WO2021131813A1 - Copolymer for electrode binder, electrode binder resin composition, and electrode for non-aqueous secondary battery - Google Patents

Copolymer for electrode binder, electrode binder resin composition, and electrode for non-aqueous secondary battery Download PDF

Info

Publication number
WO2021131813A1
WO2021131813A1 PCT/JP2020/046368 JP2020046368W WO2021131813A1 WO 2021131813 A1 WO2021131813 A1 WO 2021131813A1 JP 2020046368 W JP2020046368 W JP 2020046368W WO 2021131813 A1 WO2021131813 A1 WO 2021131813A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
copolymer
electrode
monomer
structural unit
Prior art date
Application number
PCT/JP2020/046368
Other languages
French (fr)
Japanese (ja)
Inventor
亮介 池端
充 花▲崎▼
秀雄 堀越
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2021567251A priority Critical patent/JP7384223B2/en
Publication of WO2021131813A1 publication Critical patent/WO2021131813A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a copolymer for an electrode binder, an electrode binder resin composition, and a non-aqueous secondary battery electrode.
  • the present application claims priority based on Japanese Patent Application No. 2019-239174 filed in Japan on December 27, 2019, the contents of which are incorporated herein by reference.
  • a non-aqueous secondary battery has a configuration including a positive electrode using a metal oxide or the like as an active material, a negative electrode using a carbon material such as graphite as an active material, and an electrolytic solution, and ions move between the positive electrode and the negative electrode. It is a secondary battery in which the battery is charged and discharged.
  • a typical example is a lithium ion secondary battery as a non-aqueous secondary battery.
  • Non-aqueous secondary batteries are used as power sources for notebook computers, mobile phones, power tools, and electronic / communication devices in terms of miniaturization and weight reduction. Recently, it has also been used for electric vehicles and hybrid vehicles from the viewpoint of application to environmental vehicles. Under these circumstances, there is a strong demand for higher output, higher capacity, longer life, etc. of non-aqueous secondary batteries.
  • the binder used for the positive electrode and the negative electrode has a role of binding the active materials to each other and the active material to the current collector.
  • Water dispersion binders are being developed to improve the capacity of non-aqueous secondary batteries and protect the working environment.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • Patent Documents 1 to 5 an ethylenically unsaturated monomer containing styrene, an ethylenically unsaturated carboxylic acid ester, an ethylenically unsaturated carboxylic acid and an internal cross-linking agent is emulsified and polymerized in the presence of a surfactant.
  • the resulting non-aqueous secondary battery electrode binder has been proposed.
  • an electrode binder having good electrolyte resistance can be obtained, an electrode having an electrode active material layer having high peeling strength against a current collector can be obtained, and a non-aqueous secondary battery having good charge / discharge cycle characteristics can be obtained.
  • An object of the present invention is to provide a obtained copolymer for an electrode binder and an electrode binder resin composition. Further, the present invention includes an electrode binder having good electrolyte resistance, has an electrode active material layer having high peeling strength against a current collector, and can obtain a non-aqueous secondary battery having good charge / discharge cycle characteristics. It is an object of the present invention to provide an aqueous secondary battery electrode.
  • the configuration of the present invention is as follows [1] to [15].
  • [1] Selected from the group consisting of a (meth) acrylic acid alkyl ester having one ethylenically unsaturated bond contained in the molecule and a hydrocarbon compound having one ethylenically unsaturated bond contained in the molecule. From at least one selected from the group consisting of a structural unit derived from a monomer (a1) consisting of at least one kind, a carboxylic acid having one ethylenically unsaturated bond contained in the molecule, and a salt thereof.
  • a structural unit derived from the monomer (a2) A structural unit derived from an internal cross-linking agent (a3) consisting of at least one selected from the group consisting of compounds having two or more ethylenically unsaturated bonds in one molecule, and A structural unit derived from a polymerizable surfactant (a4) consisting of at least one selected from the group consisting of compounds represented by the following formula (1), and It is a copolymer containing
  • the structural unit derived from the monomer (a1) is contained in an amount of 50% by mass or more and 98% by mass or less.
  • the structural unit derived from the monomer (a2) is contained in an amount of 1.0% by mass or more and 15% by mass or less, and the structural unit derived from the internal cross-linking agent (a3) is contained in an amount of 0.020% by mass or more and 10% by mass or less.
  • X is a hydrogen atom or SO 3 NH 4
  • m is an integer of 1 or more and 4 or less
  • n is an integer of 5 or more and 40 or less.
  • the monomer (a1) has a high Tg monomer (a11) having a homopolymer glass transition point Tg of 5 ° C. or higher and a low homopolymer glass transition point Tg of ⁇ 5 ° C. or lower.
  • the mass ratio of the content of the structural unit derived from the high Tg monomer (a11) to the content of the structural unit derived from the low Tg monomer (a12) is 30:70 to 70. : 30.
  • An electrode binder resin composition in which the copolymer for an electrode binder according to any one of [1] to [11] is dispersed in an aqueous medium (B).
  • An electrode slurry in which the copolymer for an electrode binder according to any one of [1] to [11] and an electrode active material are dispersed in an aqueous medium.
  • a non-aqueous secondary in which the electrode active material layer containing the electrode binder copolymer and the electrode active material according to any one of [1] to [11] is formed on a current collector made of a metal sheet. Battery electrode.
  • an electrode binder having good electrolyte resistance can be obtained, an electrode having an electrode active material layer having high peeling strength against a current collector can be obtained, and a non-aqueous secondary having good charge / discharge cycle characteristics can be obtained.
  • a copolymer for an electrode binder from which a battery can be obtained and an electrode binder resin composition can be provided.
  • a non-aqueous secondary battery containing an electrode binder having good electrolyte resistance, having an electrode active material layer having high peeling strength against a current collector, and having good charge / discharge cycle characteristics can be obtained.
  • Non-aqueous secondary battery electrodes can be provided.
  • (Meta) acrylic is a general term for acrylic and methacryl
  • (meth) acrylate is a general term for acrylate and methacrylate.
  • nonvolatile component is a component remaining after weighing 1 g of the composition on an aluminum dish having a diameter of 5 cm and drying it at 105 ° C. for 1 hour while circulating air in a dryer at 1 atm (1013 hPa).
  • the form of the composition includes, but is not limited to, a solution, a dispersion, and a slurry.
  • nonvolatile content concentration is the mass ratio (mass%) of the non-volatile content after drying under the above conditions with respect to the mass (1 g) of the composition before drying.
  • Ethylene unsaturated bond refers to an ethylenically unsaturated bond having radical polymerization unless otherwise specified.
  • the structural unit derived from the compound having an ethylenically unsaturated bond is the chemical structure of the portion other than the ethylenically unsaturated bond of the compound and its structure in the polymer. It is assumed that the chemical structure of the part other than the part forming the main chain of the unit is the same.
  • a structural unit derived from acrylic acid has a COOH structure in a portion other than the main chain as a polymer.
  • an anionic functional group such as a carboxy group may form a salt.
  • COONH 4 is also a carboxy group.
  • copolymer for electrode binder (A) has a structural unit derived from the monomer (a1) described later and a monomer described later. It contains a structural unit derived from (a2), a structural unit derived from an internal cross-linking agent (a3) described later, and a structural unit derived from a polymerizable surfactant (a4) described later.
  • the copolymer (A) may contain structural units derived from other monomers (a5).
  • the monomer (a1) is a (meth) acrylic acid alkyl ester having one ethylenically unsaturated bond contained in the molecule, and a hydrocarbon compound having one ethylenically unsaturated bond contained in the molecule. It consists of at least one type selected from the group consisting of.
  • the (meth) acrylic acid alkyl ester has a hydrocarbon structure except for the (meth) acryloyloxy group.
  • the monomer (a1) preferably contains both the (meth) acrylic acid alkyl ester and the hydrocarbon compound.
  • the monomer (a1) preferably contains an aromatic compound having an ethylenically unsaturated bond from the viewpoint of adhesion between the electrode active material and the copolymer (A).
  • aromatic compounds having an ethylenically unsaturated bond examples include vinyl aromatic compounds such as styrene compounds, vinylnaphthalene compounds, and vinyl biphenyl compounds.
  • styrene-based compound for example, at least one compound selected from the group consisting of styrene, t-butylstyrene, ⁇ -methylstyrene, p-methylstyrene, and 1,1-diphenylethylene is preferable, and styrene, ⁇ - Methylstyrene is more preferred, and styrene is even more preferred.
  • the monomer (a1) is a high Tg monomer (a11) having a homopolymer glass transition point Tg of 5 ° C. or higher, and a low Tg monomer having a homopolymer glass transition point Tg of ⁇ 5 ° C. or lower. It is preferable to include (a12). This is to control the glass transition point of the copolymer (A) to an appropriate value according to the specifications.
  • the total content of the high Tg monomer (a11) and the low Tg monomer (a12) in the monomer (a1) is preferably 60% by mass or more, preferably 75% by mass or more. More preferably, it is more preferably 90% by mass or more.
  • the monomer (a1) may contain a monomer having a homopolymer glass transition point Tg of less than 5 ° C and more than ⁇ 5 ° C.
  • the mass ratio of the content of the structural unit derived from the high Tg monomer (a11) to the content of the structural unit derived from the low Tg monomer (a12) in the copolymer (A) is 30: It is preferably 70 or more, and more preferably 40:60 or more.
  • the mass ratio of the content of the structural unit derived from the high Tg monomer (a11) to the content of the structural unit derived from the low Tg monomer (a12) in the copolymer (A) is 70: It is preferably 30 or less, and more preferably 60:40 or less.
  • Examples of the high Tg monomer (a11) include styrene (100 ° C.), methyl acrylate (8 ° C.), methyl methacrylate (105 ° C.), ethyl methacrylate (65 ° C.), and n-propyl methacrylate (35 ° C.). , Isopropyl methacrylate (81 ° C), n-butyl methacrylate (20 ° C), isobutyl methacrylate (53 ° C), tert-butyl methacrylate (107 ° C), tert-butyl acrylate (14 ° C), cyclohexyl methacrylate.
  • the temperature in parentheses after the compound name given here is the value of Tg of the homopolymer of the compound.
  • the high Tg monomer (a11) is composed of styrene, methyl (meth) acrylate, ethyl methacrylate, and n-butyl methacrylate. It is preferable to include one or more selected species.
  • Examples of the low Tg monomer (a11) include ethyl acrylate (-22 ° C.), n-propyl acrylate (-48 ° C.), n-butyl acrylate (-52 ° C.), and iso-butyl acrylate (-24 ° C.). ° C.), 2-ethylhexyl methacrylate (-10 ° C.), 2-ethylhexyl acrylate (-70 ° C.), lauryl methacrylate (-65 ° C.) and the like, but are not limited thereto.
  • the temperature in parentheses after the compound name given here is the value of Tg of the homopolymer of the compound.
  • the low Tg monomer (a11) is ethyl acrylate, n-butyl acrylate, 2-ethylhexyl (meth) acrylate, and methacrylic. It is preferable to contain one or more selected from lauryl acid.
  • the monomer (a2) is composed of at least one selected from the group consisting of a carboxylic acid having one ethylenically unsaturated bond contained in the molecule and a salt thereof. It is more preferable that the monomer (a2) does not contain an alkylene oxide structure having a repetition number of 3 or more.
  • Examples of the monomer (a2) include unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid, unsaturated dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid, and half esters of unsaturated dicarboxylic acids. Be done. Among these, the monomer (a2) preferably contains at least one of (meth) acrylic acid and itaconic acid.
  • At least a part of the structural unit derived from the monomer (a2) contained in the copolymer (A) may form a salt of a carboxy group and a basic substance.
  • a salt may be formed by polymerizing using a monomer (a2) containing at least a part of a carboxylic acid salt as a raw material. Further, by adding a basic substance after the synthesis of the copolymer (A), at least a part of the structural units derived from the monomer (a2) contained in the copolymer (A) may be used as a salt.
  • the internal cross-linking agent (a3) comprises at least one selected from the group consisting of compounds having two or more ethylenically unsaturated bonds in one molecule.
  • Specific examples of the compound having two or more ethylenically unsaturated bonds in one molecule include divinylbenzene, 1,6-hexanediol diacrylate, and 2-hydroxy-3-acryloyloxypropyl methacrylate.
  • the polymerizable surfactant (a4) comprises at least one selected from the group consisting of compounds having a structure represented by the following formula (1).
  • the monomer having a structure other than the following formula (1) and having a function as a surfactant is referred to as another monomer (a5) in the present invention.
  • X is a hydrogen atom or SO 3 NH 4
  • m is an integer of 1 or more and 4 or less
  • n is an integer of 5 or more and 40 or less.
  • X is preferably SO 3 NH 4.
  • m is preferably 1 or more and 3 or less.
  • n is preferably 8 or more and 40 or less, more preferably 8 or more and 25 or less, and further preferably 8 or more and 15 or less.
  • the structural unit derived from the polymerizable surfactant (a4) constitutes a portion of the copolymer (A) having a surface-active effect.
  • the copolymer (A) is synthesized by emulsion polymerization in an aqueous medium, the stability of the produced particles is improved by the polymerizable surfactant (a4).
