WO2021131945A1 - In-wheel electric device - Google Patents

In-wheel electric device Download PDF

Info

Publication number
WO2021131945A1
WO2021131945A1 PCT/JP2020/046898 JP2020046898W WO2021131945A1 WO 2021131945 A1 WO2021131945 A1 WO 2021131945A1 JP 2020046898 W JP2020046898 W JP 2020046898W WO 2021131945 A1 WO2021131945 A1 WO 2021131945A1
Authority
WO
WIPO (PCT)
Prior art keywords
built
electric device
wheel
stator
flow path
Prior art date
Application number
PCT/JP2020/046898
Other languages
French (fr)
Japanese (ja)
Inventor
龍一郎 岩野
隆宏 荒木
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN202080082688.6A priority Critical patent/CN114766076A/en
Publication of WO2021131945A1 publication Critical patent/WO2021131945A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to an electric device with a built-in wheel.
  • Patent Document 1 discloses a technique in which an annular oil jacket is provided at both ends of a stator of a motor and an axial refrigerant flow path is provided in a status lot.
  • Patent Document 2 discloses a technique in which a motor and an inverter circuit unit are mounted and integrated inside a tire wheel.
  • Patent Document 1 The problem with the technology of Patent Document 1 is that by integrating the motor and the power converter, the distance between the two devices becomes shorter, and heat can be easily transferred from the motor to the power converter.
  • the electric device with a built-in wheel is an electric device with a built-in wheel having a rotor and a stator connected to the wheel, and the stator is a core material around which a coil is wound and an inverter circuit for supplying power to the coil.
  • the inverter circuit unit includes a unit, a fixing member for fixing a bearing that rotationally supports the rotation shaft of the rotor, and a stator cover for integrating the core material, the inverter circuit unit, and the fixing member.
  • Is arranged on the first coil end side of the core material in the axial direction of the rotating shaft, and the fixing member and the stator cover are connected to an inverter flow path for flowing a refrigerant through the inverter circuit portion and the inverter flow path.
  • a relay flow path connected to the second coil end side of the core material opposite to the first coil end side, and a second coil connected to the relay flow path and guiding the refrigerant along the second coil end. Form an end-side flow path.
  • FIG. 5 is a cross-sectional view taken along the line AA of the stator portion of FIG. It is BB sectional view of the stator part of FIG. It is sectional drawing which shows the electric device with a built-in wheel which concerns on 2nd Embodiment of this invention. It is sectional drawing which shows the electric device with a built-in wheel which concerns on 3rd Embodiment of this invention.
  • FIG. 5 is a cross-sectional view taken along the line AA of the stator portion of FIG. It is sectional drawing which shows the electric device with a built-in wheel which concerns on 4th Embodiment of this invention.
  • FIG. 5 is a cross-sectional view taken along the line AA of the stator portion of FIG. It is sectional drawing which shows the electric device with a built-in wheel which concerns on 4th Embodiment of this invention.
  • FIG. 7 is a cross-sectional view taken along the line AA of the stator portion of FIG. It is a perspective view of the core material which concerns on 5th Embodiment of this invention. It is sectional drawing which shows the electric device with a built-in wheel which concerns on 6th Embodiment of this invention.
  • FIG. 5 is a cross-sectional view taken along the line AA of the stator portion of FIG. It is BB sectional view of the stator part of FIG.
  • FIGS. 1 is a cross-sectional view showing the configuration of the electric device with a built-in wheel according to the first embodiment
  • FIGS. 2 and 3 are a cross-sectional view taken along the line AA and a cross-sectional view taken along the line BB of FIG. 1, respectively.
  • the motor 40 which is an electric device with a built-in wheel according to the first embodiment of the present invention, has an annular shape centered on a rotation shaft R, and is composed of a stator 1 and a rotor 2.
  • the motor 40 of the present embodiment is an outer rotor type motor having a rotor 2 and a stator 1 connected to a wheel, and the rotor 2 is arranged on the outer peripheral side of the stator 1 via an air gap 3. ..
  • the stator 1 includes a stator core 6, a fixing member 7, stator covers 9a and 9b, an inverter circuit unit 10, spacers 14a, 14b and 14c, and a partition wall 23. Details of each part will be described later.
  • the rotor 2 includes a permanent magnet 5 and is rotatably supported by a bearing 4 fixed by a fixing member 7 of the stator 1.
  • a plurality of permanent magnets 5 are arranged in the circumferential direction of the rotor 2.
  • the stator core 6 is a core material and is held by the fixing member 7 by a method such as shrink fitting.
  • a plurality of slots extending in the axial direction are provided at predetermined intervals in the circumferential direction.
  • a winding 8 which is a copper wire is wound around the tooth portion of the stator core 6 formed by the slot, and functions as a coil.
  • the coil end on the side with the inverter circuit unit 10 in the axial direction of the rotating shaft R is referred to as the first coil end 8a, and the opposite side is referred to as the second coil end 8b.
  • the fixing member 7 fixes the bearing 4 and rotatably supports the rotor 2, and is arranged side by side with the stator 1 in the radial direction of the rotation shaft R to form a flow path for the refrigerant flowing in the stator 1.
  • the flow structure of the refrigerant in the stator 1 will be described later.
  • the stator covers 9a and 9b are divided into a first cover 9a arranged on the opening side of the wheel and a second cover 9b arranged on the back side of the wheel. Further, the stator covers 9a and 9b form cavity regions at both ends in the axial direction in the stator 1, respectively, and surround the stator core 6 and the inverter circuit portion 10 arranged in the cavity region together with a part of the fixing member 7. , Is joined to a part of the fixing member 7. With this configuration, the stator core 6, the inverter circuit portion, and the fixing member 7 are integrated.
  • the stator cover 9a has a flow path inlet 13 and a flow path outlet 27 of the refrigerant 16 for liquid-cooling the motor 40, and enables circulation of the refrigerant 16 in the stator 1 described later. Further, the stator cover 9a is extended to the inner diameter side of the stator 1 so that the inverter circuit portion 10 for supplying electric power to the motor 40 is housed inside the stator 1 and the refrigerant 16 described later flows. As a result, the inverter circuit section cooling flow path 24 is formed in which the refrigerant flows through the inverter circuit section 10.
  • the inverter circuit unit 10 is arranged on the first coil end side in the axial direction of the rotating shaft R, and has switching circuit units (power modules) 12a, 12b, 12c composed of semiconductor elements.
  • the inverter circuit unit 10 has an annular substrate 11 on which openings 15a, 15b, 15c are formed, and a switching circuit unit 12a, 12b, 12c.
  • the switching circuit units 12a, 12b, and 12c are arranged adjacent to the openings 15a, 15b, and 15c, respectively.
  • the refrigerant 16 flowing in from the flow path inlet 13 flows to both sides of the substrate 11 via the openings 15a, 15b, 15c as shown by the arrows 16a, 16b, 16c shown in FIGS. 1 and 2.
  • the switching circuit units 12a, 12b, and 12c can be directly liquid-cooled from both sides of the substrate 11.
  • the partition wall 23 divides the space provided with the stator core 6 and the space provided with the inverter circuit portion 10 in the stator 1, and the end portion is joined to the stator cover 9a and the fixing member 7.
  • the inverter circuit section cooling flow path 24 in which the refrigerant 16 directly liquid-cools the switching circuit sections 12a, 12b, and 12c described above is formed, and leakage of the refrigerant to the stator core 6 side is suppressed.
  • the refrigerant 16 flows in from the flow path inlet 13 provided in the stator cover 9a.
  • the inflowing refrigerant 16 spreads in the circumferential direction on the substrate 11 and passes through the radial flow path defined by the spacers 14a, 14b, 14c as shown in FIGS. 1 and 2.
  • the refrigerant 16 flows as shown by arrows 16a, 16b, 16c shown in FIGS. 1 and 2, and after cooling one side of the switching circuit portions 12a, 12b, 12c, the opening 15a provided in the substrate 11 It passes through 15b and 15c.
  • the refrigerant 16 turns to the back surface of the substrate 11 and cools the other surface of the switching circuit portions 12a, 12b, 12c while facing the inner diameter side of the stator 1.
  • the refrigerant 16 flows around the back surface of the substrate 11 in the circumferential direction, and as shown by the arrows 17 shown in FIGS. 1 and 2, from the relay flow path inlet 19 on the first coil end 8a side formed by the fixing member 7. , It flows into the relay flow path 18 connected to the second coil end 8b side on the opposite side.
  • the relay flow path 18 is a groove formed in an annular shape on the outer peripheral portion of the fixing member 7.
  • the refrigerant 16 flows in the relay flow path 18 in the circumferential direction and heads toward the relay flow path outlet 20.
  • the stator cooling flow path 25b is a cooling flow path formed by the fixing member 7 and the stator cover 9b, is connected to the relay flow path 18, and guides the refrigerant 16 along the second coil end 8b.
  • the refrigerant 16 flows in the stator cooling flow path 25b in the circumferential direction as shown by the arrow 26 shown in FIG.
  • the refrigerant 16 is diverted from the stator cooling flow path 25b on the second coil end 8b side of the stator core 6 to the slot by being connected in the axial direction by the slot of the stator core 6, and passes through the slot on the first coil end 8a side. It goes to the stator cooling flow path 25a.
  • the refrigerant 16 passes from the stator cooling flow path 25a through the flow path outlet 27, and ends one cycle of circulation of the stator 1.
  • the coil and the switching circuit section are in direct contact with the refrigerant 16, and the inverter circuit section 10, the motor 40, and their refrigerant flow paths can be compactly housed inside the stator 1. High cooling and miniaturization can be achieved at the same time.
  • the relay flow path 18 shown in the present embodiment can cool the stator core 6 and prevent the heat of the stator 1 from being conducted to the bearing 4, thereby thermally protecting the bearing 4.
  • the rotor 2 is held on the outer peripheral side of the stator 1, and the relay flow path 18 is on the inner peripheral side of the stator core 6. is there.
  • the motor 40 which is an electric device with a built-in wheel, has a rotor 2 and a stator 1 connected to the wheel.
  • the stator 1 includes a stator core 6, which is a core material in which the winding 8 is wound as a coil, an inverter circuit unit 10 that supplies power to the winding 8, and a bearing 4 that rotationally supports the rotating shaft R of the rotor 2.
  • the fixing member 7 for fixing, the core material 6, the inverter circuit portion, and the stator covers 9a and 9b for integrating the fixing member 7 are provided, and the inverter circuit portion includes the core material 6 in the axial direction of the rotating shaft R.
  • the fixing member and the stator covers 9a and 9b are arranged on the first coil end side 8a of the above, and are connected to the inverter flow path 24 through which the refrigerant flows through the inverter circuit portion and the inverter flow path 24 and are opposite to the first coil end 8a side.
  • a relay flow path 18 connected to the second coil end side 8b on the side and a second coil end side flow path 25b connected to the relay flow path 18 and guiding the refrigerant to the first coil end side 8a are formed. Since this is done, it is possible to achieve both improvement in cooling performance and miniaturization of the electric device with a built-in wheel.
