と、10~15質量%の空隙形成剤とを含むことが特に好ましい。
Next, the method for producing the separation membrane of the present invention will be specifically described by taking the case where the separation membrane is a hollow fiber membrane as an example.
In the preparation step for obtaining the resin composition for producing the separation membrane of the present invention, 10 to 80% by mass of cellulose ester, 10 to 80% by mass of a structure forming agent, and 2 to 20% by mass of a void forming agent were used. The mixture containing is melt-kneaded. The mixture preferably contains 15 to 75% by mass of a cellulose ester, 20 to 75% by mass of a structure forming agent, and 3 to 18% by mass of a void forming agent, and 20 to 60% by mass of the cellulose ester. More preferably, it contains 25 to 70% by mass of a structure forming agent and 5 to 15% by mass of a void forming agent, 20 to 60% by mass of a cellulose ester, 25 to 70% by mass of a structure forming agent, and 10%. It is particularly preferable to contain ~ 15% by mass of the void forming agent.
 混合物の溶融混練に使用する装置については特に制限はなく、ニーダー、ロールミル、バンバリーミキサー、又は、単軸若しくは二軸押出機等の混合機を用いることができる。中でも、構造形成剤や可塑剤の分散性を良好とする観点から、二軸押出機の使用が好ましく、水分や低分子量物等の揮発物を除去できる観点から、ベント孔付きの二軸押出機の使用がより好ましい。また、フライト部とニーディングディスク部とを有するスクリューを備える二軸押出機を用いても構わないが、混練の強度を低くするため、フライト部のみで構成されるスクリューを備える二軸押出機を用いることが好ましい。 The apparatus used for melting and kneading the mixture is not particularly limited, and a kneader, a roll mill, a Banbury mixer, or a mixer such as a single-screw or twin-screw extruder can be used. Above all, it is preferable to use a twin-screw extruder from the viewpoint of improving the dispersibility of the structure-forming agent and the plasticizer, and from the viewpoint of being able to remove volatile substances such as water and low molecular weight substances, a twin-screw extruder with a vent hole is used. Is more preferred. Further, a twin-screw extruder having a screw having a flight portion and a kneading disc portion may be used, but in order to reduce the strength of kneading, a twin-screw extruder having a screw having only the flight portion may be used. It is preferable to use it.
 調製工程で得られた樹脂組成物は、一旦ペレット化し、再度溶融させて溶融製膜に用いても構わないし、直接口金に導いて溶融製膜に用いても構わない。一旦ペレット化する際には、ペレットを乾燥して、水分量を200ppm(質量基準)以下とした樹脂組成物を用いることが好ましい。水分量を200ppm(質量基準)以下とすることで、樹脂の劣化を抑制することができる。 The resin composition obtained in the preparation step may be pelletized once and melted again to be used for melt film formation, or may be directly led to a mouthpiece and used for melt film formation. When pelletizing once, it is preferable to dry the pellets and use a resin composition having a water content of 200 ppm (mass basis) or less. Deterioration of the resin can be suppressed by setting the water content to 200 ppm (mass standard) or less.
 成形工程は、調製工程で得られた樹脂組成物を、吐出口金から吐出することで樹脂成形物を形成する工程である。成形工程は例えば、中央部に気体の流路を配した二重環状ノズルを有する吐出口金から空気中に吐出して、冷却装置により冷却して樹脂成形物を形成する工程であっても構わない。 The molding step is a step of forming a resin molded product by discharging the resin composition obtained in the preparation step from the discharge port. The molding step may be, for example, a step of discharging into air from a discharge port having a double annular nozzle having a gas flow path in the center and cooling with a cooling device to form a resin molded product. Absent.
 予めフィルターを通過させた樹脂組成物を、吐出口金から吐出することが好ましい。l、Lおよび(l/d)の値を大きくし、かつ、空隙同士の結合を抑制するため、フィルターの孔径は40~200μmであることが好ましく、70~150μmであることがより好ましく、70~120μmであることがさらに好ましい。フィルターを樹脂組成物が通ることで、樹脂組成物に含まれる空隙形成剤が引き延ばされ、l、Lおよび(l/d)の値を大きくし、かつ、空隙同士の結合を抑制する効果が得られるものと推測される。 It is preferable to discharge the resin composition that has passed through the filter in advance from the discharge port. The pore size of the filter is preferably 40 to 200 μm, more preferably 70 to 150 μm, in order to increase the values of l, L and (l / d) a and suppress the bonding between voids. It is more preferably 70 to 120 μm. When the resin composition passes through the filter, the void forming agent contained in the resin composition is stretched, the values of l, L and (l / d) a are increased, and the binding between the voids is suppressed. It is presumed that the effect will be obtained.
 冷却装置により冷却された樹脂成形物すなわち中空糸は、巻取装置により巻き取られても構わない。この場合、巻取装置による(巻取速度)/(吐出口金からの吐出速度)で算出されるドラフト比の値は、l、Lおよび(l/d)の値を大きくし、かつ、分離膜の長手方向における壁部の平均厚みが過度に低下することを抑制するため、30~200であることが好ましく、50~150であることがより好ましく、100~150であることが特に好ましい。口金から吐出された樹脂組成物が、上記ドラフト比の条件で引き延ばされることにより、樹脂組成物に含まれる空隙形成剤が引き延ばされ、l、Lおよび(l/d)の値を大きくし、かつ、空隙同士の結合を抑制する効果が得られるものと推測される。分子量1000未満の低分子化合物50重量%以上と、ポリマーとを混合して実施される溶液製膜では、本発明のような高いドラフト比での紡糸は困難であり、空隙形成剤が十分に引き延ばされないため、このような効果を得ることは難しい。 The resin molded product or hollow fiber cooled by the cooling device may be wound by the winding device. In this case, the draft ratio values calculated by the winding device (winding speed) / (discharge speed from the discharge port) increase the values of l, L and (l / d) a , and also. In order to prevent the average thickness of the wall portion in the longitudinal direction of the separation membrane from being excessively lowered, it is preferably 30 to 200, more preferably 50 to 150, and particularly preferably 100 to 150. .. By stretching the resin composition discharged from the base under the above draft ratio conditions, the void forming agent contained in the resin composition is stretched, and the values of l, L and (l / d) a are set. It is presumed that the effect of increasing the size and suppressing the binding between the voids can be obtained. In solution film formation carried out by mixing 50% by weight or more of a low molecular weight compound having a molecular weight of less than 1000 and a polymer, spinning at a high draft ratio as in the present invention is difficult, and the void forming agent is sufficiently drawn. It is difficult to obtain such an effect because it is not extended.