  • the copolymer (A) contains a structural unit derived from the polymerizable surfactant (a4), the copolymer (A) exhibits good electrolyte resistance, and the copolymer (A) can be mixed. It has been found in the present invention that the cycle characteristics (cycle capacity retention rate) of the non-aqueous secondary battery used as the electrode binder are improved.
  • the contact angle of the polymerizable surfactant (a4) with respect to ethyl methyl carbonate (hereinafter, unless otherwise specified, this value is referred to as the contact angle of the polymerizable surfactant (a4)) is 15 ° or less. It is preferably 10 ° or less, more preferably 6 ° or less, and even more preferably 6 ° or less. This is to improve the permeability of the electrolytic solution.
  • a 20% by mass aqueous solution of the polymerizable surfactant (a4) was applied to a glass plate using a doctor blade and dried at 60 ° C. for 5 minutes to form a film, and ethyl methyl carbonate was applied to this film. It is a static contact angle obtained by the 1 / 2 ⁇ method when 4 ⁇ L was dropped.
  • the other monomers (a5) include the monomer (a1), the monomer (a2), the internal cross-linking agent (a3), the polymerizable surfactant (a4), and ("monomers (a1) to (" It is a compound that does not fall under any of (a4)) and is copolymerizable with the monomers (a1) to (a4).
  • Examples of the other monomer (a5) include a sulfonic acid having an ethylenically unsaturated bond or a salt thereof, a compound having an ethylenically unsaturated bond and a phosphoric acid group or a salt thereof, a glycidyl group and an ethylenically unsaturated bond. Examples thereof include compounds having a hydroxy group and a compound having an ethylenically unsaturated bond.
  • sulfonic acid having an ethylenically unsaturated bond examples include p-styrene sulfonic acid and sodium p-styrene sulfonic acid.
  • compounds having an ethylenically unsaturated bond and a phosphoric acid group include 2-methchlorooxyethyl acid phosphate, acid phosphooxypolyoxyethylene glycol monomethacrylate, acid phosphooxypolyoxypropylene glycol monomethacrylate, 3-chloro-2.
  • 2-methchlorooxyethyl acid phosphate acid phosphooxypolyoxyethylene glycol monomethacrylate
  • acid phosphooxypolyoxypropylene glycol monomethacrylate 3-chloro-2.
  • -Acid phosphooxypropyl methacrylate, metachlorooxyethyl acid phosphate monoethanolamine salt and the like can be mentioned.
  • Specific examples of the compound having a glycidyl group and an ethylenically unsaturated bond include glycidyl (meth) acrylate and the like.
  • Specific examples of the compound having a hydroxy group and an ethylenically unsaturated bond include 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like.
  • the other monomer (a5) is a compound having an ethylenically unsaturated bond and having a function as a surfactant, and contains a monomer other than the polymerizable surfactant (a4). May be good.
  • Examples of such monomers include compounds represented by the following chemical formulas (2) to (5).
  • R 1 is preferably an alkyl group, and p is preferably an integer of 10 to 40. More preferably the number of carbon atoms of R 1 is 10 to 40, R 1 is more preferably a straight-chain unsubstituted alkyl group having 10 to 40 carbon atoms.
  • R 2 is preferably an alkyl group, and q is preferably an integer of 10 to 12. More preferably the number of carbon atoms of R 2 is 10-40, R 2 is more preferably a straight chain unsubstituted alkyl group having 10 to 40 carbon atoms.
  • R 3 is preferably an alkyl group, and M 1 is preferably NH 4 or Na. More preferably the number of carbon atoms of R 3 is 10 to 40, R 3 is more preferably a straight chain unsubstituted alkyl group having 10 to 40 carbon atoms.
  • R 4 is preferably an alkyl group, and M 2 is preferably NH 4 or Na. More preferably the number of carbon atoms of R 4 is 10 to 40, R 4 is more preferably a straight chain unsubstituted alkyl group having 10 to 40 carbon atoms.
  • each structural unit of copolymer (A) The content of the structural unit derived from the monomer (a1) in the copolymer (A) is 50% by mass or more, preferably 70% by mass or more, and preferably 90% by mass or more. More preferred. This is because the peel strength of the electrode active material layer is improved, and the polymerization stability is improved when the copolymer (A) is synthesized by emulsion polymerization.
  • the content of the structural unit derived from the monomer (a1) in the copolymer (A) is 98% by mass or less, preferably 97% by mass or less, and preferably 96% by mass or less. More preferred. This is to ensure the content of structural units derived from the monomers (a2) to (a4).
  • the content of the structural unit derived from the monomer (a2) in the copolymer (A) is 1.0% by mass or more, preferably 2.0% by mass or more, preferably 3.0% by mass. % Or more is more preferable. This is because the mechanical stability of the copolymer (A) is improved. This is also because the polymerization stability is improved when the copolymer (A) is synthesized by emulsion polymerization.
  • the content of the structural unit derived from the monomer (a2) in the copolymer (A) is 15% by mass or less, preferably 10% by mass or less, and 7.0% by mass or less. Is more preferable. This is because the binding property of the electrode active material layer containing the copolymer (A) to the current collector and the binding property between the electrode active materials are improved.
  • the content of the structural unit derived from the internal cross-linking agent (a3) in the copolymer (A) is 0.020% by mass or more, preferably 0.50% by mass or more, preferably 1.0% by mass. % Or more is more preferable. This is because the electrolytic solution resistance of the electrode containing the copolymer (A) is improved.
  • the content of the structural unit derived from the internal cross-linking agent (a3) in the copolymer (A) is 10% by mass or less, preferably 5.0% by mass or less, and 3.0% by mass or less. Is more preferable, and 2.0% by mass or less is particularly preferable. This is because the copolymer (A) can be used to produce an electrode exhibiting good flexibility.
  • the content of the structural unit derived from the polymerizable surfactant (a4) in the copolymer (A) is 0.010% by mass or more, preferably 0.10% by mass or more, and 0. It is more preferably 17% by mass or more. This is because the copolymer (A) exhibits good electrolyte resistance, and the cycle characteristics of the non-aqueous secondary battery using the copolymer (A) as the electrode binder are improved.
  • the content of the structural unit derived from the polymerizable surfactant (a4) in the copolymer (A) is 10% by mass or less, preferably 3.0% by mass or less, preferably 1.0% by mass. % Or less, more preferably 0.50% by mass or less, and particularly preferably 0.35% by mass or less. This is because an electrode exhibiting good flexibility can be obtained by including the copolymer (A) having such a structure as an electrode binder.
  • the content of the structural unit derived from the other monomer (a5) in the copolymer (A) is not particularly limited as long as the object of the present invention can be achieved.
  • the content of the structural unit derived from such another monomer (a5) in the copolymer (A) is preferably 10% by mass or less, preferably 5.0% by mass or less. Is more preferable, and 3.0% by mass or less is further preferable.
  • the Tg of the copolymer (A) is measured by DSC using EXSTAR DSC / SS7020 manufactured by Hitachi High-Tech Science Co., Ltd. at a heating rate of 10 ° C./min in a nitrogen gas atmosphere, and is obtained as a temperature differential of DSC. It is the peak top temperature.
  • the glass transition point Tg of the copolymer (A) is preferably ⁇ 30 ° C. or higher, more preferably ⁇ 10 ° C. or higher, and even more preferably 0 ° C. or higher. This is because the cycle characteristics of the non-aqueous secondary battery using the copolymer (A) as the electrode binder are improved.
  • the glass transition point Tg of the copolymer (A) is preferably 100 ° C. or lower, more preferably 50 ° C. or lower, and even more preferably 30 ° C. or lower. This is because the adhesion of the electrode active material layer containing the copolymer (A) as an electrode binder to the current collecting foil is improved.
  • the electrode binder copolymer (A) can be obtained by copolymerizing the monomers (a1) to (a4) and, if necessary, another monomer (a5).
  • the monomer for the copolymer (A) is generically referred to as the monomer (a). That is, the monomer (a) includes the monomers (a1) to (a4) and, if necessary, another monomer (a5).
  • the polymerization method include emulsion polymerization of the monomer (a) in the aqueous medium (b).
  • components used in the synthesis of the copolymer (A) by emulsion polymerization include, for example, a non-polymerizable surfactant (c), a basic substance (d), a polymerization initiator (e), and a chain.
  • the moving agent (f) and the like can be mentioned.
  • the aqueous medium (b) is water, a hydrophilic solvent, or a mixture thereof.
  • the hydrophilic solvent include methanol, ethanol, isopropyl alcohol, N-methylpyrrolidone and the like.
  • the aqueous medium (b) is preferably water.
  • a water to which a hydrophilic solvent is added may be used as long as the polymerization stability is not impaired.
  • Non-polymerizable Surfactant (c) In the emulsion polymerization of the monomer (a), a non-polymerizable surfactant (c) may be used.
  • the surfactant (c) can improve the dispersion stability of the dispersion liquid (emulsion) during and / or after the polymerization.
  • As the surfactant (c) it is preferable to use an anionic surfactant or a nonionic surfactant.
  • anionic surfactant examples include alkylbenzene sulfonates, alkyl sulfates, polyoxyethylene alkyl ether sulfates, and fatty acid salts.
  • nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polycyclic phenyl ether, polyoxyalkylene alkyl ether, sorbitan fatty acid ester, and polyoxyethylene sorbitan fatty acid ester.
  • the above-mentioned surfactant may be used alone or in combination of two or more.
  • Basic substance (d) When the monomer (a) is emulsion-polymerized in the aqueous medium (b), the basic substance (d) may be added. By adding the basic substance (d), the acidic component contained in the monomer (a) and / or the copolymer (A) can be neutralized and the pH can be adjusted. By adjusting the pH, the mechanical stability and chemical stability of the dispersion during and / or after emulsion polymerization can be improved.
  • the pH of the dispersion at 23 ° C. is preferably 1.5 to 10, more preferably 6.0 to 9.0, and even more preferably 5.0 to 9.0. This is to suppress the sedimentation of the active material in the electrode slurry described later.
  • Examples of the basic substance (d) include ammonia, triethylamine, sodium hydroxide, lithium hydroxide and the like. These basic substances (d) may be used alone or in combination of two or more.
  • the radical polymerization initiator (e) used in the emulsion polymerization is not particularly limited, and known ones can be used.
  • the radical polymerization initiator include persulfates such as ammonium persulfate and potassium persulfate; hydrogen peroxide; azo compounds; organic peroxides such as t-butyl hydroperoxide, tert-butyl peroxybenzoate and cumene hydroperoxide. Examples include oxides. Of these, persulfates and organic peroxides are preferred.
  • a radical polymerization initiator and a reducing agent such as sodium bisulfite, longalit, and ascorbic acid may be used in combination during emulsion polymerization for redox polymerization.
  • the amount of the radical polymerization initiator added is preferably 0.10 parts by mass or more, and more preferably 0.80 parts by mass or more with respect to 100 parts by mass of the monomer (a). This is because the conversion rate of the monomer (a) to the copolymer (A) at the time of polymerization can be increased.
  • the amount of the radical polymerization initiator added is preferably 3.0 parts by mass or less, and more preferably 2.0 parts by mass or less with respect to 100 parts by mass of the monomer (a). This is because the molecular weight of the copolymer (A) can be increased and the swelling rate of the electrode active material layer with respect to the electrolytic solution can be reduced.
  • the chain transfer agent (f) is used to adjust the molecular weight of the copolymer (A) in emulsion polymerization.
  • Examples of the chain transfer agent (f) include n-dodecyl mercaptan, tert-dodecyl mercaptan, n-butyl mercaptan, 2-ethylhexylthioglycolate, 2-mercaptoethanol, ⁇ -mercaptopropionic acid, methyl alcohol, and n-propyl alcohol. Examples thereof include isopropyl alcohol, t-butyl alcohol and benzyl alcohol.
  • Emulsification polymerization method examples include a method of emulsion polymerization while continuously supplying each component used for emulsion polymerization.
  • the temperature of the emulsion polymerization is not particularly limited, but is, for example, 30 to 90 ° C, preferably 50 to 85 ° C, and even more preferably 55 to 80 ° C.
  • Emulsion polymerization is preferably carried out with stirring. Further, it is preferable that the monomer (a) and the radical polymerization initiator are continuously supplied so as to be uniform in the reaction vessel.
  • Electrode binder resin composition In the electrode binder resin composition of the present embodiment (hereinafter, may be referred to as a binder composition), the copolymer for electrode binder (A) is dispersed in the aqueous medium (B).
  • the binder composition may contain, for example, the above-mentioned components used in the synthesis of the copolymer (A).
  • the binder composition may be a dispersion obtained by the above-mentioned method for synthesizing the copolymer for electrode binder (A), and the copolymer (A) obtained by a method other than emulsion polymerization is used as an aqueous medium (B).
  • the electrode binder resin composition of the present embodiment contains an electrode binder and an aqueous medium (B).
  • the electrode binder contains the above-mentioned copolymer for electrode binder (A), and is preferably the above-mentioned copolymer for electrode binder (A).
  • the aqueous medium (B) is water, a hydrophilic solvent, or a mixture thereof.
  • the hydrophilic solvent are as described in the description of the aqueous medium (b) in the synthesis of the copolymer (A) for the electrode binder.
  • the aqueous medium (B) may be the same as or different from the aqueous medium (b) used in the synthesis of the copolymer (A).
