WO2021132074A1 - Ultrasound device and ultrasonic diagnostic apparatus - Google Patents

Ultrasound device and ultrasonic diagnostic apparatus Download PDF

Info

Publication number
WO2021132074A1
WO2021132074A1 PCT/JP2020/047419 JP2020047419W WO2021132074A1 WO 2021132074 A1 WO2021132074 A1 WO 2021132074A1 JP 2020047419 W JP2020047419 W JP 2020047419W WO 2021132074 A1 WO2021132074 A1 WO 2021132074A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
elements
diameter
region
piezoelectric body
Prior art date
Application number
PCT/JP2020/047419
Other languages
French (fr)
Japanese (ja)
Inventor
英章 浅尾
涼 上野
由里子 西村
徳一 山地
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2021567393A priority Critical patent/JPWO2021132074A1/ja
Publication of WO2021132074A1 publication Critical patent/WO2021132074A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present disclosure relates to an ultrasonic device such as a pMUT (Piezoelectric Micromachined Ultrasonic Transducer), and also relates to an ultrasonic diagnostic apparatus having the ultrasonic device.
  • pMUT Pielectric Micromachined Ultrasonic Transducer
  • Patent Document 1 There is known an ultrasonic device configured by arranging a plurality of ultrasonic elements for transmitting and / or receiving ultrasonic waves on a plane (for example, Patent Document 1 below).
  • the ultrasonic elements disclosed in Patent Document 1 include a substrate, a common electrode overlapping the lower surface of the substrate, a frustum-shaped piezoelectric film arranged so as to form a gap on the upper surface of the substrate, and an upper surface of the piezoelectric film. It has an electrode that overlaps with.
  • Patent Document 1 proposes to set two or more types of gap diameters in order to widen the bandwidth of ultrasonic waves.
  • the ultrasonic device has a first surface and a plurality of elements arranged along the first surface.
  • Each of the plurality of elements includes a cavity, a lower electrode located on the first surface side with respect to the cavity, and a piezoelectric body located on the first surface side with respect to the lower electrode. It has an upper electrode located on the first surface side with respect to the piezoelectric body.
  • the plurality of elements include two or more types of elements in which the diameters of the cavities are different from each other.
  • the ultrasonic diagnostic apparatus includes the ultrasonic device and a display device that displays an image based on an electric signal from the ultrasonic device.
  • FIG. 5 is a cross-sectional view taken along the line II-II of FIG. It is a top view which shows the example of the structure of the cavity in the ultrasonic device of FIG. It is an enlarged view of the region IV of FIG. It is a schematic diagram which shows the example of the vibration of the ultrasonic element which the diameter of a cavity is different from each other.
  • 6 (a) and 6 (b) are diagrams showing the conditions and results of the experiments according to Examples 1 to 4.
  • 7 (a) and 7 (b) are diagrams showing the conditions and results of the experiments according to Examples 5 to 7. It is an enlarged view of the region VIII of FIG.
  • FIG. 9 (a) is an enlarged view of the region IXa of FIG. 8, and FIG. 9 (b) is an enlarged view of the region IX b of FIG.
  • It is a plane perspective view which shows a part structure of the ultrasonic device which concerns on 2nd Embodiment.
  • the drawings may be provided with the Cartesian coordinate system D1-D2-D3.
  • the ultrasonic device may be in any direction upward or downward, but in the description of the embodiment, for convenience, the term upper or lower may be used with the positive side in the D3 axis direction as the upper side. is there. Further, in the following, the term “planar view” or “planar perspective” means viewing in the D3 axis direction unless otherwise specified.
  • FIG. 1 is a perspective view showing a partial configuration of the ultrasonic device 1 according to the first embodiment.
  • the “ultrasonic device” may be simply referred to as a “device”.
  • the approximate outer shape and dimensions of the device 1 may be appropriately set according to the technical field in which the device 1 is used, the functions required of the device 1, and the like.
  • the device 1 may be made relatively small so that it can be placed in a blood vessel in an intravascular ultrasonography (IVUS: intravascular ultrasonography), or a conventional ultrasonic diagnostic apparatus (for example, to obtain a tomographic image of the abdomen). It may be about the size of a palm so that it can be used for the probe of the device).
  • the device 1 may be configured as MEMS (Micro Electro Mechanical Systems).
  • the device 1 is roughly configured in the form of a substrate, for example.
  • FIG. 1 shows a part of the upper surface 1a of the substrate.
  • the planar shape of the device 1 is arbitrary and may be, for example, a polygon (for example, a rectangle), a circle or an ellipse.
  • the device 1 has, for example, a plurality of ultrasonic elements 3 (only two are shown in FIG. 1) arranged along the upper surface 1a.
  • the "ultrasonic element” may be simply referred to as an "element”.
  • Each element 3 transmits and / or receives ultrasonic waves.
  • the element 3 is a transducer that converts ultrasonic waves into electrical signals and / or vice versa.
  • the element 3 is input with an electric signal (drive signal) whose voltage changes in a predetermined waveform (for example, a spike wave, a square wave, or a sine wave). Then, the element 3 converts the electric signal into an ultrasonic wave reflecting the waveform of the electric signal (for example, reflecting the frequency and / or the amplitude), and transmits the ultrasonic wave to the positive side in the D3 axis direction. Further, for example, the element 3 receives an ultrasonic wave from the positive side in the D3 axis direction and converts the ultrasonic wave into an electric signal reflecting the waveform of the ultrasonic wave.
  • the positive side of the ultrasonic wave transmission and reception in the D3 axis direction here is not always parallel to the D3 axis direction.
  • the diameter of some elements 3 (may be one or two or more) in a plan view and some other elements 3 (may be one or two or more). ) are different from each other in the plan view. That is, the plurality of elements 3 include two or more types of elements 3 having different diameters in a plan view.
  • the plurality of elements 3 may be provided in an arbitrary number and may be arranged in an arbitrary direction.
  • the plurality of elements 3 may be arranged in two or more in the D1 direction and two or more in the D2 direction (see FIGS. 3 and 10 described later).
  • the pitch of the plurality of elements 3 in the D1 direction is constant regardless of, for example, the difference in diameter between the elements 3.
  • the pitch of the plurality of elements 3 in the D2 direction is constant regardless of, for example, the difference in diameter between the elements 3.
  • the former pitch and the latter pitch are, for example, the same.
  • the pitch is, for example, the distance between the centers of adjacent elements 3 in the plan view of the upper surface 1a. Later, the opening shape and its circumscribed circle when specifying the diameter of the cavity 5c (described later) will be described.
  • the center of the opening shape or the circumscribed circle may be the center of the element 3 when specifying the pitch.
  • the plurality of elements 3 may be arranged one-dimensionally (only one row may be provided), or the rows adjacent to each other may be arranged so as to be offset by half a pitch. You may. Further, the pitch may be set so that the pitch of the element 3 having a relatively large diameter is relatively large.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
  • the device 1 has, for example, a support substrate 5, a functional layer 7 that overlaps the upper surface 5a of the support substrate 5, and a damping material 9 that overlaps the lower surface 5b of the support substrate 5.
  • the device 1 may have components other than the above.
  • the device 1 may have an electronic element mounted on any surface of the upper surface 5a or the lower surface 5b or the damping material 9.
  • the support substrate 5 has a plurality of cavities 5c that open to the upper surface 5a.
  • Each element 3 includes a cavity 5c and a portion of the functional layer 7 that substantially overlaps the cavity 5c.
  • the portion of the functional layer 7 that substantially overlaps the cavity 5c is a portion that vibrates to generate ultrasonic waves, and directly bears the transmission and / or reception of ultrasonic waves.
  • the portion may be referred to as an element body 3a.
  • the support substrate 5 contributes to supporting the functional layer 7, and also affects the resonance frequency (natural frequency) of the functional layer 7 (element 3).
  • the damping material 9 contributes to damping unnecessary vibration, for example.
  • the support substrate 5 has an upper surface 5a, a lower surface 5b on the back surface thereof, and a plurality of cavities 5c.
  • the support substrate 5 has, for example, a substantially flat plate shape, and the upper surface 5a and the lower surface 5b have a flat shape parallel to each other.
  • the inside of the cavity 5c is, for example, in a vacuum state or is filled with an appropriate gas.
  • the cavity 5c contributes to facilitating the vibration of the portion of the functional layer 7 that constitutes the element 3 (element body 3a), for example.
  • the cavity 5c contributes to defining the resonance frequency of the element body 3a (element 3). .. That is, the larger the diameter of the cavity 5c, the lower the resonance frequency of the element 3.
  • the shape and dimensions of the cavity 5c may be set as appropriate.
  • the shape of the cavity 5c in a plan view (for example, the opening shape on the upper surface 5a) may be circular or polygonal. In the present embodiment, the case where the opening shape of the cavity 5c is circular is taken as an example.
  • the shape of the cross section (cross section parallel to the D1-D3 plane) parallel to the depth direction of the cavity 5c is rectangular. From another point of view, the shape of the cross section of the cavity 5c orthogonal to its depth direction (cross section parallel to the D1-D2 plane) is constant regardless of the position in the depth direction (D3 direction).
  • the shape of the cross section of the cavity 5c orthogonal to the depth direction may differ depending on the position in the depth direction.
  • the shape of the cavity 5c may be a trapezoidal shape in which the diameter is enlarged or reduced toward the upper side.
  • the diameter of the cavity 5c may be appropriately set, and for example, it is 10 ⁇ m or more and 100 ⁇ m or less.
  • the diameter of the cavity 5c refers to the diameter of the opening shape on the upper surface 5a of the cavity 5c unless otherwise specified. To do. This is because the portion of the cavity 5c (support substrate 5) that affects the resonance frequency of the element 3 is mainly the portion that opens to the upper surface 5a.
  • the diameter of the cavity 5c refers to the diameter of the circumscribed circle of the opening on the upper surface 5a of the cavity 5c unless otherwise specified. This is because the resonance frequency of the element 3 is easily affected by the portion of the opening shape of the cavity 5c having a large diameter.
  • a specific portion having a small effect on the resonance frequency of the element 3 may be ignored.
  • a convex portion protruding outward from the cavity 5c is provided in a plan view, such a convex portion may be ignored.
  • the material of the support substrate 5 is arbitrary.
  • the entire support substrate 5 may be made of one material, or the support substrate 5 may be made of a combination of a plurality of materials.
  • the material of the support substrate 5 is, for example, an inorganic insulating material or an organic insulating material. More specifically, for example, the support substrate 5 may be integrally formed of an insulating material such as silicon (Si). Further, for example, the support substrate 5 may be formed substantially integrally with an insulating material such as silicon, and may have a layer made of another insulating material such as SiO 2 on the upper surface and / or the lower surface. Good.
  • the element body 3a which is a portion of the functional layer 7 that constitutes the element 3 (generally a portion on the cavity 5c), is, for example, on the cavity 5c side (-D3 side) and the side opposite to the cavity 5c (+ D3 side). Vibration is generated with bending deformation to at least one side. In other words, the vibration is out-of-plane vibration. This vibration causes transmission and / or reception of ultrasonic waves. That is, the element 3 is a flexible vibration type.
  • Examples of flexible vibration type ultrasonic elements include piezoelectric elements such as pMUT and capacitive elements such as cMUT (Capacitive Micromachined Ultrasonic Transducer).
  • pMUT is taken as an example.
  • examples of the flexible vibration type piezoelectric element include a bimorph type element and a unimorph type element. In this embodiment, a unimorph type element is taken as an example.
  • the element body 3a is configured such that the resonance frequency is located in the ultrasonic frequency band with respect to the vibration in the primary mode in which the center thereof is the antinode of the vibration and the outer edge is the node of the vibration.
  • the frequency band of ultrasonic waves is, for example, a frequency band of 20 kHz or higher.
  • the thickness of the element 3 may be appropriately set, and for example, it is 4 ⁇ m or more and 40 ⁇ m or less.
  • the functional layer 7 has, for example, a plurality of membranes 11 located on the plurality of cavities 5c, and a coating layer 13 covering the upper surface 5a from above the plurality of membranes 11.
  • One element 3 (one element body 3a) has one membrane 11 that overlaps one cavity 5c and a region that overlaps one membrane 11 of the coating layer 13.
  • the membrane 11 is a portion directly responsible for transmitting and / or receiving ultrasonic waves.
  • the coating layer 13 contributes, for example, to the protection and / or insulation of the membrane 11.
  • a layer containing a plurality of membranes 11 (a layer of the functional layers 7 below the coating layer 13) is referred to as a functional main body layer 8.
  • the functional body layer 8 may have wiring or the like that contributes to the electrical connection of the membrane 11.
  • the thickness of the functional body layer 8 may be appropriately set, and for example, it is 2 ⁇ m or more and 20 ⁇ m or less.
  • the membrane 11 has a vibrating portion 15, a lower electrode 17, a piezoelectric body 19, and an upper electrode 21 which are laminated in order from the support substrate 5.
  • the polarization axis direction of the piezoelectric body 19 (electrical axis and X-axis in a single crystal) is the thickness direction of the piezoelectric body 19.
  • the portion of the piezoelectric body 19 sandwiched between the lower electrode 17 and the upper electrode 21 is in the plane direction (D1 direction and Reduce in the D2 direction).
  • This reduction is regulated by the vibrating unit 15.
  • the membrane 11 bends (displaces) toward the cavity 5c like a bimetal.
  • an electric field is applied in the direction opposite to the direction of polarization, the membrane 11 bends to the side opposite to the cavity 5c.
  • a pressure wave is formed in the medium (for example, fluid) around the element 3. Then, when an electric signal whose voltage changes with a predetermined waveform is input to the lower electrode 17 and the upper electrode 21, an ultrasonic wave reflecting the waveform (for example, frequency and / or amplitude) of the electric signal is generated.
  • One element 3 may be one that performs only transmission, one that performs only reception, or one that performs both transmission and reception.
  • the element 3 that performs both transmission and reception for example, intermittently transmits ultrasonic waves and receives ultrasonic waves while the ultrasonic waves are not being transmitted. As a result, for example, the element 3 receives the reflected wave of the ultrasonic wave transmitted by itself.
  • the vibrating portion 15 is a portion of the vibrating layer 16 on the cavity 5c.
  • the vibrating layer 16 extends without gaps over, for example, one region including the plurality of cavities 5c in planar fluoroscopy. In other words, the vibrating layer 16 covers the plurality of cavities 5c and the region between them.
  • the vibrating portion 15 may be provided for each element 3. That is, the plurality of vibrating portions 15 may be separated from each other by forming the non-arranged region of the vibrating layer 16 between the cavities 5c.
  • the vibrating portion 15 is, for example, roughly a layered layer having a constant thickness.
  • the thickness of the vibrating portion 15 may be appropriately set. For example, the thickness of the vibrating portion 15 may be thinner, equal to, or thicker than the thickness of the piezoelectric body 19.
  • the vibrating portion 15 is formed of, for example, an insulating material.
  • the insulating material may be an organic material in the inorganic material, more specifically, for example, silicon, silicon dioxide (SiO 2) or silicon nitride (SiN X).
  • the vibrating portion 15 may be integrally formed of, for example, one kind of material, or may be formed by laminating a plurality of layers made of different materials.
  • the vibrating portion 15 may be composed of silicon and SiO 2 overlapping the lower surface thereof.
  • the piezoelectric body 19 is, for example, roughly a layer having a constant thickness.
  • the piezoelectric body 19 is provided for each element 3 (every cavity 5c). From another point of view, the plurality of piezoelectric bodies 19 are separated from each other.
  • the shape and width of the piezoelectric body 19 is, for example, roughly equivalent to that of the cavity 5c.
  • 90% or more of the piezoelectric body 19 (upper surface or lower surface thereof) and 90% or more of the cavity 5c (opening in the upper surface 5a thereof) overlap.
  • the case where the opening shape of the cavity 5c is circular is taken as an example
  • the case where the planar shape of the piezoelectric body 19 is circular is taken as an example.
  • the piezoelectric body 19 may have a shape and / or a width completely different from the opening shape of the cavity 5c in plan perspective.
  • the thickness of the piezoelectric body 19 may be appropriately set. As an example, the thickness of the piezoelectric body 19 is 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the piezoelectric body 19 is formed in a tapered shape so that the diameter is reduced toward the upper surface side, for example.
  • the side surface of the piezoelectric body 19 has a slope 19a in which the piezoelectric body 19 is inclined in a direction in which the diameter of the piezoelectric body 19 is increased toward the support substrate 5.
  • the slope 19a may be a part or all of the side surface of the piezoelectric body 19 (illustrated example).
  • the aspect in which the slope 19a is a part of the side surface of the piezoelectric body 19 is the aspect in which a part of the side surface of the piezoelectric body 19 in the vertical direction is the slope 19a and / or the side surface of the piezoelectric body 19 in a plan view.
  • An embodiment in which a part of the circumferential direction is a slope 19a can be mentioned.
  • the tapered surface (side surface) of the piezoelectric body 19 may be flat or curved in the cross section as shown in FIG. Further, the inclination angle of the tapered surface is also arbitrary.
  • the piezoelectric body 19 may have a shape in which the upper surface and the lower surface substantially overlap (a shape in which the side surface is a vertical wall).
  • a piezoelectric layer may be provided so as to spread without gaps in the entire one region including the plurality of cavities 5c in planar fluoroscopy.
  • the piezoelectric body 19 included in one element 3 is composed of a part of the piezoelectric body layer located on the cavity 5c.
  • the piezoelectric body 19 may be composed of a single crystal or a polycrystal.
  • the material of the piezoelectric body 19 is, for example, aluminum nitride (AlN), barium titanate (BTO: BaTIO 3 ), sodium potassium niobate (KNN: (K, Na) NbO 3 ), sodium bismuth titanate (NBT: Na 0). .5 Bi 0.5 TiO 3 ) and lead zirconate titanate (PZT: Pb (Zr x , Ti 1-x ) O 3 ).
  • the piezoelectric body may or may not be a ferroelectric substance, and may or may not be a pyroelectric body.
  • the crystal structure may be an appropriate one such as a perovskite type or a wurtzite type.
  • the lower electrode 17 is, for example, roughly a layered body having a constant thickness.
  • the lower electrode 17 is provided for each element 3 (every cavity 5c). From another point of view, the plurality of lower electrodes 17 are separated from each other.
  • the shape and width of the lower electrode 17 are, for example, roughly equivalent to the lower surface of the cavity 5c and / or the piezoelectric body 19.
  • 90% or more of the lower electrode 17 overlaps with 90% or more of the cavity 5c (the opening in the upper surface 5a thereof) and / or the lower surface of the piezoelectric body 19.
  • the case where the opening shape of the cavity 5c is circular is taken as an example
  • the case where the planar shape of the lower electrode 17 is circular is taken as an example
  • the lower electrode 17 may have a shape and / or a width completely different from the opening shape of the cavity 5c in plan perspective.
  • a lower electrode layer that extends without gaps may be provided over the entire region that includes the plurality of cavities 5c in planar fluoroscopy.
  • the lower electrode 17 included in one element 3 is composed of a part of the lower electrode layer located on the cavity 5c.
  • the above description of the lower electrode 17 may be incorporated into the upper electrode 21.
  • the "lower electrode 17" is replaced with the "upper electrode 21”
  • the "lower surface of the piezoelectric body 19” is replaced with the "upper surface of the piezoelectric body 19”
  • the "lower electrode layer” is replaced with the "upper electrode layer”.
  • the lower electrode 17 and the upper electrode 21 may have the same shape and / or size, or may be different from each other.
  • the piezoelectric body 19 is tapered.
  • the lower electrode 17 has a shape and size substantially the same as the lower surface of the piezoelectric body 19
  • the upper electrode 21 has a shape and size substantially the same as the upper surface of the piezoelectric body 19.
  • the upper electrode 21 is one size smaller than the lower electrode 17.
  • each electrode may be set appropriately. Usually, the thickness of each electrode is thinner than the thickness of the piezoelectric body 19 and the vibrating layer 16. For example, the thickness of each electrode is 1/10 or less of the thickness of the piezoelectric body 19. The thickness of the lower electrode 17 and the thickness of the upper electrode 21 may be the same as or different from each other.
  • each electrode may be, for example, a layer of an appropriate metal and / or oxide conductive thin film.
  • the metal is, for example, gold (Au), platinum (Pt), aluminum (Al), copper (Cu), titanium (Ti) or chromium (Cr) or an alloy containing these.
  • the oxide conductive thin film is, for example, a conductive material having a perovskite structure such as strontium ruthenate (SRO) or lanthanum nickelate (LNO).
  • SRO strontium ruthenate
  • LNO lanthanum nickelate
  • Each electrode may be configured by laminating a plurality of layers made of different materials as shown above.
  • the material of the lower electrode 17 and the material of the upper electrode 21 may be the same as each other or may be different from each other.
  • the plurality of lower electrodes 17 may be connected to each other or may not be connected to each other.
  • the plurality of upper electrodes 21 may be connected to each other or may not be connected to each other.
  • a mode in which a plurality of lower electrodes 17 are connected to each other and a plurality of upper electrodes 21 are connected to each other is mainly taken as an example.
  • the functional body layer 8 including the plurality of membranes 11 may include wiring related to the electrical connection of the membrane 11 in addition to the membrane 11.
  • the upper electrodes 21 are connected to each other as an example, and the functional body layer 8 is an upper portion connecting a plurality of upper electrodes 21 arranged in the D1 direction to each other. It has wiring 25 (see also FIG. 10). Other wiring will be described later with reference to FIG. 10 (another embodiment).
  • the above description of electrode materials may be incorporated.
  • the upper wiring 25 is composed of, for example, a conductor layer that overlaps the support substrate 5 from above the membrane 11.
  • the upper wiring 25 extends from one of the upper electrodes 21 adjacent to each other in the D1 direction to the other, and connects the two.
  • the specific shape and dimensions of the upper wiring 25 may be appropriately set.
  • the upper wiring 25 has a substantially elongated shape extending in the D1 direction with a constant width. Its width is, for example, smaller than the diameter of the upper electrode 21 in the D2 direction.
  • One end of the upper wiring 25 overlaps one of the upper electrodes 21 adjacent to each other, and the other end of the upper wiring 25 overlaps the other of the upper electrodes 21 adjacent to each other.
  • the ends of the two upper wirings 25 located on the same upper electrode 21 face each other in the D1 direction with a gap from each other. The interval is located above the center of the cavity 5c.
  • the thickness of the upper wiring 25 is thicker than that of the lower electrode 17, the upper electrode 21, and / or the lower wiring 23 described later. As a result, for example, the possibility of disconnection occurring in the portion of the upper wiring 25 that exceeds the step formed by the thickness of the piezoelectric body 19 is reduced.
  • the thickness of the upper wiring 25 may be, for example, 1/20 or more and 1/5 or less of the thickness of the piezoelectric body 19.
  • An insulating film 27 may be provided that overlaps the lower electrode 17 and / or the lower wiring 23 described later from above and is located below the upper wiring 25 to reduce the probability of a short circuit between the former and the latter.
  • the material, shape, dimensions, etc. of the insulating film 27 are arbitrary.
  • the insulating film 27 is formed thinner than the upper wiring 25, and at least the upper part of the piezoelectric body 19 is exposed.
  • the material of the insulating film 27 may be an inorganic material or an organic material.
  • the upper wiring 25 may be insulated from the lower electrode 17 and / or the lower wiring 23 only by the piezoelectric body 19 without providing the insulating film 27.
  • the coating layer 13 constitutes, for example, the upper surface 1a of the device 1. Therefore, the fluid around the device 1 comes into contact with the upper surface of the coating layer 13. However, the coating layer 13 does not have to form the upper surface 1a of the device 1. For example, a layer (not shown) may be superposed on the coating layer 13.
  • the coating layer 13 extends without gaps over the entire area including a plurality of elements 3 in planar perspective, for example.
  • the coating layer 13 is roughly spread with a constant thickness. Therefore, as shown in FIGS. 1 and 2, the upper surface of the covering layer 13 reflects the unevenness of the upper surface of the functional body layer 8. That is, the covering layer 13 is a so-called conformal layer (translated into Japanese as conformal, conformal, etc.). However, the unevenness of the upper surface of the coating layer 13 is smoother than the unevenness of the upper surface of the functional body layer 8. Further, unlike the illustrated example, the upper surface of the covering layer 13 may be flat regardless of the presence or absence of unevenness on the upper surface of the functional body layer 8. The thickness of the coating layer 13 may be appropriately set.
  • a plurality of piezoelectric bodies 19 are provided separately from each other (the piezoelectric layer is not provided so as to spread without gaps over the plurality of cavities 5c).
  • the upper surface of the functional body layer 8 has a convex portion on the cavity 5c.
  • the upper surface of the coating layer 13 has a convex portion 13a on the cavity 5c.
  • the shape of the convex portion 13a reflects the shape of the piezoelectric body 19, and in the illustrated example, it is roughly a truncated cone.
  • the provision of the relatively thick upper wiring 25 also causes a convex portion on the upper surface of the functional body layer 8.
  • a convex portion 13b extending in the D1 direction is formed on the surface of the coating layer 13.
  • the material of the coating layer 13 may be, for example, a material having an insulating property.
  • the volume resistivity of the material of the coating layer 13 is 10 14 ⁇ m or more.
  • the insulating material may be an organic material or an inorganic material.
  • the coating layer 13 may be composed of one material, or may be formed by laminating layers of different materials.
  • the damping material 9 is made of a material having a damping constant (m -1 ⁇ Hz -1 ) related to acoustics larger than that of the support substrate 5. As a result, for example, the probability that the vibration generated in the element 3 leaks to the outside or, conversely, the vibration from the outside is transmitted to the element 3 is reduced.
  • the damping material 9 is made of an insulating material, the damping material 9 can function like an insulator of a circuit board. Therefore, for example, an electronic component may be mounted on the surface of the damping material 9 on the + D3 side or the ⁇ D3 side, or wiring or an electronic element may be provided inside the damping material 9.
  • the material of the damping material 9 may be any suitable material, for example, resin or ceramic. The damping material 9 may not be provided.
  • FIG. 3 is a plan view showing an example of the configuration of the cavity 5c in the device 1.
  • FIG. 4 is an enlarged view of region IV of FIG.
  • FIG. 3 may be regarded as a diagram showing all cavities 5c of a plurality of elements 3 used for the same purpose, for example.
  • FIG. 3 may be taken to show all the cavities 5c of the plurality of elements 3 that transmit one ultrasonic wave together.
  • FIG. 3 may be regarded as showing all the cavities 5c of the plurality of elements 3 that receive one ultrasonic wave together.
  • FIG. 3 may be regarded as showing all the cavities 5c of the plurality of elements 3 that transmit one ultrasonic wave together and receive the reflected wave together.
  • the above-mentioned one ultrasonic wave is, for example, one of a plurality of ultrasonic signals repeatedly transmitted at a repetition frequency (PRF: Pulse Repetition Frequency).
  • PRF Pulse Repetition Frequency
  • the plurality of elements 3 include two or more types of elements 3 in which the diameter DAs of the cavities 5c are different from each other.
  • FIGS. 3 and 4 four types of cavities 5c are illustrated. Specifically, a cavity 5c0 having a diameter DA0, a cavity 5c1 having a diameter DA1, a cavity 5c2 having a diameter DA2, and a cavity 5c3 having a diameter DA3 are exemplified.
  • the plurality of elements 3 can be classified into a plurality of element groups 4 having different diameters DA.
  • the plurality of elements 3 are an element group 4-0 composed of an element 3 having a diameter DA0, an element group 4-1 composed of an element 3 having a diameter DA1, and an element group 4-consisting of an element 3 having a diameter DA2. It is classified into any of the element group 4-3 consisting of the element 2 and the element 3 having a diameter DA3.
  • the diameter DAs of the plurality of elements 3 are (omitted) equal to each other.
  • diameter DAs may be equivalent to each other, there may be unavoidable manufacturing errors and / or manufacturing tolerances.
  • the difference in diameter DAs in another viewpoint, the magnitude from the lower limit to the upper limit of the range of diameter DAs in one element group 4) may be larger than the error or the tolerance.
  • the diameter DA in each element group 4 is set so that the action of the present embodiment described later occurs with a significant magnitude by setting a plurality of element groups 4 having different diameter DAs.
  • the size of the range may be appropriately reduced or increased as appropriate.
  • the size of the diameter DA range in each element group 4 may be less than 4 ⁇ m or less than 2 ⁇ m.
  • this may be seen as a matter of thinking about the definition of tolerances. That is, the above 4 ⁇ m or 2 ⁇ m may be regarded as a kind of tolerance.
  • the difference in diameter DA (range of diameter DA in each element group 4) that is equivalent to each other may be larger than the error.
  • the term "diameter DA" refers to the value at the center of the range of diameter DAs that are equivalent to each other.
  • the diameter DA when 16 ⁇ m is exemplified as the diameter DA, it may be considered that 16 ⁇ m ⁇ 2 ⁇ m or 16 ⁇ ⁇ 1 ⁇ m is exemplified.
  • the explanation of the difference in the diameter DA of the two element groups 4 may be regarded as the explanation of the difference between the values at the center of the range of the diameter DA of the two element groups 4.
  • the number of element groups 4 may be appropriately set.
  • the number of element groups 4 may be, for example, two, three, or five or more, unlike the illustrated example.
  • the number of elements 3 in one element group 4 (the number of cavities 5c having the same diameter DA from each other) may be appropriately set, and may be, for example, 2 or more (example in the figure), 1 It may be one.
  • the term of the element group 4 may refer only to those including two or more elements 3.
  • the number of elements 3 in each element group 4 may be different from or the same as the number of elements 3 in any other element group 4.
  • each element group 4 includes two or more elements 3, and all the elements 3 include any element group 4 (the element group 4 here includes two or more elements 3). .) Belongs to.
  • the plurality of elements 3 are one or more element groups 4 including two or more elements 3 and an element group 4 including only one element 3 (as described above, in the element group 4). It may be defined as not having).
  • the plurality of elements 3 do not have to be familiar with the concept of the element group 4 because the diameter DAs of all the elements 3 are different from each other (the number of types of the diameter DA and the number of the elements 3 are the same). ..
  • the difference in diameter DA between the plurality of element groups 4 may be appropriately set.
  • the difference (for example, DA1-DA0) between two element groups 4 whose diameter DAs are adjacent to each other may be 10% or less of the smaller diameter DA, or 10% or more. It may be 50% or more, or 100% or more.
  • the difference between the two element groups 4 having the largest difference in diameter DA (DA3-DA0 in the illustrated example) may be 10% or less of the smaller diameter DA, or 10%. It may be more than or equal to, 50% or more, or 100% or more.
  • the ratio and / or difference in the number of elements 3 in the plurality of element groups 4 may be appropriately set.
  • the number of elements 3 having a relatively small diameter DA may be relatively large (example in the figure), and conversely, the number of elements 3 having a relatively large diameter DA may be relatively large. ..
  • the total area of the cavities 5c for each element group 4 may be focused on.
  • the total area of the cavities 5c in the element group 4 having a relatively small diameter DA may be relatively large (in the illustrated example), and conversely, the cavity 5c in the element group 4 having a relatively large diameter DA may be relatively large.
  • the total area may be relatively large.
  • the arrangement of a plurality of elements 3 to which the element groups 4 to which they belong is different from each other may be appropriately set.
  • the cavities 5c belonging to the same element group 4 may be densely packed (example in the figure), or may be dispersed so as to be mixed with the elements 3 of the other element group 4. ..
  • the arrangement of the elements 3 having different diameters DA may or may not have regularity.
  • the element 3 having a relatively large diameter DA may be located on the center side of the arrangement area of all the elements 3 (example in the figure), or the element 3 having a relatively small diameter DA may be all. It may be located on the center side of the arrangement area of the element 3.
  • the lower electrode 17, the piezoelectric body 19, and the upper electrode 21 have a shape and dimensions corresponding to the shape and dimensions of the cavity 5c. Therefore, the above description of the diameter of the cavity 5c may be incorporated into the description of the diameter of the lower electrode 17, the piezoelectric body 19, and / or the upper electrode 21. Further, the diameter of the element 3 may be represented by the diameter of the cavity 5c. Therefore, the above description of the diameter of the cavity 5c may be regarded as a description of the diameter of the element 3 (or the element body 3a).
  • the diameter of the lower electrode 17, the piezoelectric body 19 and / or the upper electrode 21 may be the size obtained by multiplying the diameter of the cavity 5c by a predetermined magnification. This magnification may be set as appropriate.
  • the diameter of the upper electrode 21 may be 0.5 times or more and 1.1 times or less (for example, 0.9 times) the diameter of the cavity 5c. When it is 0.5 times or more, for example, a sufficient area of the upper electrode 21 is secured, and thus the reception sensitivity is improved. Further, when the value is 1.1 times or less, for example, the probability that the upper electrode 21 collects charges having different codes is reduced, and the reception sensitivity is improved.
  • the amplitude here may be regarded as either the amplitude when transmitting ultrasonic waves or the amplitude when receiving ultrasonic waves.
  • the amplitudes of the elements 3 (elements 3 classified in the same element group 4) having the same diameter DA of the cavity 5c may be, for example, the same.
  • elements 3 having the same diameter DA have the same configuration of the element body 3a, and are driven by inputting drive signals having the same waveform (shape and size) to each other, and have the same amplitudes as each other. May occur.
  • the diameters DA that are equivalent to each other do not have to be exactly the same, and there may be a difference in the amplitudes that are equivalent to each other with the corresponding magnitudes.
  • the elements 3 having the same diameter DA generate the same amplitudes as each other when one ultrasonic wave is received together, and thus generate the same electric signals as each other.
  • the elements 3 having the same diameter DA may vibrate with different amplitudes by inputting different drive signals.
  • the amplitudes of the plurality of elements 3 having different diameters DA of the cavities 5c may be, for example, equal to each other or different from each other. .. In the latter case, the amplitude of the element 3 having a relatively large diameter DA may be larger, equal to, or smaller than the amplitude of the element 3 having a relatively small diameter DA.
  • FIG. 5 is a schematic diagram showing an example of changes in vibration of a plurality of (two) elements 3 having different diameters of the cavities 5c with time.
  • the horizontal axis t represents time.
  • the vertical axis Dis indicates the position in the D3 direction.
  • the waveforms shown by the lines LL and LS indicate the displacement (that is, vibration) of the central portion of the element body 3a in the D3 direction.
  • the element 3 that produces vibration indicated by the line LL has a larger diameter DA than the element 3 that produces vibration indicated by the line LS.
  • the vibration frequency of the element 3 (wire LL) having a relatively large diameter DA is higher than the vibration frequency of the element 3 (wire LS) having a relatively small diameter DA. It's getting low.
  • the amplitude AL of the element 3 having a relatively large diameter DA is larger than the amplitude AS of the element 3 having a relatively small diameter DA.
  • the method for realizing the amplitude may be appropriate.
  • it may be realized by the configuration of a plurality of elements 3 and / or may be realized by a drive signal. Specifically, for example, it is as follows.
  • the element body 3a of the element 3 having a relatively large diameter DA generally has a portion having a constant thickness (a portion excluding the tapered surface of the piezoelectric body 19) with respect to the element body 3a of the element 3 having a relatively small diameter DA. It has a shape stretched in the plane direction. In other words, both configurations are equivalent in the thickness direction. Therefore, for example, when a constant load is applied to the element body 3a, the element body 3a of the element 3 having a relatively large diameter DA causes bending deformation more than the element body 3a of the element 3 having a relatively small diameter DA. Cheap.
  • a drive signal having the same waveform (shape and size) of a plurality of elements 3 having different diameters DA may be input. Then, due to the difference in the susceptibility to bending deformation, the amplitude of the element 3 having a relatively large diameter DA may be increased with respect to the amplitude of the element 3 having a relatively small diameter DA. Further, consider a case where a plurality of elements 3 having different diameters DA receive one ultrasonic wave together. At this time, the amplitude of the element 3 having a relatively large diameter DA may be increased with respect to the amplitude of the element 3 having a relatively small diameter DA due to the difference in the susceptibility to bending deformation.
  • the amplitude is also affected by the difference between the frequency of the drive signal or the received ultrasonic wave and the resonance frequency of the element 3. Therefore, for example, a drive signal close to the resonance frequency of the element 3 having a relatively large diameter DA may be input to the plurality of elements 3. As a result, the amplitude of the element 3 having a relatively large diameter DA may be increased with respect to the amplitude of the element 3 having a relatively small diameter DA. Further, consider a case where ultrasonic waves are transmitted by a plurality of elements 3 having different diameters DA and the reflected waves are received by the above-mentioned plurality of elements 3. At the time of transmission, the amplitude of the element 3 having a relatively large diameter DA may be relatively large.
  • the power becomes relatively large at a frequency close to the resonance frequency of the element 3 having a relatively large diameter DA.
  • the frequency of the received ultrasonic waves approaches the resonance frequency of the element 3 having a relatively large diameter DA.
  • the amplitude of the element 3 having a relatively large diameter DA may be increased with respect to the amplitude of the element 3 having a relatively small diameter DA.
  • the amplitude of the element 3 having a relatively large diameter DA is relatively small and the diameter DA is relatively small. It was confirmed that the amplitude was not always larger than that of the element 3. The reason is that, for example, when a plurality of elements 3 are arranged at a constant pitch regardless of the diameter of the elements 3, the larger the diameter of the elements 3, the greater the interference between the adjacent elements 3. Can be mentioned. Therefore, for example, by appropriately arranging the elements 3 having different diameter DAs, the amplitude of the element 3 having a relatively large diameter DA is larger than the amplitude of the element 3 having a relatively small diameter DA. It may be enlarged.
  • a plurality of elements 3 having different diameters DA have different configurations, whereby the amplitude of the element 3 having a relatively large diameter DA is larger than the amplitude of the element 3 having a relatively small diameter DA. May be enlarged.
  • the ratio of the diameter of the upper electrode 21 to the diameter DA may be larger than that of the element 3 having a relatively small diameter DA.
  • a voltage is likely to be applied to the piezoelectric body 19 of the element 3 having a relatively large diameter DA, and by extension, the amplitude of the element 3 having a relatively large diameter DA becomes relatively large.
  • Cheap when transmitting ultrasonic waves, a voltage is likely to be applied to the piezoelectric body 19 of the element 3 having a relatively large diameter DA, and by extension, the amplitude of the element 3 having a relatively large diameter DA becomes relatively large. Cheap.
  • the amplitude of the element 3 having a relatively large diameter DA and the element having a relatively small diameter DA are relatively small. It may be increased for an amplitude of 3. Specifically, for example, the amplitude of the drive signal input to the element 3 having a relatively large diameter DA is larger than the amplitude of the drive signal input to the element 3 having a relatively small diameter DA. You can do it.
  • the frequencies of the drive signals having different amplitudes may be the same or different from each other. In the latter case, for example, the frequency of each drive signal may be set to approach the resonance frequency of the element 3 to which each drive signal is input.
  • the total area of the cavities 5c obtained for each type of diameter DA may be appropriately set.
  • the inventor of the present application has found an example of a range in which an advantageous effect can be obtained with respect to this total area. Specifically, it is as follows.
  • Examples 1 to 4 Devices 1 according to Examples 1 to 4 were produced. Each embodiment has four element groups 4 as in FIG. The diameter DA of each element group 4 is the same between Examples 1 to 4. Further, the total number of elements 3 is also the same between Examples 1 to 4. However, in Examples 1 to 4, the number of elements 3 for each element group 4 is different from each other. As a result, in Examples 1 to 4, the total area of the cavities 5c for each element group 4 is different from each other.
  • FIG. 6A is a diagram for explaining the conditions relating to the total area of the cavities 5c in Examples 1 to 4.
  • line C1 shows the conditions of Example 1.
  • Line C2 shows the conditions of Example 2.
  • Line C3 shows the conditions of Example 3.
  • Line C4 shows the conditions of Example 4.
  • the horizontal axis fr indicates the resonance frequency of the four element groups 4.
  • the resonance frequencies of the four element groups 4 are set to 62 MHz, 50 MHz, 41 MHz, and 35 MHz due to the difference in diameter DA.
  • points are plotted at the above four frequencies.
  • the vertical axis Sn / S0 indicates the ratio of the total area of the cavities 5c. Specifically, the total area S0 is the total area of the cavities 5c0 in the element group 4-0 having the smallest diameter DA. The total area Sn is the total area of the cavities 5c in the element groups 4-0, 4-1, 4-2 or 4-3. The vertical axis Sn / S0 indicates the ratio Sn / S0 of the above total area.
  • the area ratio Sn / S0 in the element group 4 other than the reference element group 4-0 was set to less than 1. That is, in each of the examples, the element group 4 having the largest total area of the cavities 5c was the element group 4-0 having the smallest diameter DA.
  • the area ratio Sn / S0 of the element groups 4-1, 4-2 and 4-3 were almost the same.
  • Sn / S0 is about 0.7 at any of 35 MHz (element group 4-1), 41 Hz (element group 4-2), and 50 Hz (element group 4-3). It was said.
  • Sn / S0 is slightly deviated between the element groups 4. In the description of the present disclosure, for convenience, this deviation may be ignored and "about" in the value of Sn / S0 (for example, "about 0.7") may be omitted.
  • the area ratios Sn / S0 of the element groups 4-1, 4-2 and 4-3 were different from each other. Specifically, the value of the area ratio Sn / S0 is as follows. Example 1: 0.7, Example 2: 0.35, Example 3: 0.15, Example 4: 0.05.
  • the ultrasonic pulse width was measured for each of the above four examples.
  • the pulse width here is the time interval starting from the time when the pressure amplitude first exceeds the reference value and until the pressure amplitude returns to the reference value.
  • the reference value is equal to the sum of 50% of the difference between the maximum pressure amplitude and the minimum pressure amplitude and the minimum pressure amplitude.