 浸漬工程は、原料であるセルロースエステルに対する溶解度パラメータ距離Dが10~25の溶媒に、上記樹脂成形物を含浸させる工程である。この際、セルロースエステルと適度な親和性を有する溶媒又は混合溶媒を用いることで、樹脂の極度な膨潤や可塑化を抑制することができる。そのため、樹脂の形状を維持しながら、樹脂成形物に溶媒が浸透する。この際に、樹脂成形物において相分離が起きながら、可塑剤や構造形成剤が溶出していると推定される。溶媒の浸漬時間と温度とが長い又は高いほど、表面孔径が大きくなり、さらに、断面Zにおける空隙及び細孔の存在割合とサイズとが大きくなる傾向にある。本発明においては、セルロースエステルと親和性をある程度有する溶媒を選択することが好ましい。セルロースエステルと溶媒との親和性は、3次元ハンセン溶解度パラメータによって見積もることができる(非特許文献1)。具体的には、下記式(1)から求められる溶解度パラメータ距離Dが小さいほど、セルロースエステルに対して、溶媒の親和性が高い。 Immersion step, the solubility parameter distance D S to cellulose ester as a raw material is in a solvent 10-25, a step of impregnating the resin molded product. At this time, by using a solvent or a mixed solvent having an appropriate affinity for the cellulose ester, it is possible to suppress extreme swelling and plasticization of the resin. Therefore, the solvent permeates the resin molded product while maintaining the shape of the resin. At this time, it is presumed that the plasticizer and the structure-forming agent are eluted while phase separation occurs in the resin molded product. The longer or higher the immersion time and temperature of the solvent, the larger the surface pore diameter, and the larger the abundance ratio and size of the voids and pores in the cross section Z tend to be. In the present invention, it is preferable to select a solvent having a certain affinity with the cellulose ester. The affinity between the cellulose ester and the solvent can be estimated by the three-dimensional Hansen solubility parameter (Non-Patent Document 1). Specifically, the smaller solubility parameter distance D S obtained from the following equation (1), the cellulose ester, a high affinity for the solvent.
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
 ただし、δAd、δAp及びδAhは、セルロースエステルの溶解度パラメータの分散項、極性項及び水素結合項であり、δBd、δBp及びδBhは、溶媒又は混合溶媒の溶解度パラメータの分散項、極性項及び水素結合項である。混合溶媒の溶解度パラメータ(δMixture)については、下記式(2)により求めることができる。 However, δ Ad , δ Ap and δ Ah are the dispersion term, the polarity term and the hydrogen bond term of the solubility parameter of the cellulose ester, and δ Bd , δ Bp and δ Bh are the dispersion terms of the solubility parameter of the solvent or the mixed solvent. , Polarity term and hydrogen bond term. The solubility parameter (δ Mixture ) of the mixed solvent can be obtained by the following formula (2).
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000002
 
 ただし、φ、δは成分iの体積分率と溶解度パラメータであり、分散項、極性項及び水素結合項それぞれに成り立つ。ここで「成分iの体積分率」とは、混合前の全成分の体積の和に対する混合前の成分iの体積の比率をいう。溶媒の3次元ハンセン溶解度パラメータは、非特許文献1中に記載の値を用いた。記載のない溶媒パラメータについては、チャールズハンセンらによって開発されたソフト「Hansen Solubility Parameter in Practice」に収められている値を用いた。上記のソフト中にも記載がない溶媒やポリマーの3次元ハンセン溶解度パラメータは、上記のソフトを用いたハンセン球法により算出することができる。 However, φ i and δ i are volume fractions and solubility parameters of the component i, and hold for each of the dispersion term, the polarity term, and the hydrogen bond term. Here, the "volume fraction of the component i" means the ratio of the volume of the component i before mixing to the sum of the volumes of all the components before mixing. As the three-dimensional Hansen solubility parameter of the solvent, the value described in Non-Patent Document 1 was used. For the solvent parameters not described, the values contained in the software "Hansen Solubility Parameter in Practice" developed by Charles Hansen et al. Were used. The three-dimensional Hansen solubility parameter of a solvent or polymer not described in the above software can be calculated by the Hansen sphere method using the above software.
 本発明者らは、上記の溶解度パラメータ距離Dが10~25の溶媒に、上記樹脂成形物を含浸させることで、各空隙の深さdおよび複数の空隙の平均深さDが大きくなり、dおよびDが大きな膜が得られるという、予想しない知見を得た。そして、これにより、実質的な膜厚みを低減する効果がより顕著に得られることを見出した。このような効果が得られる理由は定かではないが、次のように推定される。すなわち、空隙形成剤はセルロースエステルと相溶しないので、成形工程の後、かつ、浸漬工程の前の段階では、セルロースエステル中に空隙形成剤は分散しており、浸漬工程において、セルロースエステルに対する溶解度パラメータ距離Dが10~25の溶媒によって、空隙形成剤が膨潤することで、dおよびDが大きな膜が得られると推定される。 The present inventors have found that the solvent having the above solubility parameter distance D S 10-25, by impregnating the resin molded product, average depth D of the depth d and a plurality of voids of the void is increased, We obtained the unexpected finding that large films with d and D can be obtained. Then, it was found that the effect of substantially reducing the film thickness can be obtained more remarkably. The reason why such an effect is obtained is not clear, but it is presumed as follows. That is, since the void forming agent is incompatible with the cellulose ester, the void forming agent is dispersed in the cellulose ester after the molding step and before the dipping step, and the solubility in the cellulose ester in the dipping step. It is presumed that the void-forming agent swells with a solvent having a parameter distance D s of 10 to 25 to obtain a film having a large d and D.