  • the aqueous medium (B) used for the synthesis of the copolymer (A) may be used as it is, or the aqueous medium (b) may be added with an aqueous solvent, and the copolymer (A) may be used.
  • the aqueous medium (b) may be replaced with a new aqueous solvent after the synthesis of the above.
  • the aqueous solvent to be added or replaced may have the same composition as the solvent used for the synthesis of the copolymer (A), or may have a different composition.
  • the non-volatile content concentration of the binder composition is preferably 20% by mass or more, more preferably 25% by mass or more, and further preferably 30% by mass or more. This is to increase the amount of the active ingredient contained in the binder composition.
  • the non-volatile content concentration of the binder composition can be adjusted by the amount of the aqueous medium (B).
  • the viscosity of the binder composition is preferably 3000 mPa ⁇ s or less, more preferably 1000 mPa ⁇ s or less, and even more preferably 80 mPa ⁇ s or less. This is to reduce the loss of the binder when producing the electrode slurry, which will be described later, and to shorten the time required for the defoaming step of the slurry.
  • the viscosity of the binder composition was determined by using a Brookfield viscometer at a liquid temperature of 23 ° C., a rotation speed of 60 rpm, and No. 1, No. 2. No. 3 or No. It is a value measured using the rotor of 4.
  • the viscosity of the binder composition is greatly affected by the non-volatile content concentration of the binder composition.
  • the electrode slurry has a structure in which the copolymer (A) and the electrode active material are dispersed in an aqueous medium.
  • the electrode slurry may contain a thickener, a conductive auxiliary agent, the above-mentioned components used for synthesizing the copolymer (A), and the like.
  • the content of the copolymer (A) is preferably 0.50 parts by mass or more, and more preferably 1.0 parts by mass or more with respect to 100 parts by mass of the electrode active material. This is to fully exhibit the effect of the copolymer (A).
  • the content of the copolymer (A) is preferably 5.0 parts by mass or less, more preferably 4.0 parts by mass or less, and 3.0 parts by mass with respect to 100 parts by mass of the electrode active material. More preferably, it is less than or equal to a portion. This is to increase the content of the electrode active material in the electrode active material layer produced by using the electrode slurry.
  • the electrode active material is a material capable of inserting / removing ions such as lithium ions that serve as charge carriers.
  • the ion serving as a charge carrier is preferably an alkali metal ion, more preferably a lithium ion, a sodium ion, or a potassium ion, and even more preferably a lithium ion.
  • the electrode active material that is, the negative electrode active material preferably contains at least one of a carbon material, a material containing silicon, and a material containing titanium.
  • the carbon material used as the electrode active material include coke such as petroleum coke, pitch coke, and coal coke, carbonized organic polymer, artificial graphite, and graphite such as natural graphite.
  • the material containing silicon include a simple substance of silicon and a silicon compound such as silicon oxide.
  • the material containing titanium include lithium titanate and the like. These materials may be used alone, or may be mixed or combined.
  • the negative electrode active material preferably contains at least one of a carbon material and a material containing silicon, and more preferably contains a carbon material. This is because the binder copolymer (A) of the present invention has a very large effect of improving the binding property between the electrode active materials and between the electrode active material and the current collector.
  • the electrode active material uses a material having a higher standard electrode potential than the negative electrode active material.
  • a lithium composite oxide containing nickel such as a Ni—Co—Mn-based lithium composite oxide, a Ni—Mn—Al based lithium composite oxide, and a Ni—Co—Al based lithium composite oxide.
  • these substances may be used alone or in combination of two or more.
  • thickener examples include celluloses such as carboxymethyl cellulose (CMC), hydroxyethyl cellulose and hydroxypropyl cellulose, ammonium salts of celluloses, alkali metal salts of celluloses, polyvinyl alcohol, polyvinylpyrrolidone and the like.
  • the thickener preferably contains at least one of carboxymethyl cellulose, an ammonium salt of carboxymethyl cellulose, and an alkali metal salt of carboxymethyl cellulose. This is because the electrode active material is easily dispersed in the electrode slurry.
  • the content of the thickener in the electrode slurry is preferably 0.50 parts by mass or more, and more preferably 0.80 parts by mass or more with respect to 100 parts by mass of the electrode active material. This is to improve the binding property between the electrode active materials and between the electrode active material and the current collector in the electrode active material layer produced by using the electrode slurry.
  • the content of the thickener in the electrode slurry is preferably 3.0 parts by mass or less, more preferably 2.0 parts by mass or less, and 1.5 parts by mass with respect to 100 parts by mass of the electrode active material. The following is more preferable. This is because the coatability of the electrode slurry is improved.
  • the aqueous medium is water, a hydrophilic solvent, or a mixture thereof.
  • the hydrophilic solvent are as described in the description of the aqueous medium (b) in the synthesis of the copolymer (A) for the electrode binder.
  • the aqueous medium contained in the electrode slurry may be the same as or different from the aqueous medium (B) contained in the electrode binder resin composition or the aqueous medium (b) used for synthesizing the copolymer (A). ..
  • Conductive aid As the conductive auxiliary agent, it is preferable to use carbon black, carbon fiber or the like.
  • carbon black include furnace black, acetylene black, denka black (registered trademark) (manufactured by Denka Co., Ltd.), and Ketjen black (registered trademark) (manufactured by Ketjen Black International Co., Ltd.).
  • carbon fibers include carbon nanotubes and carbon nanofibers, and examples of carbon nanotubes include VGCF (registered trademark, manufactured by Showa Denko Co., Ltd.), which is a vapor phase carbon fiber.
  • the non-volatile content concentration of the electrode slurry is preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably 40% by mass or more. This is because the concentration of the active ingredient in the electrode slurry becomes high, and a sufficient amount of the electrode active material layer can be formed with a small amount of the electrode slurry.
  • the non-volatile content concentration of the electrode slurry can be adjusted by adjusting the amount of the aqueous medium in the electrode slurry.
  • the viscosity of the electrode slurry is preferably 20000 mPa ⁇ s or less, more preferably 10000 mPa ⁇ s or less, and further preferably 5000 mPa ⁇ s or less. This is because the applicability of the electrode slurry to the current collector is improved and the productivity of the electrodes is improved.
  • the viscosity of the electrode slurry is greatly affected by the non-volatile content concentration of the electrode slurry and the type and amount of the thickener.
  • the pH of the electrode slurry at 23 ° C. is preferably 2.0 to 10, more preferably 4.0 to 9.0, and even more preferably 6.0 to 9.0. This is to improve the durability of the battery manufactured by using the electrode slurry.
  • a binder composition As a method for preparing the electrode slurry in the present embodiment, a binder composition, an electrode active material, a thickener if necessary, an aqueous medium if necessary, and a conductive auxiliary agent if necessary are required. Mix with other ingredients depending on. The order of the components to be added is not particularly limited and may be appropriately determined. Examples of the mixing method include a method using a mixing device such as a stirring type, a rotary type, and a shaking type.
  • Non-aqueous secondary battery electrode (hereinafter, may be referred to as “electrode”) according to the present embodiment includes a current collector and an electrode active material layer formed on the current collector.
  • the shape of the electrode includes, for example, a laminated body and a wound body, but is not particularly limited. Further, the range of forming the electrode active material layer on the current collector is not particularly limited, and it may be formed on the entire surface of the current collector or on a part of the surface of the current collector. When the current collector is in the shape of a plate, foil, or the like, the electrode active material layer may be formed on both sides or only on one side.
  • the current collector is preferably a metal sheet having a thickness of 0.001 mm or more and 0.5 mm or less, and examples of the metal include iron, copper, aluminum, nickel, and stainless steel.
  • the metal sheet may be, for example, a metal foil or a metal plate.
  • the current collector is preferably a copper foil.
  • the electrode active material layer according to the present embodiment contains a binder copolymer (A) and an electrode active material.
  • the electrode active material layer may contain other components contained in the above-mentioned binder composition, or may contain other components contained in the above-mentioned electrode slurry.
  • Electrode manufacturing method As a method for producing an electrode, for example, an electrode slurry is applied onto a current collector, dried to form an electrode active material layer, and then cut into an appropriate size.
  • the method of applying the electrode slurry onto the current collector is not particularly limited, but for example, the reverse roll method, the direct roll method, the doctor blade method, the knife method, the extrusion method, the curtain method, the gravure method, the bar method, and the dip method. Law, squeeze method, etc. can be mentioned.
  • the doctor blade method, the knife method, or the extrusion method is preferably used in consideration of various physical properties such as the viscosity of the electrode slurry and the drying property. This is because it is possible to obtain an electrode active material layer having a smooth surface and a small variation in thickness.
  • the electrode slurry may be applied to only one side of the current collector, or may be applied to both sides. When the electrode slurry is applied to both sides of the current collector, it may be applied sequentially on one side at a time, or on both sides at the same time. Further, the electrode slurry may be continuously applied to the current collector or may be applied intermittently.
  • the coating amount of the electrode slurry can be appropriately determined according to the design capacity of the battery, the composition of the electrode slurry, and the like. The coating amount of the electrode slurry depends on the properties of the electrode slurry, but is preferably 13 mg / cm 2 or less (when coated on both sides, the coating amount per one side). This is because the occurrence of cracks on the electrode surface can be suppressed in the process of drying the electrode slurry.
  • an electrode active material layer is formed on the current collector.
  • the method for drying the electrode slurry is not particularly limited, and for example, hot air, reduced pressure or vacuum environment, (far) infrared rays, and low temperature air can be used alone or in combination.
  • the drying temperature and drying time of the electrode slurry can be appropriately adjusted depending on the concentration of non-volatile components in the electrode slurry, the amount of coating on the current collector, and the like.
  • the drying temperature is preferably 40 ° C. or higher and 350 ° C. or lower, and more preferably 60 ° C. or higher and 100 ° C. or lower from the viewpoint of productivity.
  • the drying time is preferably 1 minute or more and 30 minutes or less.
  • the electrode sheet on which the electrode active material layer is formed on the current collector may be cut in order to obtain an appropriate size and shape as an electrode.
  • the method for cutting the electrode sheet is not particularly limited, and for example, a slit, a laser, a wire cut, a cutter, a Thomson, or the like can be used.
  • the electrode sheet may be pressed before or after cutting the electrode sheet.
  • the electrode active material is firmly bound to the current collector, and the electrode can be made thinner, so that the non-aqueous battery can be miniaturized.
  • a pressing method a general method can be used, and it is particularly preferable to use a die pressing method or a roll pressing method.
  • the pressing pressure is not particularly limited, but is preferably 0.5 t / cm 2 or more and 5 t / cm 2 or less.
  • the linear pressure is not particularly limited, but is preferably 0.5 t / cm or more and 5 t / cm or less. This is to suppress the insertion and desorption capacity of charge carriers such as lithium ions into the electrode active material while obtaining the above effect by pressing.
  • Non-aqueous secondary battery > A lithium ion secondary battery will be described as a preferable example of the non-aqueous secondary battery according to the present embodiment, but the battery configuration is not limited to that described here.
  • the non-aqueous secondary battery according to the present embodiment is one in which a positive electrode, a negative electrode, an electrolytic solution, and, if necessary, parts such as a separator are housed in an exterior body, and one of the positive electrode and the negative electrode. Alternatively, the electrodes produced by the above method are used for both.
  • at least one of the positive electrode and the negative electrode contains the copolymer (A) in the electrode binder, but it is preferable that at least the negative electrode contains the copolymer (A).
  • Electrolyte As the electrolytic solution, a non-aqueous liquid having ionic conductivity is used.
  • the electrolytic solution include a solution in which an electrolyte is dissolved in an organic solvent, an ionic liquid, and the like, but the former is preferable. This is because a non-aqueous battery having a low manufacturing cost and a low internal resistance can be obtained.
  • an alkali metal salt can be used and can be appropriately selected depending on the type of electrode active material and the like.
  • the electrolyte for example, LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, lithium aliphatic carboxylate and the like.
  • other alkali metal salts can also be used as the electrolyte.
  • the organic solvent for dissolving the electrolyte is not particularly limited, but for example, ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), dimethyl carbonate (DMC), fluoroethylene carbonate.
  • Carbonic acid ester compounds such as (FEC) and vinylene carbonate (VC); nitrile compounds such as acetonitrile; carboxylic acid esters such as ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and propyl propionate.
  • These organic solvents may be used alone or in combination of two or more. Above all, it is preferable to use a combination of linear carbonate-based solvents.
  • the linear carbonate solvent include diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate.
  • the exterior body for example, a laminating material of an aluminum foil and a resin film can be appropriately used, but the exterior body is not limited to this.
  • the shape of the battery may be any shape such as a coin type, a button type, a sheet type, a cylindrical type, a square type, and a flat type.
  • a negative electrode of a lithium ion secondary battery and a lithium ion secondary battery are manufactured, and the negative electrode of the lithium ion secondary battery and the lithium ion secondary battery according to the comparative example are used.
  • the effect of the present invention is confirmed.
  • the present invention is not limited thereto.
  • the water used in the following Examples and Comparative Examples is ion-exchanged water.
  • Example 1 356 parts by mass of water, 270 parts by mass of styrene, 0.24 parts by mass of methyl methacrylate, 210 parts by mass of 2-ethylhexyl acrylate, 10 parts by mass of itaconic acid, and 80% aqueous solution of acrylic acid. 20 parts by mass (16 parts by mass of acrylic acid and 4.0 parts by mass of water), 6.9 parts by mass of divinylbenzene, and 1.2 parts by mass of Aqualon® AR10 (details are shown in Table 2).
