WO2021132206A1 - Self-cleaning agent - Google Patents

Self-cleaning agent Download PDF

Info

Publication number
WO2021132206A1
WO2021132206A1 PCT/JP2020/047823 JP2020047823W WO2021132206A1 WO 2021132206 A1 WO2021132206 A1 WO 2021132206A1 JP 2020047823 W JP2020047823 W JP 2020047823W WO 2021132206 A1 WO2021132206 A1 WO 2021132206A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
copper
self
cleaning agent
responsive photocatalyst
Prior art date
Application number
PCT/JP2020/047823
Other languages
French (fr)
Japanese (ja)
Inventor
幸介 藤田
俊介 河中
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2021567469A priority Critical patent/JPWO2021132206A1/ja
Priority to CN202080087441.3A priority patent/CN114829007B/en
Publication of WO2021132206A1 publication Critical patent/WO2021132206A1/en
Priority to JP2023108711A priority patent/JP7533710B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/20Water-insoluble oxides

Definitions

  • the present invention relates to a self-cleaning agent having a stain decomposition function.
  • Antifouling processing is a processing that makes it difficult for stains and dirt to adhere, and makes it easier to remove dirty things by washing, wiping, etc.
  • the antifouling treatment method is roughly classified into, for example, a water-repellent oil-repellent system and a water-absorbing oil-absorbing system.
  • the water-repellent oil-repellent system contains a fluorine compound, and a method for decomposing stains is photocatalytic oxidation.
  • a method using titanium is known (see, for example, Patent Document 1).
  • the photocatalytic titanium oxide has a problem that it requires a strong energy source called ultraviolet light and that the strong oxidizing action causes deterioration of the processed product and the base material itself.
  • the problem to be solved by the present invention is to provide a self-cleaning agent capable of decomposing dirt components under room light.
  • the present invention provides a self-cleaning agent containing a visible light responsive photocatalyst.
  • the self-cleaning agent of the present invention dirt components can be decomposed under practical room light. Further, by using a specific photocatalyst as the visible light responsive photocatalyst, a self-cleaning agent having further excellent antibacterial and antiviral properties can be obtained. Further, when a specific one is used as the visible light responsive photocatalyst, the handling is good even if the concentration of titanium oxide is increased.
  • the self-cleaning agent of the present invention preferably contains a visible light responsive photocatalyst in order to solve the problems of the present invention.
  • Examples of the visible light-responsive photocatalyst include a composition containing titanium oxide (a), and a metal compound is supported on titanium oxide (a) from the viewpoint of obtaining even more excellent antiviral properties. Is preferably mentioned.
  • titanium oxide (a) for example, rutile-type titanium oxide (a1), anatase-type titanium oxide, brookite-type titanium oxide, or the like can be used. These titanium oxides may be used alone or in combination of two or more. Among these, rutile-type titanium oxide (a1) is preferably contained because it has excellent photocatalytic activity in the visible light region.
  • the content rate (rutileization rate) of the rutile-type titanium oxide (a1) is preferably 15 mol% or more, more preferably 50 mol% or more, and further preferably 90 mol% or more.
  • any titanium oxide produced by either the vapor phase method or the liquid phase method can be used, but it is preferable to use the titanium oxide produced by the liquid phase method.
  • the liquid phase method and the gas phase method are generally known as the method for producing the titanium oxide.
  • the liquid phase method is a method for obtaining titanium oxide by hydrolyzing or neutralizing titanyl sulfate obtained from a liquid in which a raw material ore such as ilmenite ore is dissolved.
  • the vapor phase method is a method for obtaining titanium oxide by a vapor phase reaction between titanium tetrachloride obtained by chlorinating a raw material ore such as rutile ore and oxygen.
  • ilmenite ore may be used as the raw material ore for titanium oxide, or titanium slag obtained by metallizing the ilmenite ore to increase the titanium purity may be used.
  • the titanium oxide preferably contains a metal element such as zirconium or niobium. ..
  • the content ratio (Zr / Ti ratio) of zirconium to titanium 100 in titanium oxide is preferably 0.03 or more, more preferably 0.04 or more, still more preferably 0.05 or more, and preferably 0.8 or more. Below, it is more preferably 0.5 or less, still more preferably 0.3 or less. These upper and lower limits may be any combination.
  • the content ratio (Zr / Ti ratio) of zirconium to titanium 100 in titanium oxide is preferably 0.03 to 0.8, more preferably 0.04 to 0.5, and further preferably 0.05 to 0.3. is there.
  • the content ratio (Nb / Ti ratio) of niobium to titanium 100 in titanium oxide is preferably 0.05 or more, more preferably 0.08 or more, still more preferably 0.1 or more, and preferably 0.8 or more. Below, it is more preferably 0.5 or less, still more preferably 0.3 or less. These upper and lower limits may be any combination.
  • the content ratio (Nb / Ti ratio) of niobium to titanium 100 in titanium oxide is preferably 0.05 to 0.8, more preferably 0.08 to 0.5, and further preferably 0.10 to 0.3. is there. If the titanium oxide is within the above range, the dispersibility in the solvent is high, and the mixture can be handled well even if the concentration of titanium oxide is increased.
  • the content ratio of the metal element (zirconium and / or niobium) to titanium 100 in the visible light responsive photocatalyst is the same as the above range.
  • titanium oxide substantially contains a metal element means that the content ratio of the metal element in titanium oxide is 0.02 or more with respect to titanium 100.
  • Titanium oxide substantially containing a metal element (zirconium and / or niobium) in the present invention has a small cohesive force with respect to the specific surface area (BET value) caused by the primary particles and can suppress the viscosity of the mixed solution. It is possible, and it is presumed that it contributes to the improvement of the concentration of titanium oxide.
  • the BET specific surface area of the titanium oxide (a) is preferably in the range of 1 to 200 m 2 / g from the viewpoint of obtaining even more excellent antiviral properties and visible light responsiveness, and is preferably 3 to 100 m 2 / g.
  • the range of 4 to 70 m 2 / g is more preferable, the range of 8 to 50 m 2 / g is more preferable, and the productivity of the self-cleaning agent can be further increased.
  • the range is preferably 9.5 m 2 / g.
  • the method for measuring the BET specific surface area of the rutile-type titanium oxide (a1) will be described in Examples described later.
  • the primary particle size of the titanium oxide (a) is preferably in the range of 0.01 to 0.5 ⁇ m, preferably 0.03 to 0.5 ⁇ m, from the viewpoint of obtaining even more excellent antiviral properties and visible light responsiveness.
  • the range of 0.35 ⁇ m is more preferable, and the range of 0.06 to 0.35 ⁇ m is even more preferable.
  • the primary particle size of the titanium oxide (a) is measured by a method of directly measuring the size of the primary particles from an electron micrograph using a transmission electron microscope (TEM). .. Specifically, the minor axis diameter and the major axis diameter of each titanium oxide primary particle are measured, the average is taken as the particle size of the primary particle, and then for 100 or more titanium oxide particles, each particle is used. The volume (weight) of was obtained by approximating it to a cube having the obtained particle size, and the volume average particle size was defined as the average primary particle size.
  • the visible light responsive photocatalyst further improves the photocatalytic activity in the visible light region and easily exhibits an appropriate activity capable of decomposing dirt components under practical indoor light, and thus titanium oxide (a).
  • titanium oxide (a) With a metal compound supported (titanium oxide composition) is preferably used.
  • a transition metal such as copper, iron, tungsten, zirconium, or molybdenum
  • other metals such as zinc, aluminum, antimony, and tin can be used depending on the desired physical properties.
  • the titanium oxide an inorganic compound may be supported depending on desired physical properties, and for example, silicon may be used.
  • a copper compound is preferable, and a divalent copper compound is more preferable, from the viewpoint of obtaining even more excellent antibacterial property, antiviral property, and stain component degrading activity.
  • a method for supporting the metal compound on the titanium oxide (a) a known method can be used.
  • Examples of the method for supporting the divalent copper compound on the titanium oxide (a) include titanium oxide (a) containing rutile-type titanium oxide (a1), a divalent copper compound raw material (b), water (c), and water (c). , A method having a mixing step (i) of the alkaline substance (d) can be mentioned.
  • the concentration of the titanium oxide (a) in the mixing step (i) is preferably in the range of 3 to 40% by mass.
  • a mixing step with good handling can be performed even if the concentration of titanium oxide (a) is increased.
  • the mixing step can be satisfactorily performed even when the concentration of the titanium oxide (a) exceeds 25% by mass and is 40% by mass or less.
  • divalent copper compound raw material (b) for example, a divalent copper inorganic compound, a divalent copper organic compound, or the like can be used.
  • divalent copper inorganic compound examples include copper sulfate, copper nitrate, copper iodide, copper perchlorate, copper oxalate, copper tetraborate, copper ammonium sulfate, copper amide sulfate, copper ammonium chloride, and copper pyrophosphate.
  • Inorganic acid salts of divalent copper such as copper carbonate; halides of divalent copper such as copper chloride, copper fluoride, copper bromide; copper oxide, copper sulfide, azulite, malakite, copper azide and the like can be used. .. These compounds may be used alone or in combination of two or more.
  • divalent copper organic compound examples include copper formate, copper acetate, copper propionate, copper butyrate, copper valerate, copper caproate, copper enanthate, copper caprylate, copper pelargonate, copper capricate, and mistinic acid.
  • the divalent copper compound raw material (b) it is preferable to use the one represented by the following general formula (1) among the above-mentioned ones.
  • CuX 2 (1) In formula (1), X represents a halogen atom, CH 3 COO, NO 3 or (SO 4 ) 1/2 .
  • the X in the formula (1) is more preferably a halogen atom, and even more preferably a chlorine atom.
  • the amount of the divalent copper compound raw material (b) used in the mixing step (i) is preferably in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the titanium oxide (a).
  • the range of 0.1 to 15 parts by mass is more preferable, and the range of 0.3 to 10 parts by mass is further preferable.
  • the water (c) is the solvent in the mixing step (i), and water alone is preferable, but other solvents may be contained if necessary.
  • the other solvent for example, an alcohol solvent such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol; a ketone solvent such as methyl ethyl ketone and methyl isobutyl ketone; dimethylformamide, tetrahydrofuran and the like can be used. These solvents may be used alone or in combination of two or more.
  • alkaline substance (d) for example, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, tetrabutylammonium hydroxide, triethylamine, trimethylamine, ammonia, a basic surfactant and the like can be used, and water can be used. It is preferable to use sodium oxide.