 前記浸漬工程における樹脂成形物の温度は50~80℃であることが好ましい。前記浸漬工程における樹脂成形物の温度を50~80℃とすると、驚くべきことに、断面Zの空隙は(l/d)は2~40であるが、表面孔の長径と短径の比の平均値(y/x)は1.0~1.5と低くなる、すなわち円形に近くなることを見出した。このようになる理由としては、次のように推定される。すなわち、樹脂成形物は、糸温度が50~80℃であることで、分子が比較的動きやすい状態となるが、この時、表面は内部に比べて特に分子が動きやすい状態になるので、浸漬工程で溶媒に浸漬し、可塑化がさらに促進されると、フィルター孔やドラフトによって引き延ばされていた構造形成剤が、表面においては元に戻り、円形状に近づくからであると推定される。 The temperature of the resin molded product in the dipping step is preferably 50 to 80 ° C. When the temperature of the resin molded product in the dipping step is 50 to 80 ° C., surprisingly, the voids in the cross section Z have (l / d) a of 2 to 40, but the ratio of the major axis to the minor axis of the surface hole. It was found that the average value (y / x) a of is as low as 1.0 to 1.5, that is, close to a circle. The reason for this is presumed as follows. That is, in the resin molded product, when the thread temperature is 50 to 80 ° C., the molecules are relatively easy to move, but at this time, the surface is in a state where the molecules are particularly easy to move as compared with the inside, so that the resin molded product is immersed. It is presumed that when the plasticizing is further promoted by immersing in a solvent in the process, the structure-forming agent stretched by the filter holes and the draft returns to the original shape on the surface and approaches a circular shape. ..
 本発明において、樹脂成形物を浸漬させる溶媒としては、Dが13~25となるような溶媒が好ましい。このような溶媒としては、Dが4~12となるような溶媒と、水との混合溶媒が好ましく、例えば、γ-ブチルラクトン(以下、γ-BL)、アセトン、アセトニトリル、1,4-ジオキサン、酢酸メチル及びテトラヒドロフランからなる群から選択される、少なくとも1種と、水との混合溶媒が挙げられる。Dが4~12となるような溶媒と、水との混合溶媒を用いることで、得られる分離膜の膜強度が良好なものとなる。 In the present invention, the solvent for immersing the resin molded product, a solvent such as D S of 13 to 25 preferred. As such solvent, a solvent such as D S is 4 to 12, a mixed solvent of water Preferably, for example, .gamma.-butyrolactone (hereinafter, gamma-BL), acetone, acetonitrile, 1,4 Examples thereof include a mixed solvent of water and at least one selected from the group consisting of dioxane, methyl acetate and tetrahydrofuran. And solvents such as D S is 4 to 12, by using a mixed solvent of water, the film strength of the separation membrane to be obtained becomes good.
 得られた分離膜はこのままでも使用できるが、使用する前に例えばアルコール含有水溶液又はアルカリ水溶液等によって膜の表面を親水化させることが好ましい。
 ここまでの工程を経ても空隙形成剤が残存している場合は、空隙形成剤を除去する工程を設けることが好ましい。空隙形成剤を除去する方法として、たとえば、セルロースエステルは溶解又は分解せず、空隙形成剤を溶解又は分解する溶液に浸漬させることが挙げられる。
The obtained separation membrane can be used as it is, but it is preferable to hydrophilize the surface of the membrane with, for example, an alcohol-containing aqueous solution or an alkaline aqueous solution before use.
If the void forming agent remains even after the steps up to this point, it is preferable to provide a step of removing the void forming agent. As a method for removing the void forming agent, for example, the cellulose ester is not dissolved or decomposed, but is immersed in a solution that dissolves or decomposes the void forming agent.
 以下に実施例を示して本発明をさらに具体的に説明するが、本発明はこれらにより何ら限定をされるものではない。 The present invention will be described in more detail with reference to Examples below, but the present invention is not limited thereto.
 [測定及び評価方法]
 実施例中の各特性値は次の方法で求めたものである。
 (1)セルロース混合エステルの平均置換度
 アセチル基及び他のアシル基がセルロースに結合したセルロース混合エステルの平均置換度の算出方法については下記のとおりである。
 80℃で8時間乾燥したセルロース混合エステル0.9gを秤量し、アセトン35mLとジメチルスルホキシド15mLとを加え溶解した後、さらにアセトン50mLを加えた。撹拌しながら0.5N-水酸化ナトリウム水溶液30mLを加え、2時間ケン化した。熱水50mLを加え、フラスコ側面を洗浄した後、フェノールフタレインを指示薬として0.5N-硫酸で滴定した。別に試料と同じ方法で空試験を行った。滴定が終了した溶液の上澄み液を100倍に希釈し、イオンクロマトグラフを用いて、有機酸の組成を測定した。測定結果とイオンクロマトグラフによる酸組成分析結果とから、下記式(3)~(5)により置換度を計算した。
 TA=(B-A)×F/(1000×W)  ・・・・・・(3)
 DSace=(162.14×TA)/[{1-(Mwace-(16.00+1.01))×TA}+{1-(Mwacy-(16.00+1.01))×TA}×(Acy/Ace)]  ・・・・・・(4)
 DSacy=DSace×(Acy/Ace)  ・・・・・・(5)
 TA:全有機酸量(mL)
  A:試料滴定量(mL)
  B:空試験滴定量(mL)
  F:硫酸の力価
  W:試料質量(g)
  DSace:アセチル基の平均置換度
  DSacy:他のアシル基の平均置換度
  Mwace:酢酸の分子量
  Mwacy:他の有機酸の分子量
  Acy/Ace:酢酸(Ace)と他の有機酸(Acy)とのモル比
  162.14:セルロースの繰り返し単位の分子量
  16.00:酸素の原子量
  1.01:水素の原子量
[Measurement and evaluation method]
Each characteristic value in the example was obtained by the following method.