  • an ultrasonic wave was transmitted by inputting a drive signal composed of a spike wave whose frequency is sufficiently higher than the resonance frequency of the element group 4-0 to the device 1 according to the embodiment. Then, the reflected wave of the transmitted ultrasonic wave was received by the device 1 to obtain a waveform of the received voltage.
  • the pulse width was measured by regarding this waveform as the waveform of the pressure amplitude.
  • FIG. 6B is a diagram showing the results of measuring the pulse width as described above.
  • the vertical axis Wp indicates the pulse width (ns).
  • the line L1 is an approximate straight line connecting the plots according to the first to fourth embodiments.
  • a short pulse width Wp means that the power is close to a constant value over a wide frequency band.
  • the power in the low frequency band can be improved and the pulse width Wp can be shortened.
  • the area ratio Sn / S0 is further increased, the power in the low frequency band becomes dominant, and the shape of the frequency spectrum in which the power is close to a constant value over a wide frequency band is destroyed. As a result, the pulse width Wp becomes long.
  • Examples 5 to 7 Devices 1 according to Examples 5 to 7 were produced, and the pulse width Wp was measured in the same manner as described above. In the following, the same items as in Examples 1 to 4 will be appropriately omitted.
  • FIG. 7 (a) is the same as FIG. 6 (a), and shows the conditions relating to the total area of the cavities 5c according to Examples 5 to 7.
  • Lines C5 to C7 show the conditions of Examples 5 to 7, respectively.
  • Example 5 In each of Examples 1 to 4, the number of element groups 4 was 4, whereas in each of Examples 5 to 7, the number of element groups 4 was 3. Specifically, Examples 5 to 7 have the element groups 4-0, 4-1 and 4-2 in Examples 1 to 4, and do not have the element group 4-3. In Examples 5 to 7, the values of the area ratio Sn / S0 are different from each other. Specifically, it is as follows. Example 5: 0.7, Example 6: 0.3, Example 7: 0.05.
  • FIG. 7 (b) is the same diagram as in FIG. 6 (b), and shows the measurement results of the pulse width Wp according to Examples 5 to 7.
  • Line L2 is an approximate straight line connecting the plots according to Examples 5 to 7.
  • Examples 1 and 5 having the smallest area ratio Sn / S0 of the element group 4 other than the element group 4-0 have a pulse width as compared with the other examples. Wp is long. However, the pulse width Wp of Examples 1 and 5 is shorter than the pulse width Wp (not shown) of the comparative example in which the diameter DA of all the elements 3 is the minimum diameter DA0. Therefore, 0.05 can be mentioned as the lower limit of Sn / S0 that can shorten the pulse width Wp.
  • the values (30 ns) of the pulse width Wp slightly shorter than the pulse width Wp of Examples 1 and 5 described above are indicated by the lines L5 and L6.
  • the lines L1 and L2 connecting the plots according to the embodiment intersect with L5 and L6 when the area ratio Sn / S0 of the element group 4 other than the element group 4-0 is approximately 1.6.
  • the value of the pulse width Wp on the lines L1 and L2 is smaller than the value of the pulse width Wp indicated by the lines L5 and L6 in the range where Sn / S0 is 1.6 or less. Therefore, 1.6 can be mentioned as the upper limit value of Sn / S0 that can shorten the pulse width Wp.
  • Examples 1 to 4 and Examples 5 to 7 differ from each other in the number of element groups 4 other than the element group 4-0 having the minimum diameter DA0. Therefore, in Examples 1 to 4 and Examples 5 to 7, for example, even if the area ratio Sn / S0 is the same as each other, for example, the total of the element groups 4 other than the element group 4-0 with respect to the total area S0.
  • the ratio of the sum of the areas Sn is different from each other.
  • the above ratio is (Sn ⁇ 3) / S0 in each of Examples 1 to 4, and (Sn ⁇ 2) / S0 in each of Examples 5 to 7.
  • the above-mentioned range examples of 0.05 or more and 1.6 or less are applicable to both Examples 1 to 4 and Examples 1 to 3. Applicable.
  • the above range example of the area ratio Sn / S0 set based on FIGS. 6 (b) and 7 (b) from the viewpoint of shortening the pulse width Wp is the number of element groups 4 (diameter DA). It can be seen that it can be applied regardless of the number of types). Of course, it is expected that this is not the case if the number of element groups 4 is extremely large, but at least when the number of element groups 4 is 4 or less, it is shown by Examples that the number of element groups 4 is arbitrary. ing.
  • the number of element groups 4 to which the above range example of the area ratio Sn / S0 capable of shortening the pulse width Wp is applied is not the number itself, but all of the total area S0 in the element group 4-0 having the minimum diameter DA0. It may be considered by the ratio S0 / Ss to the total area (referred to as Ss) of the cavity 5c in the element 3. For example, among Examples 1 to 7, the ratio S0 / Ss is the smallest in Example 1.
  • the ratio S0 / Ss is maximized in Example 7.
  • the area ratio Sn / S0 was set to be the same among the element groups 4 other than the element group 4-0 having the minimum diameter DA. However, even if the area ratio Sn / S0 is different between the element groups 4 other than the element group 4-0, the area ratio Sn / S0 of all the element groups 4 other than the element group 4-0 is within the above range. If it fits, it is clear that the pulse width Wp can be shortened.
  • the range of S0 is equivalent. From this, it can be considered that the influence of the area ratio Sn / S0 of some of the element groups 4 among the element groups 4 other than the element group 4-0 on the pulse width Wp is limited. Therefore, when there are a plurality of element groups 4 other than the element group 4-0, the area ratio Sn / S0 in some of the element groups 4 falls within the above range example unless it takes an extremely large value. It does not have to be. From the opposite viewpoint, the area ratio Sn / S0 may fall within the above range example only in a part of the element group 4.
  • the area ratio Sn / S0 As a range of the area ratio Sn / S0 that can shorten the pulse width Wp, an example of a range narrower than the above range example (0.05 or more and 1.6 or less) can be mentioned.
  • 1 can be mentioned as the upper limit value of the range example. That is, the total area Sn of the element group 4 other than the element group 4-0 may be smaller than the area S0 of the element group 4-0. In other words, 0.05 or more and less than 1 can be mentioned as a range example.
  • the element group 4 satisfying the area ratio Sn / S0 ⁇ 1 is, for example, a part of the element group 4. It may be all element groups 4. In other words, among the plurality of element groups 4 (for example, the element group 4 having two or more elements 3), the element group 4 having the largest total area Sn of the cavity 5c is the element group 4- having the smallest diameter DA0. It may be 0.
  • the pulse width Wp is such that the area ratio Sn / S0 of the element group 4 other than the element group 4-0 is larger than 0.35 or 0.3.
  • the pulse width Wp becomes the length indicated by the line L5 or L6. Therefore, if the upper limit of the area ratio Sn / S0 is reduced to 1 as described above, the effect of shortening the pulse width Wp is expected to be improved.
  • the pulse width Wp becomes longer as the area ratio Sn / S0 of the element group 4 other than the element group 4-0 increases from 0.35 or 0.3.
  • the pulse width Wp as the ratio S0 / Ss of the total area S0 of the cavities 5c in the element group 4-0 having the minimum diameter DA0 to the total area Ss of the cavities 5c in all the elements 3 becomes smaller. Is to be longer. Therefore, the pulse width Wp can be further shortened by setting the lower limit value of the ratio S0 / Ss.
  • the pulse width Wp can be further shortened by setting the total area S0 of the element group 4-0 having the minimum diameter DA0 to half or more of the total area Ss of the entire plurality of elements 3.
  • the ultrasonic device 1 has a first surface (upper surface 1a) and a plurality of elements 3 arranged along the upper surface 1a.
  • Each of the plurality of elements 3 has a cavity 5c, a lower electrode 17 located on the upper surface 1a side with respect to the cavity 5c, a piezoelectric body 19 located on the upper surface 1a side with respect to the lower electrode 17, and a piezoelectric body. It has an upper electrode 21 located on the upper surface 1a side with respect to the body 19.
  • the plurality of elements 3 include two or more types of elements 3 in which the diameter DAs of the cavities 5c are different from each other.
  • the resonance frequencies of the two or more types of elements 3 are different from each other because the diameter DAs of the cavities 5c are different from each other.
  • the bandwidth of the transmitted and / or received ultrasonic waves can be widened.
  • the sound pressure of the low frequency component can be increased and the penetrating power can be improved.
  • the pulse width Wp can be shortened by widening the bandwidth. By shortening the pulse width Wp, for example, the probability that reflected waves from reflecting surfaces having different distances from the device 1 will be combined is reduced, and so-called distance resolution is improved.
  • the shapes of the plurality of cavities 5c may be slightly different due to manufacturing errors.
  • the difference in the shape of the plurality of cavities 5c is caused by the lower electrode 17 and the upper electrode 21.
  • the difference in the diameter of the cavity 5c may affect properties other than the resonance frequency of the element body 3a.
  • the probability that such an inconvenience will occur can be reduced.
  • the plurality of elements 3 have a plurality of element groups 4.
  • Each element group 4 is composed of two or more elements 3 having the same diameter DA of the cavity 5c.
  • the element group 4 having the largest total Sn of the area of the cavity 5c in each element group 4 is the element group 4-0 having the smallest diameter DA of the cavity 5c.
  • the area ratio Sn / S0 of each of one or more element groups 4 other than the element group 4-0 is less than 1. Therefore, the pulse width Wp can be effectively shortened.
  • the total area S0 of the cavity 5c in the element group 4-0 having the smallest diameter DA of the cavity 5c is more than half of the total Ss of the area of the cavity 5c in the entire plurality of elements 3.
  • the area ratio Sn / S0 of each of one or more element groups 4 other than the element groups 4-0 is relatively small.
  • the effect of shortening the pulse width Wp is improved.
  • the total area S0 of the cavity 5c in the element group 4-0 having the smallest diameter DA of the cavity 5c is 10/11 or less of the total Ss of the total area of the cavity 5c in the entire plurality of elements 3. ..
  • the effect of mixing the element group 4 having a relatively large diameter DA with respect to the element group 4-0 is significant. It is easy to appear in size.
  • the difference in diameter DA of the cavity 5c between the elements 3 belonging to the same element group 4 is less than 4 ⁇ m.
  • the difference between the representative values (for example, the average value or the median value) of the diameter DAs in the plurality of element groups 4 having different diameter DAs is 4 ⁇ m or more. Therefore, for example, the effect of providing a plurality of elements 3 having different diameters DA is likely to appear with a significant magnitude.
  • the side surface of the piezoelectric body 19 may or may not have a slope 19a, and the shape and inclination angle of the slope 19a are arbitrary. Below, an example of the detailed shape of the slope 19a is shown. In the following description, an embodiment in which the slope 19a is the entire side surface of the piezoelectric body 19 will be taken as an example. Therefore, the slope 19a is synonymous with the side surface of the piezoelectric body 19.
  • FIG. 8 is an enlarged view of region VIII of FIG.
  • the side surface (slope 19a) of the piezoelectric body 19 has a first region 19aa and a second region 19ab located above the first region 19aa.
  • the inclination angle ⁇ 2 of the second region 19ab is larger than the inclination angle ⁇ 1 of the first region 19aa.
  • the inclination angles ( ⁇ 1 and ⁇ 2) referred to here are, for example, angles with respect to the upper surface 5a (FIG. 2) of the support substrate 5, the upper surface of the vibrating layer 16, and / or the lower surface of the piezoelectric body 19.
  • the upper surface 5a may be used as a representative of the reference surface having such an inclination angle.
  • the slope 19a may have three or more slopes having different inclination angles from each other (the shape may be such that it can be grasped as such).
  • the slopes 19a have two slopes having different inclination angles (which can be macroscopically grasped as such) is taken as an example.
  • the lower edge of the lower first region 19aa constitutes the lower edge of the slope 19a
  • the upper edge of the upper second region 19ab constitutes the upper edge of the slope 19a
  • the first Take, for example, an embodiment in which the upper edge of the region 19aa and the lower edge of the second region 19ab coincide with each other (which can be macroscopically grasped as such).
  • the size of the first region 19aa and the inclination angle ⁇ 1 may be appropriately set.
  • the length from the lower edge to the upper edge thereof is, for example, relatively short.
  • a cross section as shown in FIG. 8 for example, a cross section orthogonal to the upper surface 5a of the support substrate 5 and passing through the center of the piezoelectric body 19 and / or a cross section orthogonal to the upper surface 5a and including the normal of the slope 19a).
  • FIG. 8 for example, a cross section orthogonal to the upper surface 5a of the support substrate 5 and passing through the center of the piezoelectric body 19 and / or a cross section orthogonal to the upper surface 5a and including the normal of the slope 19a.
  • the length of the first region 19aa may be less than 1/2, less than 1/3, or less than 1/4 of the length of the slope 19a (in another viewpoint, the entire side surface of the piezoelectric body 19).
  • the inclination angle ⁇ 1 may be, for example, 30 ° or less, 20 ° or less, or 10 ° or less.
  • the first region 19aa may have a linear shape, a concave shape and / or a convex curved shape, or may have unevenness or a step in the cross section as shown in FIG. ..
  • the lower limit of the inclination angle ⁇ 1 is not particularly limited. It suffices if it can be confirmed that the first region 19aa is inclined with respect to the upper surface 5a. However, the inclination angle ⁇ 1 may be 1 ° or more, 3 ° or more, or 5 ° or more.
  • the size of the second region 19ab and the inclination angle ⁇ 2 may also be set as appropriate.
  • the second region 19ab is the remainder of the slope 19a excluding the first region 19aa, so the description of the size is the reverse of the above description of the size of the first region 19aa.
  • the length of the second region 19ab is the slope 19a ( From another viewpoint, the length of the entire side surface of the piezoelectric body 19) may be 3/4 or more, 2/3 or more, or 1/2 or more.
  • the inclination angle ⁇ 2 may be 10 ° or more, 20 ° or more, 30 ° or more, or 40 ° or more on the assumption that the inclination angle ⁇ 2 is larger than, for example, the inclination angle ⁇ 1.
  • the second region 19ab may be linear, concave and / or convex curved in the cross section as shown in FIG. 8, and may be uneven or uneven. It may have a step.
  • the upper limit of the inclination angle ⁇ 2 is not particularly limited. It suffices if it can be confirmed that the second region 19ab is inclined with respect to the upper surface 5a. However, the inclination angle ⁇ 2 may be 80 ° or less, 70 ° or less, or 60 ° or less.
  • the inclination angle ( ⁇ 1 and / or ⁇ 2) may be appropriately specified.
  • a relatively large number of tilt angles at points set at a constant pitch (interval) on each region may be obtained, and the average value thereof may be used as the tilt angle.
  • an approximate straight line for a relatively large number of appropriately distributed points on each region may be obtained, and the inclination angle of this approximate straight line may be used.
  • the singular portion for example, near the boundary between the first region 19aa and the second region 19ab
  • the number of points on each region when the average value and the approximate straight line are obtained may be appropriately set so that the fluctuation of the inclination angle due to the increase or decrease in the number of the points is sufficiently small.
  • the upper limit of the length of the first region 19aa described above and / or the lower limit of the length of the second region 19ab described above are when the slope 19a constitutes only a part of the side surface of the piezoelectric body 19. It may be used as an upper limit value and / or a lower limit value with respect to the length of the slope 19a or the length of the entire side surface of the piezoelectric body 19. Further, the above upper limit value and / or lower limit value may be used as an upper limit value and / or a lower limit value when the slope 19a includes a slope other than the first region 19aa and the second region 19ab.
  • the above upper limit value and lower limit value may be appropriately combined as long as there is no contradiction. For example, 1/4 or less of the first region 19aa and 1/2 or more of the second region 19ab may be combined.
  • the difference between the inclination angle ⁇ 1 of the first region 19aa and the inclination angle ⁇ 2 of the second region 19ab may be appropriately set.
  • the difference between the two may be 10 ° or more, 20 ° or more, or 30 ° or more.
  • the difference between the two may be 1 time or more, 2 times or more, or 3 times or more the inclination angle ⁇ 1.
  • the first region 19aa and the second region 19ab can be clearly distinguished from each other, for example, in the cross section as shown in FIG. 8 from the difference in the inclination angles thereof.
  • the corners of the two may be chamfered and the boundary between the two may be ambiguous.
  • the cavity 5c (FIG. It may be located outside of 2), may overlap the contour of the cavity 5c, or may be contained within the cavity 5c.
  • a mode in which most or all of the outer edge of the piezoelectric body 19 is located outside the cavity 5c is taken as an example.
  • this aspect is an aspect in which the slope 19a is located directly above the contour of the cavity 5c.
  • the first region 19aa or the second region 19ab that is located directly above the contour of the cavity 5c (most (for example, 90% or more of the total length) or all of it; the same applies hereinafter). It is also good.
  • an embodiment in which the second region 19ab is located directly above the contour of the cavity 5c is taken as an example.
  • the contour of the cavity 5c may overlap at an appropriate position between the lower edge and the upper edge of the second region 19ab.
  • the contour of the cavity 5c is such that the distance from the lower edge of the second region 19ab is the length of the second region 19ab (the length parallel to the upper surface 5a of the support substrate 5 or the length along the second region 19ab). It may be located in a range of 1/5 or more and 4/5 or less of.
  • the insulating film 27 extends from the outside of the piezoelectric body 19 in a plan view or a cross-sectional view to the slope 19 a of the piezoelectric body 19. From another point of view, it covers the lower edge of the slope 19a of the piezoelectric body 19. As a result, for example, when the lower electrode 17 is intentionally or due to an error and is exposed from the lower edge of the slope 19a, there is a possibility that the lower electrode 17 and the upper wiring 25 (in another viewpoint, the upper electrode 21) are short-circuited. It will be reduced.
  • the width of the insulating film 27 covering the slope 19a may be appropriately set.
  • the insulating film 27 may cover a part or all of the first region 19aa, while the insulating film 27 may not cover the second region 19ab.
  • the insulating film 27 may cover the entire first region 19aa and a part or all of the second region 19ab, while not covering the upper surface of the piezoelectric body 19.
  • the insulating film 27 may cover the entire slope 19a and a part (outer peripheral portion) of the upper surface of the piezoelectric body 19.
  • the insulating film 27 covers the entire first region 19aa and a part of the second region 19ab. That is, the insulating film 27 extends from the outside of the piezoelectric body 19 in a plan view or a cross-sectional view to the middle of the second region 19ab.
  • the insulating film 27 is, for example, a so-called conformal layer, and the unevenness of the piezoelectric body 19 is reflected on the upper surface thereof.
  • the upper surface of the insulating film 27 has a higher region located on the slope 19a of the piezoelectric body 19 than a region located outside the piezoelectric body 19 in plan perspective or cross-sectional view.
  • the region on the slope 19a of the insulating film 27 has two regions having different inclination angles, reflecting the difference between the inclination angle ⁇ 1 of the first region 19aa and the inclination angle ⁇ 2 of the second region 19ab. It may or may not have such two regions (illustrated example).
  • the insulating film 27 is made relatively thick with respect to the thickness of the piezoelectric body 19 (for example, the thickness is equal to the thickness of the piezoelectric body 19), and the upper surface is the upper surface 5a of the support substrate 5. It may be approximately parallel to.
  • the upper wiring 25 extends from the outside of the piezoelectric body 19 in a plan view or a cross-sectional view to the upper electrode 21 located on the upper surface of the piezoelectric body 19, naturally, it is on the slope 19a of the piezoelectric body 19 (first region). It goes through on 19aa and on the second region 19ab).
  • the functional body layer 8 may or may not be provided with the insulating film 27, and the size of the insulating film 27 is arbitrary. Therefore, when the upper wiring 25 passes over the first region 19aa and the second region 19ab, a part or all of the upper wiring 25 does not have to directly overlap with these regions, or overlaps with each other. You may. Further, the portion of the upper wiring 25 located outside the piezoelectric body 19 may overlap with an appropriate member, for example, a part or the whole may overlap with the vibrating layer 16, or a part or the whole may overlap. It may overlap with the insulating film 27.
  • the upper wiring 25 is, for example, a so-called conformal layer, and the unevenness formed by the piezoelectric body 19 and / or the insulating film 27 is reflected on the upper surface thereof.
  • the upper surface of the upper wiring 25 has a higher region located on the upper surface of the piezoelectric body 19 than a region located outside the piezoelectric body 19 in plan perspective or cross-sectional view. Further, the region of the upper surface of the upper wiring 25 on the slope 19a of the piezoelectric body 19 gradually becomes higher as it approaches the upper electrode 21.
  • This gradually increasing region reflects the difference between the inclination angle ⁇ 1 of the first region 19aa and the inclination angle ⁇ 2 of the second region 19ab, or reflects the shape of the upper surface of the insulating film 27 reflecting the difference. Therefore, it may or may not have two regions having different inclination angles.
  • FIG. 9A is an enlarged view of the region IXa of FIG.
  • FIG. 9B is an enlarged view of the area IXb of FIG.
  • the side surface of the upper electrode 21 may have an upper tapered surface 21a that is inclined toward the upper surface side of the upper electrode 21 in a direction in which the upper electrode 21 is reduced in diameter.
  • an embodiment in which all the side surfaces of the upper electrode 21 are formed by the upper tapered surface 21a (which can be macroscopically grasped as such) will be taken as an example.
  • the side surface of the lower electrode 17 may have a lower tapered surface 17a that inclines in a direction that reduces the diameter toward the upper surface side of the lower electrode 17.
  • an embodiment in which all the side surfaces of the lower electrode 17 are formed by the lower tapered surface 17a (which can be macroscopically grasped as such) will be taken as an example.
  • the inclination angle ⁇ 5 of the upper tapered surface 21a and the inclination angle ⁇ 6 of the lower tapered surface 17a may be larger than the other or equal to each other.
  • the inclination angle ⁇ 5 is, for example, an angle with respect to the upper surface 5a (FIG. 2) of the support substrate 5 and / or the upper surface of the piezoelectric body 19.
  • the inclination angle ⁇ 6 is, for example, an angle with respect to the upper surface 5a and / or the upper surface of the vibrating layer 16 (the lower surface of the piezoelectric body 19).
  • the upper surface 5a may be used as a representative of the reference surface having such an inclination angle.
  • the tilt angle ⁇ 5 is smaller than the tilt angle ⁇ 6.
  • the specific size of each inclination angle and the difference between the two inclination angles may be appropriately set.
  • the inclination angle ⁇ 5 may be 60 ° or less or 50 ° or less.
  • the inclination angle ⁇ 6 may be 50 ° or more or 60 ° or more, provided that it is larger than the inclination angle ⁇ 5.
  • the difference between the two may be 10 ° or more or 20 ° or more.
  • the upper tapered surface 21a and the lower tapered surface 17a may have a linear shape, a concave shape, and / or a convex curved shape in a cross section as shown in the drawing. ..
  • the method for specifying the inclination angles ⁇ 5 and ⁇ 6 when the tapered surface is not straight may be the same as the method for specifying the inclination angles ⁇ 1 and ⁇ 2 when the slope 19a is not linear.
  • the thickness of the lower electrode 17 and the thickness of the upper electrode 21 may be the same as or different from each other, and in FIGS. 8, 9 (a) and 9 (b), , An example of the latter is shown.
  • the length from the lower edge to the upper edge of each tapered surface is determined by the thickness of each electrode and the inclination angle of the tapered surface. With respect to the length, either the upper tapered surface 21a or the lower tapered surface 17a may be longer.
  • the positional relationship between the upper tapered surface 21a and other components (for example, the cavity 5c) and the positional relationship between the lower tapered surface 17a and other components (for example, the cavity 5c) may be appropriately set.
  • at least a part (in the present embodiment) of the upper tapered surface 21a overlaps the cavity 5c in the plan perspective of the upper surface 5a of the support substrate 5. Is located.
  • at least a part (in the present embodiment) of the lower tapered surface 17a is located outside the cavity 5c in the plan perspective of the upper surface 5a.
  • the manufacturing method of the device 1 in which the piezoelectric body 19 has the slope 19a may be roughly an application of a known manufacturing method or a known manufacturing method.
  • the lower electrode 17, the piezoelectric body 19, the upper electrode 21, and the like may be formed by repeating the formation and patterning of a thin film on at least the wafer constituting the support substrate 5. After that, a plurality of devices 1 may be obtained by dicing the wafer.
  • the etching conditions may be changed in the middle.
  • the etching rate is lowered in the middle of etching.
  • the method of lowering the etching rate include a method of lowering the voltage applied to the etching gas and a method of changing the component ratio of the etching gas.
  • the difference between the inclination angle ⁇ 5 of the upper electrode 21 and the inclination angle ⁇ 6 of the lower electrode 17 may be realized by, for example, the difference in the etching rate as described above.
  • the upper electrode 21 may be patterned by just etching and the lower electrode 17 may be patterned by over-etching to make the inclination angles of the two different. In this case, other etching conditions (including the etching rate) may be the same for both electrodes.
  • the ultrasonic device 1 has a cavity layer (support substrate 5) and an element main body 3a of the ultrasonic element 3.
  • the support substrate 5 has an upper surface 5a and a cavity 5c that is open to the upper surface 5a.
  • the element body 3a overlaps the upper surface 5a, and the resonance frequency of the out-of-plane vibration on the cavity 5c is within the ultrasonic frequency band.
  • the element body 3a has a piezoelectric body 19.
  • the side surface of the piezoelectric body 19 has a slope 19a that is inclined toward the upper surface 5a side in a direction in which the piezoelectric body 19 increases in diameter.
  • the slope 19a has a first region 19aa and a second region 19ab.
  • the second region 19ab is located on the opposite side of the upper surface 5a with respect to the first region 19aa, and the inclination angle ⁇ 2 with respect to the upper surface 5a is larger than the inclination angle ⁇ 1 with respect to the upper surface 5a of the first region.
  • the piezoelectric body 19 has a slope 19a means that the piezoelectric body 19 has a thin portion on the outer peripheral side from another viewpoint. Therefore, for example, the piezoelectric body 19 is likely to be bent and deformed on the outer peripheral side portion thereof, and thus is likely to cause out-of-plane vibration on the cavity 5c. As a result, the voltage when the received ultrasonic wave is converted into an electric signal is increased with respect to the sound pressure of the ultrasonic wave, and / or the sound pressure when the electric signal is converted into an ultrasonic wave and transmitted is converted into a voltage. On the other hand, it can be made larger.
  • the outer peripheral portion of the piezoelectric body 19 and the outer peripheral portion of the piezoelectric body 19 are maintained while maintaining the above effects.
  • the contact area with the layer immediately below (lower electrode 17 or vibrating layer 16) can be increased.
  • the stress generated by the flexural vibration can be dispersed.
  • the robustness of the device 1 can be improved.
  • the inclination angle ⁇ 1 of the first region 19aa with respect to the upper surface 5a of the support substrate 5 may be 10 ° or less.
  • the device 1 is a layered wiring (upper wiring 25) extending in order from the outside of the piezoelectric body 19 in a plan view or a cross-sectional view of the upper surface 5a of the support substrate 5 on the first region 19aa and the second region 19ab. ) Is further possessed.
  • the angle at which the upper wiring 25 bends near the lower edge of the slope 19a is reduced as compared with the embodiment in which the first region 19aa is not provided.
  • stress concentration is less likely to occur in the upper wiring 25.
  • the robustness of the device 1 is improved.
  • the device 1 extends from the outside of the piezoelectric body 19 in the plan view or the cross-sectional view of the upper surface 5a of the support substrate 5 to the middle of the second region 19ab via the first region 19aa, and is a piezoelectric body. It further has an insulating film 27 interposed between the 19 and the upper wiring 25.
  • the insulation between the lower electrode 17 and the upper wiring 25 can be improved.
  • the insulating film 27 extends to the middle of the second region 19ab (terminates in the middle), for example, the insulating film 27 extends over the entire slope 19a (this aspect also relates to the present disclosure). Compared with (which may be included in the technique), it is less likely that the above-mentioned effect due to the provision of the slope 19a on the side surface of the piezoelectric body 19 is reduced by the insulating film 27.
  • the second region 19ab is located directly above the edge of the cavity 5c.
  • Bending deformation of the membrane 11 is easily regulated at the edge of the cavity 5c, which is a theoretical fixed end, and its vicinity.
  • the slope 19a at such a position and lowering the bending rigidity of the piezoelectric body 19, for example, the above-mentioned effect of improving the amount of bending of the membrane 11 by the slope 19a is improved.
  • the volume of the piezoelectric body 19 on the cavity 5c is easy to secure.
  • the volume of the piezoelectric body 19 is secured. , It is easy to balance with the reduction in the thickness of the piezoelectric body 19 just above the edge of the cavity 5c.
  • the element 3 further includes a lower electrode 17 that overlaps the piezoelectric body 19 on the upper surface 5a side of the support substrate 5, and an upper electrode 21 that overlaps the piezoelectric body 19 on the opposite side of the upper surface 5a.
  • the side surface of the upper electrode 21 may have a tapered surface (upper tapered surface 21a) that is inclined in a direction in which the upper electrode 21 expands in diameter toward the upper surface 5a side.
  • the side surface of the lower electrode 17 may have a tapered surface (lower tapered surface 17a) that is inclined toward the upper surface 5a side in a direction in which the lower electrode 17 expands in diameter.
  • the inclination angle ⁇ 5 of the upper tapered surface 21a with respect to the upper surface 5a may be smaller than the inclination angle ⁇ 6 of the lower tapered surface 17a with respect to the upper surface 5a.
  • a layer for example, upper wiring 25 superimposed on each electrode is compared with a mode in which the side surface of each electrode is perpendicular to the upper surface 5a (the mode may also be included in the technique according to the present disclosure).
  • the mode may also be included in the technique according to the present disclosure.
  • Improves coverage for example, in the vicinity of the outer edge of the lower surface of the piezoelectric body 19, the first region 19aa having a relatively small inclination angle is provided, so that the upper wiring is higher than that in the vicinity of the outer edge of the upper surface of the piezoelectric body 19. Twenty-five bends have been eased.
  • the inclination angle ⁇ 5 of the upper portion smaller than the inclination angle ⁇ 6 of the lower portion, it is expected that the coverage is improved in both the vicinity of the outer edge of the upper surface and the vicinity of the outer edge of the lower surface of the piezoelectric body 19, for example.
  • At least a part of the upper tapered surface 21a overlaps the cavity 5c in the plan perspective of the upper surface 5a of the support substrate 5. At least a part of the lower tapered surface 17a is located outside the cavity 5c in the plan view of the upper surface 5a.
  • the upper tapered surface 21a is more likely to cause stress concentration due to the out-of-plane vibration on the cavity 5c of the piezoelectric body 19 as compared with the lower tapered surface 17a.
  • the portion on the cavity 5c is more likely to cause stress concentration than the outer portion of the cavity 5c. Therefore, by making the inclination angle on the side where stress concentration is likely to occur relatively small, it is easy to relax the stress concentration as a whole.
  • FIG. 10 is a plan perspective view showing a partial configuration of the ultrasonic device 401 according to the second embodiment.
  • the device 401 is an application example of the device 1 of the first embodiment, and includes all the configurations of the device 1 described above. Therefore, part or all of FIG. 10 may be regarded as a perspective perspective view of the device 1.
  • FIG. 10 shows the lower electrode 17, the upper electrode 21, the lower wiring 23, and the upper wiring 25 in the configuration of the device 401 (1). In FIG. 10, the difference in diameter of the element 3 is not shown.
  • a transmission unit 41 that outputs an electric signal (transmission signal, drive signal) to the plurality of elements 3 and a reception unit 43 that receives an electric signal (reception signal) from the plurality of elements 3 are also schematically shown. It is shown.
  • the device 401 may be defined without including the transmitting unit 41 and the receiving unit 43, or may be defined including these.
  • the ultrasonic device may be one that performs only one of transmission and reception of ultrasonic waves, or may be one that performs both.
  • the device 401 is the latter. Further, in the ultrasonic device that performs such transmission and reception, the transmission and reception of ultrasonic waves may be performed by the same element 3, or may be performed by a plurality of elements 3 that are different from each other. And the device 401 is the latter.
  • the device 401 has a transmission element 3 (hereinafter, may be referred to as an element 3T) and a reception element 3 (hereinafter, may be referred to as “element 3R”). There is.
  • the number of transmission element 3T and reception element 3R and their positional relationship may be appropriately set.
  • the device 401 has a plurality of elements 3T, and a part (but two or more) or all of the plurality of elements 3T are arranged together to form an element unit 31T for transmission. doing.
  • the device 401 has a plurality of elements 3Rs, and a part (but two or more) or all of the plurality of elements 3Rs are arranged together to form a receiving element unit 31R. ..
  • FIG. 3 in the first embodiment may be regarded as a diagram showing the cavity 5c of the entire element portion 31T or the entire element portion 31R (however, the specific number of the elements 3 differs between FIGS. 3 and 10). ing.).
  • the number and arrangement mode of the plurality of elements 3T may be appropriately set.
  • the plurality of elements 3T are arranged vertically and horizontally at a constant pitch.
  • a 3 ⁇ 3 element 3T is shown. This is only an example, and the number of elements 3 may be smaller than this, may be larger, or may be different in length and width.
  • the number and arrangement of the elements 3 may be the same for the element unit 31T and the element unit 31R (illustrated example), or may be different from each other.
  • the specific positional relationship between the element unit 31T for transmission and the element unit 31R for reception may be appropriately set.
  • the element 3T and the element 3R are arranged in series in the D1 direction (that is, the arrangement direction of the element portion 31T and the element portion 31R). Further, the distance between the element 3T and the element 3R that are adjacent to each other in the D1 direction is the same as the pitch of the element 3T and the pitch of the element 3R. That is, the plurality of elements 3T and the plurality of elements 3R are uniformly arranged as a whole.
  • the distance between the elements 3T and the element 3R adjacent to each other may be different from the pitch of the element 3T and / or the pitch of the element 3R, or the row of the elements 3T.
  • the rows of the elements 3R may not be in series, and the positions of both rows in the D2 direction may be offset from each other.
  • the plurality of lower electrodes 17 may or may not be connected to each other.
  • the former is illustrated.
  • the lower electrodes 17 adjacent to each other in the D2 direction are connected in series with each other by the lower wiring 23 extending in the D2 direction.
  • These plurality of series lines are connected in parallel to each other by a lower merging wiring 24 extending in the D1 direction outside the region where the element portion 31T for transmission is arranged.
  • the lower wiring 23 and the lower merging wiring 24 are composed of, for example, a conductor layer located on the vibrating layer 16. The same applies to the connection between the plurality of lower electrodes 17 in the receiving element unit 31R.
  • the plurality of upper electrodes 21 may or may not be connected to each other.
  • the former is illustrated.
  • the upper electrodes 21 adjacent to each other in the D1 direction are connected in series with each other by the upper wiring 25 extending in the D1 direction.
  • These plurality of series lines are connected in parallel to each other by an upper merging wiring 26 extending in the D2 direction outside the region where the element portion 31T for transmission is arranged. The same applies to the connection between the plurality of upper electrodes 21 in the receiving element unit 31R.
  • the transmission unit 41 is configured to include, for example, a power supply circuit that converts power from a commercial power supply or the like into power of an appropriate mode and outputs it, as indicated by a symbol indicating a power supply for convenience.
  • the power supply circuit generates and outputs a drive signal whose voltage changes with an appropriate waveform.
  • the transmission unit 41 is connected to the lower merging wiring 24 and the upper merging wiring 26 connected to the element unit 31T for transmission. Then, the transmission unit 41 applies an electric signal having a waveform corresponding to the waveform of the ultrasonic wave to be generated to the lower electrode 17 and the upper electrode 21 of the element 3T for transmission via these wirings.
  • the receiving unit 43 is configured to include, for example, an amplifier that amplifies and outputs an input electric signal, as indicated by a symbol indicating an amplifier for convenience.
  • the amplifier may be, for example, a voltage amplifier or a charge amplifier.
  • the receiving unit 43 is connected to the lower merging wiring 24 and the upper merging wiring 26 connected to the element unit 31R for receiving. When ultrasonic waves are input to the receiving element 3T, the element 3T vibrates to generate an electric signal. This signal is input to the receiving unit 43 via the lower merging wiring 24 and the upper merging wiring 26.
  • the device 401 is configured to include the device 1 according to the first embodiment.
  • the device 401 further has a driver (transmission unit 41) that drives the plurality of elements 3 by applying a voltage between the lower electrode 17 and the upper electrode 21 of each of the plurality of elements 3.
  • the plurality of elements 3 include a first element (for example, element 3 of element group 4-0) and a second element (for example, element 3 of element group 4-2) having a larger diameter DA of the cavity 5c than the first element. Includes.
  • the amplitude of the second element may be larger than the amplitude of the first element.
  • FIG. 11 is a block diagram schematically showing the configuration of the ultrasonic diagnostic apparatus 101 as an application example of the ultrasonic device. Although the reference numeral of the device 401 is used here, an ultrasonic device having another configuration according to the present disclosure may be used for the ultrasonic diagnostic apparatus 101.
  • the ultrasonic diagnostic apparatus 101 is, for example, for IVUS.
  • the ultrasonic diagnostic apparatus 101 includes, for example, a catheter 103 inserted into a patient's blood vessel and an apparatus main body 107 connected to the catheter 103.
  • the catheter 103 has, for example, a substantially tubular catheter body 103a and a device 401 housed in the catheter body 103a.
  • the device 401 transmits ultrasonic waves to the outside of the catheter body 103a in the radial direction via the catheter body 103a, and receives the reflected waves thereof.
  • the device main body 107 has, for example, a transmission / reception unit 109 connected to the device 401 via a wiring (not shown) in the catheter main body 103a.
  • the transmission / reception unit 109 may include, for example, at least a part of the transmission unit 41 and the reception unit 43 shown in FIG. 10, outputs a transmission signal to the transmission unit 41, and receives a reception signal from the reception unit 43. It may be one.
  • the division of roles between the electrical configuration of the catheter 103 and the transmission / reception unit 109 may be appropriately set.
  • the apparatus main body 107 includes, for example, an input unit 111 that receives an operation of a user (for example, a doctor or a technician) and a control unit 113 that controls a transmission / reception unit 109 based on a signal from the input unit 111. Further, the apparatus main body 107 includes an image processing unit 115 that performs image processing based on a signal from the transmission / reception unit 109 and a signal from the control unit 113, and a display unit 117 that displays an image based on the signal from the image processing unit 115. (Display device) is provided. On the display unit 117, for example, a tomographic image of a patient (here, a cross-sectional image of a blood vessel) obtained by transmitting and receiving ultrasonic waves is displayed.
  • a tomographic image of a patient here, a cross-sectional image of a blood vessel
  • the catheter 103 may have a mechanism for flexing the catheter body 103a or changing the orientation of the device 401 in the catheter body 103a. Further, the apparatus main body 107 may have a control unit corresponding to such a mechanism.
  • the upper surface 1a of the device 1 is an example of the first surface.
  • the transmission unit 41 is an example of a driver.
  • the display unit 117 is an example of a display device.
  • the element 3 of the element group 4-0 is an example of the first element.
  • the element 3 of the element group 4 other than the element group 4-0 is an example of the second element.
  • the support substrate 5 is an example of a cavity layer.
  • the upper surface 5a of the support substrate 5 is an example of the second surface.
  • the upper tapered surface 21a is an example of the tapered surface of the upper electrode.
  • the lower tapered surface 17a is an example of the tapered surface of the lower electrode.
  • ultrasonic devices are not limited to those used in medical devices.
  • an ultrasonic device may be used as a sensor for measuring a distance to an object, and such a sensor may be used in an imaging device and an automobile.
  • the ultrasonic device may not transmit ultrasonic waves to the first surface (upper surface 1a) side, but may transmit ultrasonic waves to the opposite side.
  • the element body has a lower electrode layer (common electrode) that extends substantially without gaps over the plurality of cavities 5c on the vibrating layer 16, and substantially extends over the plurality of cavities 5c. It may have a piezoelectric layer that spreads without gaps, and a plurality of upper electrodes 21 (individual electrodes) individually provided in the plurality of cavities 5c.
  • the ultrasonic element is not limited to the unimorph type pMUT and may be a bimorph type pMUT.
  • the vibrating layer is located on the cavity side with respect to the piezoelectric layer, but may be located on the opposite side of the cavity with respect to the piezoelectric layer.
  • the cavity may be formed by a through hole formed in the support substrate instead of the recess formed in the support substrate.
  • a recess may be formed on the lower surface of the support substrate, and a part of the upper surface side of the support member may be used as a vibration layer.
  • Concept 1 It has a first surface and a plurality of elements arranged along the first surface. Each of the plurality of elements has a cavity, The plurality of elements have a plurality of element groups, and each element group is composed of two or more elements having the same cavity diameters. The element group having the largest total area of the cavities in each element group is an ultrasonic device having the smallest diameter of the cavities.
  • the ultrasonic device may be a cMUT that does not have a piezoelectric body.
  • the lower electrode, the piezoelectric body, and the upper electrode do not have to be located on the first surface side with respect to the cavity.
  • the cavity may be located between the lower electrode and the piezoelectric body.
  • Concept 2 A cavity layer having a predetermined surface (second surface) and a cavity open to the predetermined surface, An element body that overlaps the predetermined surface and whose resonance frequency of out-of-plane vibration on the cavity is within the frequency band of ultrasonic waves.
  • the element body has a piezoelectric body and has a piezoelectric body.
  • the side surface of the piezoelectric body has a slope that is inclined toward the predetermined surface side in a direction in which the piezoelectric body expands in diameter.
  • the slope is The first area and It has a second region which is located on the opposite side of the predetermined surface with respect to the first region and whose inclination angle with respect to the predetermined surface is larger than the inclination angle with respect to the predetermined surface of the first region.
  • the sizes of the elements may be the same as each other.
  • 1 ... Ultrasonic device 1a ... Top surface (first surface), 3 ... Ultrasonic element, 4 (4-0, 4-1, 4-2 and 4-3) ... Element group, 5 ... Support substrate (cavity layer) ), 5c ... Cavity, 7 ... Functional layer, 11 ... Membrane, 13 ... Coating layer, 17 ... Lower electrode, 19 ... Piezoelectric, 21 ... Upper electrode, 41 ... Transmitter (driver), 101 ... Ultrasonic diagnostic device, 117 ... Display unit (display device).