  • the alkaline substance (d) is preferably added as a solution from the viewpoint of easy control of the reaction, and the concentration of the alkaline solution to be added is preferably in the range of 0.1 to 5 mol / L.
  • the range of 3 to 4 mol / L is more preferable, and the range of 0.5 to 3 mol / L is even more preferable.
  • the titanium oxide (a), the divalent copper compound raw material (b), the water (c), and the alkaline substance (d) may be mixed.
  • examples thereof include a method in which titanium oxide (a) is mixed and stirred as necessary, then a divalent copper compound raw material (b) is mixed and stirred, and then an alkaline substance (d) is added and stirred. ..
  • the divalent copper compound derived from the divalent copper compound raw material (b) is supported on the titanium oxide (a).
  • the total stirring time in the mixing step (i) is, for example, 5 to 120 minutes, preferably 10 to 60 minutes.
  • Examples of the temperature in the mixing step (i) include a range of room temperature to 70 ° C.
  • the titanium oxide (a), the divalent copper compound raw material (b), and water (c) are mixed and stirred from the viewpoint of good support of the divalent copper compound on the titanium oxide (a), and then alkaline.
  • the pH of the mixture after mixing and stirring the substance (d) is preferably in the range of 8 to 11, and more preferably in the range of 9.0 to 10.5.
  • the mixed liquid can be separated as a solid content.
  • the method for performing the separation include filtration, sedimentation separation, centrifugation, evaporation drying and the like, but filtration is preferable.
  • the separated solid content may then be washed with water, crushed, classified, or the like, if necessary.
  • the divalent copper compound derived from the divalent copper compound raw material (b) supported on the titanium oxide (a) can be more firmly bonded to the solid content.
  • the heat treatment temperature is preferably in the range of 150 to 600 ° C, more preferably in the range of 250 to 450 ° C.
  • the heat treatment time is preferably 1 to 10 hours, more preferably 2 to 5 hours.
  • a titanium oxide composition containing titanium oxide in which a divalent copper compound is supported on titanium oxide (a) can be obtained.
  • the amount of the divalent copper compound supported on the titanium oxide (a) is in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the titanium oxide (a). It is preferable from the viewpoint of photocatalytic activity including.
  • the amount of the divalent copper compound carried can be adjusted by adjusting the amount of the divalent copper compound raw material (b) used in the mixing step (i). The method for measuring the amount of the divalent copper compound supported will be described in Examples described later.
  • Examples of the above-mentioned embodiment include kneading into fibers and the like, a spray agent, and a coating agent.
  • Examples of the method of kneading into the fibers and the like include a method of kneading fibers such as polyester and the self-cleaning agent using an extruder or the like and spinning them.
  • spray agent examples include the self-cleaning agent and a mixture of solvents such as water and alcohol.
  • the coating agent examples include the self-cleaning agent, a solvent such as water and alcohol, and a mixture of a binder resin and the like.
  • a binder resin for example, an acrylic resin, a urethane resin, a phenol resin, a polyester resin, an epoxy resin or the like can be used. These binder resins may be used alone or in combination of two or more.
  • the dirt component can be decomposed under practical indoor light in the aspect of the organic material such as fiber and the inorganic material such as slate plate. Further, by using a specific photocatalyst as the visible light responsive photocatalyst, a self-cleaning agent having further excellent antibacterial and antiviral properties can be obtained.
  • the self-cleaning agent according to the present invention is excellent in antiviral property, antibacterial property, safety to human body, heat resistance, weather resistance, and water resistance.
  • Preparation Example 2 A titanium oxide composition was obtained in the same manner as in Preparation Example 1 except that the amount of copper (ii) chloride dihydrate used was changed from 8 parts by mass to 3.3 parts by mass in Preparation Example 1. Moreover, the change test of the titanium oxide concentration was carried out in the same manner as in Preparation Example 1.
  • a titanium oxide composition was obtained in the same manner as in Preparation Example 1 except that the type of titanium oxide was changed to the titanium oxide in Preparation Example 1. Moreover, the change test of the titanium oxide concentration was carried out in the same manner as in Preparation Example 1.
  • a titanium oxide composition was obtained in the same manner as in Preparation Example 1 except that the type of titanium oxide was changed to the titanium oxide in Preparation Example 1. Moreover, the change test of the titanium oxide concentration was carried out in the same manner as in Preparation Example 1.
  • the titanium oxide composition was prepared in the same manner as in Preparation Example 1 except that the type of titanium oxide was changed to the titanium oxide and the amount of water used was changed from 900 parts by mass to 4,000 parts by mass. Obtained. Moreover, the change test of the titanium oxide concentration was carried out in the same manner as in Preparation Example 1.
  • Preparation Example 6 A titanium oxide composition was obtained in the same manner as in Preparation Example 5 except that the amount of copper (ii) chloride dihydrate used was changed from 8 parts by mass to 3.3 parts by mass in Preparation Example 5. Moreover, the change test of the titanium oxide concentration was carried out in the same manner as in Preparation Example 1.
  • a titanium oxide composition was obtained in the same manner as in Preparation Example 5 except that the type of titanium oxide was changed to the titanium oxide in Preparation Example 5. Moreover, the change test of the titanium oxide concentration was carried out in the same manner as in Preparation Example 1.
  • a titanium oxide composition was obtained in the same manner as in Preparation Example 5 except that the type of titanium oxide was changed to the titanium oxide in Preparation Example 5. Moreover, the change test of the titanium oxide concentration was carried out in the same manner as in Preparation Example 1.
  • a titanium oxide composition was obtained in the same manner as in Preparation Example 5 except that the type of titanium oxide was changed to the titanium oxide in Preparation Example 5. Moreover, the change test of the titanium oxide concentration was carried out in the same manner as in Preparation Example 1.
  • titanium oxide As shown in Preparation Examples 1 to 4, if titanium oxide is obtained by the liquid phase method, it can be stably mixed even if the concentration of titanium oxide (a) in the mixture in the mixing step (i) is increased, and it has antiviral properties. It was found that an excellent antiviral agent can be efficiently produced.
  • Example 1 25 parts by mass of the titanium oxide composition obtained in Adjustment Example 1, 73.5 parts by mass of water, and 1.5 parts by mass of a dispersant (“DISPERBIK 190” manufactured by Big Chemie) were dispersed with a sand grinder to obtain an aqueous slurry. It was.
  • the stain component (A) (0.5 parts by mass of oil red, 49.75 parts by mass of ethanol, and 49.75 parts by mass of oleic acid) was added dropwise to the obtained sample using a micropipette, and 500 lux was added.
  • the a * value was measured with a colorimeter (“CR-200 D65 light source” manufactured by Konica Minolta Co., Ltd.) 1 hour (0 days later), 1 day and 2 days after the dropping.
  • Example 2 In Example 1, the a * value was measured in the same manner as in Example 1 except that the stain component (A) was changed to the stain component (B) (chili oil manufactured by S & B Co., Ltd.). In addition, ⁇ a * was obtained by the difference from Comparative Example 4.
  • Example 3 In Example 1, the stain component (A) was changed to the stain component (C) (1 part by mass of S & B curry powder granules and 99 parts by mass of ethanol) in the same manner as in Example 1. The a * value was measured. In addition, ⁇ a * was obtained by the difference from Comparative Example 6.
  • Example 4 In Example 1, the a * value was measured in the same manner as in Example 1 except that the cotton broad cloth was changed to a slate plate (manufactured by Nozawa Corporation). In addition, ⁇ a * was obtained by the difference from Comparative Example 8.
  • Example 1 The a * value was measured in the same manner as in Example 1 except that the stain component (A) was directly dropped onto the cotton broad cloth used in Example 1. Further, this a * value was used as a reference for the amount of color change ( ⁇ a *) of Example 1, Comparative Example 2, and Comparative Example 3.
  • Comparative Example 4 In Comparative Example 1, the a * value was measured in the same manner as in Comparative Example 1 except that the stain component (A) was changed to the stain component (B). Further, this a * value was used as a reference for the amount of color change ( ⁇ a *) in Example 2 and Comparative Example 5.
  • Comparative Example 5 In Comparative Example 2, the a * value was measured in the same manner as in Comparative Example 2 except that the stain component (A) was changed to the stain component (B).
  • Comparative Example 6 In Comparative Example 1, the a * value was measured in the same manner as in Comparative Example 1 except that the stain component (A) was changed to the stain component (C). Further, this a * value was used as a reference for the amount of color change ( ⁇ a *) in Example 3 and Comparative Example 7.
  • Comparative Example 7 In Comparative Example 2, the a * value was measured in the same manner as in Comparative Example 2 except that the stain component (A) was changed to the stain component (C).
  • Comparative Example 9 In Comparative Example 2, the a * value was measured in the same manner as in Comparative Example 2 except that a slate plate (manufactured by Nozawa Corporation) was used instead of the cotton broad cloth.
  • the stain decomposition effect was determined by the difference ⁇ a * based on the a * value of the comparative example in which only the stain component was dropped on the base material (cotton broad cloth, slate plate).
  • the amount of color change is evaluated from ⁇ a * after n days and ⁇ a * at the initial stage (after 0 days), and the more the amount of color change becomes negative, the more the dye, which is a stain component, is decomposed.
  • the self-cleaning agent of the present invention has an excellent stain decomposition function under room light.
  • Comparative Examples 1 to 9 did not contain a visible light responsive photocatalyst, but were inferior in stain decomposability under room light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention addresses the problem of providing a self-cleaning agent by which dirty components can be decomposed under indoor light. The present invention provides a self-cleaning agent characterized by containing a visible-light-responsive photocatalyst. As the visible-light-responsive photocatalyst, a photocatalyst in which a metal compound is supported on titanium oxide (a) is preferable. The titanium oxide (a) preferably contains rutile-type titanium oxide (a1). The metal compound is preferably a divalent copper compound. According to this self-cleaning agent, in the aspects of an organic material such as a fiber and an inorganic material such as a slate plate, dirty components can be decomposed under practical indoor light. Moreover, a self-cleaning agent having excellent antibacterial properties and antiviral properties as well can be obtained by using a specific photocatalyst as the visible-light-responsive photocatalyst.