  • the inverter circuit section of the electric device with a built-in wheel has a switching circuit section composed of semiconductor elements, and the coil and the switching circuit section are in direct contact with the refrigerant. Since this is done, the motor 40 can be cooled efficiently.
  • the stator covers 9a and 9b of the electric device with a built-in wheel have a first cover 9a arranged on the opening side of the wheel and a second cover 9b arranged on the back side of the wheel.
  • the cover 9a and the second cover 9b are respectively joined to a part of the fixing member 7 and come into contact with the refrigerant. Since this is done, the entire stator 1 can be cooled to every corner.
  • the rotor 2 of the electric device with a built-in wheel is held on the outer peripheral side of the stator 1, and the relay flow path 18 is on the inner peripheral side of the core material 6. Therefore, in the case of the outer type rotor, the core material 6 and the inverter circuit portion can be separated by the refrigerant, and both can be efficiently cooled.
  • FIG. 4 is a cross-sectional view showing the configuration of the electric device with a built-in wheel according to the second embodiment of the present invention.
  • the motor 40A which is an electric device with a built-in wheel according to the second embodiment of the present invention, is composed of a stator 1A and a rotor 2.
  • the stator 1A has a structure in which a vehicle outer flange 29 and a vehicle body side flange 30 are provided on the stator covers 9a and 9b of the first embodiment of the present invention.
  • the stator covers 9a and 9b are divided into an outer peripheral cylindrical portion and a side disk portion, and the vehicle outer flange 29 and the vehicle body side flange 30 are for connecting these two portions.
  • the vehicle body side flange 30 is formed as a first connection portion whose flange surface projects outward from the outer peripheral cylindrical surface of the stator of the stator cover 9a which is the first cover. Further, the vehicle outer flange 29 is formed as a second connecting portion provided on the inner side of the outer peripheral cylindrical surface of the stator cover 9b whose flange surface is the second cover.
  • the first cover 9a of the electric device with a built-in wheel has a first connecting portion provided so as to project outward from the outer peripheral cylindrical surface of the stator 1A, and the second cover is provided inside the outer peripheral cylindrical surface. It has two connections. Therefore, when the motor 40 is an outer rotor type, the stator 1 can be inserted on the inner diameter side of the rotor 2 without interfering with the vehicle outer flange 29. Further, when the inverter circuit portion 10 is housed in the stator cover 9a, the flange 30 on the vehicle body side and the substrate 11 of the inverter circuit portion 10 do not interfere with each other. As a result, the assembleability of the outer rotor type motor in which the inverter circuit unit 10 is housed in the stator cover can be improved.
  • FIG. 5 is a cross-sectional view showing the configuration of the electric device with a built-in wheel according to the third embodiment of the present invention
  • FIG. 6 is a cross-sectional view taken along the line AA of FIG.
  • the motor 40B which is an electric device with a built-in wheel according to the third embodiment of the present invention, is composed of a stator 1B and a rotor 2.
  • the stator 1B is provided with a plurality of substrate support portions 31 for supporting the substrate 11 of the inverter circuit portion 10 in the circumferential direction in the fixing member 7 of the first embodiment of the present invention. As shown in FIGS. 5 and 6, the substrate 11 is fixed to the substrate support portion 31 by the substrate fixing bolts 32a, 32b, 32c, and 32d.
  • the substrate support portion 31 projects from the inner diameter side of the relay flow path 18 and is provided as a circuit support portion that supports the inverter circuit portion 10, whereby the inverter circuit portion 10 is provided. It is divided into a first circuit section and a second circuit section in the radial direction of the rotation axis R. The second circuit portion is arranged on the inner peripheral side of the substrate support portion 31b.
  • a first circuit portion in which components having relatively high heat resistance are arranged is provided on the outer peripheral side of the substrate support portion 31b, and low heat resistance such as a capacitor is provided on the inner peripheral side of the substrate support portion 31b.
  • a second circuit unit in which the component 35 is arranged is provided. As a result, the low heat resistant component 35 is protected from heat.
  • the fixing member 7 of the electric device with a built-in wheel has a circuit support portion 31 that protrudes from the inner diameter side of the relay flow path 18 toward the inverter circuit portion 10 and supports the inverter circuit portion 10, and has an inverter circuit portion.
  • Reference numeral 10 denotes a first circuit portion arranged on the outer peripheral side of the circuit support portion 31, and a second circuit portion arranged on the inner peripheral side of the circuit support portion 31. Since this is done, parts having high heat resistance and parts having low heat resistance can be arranged separately.
  • a low heat resistance component 35 having a lower heat resistance than the component arranged in the first circuit portion is arranged. Since this is done, the low heat resistant component 35 such as a capacitor can be protected from heat.
  • FIG. 7 is a cross-sectional view showing the configuration of the electric device with a built-in wheel according to the fourth embodiment of the present invention
  • FIG. 8 is a cross-sectional view taken along the line AA of FIG.
  • the motor 40C which is an electric device with a built-in wheel according to the fourth embodiment of the present invention, is composed of a stator 1C and a rotor 2.
  • the stator 1C serves as a first circuit support portion for the fixing member 7 of the first embodiment of the present invention, which projects from the inner diameter side of the relay flow path 18 to the inverter circuit portion 10 and supports the substrate 11 of the inverter circuit portion 10.
  • the annular substrate support portion 33 is provided. Further, as a second circuit support portion protruding from the first cover 9a, an annular support member 34 is inserted between the substrate 11 and the stator cover 9a on the vehicle body side, and the substrate 11 and the annular support member are inserted by the substrate fixing bolt 32. 34 is fixed to the annular substrate support portion 33.
  • the substrate 11 has a structure having a sandwiched portion sandwiched between the annular substrate support portion 33 and the annular support member 34, and the inverter circuit portion 10 is provided on the outer peripheral side of the sandwiched portion by this structure. It can be divided into a portion and a second electric circuit portion provided on the inner peripheral side of the sandwiched portion. As a result, since the second electric circuit section has a lower heat resistance than the first electric circuit section, the low heat-resistant component accommodating space 36 accommodating the low heat-resistant component 35 and the inverter circuit cooling flow path 24 are completely separated. Can be isolated.
  • the low heat resistant component 35 does not have resistance to the cooling refrigerant (for example, oil resistance when the refrigerant is oil)
  • the low heat resistant component 35 is prevented from being exposed to the cooling refrigerant, for example, only the second electric circuit portion. Can be air cooled.
  • the fixing member 7 of the electric device with a built-in wheel has a first circuit support portion 33 that projects toward the inverter circuit portion 10 and supports the inverter circuit portion 10 on the inner peripheral side of the relay flow path 18.
  • the first cover 9a has a second circuit support portion 34 that is arranged to face the first circuit support portion 33 and projects toward the inverter circuit portion 10 in the direction opposite to the first circuit support portion 33, and is an inverter.
  • the circuit unit 10 has a pinched portion sandwiched between the first circuit support portion 33 and the second circuit support portion 34, and the pinched portion has an inverter circuit portion 10 provided on the outer peripheral side of the pinched portion.
  • the second electric circuit part has one electric circuit part and a second electric circuit part provided on the inner peripheral side of the sandwiched part, and the second electric circuit part has a lower heat resistance than the first electric circuit part. Since this is done, the second electric circuit section can be completely isolated from the first electric circuit section, and low heat resistant parts can be arranged in the second electric circuit section.
  • the second electric circuit portion of the electric device with a built-in wheel is air-cooled. Since this is done, components that are not resistant to the cooling refrigerant can be arranged in the second electric circuit section.
  • FIG. 9 is a perspective view of the core material 6D according to the fifth embodiment of the present invention.
  • the core material 6D is the outer peripheral side of the stator core 6 in the first embodiment of the present invention, and the stator covers 9a and 9b, which are the first cover and the second cover, have a cylindrical portion on the outer peripheral side formed by a cylindrical cover member.
  • the axial direction is formed by the bracket member made of metal.
  • a separate resin material 37 formed by a transfer mold is used for the cylindrical cover member.
  • the first cover 9a and the second cover 9b of the electric device with a built-in wheel are a cylindrical cover member forming an outer peripheral cylindrical portion arranged along the outer peripheral surface of the core material and a cylindrical cover member forming the outer peripheral cylindrical portion.
  • a metal bracket member arranged along the axial end face of the core material, and a cylindrical cover member is a resin material 37. Since this is done, loss of eddy current does not occur, so that it is possible to avoid an increase in temperature and a decrease in efficiency of the motor 40.
  • FIGS. 10 to 12 are cross-sectional views showing the configuration of the electric device with a built-in wheel according to the sixth embodiment
  • FIGS. 11 and 12 are a cross-sectional view taken along the line AA and a cross-sectional view taken along the line BB of FIG. 10, respectively.
  • the motor 40E which is an electric device with a built-in wheel according to a sixth embodiment of the present invention, is an inner rotor type motor which is another type of the first embodiment which is an outer rotor type.
  • the motor 40E is composed of a stator 1E and a rotor 2E.
  • a rotor 2E is arranged on the inner peripheral side of the stator 1E via an air gap 3, and the rotor 2E is rotatably supported by a bearing 4E. Further, the stator core 6 is held by the stator frame 28 by a method such as shrink fitting.
  • spacers 14d, 14e, 14f are provided instead of the spacer 14c to guide the refrigerant 16 to the relay flow path inlet 19.
  • the flow flows from the outer peripheral side of the stator cooling flow path 25b. Therefore, the rotor 2 is held on the inner peripheral side of the motor 40, and the relay flow path 18E has a structure on the outer peripheral side of the core material 6.
  • the inverter circuit unit 10 the core material 6, and their refrigerant flow paths can be compactly housed inside the case of the stator 1, and the motor 40 can be highly cooled and downsized. Can be achieved at the same time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Inverter Devices (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