Abstract

An ultrasonic device having a first face and a plurality of elements arranged along the first face. Each of the plurality of elements has a cavity, a lower electrode located on the first face side with respect to the cavity, a piezoelectric substance located on the first face side with respect to the lower electrode, and an upper electrode located on the first face side with respect to the piezoelectric substance. The plurality of elements include two types or more of elements differing in the diameter of the cavity from each other.

Description

超音波デバイス及び超音波診断装置Ultrasonic device and ultrasonic diagnostic equipment
 本開示は、pMUT(Piezoelectric Micromachined Ultrasonic Transducer)等の超音波デバイスに関し、また、当該超音波デバイスを有する超音波診断装置に関する。 The present disclosure relates to an ultrasonic device such as a pMUT (Piezoelectric Micromachined Ultrasonic Transducer), and also relates to an ultrasonic diagnostic apparatus having the ultrasonic device.
 超音波の送信及び/又は受信を行う複数の超音波素子を平面上に配列して構成された超音波デバイスが知られている(例えば、下記の特許文献1)。特許文献1に開示されている超音波素子は、基板と、基板の下面に重なる共通電極と、基板の上面にギャップを形成するように配置される錐台状の圧電膜と、圧電膜の上面に重なる電極とを有している。特許文献1は、超音波の広帯域化のためにギャップの径を2種以上設定することを提案している。 There is known an ultrasonic device configured by arranging a plurality of ultrasonic elements for transmitting and / or receiving ultrasonic waves on a plane (for example, Patent Document 1 below). The ultrasonic elements disclosed in Patent Document 1 include a substrate, a common electrode overlapping the lower surface of the substrate, a frustum-shaped piezoelectric film arranged so as to form a gap on the upper surface of the substrate, and an upper surface of the piezoelectric film. It has an electrode that overlaps with. Patent Document 1 proposes to set two or more types of gap diameters in order to widen the bandwidth of ultrasonic waves.
特開2006-75425号公報Japanese Unexamined Patent Publication No. 2006-75425
 本開示の一態様に係る超音波デバイスは、第1面と、前記第1面に沿って配置されている複数の素子とを有している。前記複数の素子のそれぞれは、キャビティと、前記キャビティに対して前記第1面側に位置している下部電極と、前記下部電極に対して前記第1面側に位置している圧電体と、前記圧電体に対して前記第1面側に位置している上部電極と、を有している。前記複数の素子は、前記キャビティの径が互いに異なる2種以上の素子を含んでいる。 The ultrasonic device according to one aspect of the present disclosure has a first surface and a plurality of elements arranged along the first surface. Each of the plurality of elements includes a cavity, a lower electrode located on the first surface side with respect to the cavity, and a piezoelectric body located on the first surface side with respect to the lower electrode. It has an upper electrode located on the first surface side with respect to the piezoelectric body. The plurality of elements include two or more types of elements in which the diameters of the cavities are different from each other.
 本開示の一態様に係る超音波診断装置は、上記超音波デバイスと、前記超音波デバイスからの電気信号に基づく画像を表示する表示装置と、を有している。 The ultrasonic diagnostic apparatus according to one aspect of the present disclosure includes the ultrasonic device and a display device that displays an image based on an electric signal from the ultrasonic device.
第1実施形態に係る超音波デバイスの一部の構成を示す斜視図である。It is a perspective view which shows the structure of a part of the ultrasonic device which concerns on 1st Embodiment. 図1のII-II線における断面図である。FIG. 5 is a cross-sectional view taken along the line II-II of FIG. 図1の超音波デバイスにおけるキャビティの構成の例を示す平面図である。It is a top view which shows the example of the structure of the cavity in the ultrasonic device of FIG. 図3の領域IVの拡大図である。It is an enlarged view of the region IV of FIG. キャビティの径が互いに異なる超音波素子の振動の例を示す模式図である。It is a schematic diagram which shows the example of the vibration of the ultrasonic element which the diameter of a cavity is different from each other. 図6(a)及び図6(b)は実施例1~4に係る実験の条件及び結果を示す図である。6 (a) and 6 (b) are diagrams showing the conditions and results of the experiments according to Examples 1 to 4. 図7(a)及び図7(b)は実施例5~7に係る実験の条件及び結果を示す図である。7 (a) and 7 (b) are diagrams showing the conditions and results of the experiments according to Examples 5 to 7. 図2の領域VIIIの拡大図である。It is an enlarged view of the region VIII of FIG. 図9(a)は図8の領域IXaの拡大図であり、図9(b)は図8の領域IXbの拡大図である。9 (a) is an enlarged view of the region IXa of FIG. 8, and FIG. 9 (b) is an enlarged view of the region IX b of FIG. 第2実施形態に係る超音波デバイスの一部の構成を示す平面透視図である。It is a plane perspective view which shows a part structure of the ultrasonic device which concerns on 2nd Embodiment. 実施形態に係る超音波診断装置の構成を示すブロック図である。It is a block diagram which shows the structure of the ultrasonic diagnostic apparatus which concerns on embodiment.
 以下、図面を参照して本開示に係る実施形態について説明する。以下の図面は、模式的なものである。従って、細部は省略されることがあり、また、寸法比率等は現実のものと必ずしも一致しない。また、複数の図面相互の寸法比率も必ずしも一致しない。 Hereinafter, embodiments according to the present disclosure will be described with reference to the drawings. The drawings below are schematic. Therefore, details may be omitted, and the dimensional ratio and the like do not always match the actual ones. Also, the dimensional ratios of the plurality of drawings do not always match.
 図面には、便宜上、直交座標系D1-D2-D3を付すことがある。超音波デバイスは、いずれの方向が上方又は下方とされてもよいものであるが、実施形態の説明では、便宜上、D3軸方向の正側を上方として、上部又は下部等の語を用いることがある。また、以下において平面視又は平面透視という場合、特に断りがない限りは、D3軸方向に見ることをいうものとする。 For convenience, the drawings may be provided with the Cartesian coordinate system D1-D2-D3. The ultrasonic device may be in any direction upward or downward, but in the description of the embodiment, for convenience, the term upper or lower may be used with the positive side in the D3 axis direction as the upper side. is there. Further, in the following, the term "planar view" or "planar perspective" means viewing in the D3 axis direction unless otherwise specified.
<第1実施形態>
(デバイスの構成)
 図1は、第1実施形態に係る超音波デバイス1の一部の構成を示す斜視図である。以下、「超音波デバイス」を単に「デバイス」ということがある。
<First Embodiment>
(Device configuration)
FIG. 1 is a perspective view showing a partial configuration of the ultrasonic device 1 according to the first embodiment. Hereinafter, the "ultrasonic device" may be simply referred to as a "device".
 デバイス1の概略の外形及びその寸法は、デバイス1が利用される技術分野及びデバイス1に要求される機能等に応じて適宜に設定されてよい。例えば、デバイス1は、血管内超音波検査法(IVUS:intravascular ultrasound)において血管内に配置可能に比較的小さくされてもよいし、通常の超音波診断装置(例えば腹部の断層像を得るための装置)のプローブに利用可能に掌の大きさ程度とされてもよい。また、デバイス1は、MEMS(Micro Electro Mechanical Systems)として構成されてもよい。 The approximate outer shape and dimensions of the device 1 may be appropriately set according to the technical field in which the device 1 is used, the functions required of the device 1, and the like. For example, the device 1 may be made relatively small so that it can be placed in a blood vessel in an intravascular ultrasonography (IVUS: intravascular ultrasonography), or a conventional ultrasonic diagnostic apparatus (for example, to obtain a tomographic image of the abdomen). It may be about the size of a palm so that it can be used for the probe of the device). Further, the device 1 may be configured as MEMS (Micro Electro Mechanical Systems).
 本実施形態では、デバイス1は、例えば、概略、基板状に構成されている。図1は、その基板の上面1aの一部を示している。デバイス1の平面形状は、任意であり、例えば、多角形(例えば矩形)、円形又は楕円形とされてよい。 In the present embodiment, the device 1 is roughly configured in the form of a substrate, for example. FIG. 1 shows a part of the upper surface 1a of the substrate. The planar shape of the device 1 is arbitrary and may be, for example, a polygon (for example, a rectangle), a circle or an ellipse.
 デバイス1は、例えば、上面1aに沿って配列された複数(図1では2つのみ示されている。)の超音波素子3を有している。以下、「超音波素子」を単に「素子」ということがある。各素子3は、超音波の送信及び/又は受信を行う。換言すれば、素子3は、超音波から電気信号への変換及び/又はその逆の変換を行うトランスデューサーである。 The device 1 has, for example, a plurality of ultrasonic elements 3 (only two are shown in FIG. 1) arranged along the upper surface 1a. Hereinafter, the "ultrasonic element" may be simply referred to as an "element". Each element 3 transmits and / or receives ultrasonic waves. In other words, the element 3 is a transducer that converts ultrasonic waves into electrical signals and / or vice versa.
 具体的には、例えば、素子3は、所定の波形(例えば、スパイク波、矩形波又は正弦波)で電圧が変化する電気信号(駆動信号)が入力される。そして、素子3は、その電気信号を当該電気信号の波形を反映した(例えば周波数及び/又は振幅を反映した)超音波に変換し、D3軸方向の正側へ送信する。また、例えば、素子3は、D3軸方向の正側から超音波を受信し、その超音波を当該超音波の波形を反映した電気信号に変換する。ここでいう超音波の送信及び受信についてのD3軸方向の正側は、D3軸方向に平行とは限らない。 Specifically, for example, the element 3 is input with an electric signal (drive signal) whose voltage changes in a predetermined waveform (for example, a spike wave, a square wave, or a sine wave). Then, the element 3 converts the electric signal into an ultrasonic wave reflecting the waveform of the electric signal (for example, reflecting the frequency and / or the amplitude), and transmits the ultrasonic wave to the positive side in the D3 axis direction. Further, for example, the element 3 receives an ultrasonic wave from the positive side in the D3 axis direction and converts the ultrasonic wave into an electric signal reflecting the waveform of the ultrasonic wave. The positive side of the ultrasonic wave transmission and reception in the D3 axis direction here is not always parallel to the D3 axis direction.
 複数の素子3において、一部の素子3(1つでもよいし、2以上でもよい。)の平面視における径と、他の一部の素子3(1つでもよいし、2以上でもよい。)の平面視における径とは互いに異なっている。すなわち、複数の素子3は、平面視における径が互いに異なる2種以上の素子3を含んでいる。 In the plurality of elements 3, the diameter of some elements 3 (may be one or two or more) in a plan view and some other elements 3 (may be one or two or more). ) Are different from each other in the plan view. That is, the plurality of elements 3 include two or more types of elements 3 having different diameters in a plan view.
 この径の相違については後に詳述することとし、まず、複数の素子3の基本的な構成(径が互いに異なる複数の素子3に共通の事項等)について述べる。 This difference in diameter will be described in detail later, and first, the basic configuration of the plurality of elements 3 (matters common to the plurality of elements 3 having different diameters, etc.) will be described.
 複数の素子3は、任意の数で設けられてよく、また、任意の方向に配列されてよい。例えば、複数の素子3は、D1方向に2以上配列されるとともにD2方向に2以上配列されてよい(後述する図3及び図10参照)。複数の素子3のD1方向におけるピッチは、例えば、素子3同士の径の相違に関わらず、一定である。複数の素子3のD2方向におけるピッチは、例えば、素子3同士の径の相違に関わらず、一定である。また、前者のピッチと後者のピッチとは、例えば、同じである。 The plurality of elements 3 may be provided in an arbitrary number and may be arranged in an arbitrary direction. For example, the plurality of elements 3 may be arranged in two or more in the D1 direction and two or more in the D2 direction (see FIGS. 3 and 10 described later). The pitch of the plurality of elements 3 in the D1 direction is constant regardless of, for example, the difference in diameter between the elements 3. The pitch of the plurality of elements 3 in the D2 direction is constant regardless of, for example, the difference in diameter between the elements 3. Further, the former pitch and the latter pitch are, for example, the same.
 なお、ピッチは、例えば、上面1aの平面視における、隣り合う素子3の中心同士の距離である。後に、キャビティ5c(後述)の径を特定するときの開口形状及びその外接円について述べる。この開口形状又は外接円の中心は、ピッチを特定するときの素子3の中心とされてよい。 The pitch is, for example, the distance between the centers of adjacent elements 3 in the plan view of the upper surface 1a. Later, the opening shape and its circumscribed circle when specifying the diameter of the cavity 5c (described later) will be described. The center of the opening shape or the circumscribed circle may be the center of the element 3 when specifying the pitch.
 図示の例とは異なり、例えば、複数の素子3は、1次元的に配列されてもよいし(1列のみ設けられてもよいし)、互いに隣り合う列同士で半ピッチずれるように配置されてもよい。また、相対的に径が大きい素子3に係るピッチが相対的に大きくなるようにピッチが設定されてもよい。 Unlike the illustrated example, for example, the plurality of elements 3 may be arranged one-dimensionally (only one row may be provided), or the rows adjacent to each other may be arranged so as to be offset by half a pitch. You may. Further, the pitch may be set so that the pitch of the element 3 having a relatively large diameter is relatively large.
 図2は、図1のII-II線における断面図である。 FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
 デバイス1は、例えば、支持基板5と、支持基板5の上面5aに重なっている機能層7と、支持基板5の下面5bに重なっている減衰材9とを有している。特に図示しないが、デバイス1は、上記以外の構成要素を有していてもよい。例えば、デバイス1は、上面5a若しくは下面5b又は減衰材9のいずれかの面に実装された電子素子を有していてもよい。 The device 1 has, for example, a support substrate 5, a functional layer 7 that overlaps the upper surface 5a of the support substrate 5, and a damping material 9 that overlaps the lower surface 5b of the support substrate 5. Although not particularly shown, the device 1 may have components other than the above. For example, the device 1 may have an electronic element mounted on any surface of the upper surface 5a or the lower surface 5b or the damping material 9.
 支持基板5は、上面5aに開口する複数のキャビティ5cを有している。各素子3は、キャビティ5cと、機能層7のうち概ねキャビティ5cに重なっている部分とを含んでいる。機能層7のうち概ねキャビティ5cに重なっている部分は、振動して超音波を生じる部分であり、超音波の送信及び/又は受信を直接的に担う。当該部分を素子本体3aということがある。支持基板5は、機能層7を支持することに寄与し、また、機能層7(素子3)の共振周波数(固有振動数)に影響を及ぼしている。減衰材9は、例えば、不要な振動の減衰に寄与する。 The support substrate 5 has a plurality of cavities 5c that open to the upper surface 5a. Each element 3 includes a cavity 5c and a portion of the functional layer 7 that substantially overlaps the cavity 5c. The portion of the functional layer 7 that substantially overlaps the cavity 5c is a portion that vibrates to generate ultrasonic waves, and directly bears the transmission and / or reception of ultrasonic waves. The portion may be referred to as an element body 3a. The support substrate 5 contributes to supporting the functional layer 7, and also affects the resonance frequency (natural frequency) of the functional layer 7 (element 3). The damping material 9 contributes to damping unnecessary vibration, for example.
(支持基板)
 支持基板5は、既述のように、上面5aと、その背面の下面5bと、複数のキャビティ5cとを有している。支持基板5は、例えば、概略、平板状であり、上面5a及び下面5bは互いに平行な平面状である。キャビティ5cの内部は、例えば、真空状態とされ、又は適宜な気体が封入されている。キャビティ5cは、例えば、機能層7のうち素子3を構成する部分(素子本体3a)の振動を容易化することに寄与する。また、例えば、素子本体3aは、断面視において、キャビティ5cの両側縁部において両端支持された状態となるから、キャビティ5cは、素子本体3a(素子3)の共振周波数を規定することに寄与する。すなわち、キャビティ5cの径が大きくされるほど、素子3の共振周波数は低くなる。
(Support board)
As described above, the support substrate 5 has an upper surface 5a, a lower surface 5b on the back surface thereof, and a plurality of cavities 5c. The support substrate 5 has, for example, a substantially flat plate shape, and the upper surface 5a and the lower surface 5b have a flat shape parallel to each other. The inside of the cavity 5c is, for example, in a vacuum state or is filled with an appropriate gas. The cavity 5c contributes to facilitating the vibration of the portion of the functional layer 7 that constitutes the element 3 (element body 3a), for example. Further, for example, since the element body 3a is in a state of being supported at both ends at both side edges of the cavity 5c in cross-sectional view, the cavity 5c contributes to defining the resonance frequency of the element body 3a (element 3). .. That is, the larger the diameter of the cavity 5c, the lower the resonance frequency of the element 3.
 キャビティ5cの形状及び寸法は適宜に設定されてよい。例えば、キャビティ5cの平面視における形状(例えば上面5aにおける開口形状)は、円形又は多角形とされてよい。本実施形態では、キャビティ5cの開口形状が円形である場合を例に取る。また、図示の例では、キャビティ5cのその深さ方向に平行な断面(D1-D3平面に平行な断面)の形状は矩形である。別の観点では、キャビティ5cのその深さ方向に直交する断面(D1-D2平面に平行な断面)の形状は、深さ方向(D3方向)の位置によらずに一定である。ただし、キャビティ5cのその深さ方向に直交する断面の形状は、深さ方向の位置によって異なっていてもよい。例えば、図2のような断面視において、キャビティ5cの形状は、上部側ほど拡径又は縮径する台形状とされてもよい。キャビティ5cの径は適宜に設定されてよく、一例を挙げると、10μm以上100μm以下である。 The shape and dimensions of the cavity 5c may be set as appropriate. For example, the shape of the cavity 5c in a plan view (for example, the opening shape on the upper surface 5a) may be circular or polygonal. In the present embodiment, the case where the opening shape of the cavity 5c is circular is taken as an example. Further, in the illustrated example, the shape of the cross section (cross section parallel to the D1-D3 plane) parallel to the depth direction of the cavity 5c is rectangular. From another point of view, the shape of the cross section of the cavity 5c orthogonal to its depth direction (cross section parallel to the D1-D2 plane) is constant regardless of the position in the depth direction (D3 direction). However, the shape of the cross section of the cavity 5c orthogonal to the depth direction may differ depending on the position in the depth direction. For example, in the cross-sectional view as shown in FIG. 2, the shape of the cavity 5c may be a trapezoidal shape in which the diameter is enlarged or reduced toward the upper side. The diameter of the cavity 5c may be appropriately set, and for example, it is 10 μm or more and 100 μm or less.
 キャビティ5cのその深さ方向に直交する断面の形状が深さ方向の位置によって異なる態様において、キャビティ5cの径は、特に断りが無い限り、キャビティ5cの上面5aにおける開口形状の径を指すものとする。キャビティ5c(支持基板5)のうち素子3の共振周波数に影響を及ぼす部分は、主として上面5aに開口する部分だからである。また、キャビティ5cの開口形状が円形でない場合において、キャビティ5cの径は、特に断りが無い限り、キャビティ5cの上面5aにおける開口の外接円の径を指すものとする。素子3の共振周波数は、キャビティ5cの開口形状のうち径が大きい部分の影響を受けやすいことからである。外接円の特定又は設定に際しては、素子3の共振周波数に及ぼす影響が小さい特異的な部分は無視されてよい。例えば、平面視においてキャビティ5cから外側へ突出する細長い凸部が設けられている場合、そのような凸部は無視されてよい。 In an embodiment in which the shape of the cross section of the cavity 5c orthogonal to the depth direction differs depending on the position in the depth direction, the diameter of the cavity 5c refers to the diameter of the opening shape on the upper surface 5a of the cavity 5c unless otherwise specified. To do. This is because the portion of the cavity 5c (support substrate 5) that affects the resonance frequency of the element 3 is mainly the portion that opens to the upper surface 5a. When the opening shape of the cavity 5c is not circular, the diameter of the cavity 5c refers to the diameter of the circumscribed circle of the opening on the upper surface 5a of the cavity 5c unless otherwise specified. This is because the resonance frequency of the element 3 is easily affected by the portion of the opening shape of the cavity 5c having a large diameter. When specifying or setting the circumscribed circle, a specific portion having a small effect on the resonance frequency of the element 3 may be ignored. For example, when an elongated convex portion protruding outward from the cavity 5c is provided in a plan view, such a convex portion may be ignored.
 支持基板5の材料は任意である。支持基板5は、その全体が1つの材料によって構成されていてもよいし、複数の材料が組み合わされて構成されていてもよい。支持基板5の材料は、例えば、無機絶縁材料又は有機絶縁材料である。より具体的には、例えば、支持基板5は、シリコン(Si)等の絶縁材料によって一体的に形成されてよい。また、例えば、支持基板5は、シリコン等の絶縁材料によって概ね全体が一体的に形成されているとともに、上面及び/又は下面にSiO等の他の絶縁材料からなる層を有していてもよい。 The material of the support substrate 5 is arbitrary. The entire support substrate 5 may be made of one material, or the support substrate 5 may be made of a combination of a plurality of materials. The material of the support substrate 5 is, for example, an inorganic insulating material or an organic insulating material. More specifically, for example, the support substrate 5 may be integrally formed of an insulating material such as silicon (Si). Further, for example, the support substrate 5 may be formed substantially integrally with an insulating material such as silicon, and may have a layer made of another insulating material such as SiO 2 on the upper surface and / or the lower surface. Good.
(機能層(素子本体))
 機能層7のうち素子3を構成している部分(概ねキャビティ5c上の部分)である素子本体3aは、例えば、キャビティ5c側(-D3側)及びキャビティ5cとは反対側(+D3側)の少なくとも一方への撓み変形を伴う振動を生じる。当該振動は、換言すれば、面外振動である。この振動によって、超音波の送信及び/又は受信が行われる。すなわち、素子3は、撓み振動型のものである。
(Functional layer (element body))
The element body 3a, which is a portion of the functional layer 7 that constitutes the element 3 (generally a portion on the cavity 5c), is, for example, on the cavity 5c side (-D3 side) and the side opposite to the cavity 5c (+ D3 side). Vibration is generated with bending deformation to at least one side. In other words, the vibration is out-of-plane vibration. This vibration causes transmission and / or reception of ultrasonic waves. That is, the element 3 is a flexible vibration type.
 撓み振動型の超音波素子としては、例えば、pMUT等の圧電式の素子、及びcMUT(Capacitive Micromachined Ultrasonic Transducer)等の容量式の素子を挙げることができる。本実施形態では、pMUTを例に取る。また、撓み振動型の圧電素子としては、例えば、バイモルフ型の素子及びユニモルフ型の素子を挙げることができる。本実施形態では、ユニモルフ型の素子を例に取る。 Examples of flexible vibration type ultrasonic elements include piezoelectric elements such as pMUT and capacitive elements such as cMUT (Capacitive Micromachined Ultrasonic Transducer). In this embodiment, pMUT is taken as an example. Further, examples of the flexible vibration type piezoelectric element include a bimorph type element and a unimorph type element. In this embodiment, a unimorph type element is taken as an example.
 素子本体3aは、例えば、その中央が振動の腹となり、外縁が振動の節となる1次モードの振動に関して、共振周波数が超音波の周波数帯に位置するように構成されている。超音波の周波数帯は、例えば、20kHz以上の周波数帯である。超音波の周波数の上限について、特に規定は存在しないが、例えば、5GHzである。素子3の厚さは適宜に設定されてよく、一例を挙げると、4μm以上40μm以下である。 The element body 3a is configured such that the resonance frequency is located in the ultrasonic frequency band with respect to the vibration in the primary mode in which the center thereof is the antinode of the vibration and the outer edge is the node of the vibration. The frequency band of ultrasonic waves is, for example, a frequency band of 20 kHz or higher. There is no particular regulation on the upper limit of the ultrasonic frequency, but it is, for example, 5 GHz. The thickness of the element 3 may be appropriately set, and for example, it is 4 μm or more and 40 μm or less.
 機能層7は、例えば、複数のキャビティ5c上に位置する複数のメンブレン11と、複数のメンブレン11の上から上面5aを覆っている被覆層13とを有している。1つの素子3(1つの素子本体3a)は、1つのキャビティ5cと重なる1つのメンブレン11と、被覆層13のうち1つのメンブレン11に重なる領域とを有している。メンブレン11は、超音波の送信及び/又は受信を直接に担う部分である。被覆層13は、例えば、メンブレン11の保護及び/又は絶縁に寄与する。 The functional layer 7 has, for example, a plurality of membranes 11 located on the plurality of cavities 5c, and a coating layer 13 covering the upper surface 5a from above the plurality of membranes 11. One element 3 (one element body 3a) has one membrane 11 that overlaps one cavity 5c and a region that overlaps one membrane 11 of the coating layer 13. The membrane 11 is a portion directly responsible for transmitting and / or receiving ultrasonic waves. The coating layer 13 contributes, for example, to the protection and / or insulation of the membrane 11.
 機能層7のうち、複数のメンブレン11を含む層(機能層7のうち被覆層13よりも下方の層)を機能本体層8とする。機能本体層8は、メンブレン11の他、メンブレン11の電気的接続に寄与する配線等を有してよい。機能本体層8の厚さは適宜に設定されてよく、一例を挙げると、2μm以上20μm以下である。 Among the functional layers 7, a layer containing a plurality of membranes 11 (a layer of the functional layers 7 below the coating layer 13) is referred to as a functional main body layer 8. In addition to the membrane 11, the functional body layer 8 may have wiring or the like that contributes to the electrical connection of the membrane 11. The thickness of the functional body layer 8 may be appropriately set, and for example, it is 2 μm or more and 20 μm or less.
(メンブレン)
 メンブレン11は、支持基板5から順に積層された、振動部15、下部電極17、圧電体19及び上部電極21を有している。
(Membrane)
The membrane 11 has a vibrating portion 15, a lower electrode 17, a piezoelectric body 19, and an upper electrode 21 which are laminated in order from the support substrate 5.
 圧電体19の分極軸方向(単結晶においては電気軸・X軸)は、圧電体19の厚み方向とされている。下部電極17及び上部電極21によって圧電体19に分極の向きと同じ向きで電界が印加されると、圧電体19の下部電極17及び上部電極21に挟まれた部分は、平面方向(D1方向及びD2方向)に縮小する。この縮小は、振動部15によって規制される。その結果、メンブレン11は、バイメタルのようにキャビティ5c側へ撓む(変位する)。逆に、分極の向きと逆の向きで電界が印加されると、メンブレン11は、キャビティ5cとは反対側へ撓む。 The polarization axis direction of the piezoelectric body 19 (electrical axis and X-axis in a single crystal) is the thickness direction of the piezoelectric body 19. When an electric field is applied to the piezoelectric body 19 by the lower electrode 17 and the upper electrode 21 in the same direction as the polarization direction, the portion of the piezoelectric body 19 sandwiched between the lower electrode 17 and the upper electrode 21 is in the plane direction (D1 direction and Reduce in the D2 direction). This reduction is regulated by the vibrating unit 15. As a result, the membrane 11 bends (displaces) toward the cavity 5c like a bimetal. On the contrary, when an electric field is applied in the direction opposite to the direction of polarization, the membrane 11 bends to the side opposite to the cavity 5c.
 上記のような素子3の変位によって、素子3の周囲の媒質(例えば流体)においては圧力波が形成される。そして、所定の波形で電圧が変化する電気信号が下部電極17及び上部電極21に入力されることによって、その電気信号の波形(例えば周波数及び/又は振幅)を反映した超音波が生成される。 Due to the displacement of the element 3 as described above, a pressure wave is formed in the medium (for example, fluid) around the element 3. Then, when an electric signal whose voltage changes with a predetermined waveform is input to the lower electrode 17 and the upper electrode 21, an ultrasonic wave reflecting the waveform (for example, frequency and / or amplitude) of the electric signal is generated.
 超音波の送信について述べたが、超音波の受信は、送信時とは逆の原理によって実現される。1つの素子3は、送信のみを行うものであってもよいし、受信のみを行うものであってもよいし、送信及び受信の双方を行うものであってもよい。送信及び受信の双方を行う素子3は、例えば、超音波の送信を間欠的に行い、超音波の送信が行われていない間において超音波の受信を行う。これにより、例えば、素子3は、自らが送信した超音波の反射波を受信する。 Although the transmission of ultrasonic waves was described, the reception of ultrasonic waves is realized by the principle opposite to that at the time of transmission. One element 3 may be one that performs only transmission, one that performs only reception, or one that performs both transmission and reception. The element 3 that performs both transmission and reception, for example, intermittently transmits ultrasonic waves and receives ultrasonic waves while the ultrasonic waves are not being transmitted. As a result, for example, the element 3 receives the reflected wave of the ultrasonic wave transmitted by itself.
(振動部)
 振動部15は、振動層16のうちキャビティ5c上の部分である。振動層16は、例えば、平面透視において複数のキャビティ5cを包含する1つの領域の全体に亘って隙間無く広がっている。換言すれば、振動層16は、複数のキャビティ5cと、その間の領域とを覆っている。ただし、振動部15は、図示の例とは異なり、素子3毎に設けられていてもよい。すなわち、キャビティ5c間に振動層16の非配置領域が形成されることにより、複数の振動部15は、互いに分離されていてもよい。振動部15は、例えば、概略、一定の厚さの層状である。振動部15の厚さは適宜に設定されてよい。例えば、振動部15の厚さは、圧電体19の厚さに対して、薄くてもよいし、同等でもよいし、厚くてもよい。
(Vibration part)
The vibrating portion 15 is a portion of the vibrating layer 16 on the cavity 5c. The vibrating layer 16 extends without gaps over, for example, one region including the plurality of cavities 5c in planar fluoroscopy. In other words, the vibrating layer 16 covers the plurality of cavities 5c and the region between them. However, unlike the illustrated example, the vibrating portion 15 may be provided for each element 3. That is, the plurality of vibrating portions 15 may be separated from each other by forming the non-arranged region of the vibrating layer 16 between the cavities 5c. The vibrating portion 15 is, for example, roughly a layered layer having a constant thickness. The thickness of the vibrating portion 15 may be appropriately set. For example, the thickness of the vibrating portion 15 may be thinner, equal to, or thicker than the thickness of the piezoelectric body 19.
 振動部15は、例えば、絶縁材料によって形成されている。絶縁材料は、無機材料でも有機材料でもよく、より具体的には、例えば、シリコン、二酸化シリコン(SiO)又は窒化シリコン(SiN)である。振動部15は、例えば、1種類の材料によって一体的に構成されていてもよいし、互いに異なる材料からなる複数の層が積層されて構成されていてもよい。例えば、振動部15は、シリコンと、その下面に重なるSiOとによって構成されていてもよい。特に図示しないが、振動部15を設けず、下部電極17又は上部電極21を振動部として機能させることも可能である。 The vibrating portion 15 is formed of, for example, an insulating material. The insulating material may be an organic material in the inorganic material, more specifically, for example, silicon, silicon dioxide (SiO 2) or silicon nitride (SiN X). The vibrating portion 15 may be integrally formed of, for example, one kind of material, or may be formed by laminating a plurality of layers made of different materials. For example, the vibrating portion 15 may be composed of silicon and SiO 2 overlapping the lower surface thereof. Although not particularly shown, it is also possible to make the lower electrode 17 or the upper electrode 21 function as the vibrating portion without providing the vibrating portion 15.
(圧電体)
 圧電体19は、例えば、概略、一定の厚さの層状である。圧電体19は、素子3毎(キャビティ5c毎)に設けられている。別の観点では、複数の圧電体19は、互いに分離されている。平面透視において、圧電体19の形状及び広さは、例えば、概略、キャビティ5cと同等とされている。例えば、平面透視において、圧電体19(その上面又は下面)の90%以上とキャビティ5c(その上面5aにおける開口)の90%以上とが重なっている。本実施形態では、既述のように、キャビティ5cの開口形状が円形である場合を例に取っており、ひいては、圧電体19の平面形状が円形である場合を例に取る。ただし、圧電体19は、平面透視において、キャビティ5cの開口形状とは全く異なる形状及び/又は広さであっても構わない。圧電体19の厚さは適宜に設定されてよい。一例を挙げると、圧電体19の厚さは、0.5μm以上10μm以下である。
(Piezoelectric)
The piezoelectric body 19 is, for example, roughly a layer having a constant thickness. The piezoelectric body 19 is provided for each element 3 (every cavity 5c). From another point of view, the plurality of piezoelectric bodies 19 are separated from each other. In planar perspective, the shape and width of the piezoelectric body 19 is, for example, roughly equivalent to that of the cavity 5c. For example, in planar perspective, 90% or more of the piezoelectric body 19 (upper surface or lower surface thereof) and 90% or more of the cavity 5c (opening in the upper surface 5a thereof) overlap. In the present embodiment, as described above, the case where the opening shape of the cavity 5c is circular is taken as an example, and the case where the planar shape of the piezoelectric body 19 is circular is taken as an example. However, the piezoelectric body 19 may have a shape and / or a width completely different from the opening shape of the cavity 5c in plan perspective. The thickness of the piezoelectric body 19 may be appropriately set. As an example, the thickness of the piezoelectric body 19 is 0.5 μm or more and 10 μm or less.
 圧電体19は、例えば、上面側ほど縮径するようにテーパ状に形成されている。換言すれば、圧電体19の側面は、圧電体19が支持基板5側ほど拡径する向きで傾斜する斜面19aを有している。これにより、例えば、上部電極21に接続される上部配線25(後述)の断線の蓋然性が低減される。また、例えば、後述するように、超音波の送信及び/又は受信の効率を向上させることができる。斜面19aは、圧電体19の側面の一部であってもよいし、全部であってもよい(図示の例)。斜面19aが圧電体19の側面の一部である態様としては、圧電体19の側面のうちの上下方向の一部が斜面19aである態様、及び/又は圧電体19の側面のうち平面視における周方向の一部が斜面19aである態様を挙げることができる。圧電体19のテーパ面(側面)は、図2のような横断面において平面状であってもよいし、曲面状であってもよい。また、テーパ面の傾斜角度も任意である。図示の例とは異なり、圧電体19は、上面と下面とが概ね重なる形状(側面が鉛直壁である形状)であっても構わない。 The piezoelectric body 19 is formed in a tapered shape so that the diameter is reduced toward the upper surface side, for example. In other words, the side surface of the piezoelectric body 19 has a slope 19a in which the piezoelectric body 19 is inclined in a direction in which the diameter of the piezoelectric body 19 is increased toward the support substrate 5. As a result, for example, the probability of disconnection of the upper wiring 25 (described later) connected to the upper electrode 21 is reduced. Further, for example, as will be described later, the efficiency of transmitting and / or receiving ultrasonic waves can be improved. The slope 19a may be a part or all of the side surface of the piezoelectric body 19 (illustrated example). The aspect in which the slope 19a is a part of the side surface of the piezoelectric body 19 is the aspect in which a part of the side surface of the piezoelectric body 19 in the vertical direction is the slope 19a and / or the side surface of the piezoelectric body 19 in a plan view. An embodiment in which a part of the circumferential direction is a slope 19a can be mentioned. The tapered surface (side surface) of the piezoelectric body 19 may be flat or curved in the cross section as shown in FIG. Further, the inclination angle of the tapered surface is also arbitrary. Unlike the illustrated example, the piezoelectric body 19 may have a shape in which the upper surface and the lower surface substantially overlap (a shape in which the side surface is a vertical wall).
 図示の例とは異なり、平面透視において複数のキャビティ5cを包含する1つの領域の全体に隙間無く広がる圧電体層が設けられてもよい。この場合、1つの素子3が有する圧電体19は、圧電体層のうちのキャビティ5c上に位置する一部によって構成される。 Unlike the illustrated example, a piezoelectric layer may be provided so as to spread without gaps in the entire one region including the plurality of cavities 5c in planar fluoroscopy. In this case, the piezoelectric body 19 included in one element 3 is composed of a part of the piezoelectric body layer located on the cavity 5c.
 圧電体19は、単結晶によって構成されていてもよいし、多結晶によって構成されていてもよい。圧電体19の材料は、例えば、窒化アルミニウム(AlN)、チタン酸バリウム(BTO:BaTiO)、ニオブ酸カリウムナトリウム(KNN:(K,Na)NbO)、チタン酸ビスマスナトリウム(NBT:Na0.5Bi0.5TiO)及びチタン酸ジルコン酸鉛(PZT:Pb(Zr,Ti1-x)O)である。上記の例示からも理解されるように、圧電体は、強誘電体であってもなくてもよいし、焦電体であってもなくてもよい。また、結晶構造は、ペロブスカイト型又はウルツ鉱型等の適宜なものであってよい。 The piezoelectric body 19 may be composed of a single crystal or a polycrystal. The material of the piezoelectric body 19 is, for example, aluminum nitride (AlN), barium titanate (BTO: BaTIO 3 ), sodium potassium niobate (KNN: (K, Na) NbO 3 ), sodium bismuth titanate (NBT: Na 0). .5 Bi 0.5 TiO 3 ) and lead zirconate titanate (PZT: Pb (Zr x , Ti 1-x ) O 3 ). As can be understood from the above examples, the piezoelectric body may or may not be a ferroelectric substance, and may or may not be a pyroelectric body. Further, the crystal structure may be an appropriate one such as a perovskite type or a wurtzite type.