Description

セルフクリーニング剤Self-cleaning agent
 本発明は、汚れ分解機能を有するセルフクリーニング剤に関する。 The present invention relates to a self-cleaning agent having a stain decomposition function.
 防汚加工は、シミや汚れを付着しにくくしたり、汚れたものを洗濯、拭き取り等で除去しやすくするための加工である。前記防汚加工の手法としては、例えば、撥水撥油系と吸水吸油系とに大別され、撥水撥油系はフッ素化合物を含むものや、また汚れを分解する手法としては、光触媒酸化チタンを用いる方法が知られている(例えば、特許文献1を参照。)。 Antifouling processing is a processing that makes it difficult for stains and dirt to adhere, and makes it easier to remove dirty things by washing, wiping, etc. The antifouling treatment method is roughly classified into, for example, a water-repellent oil-repellent system and a water-absorbing oil-absorbing system. The water-repellent oil-repellent system contains a fluorine compound, and a method for decomposing stains is photocatalytic oxidation. A method using titanium is known (see, for example, Patent Document 1).
 しかしながら、前記光触媒酸化チタンは、紫外光という強いエネルギー源が必要である点と、その強い酸化作用により、加工物や基材自体の劣化を招いてしまうという課題を有していた。 However, the photocatalytic titanium oxide has a problem that it requires a strong energy source called ultraviolet light and that the strong oxidizing action causes deterioration of the processed product and the base material itself.
特開2014-163030号公報Japanese Unexamined Patent Publication No. 2014-163030
 本発明が解決しようとする課題は、室内光の下で汚れ成分を分解できるセルフクリーニング剤を提供することである。 The problem to be solved by the present invention is to provide a self-cleaning agent capable of decomposing dirt components under room light.
 本発明は、可視光応答型光触媒を含有することを特徴とするセルフクリーニング剤を提供するものである。 The present invention provides a self-cleaning agent containing a visible light responsive photocatalyst.
 本発明のセルフクリーニング剤によれば、実用的な室内光の下で、汚れ成分を分解することができる。また、前記可視光応答型光触媒として、特定のものを用いることで、更に抗菌性、及び、抗ウイルス性にも優れたセルフクリーニング剤を得ることができる。また、前記可視光応答型光触媒は、特定のものを用いると、酸化チタンの濃度を高めても取扱いが良好である。 According to the self-cleaning agent of the present invention, dirt components can be decomposed under practical room light. Further, by using a specific photocatalyst as the visible light responsive photocatalyst, a self-cleaning agent having further excellent antibacterial and antiviral properties can be obtained. Further, when a specific one is used as the visible light responsive photocatalyst, the handling is good even if the concentration of titanium oxide is increased.
 本発明のセルフクリーニング剤は、本発明の課題を解決するうえで、可視光応答型光触媒を含有することが好ましい。 The self-cleaning agent of the present invention preferably contains a visible light responsive photocatalyst in order to solve the problems of the present invention.
 前記可視光応答型光触媒としては、例えば、酸化チタン(a)を含む組成物が挙げられ、より一層優れた抗ウイルス性が得られる点から、酸化チタン(a)に金属化合物が担持されたものが好ましく挙げられる。 Examples of the visible light-responsive photocatalyst include a composition containing titanium oxide (a), and a metal compound is supported on titanium oxide (a) from the viewpoint of obtaining even more excellent antiviral properties. Is preferably mentioned.
 前記酸化チタン(a)としては、例えば、ルチル型酸化チタン(a1)、アナターゼ型酸化チタン、ブルッカイト型酸化チタン等を用いることができる。これらの酸化チタンは単独で用いても2種以上を併用してもよい。これらの中でも、優れた可視光領域での光触媒活性を有する点から、ルチル型酸化チタン(a1)を含むことが好ましい。 As the titanium oxide (a), for example, rutile-type titanium oxide (a1), anatase-type titanium oxide, brookite-type titanium oxide, or the like can be used. These titanium oxides may be used alone or in combination of two or more. Among these, rutile-type titanium oxide (a1) is preferably contained because it has excellent photocatalytic activity in the visible light region.
 前記前記ルチル型酸化チタン(a1)の含有率(ルチル化率)としては、より一層優れた明所及び暗所における抗ウイルス性、明所における有機化合物分解性、及び、可視光応答性が得られる点から、15モル%以上であることが好ましく、50モル%以上あることがより好ましく、90モル%以上が更に好ましい。 As the content rate (rutileization rate) of the rutile-type titanium oxide (a1), even more excellent antiviral properties in bright and dark places, organic compound decomposability in bright places, and visible light responsiveness can be obtained. From this point of view, it is preferably 15 mol% or more, more preferably 50 mol% or more, and further preferably 90 mol% or more.
 本発明においては、前記酸化チタンとしては、気相法及び液相法いずれの方法で製造されたものでも用いることができるが、液相法により製造されたものを用いることが好ましい。 In the present invention, as the titanium oxide, any titanium oxide produced by either the vapor phase method or the liquid phase method can be used, but it is preferable to use the titanium oxide produced by the liquid phase method.
 前記酸化チタンの製造方法としては、一般的に、液相法と気相法とが知られている。前記液相法とは、イルメナイト鉱などの原料鉱石を溶解した液から得られる硫酸チタニルを、加水分解又は中和して酸化チタンを得る方法である。また、気相法とは、ルチル鉱などの原料鉱石を塩素化して得られる四塩化チタンと、酸素との気相反応により酸化チタンを得る方法である。 The liquid phase method and the gas phase method are generally known as the method for producing the titanium oxide. The liquid phase method is a method for obtaining titanium oxide by hydrolyzing or neutralizing titanyl sulfate obtained from a liquid in which a raw material ore such as ilmenite ore is dissolved. The vapor phase method is a method for obtaining titanium oxide by a vapor phase reaction between titanium tetrachloride obtained by chlorinating a raw material ore such as rutile ore and oxygen.
 本発明において酸化チタンの原料鉱石としてはイルメナイト鉱石を用いてもよいし、イルメナイト鉱石を冶金処理してチタン純度を高めたチタンスラグを用いてもよい。
 前記酸化チタンは、ジルコニウム、ニオブなどの金属元素を含むことが好ましい。。
In the present invention, ilmenite ore may be used as the raw material ore for titanium oxide, or titanium slag obtained by metallizing the ilmenite ore to increase the titanium purity may be used.
The titanium oxide preferably contains a metal element such as zirconium or niobium. ..
 酸化チタンにおけるチタン100に対するジルコニウムの含有比(Zr/Ti比)は、好ましくは0.03以上、より好ましくは0.04以上、さらに好ましくは0.05以上であり、また、好ましくは0.8以下、より好ましくは0.5以下、さらに好ましくは0.3以下である。これらの上限及び下限はいずれの組み合わせでもよい。酸化チタンにおけるチタン100に対するジルコニウムの含有比(Zr/Ti比)は、好ましくは0.03~0.8、より好ましくは0.04~0.5、さらに好ましくは0.05~0.3である。酸化チタンにおけるチタン100に対するニオブの含有比(Nb/Ti比)は、好ましくは0.05以上、より好ましくは0.08以上、さらに好ましくは0.1以上であり、また、好ましくは0.8以下、より好ましくは0.5以下、さらに好ましくは0.3以下である。これらの上限及び下限はいずれの組み合わせでもよい。酸化チタンにおけるチタン100に対するニオブの含有比(Nb/Ti比)は、好ましくは0.05~0.8、より好ましくは0.08~0.5、さらに好ましくは0.10~0.3である。上記範囲内の酸化チタンであれば、溶媒への分散性が高く酸化チタンの濃度を高めても混合液の取扱いが良好である。上記範囲内の酸化チタンで得られた可視光応答型光触媒は、可視光応答型光触媒におけるチタン100に対する金属元素(ジルコニウム及び/又はニオブ)の含有比が上記範囲と同じになる。 The content ratio (Zr / Ti ratio) of zirconium to titanium 100 in titanium oxide is preferably 0.03 or more, more preferably 0.04 or more, still more preferably 0.05 or more, and preferably 0.8 or more. Below, it is more preferably 0.5 or less, still more preferably 0.3 or less. These upper and lower limits may be any combination. The content ratio (Zr / Ti ratio) of zirconium to titanium 100 in titanium oxide is preferably 0.03 to 0.8, more preferably 0.04 to 0.5, and further preferably 0.05 to 0.3. is there. The content ratio (Nb / Ti ratio) of niobium to titanium 100 in titanium oxide is preferably 0.05 or more, more preferably 0.08 or more, still more preferably 0.1 or more, and preferably 0.8 or more. Below, it is more preferably 0.5 or less, still more preferably 0.3 or less. These upper and lower limits may be any combination. The content ratio (Nb / Ti ratio) of niobium to titanium 100 in titanium oxide is preferably 0.05 to 0.8, more preferably 0.08 to 0.5, and further preferably 0.10 to 0.3. is there. If the titanium oxide is within the above range, the dispersibility in the solvent is high, and the mixture can be handled well even if the concentration of titanium oxide is increased. In the visible light responsive photocatalyst obtained from titanium oxide within the above range, the content ratio of the metal element (zirconium and / or niobium) to titanium 100 in the visible light responsive photocatalyst is the same as the above range.
 酸化チタンが金属元素(ジルコニウム及び/又はニオブ)を実質的に含むとは、酸化チタンにおける金属元素の含有比がチタン100に対して0.02以上であることを意味する。
 本発明における金属元素(ジルコニウム及び/又はニオブ)を実質的に含む酸化チタンは、1次粒子に起因する比表面積(BET値)に対して、凝集力は少なく混合液の粘度を抑制することが可能であり、酸化チタンの濃度向上に貢献していると推察される。
The fact that titanium oxide substantially contains a metal element (zirconium and / or niobium) means that the content ratio of the metal element in titanium oxide is 0.02 or more with respect to titanium 100.
Titanium oxide substantially containing a metal element (zirconium and / or niobium) in the present invention has a small cohesive force with respect to the specific surface area (BET value) caused by the primary particles and can suppress the viscosity of the mixed solution. It is possible, and it is presumed that it contributes to the improvement of the concentration of titanium oxide.
 前記酸化チタン(a)のBET比表面積としては、より一層優れた抗ウイルス性、及び、可視光応答性が得られる点から、1~200m/gの範囲が好ましく、3~100m/gの範囲がより好ましく、4~70m/gの範囲がより好ましく、8~50m/gの範囲が更に好ましく、セルフクリーニング剤の生産性をより一層高めることができる点から、7.5~9.5m/gの範囲であることが好ましい。なお、前記ルチル型酸化チタン(a1)のBET比表面積の測定方法は、後述する実施例にて記載する。 The BET specific surface area of the titanium oxide (a) is preferably in the range of 1 to 200 m 2 / g from the viewpoint of obtaining even more excellent antiviral properties and visible light responsiveness, and is preferably 3 to 100 m 2 / g. The range of 4 to 70 m 2 / g is more preferable, the range of 8 to 50 m 2 / g is more preferable, and the productivity of the self-cleaning agent can be further increased. The range is preferably 9.5 m 2 / g. The method for measuring the BET specific surface area of the rutile-type titanium oxide (a1) will be described in Examples described later.