  • a monomer emulsion was prepared by mixing 0.0 parts by mass and 0.10 parts by mass of ⁇ -mercaptopropionic acid.
  • Table 2 shows the details of Aqualon AR10, Adecaria Soap SR10, Aqualon KH10, and Eleminor JS20.
  • Preparation process of electrode binder resin composition The same was performed in the examples and each comparative example.
  • the obtained aqueous emulsion of the copolymer (A) was cooled to room temperature, and 19 parts by mass of 25% by mass of ammonia water and 155 parts by mass of water were added to a separable flask to neutralize the obtained copolymer (A), and the copolymer weight was equalized.
  • a binder composition containing the coalescence (A) was obtained.
  • Table 1 shows the amounts of the components used for the synthesis of the copolymer (A) and the preparation of the binder composition.
  • the amount of water is the total amount of water used in the synthesis step and the preparation step, and the water contained in the acrylic acid aqueous solution and the ammonia water is also included in the calculation. Further, in Table 1, the amount of acrylic acid and ammonia added is the amount of only the solute contained in the above aqueous acrylic acid solution and aqueous ammonia.
  • the contact angles of the components shown in Table 2 were measured as follows. A 20% by mass aqueous solution was prepared for each of the components shown in Table 2. The prepared aqueous solution was applied to a glass plate using a doctor blade and dried at 60 ° C. for 5 minutes to form a film. The static contact angle determined by the 1 / 2 ⁇ method when 4 ⁇ L of ethylmethyl carbonate was added dropwise to this film was measured. The measurement results are as shown in Table 2.
  • Non-volatile content concentration 1 g of the binder composition was weighed on an aluminum dish having a diameter of 5 cm, dried at 105 ° C. for 1 hour at 1 atm (1013 hPa) while circulating air in a dryer, and the mass of the remaining components was measured. The mass ratio (mass%) of the above-mentioned components remaining after drying with respect to the mass (1 g) of the binder composition before drying was calculated as the non-volatile content concentration.
  • Electrolyte resistance of electrode binder The film was cut out to a size of 30 mm ⁇ 10 mm with a cutter knife. The mass M0 of the cut out film was measured. The cut film was immersed in ethyl methyl carbonate (EMC) at 60 ° C. for 24 hours in a closed container, and the film was taken out. The mass M1 of the film immediately after being taken out was measured. Next, the film was vacuum dried at 60 ° C. for 12 hours, and the mass M2 of the dried film was measured. From the measured masses M0, M1 and M2, the swelling rate (mass%) of the electrode binder in the electrolytic solution and the elution rate (mass%) with respect to the electrolytic solution were calculated by the following formulas (6) and (7).
  • EMC ethyl methyl carbonate
  • a positive electrode slurry was applied to both sides of a 15 ⁇ m-thick aluminum foil (positive electrode current collector) by a direct roll method.
  • the amount of the positive electrode slurry applied to the positive electrode current collector was adjusted so that the thickness after the roll press treatment described later was 125 ⁇ m per side.
  • the positive electrode slurry applied on the positive electrode current collector was dried at 120 ° C. for 5 minutes and pressed by a roll press (manufactured by Thunk Metal Co., Ltd., press load 5 tons, roll width 7 cm) to form a positive electrode active material layer.
  • a positive electrode sheet was obtained.
  • the obtained positive electrode sheet was cut out to a size of 50 mm ⁇ 40 mm, and a conductive tab was attached to prepare a positive electrode.
  • Negative electrode slurry was applied to both sides of a copper foil (negative electrode current collector) having a thickness of 10 ⁇ m by the direct roll method.
  • the amount of the negative electrode slurry applied to the negative electrode current collector was adjusted so that the thickness after the roll press treatment described later was 170 ⁇ m per side.
  • the negative electrode slurry coated on the negative electrode current collector is dried at 90 ° C. for 10 minutes, pressed by a roll press (manufactured by Thunk Metal Co., Ltd., press load 8 t, roll width 7 cm), and the negative electrode active material layer is placed on the current collector.
  • a roll press manufactured by Thunk Metal Co., Ltd., press load 8 t, roll width 7 cm
  • the obtained negative electrode sheet was cut out to a size of 52 mm ⁇ 42 mm, and a conductive tab was attached to prepare a negative electrode.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • the negative electrode active material layer was peeled off by 20 mm in the length direction from one end of the test piece, and the test piece on the copper foil side was folded back 180 ° to this part ( The copper foil side of the part of the test piece from which the negative electrode active material layer was peeled off) was grasped by the chuck on the upper side of the testing machine. Further, one end of the SUS plate on the side where the negative electrode active material layer was peeled off was grasped by the lower chuck. In that state, the copper foil was peeled off from the test piece at a speed of 100 ⁇ 10 mm / min to obtain a graph of peeling length (mm) -peeling force (mN).
  • the average value (mN) of the peeling force at a peeling length of 10 to 45 mm was calculated, and the value obtained by dividing the average value of the peeling force by the width of the test piece of 25 mm was the peeling strength (mN / mN / of the negative electrode active material layer. mm).
  • peeling between the double-sided tape and the SUS plate and interfacial peeling between the double-sided tape and the negative electrode active material layer did not occur during the test.
  • the time integral value of the current in the steps (i) and (ii) is the charge capacity
  • the time integral value of the current in the step (iv) is the discharge capacity.
  • the discharge capacity of the first cycle and the discharge capacity of the 200th cycle were measured. 100 ⁇ (discharge capacity in the 200th cycle) / (discharge capacity in the first cycle) [%] was calculated as the cycle capacity retention rate at high temperature of the battery, and is shown in Table 3.
  • Example 1 of Table 3 an electrode binder resin composition containing a copolymer (A) having a structural unit derived from the polymerizable surfactant (a4) having the structure represented by the formula (1) was used.
  • the electrode binder produced in the above method has good electrolyte resistance. Further, it can be seen that by including this copolymer (A) as an electrode binder, an electrode having an electrode active material layer having high peel strength with respect to the current collector can be obtained. Furthermore, it can be seen that the battery manufactured using this electrode has excellent cycle characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided are a copolymer for an electrode binder and an electrode binder resin composition, which are suitable for obtaining an electrode binder having good electrolyte resistance, an electrode containing an electrode active material layer having high peel strength against a current collector, and a non-aqueous secondary battery exhibiting good charge/discharge cycle characteristics. The copolymer for an electrode binder comprises: a structural unit derived from a monomer (a1) such as (meth)acrylic acid alkyl ester; a structural unit derived from a monomer (a2) composed of at least one selected from the group consisting of a carboxylic acid and a salt thereof, the carboxylic acid containing one ethylenically unsaturated bond in a molecule; a structural unit derived from an internal crosslinking agent (a3) such as a compound having at least two ethylenically unsaturated bonds in a molecule; and a structural unit derived from a polymerizable surfactant (a4) such as a compound represented by formula (1).

Description

電極バインダー用共重合体、電極バインダー樹脂組成物、及び非水系二次電池電極Copolymers for electrode binders, electrode binder resin compositions, and non-aqueous secondary battery electrodes
 本発明は、電極バインダー用共重合体、電極バインダー樹脂組成物、及び非水系二次電池電極に関する。
 本願は、2019年12月27日に、日本に出願された特願2019-239174号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a copolymer for an electrode binder, an electrode binder resin composition, and a non-aqueous secondary battery electrode.
The present application claims priority based on Japanese Patent Application No. 2019-239174 filed in Japan on December 27, 2019, the contents of which are incorporated herein by reference.
 非水系二次電池は、金属酸化物などを活物質とした正極、黒鉛等の炭素材料を活物質とした負極、および電解液を含む構成を有し、イオンが正極と負極間を移動することにより電池の充放電が行われる二次電池である。 A non-aqueous secondary battery has a configuration including a positive electrode using a metal oxide or the like as an active material, a negative electrode using a carbon material such as graphite as an active material, and an electrolytic solution, and ions move between the positive electrode and the negative electrode. It is a secondary battery in which the battery is charged and discharged.
 非水系二次電池としてリチウムイオン二次電池が代表例として挙げられる。非水系二次電池は、小型化、軽量化の面からノート型パソコン、携帯電話、電動工具、電子・通信機器の電源として使用されている。また、最近では環境車両適用の観点から電気自動車やハイブリッド自動車用にも使用されている。その中で、非水系二次電池の高出力化、高容量化、長寿命化等が強く求められてきている。 A typical example is a lithium ion secondary battery as a non-aqueous secondary battery. Non-aqueous secondary batteries are used as power sources for notebook computers, mobile phones, power tools, and electronic / communication devices in terms of miniaturization and weight reduction. Recently, it has also been used for electric vehicles and hybrid vehicles from the viewpoint of application to environmental vehicles. Under these circumstances, there is a strong demand for higher output, higher capacity, longer life, etc. of non-aqueous secondary batteries.
 正極および負極に使用されるバインダーには、活物質同士および活物質と集電体を結着させる役割がある。非水系二次電池の容量向上、作業環境保全のため、水分散系バインダーの開発が進められている。たとえば、増粘剤としてカルボキシメチルセルロース(CMC)を併用したスチレン-ブタジエンゴム(SBR)系の水分散体が知られている。 The binder used for the positive electrode and the negative electrode has a role of binding the active materials to each other and the active material to the current collector. Water dispersion binders are being developed to improve the capacity of non-aqueous secondary batteries and protect the working environment. For example, a styrene-butadiene rubber (SBR) -based aqueous dispersion using carboxymethyl cellulose (CMC) as a thickener is known.
 特許文献1~5では、スチレン、エチレン性不飽和カルボン酸エステル、エチレン性不飽和カルボン酸および内部架橋剤を含有するエチレン性不飽和単量体を、界面活性剤の存在下、乳化重合して得られる非水系二次電池電極用バインダーが提案されている。 In Patent Documents 1 to 5, an ethylenically unsaturated monomer containing styrene, an ethylenically unsaturated carboxylic acid ester, an ethylenically unsaturated carboxylic acid and an internal cross-linking agent is emulsified and polymerized in the presence of a surfactant. The resulting non-aqueous secondary battery electrode binder has been proposed.
特許第5211794号公報Japanese Patent No. 5211794 特許第5701519号公報Japanese Patent No. 5701519 特許第5991321号公報Japanese Patent No. 5991321 特開2017-174804号公報JP-A-2017-174804 中国特許出願公開第104882612号明細書Chinese Patent Application Publication No. 1048862612
 しかしながら、特許文献1~5に記載のバインダーを用いた場合では、充放電サイクル特性向上の余地があった。 However, when the binders described in Patent Documents 1 to 5 are used, there is room for improvement in charge / discharge cycle characteristics.
 本発明は、耐電解液性が良好な電極バインダーが得られ、集電体に対する剥離強度が高い電極活物質層を有する電極が得られ、さらに充放電サイクル特性が良好な非水系二次電池が得られる電極バインダー用共重合体、及び電極バインダー樹脂組成物を提供することを目的とする。また、本発明は、耐電解液性が良好な電極バインダーを含み、集電体に対する剥離強度が高い電極活物質層を有し、充放電サイクル特性が良好な非水系二次電池が得られる非水系二次電池電極を提供することを目的とする。 INDUSTRIAL APPLICABILITY According to the present invention, an electrode binder having good electrolyte resistance can be obtained, an electrode having an electrode active material layer having high peeling strength against a current collector can be obtained, and a non-aqueous secondary battery having good charge / discharge cycle characteristics can be obtained. An object of the present invention is to provide a obtained copolymer for an electrode binder and an electrode binder resin composition. Further, the present invention includes an electrode binder having good electrolyte resistance, has an electrode active material layer having high peeling strength against a current collector, and can obtain a non-aqueous secondary battery having good charge / discharge cycle characteristics. It is an object of the present invention to provide an aqueous secondary battery electrode.