(1) Average Degree of Substitution of Cellulose Mixed Ester The method for calculating the average degree of substitution of a cellulose mixed ester in which an acetyl group and other acyl groups are bonded to cellulose is as follows.
0.9 g of the cellulose mixed ester dried at 80 ° C. for 8 hours was weighed, 35 mL of acetone and 15 mL of dimethyl sulfoxide were added and dissolved, and then 50 mL of acetone was further added. 30 mL of 0.5 N-sodium hydroxide aqueous solution was added with stirring, and saponification was performed for 2 hours. After adding 50 mL of hot water and washing the side surface of the flask, titration was performed with 0.5 N-sulfuric acid using phenolphthalein as an indicator. Separately, a blank test was performed by the same method as the sample. The supernatant of the titrated solution was diluted 100-fold, and the composition of the organic acid was measured using an ion chromatograph. From the measurement results and the acid composition analysis results by ion chromatography, the degree of substitution was calculated by the following formulas (3) to (5).
TA = (BA) x F / (1000 x W) ... (3)
DSace = (162.14 × TA) / [{1- (Mwace- (16.00 + 1.01)) × TA} + {1- (Mwacy- (16.00 + 1.01)) × TA} × (Acy / Ace)] ・ ・ ・ ・ ・ ・ (4)
DSacy = DSace × (Acy / Ace) ・ ・ ・ ・ ・ ・ (5)
TA: Total organic acid amount (mL)
A: Sample titration (mL)
B: Blank test titration (mL)
F: Sulfuric acid titer W: Sample mass (g)
DSace: Average degree of substitution of acetyl group DSacy: Average degree of substitution of other acyl groups Mwace: Molecular weight of acetic acid Mwacy: Molecular weight of other organic acids Acy / Ace: Mol of acetic acid (Ace) and other organic acids (Acy) Ratio 162.14: Molecular weight of repeating unit of cellulose 16.00: Atomic weight of oxygen 1.01: Atomic weight of hydrogen
 (2)セルロースエステルの重量平均分子量(Mw)
 セルロースエステルの濃度が0.15質量%となるようにテトラヒドロフランに完全に溶解させ、GPC測定用試料とした。この試料を用い、下記の条件でGPC装置(Waters2690)を用いてGPC測定を行い、ポリスチレン換算により重量平均分子量(Mw)を求めた。
 カラム  :東ソー製TSK gel GMHHR-Hを2本連結
 検出器  :Waters2410 示差屈折計RI
 移動層溶媒:テトラヒドロフラン
 流速   :1.0mL/分
 注入量  :200μL
(2) Weight average molecular weight of cellulose ester (Mw)
It was completely dissolved in tetrahydrofuran so that the concentration of the cellulose ester was 0.15% by mass, and used as a sample for GPC measurement. Using this sample, GPC measurement was performed using a GPC device (Waters2690) under the following conditions, and the weight average molecular weight (Mw) was determined by polystyrene conversion.
Column: Two Tosoh TSK gel GMHHR-H connected Detector: Water2410 Differential refractometer RI
Moving layer Solvent: Tetrahydrofuran Flow rate: 1.0 mL / min Injection amount: 200 μL
 (3)表面孔の形状
 白金でスパッタリングをした分離膜の外表面を、SEMを用いて10,000倍の倍率で観察し、無作為に選択した50個の表面孔の孔径rを測定し、その算術平均値を表1、2中の表面孔径rとした。
 ここで各表面孔の孔径rは、表面孔の面積を画像処理により測定し、同面積の真円の孔を仮定して、下記式(6)より算出した。
 r=(4×A/π)0.5  ・・・・・・(6)
 A:孔の面積
なお、スパッタリング、および、SEMを用いた観察条件は次の通りである。
(スパッタリング条件)
 装置:株式会社日立ハイテク製(E-1010)
 蒸着時間:40秒
 電流値:20mA
(SEM条件)
 装置:株式会社日立ハイテク製(SU1510)
 加速電圧:5kV
 プローブ電流:30
 また、上記同様の観察条件で分離膜の外表面を観察し、上述した解析方法にて表面孔の平均短径X、平均長径Y、および、長径と短径の比の平均値(y/x)の値を求めた。
(3) Shape of surface pores The outer surface of the separation membrane sputtered with platinum was observed at a magnification of 10,000 times using SEM, and the pore diameters r of 50 randomly selected surface pores were measured. The arithmetic mean value was taken as the surface pore diameter r in Tables 1 and 2.
Here, the hole diameter r of each surface hole was calculated by the following formula (6), assuming that the area of the surface hole was measured by image processing and a perfect circular hole having the same area was assumed.
r = (4 x A / π) 0.5 ... (6)
A: Hole area The observation conditions using sputtering and SEM are as follows.
(Sputtering conditions)
Equipment: Hitachi High-Tech Co., Ltd. (E-1010)
Deposition time: 40 seconds Current value: 20mA
(SEM condition)
Equipment: Made by Hitachi High-Tech Co., Ltd. (SU1510)
Acceleration voltage: 5kV
Probe current: 30
Further, the outer surface of the separation membrane was observed under the same observation conditions as described above, and the average minor axis X, the average major axis Y, and the average value (y / x) of the ratio of the major axis to the minor axis of the surface holes were observed by the above-mentioned analysis method. ) was determined by the value of a.
 (4)中空糸膜の厚み
 中空糸膜を液体窒素で凍結した後、応力を加えて(必要に応じてカミソリ又はミクロトームを用いて)、径方向の断面が露出するように割断した。得られた断面を光学顕微鏡により観察して、無作為に選択した10箇所の厚みの平均値を、中空糸膜の厚み(膜厚)とした。
(4) Thickness of Hollow Fiber Membrane After freezing the hollow fiber membrane with liquid nitrogen, stress was applied (using a razor or a microtome as necessary), and the hollow fiber membrane was cut so as to expose the radial cross section. The obtained cross section was observed with an optical microscope, and the average value of the thicknesses of 10 randomly selected points was taken as the thickness (film thickness) of the hollow fiber membrane.