 前記酸化チタン(a)の1次粒子径としては、より一層優れた抗ウイルス性、及び、可視光応答性が得られる点から、0.01~0.5μmの範囲が好ましく、0.03~0.35μmの範囲がより好ましく0.06~0.35μmの範囲がさらに好ましい。なお、前記酸化チタン(a)の1次粒子径の測定方法は、透過型電子顕微鏡(TEM)を使用して、電子顕微鏡写真から一次粒子の大きさを直接計測する方法で測定した値を示す。具体的には、個々の酸化チタンの1次粒子の短軸径と長軸径を計測し、平均をその1次粒子の粒子径とし、次に100個以上の酸化チタン粒子について、それぞれの粒子の体積(重量)を、求めた粒子径の立方体と近似して求め、体積平均粒径を平均1次粒子径とした。  The primary particle size of the titanium oxide (a) is preferably in the range of 0.01 to 0.5 μm, preferably 0.03 to 0.5 μm, from the viewpoint of obtaining even more excellent antiviral properties and visible light responsiveness. The range of 0.35 μm is more preferable, and the range of 0.06 to 0.35 μm is even more preferable. The primary particle size of the titanium oxide (a) is measured by a method of directly measuring the size of the primary particles from an electron micrograph using a transmission electron microscope (TEM). .. Specifically, the minor axis diameter and the major axis diameter of each titanium oxide primary particle are measured, the average is taken as the particle size of the primary particle, and then for 100 or more titanium oxide particles, each particle is used. The volume (weight) of was obtained by approximating it to a cube having the obtained particle size, and the volume average particle size was defined as the average primary particle size.
 また、前記可視光応答型光触媒としては、可視光領域における光触媒活性を一層向上し、実用的な室内光の下で、汚れ成分を分解できる適度な活性を発現しやすい点から、酸化チタン(a)に金属化合物が担持されたもの(酸化チタン組成物)を用いることが好ましい。 Further, the visible light responsive photocatalyst further improves the photocatalytic activity in the visible light region and easily exhibits an appropriate activity capable of decomposing dirt components under practical indoor light, and thus titanium oxide (a). ) With a metal compound supported (titanium oxide composition) is preferably used.
 金属化合物の金属としては、例えば、銅、鉄、タングステン、ジルコニウム、モリブデン等の遷移金属を用いることができる。金属化合物の金属としては、所望の物性に応じて他にも、亜鉛、アルミニウム、アンチモン、スズ等の金属を用いることができる。酸化チタンは、所望の物性に応じて無機化合物を担持してもよく、例えばケイ素を用いてもよい。これらの中でも、より一層優れた抗菌性、抗ウイルス性、及び汚れ成分解活性が得られる点から、銅化合物が好ましく、2価銅化合物がより好ましい。
 前記酸化チタン(a)への金属化合物の担持方法としては、公知の手法を用いることができる。
As the metal of the metal compound, for example, a transition metal such as copper, iron, tungsten, zirconium, or molybdenum can be used. As the metal of the metal compound, other metals such as zinc, aluminum, antimony, and tin can be used depending on the desired physical properties. As the titanium oxide, an inorganic compound may be supported depending on desired physical properties, and for example, silicon may be used. Among these, a copper compound is preferable, and a divalent copper compound is more preferable, from the viewpoint of obtaining even more excellent antibacterial property, antiviral property, and stain component degrading activity.
As a method for supporting the metal compound on the titanium oxide (a), a known method can be used.
 次に、最も好ましい態様である、酸化チタン(a)に2価銅化合物を担持する方法について説明する。 Next, a method of supporting the divalent copper compound on titanium oxide (a), which is the most preferable embodiment, will be described.
 前記酸化チタン(a)に2価銅化合物を担持する方法としては、例えば、ルチル型酸化チタン(a1)を含む酸化チタン(a)、2価銅化合物原料(b)、水(c)、及び、アルカリ性物質(d)の混合工程(i)を有する方法が挙げられる。 Examples of the method for supporting the divalent copper compound on the titanium oxide (a) include titanium oxide (a) containing rutile-type titanium oxide (a1), a divalent copper compound raw material (b), water (c), and water (c). , A method having a mixing step (i) of the alkaline substance (d) can be mentioned.
 前記混合工程(i)における前記酸化チタン(a)の濃度としては、3~40質量%の範囲が好ましい。なお、本発明においては、液相法により製造された酸化チタン(a)を用いた場合には、酸化チタン(a)の濃度を高めても取扱いの良好な混合工程を行うことができ、具体的には、前記酸化チタン(a)の濃度が、25質量%を超えて40質量%以下の範囲でも良好に混合工程を行うことができる。 The concentration of the titanium oxide (a) in the mixing step (i) is preferably in the range of 3 to 40% by mass. In the present invention, when titanium oxide (a) produced by the liquid phase method is used, a mixing step with good handling can be performed even if the concentration of titanium oxide (a) is increased. Specifically, the mixing step can be satisfactorily performed even when the concentration of the titanium oxide (a) exceeds 25% by mass and is 40% by mass or less.
 前記2価銅化合物原料(b)としては、例えば、2価銅無機化合物、2価銅有機化合物等を用いることができる。 As the divalent copper compound raw material (b), for example, a divalent copper inorganic compound, a divalent copper organic compound, or the like can be used.
 前記2価銅無機化合物としては、例えば、硫酸銅、硝酸銅、沃素酸銅、過塩素酸銅、シュウ酸銅、四ホウ酸銅、硫酸アンモニウム銅、アミド硫酸銅、塩化アンモニウム銅、ピロリン酸銅、炭酸銅等の2価銅の無機酸塩;塩化銅、フッ化銅、臭化銅等の2価銅のハロゲン化物;酸化銅、硫化銅、アズライト、マラカイト、アジ化銅などを用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。 Examples of the divalent copper inorganic compound include copper sulfate, copper nitrate, copper iodide, copper perchlorate, copper oxalate, copper tetraborate, copper ammonium sulfate, copper amide sulfate, copper ammonium chloride, and copper pyrophosphate. Inorganic acid salts of divalent copper such as copper carbonate; halides of divalent copper such as copper chloride, copper fluoride, copper bromide; copper oxide, copper sulfide, azulite, malakite, copper azide and the like can be used. .. These compounds may be used alone or in combination of two or more.
 前記2価銅有機化合物としては、例えば、蟻酸銅、酢酸銅、プロピオン酸銅、酪酸銅、吉草酸銅、カプロン酸銅、エナント酸銅、カプリル酸銅、ペラルゴン酸銅、カプリン酸銅、ミスチン酸銅、パルミチン酸銅、マルガリン酸銅、ステアリン酸銅、オレイン酸銅、乳酸銅、リンゴ酸銅、クエン酸銅、安息香酸銅、フタル酸銅、イソフタル酸銅、テレフタル酸銅、サリチル酸銅、メリト酸銅、シュウ酸銅、マロン酸銅、コハク酸銅、グルタル酸銅、アジピン酸銅、フマル酸銅、グリコール酸銅、グリセリン酸銅、グルコン酸銅、酒石酸銅、アセチルアセトン銅、エチルアセト酢酸銅、イソ吉草酸銅、β-レゾルシル酸銅、ジアセト酢酸銅、ホルミルコハク酸銅、サリチルアミン酸銅、ビス(2-エチルヘキサン酸)銅、セバシン酸銅、ナフテン酸銅、オキシン銅、アセチルアセトン銅、エチルアセト酢酸銅、トリフルオロメタンスルホン酸銅、フタロシアニン銅、銅エトキシド、銅イソプロポキシド、銅メトキシド、ジメチルジチオカルバミン酸銅等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。 Examples of the divalent copper organic compound include copper formate, copper acetate, copper propionate, copper butyrate, copper valerate, copper caproate, copper enanthate, copper caprylate, copper pelargonate, copper capricate, and mistinic acid. Copper, copper palmitate, copper margarate, copper stearate, copper oleate, copper lactate, copper malate, copper citrate, copper benzoate, copper phthalate, copper isophthalate, copper terephthalate, copper salicylate, melitonic acid Copper, copper oxalate, copper malonate, copper succinate, copper glutarate, copper adipate, copper fumarate, copper glycolate, copper glycerate, copper gluconate, copper tartrate, acetylacetone copper, ethylacetate acetate, isokichi Copper herbate, copper β-resolcylate, copper diacetacetate, copper formylsuccinate, copper salicylamine, copper bis (2-ethylhexanoic acid), copper sebacate, copper naphthenate, oxine copper, acetylacetone copper, copper ethylacetate acetate , Copper trifluoromethanesulfonate, copper phthalocyanine, copper ethoxydo, copper isopropoxide, copper methoxydo, copper dimethyldithiocarbamate and the like can be used. These compounds may be used alone or in combination of two or more.
 前記2価銅化合物原料(b)としては、前記したものの中でも、下記一般式(1)で示されるものを用いることが好ましい。
 CuX  (1)
(式(1)において、Xは、ハロゲン原子、CHCOO、NO、又は、(SO1/2を示す。)
As the divalent copper compound raw material (b), it is preferable to use the one represented by the following general formula (1) among the above-mentioned ones.
CuX 2 (1)
(In formula (1), X represents a halogen atom, CH 3 COO, NO 3 or (SO 4 ) 1/2 .)
 前記式(1)におけるXとしては、ハロゲン原子であることがより好ましく、塩素原子が更に好ましい。 The X in the formula (1) is more preferably a halogen atom, and even more preferably a chlorine atom.
 前記混合工程(i)における前記2価銅化合物原料(b)の使用量としては、前記酸化チタン(a)100質量部に対して、0.01~20質量部の範囲であることが好ましく、0.1~15質量部の範囲がより好ましく、0.3~10質量部の範囲が更に好ましい。 The amount of the divalent copper compound raw material (b) used in the mixing step (i) is preferably in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the titanium oxide (a). The range of 0.1 to 15 parts by mass is more preferable, and the range of 0.3 to 10 parts by mass is further preferable.
 前記水(c)は、混合工程(i)における溶媒であり、水単独が好ましいが、必要に応じてその他の溶媒を含んでいてもよい。前記その他の溶媒としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール等のアルコール溶媒;メチルエチルケトン、メチルイソブチルケトン等のケトン溶媒;ジメチルホルムアミド、テトラヒドロフラン等を用いることができる。これらの溶媒は単独で用いても2種以上を併用してもよい。 The water (c) is the solvent in the mixing step (i), and water alone is preferable, but other solvents may be contained if necessary. As the other solvent, for example, an alcohol solvent such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol; a ketone solvent such as methyl ethyl ketone and methyl isobutyl ketone; dimethylformamide, tetrahydrofuran and the like can be used. These solvents may be used alone or in combination of two or more.
 前記アルカリ性物質(d)としては、例えば、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムハイドロオキサイド、テトラブチルアンモニウムヒドロキシド、トリエチルアミン、トリメチルアミン、アンモニア、塩基性界面活性剤等を用いることができ、水酸化ナトリウムを用いることが好ましい。 As the alkaline substance (d), for example, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, tetrabutylammonium hydroxide, triethylamine, trimethylamine, ammonia, a basic surfactant and the like can be used, and water can be used. It is preferable to use sodium oxide.
 前記アルカリ性物質(d)は、反応を制御しやすい点から、溶液として添加するのが好ましく、添加するアルカリ溶液の濃度としては、0.1~5mol/Lの範囲であることが好ましく、0.3~4mol/Lの範囲がより好ましく、0.5~3mol/Lの範囲が更に好ましい。 The alkaline substance (d) is preferably added as a solution from the viewpoint of easy control of the reaction, and the concentration of the alkaline solution to be added is preferably in the range of 0.1 to 5 mol / L. The range of 3 to 4 mol / L is more preferable, and the range of 0.5 to 3 mol / L is even more preferable.
 前記混合工程(i)は、前記酸化チタン(a)、2価銅化合物原料(b)、水(c)、及び、アルカリ性物質(d)を混合すればよく、例えば、まず水(c)に酸化チタン(a)を混合するとともに必要に応じて撹拌し、次いで、2価銅化合物原料(b)を混合し、撹拌し、その後、アルカリ性物質(d)を添加して撹拌する方法が挙げられる。この混合工程(i)により、前記2価銅化合物原料(b)由来の2価銅化合物が前記酸化チタン(a)に担持することとなる。 In the mixing step (i), the titanium oxide (a), the divalent copper compound raw material (b), the water (c), and the alkaline substance (d) may be mixed. Examples thereof include a method in which titanium oxide (a) is mixed and stirred as necessary, then a divalent copper compound raw material (b) is mixed and stirred, and then an alkaline substance (d) is added and stirred. .. By this mixing step (i), the divalent copper compound derived from the divalent copper compound raw material (b) is supported on the titanium oxide (a).