 すなわち、本発明の構成は以下の[1]~[15]の通りである。
[1] 分子内に含まれるエチレン性不飽和結合が1個である(メタ)アクリル酸アルキルエステル、及び分子内に含まれるエチレン性不飽和結合が1個である炭化水素化合物からなる群より選ばれる少なくとも1種類からなる単量体(a1)に由来する構造単位と、 分子内に含まれるエチレン性不飽和結合が1個であるカルボン酸、及びその塩からなる群から選ばれる少なくとも1種類からなる単量体(a2)に由来する構造単位と、
 1分子中に2つ以上のエチレン性不飽和結合を有する化合物からなる群より選ばれる少なくとも1種類からなる内部架橋剤(a3)に由来する構造単位と、
 下記の式(1)で示される化合物からなる群より選ばれる少なくとも1種類からなる重合性界面活性剤(a4)に由来する構造単位と、
を含む共重合体であって、
 前記単量体(a1)に由来する構造単位を、50質量%以上98質量%以下含み、
 前記単量体(a2)に由来する構造単位を、1.0質量%以上15質量%以下含み、 前記内部架橋剤(a3)に由来する構造単位を、0.020質量%以上10質量%以下含み、
 前記重合性界面活性剤(a4)に由来する構造単位を、0.010質量%以上10質量%以下含む
 ことを特徴とする電極バインダー用共重合体。
Figure JPOXMLDOC01-appb-C000002
 式(1)中、Xは水素原子またはSONHであり、mは1以上4以下の整数、nは5以上40以下の整数である。
[2] 前記単量体(a1)は、ホモポリマーのガラス転移点Tgが5℃以上である高Tg単量体(a11)と、ホモポリマーのガラス転移点Tgが-5℃以下である低Tg単量体(a12)とを含む[1]に記載の電極バインダー用共重合体。
[3] 前記高Tg単量体(a11)に由来する構造単位の含有量と、前記低Tg単量体(a12)に由来する構造単位の含有量との質量比は、30:70~70:30である[2]に記載の電極バインダー用共重合体。
[4] 前記単量体(a1)に由来する構造単位の含有率は、70質量%以上97質量%以下である[1]~[3]のいずれかに記載の電極バインダー用共重合体。
[5] 前記単量体(a2)に由来する構造単位の少なくとも一部は、カルボキシ基と塩基性物質との塩を形成している[1]~[4]のいずれかに記載の電極バインダー用共重合体。
[6] 前記単量体(a2)に由来する構造単位の含有率は、2.0質量%以上10質量%以下である[1]~[5]のいずれかに記載の電極バインダー用共重合体。
[7] 前記内部架橋剤(a3)に由来する構造単位の含有率は、0.50質量%以上5.0質量%以下である[1]~[6]のいずれかに記載の電極バインダー用共重合体。
[8] 式(1)中、Xは、SONHである[1]~[7]のいずれかに記載の電極バインダー用共重合体。
[9] 式(1)中、nは、8以上25以下である[1]~[8]のいずれかに記載の電極バインダー用共重合体。
[10] 前記重合性界面活性剤(a4)に由来する構造単位の含有率は、0.10質量%以上3.0質量%以下である[1]~[9]のいずれかに記載の電極バインダー用共重合体。
[11] さらに、前記単量体(a1)と前記単量体(a2)と前記内部架橋剤(a3)と前記重合性界面活性剤(a4)とのいずれにも該当しない、エチレン性不飽和結合を有するスルホン酸またはその塩に由来する構造単位を含む[1]~[10]のいずれかに記載の電極バインダー用共重合体。
[12] [1]~[11]のいずれかに記載の電極バインダー用共重合体が水性媒体(B)中に分散している電極バインダー樹脂組成物。
[13] [1]~[11]のいずれかに記載の電極バインダー用共重合体と、電極活物質と、が水性媒体中に分散している電極スラリー。
[14] [1]~[11]のいずれかに記載の電極バインダー用共重合体及び電極活物質を含む電極活物質層が、金属シートからなる集電体上に形成された非水系二次電池電極。
[15] [1]~[11]のいずれかに記載の電極バインダー用共重合体を、正極及び負極の少なくとも一方に含む非水系二次電池。
That is, the configuration of the present invention is as follows [1] to [15].
[1] Selected from the group consisting of a (meth) acrylic acid alkyl ester having one ethylenically unsaturated bond contained in the molecule and a hydrocarbon compound having one ethylenically unsaturated bond contained in the molecule. From at least one selected from the group consisting of a structural unit derived from a monomer (a1) consisting of at least one kind, a carboxylic acid having one ethylenically unsaturated bond contained in the molecule, and a salt thereof. A structural unit derived from the monomer (a2)
A structural unit derived from an internal cross-linking agent (a3) consisting of at least one selected from the group consisting of compounds having two or more ethylenically unsaturated bonds in one molecule, and
A structural unit derived from a polymerizable surfactant (a4) consisting of at least one selected from the group consisting of compounds represented by the following formula (1), and
It is a copolymer containing
The structural unit derived from the monomer (a1) is contained in an amount of 50% by mass or more and 98% by mass or less.
The structural unit derived from the monomer (a2) is contained in an amount of 1.0% by mass or more and 15% by mass or less, and the structural unit derived from the internal cross-linking agent (a3) is contained in an amount of 0.020% by mass or more and 10% by mass or less. Including
A copolymer for an electrode binder, which comprises 0.010% by mass or more and 10% by mass or less of a structural unit derived from the polymerizable surfactant (a4).
Figure JPOXMLDOC01-appb-C000002
In the formula (1), X is a hydrogen atom or SO 3 NH 4 , m is an integer of 1 or more and 4 or less, and n is an integer of 5 or more and 40 or less.
[2] The monomer (a1) has a high Tg monomer (a11) having a homopolymer glass transition point Tg of 5 ° C. or higher and a low homopolymer glass transition point Tg of −5 ° C. or lower. The copolymer for an electrode binder according to [1], which contains a Tg monomer (a12).
[3] The mass ratio of the content of the structural unit derived from the high Tg monomer (a11) to the content of the structural unit derived from the low Tg monomer (a12) is 30:70 to 70. : 30. The copolymer for an electrode binder according to [2].
[4] The copolymer for an electrode binder according to any one of [1] to [3], wherein the content of the structural unit derived from the monomer (a1) is 70% by mass or more and 97% by mass or less.
[5] The electrode binder according to any one of [1] to [4], wherein at least a part of the structural unit derived from the monomer (a2) forms a salt of a carboxy group and a basic substance. For copolymers.
[6] The copolymer weight for an electrode binder according to any one of [1] to [5], wherein the content of the structural unit derived from the monomer (a2) is 2.0% by mass or more and 10% by mass or less. Combined.
[7] The electrode binder according to any one of [1] to [6], wherein the content of the structural unit derived from the internal cross-linking agent (a3) is 0.50% by mass or more and 5.0% by mass or less. Copolymer.
[8] In the formula (1), X is the copolymer for an electrode binder according to any one of [1] to [7], which is SO 3 NH 4.
[9] The copolymer for an electrode binder according to any one of [1] to [8], wherein n is 8 or more and 25 or less in the formula (1).
[10] The electrode according to any one of [1] to [9], wherein the content of the structural unit derived from the polymerizable surfactant (a4) is 0.10% by mass or more and 3.0% by mass or less. Copolymer for binder.
[11] Further, ethylenically unsaturated, which does not correspond to any of the monomer (a1), the monomer (a2), the internal cross-linking agent (a3), and the polymerizable surfactant (a4). The copolymer for an electrode binder according to any one of [1] to [10], which comprises a structural unit derived from a sulfonic acid having a bond or a salt thereof.
[12] An electrode binder resin composition in which the copolymer for an electrode binder according to any one of [1] to [11] is dispersed in an aqueous medium (B).
[13] An electrode slurry in which the copolymer for an electrode binder according to any one of [1] to [11] and an electrode active material are dispersed in an aqueous medium.
[14] A non-aqueous secondary in which the electrode active material layer containing the electrode binder copolymer and the electrode active material according to any one of [1] to [11] is formed on a current collector made of a metal sheet. Battery electrode.
[15] A non-aqueous secondary battery containing the copolymer for an electrode binder according to any one of [1] to [11] in at least one of a positive electrode and a negative electrode.
 本発明によれば、耐電解液性が良好な電極バインダーが得られ、集電体に対する剥離強度が高い電極活物質層を有する電極が得られ、さらに充放電サイクル特性が良好な非水系二次電池が得られる電極バインダー用共重合体、及び電極バインダー樹脂組成物を提供することができる。また、本発明によれば、耐電解液性が良好な電極バインダーを含み、集電体に対する剥離強度が高い電極活物質層を有し、充放電サイクル特性が良好な非水系二次電池が得られる非水系二次電池電極を提供することができる。 According to the present invention, an electrode binder having good electrolyte resistance can be obtained, an electrode having an electrode active material layer having high peeling strength against a current collector can be obtained, and a non-aqueous secondary having good charge / discharge cycle characteristics can be obtained. A copolymer for an electrode binder from which a battery can be obtained and an electrode binder resin composition can be provided. Further, according to the present invention, a non-aqueous secondary battery containing an electrode binder having good electrolyte resistance, having an electrode active material layer having high peeling strength against a current collector, and having good charge / discharge cycle characteristics can be obtained. Non-aqueous secondary battery electrodes can be provided.
 「(メタ)アクリル」とは、アクリル及びメタクリルの総称であり、「(メタ)アクリレート」とは、アクリレート及びメタクリレートの総称である。 "(Meta) acrylic" is a general term for acrylic and methacryl, and "(meth) acrylate" is a general term for acrylate and methacrylate.
 「不揮発分」は、直径5cmのアルミ皿に組成物を1g秤量し、1気圧(1013hPa)で、乾燥器内で空気を循環させながら105℃で1時間乾燥させ後に残った成分である。組成物の形態は、溶液、分散液、スラリーが挙げられるが、これらに限られない。 The "nonvolatile component" is a component remaining after weighing 1 g of the composition on an aluminum dish having a diameter of 5 cm and drying it at 105 ° C. for 1 hour while circulating air in a dryer at 1 atm (1013 hPa). The form of the composition includes, but is not limited to, a solution, a dispersion, and a slurry.
 「不揮発分濃度」とは、乾燥前の組成物の質量(1g)に対する、上記条件下で乾燥後の不揮発分の質量割合(質量%)である。 The "nonvolatile content concentration" is the mass ratio (mass%) of the non-volatile content after drying under the above conditions with respect to the mass (1 g) of the composition before drying.
 「エチレン性不飽和結合」とは、特に断りがない限り、ラジカル重合性を有するエチレン性不飽和結合を指す。 "Ethylene unsaturated bond" refers to an ethylenically unsaturated bond having radical polymerization unless otherwise specified.
 エチレン性不飽和結合を有する化合物の重合体において、あるエチレン性不飽和結合を有する化合物に由来する構造単位は、その化合物のエチレン性不飽和結合以外の部分の化学構造と、重合体におけるその構造単位の主鎖を形成する部分以外の部分の化学構造とが同じであるとする。例えば、アクリル酸に由来する構造単位は、重合体として主鎖以外の部分にCOOHの構造を有している。 In the polymer of a compound having an ethylenically unsaturated bond, the structural unit derived from the compound having an ethylenically unsaturated bond is the chemical structure of the portion other than the ethylenically unsaturated bond of the compound and its structure in the polymer. It is assumed that the chemical structure of the part other than the part forming the main chain of the unit is the same. For example, a structural unit derived from acrylic acid has a COOH structure in a portion other than the main chain as a polymer.
 また、重合後に主鎖以外の部分を化学反応させる等、単量体の化学構造と重合体の化学構造とで対応しない場合は、重合後の化学構造を基準とする。また、カルボキシ基等のアニオン性官能基は、塩を形成してもよい。例えば、COONHもカルボキシ基とする。 If the chemical structure of the monomer and the chemical structure of the polymer do not correspond to each other, such as by chemically reacting parts other than the main chain after polymerization, the chemical structure after polymerization is used as a reference. Further, an anionic functional group such as a carboxy group may form a salt. For example, COONH 4 is also a carboxy group.
<1.電極バインダー用共重合体(A)>
 本発明にかかる電極バインダー用共重合体(A)(以下、共重合体(A)とすることもある)は、後述する単量体(a1)に由来する構造単位と、後述する単量体(a2)に由来する構造単位と、後述する内部架橋剤(a3)に由来する構造単位と、後述する重合性界面活性剤(a4)に由来する構造単位と、を含む。共重合体(A)は、その他の単量体(a5)に由来する構造単位を含んでもよい。
<1. Copolymer for electrode binder (A)>
The copolymer (A) for an electrode binder according to the present invention (hereinafter, may be referred to as a copolymer (A)) has a structural unit derived from the monomer (a1) described later and a monomer described later. It contains a structural unit derived from (a2), a structural unit derived from an internal cross-linking agent (a3) described later, and a structural unit derived from a polymerizable surfactant (a4) described later. The copolymer (A) may contain structural units derived from other monomers (a5).
〔1-1.単量体(a1)〕
 単量体(a1)は、分子内に含まれるエチレン性不飽和結合が1個である(メタ)アクリル酸アルキルエステル、及び分子内に含まれるエチレン性不飽和結合が1個である炭化水素化合物からなる群より選ばれる少なくとも1種類からなる。(メタ)アクリル酸アルキルエステルは、(メタ)アクリロイルオキシ基以外の部分が炭化水素構造である。単量体(a1)は、上記(メタ)アクリル酸アルキルエステル、及び上記炭化水素化合物の両方を含むことが好ましい。単量体(a1)は、電極活物質と共重合体(A)との密着性の観点から、エチレン性不飽和結合を有する芳香族化合物を含むことが好ましい。
[1-1. Monomer (a1)]
The monomer (a1) is a (meth) acrylic acid alkyl ester having one ethylenically unsaturated bond contained in the molecule, and a hydrocarbon compound having one ethylenically unsaturated bond contained in the molecule. It consists of at least one type selected from the group consisting of. The (meth) acrylic acid alkyl ester has a hydrocarbon structure except for the (meth) acryloyloxy group. The monomer (a1) preferably contains both the (meth) acrylic acid alkyl ester and the hydrocarbon compound. The monomer (a1) preferably contains an aromatic compound having an ethylenically unsaturated bond from the viewpoint of adhesion between the electrode active material and the copolymer (A).