The in-wheel electric device according to the present invention is connected to a wheel, wherein a stator is provided with: a core material around which a coil is wound; an inverter circuit unit; a fixing member for fixing a bearing for rotationally supporting a rotating shaft of a rotor; and a stator cover for integrating the core material, the inverter circuit unit, and the fixing member. The inverter circuit unit is disposed on a first coil end-side of the core material. The fixing member and the stator cover form: an inverter flow path for flowing a refrigerant to the inverter circuit unit; a relay flow path connected to the inverter flow path and also connected to a second coil end-side of the core material on the opposite side to the first coil end-side; and a second coil end-side flow path connected to the relay flow path and leading the refrigerant along the second coil end.

Description

ホイール内蔵電動装置Electric device with built-in wheel
 本発明は、ホイール内蔵電動装置に関する。 The present invention relates to an electric device with a built-in wheel.
 従来、近年の自動車や航空機の電動化に伴ってモータを高出力密度化する必要があるため、モータの冷却性能の向上やモータ自体を小型化させる技術が求められている。 Conventionally, it has been necessary to increase the output density of motors with the recent electrification of automobiles and aircraft, so there is a demand for technology for improving the cooling performance of motors and reducing the size of motors themselves.
 本願発明の背景技術として、下記の特許文献が知られている。特許文献1には、モータのステータ両端部に円環状のオイルジャケットを設け、かつステータスロット内に軸方向の冷媒流路を設ける技術が開示されている。また、特許文献2には、タイヤホイールの内部に、モータとインバータ回路部を搭載し一体化させた技術が開示されている。 The following patent documents are known as background techniques of the present invention. Patent Document 1 discloses a technique in which an annular oil jacket is provided at both ends of a stator of a motor and an axial refrigerant flow path is provided in a status lot. Further, Patent Document 2 discloses a technique in which a motor and an inverter circuit unit are mounted and integrated inside a tire wheel.
特開2001-145302号公報Japanese Unexamined Patent Publication No. 2001-145302 特開2014-213622号公報Japanese Unexamined Patent Publication No. 2014-213622
 特許文献1の技術では、モータと電力変換器を一体化することで両機器の距離が近くなり、モータから電力変換器へと熱が伝わりやすくなることが課題であった。 The problem with the technology of Patent Document 1 is that by integrating the motor and the power converter, the distance between the two devices becomes shorter, and heat can be easily transferred from the motor to the power converter.
 また、特許文献2の技術では、放熱板による空冷方式の場合、モータの冷却を含めた発熱量に対する冷却性能が十分でない可能性があり、電気部品の寿命短縮や故障を招くことが課題であった。 Further, in the technique of Patent Document 2, in the case of the air cooling method using a heat radiating plate, the cooling performance for the amount of heat generated including the cooling of the motor may not be sufficient, and there is a problem that the life of electrical parts is shortened or a failure is caused. It was.
 本発明によるホイール内蔵電動装置は、ホイールと接続されるロータ及びステータを有するホイール内蔵電動装置であって、前記ステータは、コイルが巻回されるコア材と、前記コイルに電力を供給するインバータ回路部と、前記ロータの回転軸を回転支持するベアリングを固定する固定部材と、前記コア材と前記インバータ回路部と前記固定部材とを一体化させるためのステータカバーと、を備え、前記インバータ回路部は、前記回転軸の軸方向において前記コア材の第1コイルエンド側に配置され、前記固定部材および前記ステータカバーは、前記インバータ回路部に冷媒を流すインバータ流路と、前記インバータ流路と繋がりかつ前記コア材の前記第1コイルエンド側とは反対側の第2コイルエンド側に繋がる中継流路と、前記中継流路と繋がりかつ前記冷媒を前記第2コイルエンドに沿って導く第2コイルエンド側流路と、を形成する。 The electric device with a built-in wheel according to the present invention is an electric device with a built-in wheel having a rotor and a stator connected to the wheel, and the stator is a core material around which a coil is wound and an inverter circuit for supplying power to the coil. The inverter circuit unit includes a unit, a fixing member for fixing a bearing that rotationally supports the rotation shaft of the rotor, and a stator cover for integrating the core material, the inverter circuit unit, and the fixing member. Is arranged on the first coil end side of the core material in the axial direction of the rotating shaft, and the fixing member and the stator cover are connected to an inverter flow path for flowing a refrigerant through the inverter circuit portion and the inverter flow path. A relay flow path connected to the second coil end side of the core material opposite to the first coil end side, and a second coil connected to the relay flow path and guiding the refrigerant along the second coil end. Form an end-side flow path.
 本発明によれば、ホイール内蔵電動装置の冷却性能の向上と小型化とを両立させることができる。 According to the present invention, it is possible to achieve both improvement in cooling performance and miniaturization of an electric device having a built-in wheel.
本発明の第1の実施形態に係るホイール内蔵電動装置を示す断面図である。It is sectional drawing which shows the electric device with a built-in wheel which concerns on 1st Embodiment of this invention. 図1のステータ部分のA-A断面図である。FIG. 5 is a cross-sectional view taken along the line AA of the stator portion of FIG. 図1のステータ部分のB-B断面図である。It is BB sectional view of the stator part of FIG. 本発明の第2の実施形態に係るホイール内蔵電動装置を示す断面図である。It is sectional drawing which shows the electric device with a built-in wheel which concerns on 2nd Embodiment of this invention. 本発明の第3の実施形態に係るホイール内蔵電動装置を示す断面図である。It is sectional drawing which shows the electric device with a built-in wheel which concerns on 3rd Embodiment of this invention. 図5のステータ部分のA-A断面図である。FIG. 5 is a cross-sectional view taken along the line AA of the stator portion of FIG. 本発明の第4の実施形態に係るホイール内蔵電動装置を示す断面図である。It is sectional drawing which shows the electric device with a built-in wheel which concerns on 4th Embodiment of this invention. 図7のステータ部分のA-A断面図である。FIG. 7 is a cross-sectional view taken along the line AA of the stator portion of FIG. 本発明の第5の実施形態に係るコア材の斜視図である。It is a perspective view of the core material which concerns on 5th Embodiment of this invention. 本発明の第6の実施形態に係るホイール内蔵電動装置を示す断面図である。It is sectional drawing which shows the electric device with a built-in wheel which concerns on 6th Embodiment of this invention. 図10のステータ部分のA-A断面図である。FIG. 5 is a cross-sectional view taken along the line AA of the stator portion of FIG. 図10のステータ部分のB-B断面図である。It is BB sectional view of the stator part of FIG.
 以下、図面を用いて本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(ホイール内蔵電動装置の構成、及び第1の実施形態)
 本発明の第1の実施形態について図1~3を用いて説明する。図1は第1の実施形態に係るホイール内蔵電動装置の構成を表す断面図であり、図2,図3は、それぞれ図1のA-A断面図,B-B断面図である。
(Structure of electric device with built-in wheel, and first embodiment)
The first embodiment of the present invention will be described with reference to FIGS. 1 is a cross-sectional view showing the configuration of the electric device with a built-in wheel according to the first embodiment, and FIGS. 2 and 3 are a cross-sectional view taken along the line AA and a cross-sectional view taken along the line BB of FIG. 1, respectively.
 本発明の第1の実施形態に係るホイール内蔵電動装置であるモータ40は、回転軸Rを中心に円環状になっており、ステータ1とロータ2によって構成されている。なお、本実施形態のモータ40は、ホイールと接続されるロータ2及びステータ1を有しており、ステータ1の外周側にエアギャップ3を介してロータ2を配置したアウターロータ型のモータである。 The motor 40, which is an electric device with a built-in wheel according to the first embodiment of the present invention, has an annular shape centered on a rotation shaft R, and is composed of a stator 1 and a rotor 2. The motor 40 of the present embodiment is an outer rotor type motor having a rotor 2 and a stator 1 connected to a wheel, and the rotor 2 is arranged on the outer peripheral side of the stator 1 via an air gap 3. ..
 ステータ1は、ステータ鉄心6、固定部材7、ステータカバー9a,9b、インバータ回路部10、スペーサ14a,14b,14c、隔壁23、を備える。各部の詳細は後述する。 The stator 1 includes a stator core 6, a fixing member 7, stator covers 9a and 9b, an inverter circuit unit 10, spacers 14a, 14b and 14c, and a partition wall 23. Details of each part will be described later.
 ロータ2は、永久磁石5を備え、ステータ1の固定部材7によって固定されたベアリング4によって、回転自在に支持されている。永久磁石5は、ロータ2の周方向に複数個配置されている。 The rotor 2 includes a permanent magnet 5 and is rotatably supported by a bearing 4 fixed by a fixing member 7 of the stator 1. A plurality of permanent magnets 5 are arranged in the circumferential direction of the rotor 2.
 ステータ鉄心6は、コア材であり、焼き嵌め等の方法により固定部材7に保持される。ステータ鉄心6の外周側には、軸方向に延伸する複数のスロットが周方向に所定間隔で設けられている。スロットにより形成されたステータ鉄心6の歯部には、銅線である巻線8が巻回されており、コイルとして機能している。なお、回転軸Rの軸方向においてインバータ回路部10のある側のコイルエンドを第1コイルエンド8a、その反対側を第2コイルエンド8bとする。 The stator core 6 is a core material and is held by the fixing member 7 by a method such as shrink fitting. On the outer peripheral side of the stator core 6, a plurality of slots extending in the axial direction are provided at predetermined intervals in the circumferential direction. A winding 8 which is a copper wire is wound around the tooth portion of the stator core 6 formed by the slot, and functions as a coil. The coil end on the side with the inverter circuit unit 10 in the axial direction of the rotating shaft R is referred to as the first coil end 8a, and the opposite side is referred to as the second coil end 8b.
 固定部材7は、ベアリング4を固定しロータ2を回転自在に支持するとともに、回転軸Rの径方向においてステータ1に並べて配置され、ステータ1内に流れる冷媒の流路を形成している。なお、ステータ1内での冷媒の流通構造については後述する。 The fixing member 7 fixes the bearing 4 and rotatably supports the rotor 2, and is arranged side by side with the stator 1 in the radial direction of the rotation shaft R to form a flow path for the refrigerant flowing in the stator 1. The flow structure of the refrigerant in the stator 1 will be described later.
 ステータカバー9a,9bは、ホイールの開口部側に配置される第1カバー9aと、ホイールの奥側に配置される第2カバー9bと、に分けられる。また、ステータカバー9a,9bは、ステータ1内の軸方向両端に空洞領域をそれぞれ形成し、空洞領域に配置されるステータ鉄心6とインバータ回路部10を、固定部材7の一部とともに囲うように、固定部材7の一部と接合されている。この構成により、ステータ鉄心6とインバータ回路部と固定部材7とを一体化させている。 The stator covers 9a and 9b are divided into a first cover 9a arranged on the opening side of the wheel and a second cover 9b arranged on the back side of the wheel. Further, the stator covers 9a and 9b form cavity regions at both ends in the axial direction in the stator 1, respectively, and surround the stator core 6 and the inverter circuit portion 10 arranged in the cavity region together with a part of the fixing member 7. , Is joined to a part of the fixing member 7. With this configuration, the stator core 6, the inverter circuit portion, and the fixing member 7 are integrated.