 前記混合工程(i)における全体の撹拌時間としては、例えば、5~120分間が挙げられ、好ましくは10~60分間である。混合工程(i)時における温度としては、例えば、室温~70℃の範囲が挙げられる。 The total stirring time in the mixing step (i) is, for example, 5 to 120 minutes, preferably 10 to 60 minutes. Examples of the temperature in the mixing step (i) include a range of room temperature to 70 ° C.
 酸化チタン(a)への2価銅化合物の担持が良好である点から、前記酸化チタン(a)、2価銅化合物原料(b)、及び、水(c)を混合・撹拌し、その後アルカリ性物質(d)を混合・撹拌した後の混合物のpHとしては、好ましくは8~11の範囲であり、より好ましくは9.0~10.5の範囲である。 The titanium oxide (a), the divalent copper compound raw material (b), and water (c) are mixed and stirred from the viewpoint of good support of the divalent copper compound on the titanium oxide (a), and then alkaline. The pH of the mixture after mixing and stirring the substance (d) is preferably in the range of 8 to 11, and more preferably in the range of 9.0 to 10.5.
 前記混合工程(i)が終了した後には、混合液を固形分として分離することができる。前記分離を行う方法としては、例えば、濾過、沈降分離、遠心分離、蒸発乾燥等が挙げられるが、濾過が好ましい。分離した固形分は、その後必要に応じて、水洗、解砕、分級等を行ってもよい。 After the mixing step (i) is completed, the mixed liquid can be separated as a solid content. Examples of the method for performing the separation include filtration, sedimentation separation, centrifugation, evaporation drying and the like, but filtration is preferable. The separated solid content may then be washed with water, crushed, classified, or the like, if necessary.
 前記固形分を得た後には、前記酸化チタン(a)上に担持された前記2価銅化合物原料(b)由来の2価銅化合物を、より強固に結合することができる点から、固形分を熱処理することが好ましい。熱処理温度としては、好ましくは150~600℃の範囲であり、より好ましくは250~450℃の範囲である。また、熱処理時間は、好ましくは1~10時間であり、より好ましくは、2~5時間である。 After obtaining the solid content, the divalent copper compound derived from the divalent copper compound raw material (b) supported on the titanium oxide (a) can be more firmly bonded to the solid content. Is preferably heat-treated. The heat treatment temperature is preferably in the range of 150 to 600 ° C, more preferably in the range of 250 to 450 ° C. The heat treatment time is preferably 1 to 10 hours, more preferably 2 to 5 hours.
 以上の方法によって、酸化チタン(a)に2価銅化合物が担持した酸化チタンを含有する酸化チタン組成物が得られる。前記酸化チタン(a)に担持された2価銅化合物の担持量としては、酸化チタン(a)100質量部に対して、0.01~20質量部の範囲であることが、抗ウイルス性を含む光触媒活性の点から好ましい。前記2価銅化合物の担持量は、前記混合工程(i)における前記2価銅化合物原料(b)の使用量によって調整することができる。なお、前記2価銅化合物の担持量の測定方法は、後述する実施例にて記載する。 By the above method, a titanium oxide composition containing titanium oxide in which a divalent copper compound is supported on titanium oxide (a) can be obtained. The amount of the divalent copper compound supported on the titanium oxide (a) is in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the titanium oxide (a). It is preferable from the viewpoint of photocatalytic activity including. The amount of the divalent copper compound carried can be adjusted by adjusting the amount of the divalent copper compound raw material (b) used in the mixing step (i). The method for measuring the amount of the divalent copper compound supported will be described in Examples described later.
 次に、本発明のセルフクリーニング剤が使用される具体的な態様について説明する。 Next, a specific embodiment in which the self-cleaning agent of the present invention is used will be described.
 前記態様としては、繊維等への練りこみ、スプレー剤、コーティング剤が挙げられる。 Examples of the above-mentioned embodiment include kneading into fibers and the like, a spray agent, and a coating agent.
 前記繊維等への練りこみを行う方法としては、例えば、ポリエステル等の繊維と、前記セルフクリーニング剤とを、押出機等を使用して練りこみ、紡糸する方法が挙げられる。 Examples of the method of kneading into the fibers and the like include a method of kneading fibers such as polyester and the self-cleaning agent using an extruder or the like and spinning them.
 前記スプレー剤としては、例えば、前記セルフクリーニング剤、及び、水、アルコール等の溶剤の混合物などが挙げられる。 Examples of the spray agent include the self-cleaning agent and a mixture of solvents such as water and alcohol.
 前記コーティング剤としては、例えば、前記セルフクリーニング剤、水、アルコール等の溶剤、及び、バインダー樹脂の混合物などが挙げられる。前記バインダー樹脂としては、例えば、アクリル樹脂、ウレタン樹脂、フェノール樹脂、ポリエステル樹脂、エポキシ樹脂等を用いることができる。これらのバインダー樹脂は単独で用いても2種以上を併用してもよい。 Examples of the coating agent include the self-cleaning agent, a solvent such as water and alcohol, and a mixture of a binder resin and the like. As the binder resin, for example, an acrylic resin, a urethane resin, a phenol resin, a polyester resin, an epoxy resin or the like can be used. These binder resins may be used alone or in combination of two or more.
 以上、本発明のセルフクリーニング剤によれば、繊維等の有機系素材、スレート板等の無機系素材の態様において、実用的な室内光の下で、汚れ成分を分解することができる。また、前記可視光応答型光触媒として、特定のものを用いることで、更に抗菌性、及び、抗ウイルス性にも優れたセルフクリーニング剤を得ることができる。 As described above, according to the self-cleaning agent of the present invention, the dirt component can be decomposed under practical indoor light in the aspect of the organic material such as fiber and the inorganic material such as slate plate. Further, by using a specific photocatalyst as the visible light responsive photocatalyst, a self-cleaning agent having further excellent antibacterial and antiviral properties can be obtained.
 また、本発明によるセルフクリーニング剤は、抗ウイルス性、抗菌性、人体への安全性、耐熱性、耐候性、及び、耐水性に優れるものである。 Further, the self-cleaning agent according to the present invention is excellent in antiviral property, antibacterial property, safety to human body, heat resistance, weather resistance, and water resistance.
 以下、実施例を用いて、本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples.
[調製例1]
(1)酸化チタン
 a)結晶性ルチル型酸化チタン
b)製法:液相法(硫酸法)
c)物性値
・BET比表面積:9.0m/g
・ルチル化率:95.4%
・1次粒子径:0.18μm
・Zr/Ti比:0.05
・Nb/Ti比:0.17
[Preparation Example 1]
(1) Titanium oxide a) Crystalline rutile type titanium oxide b) Production method: Liquid phase method (sulfuric acid method)
c) Physical characteristics / BET specific surface area: 9.0 m 2 / g
-Rutilation rate: 95.4%
-Primary particle size: 0.18 μm
-Zr / Ti ratio: 0.05
-Nb / Ti ratio: 0.17
(2)製造工程
 a)混合工程(反応工程)
 前記酸化チタン600質量部、塩化銅(ii)二水和物8質量部、水900質量部をステンレス容器中に混合した。次いで、混合物を撹拌機(特殊機化工業株式会社製「ロボミクス」)で撹拌し、1mol/Lの水酸化ナトリウム水溶液を混合液のpHが10になるまで滴下した。
 b)脱水工程
 定性濾紙(5C)により減圧濾過をおこない、混合液から固形分を分離し、更にイオン交換水で洗浄を実施した。次いで、洗浄後の固形物を120℃で12時間乾燥し、水分を除去した。乾燥後、ミル(イワタニ産業株式会社製「ミルサー」)で粉状の酸化チタン組成物を得た。
 c)熱処理工程
 精密恒温器(ヤマト科学株式会社製「DH650」)を用いて酸素存在下で450℃、3時間熱処理し、2価銅化合物が担持された酸化チタンを含有する酸化チタン組成物を得た。
(2) Manufacturing process a) Mixing process (reaction process)
600 parts by mass of titanium oxide, 8 parts by mass of copper (ii) chloride dihydrate, and 900 parts by mass of water were mixed in a stainless steel container. Then, the mixture was stirred with a stirrer (“Robomics” manufactured by Tokushu Kagaku Kogyo Co., Ltd.), and a 1 mol / L aqueous sodium hydroxide solution was added dropwise until the pH of the mixture reached 10.
b) Dehydration step The qualitative filter paper (5C) was used for vacuum filtration to separate the solid content from the mixed solution, and the mixture was further washed with ion-exchanged water. Then, the washed solid was dried at 120 ° C. for 12 hours to remove water. After drying, a powdery titanium oxide composition was obtained with a mill (“Miller” manufactured by Iwatani Corporation).
c) Heat treatment step A titanium oxide composition containing titanium oxide carrying a divalent copper compound is heat-treated at 450 ° C. for 3 hours in the presence of oxygen using a precision thermostat (“DH650” manufactured by Yamato Scientific Co., Ltd.). Obtained.
(3)混合工程における混合物の酸化チタン濃度の変更
 前記(2)製造工程a)混合工程(反応工程)において、酸化チタンの濃度を変更し、各配合率で撹拌可能な状態を判定した。具体的には、容器内で混合液が均一に撹拌される状態であれば「T」、混合液がゲル状となり、撹拌軸周辺のみの不十分な撹拌状態であれば「F」とした。
(3) Change in Titanium Oxide Concentration of Mixture in Mixing Step In the above (2) Manufacturing Step a) Mixing Step (Reaction Step), the concentration of titanium oxide was changed and a state in which stirring was possible was determined at each blending ratio. Specifically, it was set as "T" when the mixed solution was uniformly agitated in the container, and "F" when the mixed solution was in a gel state and only around the stirring shaft was inadequately agitated.
[調製例2]
 調製例1において、塩化銅(ii)二水和物の使用量を、8質量部から3.3質量部に変更した以外は、調整例1と同様にして、酸化チタン組成物を得た。また、調製例1と同様にして、酸化チタン濃度の変更試験を行った。
[Preparation Example 2]
A titanium oxide composition was obtained in the same manner as in Preparation Example 1 except that the amount of copper (ii) chloride dihydrate used was changed from 8 parts by mass to 3.3 parts by mass in Preparation Example 1. Moreover, the change test of the titanium oxide concentration was carried out in the same manner as in Preparation Example 1.
[調製例3]
(1)酸化チタン
a)結晶性ルチル型酸化チタン
b)製法:液相法
c)物性値
・BET比表面積:37.2m/g
・ルチル化率:99.6%
・1次粒子径:0.04μm
・Zr/Ti比:0.05
・Nb/Ti比:0.26
[Preparation Example 3]
(1) Titanium oxide a) Crystalline rutile type titanium oxide b) Production method: Liquid phase method c) Physical properties / BET specific surface area: 37.2 m 2 / g
-Rutilation rate: 99.6%
-Primary particle size: 0.04 μm
-Zr / Ti ratio: 0.05
-Nb / Ti ratio: 0.26
 調製例1において、酸化チタンの種類を前記酸化チタンに変更した以外は、調製例1と同様にして、酸化チタン組成物を得た。また、調製例1と同様にして、酸化チタン濃度の変更試験を行った。 A titanium oxide composition was obtained in the same manner as in Preparation Example 1 except that the type of titanium oxide was changed to the titanium oxide in Preparation Example 1. Moreover, the change test of the titanium oxide concentration was carried out in the same manner as in Preparation Example 1.
[調製例4]
(1)酸化チタン
a)結晶性ルチル型酸化チタン
b)製法:液相法
c)物性値
・BET比表面積:6m/g
・ルチル化率:87.2%
・Zr/Ti比:0.17
・Nb/Ti比:0.20
[Preparation Example 4]
(1) Titanium oxide a) Crystalline rutile type titanium oxide b) Production method: Liquid phase method c) Physical properties / BET specific surface area: 6 m 2 / g