 エチレン性不飽和結合を有する芳香族化合物としては、例えば、スチレン系化合物、ビニルナフタレン系化合物、ビニルビフェ二ル系化合物等のビニル芳香族化合物が挙げられる。スチレン系化合物としては、例えば、スチレン、t-ブチルスチレン、α-メチルスチレン、p-メチルスチレン、及び1,1-ジフェニルエチレンからなる群から選ばれる少なくとも1種の化合物が好ましく、スチレン、α-メチルスチレンがより好ましく、スチレンが更に好ましい。 Examples of aromatic compounds having an ethylenically unsaturated bond include vinyl aromatic compounds such as styrene compounds, vinylnaphthalene compounds, and vinyl biphenyl compounds. As the styrene-based compound, for example, at least one compound selected from the group consisting of styrene, t-butylstyrene, α-methylstyrene, p-methylstyrene, and 1,1-diphenylethylene is preferable, and styrene, α- Methylstyrene is more preferred, and styrene is even more preferred.
 単量体(a1)は、ホモポリマーのガラス転移点Tgが5℃以上である高Tg単量体(a11)と、ホモポリマーのガラス転移点Tgが-5℃以下である低Tg単量体(a12)とを含むことが好ましい。共重合体(A)のガラス転移点を仕様に応じて適切な値にコントロールするためである。また、単量体(a1)中の、高Tg単量体(a11)及び低Tg単量体(a12)の合計含有率は、60質量%以上であることが好ましく、75質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。単量体(a1)には、ホモポリマーのガラス転移点Tgが5℃未満-5℃超の単量体が含まれていてもよい。 The monomer (a1) is a high Tg monomer (a11) having a homopolymer glass transition point Tg of 5 ° C. or higher, and a low Tg monomer having a homopolymer glass transition point Tg of −5 ° C. or lower. It is preferable to include (a12). This is to control the glass transition point of the copolymer (A) to an appropriate value according to the specifications. The total content of the high Tg monomer (a11) and the low Tg monomer (a12) in the monomer (a1) is preferably 60% by mass or more, preferably 75% by mass or more. More preferably, it is more preferably 90% by mass or more. The monomer (a1) may contain a monomer having a homopolymer glass transition point Tg of less than 5 ° C and more than −5 ° C.
 共重合体(A)における、高Tg単量体(a11)に由来する構造単位の含有量と、低Tg単量体(a12)に由来する構造単位の含有量との質量比は、30:70以上であることが好ましく、40:60以上であることがより好ましい。共重合体(A)における、高Tg単量体(a11)に由来する構造単位の含有量と、低Tg単量体(a12)に由来する構造単位の含有量との質量比は、70:30以下であることが好ましく、60:40以下であることがより好ましい。 The mass ratio of the content of the structural unit derived from the high Tg monomer (a11) to the content of the structural unit derived from the low Tg monomer (a12) in the copolymer (A) is 30: It is preferably 70 or more, and more preferably 40:60 or more. The mass ratio of the content of the structural unit derived from the high Tg monomer (a11) to the content of the structural unit derived from the low Tg monomer (a12) in the copolymer (A) is 70: It is preferably 30 or less, and more preferably 60:40 or less.
 高Tg単量体(a11)としては、スチレン(100℃)、アクリル酸メチル(8℃)、メタクリル酸メチル(105℃)、メタクリル酸エチル(65℃)、メタクリル酸n-プロピル(35℃)、メタクリル酸イソプロピル(81℃)、メタクリル酸n-ブチル(20℃)、メタクリル酸イソブチル(53℃)、メタクリル酸tert-ブチル(107℃)、アクリル酸tert-ブチル(14℃)、メタクリル酸シクロヘキシル(83℃)、メタクリル酸ステアリル(38℃)、アクリル酸ステアリル(10℃)、メタクリル酸イソボルニル(155℃)、アクリル酸イソボルニル(94℃)等が挙げられるが、これらに限られない。なお、ここで挙げた化合物名の後ろに付した()内の温度はその化合物のホモポリマーのTgの値である。ここで挙げた化合物の中でも、乳化重合の容易さ及び耐溶出性の観点から、高Tg単量体(a11)は、スチレン、(メタ)アクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチルから選ばれる1種以上を含むことが好ましい。 Examples of the high Tg monomer (a11) include styrene (100 ° C.), methyl acrylate (8 ° C.), methyl methacrylate (105 ° C.), ethyl methacrylate (65 ° C.), and n-propyl methacrylate (35 ° C.). , Isopropyl methacrylate (81 ° C), n-butyl methacrylate (20 ° C), isobutyl methacrylate (53 ° C), tert-butyl methacrylate (107 ° C), tert-butyl acrylate (14 ° C), cyclohexyl methacrylate. (83 ° C.), stearyl methacrylate (38 ° C.), stearyl acrylate (10 ° C.), isobornyl methacrylate (155 ° C.), isobornyl acrylate (94 ° C.) and the like, but are not limited thereto. The temperature in parentheses after the compound name given here is the value of Tg of the homopolymer of the compound. Among the compounds listed here, from the viewpoint of ease of emulsion polymerization and elution resistance, the high Tg monomer (a11) is composed of styrene, methyl (meth) acrylate, ethyl methacrylate, and n-butyl methacrylate. It is preferable to include one or more selected species.
 低Tg単量体(a11)としては、アクリル酸エチル(-22℃)、アクリル酸n-プロピル(-48℃)、アクリル酸n-ブチル(-52℃)、アクリル酸iso-ブチル(-24℃)、メタクリル酸2-エチルヘキシル(-10℃)、アクリル酸2-エチルヘキシル(-70℃)、メタクリル酸ラウリル(-65℃)等が挙げられるが、これらに限られない。なお、ここで挙げた化合物名の後ろに付した()内の温度はその化合物のホモポリマーのTgの値である。ここで挙げた化合物の中でも、乳化重合の容易さや耐溶出性の観点から、低Tg単量体(a11)は、アクリル酸エチル、アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル、メタクリル酸ラウリルから選ばれる1種以上を含むことが好ましい。 Examples of the low Tg monomer (a11) include ethyl acrylate (-22 ° C.), n-propyl acrylate (-48 ° C.), n-butyl acrylate (-52 ° C.), and iso-butyl acrylate (-24 ° C.). ° C.), 2-ethylhexyl methacrylate (-10 ° C.), 2-ethylhexyl acrylate (-70 ° C.), lauryl methacrylate (-65 ° C.) and the like, but are not limited thereto. The temperature in parentheses after the compound name given here is the value of Tg of the homopolymer of the compound. Among the compounds listed here, from the viewpoint of ease of emulsion polymerization and elution resistance, the low Tg monomer (a11) is ethyl acrylate, n-butyl acrylate, 2-ethylhexyl (meth) acrylate, and methacrylic. It is preferable to contain one or more selected from lauryl acid.
〔1-2.単量体(a2)〕
 単量体(a2)は、分子内に含まれるエチレン性不飽和結合が1個であるカルボン酸、及びその塩からなる群より選ばれる少なくとも1種類からなる。単量体(a2)は、繰り返し数3以上のアルキレンオキサイド構造を含まないことがより好ましい。
[1-2. Monomer (a2)]
The monomer (a2) is composed of at least one selected from the group consisting of a carboxylic acid having one ethylenically unsaturated bond contained in the molecule and a salt thereof. It is more preferable that the monomer (a2) does not contain an alkylene oxide structure having a repetition number of 3 or more.
 単量体(a2)としては、(メタ)アクリル酸、クロトン酸等の不飽和モノカルボン酸、マレイン酸、フマル酸、イタコン酸等の不飽和ジカルボン酸、不飽和ジカルボン酸のハーフエステル等が挙げられる。これらの中でも、単量体(a2)は(メタ)アクリル酸、イタコン酸のうち少なくとも1つを含むことが好ましい。 Examples of the monomer (a2) include unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid, unsaturated dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid, and half esters of unsaturated dicarboxylic acids. Be done. Among these, the monomer (a2) preferably contains at least one of (meth) acrylic acid and itaconic acid.
 共重合体(A)に含まれる、単量体(a2)に由来する構造単位の少なくとも一部が、カルボキシ基と塩基性物質との塩を形成していてもよい。少なくとも一部の成分をカルボン酸塩とした単量体(a2)を原料として用いて重合することで塩を形成させてもよい。また、共重合体(A)の合成後に塩基性物質を添加することで、共重合体(A)に含まれる単量体(a2)由来の構造単位の少なくとも一部を塩としてもよい。 At least a part of the structural unit derived from the monomer (a2) contained in the copolymer (A) may form a salt of a carboxy group and a basic substance. A salt may be formed by polymerizing using a monomer (a2) containing at least a part of a carboxylic acid salt as a raw material. Further, by adding a basic substance after the synthesis of the copolymer (A), at least a part of the structural units derived from the monomer (a2) contained in the copolymer (A) may be used as a salt.
〔1-3.内部架橋剤(a3)〕
 内部架橋剤(a3)は、1分子中に2つ以上のエチレン性不飽和結合を有する化合物からなる群より選ばれる少なくとも1種類からなる。
[1-3. Internal cross-linking agent (a3)]
The internal cross-linking agent (a3) comprises at least one selected from the group consisting of compounds having two or more ethylenically unsaturated bonds in one molecule.
 1分子中に2つ以上のエチレン性不飽和結合を有する化合物の具体例は、ジビニルベンゼン、1,6-ヘキサンジオールジアクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレートが挙げられる。 Specific examples of the compound having two or more ethylenically unsaturated bonds in one molecule include divinylbenzene, 1,6-hexanediol diacrylate, and 2-hydroxy-3-acryloyloxypropyl methacrylate.
〔1-4.重合性界面活性剤(a4)〕
 重合性界面活性剤(a4)は、以下の式(1)に示される構造を有する化合物からなる群より選ばれる少なくとも1種類からなる。なお、以下の式(1)以外の構造を有し、界面活性剤としての機能を有する単量体については、本発明においてはその他の単量体(a5)とする。
[1-4. Polymerizable surfactant (a4)]
The polymerizable surfactant (a4) comprises at least one selected from the group consisting of compounds having a structure represented by the following formula (1). The monomer having a structure other than the following formula (1) and having a function as a surfactant is referred to as another monomer (a5) in the present invention.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1)中、Xは水素原子またはSONHであり、mは1以上4以下の整数、nは5以上40以下の整数である。XはSONHであることが好ましい。mは1以上3以下であることが好ましい。nは8以上40以下であることが好ましく、8以上25以下であることがより好ましく、8以上15以下であることがさらに好ましい。 In the formula (1), X is a hydrogen atom or SO 3 NH 4 , m is an integer of 1 or more and 4 or less, and n is an integer of 5 or more and 40 or less. X is preferably SO 3 NH 4. m is preferably 1 or more and 3 or less. n is preferably 8 or more and 40 or less, more preferably 8 or more and 25 or less, and further preferably 8 or more and 15 or less.
 重合性界面活性剤(a4)に由来する構造単位は、共重合体(A)において界面活性効果を有する部分を構成する。共重合体(A)を水性媒体中で乳化重合によって合成する場合は、生成する粒子の安定性が重合性界面活性剤(a4)によって向上する。 The structural unit derived from the polymerizable surfactant (a4) constitutes a portion of the copolymer (A) having a surface-active effect. When the copolymer (A) is synthesized by emulsion polymerization in an aqueous medium, the stability of the produced particles is improved by the polymerizable surfactant (a4).
 共重合体(A)が、重合性界面活性剤(a4)に由来する構造単位を含むことで、共重合体(A)は良好な耐電解液性を示しつつ、共重合体(A)を電極バインダーとして用いた非水系二次電池のサイクル特性(サイクル容量維持率)が向上することが、本発明で見出された。 Since the copolymer (A) contains a structural unit derived from the polymerizable surfactant (a4), the copolymer (A) exhibits good electrolyte resistance, and the copolymer (A) can be mixed. It has been found in the present invention that the cycle characteristics (cycle capacity retention rate) of the non-aqueous secondary battery used as the electrode binder are improved.
 重合性界面活性剤(a4)の炭酸エチルメチルに対する接触角(以下、特に断りがなければ、この値を重合性界面活性剤(a4)の接触角と称する)は、15°以下であることが好ましく、10°以下であることがより好ましく、6°以下であることがさらに好ましい。電解液の浸透性を向上させるためである。接触角は、重合性界面活性剤(a4)の20質量%水溶液を、ドクターブレードを用いてガラス板に塗布し、60℃で5分間乾燥させて皮膜を形成させ、この皮膜に炭酸エチルメチルを4μL滴下したときの1/2θ法で求めた静的接触角である。 The contact angle of the polymerizable surfactant (a4) with respect to ethyl methyl carbonate (hereinafter, unless otherwise specified, this value is referred to as the contact angle of the polymerizable surfactant (a4)) is 15 ° or less. It is preferably 10 ° or less, more preferably 6 ° or less, and even more preferably 6 ° or less. This is to improve the permeability of the electrolytic solution. For the contact angle, a 20% by mass aqueous solution of the polymerizable surfactant (a4) was applied to a glass plate using a doctor blade and dried at 60 ° C. for 5 minutes to form a film, and ethyl methyl carbonate was applied to this film. It is a static contact angle obtained by the 1 / 2θ method when 4 μL was dropped.