(電極)
 下部電極17は、例えば、概略、一定の厚さの層状である。下部電極17は、素子3毎(キャビティ5c毎)に設けられている。別の観点では、複数の下部電極17は、互いに分離されている。平面透視において、下部電極17の形状及び広さは、例えば、概略、キャビティ5c及び/又は圧電体19の下面と同等とされている。例えば、平面透視において、下部電極17の90%以上とキャビティ5c(その上面5aにおける開口)及び/又は圧電体19の下面の90%以上とが重なっている。本実施形態では、既述のように、キャビティ5cの開口形状が円形である場合を例に取っており、ひいては、下部電極17の平面形状が円形である場合を例に取る。ただし、下部電極17は、平面透視において、キャビティ5cの開口形状とは全く異なる形状及び/又は広さであっても構わない。
(electrode)
The lower electrode 17 is, for example, roughly a layered body having a constant thickness. The lower electrode 17 is provided for each element 3 (every cavity 5c). From another point of view, the plurality of lower electrodes 17 are separated from each other. In planar perspective, the shape and width of the lower electrode 17 are, for example, roughly equivalent to the lower surface of the cavity 5c and / or the piezoelectric body 19. For example, in planar perspective, 90% or more of the lower electrode 17 overlaps with 90% or more of the cavity 5c (the opening in the upper surface 5a thereof) and / or the lower surface of the piezoelectric body 19. In the present embodiment, as described above, the case where the opening shape of the cavity 5c is circular is taken as an example, and the case where the planar shape of the lower electrode 17 is circular is taken as an example. However, the lower electrode 17 may have a shape and / or a width completely different from the opening shape of the cavity 5c in plan perspective.
 図示の例とは異なり、平面透視において複数のキャビティ5cを包含する1つの領域の全体に隙間無く広がる下部電極層が設けられてもよい。この場合、1つの素子3が有する下部電極17は、下部電極層のうちのキャビティ5c上に位置する一部によって構成される。 Unlike the illustrated example, a lower electrode layer that extends without gaps may be provided over the entire region that includes the plurality of cavities 5c in planar fluoroscopy. In this case, the lower electrode 17 included in one element 3 is composed of a part of the lower electrode layer located on the cavity 5c.
 上記の下部電極17に係る説明は、上部電極21に援用されてよい。この際、「下部電極17」は「上部電極21」に、「圧電体19の下面」は「圧電体19の上面」に、「下部電極層」は「上部電極層」に、それぞれ置き換える。下部電極17及び上部電極21は、その形状及び/又は大きさが互いに同一であってもよいし、互いに異なっていてもよい。図示の例では、圧電体19がテーパ状とされている。そして、下部電極17が圧電体19の下面と概ね同等の形状及び大きさとされており、上部電極21が圧電体19の上面と概ね同等の形状及び大きさとされている。その結果、上部電極21は、下部電極17よりも一回り小さい。 The above description of the lower electrode 17 may be incorporated into the upper electrode 21. At this time, the "lower electrode 17" is replaced with the "upper electrode 21", the "lower surface of the piezoelectric body 19" is replaced with the "upper surface of the piezoelectric body 19", and the "lower electrode layer" is replaced with the "upper electrode layer". The lower electrode 17 and the upper electrode 21 may have the same shape and / or size, or may be different from each other. In the illustrated example, the piezoelectric body 19 is tapered. The lower electrode 17 has a shape and size substantially the same as the lower surface of the piezoelectric body 19, and the upper electrode 21 has a shape and size substantially the same as the upper surface of the piezoelectric body 19. As a result, the upper electrode 21 is one size smaller than the lower electrode 17.
 各電極の厚さは適宜に設定されてよい。通常、各電極の厚さは、圧電体19及び振動層16の厚さに比較して薄い。例えば、各電極の厚さは、圧電体19の厚さの1/10以下である。下部電極17の厚さと上部電極21の厚さとは互いに同一であってもよいし、互いに異なっていてもよい。 The thickness of each electrode may be set appropriately. Usually, the thickness of each electrode is thinner than the thickness of the piezoelectric body 19 and the vibrating layer 16. For example, the thickness of each electrode is 1/10 or less of the thickness of the piezoelectric body 19. The thickness of the lower electrode 17 and the thickness of the upper electrode 21 may be the same as or different from each other.
 各電極の材料は、例えば、適宜な金属及び/又は酸化物導電薄膜の層とされてよい。金属は、例えば、金(Au)、白金(Pt)、アルミニウム(Al)、銅(Cu)、チタン(Ti)若しくはクロム(Cr)又はこれらを含む合金である。また、酸化物導電薄膜は、例えば、ルテニウム酸ストロンチウム(SRO)又はニッケル酸ランタン(LNO)等のペロブスカイト構造の導電材料である。各電極は、上記で示した互いに異なる材料からなる複数の層が積層されて構成されていてもよい。下部電極17の材料と上部電極21の材料とは互いに同一であってもよいし、互いに異なっていてもよい。 The material of each electrode may be, for example, a layer of an appropriate metal and / or oxide conductive thin film. The metal is, for example, gold (Au), platinum (Pt), aluminum (Al), copper (Cu), titanium (Ti) or chromium (Cr) or an alloy containing these. The oxide conductive thin film is, for example, a conductive material having a perovskite structure such as strontium ruthenate (SRO) or lanthanum nickelate (LNO). Each electrode may be configured by laminating a plurality of layers made of different materials as shown above. The material of the lower electrode 17 and the material of the upper electrode 21 may be the same as each other or may be different from each other.
 複数の下部電極17は、互いに接続されていてもよいし、互いに非接続とされていてもよい。同様に、複数の上部電極21は、互いに接続されていてもよいし、互いに非接続とされていてもよい。本実施形態の説明では、主として、複数の下部電極17が互いに接続されており、かつ複数の上部電極21が互いに接続されている態様を例に取る。 The plurality of lower electrodes 17 may be connected to each other or may not be connected to each other. Similarly, the plurality of upper electrodes 21 may be connected to each other or may not be connected to each other. In the description of the present embodiment, a mode in which a plurality of lower electrodes 17 are connected to each other and a plurality of upper electrodes 21 are connected to each other is mainly taken as an example.
(機能本体層が含む他の構成)
 複数のメンブレン11を含む機能本体層8は、既述のように、メンブレン11の他、メンブレン11の電気的接続に係る配線を含んでよい。例えば、上記のように、本実施形態では、上部電極21同士が接続される態様を例に取っており、機能本体層8は、D1方向に並んでいる複数の上部電極21を互いに接続する上部配線25(図10も参照)を有している。他の配線については、後に図10(他の実施形態)を参照して説明する。種々の配線の材料については、例えば、上記の電極の材料の説明が援用されてよい。
(Other configurations included in the functional body layer)
As described above, the functional body layer 8 including the plurality of membranes 11 may include wiring related to the electrical connection of the membrane 11 in addition to the membrane 11. For example, as described above, in the present embodiment, the upper electrodes 21 are connected to each other as an example, and the functional body layer 8 is an upper portion connecting a plurality of upper electrodes 21 arranged in the D1 direction to each other. It has wiring 25 (see also FIG. 10). Other wiring will be described later with reference to FIG. 10 (another embodiment). For various wiring materials, for example, the above description of electrode materials may be incorporated.
 上部配線25は、例えば、メンブレン11の上から支持基板5に重なる導体層によって構成されている。上部配線25は、D1方向において互いに隣り合う上部電極21の一方から他方へ延びており、両者を接続している。このような上部配線25の具体的な形状及び寸法は適宜に設定されてよい。 The upper wiring 25 is composed of, for example, a conductor layer that overlaps the support substrate 5 from above the membrane 11. The upper wiring 25 extends from one of the upper electrodes 21 adjacent to each other in the D1 direction to the other, and connects the two. The specific shape and dimensions of the upper wiring 25 may be appropriately set.
 例えば、上部配線25は、概略、一定の幅でD1方向に延びる長尺状である。その幅は、例えば、上部電極21のD2方向の径よりも小さい。上部配線25の一端は、互いに隣り合う上部電極21の一方の上に重なり、上部配線25の他端は、互いに隣り合う上部電極21の他方の上に重なっている。同一の上部電極21上に位置している2つの上部配線25の端部は、互いに間隔を空けてD1方向において対向している。当該間隔は、キャビティ5cの中央上に位置している。 For example, the upper wiring 25 has a substantially elongated shape extending in the D1 direction with a constant width. Its width is, for example, smaller than the diameter of the upper electrode 21 in the D2 direction. One end of the upper wiring 25 overlaps one of the upper electrodes 21 adjacent to each other, and the other end of the upper wiring 25 overlaps the other of the upper electrodes 21 adjacent to each other. The ends of the two upper wirings 25 located on the same upper electrode 21 face each other in the D1 direction with a gap from each other. The interval is located above the center of the cavity 5c.
 また、例えば、上部配線25の厚さは、下部電極17、上部電極21及び/又は後述する下部配線23よりも厚くされている。これにより、例えば、上部配線25のうち圧電体19の厚みによって構成された段差を超える部分において断線が生じる蓋然性が低減される。上部配線25の厚さは、例えば、圧電体19の厚さの1/20以上1/5以下とされてよい。 Further, for example, the thickness of the upper wiring 25 is thicker than that of the lower electrode 17, the upper electrode 21, and / or the lower wiring 23 described later. As a result, for example, the possibility of disconnection occurring in the portion of the upper wiring 25 that exceeds the step formed by the thickness of the piezoelectric body 19 is reduced. The thickness of the upper wiring 25 may be, for example, 1/20 or more and 1/5 or less of the thickness of the piezoelectric body 19.
 下部電極17及び/又は後述する下部配線23に対して上から重なり、かつ上部配線25の下に位置し、前者と後者との短絡の蓋然性を低減する絶縁膜27が設けられてもよい。絶縁膜27の材料、形状及び寸法等は任意である。例えば、絶縁膜27は、上部配線25よりも薄く形成されており、また、少なくとも圧電体19の上部を露出させている。絶縁膜27の材料は、無機材料であってもよいし、有機材料であってもよい。図示の例とは異なり、絶縁膜27を設けず、上部配線25を圧電体19のみによって下部電極17及び/又は下部配線23と絶縁してもよい。 An insulating film 27 may be provided that overlaps the lower electrode 17 and / or the lower wiring 23 described later from above and is located below the upper wiring 25 to reduce the probability of a short circuit between the former and the latter. The material, shape, dimensions, etc. of the insulating film 27 are arbitrary. For example, the insulating film 27 is formed thinner than the upper wiring 25, and at least the upper part of the piezoelectric body 19 is exposed. The material of the insulating film 27 may be an inorganic material or an organic material. Unlike the illustrated example, the upper wiring 25 may be insulated from the lower electrode 17 and / or the lower wiring 23 only by the piezoelectric body 19 without providing the insulating film 27.
(被覆層)
 被覆層13は、例えば、デバイス1の上面1aを構成している。従って、デバイス1の周囲の流体は、被覆層13の上面に接する。ただし、被覆層13は、デバイス1の上面1aを構成していなくてもよい。例えば、不図示の層が被覆層13上に重ねられていてもよい。
(Coating layer)
The coating layer 13 constitutes, for example, the upper surface 1a of the device 1. Therefore, the fluid around the device 1 comes into contact with the upper surface of the coating layer 13. However, the coating layer 13 does not have to form the upper surface 1a of the device 1. For example, a layer (not shown) may be superposed on the coating layer 13.
 被覆層13は、例えば、平面透視において複数の素子3を包含する1つの領域の全体に隙間無く広がっている。被覆層13は、概略、一定の厚さで広がっている。従って、被覆層13の上面は、図1及び図2に示すように、機能本体層8の上面の凹凸を反映している。すなわち、被覆層13は、いわゆるコンフォーマル(conformal、共形等と和訳される。)な層である。ただし、被覆層13の上面の凹凸は、機能本体層8の上面の凹凸に比較して滑らかになっている。また、図示の例とは異なり、機能本体層8の上面の凹凸の有無に関わらず、被覆層13の上面は、平面状とされても構わない。被覆層13の厚さは適宜に設定されてよい。 The coating layer 13 extends without gaps over the entire area including a plurality of elements 3 in planar perspective, for example. The coating layer 13 is roughly spread with a constant thickness. Therefore, as shown in FIGS. 1 and 2, the upper surface of the covering layer 13 reflects the unevenness of the upper surface of the functional body layer 8. That is, the covering layer 13 is a so-called conformal layer (translated into Japanese as conformal, conformal, etc.). However, the unevenness of the upper surface of the coating layer 13 is smoother than the unevenness of the upper surface of the functional body layer 8. Further, unlike the illustrated example, the upper surface of the covering layer 13 may be flat regardless of the presence or absence of unevenness on the upper surface of the functional body layer 8. The thickness of the coating layer 13 may be appropriately set.
 より具体的には、本実施形態では、複数の圧電体19が互いに分離して設けられている(複数のキャビティ5cに亘って隙間無く広がる圧電体層が設けられているのではない)。これにより、機能本体層8の上面は、キャビティ5c上に凸部を有している。ひいては、被覆層13の上面は、キャビティ5c上に凸部13aを有している。凸部13aの形状は、圧電体19の形状を反映しており、図示の例では、概略、円錐台である。また、本実施形態では、比較的厚い上部配線25が設けられていることによっても、機能本体層8の上面に凸部が生じている。その結果、被覆層13の表面には、D1方向に延びる凸部13bが形成されている。 More specifically, in the present embodiment, a plurality of piezoelectric bodies 19 are provided separately from each other (the piezoelectric layer is not provided so as to spread without gaps over the plurality of cavities 5c). As a result, the upper surface of the functional body layer 8 has a convex portion on the cavity 5c. As a result, the upper surface of the coating layer 13 has a convex portion 13a on the cavity 5c. The shape of the convex portion 13a reflects the shape of the piezoelectric body 19, and in the illustrated example, it is roughly a truncated cone. Further, in the present embodiment, the provision of the relatively thick upper wiring 25 also causes a convex portion on the upper surface of the functional body layer 8. As a result, a convex portion 13b extending in the D1 direction is formed on the surface of the coating layer 13.
 被覆層13の材料は、例えば、絶縁性を有する材料とされてよい。例えば、被覆層13の材料の体積抵抗率は、1014Ωm以上である。絶縁材料は、有機材料であってもよいし、無機材料であってもよい。被覆層13は、一の材料から構成されていてもよいし、互いに異なる材料の層が積層されて構成されていてもよい。 The material of the coating layer 13 may be, for example, a material having an insulating property. For example, the volume resistivity of the material of the coating layer 13 is 10 14 Ωm or more. The insulating material may be an organic material or an inorganic material. The coating layer 13 may be composed of one material, or may be formed by laminating layers of different materials.
(減衰材)
 減衰材9は、音響に係る減衰定数(m-1・Hz-1)が支持基板5よりも大きい材料によって構成されている。これにより、例えば、素子3で生じた振動が外部へ漏れたり、逆に、外部からの振動が素子3へ伝わったりする蓋然性が低減される。減衰材9が絶縁性材料によって構成されている場合においては、減衰材9は、回路基板の絶縁体のように機能可能である。従って、例えば、減衰材9の+D3側若しくは-D3側の表面に電子部品が実装されたり、減衰材9の内部に配線又は電子素子が設けられたりしてもよい。減衰材9の材料は、適宜なものとされてよく、例えば、樹脂又はセラミックとされてよい。減衰材9は設けられなくてもよい。
(Attenuating material)
The damping material 9 is made of a material having a damping constant (m -1 · Hz -1 ) related to acoustics larger than that of the support substrate 5. As a result, for example, the probability that the vibration generated in the element 3 leaks to the outside or, conversely, the vibration from the outside is transmitted to the element 3 is reduced. When the damping material 9 is made of an insulating material, the damping material 9 can function like an insulator of a circuit board. Therefore, for example, an electronic component may be mounted on the surface of the damping material 9 on the + D3 side or the −D3 side, or wiring or an electronic element may be provided inside the damping material 9. The material of the damping material 9 may be any suitable material, for example, resin or ceramic. The damping material 9 may not be provided.
(キャビティの径)
 複数のキャビティ5cの径の相違について述べる。
(Cavity diameter)
Differences in diameter of the plurality of cavities 5c will be described.
 図3は、デバイス1におけるキャビティ5cの構成の例を示す平面図である。図4は、図3の領域IVの拡大図である。 FIG. 3 is a plan view showing an example of the configuration of the cavity 5c in the device 1. FIG. 4 is an enlarged view of region IV of FIG.
 図3は、例えば、同一の用途に用いられる複数の素子3の全てのキャビティ5cを示す図と捉えられてよい。例えば、図3は、1つの超音波を共に送信する複数の素子3の全てのキャビティ5cを示していると捉えられてよい。又は、図3は、1つの超音波を共に受信する複数の素子3の全てのキャビティ5cを示していると捉えられてよい。又は、図3は、1つの超音波を共に送信し、その反射波を共に受信する複数の素子3の全てのキャビティ5cを示していると捉えられてよい。上記の1つの超音波は、例えば、繰り返し周波数(PRF:Pulse Repetition Frequency)で繰り返し送信される複数の超音波信号のうちの1つのことである。また、1つの超音波を共に送信及び/又は受信するとき、その位相は、複数の素子3同士で互いに同一であってもよいし、電子走査等のために複数の素子3同士で互いにずれていてもよい。 FIG. 3 may be regarded as a diagram showing all cavities 5c of a plurality of elements 3 used for the same purpose, for example. For example, FIG. 3 may be taken to show all the cavities 5c of the plurality of elements 3 that transmit one ultrasonic wave together. Alternatively, FIG. 3 may be regarded as showing all the cavities 5c of the plurality of elements 3 that receive one ultrasonic wave together. Alternatively, FIG. 3 may be regarded as showing all the cavities 5c of the plurality of elements 3 that transmit one ultrasonic wave together and receive the reflected wave together. The above-mentioned one ultrasonic wave is, for example, one of a plurality of ultrasonic signals repeatedly transmitted at a repetition frequency (PRF: Pulse Repetition Frequency). Further, when one ultrasonic wave is transmitted and / or received together, the phases of the plurality of elements 3 may be the same as each other, or the plurality of elements 3 may be displaced from each other due to electron scanning or the like. You may.
 複数の素子3は、キャビティ5cの径DAが互いに異なる2種以上の素子3を含んでいる。図3及び図4では、4種類のキャビティ5cが例示されている。具体的には、径DA0のキャビティ5c0、径DA1のキャビティ5c1、径DA2のキャビティ5c2、及び径DA3のキャビティ5c3が例示されている。 The plurality of elements 3 include two or more types of elements 3 in which the diameter DAs of the cavities 5c are different from each other. In FIGS. 3 and 4, four types of cavities 5c are illustrated. Specifically, a cavity 5c0 having a diameter DA0, a cavity 5c1 having a diameter DA1, a cavity 5c2 having a diameter DA2, and a cavity 5c3 having a diameter DA3 are exemplified.
 別の観点では、複数の素子3は、径DAが互いに異なる複数の素子群4に分類することができる。例えば、図示の例では、複数の素子3は、径DA0の素子3からなる素子群4-0、径DA1の素子3からなる素子群4-1、径DA2の素子3からなる素子群4-2、及び径DA3の素子3からなる素子群4-3のいずれかに分類される。1つの素子群4において、複数の素子3の径DAは互いに(略)同等である。 From another point of view, the plurality of elements 3 can be classified into a plurality of element groups 4 having different diameters DA. For example, in the illustrated example, the plurality of elements 3 are an element group 4-0 composed of an element 3 having a diameter DA0, an element group 4-1 composed of an element 3 having a diameter DA1, and an element group 4-consisting of an element 3 having a diameter DA2. It is classified into any of the element group 4-3 consisting of the element 2 and the element 3 having a diameter DA3. In one element group 4, the diameter DAs of the plurality of elements 3 are (omitted) equal to each other.
 2以上の径DAが互いに同等であるという場合、製造上の不可避な誤差、及び/又は製造上の公差が存在してもよいことはもちろんである。さらに、同等とされる径DAの差(別の観点では1つの素子群4における径DAの範囲の下限から上限までの大きさ)は、誤差又は公差よりも大きくてもよい。デバイス1が適用される技術分野において、互いに径DAが異なる複数の素子群4の設定によって、後述する本実施形態の作用等が有意な大きさで生じるように、各素子群4における径DAの範囲の大きさは、適宜に小さく、又は大きくされてよい。例えば、IVUS等に利用される比較的小さいデバイス1においては、各素子群4における径DAの範囲の大きさは、4μm未満又は2μm未満とされてよい。ただし、これは、公差の定義の考え方の問題として捉えられてもよい。すなわち、上記の4μm又は2μmは公差の一種と捉えられてもよい。 Of course, if two or more diameter DAs are equivalent to each other, there may be unavoidable manufacturing errors and / or manufacturing tolerances. Further, the difference in diameter DAs (in another viewpoint, the magnitude from the lower limit to the upper limit of the range of diameter DAs in one element group 4) may be larger than the error or the tolerance. In the technical field to which the device 1 is applied, the diameter DA in each element group 4 is set so that the action of the present embodiment described later occurs with a significant magnitude by setting a plurality of element groups 4 having different diameter DAs. The size of the range may be appropriately reduced or increased as appropriate. For example, in a relatively small device 1 used for IVUS or the like, the size of the diameter DA range in each element group 4 may be less than 4 μm or less than 2 μm. However, this may be seen as a matter of thinking about the definition of tolerances. That is, the above 4 μm or 2 μm may be regarded as a kind of tolerance.
 上記のように、互いに同等とされる径DAの差(各素子群4における径DAの範囲)は、誤差よりも大きくされてよい。本開示において、特に断りが無い限り、単に径DAという場合、互いに同等とされる径DAの範囲の中央の値について述べているものとする。例えば、径DAとして16μmが例示された場合、16μm±2μm又は16μ±1μmが例示されたと捉えられてよい。また、例えば、2つの素子群4の径DAの差の説明は、2つの素子群4の径DAの範囲の中央の値同士の差の説明と捉えられてよい。 As described above, the difference in diameter DA (range of diameter DA in each element group 4) that is equivalent to each other may be larger than the error. In the present disclosure, unless otherwise specified, the term "diameter DA" refers to the value at the center of the range of diameter DAs that are equivalent to each other. For example, when 16 μm is exemplified as the diameter DA, it may be considered that 16 μm ± 2 μm or 16 μ ± 1 μm is exemplified. Further, for example, the explanation of the difference in the diameter DA of the two element groups 4 may be regarded as the explanation of the difference between the values at the center of the range of the diameter DA of the two element groups 4.
 素子群4の数(径DAの種類の数)は適宜に設定されてよい。素子群4の数は、例えば、図示の例とは異なり、2つであってもよいし、3つであってもよいし、5つ以上であってもよい。また、1つの素子群4における素子3の数(互いに径DAが同一のキャビティ5cの数)は、適宜に設定されてよく、例えば、2以上であってもよいし(図示の例)、1つであってもよい。ただし、本実施形態の説明では、素子群4の語は、2以上の素子3を含むもののみを指すことがある。各素子群4における素子3の数は、他のいずれかの素子群4における素子3の数と異なっていてもよいし、同一であってもよい。 The number of element groups 4 (the number of types of diameter DA) may be appropriately set. The number of element groups 4 may be, for example, two, three, or five or more, unlike the illustrated example. Further, the number of elements 3 in one element group 4 (the number of cavities 5c having the same diameter DA from each other) may be appropriately set, and may be, for example, 2 or more (example in the figure), 1 It may be one. However, in the description of the present embodiment, the term of the element group 4 may refer only to those including two or more elements 3. The number of elements 3 in each element group 4 may be different from or the same as the number of elements 3 in any other element group 4.
 図示の例では、いずれの素子群4も2以上の素子3を含んでおり、全ての素子3は、いずれかの素子群4(ここでの素子群4は、2以上の素子3を含むもの。)に属している。図示の例とは異なり、例えば、複数の素子3は、2以上の素子3を含む1以上の素子群4と、1つの素子3のみを含む素子群4(既述のように素子群4ではないと定義されてもよい。)とを有していてもよい。また、例えば、複数の素子3は、全ての素子3の径DAが互いに異なり(径DAの種類の数と素子3の数とが同一であり)、素子群4の概念に馴染まなくてもよい。 In the illustrated example, each element group 4 includes two or more elements 3, and all the elements 3 include any element group 4 (the element group 4 here includes two or more elements 3). .) Belongs to. Unlike the illustrated example, for example, the plurality of elements 3 are one or more element groups 4 including two or more elements 3 and an element group 4 including only one element 3 (as described above, in the element group 4). It may be defined as not having). Further, for example, the plurality of elements 3 do not have to be familiar with the concept of the element group 4 because the diameter DAs of all the elements 3 are different from each other (the number of types of the diameter DA and the number of the elements 3 are the same). ..
 複数の素子群4における径DAの差は適宜に設定されてよい。例えば、径DAの大きさ順が互いに隣り合う2つの素子群4同士の差(例えばDA1-DA0)は、小さい方の径DAの10%以下であってもよいし、10%以上であってもよいし、50%以上であってもよいし、100%以上であってもよい。及び/又は、例えば、径DAの差が最も大きい2つの素子群4同士の差(図示の例ではDA3-DA0)は、小さい方の径DAの10%以下であってもよいし、10%以上であってもよいし、50%以上であってもよいし、100%以上であってもよい。 The difference in diameter DA between the plurality of element groups 4 may be appropriately set. For example, the difference (for example, DA1-DA0) between two element groups 4 whose diameter DAs are adjacent to each other may be 10% or less of the smaller diameter DA, or 10% or more. It may be 50% or more, or 100% or more. And / or, for example, the difference between the two element groups 4 having the largest difference in diameter DA (DA3-DA0 in the illustrated example) may be 10% or less of the smaller diameter DA, or 10%. It may be more than or equal to, 50% or more, or 100% or more.
 複数の素子群4における素子3の数の比及び/又は差は適宜に設定されてよい。例えば、径DAが相対的に小さい素子3の数が相対的に多くてもよいし(図示の例)、逆に、径DAが相対的に大きい素子3の数が相対的に多くてもよい。また、上記では素子3(キャビティ5c)の数自体に着目したが、素子群4毎のキャビティ5cの合計面積に着目してもよい。例えば、径DAが相対的に小さい素子群4におけるキャビティ5cの合計面積が相対的に大きくてもよいし(図示の例)、逆に、径DAが相対的に大きい素子群4におけるキャビティ5cの合計面積が相対的に大きくてもよいし。 The ratio and / or difference in the number of elements 3 in the plurality of element groups 4 may be appropriately set. For example, the number of elements 3 having a relatively small diameter DA may be relatively large (example in the figure), and conversely, the number of elements 3 having a relatively large diameter DA may be relatively large. .. Further, although the number of elements 3 (cavities 5c) itself has been focused on in the above, the total area of the cavities 5c for each element group 4 may be focused on. For example, the total area of the cavities 5c in the element group 4 having a relatively small diameter DA may be relatively large (in the illustrated example), and conversely, the cavity 5c in the element group 4 having a relatively large diameter DA may be relatively large. The total area may be relatively large.
 所属する素子群4が互いに異なる複数の素子3の配置は適宜に設定されてよい。例えば、概観したときに、同一の素子群4に所属するキャビティ5cは、密集していてもよいし(図示の例)、他の素子群4の素子3に混じるように分散されていてもよい。また、互いに異なる径DAの素子3の配列には、規則性があってもよいし、規則性が無くてもよい。概観したときに、相対的に径DAが大きい素子3が全ての素子3の配置領域の中央側に位置してもよいし(図示の例)、相対的に径DAが小さい素子3が全ての素子3の配置領域の中央側に位置してもよい。 The arrangement of a plurality of elements 3 to which the element groups 4 to which they belong is different from each other may be appropriately set. For example, when viewed as an overview, the cavities 5c belonging to the same element group 4 may be densely packed (example in the figure), or may be dispersed so as to be mixed with the elements 3 of the other element group 4. .. Further, the arrangement of the elements 3 having different diameters DA may or may not have regularity. When viewed as an overview, the element 3 having a relatively large diameter DA may be located on the center side of the arrangement area of all the elements 3 (example in the figure), or the element 3 having a relatively small diameter DA may be all. It may be located on the center side of the arrangement area of the element 3.
(電極等の径)
 本実施形態では、下部電極17、圧電体19及び上部電極21は、キャビティ5cの形状及び寸法に対応した形状及び寸法を有している。従って、上記のキャビティ5cの径の説明は、下部電極17、圧電体19及び/又は上部電極21の径の説明に援用されても構わない。また、素子3の径は、キャビティ5cの径に代表されてよい。従って、上記のキャビティ5cの径の説明は、素子3(又は素子本体3a)の径の説明と捉えられてもよい。
(Diameter of electrodes, etc.)
In the present embodiment, the lower electrode 17, the piezoelectric body 19, and the upper electrode 21 have a shape and dimensions corresponding to the shape and dimensions of the cavity 5c. Therefore, the above description of the diameter of the cavity 5c may be incorporated into the description of the diameter of the lower electrode 17, the piezoelectric body 19, and / or the upper electrode 21. Further, the diameter of the element 3 may be represented by the diameter of the cavity 5c. Therefore, the above description of the diameter of the cavity 5c may be regarded as a description of the diameter of the element 3 (or the element body 3a).
 下部電極17、圧電体19及び/又は上部電極21の径は、キャビティ5cの径に所定の倍率を乗じた大きさとされてよい。この倍率は適宜に設定されてよい。例えば、上部電極21の径は、キャビティ5cの径の0.5倍以上1.1倍以下(例えば0.9倍)とされてよい。0.5倍以上であることにより、例えば、上部電極21の面積が十分に確保され、ひいては、受信感度が向上する。また、1.1倍以下であることにより、例えば、異なる符号を持つ電荷を上部電極21が収集する蓋然性が低減され、ひいては、受信感度が向上する。 The diameter of the lower electrode 17, the piezoelectric body 19 and / or the upper electrode 21 may be the size obtained by multiplying the diameter of the cavity 5c by a predetermined magnification. This magnification may be set as appropriate. For example, the diameter of the upper electrode 21 may be 0.5 times or more and 1.1 times or less (for example, 0.9 times) the diameter of the cavity 5c. When it is 0.5 times or more, for example, a sufficient area of the upper electrode 21 is secured, and thus the reception sensitivity is improved. Further, when the value is 1.1 times or less, for example, the probability that the upper electrode 21 collects charges having different codes is reduced, and the reception sensitivity is improved.
(素子の振幅)
 以下では、キャビティ5cの径DAと振幅との対応関係について説明する。ここでの振幅は、特に断りが無い限り、超音波を送信するときの振幅と、超音波を受信するときの振幅とのいずれの振幅と捉えられてもよい。
(Amplitude of element)
In the following, the correspondence between the diameter DA of the cavity 5c and the amplitude will be described. Unless otherwise specified, the amplitude here may be regarded as either the amplitude when transmitting ultrasonic waves or the amplitude when receiving ultrasonic waves.
 キャビティ5cの径DAが互いに同等の素子3(同一の素子群4に分類される素子3)の振幅は、例えば、互いに同等とされてよい。例えば、径DAが互いに同等の素子3は、素子本体3aの構成も互いに同等であり、また、互いに波形(その形状及び大きさ)が同じ駆動信号が入力されて駆動され、互いに同等の振幅を生じてよい。ただし、既述のように、互いに同等とされる径DAは厳密に同一でなくてもよく、これに対応した大きさで、互いに同等とされる振幅にも差が存在して構わない。また、例えば、径DAが互いに同等の素子3は、1つの超音波を共に受信したとき、互いに同等の振幅を生じ、ひいては、互いに同等の電気信号を生成する。ただし、上記の説明とは異なり、例えば、径DAが互いに同等の素子3は、互いに異なる駆動信号が入力されることによって互いに異なる振幅で振動しても構わない。 The amplitudes of the elements 3 (elements 3 classified in the same element group 4) having the same diameter DA of the cavity 5c may be, for example, the same. For example, elements 3 having the same diameter DA have the same configuration of the element body 3a, and are driven by inputting drive signals having the same waveform (shape and size) to each other, and have the same amplitudes as each other. May occur. However, as described above, the diameters DA that are equivalent to each other do not have to be exactly the same, and there may be a difference in the amplitudes that are equivalent to each other with the corresponding magnitudes. Further, for example, the elements 3 having the same diameter DA generate the same amplitudes as each other when one ultrasonic wave is received together, and thus generate the same electric signals as each other. However, unlike the above description, for example, the elements 3 having the same diameter DA may vibrate with different amplitudes by inputting different drive signals.
 キャビティ5cの径DAが互いに異なる複数の素子3(互いに異なる複数の素子群4に分類される複数の素子3)の振幅は、例えば、互いに同等であってもよいし、互いに異なっていてもよい。後者の場合において、径DAが相対的に大きい素子3の振幅は、径DAが相対的に小さい素子3の振幅に対して、大きくてもよいし、同等でもよいし、小さくてもよい。 The amplitudes of the plurality of elements 3 having different diameters DA of the cavities 5c (the plurality of elements 3 classified into the plurality of element groups 4 different from each other) may be, for example, equal to each other or different from each other. .. In the latter case, the amplitude of the element 3 having a relatively large diameter DA may be larger, equal to, or smaller than the amplitude of the element 3 having a relatively small diameter DA.
 図5は、キャビティ5cの径が互いに異なる複数(2つ)の素子3の振動の経時変化の例を示す模式図である。この図において、横軸tは時間を示している。縦軸DisはD3方向の位置を示している。線LL及びLSで示される波形は、素子本体3aの中央部分のD3方向における変位(すなわち振動)を示している。線LLで示される振動を生じる素子3は、線LSで示される振動を生じる素子3よりも径DAが大きい。 FIG. 5 is a schematic diagram showing an example of changes in vibration of a plurality of (two) elements 3 having different diameters of the cavities 5c with time. In this figure, the horizontal axis t represents time. The vertical axis Dis indicates the position in the D3 direction. The waveforms shown by the lines LL and LS indicate the displacement (that is, vibration) of the central portion of the element body 3a in the D3 direction. The element 3 that produces vibration indicated by the line LL has a larger diameter DA than the element 3 that produces vibration indicated by the line LS.
 既述のように、キャビティ5cの径DAが大きいほど、素子3の共振周波数は低くなる。その結果、超音波の送信又は受信時において、径DAが相対的に大きい素子3(線LL)の振動の周波数は、径DAが相対的に小さい素子3(線LS)の振動の周波数よりも低くなっている。また、図示の例では、径DAが相対的に大きい素子3の振幅ALは、径DAが相対的に小さい素子3の振幅ASに対して大きくされている。 As described above, the larger the diameter DA of the cavity 5c, the lower the resonance frequency of the element 3. As a result, when transmitting or receiving ultrasonic waves, the vibration frequency of the element 3 (wire LL) having a relatively large diameter DA is higher than the vibration frequency of the element 3 (wire LS) having a relatively small diameter DA. It's getting low. Further, in the illustrated example, the amplitude AL of the element 3 having a relatively large diameter DA is larger than the amplitude AS of the element 3 having a relatively small diameter DA.
 図示の例のように、キャビティ5cの径DAが相対的に大きい素子3の振幅が相対的に大きくされる場合、その実現方法は、適宜なものとされてよい。例えば、複数の素子3の構成によって実現されてもよいし、及び/又は駆動信号によって実現されてもよい。具体的には、例えば、以下のとおりである。 As in the illustrated example, when the amplitude of the element 3 in which the diameter DA of the cavity 5c is relatively large is relatively large, the method for realizing the amplitude may be appropriate. For example, it may be realized by the configuration of a plurality of elements 3 and / or may be realized by a drive signal. Specifically, for example, it is as follows.
 径DAが相対的に大きい素子3の素子本体3aは、概略、径DAが相対的に小さい素子3の素子本体3aに対して、一定厚の部分(圧電体19のテーパ面を除く部分)を平面方向に引き延ばした形状を有している。換言すれば、厚み方向において両者の構成は同等である。従って、例えば、一定の荷重を素子本体3aに付与する場合、径DAが相対的に大きい素子3の素子本体3aは、径DAが相対的に小さい素子3の素子本体3aよりも撓み変形を生じやすい。 The element body 3a of the element 3 having a relatively large diameter DA generally has a portion having a constant thickness (a portion excluding the tapered surface of the piezoelectric body 19) with respect to the element body 3a of the element 3 having a relatively small diameter DA. It has a shape stretched in the plane direction. In other words, both configurations are equivalent in the thickness direction. Therefore, for example, when a constant load is applied to the element body 3a, the element body 3a of the element 3 having a relatively large diameter DA causes bending deformation more than the element body 3a of the element 3 having a relatively small diameter DA. Cheap.