-Rutilation rate: 87.2%
-Zr / Ti ratio: 0.17
-Nb / Ti ratio: 0.20
 調製例1において、酸化チタンの種類を前記酸化チタンに変更した以外は、調製例1と同様にして、酸化チタン組成物を得た。また、調製例1と同様にして、酸化チタン濃度の変更試験を行った。 A titanium oxide composition was obtained in the same manner as in Preparation Example 1 except that the type of titanium oxide was changed to the titanium oxide in Preparation Example 1. Moreover, the change test of the titanium oxide concentration was carried out in the same manner as in Preparation Example 1.
[調製例5]
(1)酸化チタン
a)結晶性ルチル型酸化チタン
b)製法:気相法
c)物性値
・BET比表面積:13m/g
・ルチル化率:95.6%
・1次粒子径:0.15μm
・Zr/Ti比:0.00
・Nb/Ti比:0.01
[Preparation Example 5]
(1) Titanium oxide a) Crystalline rutile type titanium oxide b) Production method: Gas phase method c) Physical characteristics / BET specific surface area: 13 m 2 / g
-Rutilation rate: 95.6%
-Primary particle size: 0.15 μm
-Zr / Ti ratio: 0.00
-Nb / Ti ratio: 0.01
 調製例1において、酸化チタンの種類を前記酸化チタンに変更し、水の使用量を900質量部から4,000質量部に変更した以外は、調製例1と同様にして、酸化チタン組成物を得た。また、調製例1と同様にして、酸化チタン濃度の変更試験を行った。 In Preparation Example 1, the titanium oxide composition was prepared in the same manner as in Preparation Example 1 except that the type of titanium oxide was changed to the titanium oxide and the amount of water used was changed from 900 parts by mass to 4,000 parts by mass. Obtained. Moreover, the change test of the titanium oxide concentration was carried out in the same manner as in Preparation Example 1.
[調製例6]
 調製例5において、塩化銅(ii)二水和物の使用量を8質量部から3.3質量部に変更した以外は、調製例5と同様にして、酸化チタン組成物を得た。また、調製例1と同様にして、酸化チタン濃度の変更試験を行った。
[Preparation Example 6]
A titanium oxide composition was obtained in the same manner as in Preparation Example 5 except that the amount of copper (ii) chloride dihydrate used was changed from 8 parts by mass to 3.3 parts by mass in Preparation Example 5. Moreover, the change test of the titanium oxide concentration was carried out in the same manner as in Preparation Example 1.
[調製例7]
(1)酸化チタン
a)結晶性ルチル型酸化チタン
b)製法:気相法
c)物性値
・BET比表面積:6.8m/g
・ルチル化率:99.6%
・1次粒子径:0.25μm
・Zr/Ti比:0.01
・Nb/Ti比:0.01
[Preparation Example 7]
(1) Titanium oxide a) Crystalline rutile type titanium oxide b) Production method: Gas phase method c) Physical property value / BET specific surface area: 6.8 m 2 / g
-Rutilation rate: 99.6%
-Primary particle size: 0.25 μm
-Zr / Ti ratio: 0.01
-Nb / Ti ratio: 0.01
 調製例5において、酸化チタンの種類を前記酸化チタンに変更した以外は、調製例5と同様にして、酸化チタン組成物を得た。また、調製例1と同様にして、酸化チタン濃度の変更試験を行った。 A titanium oxide composition was obtained in the same manner as in Preparation Example 5 except that the type of titanium oxide was changed to the titanium oxide in Preparation Example 5. Moreover, the change test of the titanium oxide concentration was carried out in the same manner as in Preparation Example 1.
[調製例8]
(1)酸化チタン
a)結晶性ルチル型酸化チタン
b)製法:気相法
c)物性値
・BET比表面積:13.5m/g
・ルチル化率:76.5%
・1次粒子径:0.13μm
・Zr/Ti比:0.00
・Nb/Ti比:0.01
[Preparation Example 8]
(1) Titanium oxide a) Crystalline rutile type titanium oxide b) Production method: Gas phase method c) Physical characteristics / BET specific surface area: 13.5 m 2 / g
-Rutilation rate: 76.5%
-Primary particle size: 0.13 μm
-Zr / Ti ratio: 0.00
-Nb / Ti ratio: 0.01
 調製例5において、酸化チタンの種類を前記酸化チタンに変更した以外は、調製例5と同様にして、酸化チタン組成物を得た。また、調製例1と同様にして、酸化チタン濃度の変更試験を行った。 A titanium oxide composition was obtained in the same manner as in Preparation Example 5 except that the type of titanium oxide was changed to the titanium oxide in Preparation Example 5. Moreover, the change test of the titanium oxide concentration was carried out in the same manner as in Preparation Example 1.
[調製例9]
(1)酸化チタン
a)結晶性ルチル型酸化チタン
b)製法:気相法
c)物性値
・BET比表面積:20m/g
・ルチル化率:53%
・1次粒子径:0.07μm
・Zr/Ti比:0.00
・Nb/Ti比:0.01
[Preparation Example 9]
(1) Titanium oxide a) Crystalline rutile type titanium oxide b) Production method: Gas phase method c) Physical properties / BET specific surface area: 20 m 2 / g
・ Rutileization rate: 53%
-Primary particle size: 0.07 μm
-Zr / Ti ratio: 0.00
-Nb / Ti ratio: 0.01
 調製例5において、酸化チタンの種類を前記酸化チタンに変更した以外は、調製例5と同様にして、酸化チタン組成物を得た。また、調製例1と同様にして、酸化チタン濃度の変更試験を行った。 A titanium oxide composition was obtained in the same manner as in Preparation Example 5 except that the type of titanium oxide was changed to the titanium oxide in Preparation Example 5. Moreover, the change test of the titanium oxide concentration was carried out in the same manner as in Preparation Example 1.
[酸化チタン(a)のBET比表面積の測定方法]
 株式会社マウンテック製全自動BET比表面積測定装置「MacSORBHM model-1208」を使用して、比表面積測定(BET1点法)による測定を行った。
[Measurement method of BET specific surface area of titanium oxide (a)]
The measurement was performed by the specific surface area measurement (BET 1-point method) using the fully automatic BET specific surface area measuring device "MacSORBHM model-1208" manufactured by Mountech Co., Ltd.
[酸化チタン(a)のルチル化率の測定方法]
 島津製作所株式会社製X線回折装置「XRD-6100」を使用して、ルチル型結晶に対応するピーク高さ割合を酸化チタン全体の結晶(ルチル型、ブルッカイト型、アナターゼ型)に対応するピーク高さから算出した。
[Measurement method of rutileization rate of titanium oxide (a)]
Using the X-ray diffractometer "XRD-6100" manufactured by Shimadzu Corporation, the peak height ratio corresponding to the rutile type crystal is set to the peak height corresponding to the crystal of the whole titanium oxide (rutile type, brookite type, anatase type). Calculated from the above.
[酸化チタン(a)のZr/Ti比、Nb/Ti比の算出方法]
 セイコーインスツル株式会社製蛍光X線分析装置「SEA1200VX」を使用して、バルクファンダメンタルパラメータ(バルクFP)法による金属元素組成分析を行った。酸化チタン(a)試料を測定して得られた、各金属元素の蛍光強度(cps:count per second)について、チタンの蛍光強度(cps)を100としたときのジルコニウムまたはニオブの蛍光強度(cps)の強度比を、それぞれZr/Ti比、またはNb/Ti比として算出した。
[Method of calculating Zr / Ti ratio and Nb / Ti ratio of titanium oxide (a)]
A metal element composition analysis was performed by the bulk fundamental parameter (bulk FP) method using a fluorescent X-ray analyzer "SEA1200VX" manufactured by Seiko Instruments Inc. Regarding the fluorescence intensity (cps: count per second) of each metal element obtained by measuring the titanium oxide (a) sample, the fluorescence intensity (cps) of zirconium or niobium when the fluorescence intensity (cps) of titanium is 100. ) Was calculated as a Zr / Ti ratio or an Nb / Ti ratio, respectively.
[酸化チタン(a)への2価銅化合物の担持量の測定方法]
 調製例1~9で得られた酸化チタン組成物を、フッ酸溶液で全溶解し、抽出液をICP発光分光分析装置により分析して、酸化チタン(a)100質量部に対する2価銅化合物の担持量(質量部)を定量した。なお、前記担持量の測定まで行わなかったものは「-」とした。
[Method for measuring the amount of divalent copper compound supported on titanium oxide (a)]
The titanium oxide compositions obtained in Preparation Examples 1 to 9 were completely dissolved in a hydrofluoric acid solution, and the extract was analyzed by an ICP emission spectroscopic analyzer to obtain a divalent copper compound based on 100 parts by mass of titanium (a) oxide. The amount carried (parts by mass) was quantified. In addition, those which did not perform the measurement of the supported amount were marked with "-".
[抗ウイルス性]
 JIS R 1756:2013に準拠して、抗ウイルス性試験を行った。抗ウイルス性はソーダライムガラス板上に実施例及び比較例で得られた酸化チタン組成物を1g/mを均一に塗布し、N-113フィルターで400nm以下の波長をカットした光源を用いて、4時間照射後の試料について以下の式により求めた値、不活化度で評価した。
不活化度=log(N/N
 N:反応後のサンプルの感染価 、N:接種ファージの感染価。
不活化度-1が90%、不活化度-2が99%、不活化度-3 が99.9%不活化していることを示す。
なお、抗ウイルス性試験まで行わなかったものは「-」とした。
[Antiviral]
Antiviral tests were performed in accordance with JIS R 1756: 2013. For anti-virus property, 1 g / m 2 of the titanium oxide composition obtained in Examples and Comparative Examples was uniformly applied on a soda lime glass plate, and a light source having a wavelength of 400 nm or less cut with an N-113 filter was used. The sample after irradiation for 4 hours was evaluated by the value obtained by the following formula and the degree of inactivation.
Degree of inactivation = log (N / N 0 )
N: Infectious titer of the sample after the reaction, N 0 : Infectious titer of the inoculated phage.
The inactivation degree -1 is 90%, the inactivation degree -2 is 99%, and the inactivation degree -3 is 99.9%.
Those that did not undergo the antiviral test were marked with "-".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 調製例1~4に示す通り、酸化チタンを液相法で得れば、混合工程(i)中における混合物中の酸化チタン(a)の濃度を高めても安定的に混合でき、抗ウイルス性に優れる抗ウイルス剤が効率よく生産できることが分かった。 As shown in Preparation Examples 1 to 4, if titanium oxide is obtained by the liquid phase method, it can be stably mixed even if the concentration of titanium oxide (a) in the mixture in the mixing step (i) is increased, and it has antiviral properties. It was found that an excellent antiviral agent can be efficiently produced.
 一方、調製例5~9はいずれも、酸化チタン(a)に代えて、気相法により製造されたルチル型酸化チタンを用いた態様であるが、混合工程(i)における酸化チタン濃度が20質量%を超えると、混合液の粘度が極めて高くなり、取扱いが困難であり、生産性に劣ることが分かった。 On the other hand, in each of Preparation Examples 5 to 9, instead of titanium oxide (a), rutile-type titanium oxide produced by the vapor phase method was used, but the titanium oxide concentration in the mixing step (i) was 20. It was found that when it exceeds% by mass, the viscosity of the mixed solution becomes extremely high, it is difficult to handle, and the productivity is inferior.
 特に、調製例5~9では、酸化チタンのBET比表面積の幅を振った実験を行ったものの、その値が小さい調製例7においても酸化チタン濃度が上がると混合液の粘度が極めて高くなり、生産性の改善効果は見られなかった。 In particular, in Preparation Examples 5 to 9, an experiment was conducted in which the width of the BET specific surface area of titanium oxide was changed, but even in Preparation Example 7 in which the value was small, the viscosity of the mixed solution became extremely high as the titanium oxide concentration increased. No productivity improvement effect was seen.
[実施例1]
 調整例1で得られた酸化チタン組成物25質量部、水73.5質量部、分散剤(ビックケミー社製「DISPERBIK 190」)1.5質量部をサンドグラインダーにて分散し、水性スラリーを得た。