 (5)中空糸膜の外径
 上記(4)の断面を光学顕微鏡により観察して、無作為に選択した10箇所の外径の平均値を、それぞれ中空糸膜の外径とした。
(5) Outer Diameter of Hollow Fiber Membrane The cross section of the above (4) was observed with an optical microscope, and the average value of the outer diameters of 10 randomly selected points was taken as the outer diameter of the hollow fiber membrane.
 (6)中空糸膜の膜透過流束
 中空糸膜1本からなる有効長さ100mmの小型モジュールを作製した。この小型モジュールに、温度25℃、ろ過差圧16kPaの条件で、蒸溜水を外圧全ろ過で30分間にわたって送液し、得られた透過水量(m)を測定し、これを単位時間(h)及び単位膜面積(m)当たりの数値に換算し、さらに圧力(50kPa)換算して、純水の透過性能(単位=m/m/h)とした。
(6) Membrane Permeation Flux of Hollow Fiber Membrane A small module having an effective length of 100 mm made of one hollow fiber membrane was produced. Distilled water was sent to this small module under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa for 30 minutes by total external pressure filtration, and the obtained permeated water amount (m 3 ) was measured and measured for a unit time (h). ) And the value per unit film area (m 2 ), and further converted to pressure (50 kPa) to obtain the permeation performance of pure water (unit = m 3 / m 2 / h).
 (7)複数の空隙及び壁部についての測定
 分離膜を液体窒素で凍結した後、応力を加えて(必要に応じてカミソリ又はミクロトームを用いて)、分離膜の長手方向および膜厚方向に平行な断面である断面Zが露出するように割断した。続いて、白金でスパッタリングを行い断面Zに前処理を実施した後、SEMを用いて、視野中央部において両表面からの距離が等しくなるように視野を設定し、2,000倍の倍率で観察した。同様にして5視野分を観察し、各視野において空隙を30個ずつ無作為に抽出した後、複数の空隙の平均深さD(μm)と平均長さL(μm)及び各空隙のl/dの平均値(l/d)を算出し、さらに、複数の空隙の占有率(%)、壁部の平均厚み(μm)及び、複数の空隙の長手方向の角度(°)を算出した。なお、スパッタリング、および、SEMを用いた観察条件は次の通りである。
(スパッタリング条件)
 装置:株式会社日立ハイテク製(E-1010)
 蒸着時間:40秒
 電流値:20mA
(SEM条件)
 装置:株式会社日立ハイテク製(SU1510)
 加速電圧:5kV
 プローブ電流:30
(7) Measurement of multiple voids and walls After freezing the separation membrane in liquid nitrogen, stress is applied (using a razor or microtome as necessary), and the separation membrane is parallel to the longitudinal direction and the film thickness direction. It was cut so that the cross section Z, which is a smooth cross section, was exposed. Subsequently, after sputtering with platinum and pretreating the cross section Z, the field of view is set so that the distances from both surfaces are equal at the center of the field of view using SEM, and the field of view is observed at a magnification of 2,000. did. In the same manner, 5 visual fields were observed, and 30 voids were randomly extracted in each visual field, and then the average depth D (μm) and average length L (μm) of the plurality of voids and l / of each void. The average value (l / d) a of d was calculated, and further, the occupancy rate (%) of the plurality of voids, the average thickness of the wall portion (μm), and the longitudinal angles (°) of the plurality of voids were calculated. .. The observation conditions using sputtering and SEM are as follows.
(Sputtering conditions)
Equipment: Hitachi High-Tech Co., Ltd. (E-1010)
Deposition time: 40 seconds Current value: 20mA
(SEM condition)
Equipment: Made by Hitachi High-Tech Co., Ltd. (SU1510)
Acceleration voltage: 5kV
Probe current: 30
 (8)凹部の面積率
 上記(7)と同様にして分離膜を割断し、露出した断面Zを、SEMを用いて倍率5,000倍で観察し、凹部の面積率(凹部面積率)を算出した。
(8) Area ratio of recesses The separation membrane is cut in the same manner as in (7) above, and the exposed cross section Z is observed using SEM at a magnification of 5,000 times to determine the area ratio of the recesses (recess area ratio). Calculated.
 (9)分離性能
 上記(6)と同様にして、小型モジュールを作製した。この小型モジュールに、温度25℃、ろ過差圧16kPaの条件下で、濁質成分として平均粒径0.2μmのポリスチレンラテックス粒子(Magsphere社製)を20ppm含有する水溶液を外圧全ろ過で30分間にわたって送液し、供給水及び透過水それぞれの濁質成分濃度を、分光光度計(株式会社日立製作所製;U-3200)を用いて測定した波長234nmの紫外線吸収係数から算出し、下記式(7)より算出した。
 分離性能(%)=[1-2×(透過水の濁質成分濃度)/{(ろ過開始時の供給水の濁質成分濃度)+(ろ過終了時の供給水の濁質成分濃度)}]×100  ・・・・・・式(7)
(9) Separation performance A small module was produced in the same manner as in (6) above. An aqueous solution containing 20 ppm of polystyrene latex particles (manufactured by Magsphere) having an average particle size of 0.2 μm as a turbid component under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa was added to this small module over 30 minutes by external pressure total filtration. The turbidity component concentrations of the supplied water and the permeated water were calculated from the ultraviolet absorption coefficient with a wavelength of 234 nm measured using a spectrophotometer (manufactured by Hitachi, Ltd .; U-3200), and the following formula (7) ).