 そこで、例えば、径DAが互いに異なる複数の素子3は、波形(その形状及び大きさ)が互いに同じ駆動信号が入力されてよい。そして、上記の撓み変形の生じやすさの相違によって、径DAが相対的に大きい素子3の振幅が、径DAが相対的に小さい素子3の振幅に対して大きくされてよい。また、径DAが互いに異なる複数の素子3が、1つの超音波を共に受信する場合を考える。このとき、上記の撓み変形の生じやすさの相違によって、径DAが相対的に大きい素子3の振幅が、径DAが相対的に小さい素子3の振幅に対して大きくされてよい。 Therefore, for example, a drive signal having the same waveform (shape and size) of a plurality of elements 3 having different diameters DA may be input. Then, due to the difference in the susceptibility to bending deformation, the amplitude of the element 3 having a relatively large diameter DA may be increased with respect to the amplitude of the element 3 having a relatively small diameter DA. Further, consider a case where a plurality of elements 3 having different diameters DA receive one ultrasonic wave together. At this time, the amplitude of the element 3 having a relatively large diameter DA may be increased with respect to the amplitude of the element 3 having a relatively small diameter DA due to the difference in the susceptibility to bending deformation.
 振幅は、駆動信号又は受信した超音波の周波数と素子3の共振周波数との差の影響も受ける。従って、例えば、径DAが相対的に大きい素子3の共振周波数に近い駆動信号を複数の素子3に入力してもよい。これにより、径DAが相対的に大きい素子3の振幅が、径DAが相対的に小さい素子3の振幅に対して大きくされてよい。また、径DAが互いに異なる複数の素子3によって超音波を送信し、その反射波を上記の複数の素子3によって受信する場合を考える。送信のとき、径DAが相対的に大きい素子3の振幅を相対的に大きくしてよい。この場合、受信される超音波のパワースペクトルにおいては、径DAが相対的に大きい素子3の共振周波数に近い周波数においてパワーが相対的に大きくなる。換言すれば、受信される超音波の周波数は、径DAが相対的に大きい素子3の共振周波数に近づく。これにより、受信のとき、径DAが相対的に大きい素子3の振幅が、径DAが相対的に小さい素子3の振幅に対して大きくされてよい。 The amplitude is also affected by the difference between the frequency of the drive signal or the received ultrasonic wave and the resonance frequency of the element 3. Therefore, for example, a drive signal close to the resonance frequency of the element 3 having a relatively large diameter DA may be input to the plurality of elements 3. As a result, the amplitude of the element 3 having a relatively large diameter DA may be increased with respect to the amplitude of the element 3 having a relatively small diameter DA. Further, consider a case where ultrasonic waves are transmitted by a plurality of elements 3 having different diameters DA and the reflected waves are received by the above-mentioned plurality of elements 3. At the time of transmission, the amplitude of the element 3 having a relatively large diameter DA may be relatively large. In this case, in the power spectrum of the received ultrasonic wave, the power becomes relatively large at a frequency close to the resonance frequency of the element 3 having a relatively large diameter DA. In other words, the frequency of the received ultrasonic waves approaches the resonance frequency of the element 3 having a relatively large diameter DA. As a result, at the time of reception, the amplitude of the element 3 having a relatively large diameter DA may be increased with respect to the amplitude of the element 3 having a relatively small diameter DA.
 発明者らの実験では、径DAが互いに異なる複数の素子3の厚さ方向における構成が互いに同等であっても、径DAが相対的に大きい素子3の振幅が、径DAが相対的に小さい素子3の振幅よりも大きくなるとは限らないことが確認された。その理由としては、例えば、素子3の径によらずに一定のピッチで複数の素子3を配列した場合においては、素子3の径が大きくなると、隣り合う素子3同士の干渉が大きくなることが挙げられる。従って、例えば、互いに異なる径DAを有する素子3の配置を適宜なものとすることにより、径DAが相対的に大きい素子3の振幅が、径DAが相対的に小さい素子3の振幅に対して大きくされてよい。 In the experiments of the inventors, even if the configurations of a plurality of elements 3 having different diameter DAs in the thickness direction are equivalent to each other, the amplitude of the element 3 having a relatively large diameter DA is relatively small and the diameter DA is relatively small. It was confirmed that the amplitude was not always larger than that of the element 3. The reason is that, for example, when a plurality of elements 3 are arranged at a constant pitch regardless of the diameter of the elements 3, the larger the diameter of the elements 3, the greater the interference between the adjacent elements 3. Can be mentioned. Therefore, for example, by appropriately arranging the elements 3 having different diameter DAs, the amplitude of the element 3 having a relatively large diameter DA is larger than the amplitude of the element 3 having a relatively small diameter DA. It may be enlarged.
 また、例えば、径DAが互いに異なる複数の素子3は、互いに異なる構成とされ、これにより、径DAが相対的に大きい素子3の振幅が、径DAが相対的に小さい素子3の振幅に対して大きくされてよい。例えば、径DAが相対的に大きな素子3においては、径DAが相対的に小さな素子3に比較して、径DAに対する上部電極21の径の比率が大きくされてもよい。この場合、超音波の送信のとき、径DAが相対的に大きな素子3の圧電体19に電圧が印加されやすくなり、ひいては、径DAが相対的に大きい素子3の振幅が相対的に大きくなりやすい。 Further, for example, a plurality of elements 3 having different diameters DA have different configurations, whereby the amplitude of the element 3 having a relatively large diameter DA is larger than the amplitude of the element 3 having a relatively small diameter DA. May be enlarged. For example, in the element 3 having a relatively large diameter DA, the ratio of the diameter of the upper electrode 21 to the diameter DA may be larger than that of the element 3 having a relatively small diameter DA. In this case, when transmitting ultrasonic waves, a voltage is likely to be applied to the piezoelectric body 19 of the element 3 having a relatively large diameter DA, and by extension, the amplitude of the element 3 having a relatively large diameter DA becomes relatively large. Cheap.
 また、例えば、径DAが相対的に異なる複数の素子3に対して、互いに異なる駆動信号を入力することによって、径DAが相対的に大きい素子3の振幅が、径DAが相対的に小さい素子3の振幅に対して大きくされてよい。具体的には、例えば、径DAが相対的に大きい素子3に対して入力される駆動信号の振幅を、径DAが相対的に小さい素子3に対して入力される駆動信号の振幅よりも大きくしてよい。このとき、振幅が互いに異なる駆動信号の周波数は、互いに同一であってもよいし、互いに異なっていてもよい。後者の場合、例えば、各駆動信号の周波数は、各駆動信号が入力される素子3の共振周波数に近づくように設定されてよい。 Further, for example, by inputting drive signals different from each other to a plurality of elements 3 having relatively different diameters DA, the amplitude of the element 3 having a relatively large diameter DA and the element having a relatively small diameter DA are relatively small. It may be increased for an amplitude of 3. Specifically, for example, the amplitude of the drive signal input to the element 3 having a relatively large diameter DA is larger than the amplitude of the drive signal input to the element 3 having a relatively small diameter DA. You can do it. At this time, the frequencies of the drive signals having different amplitudes may be the same or different from each other. In the latter case, for example, the frequency of each drive signal may be set to approach the resonance frequency of the element 3 to which each drive signal is input.
(キャビティの面積比)
 既述のように、径DAの種類毎(素子群4毎)に求めたキャビティ5cの合計面積は適宜に設定されてよい。ただし、本願発明者は、鋭意検討の結果、この合計面積に関して、有利な効果が得られる範囲の例を見出した。具体的には、以下のとおりである。
(Cavity area ratio)
As described above, the total area of the cavities 5c obtained for each type of diameter DA (for each element group 4) may be appropriately set. However, as a result of diligent studies, the inventor of the present application has found an example of a range in which an advantageous effect can be obtained with respect to this total area. Specifically, it is as follows.
(実施例1~4)
 実施例1~4に係るデバイス1を作製した。いずれの実施例も、図4と同様に、4つの素子群4を有するものである。各素子群4の径DAは、実施例1~4同士で同じである。また、素子3の総数も実施例1~4同士で同じである。ただし、実施例1~4は、素子群4毎の素子3の数が互いに異なる。ひいては、実施例1~4は、素子群4毎のキャビティ5cの合計面積が互いに異なる。
(Examples 1 to 4)
Devices 1 according to Examples 1 to 4 were produced. Each embodiment has four element groups 4 as in FIG. The diameter DA of each element group 4 is the same between Examples 1 to 4. Further, the total number of elements 3 is also the same between Examples 1 to 4. However, in Examples 1 to 4, the number of elements 3 for each element group 4 is different from each other. As a result, in Examples 1 to 4, the total area of the cavities 5c for each element group 4 is different from each other.
 実施例1~4において、4つの素子群4の径DA0~DA3の大きさ、及び当該大きさに対応する素子本体3aの共振周波数は、次のとおりである。径DA0=16μm(62MHz)、径DA1=20μm(50MHz)、径DA2=25μm(41MHz)、径DA3=30μm(35MHz)。 In Examples 1 to 4, the sizes of the diameters DA0 to DA3 of the four element groups 4 and the resonance frequencies of the element main body 3a corresponding to the sizes are as follows. Diameter DA0 = 16 μm (62 MHz), diameter DA1 = 20 μm (50 MHz), diameter DA2 = 25 μm (41 MHz), diameter DA3 = 30 μm (35 MHz).
 図6(a)は、実施例1~4におけるキャビティ5cの合計面積に係る条件を説明するための図である。 FIG. 6A is a diagram for explaining the conditions relating to the total area of the cavities 5c in Examples 1 to 4.
 図6(a)において、線C1は、実施例1の条件を示している。線C2は、実施例2の条件を示している。線C3は、実施例3の条件を示している。線C4は、実施例4の条件を示している。 In FIG. 6A, line C1 shows the conditions of Example 1. Line C2 shows the conditions of Example 2. Line C3 shows the conditions of Example 3. Line C4 shows the conditions of Example 4.
 図6(a)において、横軸frは、4つの素子群4の共振周波数を示している。上記のように、4つの素子群4の共振周波数は、径DAの相違によって、62MHz、50MHz、41MHz、35MHzとされている。このことを示すように、実施例1~4(線C1~C4)のそれぞれは、上記の4つの周波数に点がプロットされている。 In FIG. 6A, the horizontal axis fr indicates the resonance frequency of the four element groups 4. As described above, the resonance frequencies of the four element groups 4 are set to 62 MHz, 50 MHz, 41 MHz, and 35 MHz due to the difference in diameter DA. To show this, in each of Examples 1 to 4 (lines C1 to C4), points are plotted at the above four frequencies.
 図6(a)において、縦軸Sn/S0は、キャビティ5cの合計面積の比率を示している。具体的には、合計面積S0は、径DAが最も小さい素子群4-0におけるキャビティ5c0の合計面積である。合計面積Snは、素子群4-0、4-1、4-2又は4-3におけるキャビティ5cの合計面積である。縦軸Sn/S0は、上記の合計面積の比Sn/S0を示している。 In FIG. 6A, the vertical axis Sn / S0 indicates the ratio of the total area of the cavities 5c. Specifically, the total area S0 is the total area of the cavities 5c0 in the element group 4-0 having the smallest diameter DA. The total area Sn is the total area of the cavities 5c in the element groups 4-0, 4-1, 4-2 or 4-3. The vertical axis Sn / S0 indicates the ratio Sn / S0 of the above total area.
 従って、例えば、線C1上において、fr=35MHzかつSn/S0=0.6~0.7に位置する点は、実施例1において、素子群4-3におけるキャビティ5c3の合計面積Snが、素子群4-0におけるキャビティ5c0の合計面積S0の0.6倍~0.7倍であることを示している。また、例えば、面積比Sn/S0は、素子群4-0の合計面積S0が基準とされていることから、いずれの実施例(いずれの線C1~C4)においても、素子群4-0に対応するfr=62MHzに位置する点は、Sn/S0=1に位置している。 Therefore, for example, at the point where fr = 35 MHz and Sn / S0 = 0.6 to 0.7 on the line C1, in the first embodiment, the total area Sn of the cavity 5c3 in the element group 4-3 is the element. It is shown that the total area of the cavities 5c0 in the group 4-0 is 0.6 to 0.7 times the total area S0. Further, for example, since the area ratio Sn / S0 is based on the total area S0 of the element group 4-0, in any embodiment (any line C1 to C4), the element group 4-0 is used. The corresponding point located at fr = 62 MHz is located at Sn / S0 = 1.
 図6(a)に示されているように、各実施例において、基準とされた素子群4-0以外の素子群4における面積比Sn/S0は、1未満とされた。すなわち、いずれの実施例においても、キャビティ5cの合計面積が最も大きい素子群4は、径DAが最も小さい素子群4-0とされた。 As shown in FIG. 6A, in each embodiment, the area ratio Sn / S0 in the element group 4 other than the reference element group 4-0 was set to less than 1. That is, in each of the examples, the element group 4 having the largest total area of the cavities 5c was the element group 4-0 having the smallest diameter DA.
 各実施例において、素子群4-1、4-2及び4-3同士は面積比Sn/S0が概ね同等とされた。例えば、実施例1(線C1)では、35MHz(素子群4-1)、41Hz(素子群4-2)及び50Hz(素子群4-3)のいずれにおいても、Sn/S0は約0.7とされた。ただし、各素子群4におけるキャビティ5cの合計面積は、素子3の数の増減に応じて段階的(非連続的)に変化することから、Sn/S0は素子群4同士で若干ずれている。なお、本開示の説明では、便宜上、このずれを無視して、Sn/S0の値(例えば「約0.7」)における「約」を省略することがある。 In each example, the area ratio Sn / S0 of the element groups 4-1, 4-2 and 4-3 were almost the same. For example, in Example 1 (wire C1), Sn / S0 is about 0.7 at any of 35 MHz (element group 4-1), 41 Hz (element group 4-2), and 50 Hz (element group 4-3). It was said. However, since the total area of the cavities 5c in each element group 4 changes stepwise (discontinuously) according to the increase or decrease in the number of elements 3, Sn / S0 is slightly deviated between the element groups 4. In the description of the present disclosure, for convenience, this deviation may be ignored and "about" in the value of Sn / S0 (for example, "about 0.7") may be omitted.
 複数の実施例同士においては、素子群4-1、4-2及び4-3の面積比Sn/S0が互いに異なるものとされた。具体的には、面積比Sn/S0の値は、以下のとおりである。実施例1:0.7、実施例2:0.35、実施例3:0.15、実施例4:0.05。 In the plurality of examples, the area ratios Sn / S0 of the element groups 4-1, 4-2 and 4-3 were different from each other. Specifically, the value of the area ratio Sn / S0 is as follows. Example 1: 0.7, Example 2: 0.35, Example 3: 0.15, Example 4: 0.05.
 上記のような4つの実施例それぞれについて、超音波のパルス幅を測定した。ここでのパルス幅は、圧力振幅が基準値を最初に超えたときから始まり、圧力振幅が基準値に戻るまでの時間間隔である。基準値は、最大圧力振幅と最小圧力振幅との差の50%と、最小圧力振幅との和に等しい。より具体的には、実施例に係るデバイス1に対して素子群4-0の共振周波数よりも周波数が十分に高いスパイク波からなる駆動信号を入力して超音波を送信した。そして、送信した超音波の反射波をデバイス1によって受信し、受信電圧の波形を得た。この波形を圧力振幅の波形とみなしてパルス幅を測定した。 The ultrasonic pulse width was measured for each of the above four examples. The pulse width here is the time interval starting from the time when the pressure amplitude first exceeds the reference value and until the pressure amplitude returns to the reference value. The reference value is equal to the sum of 50% of the difference between the maximum pressure amplitude and the minimum pressure amplitude and the minimum pressure amplitude. More specifically, an ultrasonic wave was transmitted by inputting a drive signal composed of a spike wave whose frequency is sufficiently higher than the resonance frequency of the element group 4-0 to the device 1 according to the embodiment. Then, the reflected wave of the transmitted ultrasonic wave was received by the device 1 to obtain a waveform of the received voltage. The pulse width was measured by regarding this waveform as the waveform of the pressure amplitude.
 図6(b)は、上記のようにパルス幅を測定した結果を示す図である。 FIG. 6B is a diagram showing the results of measuring the pulse width as described above.
 この図において、横軸Sn/S0は、図6(a)の縦軸Sn/S0に対応している。別の観点では、実施例1~実施例4に対応している。従って、Sn/S0=0.7、0.35、0.15及び0.05において、各実施例に対応する測定結果がプロットされている。また、縦軸Wpは、パルス幅(ns)を示している。線L1は、実施例1~4に係るプロットを結ぶ近似直線である。 In this figure, the horizontal axis Sn / S0 corresponds to the vertical axis Sn / S0 in FIG. 6A. From another viewpoint, it corresponds to Examples 1 to 4. Therefore, the measurement results corresponding to each example are plotted at Sn / S0 = 0.7, 0.35, 0.15 and 0.05. The vertical axis Wp indicates the pulse width (ns). The line L1 is an approximate straight line connecting the plots according to the first to fourth embodiments.
 最小の径DA0を有する素子群4-0に対して他の素子群4の面積比を0付近から高くしていくと(Sn/S0=0.05~0.15の範囲を参照)、パルス幅Wpは短くなっていく。しかし、さらに他の素子群4の面積比を高くしていくと(Sn/S0=0.15~0.7の範囲を参照)、逆に、パルス幅Wpは長くなっていく。このことから、パルス幅Wpを効果的に短くできる面積比Sn/S0の範囲が存在することが分かる。 When the area ratio of the other element group 4 to the element group 4-0 having the minimum diameter DA0 is increased from around 0 (see the range of Sn / S0 = 0.05 to 0.15), the pulse is generated. The width Wp becomes shorter. However, as the area ratio of the other element group 4 is further increased (see the range of Sn / S0 = 0.15 to 0.7), on the contrary, the pulse width Wp becomes longer. From this, it can be seen that there is a range of the area ratio Sn / S0 in which the pulse width Wp can be effectively shortened.
 上記のような変化が生じる理由としては、例えば、以下のものが挙げられる。公知のように、数学において、デルタ関数(インパルス関数)をフーリエ変換して周波数スペクトルを得ると、周波数に関わらずに一定の値を取る関数が得られる。このことから理解されるように、パルス幅Wpが短いということは、広い周波数帯に亘ってパワーが一定の値に近いということである。そして、共振周波数が低い(すなわち径DAが大きい)素子3を混ぜることによって、低周波数帯のパワーを向上させ、パルス幅Wpを短くすることができる。しかし、更に面積比Sn/S0を高くすると、低周波数帯のパワーが支配的になり、広い周波数帯に亘ってパワーが一定の値に近いという周波数スペクトルの形状が崩れる。その結果、パルス幅Wpは長くなる。 The reasons for the above changes are, for example, the following. As is known, in mathematics, when a delta function (impulse function) is Fourier transformed to obtain a frequency spectrum, a function that takes a constant value regardless of frequency is obtained. As can be understood from this, a short pulse width Wp means that the power is close to a constant value over a wide frequency band. Then, by mixing the element 3 having a low resonance frequency (that is, having a large diameter DA), the power in the low frequency band can be improved and the pulse width Wp can be shortened. However, when the area ratio Sn / S0 is further increased, the power in the low frequency band becomes dominant, and the shape of the frequency spectrum in which the power is close to a constant value over a wide frequency band is destroyed. As a result, the pulse width Wp becomes long.
(実施例5~7)
 実施例5~7に係るデバイス1を作製し、上記と同様にパルス幅Wpを測定した。以下では、実施例1~4と同様の事項については適宜に説明を省略する。
(Examples 5 to 7)
Devices 1 according to Examples 5 to 7 were produced, and the pulse width Wp was measured in the same manner as described above. In the following, the same items as in Examples 1 to 4 will be appropriately omitted.
 図7(a)は、図6(a)と同様の図であり、実施例5~7に係るキャビティ5cの合計面積に係る条件を示している。線C5~線C7は、実施例5~7の条件をそれぞれ示している。 FIG. 7 (a) is the same as FIG. 6 (a), and shows the conditions relating to the total area of the cavities 5c according to Examples 5 to 7. Lines C5 to C7 show the conditions of Examples 5 to 7, respectively.
 実施例1~4それぞれにおいては素子群4の数が4つであったのに対して、実施例5~7それぞれにおいては素子群4の数が3つである。具体的には、実施例5~7は、実施例1~4における素子群4-0、4-1及び4-2を有し、素子群4-3を有さない構成である。実施例5~7は、面積比Sn/S0の値が互いに異なっている。具体的には、以下のとおりである。実施例5:0.7、実施例6:0.3、実施例7:0.05。 In each of Examples 1 to 4, the number of element groups 4 was 4, whereas in each of Examples 5 to 7, the number of element groups 4 was 3. Specifically, Examples 5 to 7 have the element groups 4-0, 4-1 and 4-2 in Examples 1 to 4, and do not have the element group 4-3. In Examples 5 to 7, the values of the area ratio Sn / S0 are different from each other. Specifically, it is as follows. Example 5: 0.7, Example 6: 0.3, Example 7: 0.05.
 図7(b)は、図6(b)と同様の図であり、実施例5~7に係るパルス幅Wpの測定結果を示している。線L2は、実施例5~7に係るプロットを結ぶ近似直線である。 FIG. 7 (b) is the same diagram as in FIG. 6 (b), and shows the measurement results of the pulse width Wp according to Examples 5 to 7. Line L2 is an approximate straight line connecting the plots according to Examples 5 to 7.
 実施例5~7においても、実施例1~4と同様の傾向が確認された。すなわち、最小の径DA0を有する素子群4-0に対して他の素子群4の面積比を0付近から高くしていくと(Sn/S0=0.05~0.3の範囲を参照)、パルス幅Wpは短くなっていく。しかし、さらに他の素子群4の面積比を高くしていくと(Sn/S0=0.3~0.7の範囲を参照)、逆に、パルス幅Wpは長くなっていく。 In Examples 5 to 7, the same tendency as in Examples 1 to 4 was confirmed. That is, when the area ratio of the other element group 4 to the element group 4-0 having the minimum diameter DA0 is increased from the vicinity of 0 (see the range of Sn / S0 = 0.05 to 0.3). , The pulse width Wp becomes shorter. However, as the area ratio of the other element group 4 is further increased (see the range of Sn / S0 = 0.3 to 0.7), on the contrary, the pulse width Wp becomes longer.
(面積比の具体例)
 以上に述べた傾向を踏まえ、素子群4-0以外の素子群4の面積比Sn/S0の範囲例を挙げる。以下では、便宜上、単に面積比Sn/S0というとき、基準となる素子群4-0以外の素子群4の面積比Sn/S0を指すことがある。
(Specific example of area ratio)
Based on the above-mentioned tendency, an example of the range of the area ratio Sn / S0 of the element group 4 other than the element group 4-0 will be given. In the following, for convenience, when the area ratio is simply referred to as Sn / S0, it may refer to the area ratio Sn / S0 of the element group 4 other than the reference element group 4-0.
 図6(b)及び図7(b)において、素子群4-0以外の素子群4の面積比Sn/S0が最も小さい実施例1及び5は、他の実施例に比較して、パルス幅Wpが長い。しかし、実施例1及び5のパルス幅Wpは、全ての素子3の径DAが最小の径DA0である比較例のパルス幅Wp(不図示)に比較すれば短い。従って、パルス幅Wpを短くできるSn/S0の下限値として、0.05を挙げることができる。 In FIGS. 6 (b) and 7 (b), Examples 1 and 5 having the smallest area ratio Sn / S0 of the element group 4 other than the element group 4-0 have a pulse width as compared with the other examples. Wp is long. However, the pulse width Wp of Examples 1 and 5 is shorter than the pulse width Wp (not shown) of the comparative example in which the diameter DA of all the elements 3 is the minimum diameter DA0. Therefore, 0.05 can be mentioned as the lower limit of Sn / S0 that can shorten the pulse width Wp.
 図6(b)及び図7(b)では、上記の実施例1及び5のパルス幅Wpよりも少し短いパルス幅Wpの値(30ns)が線L5及びL6によって示されている。実施例に係るプロットを結ぶ線L1及びL2は、素子群4-0以外の素子群4の面積比Sn/S0が概ね1.6のときにL5及びL6に交わる。そして、線L1及びL2上のパルス幅Wpの値は、Sn/S0が1.6以下の範囲では、線L5及びL6によって示されるパルス幅Wpの値よりも小さい。従って、パルス幅Wpを短くできるSn/S0の上限値として、1.6を挙げることができる。 In FIGS. 6 (b) and 7 (b), the values (30 ns) of the pulse width Wp slightly shorter than the pulse width Wp of Examples 1 and 5 described above are indicated by the lines L5 and L6. The lines L1 and L2 connecting the plots according to the embodiment intersect with L5 and L6 when the area ratio Sn / S0 of the element group 4 other than the element group 4-0 is approximately 1.6. The value of the pulse width Wp on the lines L1 and L2 is smaller than the value of the pulse width Wp indicated by the lines L5 and L6 in the range where Sn / S0 is 1.6 or less. Therefore, 1.6 can be mentioned as the upper limit value of Sn / S0 that can shorten the pulse width Wp.
 纏めると、パルス幅Wpを短くする観点において、素子群4-0以外の素子群4の面積比Sn/S0の範囲の例として、0.05以上1.6以下を挙げることができる。図6(b)及び図7(b)では、当該範囲がハッチングで示されている。 In summary, from the viewpoint of shortening the pulse width Wp, 0.05 or more and 1.6 or less can be mentioned as an example of the range of the area ratio Sn / S0 of the element group 4 other than the element group 4-0. In FIGS. 6 (b) and 7 (b), the range is shown by hatching.
 実施例1~4と実施例5~7とは、最小の径DA0を有する素子群4-0以外の素子群4の数が互いに相違する。従って、実施例1~4と実施例5~7とは、例えば、面積比Sn/S0が互いに同一であっても、例えば、合計面積S0に対する、素子群4-0以外の素子群4の合計面積Snの総和の比が、互いに相違する。例えば、上記の比は、実施例1~4それぞれでは、(Sn×3)/S0であり、実施例5~7それぞれでは(Sn×2)/S0である。しかし、図6(b)及び図7(b)から理解されるように、上述した0.05以上1.6以下という範囲例は、実施例1~4及び実施例1~3のいずれにも適用可能である。 Examples 1 to 4 and Examples 5 to 7 differ from each other in the number of element groups 4 other than the element group 4-0 having the minimum diameter DA0. Therefore, in Examples 1 to 4 and Examples 5 to 7, for example, even if the area ratio Sn / S0 is the same as each other, for example, the total of the element groups 4 other than the element group 4-0 with respect to the total area S0. The ratio of the sum of the areas Sn is different from each other. For example, the above ratio is (Sn × 3) / S0 in each of Examples 1 to 4, and (Sn × 2) / S0 in each of Examples 5 to 7. However, as can be understood from FIGS. 6 (b) and 7 (b), the above-mentioned range examples of 0.05 or more and 1.6 or less are applicable to both Examples 1 to 4 and Examples 1 to 3. Applicable.
 上記のことから、パルス幅Wpを短くする観点から図6(b)及び図7(b)に基づいて設定された面積比Sn/S0の上記範囲例は、素子群4の数(径DAの種類の数)によらずに適用可能であることが分かる。もちろん、極端に素子群4の数が多ければこの限りではないと予想されるが、少なくとも、素子群4の数が4以下では、素子群4の数は任意であることが実施例によって示されている。 From the above, the above range example of the area ratio Sn / S0 set based on FIGS. 6 (b) and 7 (b) from the viewpoint of shortening the pulse width Wp is the number of element groups 4 (diameter DA). It can be seen that it can be applied regardless of the number of types). Of course, it is expected that this is not the case if the number of element groups 4 is extremely large, but at least when the number of element groups 4 is 4 or less, it is shown by Examples that the number of element groups 4 is arbitrary. ing.
 パルス幅Wpを短くできる面積比Sn/S0の上記範囲例が適用される素子群4の数は、その数自体ではなく、最小の径DA0を有する素子群4-0における合計面積S0の、全ての素子3におけるキャビティ5cの面積の総和(Ssとする。)に対する比S0/Ssによって考慮されてもよい。例えば、実施例1~7のうち、比S0/Ssが最小になるのは、実施例1である。実施例1における比S0/Ssは、S0/(S0×0.7×3+S0)=10/31=約0.3である。従って、合計面積S0が面積の総和Ssの3割以上を占めるように、素子群4毎の素子3の数が設定されている態様において、面積比Sn/S0の範囲例が適用されてよい。 The number of element groups 4 to which the above range example of the area ratio Sn / S0 capable of shortening the pulse width Wp is applied is not the number itself, but all of the total area S0 in the element group 4-0 having the minimum diameter DA0. It may be considered by the ratio S0 / Ss to the total area (referred to as Ss) of the cavity 5c in the element 3. For example, among Examples 1 to 7, the ratio S0 / Ss is the smallest in Example 1. The ratio S0 / Ss in Example 1 is S0 / (S0 × 0.7 × 3 + S0) = 10/31 = about 0.3. Therefore, in an embodiment in which the number of elements 3 for each element group 4 is set so that the total area S0 occupies 30% or more of the total area Ss, the range example of the area ratio Sn / S0 may be applied.
 上記とは逆に、パルス幅Wpを短くできる面積比Sn/S0の上記範囲例が適用される比S0/Ssの上限値を考えることもできる。例えば、実施例1~7のうち、比S0/Ssが最大になるのは、実施例7である。実施例7における比S0/Ssは、S0/(S0×0.05×2+S0)=10/11=約0.9である。従って、合計面積S0が面積の総和Ssの9割以下となるように、素子群4毎の素子3の数が設定されている態様において、面積比Sn/S0の範囲例が適用されてよい。 Contrary to the above, it is also possible to consider the upper limit value of the ratio S0 / Ss to which the above range example of the area ratio Sn / S0 that can shorten the pulse width Wp is applied. For example, among Examples 1 to 7, the ratio S0 / Ss is maximized in Example 7. The ratio S0 / Ss in Example 7 is S0 / (S0 × 0.05 × 2 + S0) = 10/11 = about 0.9. Therefore, in an embodiment in which the number of elements 3 for each element group 4 is set so that the total area S0 is 90% or less of the total area Ss, the range example of the area ratio Sn / S0 may be applied.
 実施例1~7それぞれにおいて、面積比Sn/S0は、最小の径DAを有する素子群4-0以外の素子群4同士において互いに同一とされた。ただし、面積比Sn/S0が素子群4-0以外の素子群4同士において互いに異なっていても、素子群4-0以外の全ての素子群4それぞれの面積比Sn/S0が上述した範囲に収まっていれば、パルス幅Wpが短くできることは明らかである。 In each of Examples 1 to 7, the area ratio Sn / S0 was set to be the same among the element groups 4 other than the element group 4-0 having the minimum diameter DA. However, even if the area ratio Sn / S0 is different between the element groups 4 other than the element group 4-0, the area ratio Sn / S0 of all the element groups 4 other than the element group 4-0 is within the above range. If it fits, it is clear that the pulse width Wp can be shortened.
 上述のように、最小の径DA0を有する素子群4-0以外の素子群4の数が互いに異なる実施例1~4と実施例5~7とで、パルス幅Wpを短くできる面積比Sn/S0の範囲は同等である。このことから、素子群4-0以外の素子群4のうち一部の素子群4の面積比Sn/S0がパルス幅Wpに及ぼす影響は限定的であると考えることもできる。従って、素子群4-0以外の素子群4が複数存在する場合において、一部の素子群4において、面積比Sn/S0は、極端に大きな値を取らない限り、上記の範囲例に収まっていなくてもよい。逆の観点では、一部の素子群4においてのみ、面積比Sn/S0が上記の範囲例に収まってもよい。 As described above, the area ratio Sn / that can shorten the pulse width Wp in Examples 1 to 4 and Examples 5 to 7 in which the numbers of the element groups 4 other than the element group 4-0 having the minimum diameter DA0 are different from each other. The range of S0 is equivalent. From this, it can be considered that the influence of the area ratio Sn / S0 of some of the element groups 4 among the element groups 4 other than the element group 4-0 on the pulse width Wp is limited. Therefore, when there are a plurality of element groups 4 other than the element group 4-0, the area ratio Sn / S0 in some of the element groups 4 falls within the above range example unless it takes an extremely large value. It does not have to be. From the opposite viewpoint, the area ratio Sn / S0 may fall within the above range example only in a part of the element group 4.
 パルス幅Wpを短くできる面積比Sn/S0の範囲として、上記範囲例(0.05以上1.6以下)よりも更に狭い範囲例を挙げることができる。例えば、範囲例の上限値として1を挙げることができる。すなわち、素子群4-0以外の素子群4の合計面積Snは、素子群4-0の面積S0よりも小さくされてよい。換言すれば、範囲例として0.05以上1未満を挙げることができる。既述のように、最小の径DA0を有する素子群4-0以外の素子群4のうち、面積比Sn/S0<1を満たす素子群4は、例えば、一部の素子群4であってもよいし、全ての素子群4であってもよい。後者について換言すると、複数の素子群4(例えば2以上の素子3を有する素子群4)のうち、キャビティ5cの合計面積Snが最も大きい素子群4は、最小の径DA0を有する素子群4-0とされてよい。 As a range of the area ratio Sn / S0 that can shorten the pulse width Wp, an example of a range narrower than the above range example (0.05 or more and 1.6 or less) can be mentioned. For example, 1 can be mentioned as the upper limit value of the range example. That is, the total area Sn of the element group 4 other than the element group 4-0 may be smaller than the area S0 of the element group 4-0. In other words, 0.05 or more and less than 1 can be mentioned as a range example. As described above, among the element groups 4 other than the element group 4-0 having the minimum diameter DA0, the element group 4 satisfying the area ratio Sn / S0 <1 is, for example, a part of the element group 4. It may be all element groups 4. In other words, among the plurality of element groups 4 (for example, the element group 4 having two or more elements 3), the element group 4 having the largest total area Sn of the cavity 5c is the element group 4- having the smallest diameter DA0. It may be 0.
 既述のように、図6(b)及び図7(b)では、パルス幅Wpは、素子群4-0以外の素子群4の面積比Sn/S0が0.35又は0.3から大きくなっていくにつれて長くなっており、面積比Sn/S0が約1.6に到達すると、パルス幅Wpは、線L5又はL6で示されている長さになる。従って、上記のように面積比Sn/S0の上限値を1に小さくすると、パルス幅Wpが短くなる効果の向上が期待される。 As described above, in FIGS. 6 (b) and 7 (b), the pulse width Wp is such that the area ratio Sn / S0 of the element group 4 other than the element group 4-0 is larger than 0.35 or 0.3. When the area ratio Sn / S0 reaches about 1.6, the pulse width Wp becomes the length indicated by the line L5 or L6. Therefore, if the upper limit of the area ratio Sn / S0 is reduced to 1 as described above, the effect of shortening the pulse width Wp is expected to be improved.
 パルス幅Wpをより短くできる面積比Sn/S0の範囲例は、別の観点から規定することもできる。例えば、図6(b)及び図7(b)において、素子群4-0以外の素子群4の面積比Sn/S0が0.35又は0.3から大きくなっていくにつれてパルス幅Wpが長くなるということは、最小の径DA0を有する素子群4-0におけるキャビティ5cの合計面積S0の、全ての素子3におけるキャビティ5cの合計面積Ssに対する比S0/Ssが、小さくなるにつれて、パルス幅Wpが長くなるということである。従って、比S0/Ssの下限値を設定することによって、パルス幅Wpをより短くすることができる。 An example of the range of the area ratio Sn / S0 in which the pulse width Wp can be shortened can be specified from another viewpoint. For example, in FIGS. 6 (b) and 7 (b), the pulse width Wp becomes longer as the area ratio Sn / S0 of the element group 4 other than the element group 4-0 increases from 0.35 or 0.3. This means that the pulse width Wp as the ratio S0 / Ss of the total area S0 of the cavities 5c in the element group 4-0 having the minimum diameter DA0 to the total area Ss of the cavities 5c in all the elements 3 becomes smaller. Is to be longer. Therefore, the pulse width Wp can be further shortened by setting the lower limit value of the ratio S0 / Ss.
 例えば、図6(b)において面積比Sn/S0が0.35のとき(実施例2)の比S0/Ssは、S0/(S0×0.35×3+S0)=1/2.05=約0.5である。また、図7(b)において面積比Sn/S0が0.3のとき(実施例6)の比S0/Ssは、S0/(S0×0.3×2+S0)=1/1.6=約0.6である。従って、比S0/Ssの下限値として、0.5を例示することができる。換言すれば、最小の径DA0を有する素子群4-0の合計面積S0を複数の素子3全体の合計面積Ssの半分以上とすることによって、パルス幅Wpをより短くできる。 For example, in FIG. 6B, when the area ratio Sn / S0 is 0.35 (Example 2), the ratio S0 / Ss is S0 / (S0 × 0.35 × 3 + S0) = 1 / 2.05 = about. It is 0.5. Further, in FIG. 7B, when the area ratio Sn / S0 is 0.3 (Example 6), the ratio S0 / Ss is S0 / (S0 × 0.3 × 2 + S0) = 1 / 1.6 = about. It is 0.6. Therefore, 0.5 can be exemplified as the lower limit of the ratio S0 / Ss. In other words, the pulse width Wp can be further shortened by setting the total area S0 of the element group 4-0 having the minimum diameter DA0 to half or more of the total area Ss of the entire plurality of elements 3.
 以上のとおり、本実施形態に係る超音波デバイス1は、第1面(上面1a)と、上面1aに沿って配置されている複数の素子3とを有している。複数の素子3のそれぞれは、キャビティ5cと、キャビティ5cに対して上面1a側に位置している下部電極17と、下部電極17に対して上面1a側に位置している圧電体19と、圧電体19に対して上面1a側に位置している上部電極21と、を有している。複数の素子3は、キャビティ5cの径DAが互いに異なる2種以上の素子3を含んでいる。 As described above, the ultrasonic device 1 according to the present embodiment has a first surface (upper surface 1a) and a plurality of elements 3 arranged along the upper surface 1a. Each of the plurality of elements 3 has a cavity 5c, a lower electrode 17 located on the upper surface 1a side with respect to the cavity 5c, a piezoelectric body 19 located on the upper surface 1a side with respect to the lower electrode 17, and a piezoelectric body. It has an upper electrode 21 located on the upper surface 1a side with respect to the body 19. The plurality of elements 3 include two or more types of elements 3 in which the diameter DAs of the cavities 5c are different from each other.
 2種以上の素子3は、キャビティ5cの径DAが互いに異なることから、共振周波数が互いに相違する。その結果、送信及び/又は受信する超音波の広帯域化を図ることができる。広帯域化によって、例えば、低周波数成分の音圧を大きくし、透過力を向上させることができる。また、広帯域化によって、パルス幅Wpを短くすることができる。パルス幅Wpを短くすることによって、例えば、デバイス1からの距離が互いに異なる反射面からの反射波が結合してしまう蓋然性が低減され、いわゆる距離分解能が向上する。 The resonance frequencies of the two or more types of elements 3 are different from each other because the diameter DAs of the cavities 5c are different from each other. As a result, the bandwidth of the transmitted and / or received ultrasonic waves can be widened. By widening the band, for example, the sound pressure of the low frequency component can be increased and the penetrating power can be improved. Further, the pulse width Wp can be shortened by widening the bandwidth. By shortening the pulse width Wp, for example, the probability that reflected waves from reflecting surfaces having different distances from the device 1 will be combined is reduced, and so-called distance resolution is improved.