 得られた水性スラリー35質量部、アクリル樹脂バインダー(DIC株式会社製「RYUDYE-W FIXER 254PK」)5質量部、O/W型エマルジョン(DIC株式会社製「RYUDYE-W REDUCER CONC 720ENF」5部、水45部、ミネラルスピリット50部の乳化物)60質量部を混合し、綿ブロード生地(122.5g/m)上にオートスクリーン捺染機(辻井染機工業株式会社製)を用いて乾燥前塗布量が100g/mとなるようにプリントを実施し、熱風循環式乾燥機にて150℃で2分間乾燥させ、評価用試料を得た。
[Example 1]
25 parts by mass of the titanium oxide composition obtained in Adjustment Example 1, 73.5 parts by mass of water, and 1.5 parts by mass of a dispersant (“DISPERBIK 190” manufactured by Big Chemie) were dispersed with a sand grinder to obtain an aqueous slurry. It was.
35 parts by mass of the obtained aqueous slurry, 5 parts by mass of an acrylic resin binder (“RYUDYE-W FIXER 254PK” manufactured by DIC Corporation), 5 parts by mass of an O / W type emulsion (“RYUDYE-W REDUCER CONC 720ENF” manufactured by DIC Corporation), Mix 45 parts of water and 50 parts of mineral spirit emulsion) and mix them on cotton broad cloth (122.5 g / m 2 ) before drying using an auto screen printing machine (manufactured by Tsujii Dyeing Machinery Co., Ltd.). Printing was carried out so that the coating amount was 100 g / m 2, and the mixture was dried in a hot air circulation type dryer at 150 ° C. for 2 minutes to obtain a sample for evaluation.
 得られた試料に、汚れ成分(A)(オイルレッド0.5質量部、エタノール49.75質量部、及び、オレイン酸49.75質量部)30μLを、マイクロピペットを用いて滴下し、500ルクスの室内に放置し、滴下後1時間後(0日後)、1日後、2日後に色彩計(コニカミノルタ株式会社製「CR-200 D65光源」)にてa*値を測定した。 30 μL of the stain component (A) (0.5 parts by mass of oil red, 49.75 parts by mass of ethanol, and 49.75 parts by mass of oleic acid) was added dropwise to the obtained sample using a micropipette, and 500 lux was added. The a * value was measured with a colorimeter (“CR-200 D65 light source” manufactured by Konica Minolta Co., Ltd.) 1 hour (0 days later), 1 day and 2 days after the dropping.
[実施例2]
 実施例1において、汚れ成分(A)を、汚れ成分(B)(S&B株式会社製ラー油)に変更した以外は、実施例1と同様にして、a*値を測定した。なお、Δa*は、比較例4との差分によって求めた。
[Example 2]
In Example 1, the a * value was measured in the same manner as in Example 1 except that the stain component (A) was changed to the stain component (B) (chili oil manufactured by S & B Co., Ltd.). In addition, Δa * was obtained by the difference from Comparative Example 4.
[実施例3]
 実施例1において、汚れ成分(A)を、汚れ成分(C)(エスビーカレーパウダー顆粒1質量部、及び、エタノール99質量部)に変更した以外は、実施例1と同様にして、
a*値を測定した。なお、Δa*は、比較例6との差分によって求めた。
[Example 3]
In Example 1, the stain component (A) was changed to the stain component (C) (1 part by mass of S & B curry powder granules and 99 parts by mass of ethanol) in the same manner as in Example 1.
The a * value was measured. In addition, Δa * was obtained by the difference from Comparative Example 6.
[実施例4]
 実施例1において、綿ブロード生地に代えて、スレート板(ノザワ株式会社製)に変更した以外は、実施例1と同様にして、a*値を測定した。なお、Δa*は、比較例8との差分によって求めた。
[Example 4]
In Example 1, the a * value was measured in the same manner as in Example 1 except that the cotton broad cloth was changed to a slate plate (manufactured by Nozawa Corporation). In addition, Δa * was obtained by the difference from Comparative Example 8.
[比較例1]
 実施例1で用いた綿ブロード生地に直接汚れ成分(A)を滴下した以外は、実施例1と同様にして、a*値を測定した。また、このa*値を、実施例1、比較例2、及び比較例3の色変化量(Δa*)の基準とした。
[Comparative Example 1]
The a * value was measured in the same manner as in Example 1 except that the stain component (A) was directly dropped onto the cotton broad cloth used in Example 1. Further, this a * value was used as a reference for the amount of color change (Δa *) of Example 1, Comparative Example 2, and Comparative Example 3.
[比較例2]
 アクリル樹脂バインダー(DIC株式会社製「RYUDYE-W FIXER 254PK」)5質量部、、O/W型エマルジョン(DIC株式会社製「RYUDYE-W REDUCER CONC 720ENF」5部、水45部、ミネラルスピリット50部の乳化物)95質量部を混合し、実施例1で用いた綿ブロード生地に、オートスクリーン捺染機(辻井染機工業株式会社製)を用いて乾燥前塗布量が100g/mとなるようにプリントを実施し、熱風循環式乾燥機にて150℃で2分間乾燥させ、評価用試料を得た。これに汚れ成分(A)を滴下した以外は、実施例1と同様にして、a*値を測定した。
[Comparative Example 2]
Acrylic resin binder ("RYUDYE-W FIXER 254PK" manufactured by DIC Corporation) 5 parts by mass, O / W type emulsion ("RYUDYE-W REDUCER CONC 720ENF" manufactured by DIC Corporation) 5 parts, water 45 parts, mineral spirit 50 parts (Emulsion) 95 parts by mass was mixed, and the cotton broad cloth used in Example 1 was coated with an auto screen printing machine (manufactured by Tsujii Dyeing Machinery Co., Ltd.) so that the coating amount before drying was 100 g / m 2. Was printed and dried in a hot air circulation type dryer at 150 ° C. for 2 minutes to obtain a sample for evaluation. The a * value was measured in the same manner as in Example 1 except that the dirt component (A) was added dropwise thereto.
[比較例3]
 調整例1の酸化チタン組成物に代えて、紫外光応答型光触媒(石原産業株式会社製「ST-41」)25質量部、水73.5質量部、分散剤(ビックケミー社製「DISPERBIK 190」)1.5質量部をサンドグラインダーにて分散し、水性スラリーを得た。
 得られた水性スラリー35質量部、アクリル樹脂バインダー(DIC株式会社製「RYUDYE-W FIXER 254PK」)5質量部、O/W型エマルジョン(DIC株式会社製「RYUDYE-W REDUCER CONC 720ENF」5部、水45部、ミネラルスピリット50部の乳化物)60質量部を混合し、綿ブロード生地(122.5g/m)上にオートスクリーン捺染機(辻井染機工業株式会社製)を用いて乾燥前塗布量が100g/mとなるようにプリントを実施し、熱風循環式乾燥機にて150℃で2分間乾燥させ、評価用試料を得た。これに汚れ成分(A)を滴下した以外は、実施例1と同様にして、a*値を測定した。
[Comparative Example 3]
Instead of the titanium oxide composition of Adjustment Example 1, 25 parts by mass of an ultraviolet light-responsive photocatalyst (“ST-41” manufactured by Ishihara Sangyo Co., Ltd.), 73.5 parts by mass of water, and a dispersant (“DISPERBIK 190” manufactured by Big Chemie Co., Ltd.” ) 1.5 parts by mass was dispersed with a sand grinder to obtain an aqueous slurry.
35 parts by mass of the obtained aqueous slurry, 5 parts by mass of an acrylic resin binder (“RYUDYE-W FIXER 254PK” manufactured by DIC Corporation), 5 parts by mass of an O / W type emulsion (“RYUDYE-W REDUCER CONC 720ENF” manufactured by DIC Corporation), Mix 45 parts of water and 50 parts of mineral spirit emulsion) and mix them on cotton broad cloth (122.5 g / m 2 ) before drying using an auto screen printing machine (manufactured by Tsujii Dyeing Machinery Co., Ltd.). Printing was carried out so that the coating amount was 100 g / m 2, and the mixture was dried in a hot air circulation type dryer at 150 ° C. for 2 minutes to obtain a sample for evaluation. The a * value was measured in the same manner as in Example 1 except that the dirt component (A) was added dropwise thereto.
[比較例4]
 比較例1において、汚れ成分(A)を、汚れ成分(B)に変更した以外は、比較例1と同様にして、a*値を測定した。また、このa*値を、実施例2、及び比較例5の色変化量(Δa*)の基準とした。
[Comparative Example 4]
In Comparative Example 1, the a * value was measured in the same manner as in Comparative Example 1 except that the stain component (A) was changed to the stain component (B). Further, this a * value was used as a reference for the amount of color change (Δa *) in Example 2 and Comparative Example 5.
[比較例5]
 比較例2において、汚れ成分(A)を、汚れ成分(B)に変更した以外は、比較例2と同様にして、a*値を測定した。
[Comparative Example 5]
In Comparative Example 2, the a * value was measured in the same manner as in Comparative Example 2 except that the stain component (A) was changed to the stain component (B).
[比較例6]
 比較例1において、汚れ成分(A)を、汚れ成分(C)に変更した以外は、比較例1と同様にして、a*値を測定した。また、このa*値を、実施例3、及び比較例7の色変化量(Δa*)の基準とした。
[Comparative Example 6]
In Comparative Example 1, the a * value was measured in the same manner as in Comparative Example 1 except that the stain component (A) was changed to the stain component (C). Further, this a * value was used as a reference for the amount of color change (Δa *) in Example 3 and Comparative Example 7.
[比較例7]
 比較例2において、汚れ成分(A)を、汚れ成分(C)に変更した以外は、比較例2と同様にして、a*値を測定した。
[Comparative Example 7]
In Comparative Example 2, the a * value was measured in the same manner as in Comparative Example 2 except that the stain component (A) was changed to the stain component (C).
[比較例8]
 比較例1の綿ブロード生地に代えて、スレート板(ノザワ株式会社製)を用いた以外は、比較例1と同様にして、a*値を測定した。また、このa*値を、実施例4、及び比較例9の色変化量(Δa*)の基準とした。
[Comparative Example 8]
The a * value was measured in the same manner as in Comparative Example 1 except that a slate plate (manufactured by Nozawa Corporation) was used instead of the cotton broad cloth of Comparative Example 1. Further, this a * value was used as a reference for the amount of color change (Δa *) in Example 4 and Comparative Example 9.
[比較例9]
 比較例2において、綿ブロード生地に代えて、スレート板(ノザワ株式会社製)を用いた以外は、比較例2と同様にして、a*値を測定した。
[Comparative Example 9]
In Comparative Example 2, the a * value was measured in the same manner as in Comparative Example 2 except that a slate plate (manufactured by Nozawa Corporation) was used instead of the cotton broad cloth.
[汚れ分解性の評価]
 汚れを滴下した評価用試料を日中11時間(照度500~550ルクス、照度計「YOKOGAWA3281A」)で日中11時間、夜間(照度10ルクス以下)13時間静置し、滴下後1時間後(0日後)、n日後に、色彩色差計(コニカミノルタ株式会社製「CR-200」を使用して、汚れ滴下部分の測色を実施した。
 汚れの分解効果は、基材(綿ブロード生地、スレート板)に汚れ成分のみを滴下した比較例のa*値を基準として差分Δa*により求めた。n日後のΔa*と初期(0日後)のΔa*から色変化量を評価し、色変化量がマイナス側になればなるほど、汚れ成分である色素が分解していることを示す。
[Evaluation of stain degradability]
The evaluation sample to which the dirt was dropped was allowed to stand for 11 hours during the day (illuminance 500 to 550 lux, illuminance meter "YOKOGAWA3281A") for 11 hours during the day and at night (illuminance 10 lux or less) for 13 hours, and 1 hour after the dropping (illuminance 10 lux or less). After 0 days) and n days later, a color difference meter (“CR-200” manufactured by Konica Minolta Co., Ltd.) was used to measure the color of the dirt dropping portion.
The stain decomposition effect was determined by the difference Δa * based on the a * value of the comparative example in which only the stain component was dropped on the base material (cotton broad cloth, slate plate). The amount of color change is evaluated from Δa * after n days and Δa * at the initial stage (after 0 days), and the more the amount of color change becomes negative, the more the dye, which is a stain component, is decomposed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