 ステータカバー9aは、モータ40を液冷するための冷媒16の流路入口13と流路出口27を有し、後述するステータ1内での冷媒16の循環を可能にしている。さらに、ステータカバー9aは、モータ40に電力を供給するインバータ回路部10がステータ1の内部に収納されるように、かつ後述する冷媒16が流れるように、ステータ1内径側に拡張されている。これによりインバータ回路部10に冷媒を流す、インバータ回路部冷却流路24が形成される。なお、インバータ回路部10は、回転軸Rの軸方向において第1コイルエンド側に配置され、半導体素子により構成されるスイッチング回路部(パワーモジュール)12a,12b,12cを有する。 The stator cover 9a has a flow path inlet 13 and a flow path outlet 27 of the refrigerant 16 for liquid-cooling the motor 40, and enables circulation of the refrigerant 16 in the stator 1 described later. Further, the stator cover 9a is extended to the inner diameter side of the stator 1 so that the inverter circuit portion 10 for supplying electric power to the motor 40 is housed inside the stator 1 and the refrigerant 16 described later flows. As a result, the inverter circuit section cooling flow path 24 is formed in which the refrigerant flows through the inverter circuit section 10. The inverter circuit unit 10 is arranged on the first coil end side in the axial direction of the rotating shaft R, and has switching circuit units (power modules) 12a, 12b, 12c composed of semiconductor elements.
 インバータ回路部10は、図1および図2に示すように、開口部15a,15b,15cが形成された円環状の基板11と、スイッチング回路部12a,12b,12cを有する。スイッチング回路部12a,12b,12cは、開口部15a,15b,15cにそれぞれ隣接して配置されている。これにより、流路入口13から流入した冷媒16が、図1および図2に示す16a,16b,16cの矢印のように、開口部15a,15b,15cを経由して基板11の両面に流れていくことで、スイッチング回路部12a,12b,12cを、基板11の両面から直接液冷させることができる。 As shown in FIGS. 1 and 2, the inverter circuit unit 10 has an annular substrate 11 on which openings 15a, 15b, 15c are formed, and a switching circuit unit 12a, 12b, 12c. The switching circuit units 12a, 12b, and 12c are arranged adjacent to the openings 15a, 15b, and 15c, respectively. As a result, the refrigerant 16 flowing in from the flow path inlet 13 flows to both sides of the substrate 11 via the openings 15a, 15b, 15c as shown by the arrows 16a, 16b, 16c shown in FIGS. 1 and 2. By doing so, the switching circuit units 12a, 12b, and 12c can be directly liquid-cooled from both sides of the substrate 11.
 隔壁23は、ステータ1内でステータ鉄心6を備える空間とインバータ回路部10を備える空間とを分けており、端部はステータカバー9aと固定部材7とに接合されている。これにより、前述したスイッチング回路部12a,12b,12cを冷媒16が直接液冷するインバータ回路部冷却流路24が形成されるとともに、ステータ鉄心6側への冷媒の漏れを抑制している。 The partition wall 23 divides the space provided with the stator core 6 and the space provided with the inverter circuit portion 10 in the stator 1, and the end portion is joined to the stator cover 9a and the fixing member 7. As a result, the inverter circuit section cooling flow path 24 in which the refrigerant 16 directly liquid-cools the switching circuit sections 12a, 12b, and 12c described above is formed, and leakage of the refrigerant to the stator core 6 side is suppressed.
 続いて、ステータ1内での冷媒の流通構造を説明する。 Next, the flow structure of the refrigerant in the stator 1 will be described.
 前述のように冷媒16は、ステータカバー9aに設けた流路入口13から流入する。流入した冷媒16は、基板11上を周方向に広がるとともに、図1および図2に示すように、スペーサ14a,14b,14cにより区画された径方向の流路を通る。これにより、冷媒16は、図1および図2に示す矢印16a,16b,16cのように流れ、スイッチング回路部12a,12b,12cの片面を冷却した後、基板11に設けられた開口部15a、15b、15cを通る。さらに、冷媒16は、基板11の裏面に回り、ステータ1の内径側に向かいつつ、スイッチング回路部12a,12b,12cのもう一方の面を冷却する。 As described above, the refrigerant 16 flows in from the flow path inlet 13 provided in the stator cover 9a. The inflowing refrigerant 16 spreads in the circumferential direction on the substrate 11 and passes through the radial flow path defined by the spacers 14a, 14b, 14c as shown in FIGS. 1 and 2. As a result, the refrigerant 16 flows as shown by arrows 16a, 16b, 16c shown in FIGS. 1 and 2, and after cooling one side of the switching circuit portions 12a, 12b, 12c, the opening 15a provided in the substrate 11 It passes through 15b and 15c. Further, the refrigerant 16 turns to the back surface of the substrate 11 and cools the other surface of the switching circuit portions 12a, 12b, 12c while facing the inner diameter side of the stator 1.
 次に冷媒16は、基板11の裏面を周方向に流れて、図1および図2に示す矢印17のように、固定部材7によって形成される第1コイルエンド8a側の中継流路入口19から、それとは反対側の第2コイルエンド8b側に繋がる中継流路18内へ流入する。中継流路18は、固定部材7の外周部において円環状に形成された溝である。図3に示す矢印22のように、冷媒16は中継流路18内を周方向に流れて中継流路出口20へ向かう。 Next, the refrigerant 16 flows around the back surface of the substrate 11 in the circumferential direction, and as shown by the arrows 17 shown in FIGS. 1 and 2, from the relay flow path inlet 19 on the first coil end 8a side formed by the fixing member 7. , It flows into the relay flow path 18 connected to the second coil end 8b side on the opposite side. The relay flow path 18 is a groove formed in an annular shape on the outer peripheral portion of the fixing member 7. As shown by the arrow 22 shown in FIG. 3, the refrigerant 16 flows in the relay flow path 18 in the circumferential direction and heads toward the relay flow path outlet 20.
 次に、中継流路出口20へ到達した冷媒16は、図1および図3に示す矢印21のように、ステータ冷却流路25bに流入する。ステータ冷却流路25bは、固定部材7とステータカバー9bによって形成される冷却流路であり、中継流路18と繋がりかつ冷媒16を第2コイルエンド8bに沿って導く。冷媒16は、図3に示す矢印26のようにステータ冷却流路25b内を周方向に流れる。 Next, the refrigerant 16 that has reached the relay flow path outlet 20 flows into the stator cooling flow path 25b as shown by the arrows 21 shown in FIGS. 1 and 3. The stator cooling flow path 25b is a cooling flow path formed by the fixing member 7 and the stator cover 9b, is connected to the relay flow path 18, and guides the refrigerant 16 along the second coil end 8b. The refrigerant 16 flows in the stator cooling flow path 25b in the circumferential direction as shown by the arrow 26 shown in FIG.
 次に冷媒16は、ステータ鉄心6のスロットによる軸方向への連結によって、ステータ鉄心6の第2コイルエンド8b側のステータ冷却流路25bからスロットへ分流して通り抜け、第1コイルエンド8a側のステータ冷却流路25aへ向かう。 Next, the refrigerant 16 is diverted from the stator cooling flow path 25b on the second coil end 8b side of the stator core 6 to the slot by being connected in the axial direction by the slot of the stator core 6, and passes through the slot on the first coil end 8a side. It goes to the stator cooling flow path 25a.
 最後に冷媒16は、ステータ冷却流路25aから流路出口27を通り、ステータ1の循環の1サイクルを終了する。このような冷媒の流通構造により、コイル及びスイッチング回路部は冷媒16に直接接触されるとともに、インバータ回路部10とモータ40とそれらの冷媒流路と、をステータ1の内部にコンパクトに収納でき、高冷却化と小型化を同時に達成できる。また、本実施形態に示した中継流路18は、ステータ鉄心6を冷却するとともに、ステータ1の熱がベアリング4に伝導するのを防止し、ベアリング4を熱的に保護できる。 Finally, the refrigerant 16 passes from the stator cooling flow path 25a through the flow path outlet 27, and ends one cycle of circulation of the stator 1. With such a refrigerant flow structure, the coil and the switching circuit section are in direct contact with the refrigerant 16, and the inverter circuit section 10, the motor 40, and their refrigerant flow paths can be compactly housed inside the stator 1. High cooling and miniaturization can be achieved at the same time. Further, the relay flow path 18 shown in the present embodiment can cool the stator core 6 and prevent the heat of the stator 1 from being conducted to the bearing 4, thereby thermally protecting the bearing 4.
 なお、説明した第一の実施形態はアウターロータ型のモータの場合であるため、ロータ2はステータ1の外周側に保持され、中継流路18はステータ鉄心6よりも内周側にある構造である。 Since the first embodiment described is the case of an outer rotor type motor, the rotor 2 is held on the outer peripheral side of the stator 1, and the relay flow path 18 is on the inner peripheral side of the stator core 6. is there.
 以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。 According to the first embodiment of the present invention described above, the following effects are exhibited.
(1)ホイール内蔵電動装置であるモータ40は、ホイールと接続されるロータ2及びステータ1を有する。ステータ1は、巻線8がコイルとして巻回されるコア材であるステータ鉄心6と、巻線8に電力を供給するインバータ回路部10と、ロータ2の回転軸Rを回転支持するベアリング4を固定する固定部材7と、コア材6とインバータ回路部と固定部材7とを一体化させるためのステータカバー9a,9bと、を備え、インバータ回路部は、回転軸Rの軸方向においてコア材6の第1コイルエンド側8aに配置され、固定部材およびステータカバー9a,9bは、インバータ回路部に冷媒を流すインバータ流路24と、インバータ流路24と繋がりかつ第1コイルエンド8a側とは反対側の第2コイルエンド側8bに繋がる中継流路18と、中継流路18と繋がりかつ冷媒を第1コイルエンド側8aへ導く第2コイルエンド側流路25bと、を形成する。このようにしたので、ホイール内蔵電動装置の冷却性能の向上と小型化とを両立させることができる。 (1) The motor 40, which is an electric device with a built-in wheel, has a rotor 2 and a stator 1 connected to the wheel. The stator 1 includes a stator core 6, which is a core material in which the winding 8 is wound as a coil, an inverter circuit unit 10 that supplies power to the winding 8, and a bearing 4 that rotationally supports the rotating shaft R of the rotor 2. The fixing member 7 for fixing, the core material 6, the inverter circuit portion, and the stator covers 9a and 9b for integrating the fixing member 7 are provided, and the inverter circuit portion includes the core material 6 in the axial direction of the rotating shaft R. The fixing member and the stator covers 9a and 9b are arranged on the first coil end side 8a of the above, and are connected to the inverter flow path 24 through which the refrigerant flows through the inverter circuit portion and the inverter flow path 24 and are opposite to the first coil end 8a side. A relay flow path 18 connected to the second coil end side 8b on the side and a second coil end side flow path 25b connected to the relay flow path 18 and guiding the refrigerant to the first coil end side 8a are formed. Since this is done, it is possible to achieve both improvement in cooling performance and miniaturization of the electric device with a built-in wheel.
(2)ホイール内蔵電動装置のインバータ回路部は、半導体素子により構成されるスイッチング回路部を有し、コイル及びスイッチング回路部は、冷媒に直接接触される。このようにしたので、効率よくモータ40を冷却できる。 (2) The inverter circuit section of the electric device with a built-in wheel has a switching circuit section composed of semiconductor elements, and the coil and the switching circuit section are in direct contact with the refrigerant. Since this is done, the motor 40 can be cooled efficiently.
(3)ホイール内蔵電動装置のステータカバー9a,9bは、ホイールの開口部側に配置される第1カバー9aと、ホイールの奥側に配置される第2カバー9bと、を有し、第1カバー9aおよび第2カバー9bは、それぞれ固定部材7の一部と接合し、かつ冷媒と接触する。このようにしたので、ステータ1全体を隅々まで冷却させることができる。 (3) The stator covers 9a and 9b of the electric device with a built-in wheel have a first cover 9a arranged on the opening side of the wheel and a second cover 9b arranged on the back side of the wheel. The cover 9a and the second cover 9b are respectively joined to a part of the fixing member 7 and come into contact with the refrigerant. Since this is done, the entire stator 1 can be cooled to every corner.