Separation performance (%) = [1-2 x (concentration of turbid component of permeated water) / {(concentration of turbid component of supply water at start of filtration) + (concentration of turbid component of supply water at end of filtration)} ] × 100 ・ ・ ・ ・ ・ ・ Equation (7)
 [セルロースエステル(A)]
 セルロースエステルとして、以下のものを用意した。
 セルロースエステル(A1)
 セルロース(コットンリンター)100質量部に、酢酸240質量部とプロピオン酸67質量部を加え、50℃で30分間混合した。混合物を室温まで冷却した後、氷浴中で冷却した無水酢酸172質量部と無水プロピオン酸168質量部をエステル化剤として、硫酸4質量部をエステル化触媒として加えて、150分間撹拌を行い、エステル化反応を行った。エステル化反応において、40℃を超える時は、水浴で冷却した。
 反応後、反応停止剤として酢酸100質量部と水33質量部との混合溶液を20分間かけて添加して、過剰の無水物を加水分解した。その後、酢酸333質量部と水100質量部を加えて、80℃で1時間加熱撹拌した。反応終了後、炭酸ナトリウム6質量部を含む水溶液を加えて、析出したセルロースアセテートプロピオネートを濾別し、続いて水で洗浄した後、60℃で4時間乾燥した。得られたセルロースアセテートプロピオネートのアセチル基及びプロピオニル基の平均置換度は各々1.9、0.7であり、重量平均分子量(Mw)は17.8万であった。
[Cellulose ester (A)]
The following were prepared as cellulose esters.
Cellulose ester (A1)
To 100 parts by mass of cellulose (cotton linter), 240 parts by mass of acetic acid and 67 parts by mass of propionic acid were added and mixed at 50 ° C. for 30 minutes. After cooling the mixture to room temperature, 172 parts by mass of acetic anhydride and 168 parts by mass of propionic anhydride cooled in an ice bath were added as an esterifying agent, and 4 parts by mass of sulfuric acid was added as an esterification catalyst, and the mixture was stirred for 150 minutes. An esterification reaction was carried out. In the esterification reaction, when it exceeded 40 ° C., it was cooled in a water bath.
After the reaction, a mixed solution of 100 parts by mass of acetic acid and 33 parts by mass of water was added as a reaction terminator over 20 minutes to hydrolyze the excess anhydride. Then, 333 parts by mass of acetic acid and 100 parts by mass of water were added, and the mixture was heated and stirred at 80 ° C. for 1 hour. After completion of the reaction, an aqueous solution containing 6 parts by mass of sodium carbonate was added, and the precipitated cellulose acetate propionate was filtered off, subsequently washed with water, and then dried at 60 ° C. for 4 hours. The average degree of substitution of the acetyl group and the propionyl group of the obtained cellulose acetate propionate was 1.9 and 0.7, respectively, and the weight average molecular weight (Mw) was 178,000.
 セルロースエステル(A2) : セルロースアセテートプロピオネート(アセチル基の平均置換度:0.2、プロピオニル基の平均置換度:2.5、重量平均分子量(Mw):18.5万) Cellulose ester (A2): Cellulose acetate propionate (average degree of substitution of acetyl group: 0.2, average degree of substitution of propionyl group: 2.5, weight average molecular weight (Mw): 185,000)
 [その他原料]
 その他原料として、以下のものを用意した。
 セルロースエステルの可塑剤(B) : ポリエチレングリコール(重量平均分子量(Mw)600)
 構造形成剤(C) : PVP/酢酸ビニル共重合体(PVP/酢酸ビニル=6/4(モル比)、重量平均分子量50,000)
 空隙形成剤(D) : ポリエチレングリコール(重量平均分子量(Mw)30万)
 酸化防止剤(E) : ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト
[Other raw materials]
The following were prepared as other raw materials.
Cellulose ester plasticizer (B): Polyethylene glycol (weight average molecular weight (Mw) 600)
Structure-forming agent (C): PVP / vinyl acetate copolymer (PVP / vinyl acetate = 6/4 (molar ratio), weight average molecular weight 50,000)
Void forming agent (D): Polyethylene glycol (weight average molecular weight (Mw) 300,000)
Antioxidant (E): Bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite
 (実施例1)
 セルロースエステル(A1)40質量%と、可塑剤(B)26.9質量%と、構造形成剤(C)30質量%と、空隙形成剤(D)3質量%と、酸化防止剤(E)0.1質量%と、を二軸押出機にて220℃で溶融混練し、均質化した後にペレット化して、樹脂組成物を得た。この樹脂組成物を80℃、8時間の条件で真空乾燥させた。
(Example 1)
40% by mass of cellulose ester (A1), 26.9% by mass of plasticizer (B), 30% by mass of structure forming agent (C), 3% by mass of void forming agent (D), and antioxidant (E). 0.1% by mass was melt-kneaded at 220 ° C. with a twin-screw extruder, homogenized and then pelletized to obtain a resin composition. This resin composition was vacuum dried at 80 ° C. for 8 hours.
 乾燥させた樹脂組成物を、フライト部のみで構成されるスクリューを備える二軸押出機に供給し、220℃で溶融混練した後に、紡糸温度220℃とした溶融紡糸パックへ導入して、吐出量10g/分の条件で、口金孔(二重円管タイプ、吐出孔径2.6mm、スリット幅0.35mm)を1ホール有する吐出口金の外側環状部より下方に紡出した。紡出した中空糸を冷却装置へ導き、25℃、風速1.5m/秒の冷却風によって冷却し、ドラフト比が30となるようにワインダーで巻き取った。ここで、溶融紡糸パック内のフィルターとしては、孔径(フィルター径)が200μmの金属フィルターを使用した。巻き取った中空糸(樹脂成形物)を30℃に加熱し、体積分率が40%のアセトン水溶液に1時間浸漬し、さらに、水に1時間以上浸漬して、可塑剤(B)、構造形成剤(C)及び空隙形成剤(D)を溶出させて、分離膜を得た。得られた分離膜の物性を、表1に示す。 The dried resin composition is supplied to a twin-screw extruder equipped with a screw consisting only of a flight portion, melt-kneaded at 220 ° C., and then introduced into a melt-spinning pack having a spinning temperature of 220 ° C. to discharge the amount. Under the condition of 10 g / min, the spinner was spun below the outer annular portion of the discharge mouthpiece having one mouthpiece hole (double circular tube type, discharge hole diameter 2.6 mm, slit width 0.35 mm). The spun hollow fiber was guided to a cooling device, cooled by a cooling air at 25 ° C. and a wind speed of 1.5 m / sec, and wound with a winder so that the draft ratio was 30. Here, as the filter in the molten spinning pack, a metal filter having a pore diameter (filter diameter) of 200 μm was used. The wound hollow fiber (resin molded product) is heated to 30 ° C., immersed in an aqueous acetone solution having a volume fraction of 40% for 1 hour, and further immersed in water for 1 hour or more to obtain a plasticizer (B) and a structure. The forming agent (C) and the void forming agent (D) were eluted to obtain a separation membrane. The physical characteristics of the obtained separation membrane are shown in Table 1.