 本発明のセルフクリーニング剤は、室内光の下で、優れた汚れ分解機能を有することが分かった。 It was found that the self-cleaning agent of the present invention has an excellent stain decomposition function under room light.
 一方、比較例1~9はいずれも、可視光応答型光触媒を含有しない態様であるが、室内光の下での汚れ分解性に劣っていた。 On the other hand, all of Comparative Examples 1 to 9 did not contain a visible light responsive photocatalyst, but were inferior in stain decomposability under room light.

Claims (8)

  1. 可視光応答型光触媒を含有することを特徴とするセルフクリーニング剤。 A self-cleaning agent containing a visible light responsive photocatalyst.
  2. 前記可視光応答型光触媒が、酸化チタン(a)に金属化合物が担持されたものである請求項1記載のセルフクリーニング剤。 The self-cleaning agent according to claim 1, wherein the visible light responsive photocatalyst is a titanium oxide (a) on which a metal compound is supported.
  3. 前記酸化チタン(a)が、ルチル型酸化チタン(a1)を含むものである請求項2記載のセルフクリーニング剤。 The self-cleaning agent according to claim 2, wherein the titanium oxide (a) contains rutile-type titanium oxide (a1).
  4. 前記金属化合物が、2価銅化合物である請求項2又は3記載のセルフクリーニング剤。 The self-cleaning agent according to claim 2 or 3, wherein the metal compound is a divalent copper compound.
  5. 前記酸化チタン(a)のBET比表面積が、1~200m/gである請求項2~4のいずれか1項に記載のセルフクリーニング剤。 The self-cleaning agent according to any one of claims 2 to 4, wherein the titanium oxide (a) has a BET specific surface area of 1 to 200 m 2 / g.
  6. 前記可視光応答型光触媒が、ジルコニウム及びニオブからなる群から選ばれる少なくとも1種の金属元素を実質的に含む、請求項1~5のいずれか1項に記載のセルフクリーニング剤。 The self-cleaning agent according to any one of claims 1 to 5, wherein the visible light responsive photocatalyst substantially contains at least one metal element selected from the group consisting of zirconium and niobium.
  7. 前記可視光応答型光触媒がジルコニウムを含み、前記可視光応答型光触媒におけるチタン100に対するジルコニウムの含有比(Zr/Ti比)が、0.03~0.8である請求項1~6のいずれか1項に記載のセルフクリーニング剤。 Any of claims 1 to 6, wherein the visible light responsive photocatalyst contains zirconium, and the zirconium content ratio (Zr / Ti ratio) to titanium 100 in the visible light responsive photocatalyst is 0.03 to 0.8. The self-cleaning agent according to item 1.
  8. 前記可視光応答型光触媒がニオブを含み、前記可視光応答型光触媒におけるチタン100に対するニオブの含有比(Nb/Ti比)が、0.05~0.8である請求項1~7のいずれか1項に記載のセルフクリーニング剤。 Any of claims 1 to 7, wherein the visible light responsive photocatalyst contains niobium, and the content ratio (Nb / Ti ratio) of niobium to titanium 100 in the visible light responsive photocatalyst is 0.05 to 0.8. The self-cleaning agent according to item 1.
PCT/JP2020/047823 2019-12-23 2020-12-22 Self-cleaning agent WO2021132206A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021567469A JPWO2021132206A1 (en) 2019-12-23 2020-12-22
CN202080087441.3A CN114829007B (en) 2019-12-23 2020-12-22 Self-cleaning agent
JP2023108711A JP7533710B2 (en) 2019-12-23 2023-06-30 Self-cleaning agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019231480 2019-12-23
JP2019-231480 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021132206A1 true WO2021132206A1 (en) 2021-07-01

Family

ID=76574132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047823 WO2021132206A1 (en) 2019-12-23 2020-12-22 Self-cleaning agent

Country Status (3)

Country Link
JP (2) JPWO2021132206A1 (en)
CN (1) CN114829007B (en)
WO (1) WO2021132206A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082088A (en) * 2001-10-15 2004-03-18 Jfe Steel Kk Photocatalyst and photocatalyst material
JP2004322052A (en) * 2003-04-28 2004-11-18 Toagosei Co Ltd Visible light-responsive photocatalyst
JP2004344863A (en) * 2003-05-19 2004-12-09 Masanori Hirano Photocatalyst support porous gel and manufacturing method therefor
WO2013094573A1 (en) * 2011-12-22 2013-06-27 昭和電工株式会社 Copper-and-titanium-containing composition and production method therefor
JP2017155368A (en) * 2016-03-03 2017-09-07 Dic株式会社 Resin composition for fiber processing and fabric using the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138008A (en) * 2003-11-05 2005-06-02 National Institute For Materials Science Visible light responding type titanium oxide composite photocatalyst and its manufacturing method
JP2007196182A (en) * 2006-01-30 2007-08-09 Toray Ind Inc Bag filter cloth and bag filter
WO2008146711A1 (en) * 2007-05-25 2008-12-04 Ishihara Sangyo Kaisha, Ltd. Complex, method for production of the same, and composition comprising the same
JP2011020033A (en) * 2009-07-14 2011-02-03 Ishihara Sangyo Kaisha Ltd Visible light-responsive photocatalyst, method for producing the same and photocatalyst coating agent and photocatalyst dispersion obtained by using the same
WO2011049068A1 (en) * 2009-10-19 2011-04-28 国立大学法人 東京大学 Method for inactivating virus and article provided with antiviral properties
JP5567828B2 (en) * 2009-11-30 2014-08-06 パナソニック株式会社 Visible light responsive photocatalyst coating material, coated product and allergen inactivation method
JP6040021B2 (en) * 2012-12-13 2016-12-07 昭和電工株式会社 Antibacterial antiviral composition and method for producing the same
JPWO2014141812A1 (en) * 2013-03-15 2017-02-16 昭和電工株式会社 Antibacterial antiviral photocatalytic titanium oxide, antibacterial antiviral photocatalytic titanium oxide slurry dispersed in neutral region, and production method thereof
CN103852481B (en) * 2014-03-12 2016-03-02 攀钢集团攀枝花钢铁研究院有限公司 A kind of method measuring elemental composition in coating titanium white
JP7238877B2 (en) * 2020-11-10 2023-03-14 Dic株式会社 Aqueous composition of titanium oxide supporting metal compound
CN116568398A (en) * 2020-12-22 2023-08-08 Dic株式会社 Titanium oxide composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082088A (en) * 2001-10-15 2004-03-18 Jfe Steel Kk Photocatalyst and photocatalyst material
JP2004322052A (en) * 2003-04-28 2004-11-18 Toagosei Co Ltd Visible light-responsive photocatalyst
JP2004344863A (en) * 2003-05-19 2004-12-09 Masanori Hirano Photocatalyst support porous gel and manufacturing method therefor
WO2013094573A1 (en) * 2011-12-22 2013-06-27 昭和電工株式会社 Copper-and-titanium-containing composition and production method therefor
JP2017155368A (en) * 2016-03-03 2017-09-07 Dic株式会社 Resin composition for fiber processing and fabric using the same

Also Published As

Publication number Publication date
CN114829007B (en) 2024-03-12
JP2023130423A (en) 2023-09-20
JPWO2021132206A1 (en) 2021-07-01
CN114829007A (en) 2022-07-29
JP7533710B2 (en) 2024-08-14

Similar Documents

Publication Publication Date Title
JP5343176B1 (en) Copper and titanium-containing composition and method for producing the same
JP6040021B2 (en) Antibacterial antiviral composition and method for producing the same
JP5157561B2 (en) Visible light responsive photocatalyst and method for producing the same
WO2009116181A1 (en) Visible light-responsive photocatalyst and method for producing the same
WO2015125367A1 (en) Antiviral composition, antiviral agent, photocatalyst and virus inactivation method
EP2133311B1 (en) Zirconium oxalate sol
KR20160025608A (en) Anti-viral composition, method for producing the composition, and virus inactivation method
JP5510521B2 (en) Photocatalyst particle dispersion and process for producing the same
KR20230079058A (en) Composition for coating
JP7235162B2 (en) Titanium oxide composition
WO2021132206A1 (en) Self-cleaning agent
JP2016113331A (en) MANUFACTURING METHOD OF TITANIUM OXIDE CARRYING BiVO4 AND ANTIVIRAL COMPOSITION
JP2011079713A (en) Copper ion-modified titanium oxide, method for producing the same, and photocatalyst
JP2020182918A (en) Method for producing titanium oxide composition
JP6368926B2 (en) Photocatalyst coating composition
JP2015205254A (en) Photocatalyst composition, antiviral agent and antibacterial agent
JP6485464B2 (en) Photocatalyst material, method for producing photocatalyst material, antiviral agent, antibacterial agent, photocatalyst coating composition, and photocatalyst-coated body
JP4763492B2 (en) Photocatalyst dispersion and method for producing the same
JP2007314418A (en) Low halogen-low rutile type ultrafine-grained titanium oxide and production method thereof
JP3641269B1 (en) Method for producing titania solution
JP2023006883A (en) Copper-carrying titanium oxide slurry, method for producing copper-carrying titanium oxide slurry, and method for producing coating composition
JP2008246303A (en) Photocatalyst dispersion body and manufacturing method of the same
JP2018087255A (en) Production method of vanadium dioxide-containing fine particle, vanadium dioxide-containing fine particle, and fluid dispersion
JP2009132856A (en) Photocatalyst pigment and photocatalyst paint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567469

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905333

Country of ref document: EP

Kind code of ref document: A1