(4)ホイール内蔵電動装置のロータ2は、ステータ1の外周側に保持され、中継流路18は、コア材6よりも内周側にある。このようにしたので、アウター型のロータの場合、コア材6とインバータ回路部との間を冷媒によって隔て、かつ両方を効率よく冷却できる。 (4) The rotor 2 of the electric device with a built-in wheel is held on the outer peripheral side of the stator 1, and the relay flow path 18 is on the inner peripheral side of the core material 6. Therefore, in the case of the outer type rotor, the core material 6 and the inverter circuit portion can be separated by the refrigerant, and both can be efficiently cooled.
(第2の実施形態)
 本発明の第2の実施形態について図4を用いて説明する。図4は本発明の第2の実施形態に係るホイール内蔵電動装置の構成を表す断面図である。
(Second embodiment)
A second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a cross-sectional view showing the configuration of the electric device with a built-in wheel according to the second embodiment of the present invention.
 本発明の第2の実施形態に係るホイール内蔵電動装置であるモータ40Aは、ステータ1Aとロータ2によって構成されている。ステータ1Aは、本発明の第1の実施形態のステータカバー9a,9bに、車外側フランジ29と車体側フランジ30を設けた構造である。この場合、ステータカバー9aと9bは、外周円筒部と側面円盤部に分かれており、車外側フランジ29と車体側フランジ30はこの二つの部分を接続するためにある。 The motor 40A, which is an electric device with a built-in wheel according to the second embodiment of the present invention, is composed of a stator 1A and a rotor 2. The stator 1A has a structure in which a vehicle outer flange 29 and a vehicle body side flange 30 are provided on the stator covers 9a and 9b of the first embodiment of the present invention. In this case, the stator covers 9a and 9b are divided into an outer peripheral cylindrical portion and a side disk portion, and the vehicle outer flange 29 and the vehicle body side flange 30 are for connecting these two portions.
 車体側フランジ30は、フランジ面が第1カバーであるステータカバー9aのステータの外周円筒面よりも外側に突出して設けられる第1接続部として形成されている。また、車外側フランジ29は、フランジ面が第2カバーであるステータカバー9bの外周円筒面よりも内側に設けられる第2接続部として形成されている。 The vehicle body side flange 30 is formed as a first connection portion whose flange surface projects outward from the outer peripheral cylindrical surface of the stator of the stator cover 9a which is the first cover. Further, the vehicle outer flange 29 is formed as a second connecting portion provided on the inner side of the outer peripheral cylindrical surface of the stator cover 9b whose flange surface is the second cover.
 以上説明した本発明の第2の実施形態によれば、以下の作用効果を奏する。 According to the second embodiment of the present invention described above, the following effects are exhibited.
(5)ホイール内蔵電動装置の第1カバー9aは、ステータ1Aの外周円筒面よりも外側に突出して設けられる第1接続部を有し、第2カバーは外周円筒面よりも内側に設けられる第2接続部を有する。このようにしたので、モータ40がアウターロータ型の場合、車外側フランジ29と干渉することなくロータ2の内径側にステータ1を挿入することができる。また、ステータカバー9a内にインバータ回路部10を収納する際に、車体側フランジ30とインバータ回路部10の基板11が干渉することがない。これにより、ステータカバー内にインバータ回路部10を収納したアウターロータ型モータの組み立て性を向上することができる。 (5) The first cover 9a of the electric device with a built-in wheel has a first connecting portion provided so as to project outward from the outer peripheral cylindrical surface of the stator 1A, and the second cover is provided inside the outer peripheral cylindrical surface. It has two connections. Therefore, when the motor 40 is an outer rotor type, the stator 1 can be inserted on the inner diameter side of the rotor 2 without interfering with the vehicle outer flange 29. Further, when the inverter circuit portion 10 is housed in the stator cover 9a, the flange 30 on the vehicle body side and the substrate 11 of the inverter circuit portion 10 do not interfere with each other. As a result, the assembleability of the outer rotor type motor in which the inverter circuit unit 10 is housed in the stator cover can be improved.
(第3の実施形態)
 本発明の第3の実施形態について図5,6を用いて説明する。図5は本発明の第3の実施形態に係るホイール内蔵電動装置の構成を表す断面図であり、図6は、図5のA-A断面図である。
(Third Embodiment)
A third embodiment of the present invention will be described with reference to FIGS. 5 and 6. FIG. 5 is a cross-sectional view showing the configuration of the electric device with a built-in wheel according to the third embodiment of the present invention, and FIG. 6 is a cross-sectional view taken along the line AA of FIG.
 本発明の第3の実施形態に係るホイール内蔵電動装置であるモータ40Bは、ステータ1Bとロータ2によって構成されている。ステータ1Bは、本発明の第1の実施形態の固定部材7に、インバータ回路部10の基板11を支持するための基板支持部31を周方向に複数備えている。なお、基板11は、図5,6に示すように、基板固定ボルト32a,32b,32c,32dにより基板支持部31に固定されている。 The motor 40B, which is an electric device with a built-in wheel according to the third embodiment of the present invention, is composed of a stator 1B and a rotor 2. The stator 1B is provided with a plurality of substrate support portions 31 for supporting the substrate 11 of the inverter circuit portion 10 in the circumferential direction in the fixing member 7 of the first embodiment of the present invention. As shown in FIGS. 5 and 6, the substrate 11 is fixed to the substrate support portion 31 by the substrate fixing bolts 32a, 32b, 32c, and 32d.
 図5に表されているように、基板支持部31は中継流路18の内径側から突出し、インバータ回路部10を支持する回路支持部として設けられており、これにより、インバータ回路部10は、回転軸Rの径方向において第1回路部と第2回路部とに分けられる。第2回路部は、基板支持部31bの内周側に配置される。この構造により、ステータ鉄心6からの熱は中継流路18により冷却除去されるため、基板11において第2回路部には熱が伝わりにくくなる。 As shown in FIG. 5, the substrate support portion 31 projects from the inner diameter side of the relay flow path 18 and is provided as a circuit support portion that supports the inverter circuit portion 10, whereby the inverter circuit portion 10 is provided. It is divided into a first circuit section and a second circuit section in the radial direction of the rotation axis R. The second circuit portion is arranged on the inner peripheral side of the substrate support portion 31b. With this structure, the heat from the stator core 6 is cooled and removed by the relay flow path 18, so that the heat is less likely to be transferred to the second circuit portion on the substrate 11.
 また、基板11において、基板支持部31bよりも外周側には比較的耐熱性が高い部品を配置した第1回路部が設けられ、基板支持部31bよりも内周側にはキャパシタなどの低耐熱部品35を配置した第2回路部が設けられる。これにより、低耐熱部品35は熱から保護される。 Further, in the substrate 11, a first circuit portion in which components having relatively high heat resistance are arranged is provided on the outer peripheral side of the substrate support portion 31b, and low heat resistance such as a capacitor is provided on the inner peripheral side of the substrate support portion 31b. A second circuit unit in which the component 35 is arranged is provided. As a result, the low heat resistant component 35 is protected from heat.
 以上説明した本発明の第3の実施形態によれば、以下の作用効果を奏する。 According to the third embodiment of the present invention described above, the following effects are exhibited.
(6)ホイール内蔵電動装置の固定部材7は、中継流路18よりも内径側からインバータ回路部10に向かって突出し、かつインバータ回路部10を支持する回路支持部31を有し、インバータ回路部10は、回路支持部31よりも外周側に配置される第1回路部と、回路支持部31よりも内周側に配置される第2回路部と、を有する。このようにしたので、耐熱性が高い部品とそうでない部品を分けて配置することができる。 (6) The fixing member 7 of the electric device with a built-in wheel has a circuit support portion 31 that protrudes from the inner diameter side of the relay flow path 18 toward the inverter circuit portion 10 and supports the inverter circuit portion 10, and has an inverter circuit portion. Reference numeral 10 denotes a first circuit portion arranged on the outer peripheral side of the circuit support portion 31, and a second circuit portion arranged on the inner peripheral side of the circuit support portion 31. Since this is done, parts having high heat resistance and parts having low heat resistance can be arranged separately.
(7)ホイール内蔵電動装置の第2回路部には、第1回路部に配置された部品よりも耐熱性が低い低耐熱部品35が配置される。このようにしたので、コンデンサなどの低耐熱部品35を熱から保護することができる。 (7) In the second circuit portion of the electric device with a built-in wheel, a low heat resistance component 35 having a lower heat resistance than the component arranged in the first circuit portion is arranged. Since this is done, the low heat resistant component 35 such as a capacitor can be protected from heat.
 (第4の実施形態)
 本発明の第4の実施形態について図7,8を用いて説明する。図7は本発明の第4の実施形態に係るホイール内蔵電動装置の構成を表す断面図であり、図8は、図7のA-A断面図である。
(Fourth Embodiment)
A fourth embodiment of the present invention will be described with reference to FIGS. 7 and 8. FIG. 7 is a cross-sectional view showing the configuration of the electric device with a built-in wheel according to the fourth embodiment of the present invention, and FIG. 8 is a cross-sectional view taken along the line AA of FIG.
 本発明の第4の実施形態に係るホイール内蔵電動装置であるモータ40Cは、ステータ1Cとロータ2によって構成されている。ステータ1Cは、本発明の第1の実施形態の固定部材7に、中継流路18よりも内径側からインバータ回路部10に突出しかつインバータ回路部10の基板11を支持する第1回路支持部として、環状基板支持部33を備えている。また、第1カバー9aから突出する第2回路支持部として、基板11と車体側のステータカバー9aとの間に環状支持部材34が挿入されており、基板固定ボルト32により基板11および環状支持部材34が環状基板支持部33に固定されている。 The motor 40C, which is an electric device with a built-in wheel according to the fourth embodiment of the present invention, is composed of a stator 1C and a rotor 2. The stator 1C serves as a first circuit support portion for the fixing member 7 of the first embodiment of the present invention, which projects from the inner diameter side of the relay flow path 18 to the inverter circuit portion 10 and supports the substrate 11 of the inverter circuit portion 10. , The annular substrate support portion 33 is provided. Further, as a second circuit support portion protruding from the first cover 9a, an annular support member 34 is inserted between the substrate 11 and the stator cover 9a on the vehicle body side, and the substrate 11 and the annular support member are inserted by the substrate fixing bolt 32. 34 is fixed to the annular substrate support portion 33.
 基板11は、環状基板支持部33と環状支持部材34とに挟まれる被挟持部を有する構造になり、この構造によって、インバータ回路部10を、被挟持部の外周側に設けられる第1電気回路部と被挟持部の内周側に設けられる第2電気回路部とに分けることができる。これにより、第2電気回路部は、第1電気回路部よりも低い耐熱であるため、低耐熱部品35を収容している低耐熱部品収容空間36と、インバータ回路冷却流路24とを完全に隔離することができる。また、低耐熱部品35が冷却冷媒に対する耐性(例えば冷媒が油の場合は耐油性)がない場合に、低耐熱部品35が冷却冷媒に晒されることを防止し、たとえば、第2電気回路部だけ空冷にすることができる。 The substrate 11 has a structure having a sandwiched portion sandwiched between the annular substrate support portion 33 and the annular support member 34, and the inverter circuit portion 10 is provided on the outer peripheral side of the sandwiched portion by this structure. It can be divided into a portion and a second electric circuit portion provided on the inner peripheral side of the sandwiched portion. As a result, since the second electric circuit section has a lower heat resistance than the first electric circuit section, the low heat-resistant component accommodating space 36 accommodating the low heat-resistant component 35 and the inverter circuit cooling flow path 24 are completely separated. Can be isolated. Further, when the low heat resistant component 35 does not have resistance to the cooling refrigerant (for example, oil resistance when the refrigerant is oil), the low heat resistant component 35 is prevented from being exposed to the cooling refrigerant, for example, only the second electric circuit portion. Can be air cooled.