〔1-5.その他の単量体(a5)〕
 その他の単量体(a5)は、単量体(a1)と単量体(a2)と内部架橋剤(a3)と重合性界面活性剤(a4)と(「単量体(a1)~(a4)」ともいうことがある。)のいずれにも該当しない化合物で、かつ単量体(a1)~(a4)と共重合可能な化合物である。その他の単量体(a5)としては、例えば、エチレン性不飽和結合を有するスルホン酸またはその塩、エチレン性不飽和結合及びリン酸基を有する化合物またはその塩、グリシジル基及びエチレン性不飽和結合を有する化合物、ヒドロキシ基及びエチレン性不飽和結合を有する化合物等が挙げられる。
[1-5. Other monomers (a5)]
The other monomers (a5) include the monomer (a1), the monomer (a2), the internal cross-linking agent (a3), the polymerizable surfactant (a4), and ("monomers (a1) to (" It is a compound that does not fall under any of (a4)) and is copolymerizable with the monomers (a1) to (a4). Examples of the other monomer (a5) include a sulfonic acid having an ethylenically unsaturated bond or a salt thereof, a compound having an ethylenically unsaturated bond and a phosphoric acid group or a salt thereof, a glycidyl group and an ethylenically unsaturated bond. Examples thereof include compounds having a hydroxy group and a compound having an ethylenically unsaturated bond.
 エチレン性不飽和結合を有するスルホン酸の具体例は、p-スチレンスルホン酸、p-スチレンスルホン酸ナトリウム等が挙げられる。 Specific examples of the sulfonic acid having an ethylenically unsaturated bond include p-styrene sulfonic acid and sodium p-styrene sulfonic acid.
 エチレン性不飽和結合及びリン酸基を有する化合物の具体例は、2-メタクロイロキシエチルアシッドホスフェート、アシッドホスホオキシポリオキシエチレングリコールモノメタクリレート、アシッドホスホオキシポリオキシプロピレングリコールモノメタクリレート、3-クロロ2-アシッドホスホオキシプロピルメタクリレート、メタクロイルオキシエチルアシッドホスフェート・モノエタノールアミン塩等が挙げられる。 Specific examples of compounds having an ethylenically unsaturated bond and a phosphoric acid group include 2-methchlorooxyethyl acid phosphate, acid phosphooxypolyoxyethylene glycol monomethacrylate, acid phosphooxypolyoxypropylene glycol monomethacrylate, 3-chloro-2. -Acid phosphooxypropyl methacrylate, metachlorooxyethyl acid phosphate monoethanolamine salt and the like can be mentioned.
 グリシジル基及びエチレン性不飽和結合を有する化合物の具体例は、グリシジル(メタ)アクリレート等が挙げられる。 Specific examples of the compound having a glycidyl group and an ethylenically unsaturated bond include glycidyl (meth) acrylate and the like.
 ヒドロキシ基及びエチレン性不飽和結合を有する化合物の具体例は、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸4-ヒドロキシブチル等が挙げられる。 Specific examples of the compound having a hydroxy group and an ethylenically unsaturated bond include 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like.
 その他の単量体(a5)としては、エチレン性不飽和結合を有し、かつ界面活性剤としての機能を有する化合物で、重合性界面活性剤(a4)以外の単量体が含まれていてもよい。このような単量体の例としては、以下の化学式(2)~(5)で表される化合物等が挙げられる。 The other monomer (a5) is a compound having an ethylenically unsaturated bond and having a function as a surfactant, and contains a monomer other than the polymerizable surfactant (a4). May be good. Examples of such monomers include compounds represented by the following chemical formulas (2) to (5).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(2)中、Rはアルキル基であることが好ましく、pは10~40の整数であることが好ましい。Rの炭素数は10~40であることがより好ましく、Rは炭素数10~40の直鎖無置換アルキル基であることがさらに好ましい。 In formula (2), R 1 is preferably an alkyl group, and p is preferably an integer of 10 to 40. More preferably the number of carbon atoms of R 1 is 10 to 40, R 1 is more preferably a straight-chain unsubstituted alkyl group having 10 to 40 carbon atoms.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(3)中、Rはアルキル基であることが好ましく、qは10~12の整数であることが好ましい。Rの炭素数は10~40であることがより好ましく、Rは炭素数10~40の直鎖無置換アルキル基であることがさらに好ましい。 In the formula (3), R 2 is preferably an alkyl group, and q is preferably an integer of 10 to 12. More preferably the number of carbon atoms of R 2 is 10-40, R 2 is more preferably a straight chain unsubstituted alkyl group having 10 to 40 carbon atoms.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(4)中、Rはアルキル基であることが好ましく、MはNHまたはNaであることが好ましい。Rの炭素数は10~40であることがより好ましく、Rは炭素数10~40の直鎖無置換アルキル基であることがさらに好ましい。 In formula (4), R 3 is preferably an alkyl group, and M 1 is preferably NH 4 or Na. More preferably the number of carbon atoms of R 3 is 10 to 40, R 3 is more preferably a straight chain unsubstituted alkyl group having 10 to 40 carbon atoms.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(5)中、Rはアルキル基であることが好ましく、MはNHまたはNaであることが好ましい。Rの炭素数は10~40であることがより好ましく、Rは炭素数10~40の直鎖無置換アルキル基であることがさらに好ましい。 In formula (5), R 4 is preferably an alkyl group, and M 2 is preferably NH 4 or Na. More preferably the number of carbon atoms of R 4 is 10 to 40, R 4 is more preferably a straight chain unsubstituted alkyl group having 10 to 40 carbon atoms.
〔1-6.共重合体(A)の各構造単位の含有率〕
 単量体(a1)に由来する構造単位の、共重合体(A)中の含有率は、50質量%以上であり、70質量%以上であることが好ましく、90質量%以上であることがより好ましい。電極活物質層の剥離強度が向上するため、及び乳化重合により共重合体(A)を合成する際に、重合安定性が向上するためである。
[1-6. Content of each structural unit of copolymer (A)]
The content of the structural unit derived from the monomer (a1) in the copolymer (A) is 50% by mass or more, preferably 70% by mass or more, and preferably 90% by mass or more. More preferred. This is because the peel strength of the electrode active material layer is improved, and the polymerization stability is improved when the copolymer (A) is synthesized by emulsion polymerization.
 単量体(a1)に由来する構造単位の、共重合体(A)中の含有率は、98質量%以下であり、97質量%以下であることが好ましく、96質量%以下であることがより好ましい。単量体(a2)~(a4)に由来する構造単位の含有率を確保するためである。 The content of the structural unit derived from the monomer (a1) in the copolymer (A) is 98% by mass or less, preferably 97% by mass or less, and preferably 96% by mass or less. More preferred. This is to ensure the content of structural units derived from the monomers (a2) to (a4).
 単量体(a2)に由来する構造単位の、共重合体(A)中の含有率は、1.0質量%以上であり、2.0質量%以上であることが好ましく、3.0質量%以上であることがより好ましい。共重合体(A)の機械的安定性が向上するためである。また、乳化重合により共重合体(A)を合成する際に、重合安定性が向上するためである。 The content of the structural unit derived from the monomer (a2) in the copolymer (A) is 1.0% by mass or more, preferably 2.0% by mass or more, preferably 3.0% by mass. % Or more is more preferable. This is because the mechanical stability of the copolymer (A) is improved. This is also because the polymerization stability is improved when the copolymer (A) is synthesized by emulsion polymerization.
 単量体(a2)に由来する構造単位の、共重合体(A)中の含有率は、15質量%以下であり、10質量%以下であることが好ましく、7.0質量%以下であることがより好ましい。共重合体(A)を含む電極活物質層の集電体に対する結着性及び電極活物質間での結着性が向上するためである。 The content of the structural unit derived from the monomer (a2) in the copolymer (A) is 15% by mass or less, preferably 10% by mass or less, and 7.0% by mass or less. Is more preferable. This is because the binding property of the electrode active material layer containing the copolymer (A) to the current collector and the binding property between the electrode active materials are improved.
 内部架橋剤(a3)に由来する構造単位の、共重合体(A)中の含有率は、0.020質量%以上であり、0.50質量%以上であることが好ましく、1.0質量%以上であることがより好ましい。共重合体(A)を含む電極の耐電解液性が向上するためである。 The content of the structural unit derived from the internal cross-linking agent (a3) in the copolymer (A) is 0.020% by mass or more, preferably 0.50% by mass or more, preferably 1.0% by mass. % Or more is more preferable. This is because the electrolytic solution resistance of the electrode containing the copolymer (A) is improved.
 内部架橋剤(a3)に由来する構造単位の、共重合体(A)中の含有率は、10質量%以下であり、5.0質量%以下であることが好ましく、3.0質量%以下であることがより好ましく、2.0質量%以下であることが特に好ましい。共重合体(A)により良好な可撓性を示す電極を作製することができるためである。 The content of the structural unit derived from the internal cross-linking agent (a3) in the copolymer (A) is 10% by mass or less, preferably 5.0% by mass or less, and 3.0% by mass or less. Is more preferable, and 2.0% by mass or less is particularly preferable. This is because the copolymer (A) can be used to produce an electrode exhibiting good flexibility.
 重合性界面活性剤(a4)に由来する構造単位の、共重合体(A)中の含有率は、0.010質量%以上であり、0.10質量%以上であることが好ましく、0.17質量%以上であることがより好ましい。共重合体(A)が良好な耐電解液性を示しつつ、共重合体(A)を電極バインダーとして用いた非水系二次電池のサイクル特性が向上するためである。 The content of the structural unit derived from the polymerizable surfactant (a4) in the copolymer (A) is 0.010% by mass or more, preferably 0.10% by mass or more, and 0. It is more preferably 17% by mass or more. This is because the copolymer (A) exhibits good electrolyte resistance, and the cycle characteristics of the non-aqueous secondary battery using the copolymer (A) as the electrode binder are improved.
 重合性界面活性剤(a4)に由来する構造単位の、共重合体(A)中の含有率は、10質量%以下であり、3.0質量%以下であることが好ましく、1.0質量%以下であることがより好ましく、0.50質量%以下であることがさらに好ましく、0.35質量%以下であることが特に好ましい。このような構成の共重合体(A)を電極バインダーとして含むことで、良好な可撓性を示す電極が得られるためである。 The content of the structural unit derived from the polymerizable surfactant (a4) in the copolymer (A) is 10% by mass or less, preferably 3.0% by mass or less, preferably 1.0% by mass. % Or less, more preferably 0.50% by mass or less, and particularly preferably 0.35% by mass or less. This is because an electrode exhibiting good flexibility can be obtained by including the copolymer (A) having such a structure as an electrode binder.
 他の単量体(a5)に由来する構造単位の、共重合体(A)中の含有率は、本発明の目的が達成できる範囲であれば特に限定されない。このような他の単量体(a5)に由来する構造単位の、共重合体(A)中の含有率としては、10質量%以下であることが好ましく、5.0質量%以下であることがより好ましく、3.0質量%以下であることがさらに好ましい。 The content of the structural unit derived from the other monomer (a5) in the copolymer (A) is not particularly limited as long as the object of the present invention can be achieved. The content of the structural unit derived from such another monomer (a5) in the copolymer (A) is preferably 10% by mass or less, preferably 5.0% by mass or less. Is more preferable, and 3.0% by mass or less is further preferable.
〔1-7.共重合体(A)のガラス転移点〕
 共重合体(A)のTgは、日立ハイテクサイエンス社製 EXSTAR DSC/SS7020を用いて昇温速度10℃/分、窒素ガス雰囲気下でDSC測定を行い、DSCの温度微分として得られるDDSCチャートのピークトップ温度である。
[1-7. Glass transition point of copolymer (A)]
The Tg of the copolymer (A) is measured by DSC using EXSTAR DSC / SS7020 manufactured by Hitachi High-Tech Science Co., Ltd. at a heating rate of 10 ° C./min in a nitrogen gas atmosphere, and is obtained as a temperature differential of DSC. It is the peak top temperature.
 共重合体(A)のガラス転移点Tgは、-30℃以上であることが好ましく、-10℃以上であることがより好ましく、0℃以上であることがさらに好ましい。共重合体(A)を電極バインダーとして用いた非水系二次電池のサイクル特性が向上するためである。 The glass transition point Tg of the copolymer (A) is preferably −30 ° C. or higher, more preferably −10 ° C. or higher, and even more preferably 0 ° C. or higher. This is because the cycle characteristics of the non-aqueous secondary battery using the copolymer (A) as the electrode binder are improved.
 共重合体(A)のガラス転移点Tgは、100℃以下であることが好ましく、50℃以下であることがより好ましく、30℃以下であることがさらに好ましい。共重合体(A)を電極バインダーとして含む電極活物質層の集電箔に対する密着性が向上するためである。 The glass transition point Tg of the copolymer (A) is preferably 100 ° C. or lower, more preferably 50 ° C. or lower, and even more preferably 30 ° C. or lower. This is because the adhesion of the electrode active material layer containing the copolymer (A) as an electrode binder to the current collecting foil is improved.