 複数のキャビティ5cの径を互いに異ならせると、製造の誤差に起因して、複数のキャビティ5cの形状も微妙に異なったものとなることがある。この場合において、本実施形態とは異なり、キャビティ5cが下部電極17と圧電体19との間に介在している態様では、複数のキャビティ5cの形状の相違が、下部電極17及び上部電極21によって圧電体19に印加される電界に影響を及ぼす可能性が生じる。すなわち、キャビティ5cの径の相違が素子本体3aの共振周波数以外の性質に影響を及ぼす可能性が生じる。本実施形態では、キャビティ5c上に、下部電極17、圧電体19及び上部電極21が位置していることから、そのような不都合が生じる蓋然性を低減できる。 If the diameters of the plurality of cavities 5c are different from each other, the shapes of the plurality of cavities 5c may be slightly different due to manufacturing errors. In this case, unlike the present embodiment, in the embodiment in which the cavity 5c is interposed between the lower electrode 17 and the piezoelectric body 19, the difference in the shape of the plurality of cavities 5c is caused by the lower electrode 17 and the upper electrode 21. There is a possibility of affecting the electric field applied to the piezoelectric body 19. That is, the difference in the diameter of the cavity 5c may affect properties other than the resonance frequency of the element body 3a. In the present embodiment, since the lower electrode 17, the piezoelectric body 19, and the upper electrode 21 are located on the cavity 5c, the probability that such an inconvenience will occur can be reduced.
 また、本実施形態では、複数の素子3は、複数の素子群4を有している。各素子群4は、キャビティ5cの径DAが互いに同等である2以上の素子3からなる。各素子群4におけるキャビティ5cの面積の合計Snが最も大きい素子群4は、キャビティ5cの径DAが最も小さい素子群4-0である。 Further, in the present embodiment, the plurality of elements 3 have a plurality of element groups 4. Each element group 4 is composed of two or more elements 3 having the same diameter DA of the cavity 5c. The element group 4 having the largest total Sn of the area of the cavity 5c in each element group 4 is the element group 4-0 having the smallest diameter DA of the cavity 5c.
 この場合、例えば、図6(b)及び図7(b)を参照して説明したように、素子群4-0以外の1以上の素子群4それぞれの面積比Sn/S0が1未満ということであり、パルス幅Wpを効果的に短くすることができる。 In this case, for example, as described with reference to FIGS. 6 (b) and 7 (b), the area ratio Sn / S0 of each of one or more element groups 4 other than the element group 4-0 is less than 1. Therefore, the pulse width Wp can be effectively shortened.
 また、本実施形態では、キャビティ5cの径DAが最も小さい素子群4-0におけるキャビティ5cの面積の合計S0が、複数の素子3全体におけるキャビティ5cの面積の合計Ssの半分以上である。 Further, in the present embodiment, the total area S0 of the cavity 5c in the element group 4-0 having the smallest diameter DA of the cavity 5c is more than half of the total Ss of the area of the cavity 5c in the entire plurality of elements 3.
 この場合、例えば、図6(b)及び図7(b)を参照して説明したように、素子群4-0以外の1以上の素子群4それぞれの面積比Sn/S0が比較的小さく、パルス幅Wpが短くなる効果が向上する。 In this case, for example, as described with reference to FIGS. 6 (b) and 7 (b), the area ratio Sn / S0 of each of one or more element groups 4 other than the element groups 4-0 is relatively small. The effect of shortening the pulse width Wp is improved.
 また、本実施形態では、キャビティ5cの径DAが最も小さい素子群4-0におけるキャビティ5cの面積の合計S0が、複数の素子3全体におけるキャビティ5cの面積の合計Ssの10/11以下である。 Further, in the present embodiment, the total area S0 of the cavity 5c in the element group 4-0 having the smallest diameter DA of the cavity 5c is 10/11 or less of the total Ss of the total area of the cavity 5c in the entire plurality of elements 3. ..
 この場合、例えば、図6(b)及び図7(b)を参照して説明したように、素子群4-0に対して径DAが相対的に大きい素子群4を混ぜた効果が有意な大きさで現れやすい。 In this case, for example, as described with reference to FIGS. 6 (b) and 7 (b), the effect of mixing the element group 4 having a relatively large diameter DA with respect to the element group 4-0 is significant. It is easy to appear in size.
 同一の素子群4に属する素子3同士におけるキャビティ5cの径DAの差が4μm未満である。 The difference in diameter DA of the cavity 5c between the elements 3 belonging to the same element group 4 is less than 4 μm.
 別の観点では、径DAが互いに異なる複数の素子群4における径DAの代表値(例えば平均値又は中央値)の差は4μm以上である。従って、例えば、径DAが互いに異なる複数の素子3を設けたことによる効果が有意な大きさで現れやすい。 From another point of view, the difference between the representative values (for example, the average value or the median value) of the diameter DAs in the plurality of element groups 4 having different diameter DAs is 4 μm or more. Therefore, for example, the effect of providing a plurality of elements 3 having different diameters DA is likely to appear with a significant magnitude.
<メンブレンの詳細形状の例>
 以下では、メンブレン11の詳細な形状の例について説明する。
<Example of detailed membrane shape>
An example of the detailed shape of the membrane 11 will be described below.
(圧電体の斜面)
 既述のように、圧電体19の側面は、斜面19aを有していてもよいし、有していなくてもよく、また、斜面19aの形状及び傾斜角度等は任意である。以下では、斜面19aの詳細形状の一例を示す。なお、以下の説明では、斜面19aが圧電体19の側面の全体である態様を例に取る。従って、斜面19aは、圧電体19の側面と同義である。
(Slope of piezoelectric body)
As described above, the side surface of the piezoelectric body 19 may or may not have a slope 19a, and the shape and inclination angle of the slope 19a are arbitrary. Below, an example of the detailed shape of the slope 19a is shown. In the following description, an embodiment in which the slope 19a is the entire side surface of the piezoelectric body 19 will be taken as an example. Therefore, the slope 19a is synonymous with the side surface of the piezoelectric body 19.
 図8は、図2の領域VIIIの拡大図である。 FIG. 8 is an enlarged view of region VIII of FIG.
 圧電体19の側面(斜面19a)は、第1領域19aaと、第1領域19aaの上方に位置する第2領域19abとを有している。第2領域19abの傾斜角θ2は、第1領域19aaの傾斜角θ1よりも大きい。ここでいう傾斜角(θ1及びθ2)は、例えば、支持基板5の上面5a(図2)、振動層16の上面及び/又は圧電体19の下面に対する角度である。以下では、このような傾斜角の基準面を代表して上面5aを用いることがある。互いに傾斜角が異なる第1領域19aa及び第2領域19abが設けられていることによって、例えば、後述するように、デバイス1のロバスト性(頑強性)を向上させることができる。 The side surface (slope 19a) of the piezoelectric body 19 has a first region 19aa and a second region 19ab located above the first region 19aa. The inclination angle θ2 of the second region 19ab is larger than the inclination angle θ1 of the first region 19aa. The inclination angles (θ1 and θ2) referred to here are, for example, angles with respect to the upper surface 5a (FIG. 2) of the support substrate 5, the upper surface of the vibrating layer 16, and / or the lower surface of the piezoelectric body 19. In the following, the upper surface 5a may be used as a representative of the reference surface having such an inclination angle. By providing the first region 19aa and the second region 19ab having different inclination angles from each other, the robustness (robustness) of the device 1 can be improved, for example, as will be described later.
 斜面19aは、互いに傾斜角が異なる3つ以上の斜面を有していてもよい(そのように捉えることができる形状であってよい。)。本実施形態の説明では、斜面19aが互いに傾斜角が異なる2つの斜面を有している(巨視的にそのように捉えることができる)態様を例に取る。別の観点では、本実施形態では、下方の第1領域19aaの下縁が斜面19aの下縁を構成し、上方の第2領域19abの上縁が斜面19aの上縁を構成し、第1領域19aaの上縁と第2領域19abの下縁とが一致している(巨視的にそのように捉えることができる)態様を例に取る。 The slope 19a may have three or more slopes having different inclination angles from each other (the shape may be such that it can be grasped as such). In the description of the present embodiment, an embodiment in which the slopes 19a have two slopes having different inclination angles (which can be macroscopically grasped as such) is taken as an example. From another aspect, in the present embodiment, the lower edge of the lower first region 19aa constitutes the lower edge of the slope 19a, the upper edge of the upper second region 19ab constitutes the upper edge of the slope 19a, and the first Take, for example, an embodiment in which the upper edge of the region 19aa and the lower edge of the second region 19ab coincide with each other (which can be macroscopically grasped as such).
 第1領域19aaの大きさ及び傾斜角θ1は適宜に設定されてよい。第1領域19aaにおいて、その下縁から上縁までの長さは、例えば、比較的短くされている。例えば、図8のような横断面(例えば、支持基板5の上面5aに直交するとともに圧電体19の中心を通る横断面及び/又は上面5aに直交するとともに斜面19aの法線を含む横断面)において、上面5aに平行な長さ、又は斜面19aに沿う長さに着目する。このとき、第1領域19aaの長さは、斜面19a(別の観点では圧電体19の側面全体)の長さの1/2未満、1/3未満又は1/4未満とされてよい。傾斜角θ1は、例えば、30°以下、20°以下又は10°以下とされてよい。第1領域19aaは、図8のような横断面において、直線状であってもよいし、凹状及び/又は凸状の曲線状であってもよいし、凹凸若しくは段差を有していてもよい。傾斜角θ1の下限は特に限定されない。第1領域19aaが上面5aに対して傾斜していることが確認できればよい。ただし、傾斜角θ1は、1°以上、3°以上又は5°以上とされてもよい。 The size of the first region 19aa and the inclination angle θ1 may be appropriately set. In the first region 19aa, the length from the lower edge to the upper edge thereof is, for example, relatively short. For example, a cross section as shown in FIG. 8 (for example, a cross section orthogonal to the upper surface 5a of the support substrate 5 and passing through the center of the piezoelectric body 19 and / or a cross section orthogonal to the upper surface 5a and including the normal of the slope 19a). In the above, attention is paid to the length parallel to the upper surface 5a or the length along the slope 19a. At this time, the length of the first region 19aa may be less than 1/2, less than 1/3, or less than 1/4 of the length of the slope 19a (in another viewpoint, the entire side surface of the piezoelectric body 19). The inclination angle θ1 may be, for example, 30 ° or less, 20 ° or less, or 10 ° or less. The first region 19aa may have a linear shape, a concave shape and / or a convex curved shape, or may have unevenness or a step in the cross section as shown in FIG. .. The lower limit of the inclination angle θ1 is not particularly limited. It suffices if it can be confirmed that the first region 19aa is inclined with respect to the upper surface 5a. However, the inclination angle θ1 may be 1 ° or more, 3 ° or more, or 5 ° or more.
 第2領域19abの大きさ及び傾斜角θ2も適宜に設定されてよい。本実施形態では、第2領域19abは、斜面19aから第1領域19aaを除いた残りであるから、その大きさの説明は、上記の第1領域19aaの大きさの説明の裏返しである。確認的に記載すると、図8のような横断面における支持基板5の上面5aに平行な長さ、又は斜面19aに沿う長さに着目したとき、第2領域19abの長さは、斜面19a(別の観点では圧電体19の側面全体)の長さの3/4以上、2/3以上又は1/2以上とされてよい。また、傾斜角θ2は、例えば、傾斜角θ1よりも大きいことを前提として、10°以上、20°以上、30°以上又は40°以上とされてよい。第2領域19abは、第1領域19aaと同様に、図8のような横断面において、直線状であってもよいし、凹状及び/又は凸状の曲線状であってもよいし、凹凸若しくは段差を有していてもよい。傾斜角θ2の上限は特に限定されない。第2領域19abが上面5aに対して傾斜していることが確認できればよい。ただし、傾斜角θ2は、80°以下、70°以下又は60°以下とされてもよい。 The size of the second region 19ab and the inclination angle θ2 may also be set as appropriate. In the present embodiment, the second region 19ab is the remainder of the slope 19a excluding the first region 19aa, so the description of the size is the reverse of the above description of the size of the first region 19aa. As a confirmation, when focusing on the length parallel to the upper surface 5a of the support substrate 5 in the cross section as shown in FIG. 8 or the length along the slope 19a, the length of the second region 19ab is the slope 19a ( From another viewpoint, the length of the entire side surface of the piezoelectric body 19) may be 3/4 or more, 2/3 or more, or 1/2 or more. Further, the inclination angle θ2 may be 10 ° or more, 20 ° or more, 30 ° or more, or 40 ° or more on the assumption that the inclination angle θ2 is larger than, for example, the inclination angle θ1. Similar to the first region 19aa, the second region 19ab may be linear, concave and / or convex curved in the cross section as shown in FIG. 8, and may be uneven or uneven. It may have a step. The upper limit of the inclination angle θ2 is not particularly limited. It suffices if it can be confirmed that the second region 19ab is inclined with respect to the upper surface 5a. However, the inclination angle θ2 may be 80 ° or less, 70 ° or less, or 60 ° or less.
 図8のような横断面において、第1領域19aa及び第2領域19abのいずれかの領域が直線状でない場合において、傾斜角(θ1及び/又はθ2)は、適宜に特定されてよい。例えば、各領域上に比較的多数かつ一定のピッチ(間隔)で設定された点における傾斜角を求め、その平均値が傾斜角として用いられてよい。また、各領域上に比較的多数で適宜に分布された点に対する近似直線を求め、この近似直線の傾斜角が用いられてもよい。平均値又は近似直線の特定に際しては、特異部分(例えば第1領域19aaと第2領域19abとの境界付近)は考慮外とされてよい。平均値及び近似直線を求めるときの各領域上の点の数は、当該点の数の増減に起因する傾斜角の変動が十分に小さくなるように適宜に設定されてよい。 In the cross section as shown in FIG. 8, when either the first region 19aa and the second region 19ab are not linear, the inclination angle (θ1 and / or θ2) may be appropriately specified. For example, a relatively large number of tilt angles at points set at a constant pitch (interval) on each region may be obtained, and the average value thereof may be used as the tilt angle. Further, an approximate straight line for a relatively large number of appropriately distributed points on each region may be obtained, and the inclination angle of this approximate straight line may be used. When specifying the average value or the approximate straight line, the singular portion (for example, near the boundary between the first region 19aa and the second region 19ab) may be excluded from consideration. The number of points on each region when the average value and the approximate straight line are obtained may be appropriately set so that the fluctuation of the inclination angle due to the increase or decrease in the number of the points is sufficiently small.
 上述した第1領域19aaの長さの上限値、及び/又は上記の第2領域19abの長さの下限値は、斜面19aが圧電体19の側面の一部のみを構成している場合において、斜面19aの長さ又は圧電体19の側面全体の長さに対する、上限値及び/又は下限値として用いられても構わない。また、上記の上限値及び/又は下限値は、斜面19aが第1領域19aa及び第2領域19ab以外の斜面も含んでいる場合における、上限値及び/又は下限値として用いられても構わない。上記の上限値及び下限値は、矛盾しない限り、適宜に組み合わされてよい。例えば、第1領域19aaの1/4以下と、第2領域19abの1/2以上とが組み合わされてもよい。 The upper limit of the length of the first region 19aa described above and / or the lower limit of the length of the second region 19ab described above are when the slope 19a constitutes only a part of the side surface of the piezoelectric body 19. It may be used as an upper limit value and / or a lower limit value with respect to the length of the slope 19a or the length of the entire side surface of the piezoelectric body 19. Further, the above upper limit value and / or lower limit value may be used as an upper limit value and / or a lower limit value when the slope 19a includes a slope other than the first region 19aa and the second region 19ab. The above upper limit value and lower limit value may be appropriately combined as long as there is no contradiction. For example, 1/4 or less of the first region 19aa and 1/2 or more of the second region 19ab may be combined.
 第1領域19aaの傾斜角θ1と第2領域19abの傾斜角θ2との差は適宜に設定されてよい。例えば、両者の差は、10°以上、20°以上又は30°以上とされてよい。また、例えば、両者の差は、傾斜角θ1の1倍以上、2倍以上又は3倍以上とされてよい。第1領域19aaと第2領域19abとは、例えば、図8のような横断面において、その傾斜角の相違から明瞭に区別可能である。ただし、両者の境界付近(両者の間に位置する比較的狭い範囲)においては、両者の角部が面取りされて両者の境界が曖昧であっても構わない。 The difference between the inclination angle θ1 of the first region 19aa and the inclination angle θ2 of the second region 19ab may be appropriately set. For example, the difference between the two may be 10 ° or more, 20 ° or more, or 30 ° or more. Further, for example, the difference between the two may be 1 time or more, 2 times or more, or 3 times or more the inclination angle θ1. The first region 19aa and the second region 19ab can be clearly distinguished from each other, for example, in the cross section as shown in FIG. 8 from the difference in the inclination angles thereof. However, in the vicinity of the boundary between the two (a relatively narrow range located between the two), the corners of the two may be chamfered and the boundary between the two may be ambiguous.
(圧電体の斜面と他の構成要素との位置関係)
 支持基板5の上面5aを平面透視したときに、圧電体19の外縁(別の観点では第1領域19aaの下縁)の大部分(例えば全長の90%以上)又は全部は、キャビティ5c(図2)の外側に位置していてもよいし、キャビティ5cの輪郭に重なっていてもよいし、キャビティ5c内に収まっていてもよい。本実施形態では、図2に示すように、圧電体19の外縁の大部分又は全部がキャビティ5cの外側に位置する態様を例に取る。この態様は、別の観点では、キャビティ5cの輪郭の直上に斜面19aが位置する態様である。
(Positional relationship between the slope of the piezoelectric body and other components)
When the upper surface 5a of the support substrate 5 is viewed through a plane, most or all of the outer edge (in another viewpoint, the lower edge of the first region 19aa) of the piezoelectric body 19 (for example, 90% or more of the total length) is the cavity 5c (FIG. It may be located outside of 2), may overlap the contour of the cavity 5c, or may be contained within the cavity 5c. In the present embodiment, as shown in FIG. 2, a mode in which most or all of the outer edge of the piezoelectric body 19 is located outside the cavity 5c is taken as an example. In another aspect, this aspect is an aspect in which the slope 19a is located directly above the contour of the cavity 5c.
 キャビティ5cの輪郭(その大部分(例えば全長の90%以上)又は全部。以下、同様。)の直上に位置するのは、第1領域19aaであってもよいし、第2領域19abであってもよい。図2と図8との比較から理解されるように、本実施形態では、キャビティ5cの輪郭の直上に第2領域19abが位置する態様を例に取る。平面透視又は断面視したときに、キャビティ5cの輪郭は、第2領域19abの下縁から上縁までの間の適宜な位置に重なってよい。例えば、キャビティ5cの輪郭は、第2領域19abの下縁からの距離が、第2領域19abの長さ(支持基板5の上面5aに平行な長さ、又は第2領域19abに沿う長さ)の1/5以上4/5以下となる範囲に位置してよい。 It may be the first region 19aa or the second region 19ab that is located directly above the contour of the cavity 5c (most (for example, 90% or more of the total length) or all of it; the same applies hereinafter). It is also good. As can be understood from the comparison between FIGS. 2 and 8, in the present embodiment, an embodiment in which the second region 19ab is located directly above the contour of the cavity 5c is taken as an example. When viewed in plan or in cross section, the contour of the cavity 5c may overlap at an appropriate position between the lower edge and the upper edge of the second region 19ab. For example, the contour of the cavity 5c is such that the distance from the lower edge of the second region 19ab is the length of the second region 19ab (the length parallel to the upper surface 5a of the support substrate 5 or the length along the second region 19ab). It may be located in a range of 1/5 or more and 4/5 or less of.
 絶縁膜27は、例えば、平面透視又は断面視における圧電体19の外側から圧電体19の斜面19a上に亘って広がっている。別の観点では、圧電体19の斜面19aの下縁を覆っている。これにより、例えば、下部電極17が意図的に又は誤差により斜面19aの下縁から露出しているときに、下部電極17と上部配線25(別の観点では上部電極21)とが短絡する蓋然性が低減される。 The insulating film 27 extends from the outside of the piezoelectric body 19 in a plan view or a cross-sectional view to the slope 19 a of the piezoelectric body 19. From another point of view, it covers the lower edge of the slope 19a of the piezoelectric body 19. As a result, for example, when the lower electrode 17 is intentionally or due to an error and is exposed from the lower edge of the slope 19a, there is a possibility that the lower electrode 17 and the upper wiring 25 (in another viewpoint, the upper electrode 21) are short-circuited. It will be reduced.
 図8のような横断面において、絶縁膜27が斜面19aを覆う広さは適宜に設定されてよい。例えば、絶縁膜27は、第1領域19aaの一部又は全部を覆い、その一方で、第2領域19abを覆っていなくてもよい。また、例えば、絶縁膜27は、第1領域19aaの全部と第2領域19abの一部又は全部とを覆い、その一方で、圧電体19の上面を覆っていなくてもよい。また、例えば、絶縁膜27は、斜面19aの全部と圧電体19の上面の一部(外周部)を覆っていてもよい。図示の例では、絶縁膜27は、第1領域19aaの全部と第2領域19abの一部とを覆っている。すなわち、絶縁膜27は、平面透視又は断面視における圧電体19の外側から、第2領域19abの中途まで広がっている。 In the cross section as shown in FIG. 8, the width of the insulating film 27 covering the slope 19a may be appropriately set. For example, the insulating film 27 may cover a part or all of the first region 19aa, while the insulating film 27 may not cover the second region 19ab. Further, for example, the insulating film 27 may cover the entire first region 19aa and a part or all of the second region 19ab, while not covering the upper surface of the piezoelectric body 19. Further, for example, the insulating film 27 may cover the entire slope 19a and a part (outer peripheral portion) of the upper surface of the piezoelectric body 19. In the illustrated example, the insulating film 27 covers the entire first region 19aa and a part of the second region 19ab. That is, the insulating film 27 extends from the outside of the piezoelectric body 19 in a plan view or a cross-sectional view to the middle of the second region 19ab.
 絶縁膜27は、例えば、いわゆるコンフォーマルな層になっており、その上面に圧電体19の凹凸を反映させている。例えば、絶縁膜27の上面は、平面透視又は断面視において圧電体19の外側に位置する領域に対して、圧電体19の斜面19a上に位置する領域が高くなっている。このとき、絶縁膜27のうち斜面19a上の領域は、第1領域19aaの傾斜角θ1と第2領域19abの傾斜角θ2との相違を反映して、傾斜角が異なる2つの領域を有していてもよいし(図示の例)、そのような2つの領域を有していなくてもよい。図示の例とは異なり、絶縁膜27は、圧電体19の厚さに対して比較的厚くされ(例えば圧電体19の厚さと同等の厚さにされ)、かつ上面が支持基板5の上面5aに対して概略平行にされていてもよい。 The insulating film 27 is, for example, a so-called conformal layer, and the unevenness of the piezoelectric body 19 is reflected on the upper surface thereof. For example, the upper surface of the insulating film 27 has a higher region located on the slope 19a of the piezoelectric body 19 than a region located outside the piezoelectric body 19 in plan perspective or cross-sectional view. At this time, the region on the slope 19a of the insulating film 27 has two regions having different inclination angles, reflecting the difference between the inclination angle θ1 of the first region 19aa and the inclination angle θ2 of the second region 19ab. It may or may not have such two regions (illustrated example). Unlike the illustrated example, the insulating film 27 is made relatively thick with respect to the thickness of the piezoelectric body 19 (for example, the thickness is equal to the thickness of the piezoelectric body 19), and the upper surface is the upper surface 5a of the support substrate 5. It may be approximately parallel to.
 上部配線25は、平面透視又は断面視における圧電体19の外側から、圧電体19の上面に位置する上部電極21に至るものであるから、当然に、圧電体19の斜面19a上(第1領域19aa上及び第2領域19ab上)を経由する。既に述べたように、機能本体層8においては、絶縁膜27が設けられてもよいし、設けられなくてもよく、また、絶縁膜27の広さも任意である。従って、上部配線25が第1領域19aa上及び第2領域19ab上を経由するというとき、上部配線25は、その一部又は全部が、これらの領域に直接に重ならなくてもよいし、重なってもよい。また、上部配線25のうち、圧電体19の外側に位置する部分は、適宜な部材に重なってよく、例えば、一部又は全部が振動層16に重なっていてもよいし、一部又は全部が絶縁膜27に重なっていてもよい。 Since the upper wiring 25 extends from the outside of the piezoelectric body 19 in a plan view or a cross-sectional view to the upper electrode 21 located on the upper surface of the piezoelectric body 19, naturally, it is on the slope 19a of the piezoelectric body 19 (first region). It goes through on 19aa and on the second region 19ab). As described above, the functional body layer 8 may or may not be provided with the insulating film 27, and the size of the insulating film 27 is arbitrary. Therefore, when the upper wiring 25 passes over the first region 19aa and the second region 19ab, a part or all of the upper wiring 25 does not have to directly overlap with these regions, or overlaps with each other. You may. Further, the portion of the upper wiring 25 located outside the piezoelectric body 19 may overlap with an appropriate member, for example, a part or the whole may overlap with the vibrating layer 16, or a part or the whole may overlap. It may overlap with the insulating film 27.
 上部配線25は、例えば、いわゆるコンフォーマルな層になっており、その上面に圧電体19及び/又は絶縁膜27が構成する凹凸を反映している。例えば、上部配線25の上面は、平面透視又は断面視において圧電体19の外側に位置する領域に対して、圧電体19の上面に位置する領域が高くなっている。また、上部配線25の上面のうち圧電体19の斜面19a上の領域は、上部電極21に近づくほど徐々に高くなっている。この徐々に高くなっている領域は、第1領域19aaの傾斜角θ1と第2領域19abの傾斜角θ2との相違を反映して、又は当該相違を反映した絶縁膜27の上面の形状を反映して、傾斜角が異なる2つの領域を有していてもよいし、有していなくてもよい。 The upper wiring 25 is, for example, a so-called conformal layer, and the unevenness formed by the piezoelectric body 19 and / or the insulating film 27 is reflected on the upper surface thereof. For example, the upper surface of the upper wiring 25 has a higher region located on the upper surface of the piezoelectric body 19 than a region located outside the piezoelectric body 19 in plan perspective or cross-sectional view. Further, the region of the upper surface of the upper wiring 25 on the slope 19a of the piezoelectric body 19 gradually becomes higher as it approaches the upper electrode 21. This gradually increasing region reflects the difference between the inclination angle θ1 of the first region 19aa and the inclination angle θ2 of the second region 19ab, or reflects the shape of the upper surface of the insulating film 27 reflecting the difference. Therefore, it may or may not have two regions having different inclination angles.
(電極のテーパ面)
 図9(a)は、図8の領域IXaの拡大図である。図9(b)は、図8の領域IXbの拡大図である。
(Tapered surface of electrode)
FIG. 9A is an enlarged view of the region IXa of FIG. FIG. 9B is an enlarged view of the area IXb of FIG.
 これらの図に示すように、上部電極21の側面は、上部電極21の上面側ほど上部電極21が縮径する向きで傾斜する上部テーパ面21aを有してよい。以下では、上部電極21の側面の全部が上部テーパ面21aによって構成されている(巨視的にそのように捉えることができる)態様を例に取る。同様に、下部電極17の側面は、下部電極17の上面側ほど縮径する向きで傾斜する下部テーパ面17aを有してよい。以下では、下部電極17の側面の全部が下部テーパ面17aによって構成されている(巨視的にそのように捉えることができる)態様を例に取る。 As shown in these figures, the side surface of the upper electrode 21 may have an upper tapered surface 21a that is inclined toward the upper surface side of the upper electrode 21 in a direction in which the upper electrode 21 is reduced in diameter. In the following, an embodiment in which all the side surfaces of the upper electrode 21 are formed by the upper tapered surface 21a (which can be macroscopically grasped as such) will be taken as an example. Similarly, the side surface of the lower electrode 17 may have a lower tapered surface 17a that inclines in a direction that reduces the diameter toward the upper surface side of the lower electrode 17. In the following, an embodiment in which all the side surfaces of the lower electrode 17 are formed by the lower tapered surface 17a (which can be macroscopically grasped as such) will be taken as an example.
 上部テーパ面21aの傾斜角θ5及び下部テーパ面17aの傾斜角θ6は、いずれが他方よりも大きくてもよいし、互いに同等であってもよい。傾斜角θ5は、例えば、支持基板5の上面5a(図2)及び/又は圧電体19の上面に対する角度である。傾斜角θ6は、例えば、上面5a及び/又は振動層16の上面(圧電体19の下面)に対する角度である。以下では、このような傾斜角の基準面を代表して上面5aを用いることがある。 The inclination angle θ5 of the upper tapered surface 21a and the inclination angle θ6 of the lower tapered surface 17a may be larger than the other or equal to each other. The inclination angle θ5 is, for example, an angle with respect to the upper surface 5a (FIG. 2) of the support substrate 5 and / or the upper surface of the piezoelectric body 19. The inclination angle θ6 is, for example, an angle with respect to the upper surface 5a and / or the upper surface of the vibrating layer 16 (the lower surface of the piezoelectric body 19). In the following, the upper surface 5a may be used as a representative of the reference surface having such an inclination angle.
 図示の例では、傾斜角θ5は、傾斜角θ6よりも小さくなっている。各傾斜角の具体的な大きさ及び2つの傾斜角の差は適宜に設定されてよい。例えば、傾斜角θ5は、60°以下又は50°以下とされてよい。傾斜角θ6は、傾斜角θ5よりも大きいことを条件として、50°以上又は60°以上とされてよい。両者の差は、10°以上又は20°以上とされてよい。上部テーパ面21a及び下部テーパ面17aは、斜面19aと同様に、図示のような横断面において、例えば、直線状であってもよいし、凹状及び/又は凸状の曲線状であってもよい。テーパ面が直線状でない場合における傾斜角θ5及びθ6の特定方法は、斜面19aが直線状でない場合における傾斜角θ1及びθ2の特定方法と同様とされてよい。 In the illustrated example, the tilt angle θ5 is smaller than the tilt angle θ6. The specific size of each inclination angle and the difference between the two inclination angles may be appropriately set. For example, the inclination angle θ5 may be 60 ° or less or 50 ° or less. The inclination angle θ6 may be 50 ° or more or 60 ° or more, provided that it is larger than the inclination angle θ5. The difference between the two may be 10 ° or more or 20 ° or more. Like the slope 19a, the upper tapered surface 21a and the lower tapered surface 17a may have a linear shape, a concave shape, and / or a convex curved shape in a cross section as shown in the drawing. .. The method for specifying the inclination angles θ5 and θ6 when the tapered surface is not straight may be the same as the method for specifying the inclination angles θ1 and θ2 when the slope 19a is not linear.
 既述のように、下部電極17の厚さと上部電極21の厚さとは互いに同一であってもよいし、互いに異なっていてもよく、図8、図9(a)及び図9(b)では、後者の例が示されている。各テーパ面の下縁から上縁までの長さは、各電極の厚さとテーパ面の傾斜角とによって決定される。当該長さに関して、上部テーパ面21a及び下部テーパ面17aはいずれが長くてもよい。 As described above, the thickness of the lower electrode 17 and the thickness of the upper electrode 21 may be the same as or different from each other, and in FIGS. 8, 9 (a) and 9 (b), , An example of the latter is shown. The length from the lower edge to the upper edge of each tapered surface is determined by the thickness of each electrode and the inclination angle of the tapered surface. With respect to the length, either the upper tapered surface 21a or the lower tapered surface 17a may be longer.
 上部テーパ面21aと他の構成要素(例えばキャビティ5c)との位置関係、及び下部テーパ面17aと他の構成要素(例えばキャビティ5c)との位置関係は適宜に設定されてよい。図2及び図8の比較から理解されるように、本実施形態では、上部テーパ面21aは、支持基板5の上面5aの平面透視において少なくとも一部(本実施形態では全部)がキャビティ5cに重なって位置している。また、下部テーパ面17aは、上面5aの平面透視において少なくとも一部(本実施形態では全部)がキャビティ5cの外側に位置している。 The positional relationship between the upper tapered surface 21a and other components (for example, the cavity 5c) and the positional relationship between the lower tapered surface 17a and other components (for example, the cavity 5c) may be appropriately set. As can be understood from the comparison of FIGS. 2 and 8, in the present embodiment, at least a part (in the present embodiment) of the upper tapered surface 21a overlaps the cavity 5c in the plan perspective of the upper surface 5a of the support substrate 5. Is located. Further, at least a part (in the present embodiment) of the lower tapered surface 17a is located outside the cavity 5c in the plan perspective of the upper surface 5a.
(圧電体が斜面を有するデバイスの製造方法)
 圧電体19が斜面19aを有するデバイス1の製造方法は、概略、公知の製造方法又は公知の製造方法を応用したものとされてよい。例えば、少なくとも支持基板5を構成するウェハに対して薄膜の形成及びパターニングを繰り返すことによって、下部電極17、圧電体19及び上部電極21等が形成されてよい。その後、ウェハのダイシングによって複数のデバイス1が得られてよい。
(Manufacturing method of a device in which the piezoelectric material has a slope)
The manufacturing method of the device 1 in which the piezoelectric body 19 has the slope 19a may be roughly an application of a known manufacturing method or a known manufacturing method. For example, the lower electrode 17, the piezoelectric body 19, the upper electrode 21, and the like may be formed by repeating the formation and patterning of a thin film on at least the wafer constituting the support substrate 5. After that, a plurality of devices 1 may be obtained by dicing the wafer.
 ただし、従来とは異なり、例えば、圧電体層をエッチングして圧電体19を形成するときに、エッチングの条件を途中で変更してよい。例えば、エッチングレートをエッチングの途中で下げる。エッチングレートを下げる方法としては、例えば、エッチングガスに印加する電圧を低くする方法及びエッチングガスの成分比率を変える方法が挙げられる。このようにすると、エッチングレートが相対的に高いときは、傾斜角(θ2)が比較的に大きい第2領域19abが形成され、エッチングレートが相対的に低いときは、傾斜角(θ1)が比較的に小さい第1領域19aaが形成される。 However, unlike the conventional case, for example, when the piezoelectric layer is etched to form the piezoelectric body 19, the etching conditions may be changed in the middle. For example, the etching rate is lowered in the middle of etching. Examples of the method of lowering the etching rate include a method of lowering the voltage applied to the etching gas and a method of changing the component ratio of the etching gas. In this way, when the etching rate is relatively high, the second region 19ab having a relatively large inclination angle (θ2) is formed, and when the etching rate is relatively low, the inclination angle (θ1) is compared. A small first region 19aa is formed.
 また、上部電極21の傾斜角θ5と下部電極17の傾斜角θ6との相違は、例えば、上記のようなエッチングレートの相違によって実現されてよい。また、例えば、上部電極21をジャストエッチングによってパターニングし、下部電極17をオーバーエッチングによってパターニングすることによって、両者の傾斜角を異ならせてもよい。この場合、他のエッチング条件(エッチングレートを含む)は、両電極で同じであってもよい。 Further, the difference between the inclination angle θ5 of the upper electrode 21 and the inclination angle θ6 of the lower electrode 17 may be realized by, for example, the difference in the etching rate as described above. Further, for example, the upper electrode 21 may be patterned by just etching and the lower electrode 17 may be patterned by over-etching to make the inclination angles of the two different. In this case, other etching conditions (including the etching rate) may be the same for both electrodes.
 以上のとおり、本実施形態では、超音波デバイス1は、キャビティ層(支持基板5)と、超音波素子3の素子本体3aとを有している。支持基板5は、上面5aと、当該上面5aに開口しているキャビティ5cとを有している。素子本体3aは、上面5aに重なっており、キャビティ5c上における面外振動の共振周波数が超音波の周波数帯内にある。また、素子本体3aは、圧電体19を有している。圧電体19の側面は、上面5a側ほど圧電体19が拡径する向きで傾斜する斜面19aを有している。斜面19aは、第1領域19aaと、第2領域19abとを有している。第2領域19abは、第1領域19aaに対して上面5aとは反対側に位置しており、上面5aに対する傾斜角θ2が第1領域の上面5aに対する傾斜角θ1よりも大きい。 As described above, in the present embodiment, the ultrasonic device 1 has a cavity layer (support substrate 5) and an element main body 3a of the ultrasonic element 3. The support substrate 5 has an upper surface 5a and a cavity 5c that is open to the upper surface 5a. The element body 3a overlaps the upper surface 5a, and the resonance frequency of the out-of-plane vibration on the cavity 5c is within the ultrasonic frequency band. Further, the element body 3a has a piezoelectric body 19. The side surface of the piezoelectric body 19 has a slope 19a that is inclined toward the upper surface 5a side in a direction in which the piezoelectric body 19 increases in diameter. The slope 19a has a first region 19aa and a second region 19ab. The second region 19ab is located on the opposite side of the upper surface 5a with respect to the first region 19aa, and the inclination angle θ2 with respect to the upper surface 5a is larger than the inclination angle θ1 with respect to the upper surface 5a of the first region.