 以上説明した本発明の第4の実施形態によれば、以下の作用効果を奏する。 According to the fourth embodiment of the present invention described above, the following effects are exhibited.
(8)ホイール内蔵電動装置の固定部材7は、中継流路18よりも内周側でインバータ回路部10に向かって突出しかつインバータ回路部10を支持する第1回路支持部33、を有し、第1カバー9aは、第1回路支持部33と対向して配置され、インバータ回路部10に向かって第1回路支持部33と反対方向に突出する、第2回路支持部34を有し、インバータ回路部10は、第1回路支持部33と第2回路支持部34とに挟まれる被挟持部を有し、被挟持部は、インバータ回路部10を、被挟持部の外周側に設けられる第1電気回路部と被挟持部の内周側に設けられる第2電気回路部と、を有し、第2電気回路部は、第1電気回路部よりも低い耐熱である。このようにしたので、第2電気回路部を第1電気回路部から完全に隔離し、第2電気回路部には低耐熱部品を配置することができる。 (8) The fixing member 7 of the electric device with a built-in wheel has a first circuit support portion 33 that projects toward the inverter circuit portion 10 and supports the inverter circuit portion 10 on the inner peripheral side of the relay flow path 18. The first cover 9a has a second circuit support portion 34 that is arranged to face the first circuit support portion 33 and projects toward the inverter circuit portion 10 in the direction opposite to the first circuit support portion 33, and is an inverter. The circuit unit 10 has a pinched portion sandwiched between the first circuit support portion 33 and the second circuit support portion 34, and the pinched portion has an inverter circuit portion 10 provided on the outer peripheral side of the pinched portion. It has one electric circuit part and a second electric circuit part provided on the inner peripheral side of the sandwiched part, and the second electric circuit part has a lower heat resistance than the first electric circuit part. Since this is done, the second electric circuit section can be completely isolated from the first electric circuit section, and low heat resistant parts can be arranged in the second electric circuit section.
(9)ホイール内蔵電動装置の第2電気回路部は、空冷である。このようにしたので、第2電気回路部には、冷却冷媒に耐性のない部品を配置することできる。 (9) The second electric circuit portion of the electric device with a built-in wheel is air-cooled. Since this is done, components that are not resistant to the cooling refrigerant can be arranged in the second electric circuit section.
 (第5の実施形態)
 本発明の第5の実施形態について図9を用いて説明する。図9は本発明の第5の実施形態に係るコア材6Dの斜視図である。
(Fifth Embodiment)
A fifth embodiment of the present invention will be described with reference to FIG. FIG. 9 is a perspective view of the core material 6D according to the fifth embodiment of the present invention.
 コア材6Dは本発明の第1の実施形態におけるステータ鉄心6の外周側であり、第1カバー及び第2カバーであるステータカバー9a,9bは、円筒カバー部材により外周側円筒部が形成され、金属製であるブラケット部材により軸方向が形成される。円筒カバー部材には、トランスファーモールドにより形成された別体の樹脂材37が用いられる。このようなモールドを施すことにより、ロータ2と対向するステータ1の外周部が強い交番磁界にさらされることがなく、この場所に金属の部材を用いることによる渦電流の損失が発生しない。これにより、温度の上昇や効率の低下などの問題を回避できる。 The core material 6D is the outer peripheral side of the stator core 6 in the first embodiment of the present invention, and the stator covers 9a and 9b, which are the first cover and the second cover, have a cylindrical portion on the outer peripheral side formed by a cylindrical cover member. The axial direction is formed by the bracket member made of metal. A separate resin material 37 formed by a transfer mold is used for the cylindrical cover member. By applying such a mold, the outer peripheral portion of the stator 1 facing the rotor 2 is not exposed to a strong alternating magnetic field, and eddy current loss due to the use of a metal member at this location does not occur. As a result, problems such as an increase in temperature and a decrease in efficiency can be avoided.
 以上説明した本発明の第5の実施形態によれば、以下の作用効果を奏する。 According to the fifth embodiment of the present invention described above, the following effects are exhibited.
(10)ホイール内蔵電動装置の第1カバー9a及び第2カバー9bは、コア材の外周面に沿って配置される外周円筒部を形成する円筒カバー部材と外周円筒部を形成する円筒カバー部材と、コア材の前記軸方向の端面に沿って配置される金属製のブラケット部材と、をそれぞれ有し、円筒カバー部材は、樹脂材37である。このようにしたので、渦電流の損失が発生することがないため、モータ40の温度の上昇や効率の低下を回避できる。 (10) The first cover 9a and the second cover 9b of the electric device with a built-in wheel are a cylindrical cover member forming an outer peripheral cylindrical portion arranged along the outer peripheral surface of the core material and a cylindrical cover member forming the outer peripheral cylindrical portion. , A metal bracket member arranged along the axial end face of the core material, and a cylindrical cover member is a resin material 37. Since this is done, loss of eddy current does not occur, so that it is possible to avoid an increase in temperature and a decrease in efficiency of the motor 40.
 (第6の実施形態)
 本発明の第6の実施形態にについて図10~12を用いて説明する。図10は第6の実施形態に係るホイール内蔵電動装置の構成を表す断面図であり、図11,図12は、それぞれ図10のA-A断面図,B-B断面図である。
(Sixth Embodiment)
A sixth embodiment of the present invention will be described with reference to FIGS. 10 to 12. 10 is a cross-sectional view showing the configuration of the electric device with a built-in wheel according to the sixth embodiment, and FIGS. 11 and 12 are a cross-sectional view taken along the line AA and a cross-sectional view taken along the line BB of FIG. 10, respectively.
 本発明の第6の実施形態に係るホイール内蔵電動装置であるモータ40Eは、アウターロータ型である第1の実施形態の別タイプであるインナーロータ型のモータである。 The motor 40E, which is an electric device with a built-in wheel according to a sixth embodiment of the present invention, is an inner rotor type motor which is another type of the first embodiment which is an outer rotor type.
 モータ40Eは、ステータ1Eとロータ2Eによって構成されている。ステータ1Eの内周側にエアギャップ3を介してロータ2Eが配置されており、ロータ2Eはベアリング4Eにより、回転自在に支持されている。また、ステータ鉄心6は、焼き嵌め等の方法によりステータフレーム28に保持されている。 The motor 40E is composed of a stator 1E and a rotor 2E. A rotor 2E is arranged on the inner peripheral side of the stator 1E via an air gap 3, and the rotor 2E is rotatably supported by a bearing 4E. Further, the stator core 6 is held by the stator frame 28 by a method such as shrink fitting.
 中継流路入口19の半径位置が異なるため、スペーサ14cの代わりに、スペーサ14d,14e,14fを設けて、冷媒16を中継流路入口19へ導いている。 Since the radial position of the relay flow path inlet 19 is different, spacers 14d, 14e, 14f are provided instead of the spacer 14c to guide the refrigerant 16 to the relay flow path inlet 19.
 本実施形態は、ステータ冷却流路25bの外周側から流入する。そのため、ロータ2は、モータ40の内周側に保持され、中継流路18Eは、コア材6よりも外周側にある構造になっている。これにより、モータがインナーロータ型である場合にも、インバータ回路部10とコア材6、およびそれらの冷媒流路をステータ1のケース内部にコンパクトに収納でき、モータ40の高冷却化と小型化を同時に達成できる。 In this embodiment, the flow flows from the outer peripheral side of the stator cooling flow path 25b. Therefore, the rotor 2 is held on the inner peripheral side of the motor 40, and the relay flow path 18E has a structure on the outer peripheral side of the core material 6. As a result, even when the motor is an inner rotor type, the inverter circuit unit 10, the core material 6, and their refrigerant flow paths can be compactly housed inside the case of the stator 1, and the motor 40 can be highly cooled and downsized. Can be achieved at the same time.
 以上説明した本発明の第6の実施形態によれば、以下の作用効果を奏する。 According to the sixth embodiment of the present invention described above, the following effects are exhibited.
(11)ホイール内蔵電動装置Eのロータ2Eは、モータ40Eの内周側に保持され、中継流路18Eは、コア材6よりも外周側にある。このようにしたので、インナーロータ型のモータ40Eである場合も、ステータ1E内を循環できる冷媒の流通構造を実現できる。 (11) The rotor 2E of the electric device E with a built-in wheel is held on the inner peripheral side of the motor 40E, and the relay flow path 18E is on the outer peripheral side of the core material 6. Therefore, even in the case of the inner rotor type motor 40E, it is possible to realize a refrigerant distribution structure capable of circulating in the stator 1E.
 以上、各実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。同時に、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 As described above, each embodiment and various modifications are merely examples, and the present invention is not limited to these contents as long as the features of the invention are not impaired. At the same time, various embodiments and modifications have been described above, but the present invention is not limited to these contents. Other aspects conceivable within the scope of the technical idea of the present invention are also included within the scope of the present invention.
1,1A,1B,1C,1E  ステータ
2,2E  ロータ
3  エアギャップ
4,4E  ベアリング
5,5E  永久磁石
6,6D  ステータ鉄心(コア材)
7,7B,7C  固定部材
8  巻線
8a  第1コイルエンド
8b  第2コイルエンド
9a,9b  ステータカバー
10  インバータ回路部
11  基板
12a、12b、12c  スイッチング回路部
13  流路入口
14a、14b、14c、14d、14e、14f  スペーサ
15a、15b、15c  基板の開口部
16  冷媒
16a、16b、16c  冷媒の流れ
17  中継流路入口へ流入する冷媒の流れ
18,18E  中継流路
19  中継流路入口
20  中継流路出口
21  中継流路出口から流出する冷媒の流れ
22  中継流路内の冷媒の流れ
23  隔壁
24  インバータ回路部冷却流路
25a、25b  ステータ冷却流路
26  ステータ冷却流路25b内の冷媒の流れ
27  流路出口
28  ステータフレーム
29  車外側フランジ
30  車体側フランジ
31,31b  基板支持部
32a,32b,32c,32d  基板固定ボルト
33  環状基板支持部
34  環状支持部材
35  低耐熱部品(コンデンサ)
36  低耐熱部品収容空間
37  樹脂材
40  モータ
R  回転軸
1,1A, 1B, 1C, 1E Stator 2, 2E Rotor 3 Air gap 4, 4E Bearing 5, 5E Permanent magnet 6, 6D Stator core (core material)
7,7B, 7C Fixing member 8 Winding 8a 1st coil end 8b 2nd coil end 9a, 9b Refrigerant cover 10 Inverter circuit part 11 Substrate 12a, 12b, 12c Switching circuit part 13 Flow path inlet 14a, 14b, 14c, 14d , 14e, 14f Spacers 15a, 15b, 15c Substrate openings 16 Refrigerant 16a, 16b, 16c Refrigerant flow 17 Refrigerant flow flowing into the relay flow path inlet 18, 18E Relay flow path 19 Relay flow path inlet 20 Relay flow path Outlet 21 Refrigerant flow flowing out from the relay flow path outlet 22 Refrigerant flow in the relay flow path 23 Partition 24 Inverter circuit section cooling flow path 25a, 25b Stator cooling flow path 26 Refrigerant flow in the stator cooling flow path 25b 27 flow Road outlet 28 Stator frame 29 Car outer flange 30 Body side flanges 31, 31b Board support parts 32a, 32b, 32c, 32d Board fixing bolt 33 Ring board support part 34 Ring support member 35 Low heat resistant parts (capacitors)
36 Low heat resistant parts storage space 37 Resin material 40 Motor R Rotating shaft