 (実施例2~9及び比較例1~6)
 樹脂組成物の組成、製造条件をそれぞれ表1、2のように変更した以外は、実施例1と同様にして、分離膜を得た。得られた分離膜の物性を、表1及び表2に示した。なお、比較例1は空隙が観察されず、比較例2は糸切れにより紡糸できなかった。
(Examples 2 to 9 and Comparative Examples 1 to 6)
A separation membrane was obtained in the same manner as in Example 1 except that the composition and production conditions of the resin composition were changed as shown in Tables 1 and 2, respectively. The physical characteristics of the obtained separation membrane are shown in Tables 1 and 2. In Comparative Example 1, no voids were observed, and in Comparative Example 2, spinning was not possible due to yarn breakage.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1~9で得られた分離膜は、いずれも膜透過流束が0.1m/m/h以上、分離性能50%以上の値を有しており、高い膜透過流束と分離性能とを両立していた。一方で、比較例2は糸切れにより紡糸できず、分離膜を得られなかった。また、複数の空隙の形状が本発明の要件を満たさない比較例1、3~6の分離膜は、膜透過流束又は分離性能の少なくとも一方が低い値を示し、高い膜透過流束と分離性能との両立は実現できなかった。 The separation membranes obtained in Examples 1 to 9 all have a membrane permeation flux of 0.1 m 3 / m 2 / h or more and a separation performance of 50% or more, and have a high membrane permeation flux. It had both separation performance. On the other hand, in Comparative Example 2, spinning was not possible due to yarn breakage, and a separation membrane could not be obtained. Further, the separation membranes of Comparative Examples 1, 3 to 6 in which the shapes of the plurality of voids do not satisfy the requirements of the present invention show a low value in at least one of the membrane permeation flux and the separation performance, and are separated from the high membrane permeation flux. It was not possible to achieve both performance.
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2019年12月23日出願の日本特許出願(特願2019-231579)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on December 23, 2019 (Japanese Patent Application No. 2019-231579), the contents of which are incorporated herein by reference.
 本発明の分離膜は、海水、かん水、下水若しくは排水等から工業用水又は飲料水等を製造するための水処理用膜、人工腎臓や血漿分離等のための医療用膜、果汁濃縮等のための食品・飲料工業用膜、排気ガス又は炭酸ガス等を分離するためのガス分離膜、あるいは、燃料電池セパレータ等の電子工業用膜等に、好適に用いることができる。 The separation membrane of the present invention is a water treatment membrane for producing industrial water or drinking water from seawater, irrigation, sewage, drainage, etc., a medical membrane for artificial kidney, plasma separation, etc., for fruit juice concentration, etc. It can be suitably used as a membrane for the food / beverage industry, a gas separation membrane for separating exhaust gas, carbon dioxide gas, etc., or a membrane for the electronic industry such as a fuel cell separator.

Claims (10)

  1.  セルロースエステルを含有する分離膜であって、
     前記分離膜が、膜の長手方向および膜厚方向に平行な断面において、複数の空隙を有し、
     前記複数の空隙の平均深さDが、0.7~20μmであり、
     前記複数の空隙の平均長さLが、3μm以上であり、かつ、
     各空隙の長さlと深さdの比の平均値(l/d)の値が、2~40である、分離膜。
    Separation membrane containing cellulose ester
    The separation membrane has a plurality of voids in a cross section parallel to the longitudinal direction and the film thickness direction of the membrane.
    The average depth D of the plurality of voids is 0.7 to 20 μm.
    The average length L of the plurality of voids is 3 μm or more, and
    A separation membrane in which the average value (l / d) a of the ratio of the length l to the depth d of each void is 2 to 40.
  2.  前記断面における、前記複数の空隙の占有率が、15~55%である、請求項1に記載の分離膜。 The separation membrane according to claim 1, wherein the occupancy rate of the plurality of voids in the cross section is 15 to 55%.
  3.  前記断面における、壁部の平均厚みが、0.7~5.0μmである、請求項1又は2に記載の分離膜。 The separation membrane according to claim 1 or 2, wherein the average thickness of the wall portion in the cross section is 0.7 to 5.0 μm.
  4.  少なくとも一方の表面において、表面孔の平均孔径が、0.050~0.500μmである、請求項1~3のいずれか一項に記載の分離膜。 The separation membrane according to any one of claims 1 to 3, wherein the average pore diameter of the surface pores is 0.050 to 0.500 μm on at least one surface.
  5.  少なくとも一方の表面において、表面孔の平均短径Xが、0.030~0.250μmであり、前記表面孔の平均長径Yが、0.060~0.450μmであり、長径と短径の比の平均値(y/x)の値が、1.00~1.50である、請求項1~4のいずれか一項に記載の分離膜。 On at least one surface, the average minor axis X of the surface holes is 0.030 to 0.250 μm, and the average major axis Y of the surface holes is 0.060 to 0.450 μm, which is the ratio of the major axis to the minor axis. The separation membrane according to any one of claims 1 to 4, wherein the average value (y / x) of a is 1.00 to 1.50.
  6.  前記複数の空隙の長手方向が、前記分離膜の長手方向に沿っている、請求項1~5のいずれか一項に記載の分離膜。 The separation membrane according to any one of claims 1 to 5, wherein the longitudinal direction of the plurality of voids is along the longitudinal direction of the separation membrane.
  7.  前記セルロースエステルとして、セルロースアセテートプロピオネート及び/又はセルロースアセテートブチレートを含有する、請求項1~6のいずれか一項に記載の分離膜。 The separation membrane according to any one of claims 1 to 6, which contains cellulose acetate propionate and / or cellulose acetate butyrate as the cellulose ester.