 圧電体19が斜面19aを有しているということは、別の観点では、圧電体19は、外周側において薄い部分を有しているということである。従って、例えば、圧電体19は、その外周側部分において曲げ変形を生じやすくなり、ひいては、キャビティ5c上における面外振動を生じやすくなる。その結果、受信した超音波を電気信号に変換したときの電圧を超音波の音圧に対して大きくしたり、及び/又は電気信号を超音波に変換して送信するときの音圧を電圧に対して大きくしたりすることができる。そして、斜面19aの下縁側に相対的に傾斜角が小さい第1領域19aaを設けることによって、例えば、上記の効果を維持しつつ、圧電体19の外周部と、当該圧電体19の外周部の直下にある層(下部電極17又は振動層16)との密着面積を増加させることができる。その結果、例えば、撓み振動に伴って生じる両者の間の応力を分散させることができる。ひいては、デバイス1のロバスト性を向上させることができる。 The fact that the piezoelectric body 19 has a slope 19a means that the piezoelectric body 19 has a thin portion on the outer peripheral side from another viewpoint. Therefore, for example, the piezoelectric body 19 is likely to be bent and deformed on the outer peripheral side portion thereof, and thus is likely to cause out-of-plane vibration on the cavity 5c. As a result, the voltage when the received ultrasonic wave is converted into an electric signal is increased with respect to the sound pressure of the ultrasonic wave, and / or the sound pressure when the electric signal is converted into an ultrasonic wave and transmitted is converted into a voltage. On the other hand, it can be made larger. Then, by providing the first region 19aa having a relatively small inclination angle on the lower edge side of the slope 19a, for example, the outer peripheral portion of the piezoelectric body 19 and the outer peripheral portion of the piezoelectric body 19 are maintained while maintaining the above effects. The contact area with the layer immediately below (lower electrode 17 or vibrating layer 16) can be increased. As a result, for example, the stress generated by the flexural vibration can be dispersed. As a result, the robustness of the device 1 can be improved.
 本実施形態において、第1領域19aaの、支持基板5の上面5aに対する傾斜角θ1は、10°以下とされてよい。 In the present embodiment, the inclination angle θ1 of the first region 19aa with respect to the upper surface 5a of the support substrate 5 may be 10 ° or less.
 この場合、例えば、傾斜角θ1が十分に小さいことから、上記の効果が向上する。また、テーパ状の圧電体を開示している文献において、このような比較的小さな傾斜角は開示されていない。従って、従来技術における斜面と第1領域19aaとで期待されている具体的な作用が異なることが明確である。 In this case, for example, since the inclination angle θ1 is sufficiently small, the above effect is improved. Further, in the literature disclosing the tapered piezoelectric body, such a relatively small inclination angle is not disclosed. Therefore, it is clear that the specific action expected of the slope and the first region 19aa in the prior art is different.
 本実施形態では、デバイス1は、支持基板5の上面5aの平面透視又は断面視における圧電体19の外側から、第1領域19aa上及び第2領域19ab上を順に延びる層状の配線(上部配線25)を更に有している。 In the present embodiment, the device 1 is a layered wiring (upper wiring 25) extending in order from the outside of the piezoelectric body 19 in a plan view or a cross-sectional view of the upper surface 5a of the support substrate 5 on the first region 19aa and the second region 19ab. ) Is further possessed.
 この場合、例えば、第1領域19aaが設けられていない態様に比較して、斜面19aの下縁付近において上部配線25が曲がる角度が低減される。その結果、例えば、上部配線25に応力集中が生じ難くなる。ひいては、デバイス1のロバスト性が向上する。 In this case, for example, the angle at which the upper wiring 25 bends near the lower edge of the slope 19a is reduced as compared with the embodiment in which the first region 19aa is not provided. As a result, for example, stress concentration is less likely to occur in the upper wiring 25. As a result, the robustness of the device 1 is improved.
 本実施形態では、デバイス1は、支持基板5の上面5aの平面透視又は断面視における圧電体19の外側から、第1領域19aa上を経由して第2領域19abの中途まで広がって、圧電体19と上部配線25との間に介在している絶縁膜27を更に有している。 In the present embodiment, the device 1 extends from the outside of the piezoelectric body 19 in the plan view or the cross-sectional view of the upper surface 5a of the support substrate 5 to the middle of the second region 19ab via the first region 19aa, and is a piezoelectric body. It further has an insulating film 27 interposed between the 19 and the upper wiring 25.
 この場合、例えば、既述のように、下部電極17と上部配線25との絶縁性を向上させることができる。さらに、絶縁膜27は、第2領域19abの中途まで広がっている(中途で終端している)から、例えば、絶縁膜27が斜面19aの全体に広がっている態様(当該態様も本開示に係る技術に含まれてよい)に比較して、圧電体19の側面に斜面19aが設けられていることによる上述の効果が絶縁膜27によって低減される蓋然性が低い。 In this case, for example, as described above, the insulation between the lower electrode 17 and the upper wiring 25 can be improved. Further, since the insulating film 27 extends to the middle of the second region 19ab (terminates in the middle), for example, the insulating film 27 extends over the entire slope 19a (this aspect also relates to the present disclosure). Compared with (which may be included in the technique), it is less likely that the above-mentioned effect due to the provision of the slope 19a on the side surface of the piezoelectric body 19 is reduced by the insulating film 27.
 本実施形態では、第2領域19abは、キャビティ5cの縁部の直上に位置している。 In the present embodiment, the second region 19ab is located directly above the edge of the cavity 5c.
 メンブレン11は、理論上の固定端となるキャビティ5cの縁部及びその付近において曲げ変形が規制されやすい。このような位置において斜面19aが設けられ、圧電体19の曲げ剛性が低くされることによって、例えば、斜面19aによってメンブレン11の撓み量を向上させるという上記の効果が向上する。さらに、第1領域19aaがキャビティ5cの縁部の直上に位置する態様(当該態様も本開示に係る技術に含まれてよい。)に比較して、例えば、キャビティ5c上において圧電体19の体積を確保することが容易である。ひいては、例えば、受信した超音波を電気信号に変換する電圧を大きしたり、電気信号を超音波に変換して送信するときの音圧を大きくしたりする観点において、圧電体19の体積確保と、キャビティ5cの縁部の直上における圧電体19の厚さ低減とのバランスを取りやすい。 Bending deformation of the membrane 11 is easily regulated at the edge of the cavity 5c, which is a theoretical fixed end, and its vicinity. By providing the slope 19a at such a position and lowering the bending rigidity of the piezoelectric body 19, for example, the above-mentioned effect of improving the amount of bending of the membrane 11 by the slope 19a is improved. Further, as compared with an embodiment in which the first region 19aa is located directly above the edge of the cavity 5c (the embodiment may also be included in the technique according to the present disclosure), for example, the volume of the piezoelectric body 19 on the cavity 5c. Is easy to secure. As a result, for example, from the viewpoint of increasing the voltage for converting the received ultrasonic wave into an electric signal and increasing the sound pressure when converting the electric signal into an ultrasonic wave and transmitting it, the volume of the piezoelectric body 19 is secured. , It is easy to balance with the reduction in the thickness of the piezoelectric body 19 just above the edge of the cavity 5c.
 本実施形態では、素子3は、圧電体19に対して支持基板5の上面5a側に重なる下部電極17と、圧電体19に対して上面5aとは反対側に重なる上部電極21と、を更に有している。上部電極21の側面は、上面5a側ほど上部電極21が拡径する向きで傾斜するテーパ面(上部テーパ面21a)を有してよい。同様に、下部電極17の側面は、上面5a側ほど下部電極17が拡径する向きで傾斜するテーパ面(下部テーパ面17a)を有してよい。このとき、上部テーパ面21aの上面5aに対する傾斜角θ5が下部テーパ面17aの上面5aに対する傾斜角θ6よりも小さくされてよい。 In the present embodiment, the element 3 further includes a lower electrode 17 that overlaps the piezoelectric body 19 on the upper surface 5a side of the support substrate 5, and an upper electrode 21 that overlaps the piezoelectric body 19 on the opposite side of the upper surface 5a. Have. The side surface of the upper electrode 21 may have a tapered surface (upper tapered surface 21a) that is inclined in a direction in which the upper electrode 21 expands in diameter toward the upper surface 5a side. Similarly, the side surface of the lower electrode 17 may have a tapered surface (lower tapered surface 17a) that is inclined toward the upper surface 5a side in a direction in which the lower electrode 17 expands in diameter. At this time, the inclination angle θ5 of the upper tapered surface 21a with respect to the upper surface 5a may be smaller than the inclination angle θ6 of the lower tapered surface 17a with respect to the upper surface 5a.
 この場合、例えば、各電極の側面が上面5aに対して垂直な態様(当該態様も本開示に係る技術に含まれてよい。)に比較して、各電極に重ねられる層(例えば上部配線25)のカバレッジが向上する。ここで、例えば、圧電体19の下面の外縁付近においては、傾斜角が相対的に小さい第1領域19aaが設けられていることによって、圧電体19の上面の外縁付近に比較して、上部配線25の曲がりが緩和されている。そこで、上部の傾斜角θ5を下部の傾斜角θ6よりも小さくすることによって、例えば、圧電体19の上面の外縁付近及び下面の外縁付近の双方でカバレッジが向上することが期待される。 In this case, for example, a layer (for example, upper wiring 25) superimposed on each electrode is compared with a mode in which the side surface of each electrode is perpendicular to the upper surface 5a (the mode may also be included in the technique according to the present disclosure). ) Improves coverage. Here, for example, in the vicinity of the outer edge of the lower surface of the piezoelectric body 19, the first region 19aa having a relatively small inclination angle is provided, so that the upper wiring is higher than that in the vicinity of the outer edge of the upper surface of the piezoelectric body 19. Twenty-five bends have been eased. Therefore, by making the inclination angle θ5 of the upper portion smaller than the inclination angle θ6 of the lower portion, it is expected that the coverage is improved in both the vicinity of the outer edge of the upper surface and the vicinity of the outer edge of the lower surface of the piezoelectric body 19, for example.
 本実施形態では、上部テーパ面21aは、支持基板5の上面5aの平面透視において少なくとも一部がキャビティ5cに重なっている。下部テーパ面17aは、上面5aの平面透視において少なくとも一部がキャビティ5cの外側に位置している。 In the present embodiment, at least a part of the upper tapered surface 21a overlaps the cavity 5c in the plan perspective of the upper surface 5a of the support substrate 5. At least a part of the lower tapered surface 17a is located outside the cavity 5c in the plan view of the upper surface 5a.
 この場合、例えば、上部テーパ面21aは、下部テーパ面17aに比較して、圧電体19のキャビティ5c上における面外振動によって応力集中が生じやすい。別の観点では、これらを覆う層(例えば上部配線25)は、キャビティ5c上の部分がキャビティ5cの外側の部分よりも応力集中が生じやすい。従って、応力集中が生じやすい側の傾斜角を相対的に小さくすることによって、全体として応力集中を緩和しやすい。 In this case, for example, the upper tapered surface 21a is more likely to cause stress concentration due to the out-of-plane vibration on the cavity 5c of the piezoelectric body 19 as compared with the lower tapered surface 17a. From another point of view, in the layer covering them (for example, the upper wiring 25), the portion on the cavity 5c is more likely to cause stress concentration than the outer portion of the cavity 5c. Therefore, by making the inclination angle on the side where stress concentration is likely to occur relatively small, it is easy to relax the stress concentration as a whole.
<第2実施形態>
 図10は、第2実施形態に係る超音波デバイス401の一部の構成を示す平面透視図である。
<Second Embodiment>
FIG. 10 is a plan perspective view showing a partial configuration of the ultrasonic device 401 according to the second embodiment.
 デバイス401は、別の観点では、第1実施形態のデバイス1の応用例であり、既述のデバイス1の構成を全て含んでいる。従って、図10の一部又は全部は、デバイス1の平面透視図と捉えられてもよい。図10では、デバイス401(1)の構成のうち、下部電極17、上部電極21、下部配線23及び上部配線25を示している。図10では、素子3の径の相違は図示が省略されている。 From another point of view, the device 401 is an application example of the device 1 of the first embodiment, and includes all the configurations of the device 1 described above. Therefore, part or all of FIG. 10 may be regarded as a perspective perspective view of the device 1. FIG. 10 shows the lower electrode 17, the upper electrode 21, the lower wiring 23, and the upper wiring 25 in the configuration of the device 401 (1). In FIG. 10, the difference in diameter of the element 3 is not shown.
 また、図10では、複数の素子3に電気信号(送信信号、駆動信号)を出力する送信部41、及び複数の素子3から電気信号(受信信号)が入力される受信部43も模式的に示されている。デバイス401は、送信部41及び受信部43を含まずに定義されてもよいし、これらを含んで定義されてもよい。 Further, in FIG. 10, a transmission unit 41 that outputs an electric signal (transmission signal, drive signal) to the plurality of elements 3 and a reception unit 43 that receives an electric signal (reception signal) from the plurality of elements 3 are also schematically shown. It is shown. The device 401 may be defined without including the transmitting unit 41 and the receiving unit 43, or may be defined including these.
 既に触れているように、超音波デバイスは、超音波の送信及び受信のうちいずれか一方のみを行うものであってもよいし、双方を行うものであってもよい。そして、デバイス401は、後者である。また、このような送信及び受信を行う超音波デバイスは、超音波の送信と受信とを同一の素子3によって行ってもよいし、互いに異なる複数の素子3によって行ってもよい。そして、デバイス401は、後者である。換言すれば、デバイス401は、送信用の素子3(以下、素子3Tということがある。)と、受信用の素子3(以下、「素子3R」ということがある。)と、を有している。 As already mentioned, the ultrasonic device may be one that performs only one of transmission and reception of ultrasonic waves, or may be one that performs both. And the device 401 is the latter. Further, in the ultrasonic device that performs such transmission and reception, the transmission and reception of ultrasonic waves may be performed by the same element 3, or may be performed by a plurality of elements 3 that are different from each other. And the device 401 is the latter. In other words, the device 401 has a transmission element 3 (hereinafter, may be referred to as an element 3T) and a reception element 3 (hereinafter, may be referred to as “element 3R”). There is.
 送信用の素子3T及び受信用の素子3Rの数及びその位置関係は適宜に設定されてよい。図示の例では、デバイス401は、複数の素子3Tを有し、かつ当該複数の素子3Tの一部(ただし2つ以上)又は全部は一纏りに配置されて送信用の素子部31Tを構成している。同様に、デバイス401は、複数の素子3Rを有し、かつ複数の素子3Rの一部(ただし2つ以上)又は全部は一纏りに配置されて受信用の素子部31Rを構成している。第1実施形態における図3は、素子部31T全体又は素子部31R全体のキャビティ5cを示した図と捉えられてよい(ただし、素子3の具体的な数は、図3と図10とで異なっている。)。 The number of transmission element 3T and reception element 3R and their positional relationship may be appropriately set. In the illustrated example, the device 401 has a plurality of elements 3T, and a part (but two or more) or all of the plurality of elements 3T are arranged together to form an element unit 31T for transmission. doing. Similarly, the device 401 has a plurality of elements 3Rs, and a part (but two or more) or all of the plurality of elements 3Rs are arranged together to form a receiving element unit 31R. .. FIG. 3 in the first embodiment may be regarded as a diagram showing the cavity 5c of the entire element portion 31T or the entire element portion 31R (however, the specific number of the elements 3 differs between FIGS. 3 and 10). ing.).
 送信用の素子部31Tにおいて、複数の素子3Tの数及び配列態様は適宜に設定されてよい。図示の例では、第1実施形態の説明で言及したように、複数の素子3Tは、一定のピッチで縦横に配列されている。また、図示の例では、3×3の素子3Tが図示されている。これは一例に過ぎず、素子3の数は、これよりも少なくてもよいし、多くてもよいし、縦と横とで数が異なっていてもよい。受信用の素子部31Rにおける複数の素子3Rの数及び配列態様についても上記と同様である。素子3の数及び配列態様は、素子部31Tと素子部31Rとで互いに同一であってもよいし(図示の例)、互いに異なっていてもよい。 In the element unit 31T for transmission, the number and arrangement mode of the plurality of elements 3T may be appropriately set. In the illustrated example, as mentioned in the description of the first embodiment, the plurality of elements 3T are arranged vertically and horizontally at a constant pitch. Further, in the illustrated example, a 3 × 3 element 3T is shown. This is only an example, and the number of elements 3 may be smaller than this, may be larger, or may be different in length and width. The same applies to the number and arrangement mode of the plurality of elements 3R in the element unit 31R for reception. The number and arrangement of the elements 3 may be the same for the element unit 31T and the element unit 31R (illustrated example), or may be different from each other.
 送信用の素子部31Tと受信用の素子部31Rとの具体的な位置関係は適宜に設定されてよい。図示の例では、素子3Tと素子3RとがD1方向(すなわち、素子部31Tと素子部31Rとの並び方向)に直列に並んでいる。また、D1方向において互いに隣り合っている素子3Tと素子3Rとの距離は、素子3Tのピッチ及び素子3Rのピッチと同じである。すなわち、複数の素子3T及び複数の素子3Rは、その全体が一様に配列されている。ただし、図示の例とは異なり、例えば、互いに隣り合っている素子3Tと素子3Rとの距離が素子3Tのピッチ及び/又は素子3Rのピッチとは異なっていてもよいし、素子3Tの列と素子3Rの列とが直列にならずに、両列のD2方向における位置が互いにずれていてもよい。 The specific positional relationship between the element unit 31T for transmission and the element unit 31R for reception may be appropriately set. In the illustrated example, the element 3T and the element 3R are arranged in series in the D1 direction (that is, the arrangement direction of the element portion 31T and the element portion 31R). Further, the distance between the element 3T and the element 3R that are adjacent to each other in the D1 direction is the same as the pitch of the element 3T and the pitch of the element 3R. That is, the plurality of elements 3T and the plurality of elements 3R are uniformly arranged as a whole. However, unlike the illustrated example, for example, the distance between the elements 3T and the element 3R adjacent to each other may be different from the pitch of the element 3T and / or the pitch of the element 3R, or the row of the elements 3T. The rows of the elements 3R may not be in series, and the positions of both rows in the D2 direction may be offset from each other.
 送信用の素子部31Tにおいて、既述のように、複数の下部電極17同士は互いに接続されていてもよいし、互いに接続されていなくてもよい。ここでは、前者が例示されている。具体的には、図示の例では、D2方向に互いに隣り合う下部電極17同士は、D2方向に延びる下部配線23によって互いに直列に接続されている。これらの複数の直列のラインは、送信用の素子部31Tが配置されている領域の外側にてD1方向に延びる下部合流配線24によって互いに並列に接続されている。下部配線23及び下部合流配線24は、例えば、振動層16上に位置する導体層によって構成されている。受信用の素子部31Rにおける複数の下部電極17同士の接続についても上記と同様である。 In the element unit 31T for transmission, as described above, the plurality of lower electrodes 17 may or may not be connected to each other. Here, the former is illustrated. Specifically, in the illustrated example, the lower electrodes 17 adjacent to each other in the D2 direction are connected in series with each other by the lower wiring 23 extending in the D2 direction. These plurality of series lines are connected in parallel to each other by a lower merging wiring 24 extending in the D1 direction outside the region where the element portion 31T for transmission is arranged. The lower wiring 23 and the lower merging wiring 24 are composed of, for example, a conductor layer located on the vibrating layer 16. The same applies to the connection between the plurality of lower electrodes 17 in the receiving element unit 31R.
 送信用の素子部31Tにおいて、既述のように、複数の上部電極21同士は互いに接続されていてもよいし、互いに接続されていなくてもよい。ここでは、前者が例示されている。具体的には、図示の例では、D1方向に互いに隣り合う上部電極21同士は、D1方向に延びる上部配線25によって互いに直列に接続されている。これらの複数の直列のラインは、送信用の素子部31Tが配置されている領域の外側にてD2方向に延びる上部合流配線26によって互いに並列に接続されている。受信用の素子部31Rにおける複数の上部電極21同士の接続についても上記と同様である。 In the element unit 31T for transmission, as described above, the plurality of upper electrodes 21 may or may not be connected to each other. Here, the former is illustrated. Specifically, in the illustrated example, the upper electrodes 21 adjacent to each other in the D1 direction are connected in series with each other by the upper wiring 25 extending in the D1 direction. These plurality of series lines are connected in parallel to each other by an upper merging wiring 26 extending in the D2 direction outside the region where the element portion 31T for transmission is arranged. The same applies to the connection between the plurality of upper electrodes 21 in the receiving element unit 31R.
 送信部41は、便宜的に電源を示す記号により示されているように、例えば、商業電源等からの電力を適宜な態様の電力に変換して出力する電源回路を含んで構成されている。例えば、電源回路は、適宜な波形で電圧が変化する駆動信号を生成して出力する。送信部41は、送信用の素子部31Tに接続されている下部合流配線24及び上部合流配線26に接続されている。そして、送信部41は、これらの配線を介して、発生させたい超音波の波形に対応する波形の電気信号を送信用の素子3Tの下部電極17及び上部電極21に印加する。 The transmission unit 41 is configured to include, for example, a power supply circuit that converts power from a commercial power supply or the like into power of an appropriate mode and outputs it, as indicated by a symbol indicating a power supply for convenience. For example, the power supply circuit generates and outputs a drive signal whose voltage changes with an appropriate waveform. The transmission unit 41 is connected to the lower merging wiring 24 and the upper merging wiring 26 connected to the element unit 31T for transmission. Then, the transmission unit 41 applies an electric signal having a waveform corresponding to the waveform of the ultrasonic wave to be generated to the lower electrode 17 and the upper electrode 21 of the element 3T for transmission via these wirings.
 受信部43は、便宜的に増幅器を示す記号により示されているように、例えば、入力された電気信号を増幅して出力するアンプを含んで構成されている。アンプは、例えば、電圧アンプであってもよいし、チャージアンプであってもよい。受信部43は、受信用の素子部31Rに接続されている下部合流配線24及び上部合流配線26に接続されている。超音波が受信用の素子3Tに入力されると、素子3Tは振動して電気信号を生成する。この信号は、下部合流配線24及び上部合流配線26を介して受信部43に入力される。 The receiving unit 43 is configured to include, for example, an amplifier that amplifies and outputs an input electric signal, as indicated by a symbol indicating an amplifier for convenience. The amplifier may be, for example, a voltage amplifier or a charge amplifier. The receiving unit 43 is connected to the lower merging wiring 24 and the upper merging wiring 26 connected to the element unit 31R for receiving. When ultrasonic waves are input to the receiving element 3T, the element 3T vibrates to generate an electric signal. This signal is input to the receiving unit 43 via the lower merging wiring 24 and the upper merging wiring 26.
 以上のとおり、デバイス401は、第1実施形態に係るデバイス1を含む構成である。デバイス401は、複数の素子3それぞれの下部電極17と上部電極21との間に電圧を印加して複数の素子3を駆動するドライバ(送信部41)を更に有している。複数の素子3は、第1素子(例えば素子群4-0の素子3)と、第1素子よりもキャビティ5cの径DAが大きい第2素子(例えば素子群4-2の素子3)とを含んでいる。第1実施形態で説明したように、送信部41によって複数の素子3を駆動したときに第2素子の振幅が第1素子の振幅よりも大きくされてよい。 As described above, the device 401 is configured to include the device 1 according to the first embodiment. The device 401 further has a driver (transmission unit 41) that drives the plurality of elements 3 by applying a voltage between the lower electrode 17 and the upper electrode 21 of each of the plurality of elements 3. The plurality of elements 3 include a first element (for example, element 3 of element group 4-0) and a second element (for example, element 3 of element group 4-2) having a larger diameter DA of the cavity 5c than the first element. Includes. As described in the first embodiment, when a plurality of elements 3 are driven by the transmission unit 41, the amplitude of the second element may be larger than the amplitude of the first element.
 この場合、例えば、相対的に径DAが小さい素子群4-0に対して、相対的に径DAが大きい素子群4-2等を混ぜたことによる効果を奏しやすい。すなわち、第1実施形態で述べた効果が向上する。 In this case, for example, it is easy to achieve the effect of mixing the element group 4-0 having a relatively small diameter DA with the element group 4-2 having a relatively large diameter DA. That is, the effect described in the first embodiment is improved.
<応用例>
 図11は、超音波デバイスの応用例としての超音波診断装置101の構成を模式的に示すブロック図である。ここでは、デバイス401の符号を用いるが、本開示に係る他の構成の超音波デバイスが超音波診断装置101に用いられてもよい。
<Application example>
FIG. 11 is a block diagram schematically showing the configuration of the ultrasonic diagnostic apparatus 101 as an application example of the ultrasonic device. Although the reference numeral of the device 401 is used here, an ultrasonic device having another configuration according to the present disclosure may be used for the ultrasonic diagnostic apparatus 101.
 超音波診断装置101は、例えば、IVUS用のものとされている。超音波診断装置101は、例えば、患者の血管内に挿入されるカテーテル103と、カテーテル103に接続されている装置本体107とを備えている。 The ultrasonic diagnostic apparatus 101 is, for example, for IVUS. The ultrasonic diagnostic apparatus 101 includes, for example, a catheter 103 inserted into a patient's blood vessel and an apparatus main body 107 connected to the catheter 103.
 カテーテル103は、例えば、概略チューブ状のカテーテル本体103aと、カテーテル本体103a内に収容されているデバイス401とを有している。デバイス401は、例えば、カテーテル本体103aを介してカテーテル本体103aの径方向外側へ超音波を送信し、その反射波を受信する。 The catheter 103 has, for example, a substantially tubular catheter body 103a and a device 401 housed in the catheter body 103a. The device 401 transmits ultrasonic waves to the outside of the catheter body 103a in the radial direction via the catheter body 103a, and receives the reflected waves thereof.
 装置本体107は、例えば、カテーテル本体103a内の不図示の配線を介してデバイス401と接続されている送受信部109を有している。送受信部109は、例えば、図10に示した送信部41及び受信部43の少なくとも一部を含んでいてもよいし、送信部41に送信信号を出力するとともに受信部43から受信信号が入力されるものであってもよい。カテーテル103における電気的構成と送受信部109との間の役割分担は適宜に設定されてよい。 The device main body 107 has, for example, a transmission / reception unit 109 connected to the device 401 via a wiring (not shown) in the catheter main body 103a. The transmission / reception unit 109 may include, for example, at least a part of the transmission unit 41 and the reception unit 43 shown in FIG. 10, outputs a transmission signal to the transmission unit 41, and receives a reception signal from the reception unit 43. It may be one. The division of roles between the electrical configuration of the catheter 103 and the transmission / reception unit 109 may be appropriately set.
 装置本体107は、例えば、ユーザ(例えば医師又は技師)の操作を受け付ける入力部111と、入力部111からの信号に基づいて送受信部109を制御する制御部113と、を有している。また、装置本体107は、送受信部109からの信号及び制御部113からの信号に基づいて画像処理を行う画像処理部115と、画像処理部115からの信号に基づいて画像を表示する表示部117(表示装置)とを備えている。表示部117には、例えば、超音波の送受信によって得られた患者の断層画像(ここでは血管の断面画像)が表示される。 The apparatus main body 107 includes, for example, an input unit 111 that receives an operation of a user (for example, a doctor or a technician) and a control unit 113 that controls a transmission / reception unit 109 based on a signal from the input unit 111. Further, the apparatus main body 107 includes an image processing unit 115 that performs image processing based on a signal from the transmission / reception unit 109 and a signal from the control unit 113, and a display unit 117 that displays an image based on the signal from the image processing unit 115. (Display device) is provided. On the display unit 117, for example, a tomographic image of a patient (here, a cross-sectional image of a blood vessel) obtained by transmitting and receiving ultrasonic waves is displayed.
 特に図示しないが、カテーテル103は、カテーテル本体103aを屈曲運動させたり、カテーテル本体103a内のデバイス401の向きを変えたりする機構を有していてもよい。また、装置本体107は、そのような機構に対応した制御部を有していてよい。 Although not particularly shown, the catheter 103 may have a mechanism for flexing the catheter body 103a or changing the orientation of the device 401 in the catheter body 103a. Further, the apparatus main body 107 may have a control unit corresponding to such a mechanism.
 以上の実施形態において、デバイス1の上面1aは第1面の一例である。送信部41はドライバの一例である。表示部117は表示装置の一例である。素子群4-0の素子3は第1素子の一例である。素子群4-0以外の素子群4の素子3は第2素子の一例である。支持基板5はキャビティ層の一例である。支持基板5の上面5aは第2面の一例である。上部テーパ面21aは、上部電極のテーパ面の一例である。下部テーパ面17aは、下部電極のテーパ面の一例である。 In the above embodiment, the upper surface 1a of the device 1 is an example of the first surface. The transmission unit 41 is an example of a driver. The display unit 117 is an example of a display device. The element 3 of the element group 4-0 is an example of the first element. The element 3 of the element group 4 other than the element group 4-0 is an example of the second element. The support substrate 5 is an example of a cavity layer. The upper surface 5a of the support substrate 5 is an example of the second surface. The upper tapered surface 21a is an example of the tapered surface of the upper electrode. The lower tapered surface 17a is an example of the tapered surface of the lower electrode.
 本開示に係る技術は、以上の実施形態に限定されず、種々の態様で実施されてよい。 The technique according to the present disclosure is not limited to the above embodiments, and may be implemented in various embodiments.
 例えば、超音波デバイスは、医療用機器に利用されるものに限定されない。例えば、超音波デバイスは、対象物との距離を測定するためのセンサに利用されてよく、このようなセンサは、撮像装置及び自動車に利用されてよい。 For example, ultrasonic devices are not limited to those used in medical devices. For example, an ultrasonic device may be used as a sensor for measuring a distance to an object, and such a sensor may be used in an imaging device and an automobile.
 超音波デバイスは、第1面(上面1a)側に超音波を送信するものではなく、その反対側に超音波を送出するものであってもよい。実施形態の説明でも触れたように、素子本体は、振動層16上に、複数のキャビティ5cに亘って実質的に隙間無く広がる下部電極層(共通電極)と、複数のキャビティ5cに亘って実質的に隙間無く広がる圧電体層と、複数のキャビティ5cに個別に設けられた複数の上部電極21(個別電極)とを有するものであってもよい。 The ultrasonic device may not transmit ultrasonic waves to the first surface (upper surface 1a) side, but may transmit ultrasonic waves to the opposite side. As mentioned in the description of the embodiment, the element body has a lower electrode layer (common electrode) that extends substantially without gaps over the plurality of cavities 5c on the vibrating layer 16, and substantially extends over the plurality of cavities 5c. It may have a piezoelectric layer that spreads without gaps, and a plurality of upper electrodes 21 (individual electrodes) individually provided in the plurality of cavities 5c.
 超音波素子がユニモルフ型のpMUTに限定されず、バイモルフ型のpMUTであってよいことは既に述べたとおりである。また、実施形態では、振動層は、圧電体層に対してキャビティ側に位置したが、圧電体層に対してキャビティとは逆側に位置してもよい。キャビティは、支持基板に形成された凹部ではなく、支持基板に形成された貫通孔によって構成されてもよい。支持基板の下面に凹部が形成されて、支持部材の上面側の一部が振動層として利用されてもよい。 As already mentioned, the ultrasonic element is not limited to the unimorph type pMUT and may be a bimorph type pMUT. Further, in the embodiment, the vibrating layer is located on the cavity side with respect to the piezoelectric layer, but may be located on the opposite side of the cavity with respect to the piezoelectric layer. The cavity may be formed by a through hole formed in the support substrate instead of the recess formed in the support substrate. A recess may be formed on the lower surface of the support substrate, and a part of the upper surface side of the support member may be used as a vibration layer.
 本開示に係る技術からは、圧電体等を要件としない種々の概念を抽出可能である。例えば、以下の概念が抽出されてよい。 From the technology according to the present disclosure, it is possible to extract various concepts that do not require piezoelectric materials or the like. For example, the following concepts may be extracted.
(概念1)
 第1面と、前記第1面に沿って配置されている複数の素子とを有しており、
 前記複数の素子のそれぞれがキャビティを有し、
 前記複数の素子は、複数の素子群を有しており、各素子群は、前記キャビティの径が互いに同等である2以上の素子からなり、
 各素子群における前記キャビティの面積の合計が最も大きい素子群は、前記キャビティの径が最も小さい素子群である
 超音波デバイス。
(Concept 1)
It has a first surface and a plurality of elements arranged along the first surface.
Each of the plurality of elements has a cavity,
The plurality of elements have a plurality of element groups, and each element group is composed of two or more elements having the same cavity diameters.
The element group having the largest total area of the cavities in each element group is an ultrasonic device having the smallest diameter of the cavities.
 上記の超音波デバイスにおいては、圧電体は必須の要件ではない。例えば、超音波デバイスは、圧電体を有さないcMUTであってもよい。また、超音波デバイスが圧電体を有する場合において、下部電極、圧電体及び上部電極がキャビティに対して第1面側に位置していなくてもよい。例えば、下部電極と圧電体との間にキャビティが位置していてもよい。 Piezoelectric is not an essential requirement for the above ultrasonic devices. For example, the ultrasonic device may be a cMUT that does not have a piezoelectric body. Further, when the ultrasonic device has a piezoelectric body, the lower electrode, the piezoelectric body, and the upper electrode do not have to be located on the first surface side with respect to the cavity. For example, the cavity may be located between the lower electrode and the piezoelectric body.
 また、本開示に係る技術からは、複数の素子が設けられていること等を前提としない以下の概念が抽出されてよい。 Further, from the technology according to the present disclosure, the following concepts that do not assume that a plurality of elements are provided may be extracted.
(概念2)
 所定面(第2面)と該所定面に開口しているキャビティとを有しているキャビティ層と、
 前記所定面に重なっており、前記キャビティ上における面外振動の共振周波数が超音波の周波数帯内にある素子本体と、
 を有しており、
 前記素子本体は圧電体を有しており、
 前記圧電体の側面は、前記所定面側ほど前記圧電体が拡径する向きで傾斜する斜面を有しており、
 前記斜面は、
  第1領域と、
  前記第1領域に対して前記所定面とは反対側に位置しており、前記所定面に対する傾斜角が、前記第1領域の所定面に対する傾斜角よりも大きい第2領域と、を有している
 超音波デバイス。
(Concept 2)
A cavity layer having a predetermined surface (second surface) and a cavity open to the predetermined surface,
An element body that overlaps the predetermined surface and whose resonance frequency of out-of-plane vibration on the cavity is within the frequency band of ultrasonic waves.
Have and
The element body has a piezoelectric body and has a piezoelectric body.
The side surface of the piezoelectric body has a slope that is inclined toward the predetermined surface side in a direction in which the piezoelectric body expands in diameter.
The slope is
The first area and
It has a second region which is located on the opposite side of the predetermined surface with respect to the first region and whose inclination angle with respect to the predetermined surface is larger than the inclination angle with respect to the predetermined surface of the first region. There is an ultrasonic device.
 上記の超音波デバイスにおいては、複数の素子が設けられる場合、素子同士の大きさ(キャビティ同士の径)は、互いに同一とされて構わない。 In the above ultrasonic device, when a plurality of elements are provided, the sizes of the elements (diameters of the cavities) may be the same as each other.
 1…超音波デバイス、1a…上面(第1面)、3…超音波素子、4(4-0、4-1、4-2及び4-3)…素子群、5…支持基板(キャビティ層)、5c…キャビティ、7…機能層、11…メンブレン、13…被覆層、17…下部電極、19…圧電体、21…上部電極、41…送信部(ドライバ)、101…超音波診断装置、117…表示部(表示装置)。 1 ... Ultrasonic device, 1a ... Top surface (first surface), 3 ... Ultrasonic element, 4 (4-0, 4-1, 4-2 and 4-3) ... Element group, 5 ... Support substrate (cavity layer) ), 5c ... Cavity, 7 ... Functional layer, 11 ... Membrane, 13 ... Coating layer, 17 ... Lower electrode, 19 ... Piezoelectric, 21 ... Upper electrode, 41 ... Transmitter (driver), 101 ... Ultrasonic diagnostic device, 117 ... Display unit (display device).