Claims (11)

  1.  ホイールと接続されるロータ及びステータを有するホイール内蔵電動装置であって、
     前記ステータは、
     コイルが巻回されるコア材と、
     前記コイルに電力を供給するインバータ回路部と、
     前記ロータの回転軸を回転支持するベアリングを固定する固定部材と、
     前記コア材と前記インバータ回路部と前記固定部材とを一体化させるためのステータカバーと、を備え、
     前記インバータ回路部は、前記回転軸の軸方向において前記コア材の第1コイルエンド側に配置され、
     前記固定部材および前記ステータカバーは、前記インバータ回路部に冷媒を流すインバータ流路と、前記インバータ流路と繋がりかつ前記コア材の前記第1コイルエンド側とは反対側の第2コイルエンド側に繋がる中継流路と、前記中継流路と繋がりかつ前記冷媒を前記第2コイルエンドに沿って導く第2コイルエンド側流路と、を形成するホイール内蔵電動装置。
    An electric device with a built-in wheel having a rotor and a stator connected to the wheel.
    The stator is
    The core material around which the coil is wound and
    The inverter circuit unit that supplies power to the coil and
    A fixing member for fixing a bearing that rotationally supports the rotating shaft of the rotor, and
    A stator cover for integrating the core material, the inverter circuit portion, and the fixing member is provided.
    The inverter circuit unit is arranged on the first coil end side of the core material in the axial direction of the rotating shaft.
    The fixing member and the stator cover are connected to an inverter flow path through which a refrigerant flows through the inverter circuit portion and a second coil end side of the core material opposite to the first coil end side. An electric device with a built-in wheel that forms a relay flow path that is connected to the relay flow path and a flow path on the second coil end side that is connected to the relay flow path and guides the refrigerant along the second coil end.
  2.  請求項1に記載のホイール内蔵電動装置において、
     前記インバータ回路部は、半導体素子により構成されるスイッチング回路部を有し、
     前記コイル及び前記スイッチング回路部は、前記冷媒に直接接触されるホイール内蔵電動装置。
    In the electric device with a built-in wheel according to claim 1,
    The inverter circuit unit has a switching circuit unit composed of semiconductor elements, and has a switching circuit unit.
    The coil and the switching circuit unit are electric devices with built-in wheels that are in direct contact with the refrigerant.
  3.  請求項2に記載のホイール内蔵電動装置において、
     前記ステータカバーは、前記ホイールの開口部側に配置される第1カバーと、前記ホイールの奥側に配置される第2カバーと、を有し、
     前記第1カバーおよび前記第2カバーは、それぞれ前記固定部材の一部と接合し、かつ前記冷媒と接触するホイール内蔵電動装置。
    In the electric device with a built-in wheel according to claim 2.
    The stator cover has a first cover arranged on the opening side of the wheel and a second cover arranged on the back side of the wheel.
    A wheel built-in electric device in which the first cover and the second cover are each joined to a part of the fixing member and come into contact with the refrigerant.
  4.  請求項3に記載のホイール内蔵電動装置において、
     前記ロータは、前記ステータの外周側に保持され、
     前記中継流路は、前記コア材よりも内周側にあるホイール内蔵電動装置。
    In the electric device with a built-in wheel according to claim 3.
    The rotor is held on the outer peripheral side of the stator and is held.
    The relay flow path is an electric device with a built-in wheel located on the inner peripheral side of the core material.
  5.  請求項4に記載のホイール内蔵電動装置において、
     前記第1カバーは、前記ステータの外周円筒面よりも外側に突出して設けられる第1接続部を有し、
     前記第2カバーは前記外周円筒面よりも内側に設けられる第2接続部を有するホイール内蔵電動装置。
    In the electric device with a built-in wheel according to claim 4.
    The first cover has a first connection portion provided so as to project outward from the outer peripheral cylindrical surface of the stator.
    The second cover is an electric device with a built-in wheel having a second connection portion provided inside the outer peripheral cylindrical surface.
  6.  請求項4に記載のホイール内蔵電動装置において、
     前記固定部材は、前記中継流路よりも内周側で前記インバータ回路部に向かって突出し、かつ前記インバータ回路部を支持する、回路支持部を有し、
     前記インバータ回路部は、前記回路支持部よりも外周側に配置される第1回路部と、前記回路支持部よりも内周側に配置される第2回路部と、を有するホイール内蔵電動装置。
    In the electric device with a built-in wheel according to claim 4.
    The fixing member has a circuit support portion that projects toward the inverter circuit portion on the inner peripheral side of the relay flow path and supports the inverter circuit portion.
    The inverter circuit unit is an electric device with a built-in wheel having a first circuit unit arranged on the outer peripheral side of the circuit support unit and a second circuit unit arranged on the inner peripheral side of the circuit support unit.
  7.  請求項6に記載のホイール内蔵電動装置において、
     前記第2回路部には、前記第1回路部に配置された部品よりも耐熱性が低い低耐熱部品が配置されるホイール内蔵電動装置。
    In the electric device with a built-in wheel according to claim 6.
    An electric device with a built-in wheel in which low heat-resistant parts having lower heat resistance than the parts arranged in the first circuit part are arranged in the second circuit unit.
  8.  請求項4に記載のホイール内蔵電動装置において、
     前記固定部材は、前記中継流路よりも内周側で前記インバータ回路部に向かって突出し、かつ前記インバータ回路部を支持する、第1回路支持部を有し、
     前記第1カバーは、前記第1回路支持部と対向して配置され、前記インバータ回路部に向かって前記第1回路支持部と反対方向に突出する、第2回路支持部を有し、
     前記インバータ回路部は、前記第1回路支持部と前記第2回路支持部とに挟まれる被挟持部を有し、
     前記被挟持部は、前記インバータ回路部を、前記被挟持部の外周側に設けられる第1電気回路部と前記被挟持部の内周側に設けられる第2電気回路部と、を有し、
     前記第2電気回路部は、前記第1電気回路部よりも低い耐熱であるホイール内蔵電動装置。
    In the electric device with a built-in wheel according to claim 4.
    The fixing member has a first circuit support portion that projects toward the inverter circuit portion on the inner peripheral side of the relay flow path and supports the inverter circuit portion.
    The first cover has a second circuit support portion that is arranged to face the first circuit support portion and projects toward the inverter circuit portion in the direction opposite to the first circuit support portion.
    The inverter circuit portion has a held portion sandwiched between the first circuit support portion and the second circuit support portion.
    The sandwiched portion includes the inverter circuit portion, a first electric circuit portion provided on the outer peripheral side of the sandwiched portion, and a second electric circuit portion provided on the inner peripheral side of the sandwiched portion.
    The second electric circuit section is an electric device with a built-in wheel that has lower heat resistance than the first electric circuit section.
  9.  請求項8に記載のホイール内蔵電動装置において、
     前記第2電気回路部は、空冷であるホイール内蔵電動装置。
    In the electric device with a built-in wheel according to claim 8.
    The second electric circuit unit is an electric device with a built-in wheel that is air-cooled.
  10.  請求項4に記載のホイール内蔵電動装置において、
     前記第1カバー及び前記第2カバーは、前記コア材の外周面に沿って配置される外周円筒部を形成する円筒カバー部材と、前記コア材の前記軸方向の端面に沿って配置される金属製のブラケット部材と、をそれぞれ有し、
     前記円筒カバー部材は、樹脂材であるホイール内蔵電動装置。
    In the electric device with a built-in wheel according to claim 4.
    The first cover and the second cover are a cylindrical cover member forming an outer peripheral cylindrical portion arranged along the outer peripheral surface of the core material, and a metal arranged along the axial end surface of the core material. Each has a bracket member made of
    The cylindrical cover member is an electric device with a built-in wheel, which is a resin material.
  11.  請求項3に記載のホイール内蔵電動装置において、
     前記ロータは、前記ステータの内周側に保持され、
     前記中継流路は、前記コア材よりも外周側にあるホイール内蔵電動装置。
    In the electric device with a built-in wheel according to claim 3.
    The rotor is held on the inner peripheral side of the stator.
    The relay flow path is an electric device with a built-in wheel located on the outer peripheral side of the core material.
PCT/JP2020/046898 2019-12-26 2020-12-16 In-wheel electric device WO2021131945A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080082688.6A CN114766076A (en) 2019-12-26 2020-12-16 Electric device built in wheel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-237383 2019-12-26
JP2019237383A JP7339882B2 (en) 2019-12-26 2019-12-26 Wheel built-in electric device