  8.  中空糸形状である、請求項1~7のいずれか一項に記載の分離膜。 The separation membrane according to any one of claims 1 to 7, which has a hollow fiber shape.
  9.  (1)10~80質量%のセルロースエステルと、10~80質量%の構造形成剤と、2~20質量%の空隙形成剤と、を含有する混合物を溶融混練して、樹脂組成物を得る、調製工程と、
     (2)40~200μmの孔径を有するフィルターを使用し、前記樹脂組成物を吐出口金から吐出して、30~200のドラフト比で樹脂成形物を得る、成形工程と、
     (3)前記樹脂成形物を、セルロースエステルに対する溶解度パラメータ距離Dが10~25の範囲の溶媒に浸漬させる、浸漬工程と、を備える、分離膜の製造方法。
    (1) A mixture containing 10 to 80% by mass of cellulose ester, 10 to 80% by mass of a structure forming agent, and 2 to 20% by mass of a void forming agent is melt-kneaded to obtain a resin composition. , Preparation process and
    (2) A molding step of using a filter having a pore size of 40 to 200 μm and discharging the resin composition from a discharge port to obtain a resin molded product at a draft ratio of 30 to 200.
    (3) said resin molded product is immersed in a solvent in the range of solubility parameters distance D S 10-25 to cellulose ester, and a dipping process, a manufacturing method of the separation membrane.
  10.  前記浸漬工程における前記樹脂成形物の温度が50~80℃である、請求項9に記載の分離膜の製造方法。 The method for producing a separation membrane according to claim 9, wherein the temperature of the resin molded product in the dipping step is 50 to 80 ° C.
PCT/JP2020/048296 2019-12-23 2020-12-23 Separation membrane and method for producing same WO2021132397A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021503174A JP7107429B2 (en) 2019-12-23 2020-12-23 Separation membrane and its manufacturing method
KR1020227020845A KR20220112792A (en) 2019-12-23 2020-12-23 Separator and its manufacturing method
CN202080089607.5A CN114828992B (en) 2019-12-23 2020-12-23 Separation membrane and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019231579 2019-12-23
JP2019-231579 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021132397A1 true WO2021132397A1 (en) 2021-07-01

Family

ID=76574329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048296 WO2021132397A1 (en) 2019-12-23 2020-12-23 Separation membrane and method for producing same

Country Status (4)

Country Link
JP (1) JP7107429B2 (en)
KR (1) KR20220112792A (en)
CN (1) CN114828992B (en)
WO (1) WO2021132397A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515664A (en) * 2000-12-11 2004-05-27 ダウ グローバル テクノロジーズ インコーポレイティド Thermal bonding cloth and manufacturing method thereof
JP2010100950A (en) * 2008-10-22 2010-05-06 Toray Ind Inc Polylactic acid monofilament and woven fabric using the same
JP2015057522A (en) * 2013-08-09 2015-03-26 東レ株式会社 Elastic monofilament
JP2015518926A (en) * 2012-05-24 2015-07-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Novel composition for producing polysaccharide fibers
WO2016159333A1 (en) * 2015-03-31 2016-10-06 東レ株式会社 Separation membrane
JP2019111476A (en) * 2017-12-22 2019-07-11 東レ株式会社 Separation membrane, and manufacturing method of separation membrane

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5471790B2 (en) 2010-05-06 2014-04-16 東洋紡株式会社 Hollow fiber membrane
JP6303910B2 (en) 2014-01-21 2018-04-04 東洋紡株式会社 Hollow fiber membrane for ultrafiltration
CN204485669U (en) * 2015-02-09 2015-07-22 武汉恒通源环境工程技术有限公司 A kind of filter membrane
US20180280893A1 (en) * 2015-09-30 2018-10-04 Toray Industries, Inc. Separation film, cellulose-based resin composition, and method for producing separation film
KR102321324B1 (en) * 2017-03-30 2021-11-02 도레이 카부시키가이샤 Separator and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515664A (en) * 2000-12-11 2004-05-27 ダウ グローバル テクノロジーズ インコーポレイティド Thermal bonding cloth and manufacturing method thereof
JP2010100950A (en) * 2008-10-22 2010-05-06 Toray Ind Inc Polylactic acid monofilament and woven fabric using the same
JP2015518926A (en) * 2012-05-24 2015-07-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Novel composition for producing polysaccharide fibers
JP2015057522A (en) * 2013-08-09 2015-03-26 東レ株式会社 Elastic monofilament
WO2016159333A1 (en) * 2015-03-31 2016-10-06 東レ株式会社 Separation membrane
JP2019111476A (en) * 2017-12-22 2019-07-11 東レ株式会社 Separation membrane, and manufacturing method of separation membrane

Also Published As

Publication number Publication date
JPWO2021132397A1 (en) 2021-07-01
CN114828992B (en) 2024-05-17
KR20220112792A (en) 2022-08-11
CN114828992A (en) 2022-07-29
JP7107429B2 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
JP7120006B2 (en) separation membrane
JP6729563B2 (en) Composite hollow fiber membrane and method for producing the same
US20200246759A1 (en) Separation film, cellulose-based resin composition, and method for producing separation film
JP6699172B2 (en) Separation membrane
WO2021132397A1 (en) Separation membrane and method for producing same
JP7078171B2 (en) Separation membrane and method for manufacturing the separation membrane
EP3603779A1 (en) Separating membrane and method for manufacturing separating membrane
WO2018021545A1 (en) Separation membrane and production process therefor
JP2017177040A (en) Cellulose ester hollow fiber membrane and method for producing the same
JP2021186748A (en) Separation film and manufacturing method for the same
JP2022039262A (en) Separation membrane and method for manufacture thereof
JP2021003684A (en) Separation film and manufacturing method thereof
JP2018069149A (en) Separation membrane, and manufacturing method thereof
JP2020049417A (en) Separation film manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021503174

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227020845

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906708

Country of ref document: EP

Kind code of ref document: A1