Claims (15)

  1.  第1面と、前記第1面に沿って配置されている複数の素子とを有しており、
     前記複数の素子のそれぞれが、
      キャビティと、
      前記キャビティに対して前記第1面側に位置している下部電極と、
      前記下部電極に対して前記第1面側に位置している圧電体と、
      前記圧電体に対して前記第1面側に位置している上部電極と、を有しており、
     前記複数の素子は、前記キャビティの径が互いに異なる2種以上の素子を含んでいる
     超音波デバイス。
    It has a first surface and a plurality of elements arranged along the first surface.
    Each of the plurality of elements
    Cavity and
    The lower electrode located on the first surface side with respect to the cavity and
    A piezoelectric material located on the first surface side with respect to the lower electrode,
    It has an upper electrode located on the first surface side with respect to the piezoelectric body, and has.
    The plurality of elements are ultrasonic devices including two or more types of elements having different cavity diameters.
  2.  前記複数の素子は、複数の素子群を有しており、各素子群は、前記キャビティの径が互いに同等である2以上の素子からなり、
     各素子群における前記キャビティの面積の合計が最も大きい素子群は、前記キャビティの径が最も小さい素子群である
     請求項1に記載の超音波デバイス。
    The plurality of elements have a plurality of element groups, and each element group is composed of two or more elements having the same cavity diameters.
    The ultrasonic device according to claim 1, wherein the element group having the largest total area of the cavities in each element group is the element group having the smallest diameter of the cavity.
  3.  前記キャビティの径が最も小さい素子群における前記キャビティの面積の合計が、前記複数の素子全体における前記キャビティの面積の合計の半分以上である
     請求項2に記載の超音波デバイス。
    The ultrasonic device according to claim 2, wherein the total area of the cavities in the element group having the smallest cavity diameter is at least half the total area of the cavities in the entire plurality of elements.
  4.  前記キャビティの径が最も小さい素子群における前記キャビティの面積の合計が、前記複数の素子全体における前記キャビティの面積の合計の10/11以下である
     請求項2又は3に記載の超音波デバイス。
    The ultrasonic device according to claim 2 or 3, wherein the total area of the cavities in the element group having the smallest cavity diameter is 10/11 or less of the total area of the cavities in the entire plurality of elements.
  5.  同一の素子群に属する素子同士における前記キャビティの径の差が4μm未満である
     請求項2~4のいずれか1項に記載の超音波デバイス。
    The ultrasonic device according to any one of claims 2 to 4, wherein the difference in the diameters of the cavities between elements belonging to the same element group is less than 4 μm.
  6.  前記複数の素子それぞれの前記下部電極と前記上部電極との間に電圧を印加して前記複数の素子を駆動するドライバを更に有しており、
     前記複数の素子は、第1素子と、前記第1素子よりも前記キャビティの径が大きい第2素子とを含んでおり、
     前記ドライバによって前記複数の素子を駆動したときに前記第2素子の振幅が前記第1素子の振幅よりも大きい
     請求項1~5のいずれか1項に記載の超音波デバイス。
    It further has a driver for driving the plurality of elements by applying a voltage between the lower electrode and the upper electrode of each of the plurality of elements.
    The plurality of elements include a first element and a second element having a larger cavity diameter than the first element.
    The ultrasonic device according to any one of claims 1 to 5, wherein the amplitude of the second element is larger than the amplitude of the first element when the plurality of elements are driven by the driver.
  7.  前記上部電極の径が、前記キャビティの径の0.5倍以上1.1倍以下である
     請求項1~6のいずれか1項に記載の超音波デバイス。
    The ultrasonic device according to any one of claims 1 to 6, wherein the diameter of the upper electrode is 0.5 times or more and 1.1 times or less the diameter of the cavity.
  8.  前記キャビティ側から前記第1面側に面している第2面と、該第2面に開口している前記キャビティとを有しているキャビティ層と、
     前記第2面に重なっており、前記下部電極、前記圧電体及び前記上部電極を含み、前記キャビティ上における面外振動の共振周波数が超音波の周波数帯内にある素子本体と、
     を有しており、
     前記圧電体の側面は、前記第2面側ほど前記圧電体が拡径する向きで傾斜する斜面を有しており、
     前記斜面は、
      第1領域と、
      前記第1領域に対して前記第1面側に位置しており、前記第2面に対する傾斜角が、前記第1領域の第2面に対する傾斜角よりも大きい第2領域と、を有している
     請求項1~7のいずれか1項に記載の超音波デバイス。
    A cavity layer having a second surface facing the first surface side from the cavity side and the cavity open to the second surface.
    An element body that overlaps the second surface, includes the lower electrode, the piezoelectric body, and the upper electrode, and has a resonance frequency of out-of-plane vibration on the cavity within the ultrasonic frequency band.
    Have and
    The side surface of the piezoelectric body has a slope that is inclined toward the second surface side in a direction in which the piezoelectric body expands in diameter.
    The slope is
    The first area and
    The second region is located on the first surface side with respect to the first region, and the inclination angle with respect to the second surface is larger than the inclination angle with respect to the second surface of the first region. The ultrasonic device according to any one of claims 1 to 7.
  9.  前記第1領域の前記第2面に対する傾斜角が10°以下である
     請求項8に記載の超音波デバイス。
    The ultrasonic device according to claim 8, wherein the inclination angle of the first region with respect to the second surface is 10 ° or less.
  10.  前記圧電体の外側から、前記第1領域上及び前記第2領域上を順に延びる層状の配線を更に有している
     請求項8又は9に記載の超音波デバイス。
    The ultrasonic device according to claim 8 or 9, further comprising a layered wiring extending in order from the outside of the piezoelectric body onto the first region and the second region.
  11.  前記圧電体の外側から、前記第1領域上を経由して前記第2領域の中途まで広がっており、前記圧電体と前記配線との間に介在している絶縁膜を更に有している
     請求項10に記載の超音波デバイス。
    A claim that extends from the outside of the piezoelectric body to the middle of the second region via the first region, and further has an insulating film interposed between the piezoelectric body and the wiring. Item 10. The ultrasonic device according to item 10.
  12.  前記第2領域は、前記キャビティの縁部の直上に位置している
     請求項8~11のいずれか1項に記載の超音波デバイス。
    The ultrasonic device according to any one of claims 8 to 11, wherein the second region is located immediately above the edge of the cavity.
  13.  前記上部電極の側面は、前記第2面側ほど前記上部電極が拡径する向きで傾斜するテーパ面を有しており、
     前記下部電極の側面は、前記第2面側ほど前記下部電極が拡径する向きで傾斜するテーパ面を有しており、
     前記上部電極の前記テーパ面の前記第2面に対する傾斜角が前記下部電極の前記テーパ面の前記第2面に対する傾斜角よりも小さい
     請求項8~12のいずれか1項に記載の超音波デバイス。
    The side surface of the upper electrode has a tapered surface that is inclined toward the second surface side in a direction in which the upper electrode expands in diameter.
    The side surface of the lower electrode has a tapered surface that is inclined toward the second surface side in a direction in which the lower electrode expands in diameter.
    The ultrasonic device according to any one of claims 8 to 12, wherein the inclination angle of the tapered surface of the upper electrode with respect to the second surface is smaller than the inclination angle of the tapered surface of the lower electrode with respect to the second surface. ..
  14.  前記上部電極の前記テーパ面は、少なくとも一部が前記キャビティに重なって位置しており、
     前記下部電極の前記テーパ面は、少なくとも一部が前記キャビティの外側に位置している
     請求項13に記載の超音波デバイス。
    The tapered surface of the upper electrode is located so that at least a part thereof overlaps the cavity.
    The ultrasonic device according to claim 13, wherein at least a part of the tapered surface of the lower electrode is located outside the cavity.
  15.  請求項1~14のいずれか1項に記載の超音波デバイスと、
     前記超音波デバイスからの電気信号に基づく画像を表示する表示装置と、
     を有している超音波診断装置。
    The ultrasonic device according to any one of claims 1 to 14, and the ultrasonic device.
    A display device that displays an image based on an electric signal from the ultrasonic device, and
    Ultrasonic diagnostic equipment that has.
PCT/JP2020/047419 2019-12-23 2020-12-18 Ultrasound device and ultrasonic diagnostic apparatus WO2021132074A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021567393A JPWO2021132074A1 (en) 2019-12-23 2020-12-18

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-231419 2019-12-23
JP2019231419 2019-12-23
JP2020-011803 2020-01-28
JP2020011803 2020-01-28

Publications (1)

Publication Number Publication Date
WO2021132074A1 true WO2021132074A1 (en) 2021-07-01

Family

ID=76574623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047419 WO2021132074A1 (en) 2019-12-23 2020-12-18 Ultrasound device and ultrasonic diagnostic apparatus

Country Status (2)

Country Link
JP (1) JPWO2021132074A1 (en)
WO (1) WO2021132074A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4173729A1 (en) * 2021-10-26 2023-05-03 STMicroelectronics S.r.l. Micro-electro-mechanical device for transducing high-frequency acoustic waves in a propagation medium and manufacturing process thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993698A (en) * 1995-09-25 1997-04-04 Olympus Optical Co Ltd Ultrasonic wave probe
JP2013243513A (en) * 2012-05-21 2013-12-05 Seiko Epson Corp Ultrasonic transducer, ultrasonic probe, diagnostic device and electronic apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993698A (en) * 1995-09-25 1997-04-04 Olympus Optical Co Ltd Ultrasonic wave probe
JP2013243513A (en) * 2012-05-21 2013-12-05 Seiko Epson Corp Ultrasonic transducer, ultrasonic probe, diagnostic device and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4173729A1 (en) * 2021-10-26 2023-05-03 STMicroelectronics S.r.l. Micro-electro-mechanical device for transducing high-frequency acoustic waves in a propagation medium and manufacturing process thereof

Also Published As

Publication number Publication date
JPWO2021132074A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
EP1854157B1 (en) Piezoelectric micromachined ultrasonic transducer with air-backed cavities
EP3468726B1 (en) Broadband ultrasound transducer
US9579082B2 (en) Ultrasonic probe and ultrasonic image diagnostic device
WO2008044727A1 (en) Ultrasonic transducer and ultrasonic diagnostic apparatus
US11590534B2 (en) Ultrasonic sensor, ultrasonic device, and method of manufacturing ultrasonic sensor
WO2012127737A1 (en) Ultrasonic oscillator and ultrasonic diagnosis device
JP5026770B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP6732099B2 (en) Ultrasonic sensor and ultrasonic sensor device
JP2017143353A (en) Ultrasonic sensor and driving method of piezoelectric element for ultrasonic sensor
WO2021132074A1 (en) Ultrasound device and ultrasonic diagnostic apparatus
JP6458934B2 (en) Ultrasonic sensor
JP2017143394A (en) Ultrasonic sensor and driving method of piezoelectric element
JP6206033B2 (en) Ultrasonic transducer device and ultrasonic measurement apparatus
WO2018128072A1 (en) Ultrasonic transducer and ultrasonic imaging device
US20210291231A1 (en) Electromechanical transducer element, ultrasonic transducer, ultrasonic probe, ultrasonic diagnostic apparatus, and method for manufacturing electromechanical transducer element
JP6586705B2 (en) Ultrasonic transducer and ultrasonic diagnostic apparatus
JP7312274B2 (en) Ultrasound device and ultrasound diagnostic equipment
JP7064433B2 (en) Ultrasonic device
JP6323671B2 (en) Ultrasonic sensor and manufacturing method thereof
JP2019165307A (en) Ultrasonic sensor
JP2016181840A (en) Ultrasonic sensor
JP2021158610A (en) Ultrasonic device and ultrasonic diagnostic equipment
JP2022167662A (en) Ultrasound device and ultrasound diagnostic apparatus
JP2021158611A (en) Ultrasonic device and ultrasonic diagnostic apparatus
WO2022210887A1 (en) Ultrasonic probe head, ultrasonic probe, and ultrasonic diagnostic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567393

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908010

Country of ref document: EP

Kind code of ref document: A1