Publications (1)

Publication Number Publication Date
WO2021131945A1 true WO2021131945A1 (en) 2021-07-01

Family

ID=76575494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046898 WO2021131945A1 (en) 2019-12-26 2020-12-16 In-wheel electric device

Country Status (3)

Country Link
JP (1) JP7339882B2 (en)
CN (1) CN114766076A (en)
WO (1) WO2021131945A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253184A (en) * 2004-03-03 2005-09-15 Mitsubishi Electric Corp Rotating electric machine device for vehicle
JP2006246678A (en) * 2005-03-07 2006-09-14 Toyota Motor Corp Outer-rotor in-wheel type motor, electric automobile, and hybrid vehicle
JP2019119360A (en) * 2018-01-09 2019-07-22 Ntn株式会社 Wheel bearing device and vehicle including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253184A (en) * 2004-03-03 2005-09-15 Mitsubishi Electric Corp Rotating electric machine device for vehicle
JP2006246678A (en) * 2005-03-07 2006-09-14 Toyota Motor Corp Outer-rotor in-wheel type motor, electric automobile, and hybrid vehicle
JP2019119360A (en) * 2018-01-09 2019-07-22 Ntn株式会社 Wheel bearing device and vehicle including the same

Also Published As

Publication number Publication date
CN114766076A (en) 2022-07-19
JP7339882B2 (en) 2023-09-06
JP2021106472A (en) 2021-07-26

Similar Documents

Publication Publication Date Title
US20180205294A1 (en) Cooling structure for dynamo-electric machine
JP4673911B2 (en) Rotating electric machine and rotating electric machine cooling system
WO2013118703A1 (en) Mechanically and electronically integrated module
WO2005078899A1 (en) Compact dynamoelectric machine
JP2006246678A (en) Outer-rotor in-wheel type motor, electric automobile, and hybrid vehicle
US11025144B2 (en) Outer rotor motor having support member
JP2012161134A (en) Rotary electric machine
WO2019159522A1 (en) Cooling structure for rotary electric machine
JP5892091B2 (en) Multi-gap rotating electric machine
WO2021131945A1 (en) In-wheel electric device
CN111869057A (en) Rotating electric machine with brush
JP3774863B2 (en) Rotating electric machine
CN105284032A (en) Electric motor
WO2019234967A1 (en) Dynamo-electric machine
JP2021048688A (en) Motor, and electrically-driven pump
JP7270854B1 (en) Electric motor
JP5717669B2 (en) Mechanical and electrical integrated module
WO2015037069A1 (en) Dynamo-electric machine
CN111247724A (en) Electric machine with cooling device comprising partially subdivided channels
JP5330860B2 (en) Rotating electric machine
WO2020246372A1 (en) Stator of dynamo-electric machine, terminal block, and dynamo-electric machine
KR20220127556A (en) Motor and Motor Cooling System
US20240097525A1 (en) Rotary electrical machine
JP5363221B2 (en) Stator
KR102450770B1 (en) Vehicle drive motor assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907196

Country of ref document: EP

Kind code of ref document: A1