<2.電極バインダー用共重合体の合成方法>
 電極バインダー用共重合体(A)は、単量体(a1)~(a4)、及び必要に応じて他の単量体(a5)を共重合することで得られる。ここで、共重合体(A)のための単量体を総称する場合は、単量体(a)とする。すなわち、単量体(a)には、単量体(a1)~(a4)、必要に応じて他の単量体(a5)が含まれる。重合方法としては、例えば、水性媒体(b)中での単量体(a)の乳化重合が挙げられる。乳化重合による共重合体(A)の合成において用いられるその他の成分としては、例えば、重合性を有さない界面活性剤(c)、塩基性物質(d)、重合開始剤(e)、連鎖移動剤(f)等が挙げられる。
<2. Method for synthesizing copolymer for electrode binder>
The electrode binder copolymer (A) can be obtained by copolymerizing the monomers (a1) to (a4) and, if necessary, another monomer (a5). Here, when the monomer for the copolymer (A) is generically referred to as the monomer (a). That is, the monomer (a) includes the monomers (a1) to (a4) and, if necessary, another monomer (a5). Examples of the polymerization method include emulsion polymerization of the monomer (a) in the aqueous medium (b). Other components used in the synthesis of the copolymer (A) by emulsion polymerization include, for example, a non-polymerizable surfactant (c), a basic substance (d), a polymerization initiator (e), and a chain. The moving agent (f) and the like can be mentioned.
〔2-1.水性媒体(b)〕
 水性媒体(b)は、水、親水性の溶媒、またはこれらの混合物である。親水性の溶媒としては、メタノール、エタノール、イソプロピルアルコール、およびN‐メチルピロリドン等が挙げられる。重合安定性の観点から、水性媒体(b)は水であることが好ましい。なお、重合安定性を損なわない限り、水性媒体(b)として、水に親水性の溶媒を添加したものを用いてもよい。
[2-1. Aqueous medium (b)]
The aqueous medium (b) is water, a hydrophilic solvent, or a mixture thereof. Examples of the hydrophilic solvent include methanol, ethanol, isopropyl alcohol, N-methylpyrrolidone and the like. From the viewpoint of polymerization stability, the aqueous medium (b) is preferably water. As the aqueous medium (b), a water to which a hydrophilic solvent is added may be used as long as the polymerization stability is not impaired.
〔2-2.重合性を有さない界面活性剤(c)〕
 単量体(a)の乳化重合において、重合性を有さない界面活性剤(c)を用いてもよい。界面活性剤(c)は、重合中及び/または重合後の分散液(エマルジョン)の分散安定性を向上させることができる。界面活性剤(c)としては、アニオン性界面活性剤、ノニオン性界面活性剤を用いることが好ましい。
[2-2. Non-polymerizable Surfactant (c)]
In the emulsion polymerization of the monomer (a), a non-polymerizable surfactant (c) may be used. The surfactant (c) can improve the dispersion stability of the dispersion liquid (emulsion) during and / or after the polymerization. As the surfactant (c), it is preferable to use an anionic surfactant or a nonionic surfactant.
 アニオン性界面活性剤としては、例えば、アルキルベンゼンスルホン酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、脂肪酸塩が挙げられる。 Examples of the anionic surfactant include alkylbenzene sulfonates, alkyl sulfates, polyoxyethylene alkyl ether sulfates, and fatty acid salts.
 ノニオン界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン多環フェニルエーテル、ポリオキシアルキレンアルキルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステルが挙げられる。 Examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polycyclic phenyl ether, polyoxyalkylene alkyl ether, sorbitan fatty acid ester, and polyoxyethylene sorbitan fatty acid ester.
 上記の界面活性剤は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The above-mentioned surfactant may be used alone or in combination of two or more.
〔2-3.塩基性物質(d)〕
 単量体(a)を水性媒体(b)中で乳化重合する場合は、塩基性物質(d)を加えてもよい。塩基性物質(d)を加えることで、単量体(a)及び/または共重合体(A)に含まれる酸性成分を中和し、pHを調整することができる。pHを調整することで、乳化重合中及び/または乳化重合後の分散液の機械的安定性、化学的安定性を向上させることができる。
[2-3. Basic substance (d)]
When the monomer (a) is emulsion-polymerized in the aqueous medium (b), the basic substance (d) may be added. By adding the basic substance (d), the acidic component contained in the monomer (a) and / or the copolymer (A) can be neutralized and the pH can be adjusted. By adjusting the pH, the mechanical stability and chemical stability of the dispersion during and / or after emulsion polymerization can be improved.
 分散液の23℃でのpHは、1.5~10であることが好ましく、6.0~9.0であることがより好ましく、5.0~9.0であることがさらに好ましい。後述の電極スラリー中の活物質の沈降を抑制するためである。 The pH of the dispersion at 23 ° C. is preferably 1.5 to 10, more preferably 6.0 to 9.0, and even more preferably 5.0 to 9.0. This is to suppress the sedimentation of the active material in the electrode slurry described later.
 塩基性物質(d)としては、アンモニア、トリエチルアミン、水酸化ナトリウム、水酸化リチウム等が挙げられる。これらの塩基性物質(d)は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of the basic substance (d) include ammonia, triethylamine, sodium hydroxide, lithium hydroxide and the like. These basic substances (d) may be used alone or in combination of two or more.
〔2-4.ラジカル重合開始剤(e)〕
 乳化重合の際に用いられるラジカル重合開始剤(e)としては、特に限定されるものではなく、公知のものを用いることができる。ラジカル重合開始剤としては、例えば、過硫酸アンモニウム、過硫酸カリウムなどの過硫酸塩;過酸化水素;アゾ化合物;t-ブチルハイドロパーオキサイド、tert-ブチルパーオキシベンゾエート、クメンハイドロパーオキサイドなどの有機過酸化物が挙げられる。中でも、過硫酸塩および有機過酸化物が好ましい。本実施形態においては、乳化重合の際にラジカル重合開始剤と、重亜硫酸ナトリウム、ロンガリット、アスコルビン酸等の還元剤とを併用して、レドックス重合してもよい。
[2-4. Radical polymerization initiator (e)]
The radical polymerization initiator (e) used in the emulsion polymerization is not particularly limited, and known ones can be used. Examples of the radical polymerization initiator include persulfates such as ammonium persulfate and potassium persulfate; hydrogen peroxide; azo compounds; organic peroxides such as t-butyl hydroperoxide, tert-butyl peroxybenzoate and cumene hydroperoxide. Examples include oxides. Of these, persulfates and organic peroxides are preferred. In the present embodiment, a radical polymerization initiator and a reducing agent such as sodium bisulfite, longalit, and ascorbic acid may be used in combination during emulsion polymerization for redox polymerization.
 ラジカル重合開始剤の添加量は、単量体(a)100質量部に対して0.10質量部以上であることが好ましく、0.80質量部以上であることがより好ましい。単量体(a)の重合時の共重合体(A)への転化率を高くすることができるためである。ラジカル重合開始剤の添加量は、単量体(a)100質量部に対して3.0質量部以下であることが好ましく、2.0質量部以下であることがより好ましい。共重合体(A)の分子量を高くすることができ、電極活物質層の電解液に対する膨潤率を下げることができるためである。 The amount of the radical polymerization initiator added is preferably 0.10 parts by mass or more, and more preferably 0.80 parts by mass or more with respect to 100 parts by mass of the monomer (a). This is because the conversion rate of the monomer (a) to the copolymer (A) at the time of polymerization can be increased. The amount of the radical polymerization initiator added is preferably 3.0 parts by mass or less, and more preferably 2.0 parts by mass or less with respect to 100 parts by mass of the monomer (a). This is because the molecular weight of the copolymer (A) can be increased and the swelling rate of the electrode active material layer with respect to the electrolytic solution can be reduced.
〔2-5.連鎖移動剤(f)〕
 連鎖移動剤(f)は、乳化重合において共重合体(A)の分子量を調整するために用いられる。連鎖移動剤(f)としては、n-ドデシルメルカプタン、tert-ドデシルメルカプタン、n-ブチルメルカプタン、2-エチルヘキシルチオグリコレート、2-メルカプトエタノール、β-メルカプトプロピオン酸、メチルアルコール、n-プロピルアルコール、イソプロピルアルコール、t-ブチルアルコール、ベンジルアルコール等が挙げられる。
[2-5. Chain transfer agent (f)]
The chain transfer agent (f) is used to adjust the molecular weight of the copolymer (A) in emulsion polymerization. Examples of the chain transfer agent (f) include n-dodecyl mercaptan, tert-dodecyl mercaptan, n-butyl mercaptan, 2-ethylhexylthioglycolate, 2-mercaptoethanol, β-mercaptopropionic acid, methyl alcohol, and n-propyl alcohol. Examples thereof include isopropyl alcohol, t-butyl alcohol and benzyl alcohol.
〔2-6.乳化重合法〕
 乳化重合法としては、例えば、乳化重合に使用する各成分を連続供給しながら乳化重合する方法等が挙げられる。乳化重合の温度は、特に限定はされないが、例えば、30~90℃であり、50~85℃であることが好ましく、55~80℃であることがさらに好ましい。乳化重合は攪拌しながら行うことが好ましい。また、単量体(a)及びラジカル重合開始剤は反応容器内で均一になるよう連続供給することが好ましい。
[2-6. Emulsification polymerization method]
Examples of the emulsion polymerization method include a method of emulsion polymerization while continuously supplying each component used for emulsion polymerization. The temperature of the emulsion polymerization is not particularly limited, but is, for example, 30 to 90 ° C, preferably 50 to 85 ° C, and even more preferably 55 to 80 ° C. Emulsion polymerization is preferably carried out with stirring. Further, it is preferable that the monomer (a) and the radical polymerization initiator are continuously supplied so as to be uniform in the reaction vessel.
<3.電極バインダー樹脂組成物>
 本実施形態の電極バインダー樹脂組成物(以下、バインダー組成物とすることもある)は、電極バインダー用共重合体(A)が水性媒体(B)中に分散している。バインダー組成物は、これらの成分の他に、例えば、共重合体(A)の合成に用いた上記の成分等を含んでいてもよい。バインダー組成物は、上記の電極バインダー用共重合体(A)の合成方法によって得られた分散液でもよく、乳化重合以外の方法で得られた共重合体(A)を水性媒体(B)に分散させることにより得られる分散液でもよく、その他の方法により得られる分散液でもよい。
 本実施形態の電極バインダー樹脂組成物が、電極バインダーと水性媒体(B)とを含む。電極バインダーは、上述の電極バインダー用共重合体(A)を含み、上述の電極バインダー用共重合体(A)であることが好ましい。
<3. Electrode binder resin composition>
In the electrode binder resin composition of the present embodiment (hereinafter, may be referred to as a binder composition), the copolymer for electrode binder (A) is dispersed in the aqueous medium (B). In addition to these components, the binder composition may contain, for example, the above-mentioned components used in the synthesis of the copolymer (A). The binder composition may be a dispersion obtained by the above-mentioned method for synthesizing the copolymer for electrode binder (A), and the copolymer (A) obtained by a method other than emulsion polymerization is used as an aqueous medium (B). It may be a dispersion obtained by dispersing, or may be a dispersion obtained by another method.
The electrode binder resin composition of the present embodiment contains an electrode binder and an aqueous medium (B). The electrode binder contains the above-mentioned copolymer for electrode binder (A), and is preferably the above-mentioned copolymer for electrode binder (A).
〔3-1.水性媒体(B)〕
 水性媒体(B)は、水、親水性の溶媒、またはこれらの混合物である。親水性の溶媒の例は、電極バインダー用共重合体(A)の合成における水性媒体(b)の説明で挙げた通りである。水性媒体(B)は、共重合体(A)の合成に用いた水性媒体(b)と同じでもよく、異なっていてもよい。
[3-1. Aqueous medium (B)]
The aqueous medium (B) is water, a hydrophilic solvent, or a mixture thereof. Examples of the hydrophilic solvent are as described in the description of the aqueous medium (b) in the synthesis of the copolymer (A) for the electrode binder. The aqueous medium (B) may be the same as or different from the aqueous medium (b) used in the synthesis of the copolymer (A).
 水性媒体(B)は、共重合体(A)の合成に用いる水性媒体(b)をそのまま用いてもよく、水性媒体(b)に水性溶媒を添加した構成でもよく、共重合体(A)の合成後に水性媒体(b)を新たな水性溶媒に置き換えたものでもよい。ここで、添加する、あるいは置き換える水性溶媒は、共重合体(A)の合成に用いた溶媒と同じ組成でもよく、異なる組成でもよい。 As the aqueous medium (B), the aqueous medium (b) used for the synthesis of the copolymer (A) may be used as it is, or the aqueous medium (b) may be added with an aqueous solvent, and the copolymer (A) may be used. The aqueous medium (b) may be replaced with a new aqueous solvent after the synthesis of the above. Here, the aqueous solvent to be added or replaced may have the same composition as the solvent used for the synthesis of the copolymer (A), or may have a different composition.
〔3-2.電極バインダー樹脂組成物の不揮発分濃度および粘度〕
 バインダー組成物の不揮発分濃度は、20質量%以上であることが好ましく、25質量%以上であることがより好ましく、30質量%以上であることがさらに好ましい。バインダー組成物中に含まれる有効成分の量を多くするためである。バインダー組成物の不揮発分濃度は、水性媒体(B)の量により調整できる。
[3-2. Non-volatile content concentration and viscosity of electrode binder resin composition]
The non-volatile content concentration of the binder composition is preferably 20% by mass or more, more preferably 25% by mass or more, and further preferably 30% by mass or more. This is to increase the amount of the active ingredient contained in the binder composition. The non-volatile content concentration of the binder composition can be adjusted by the amount of the aqueous medium (B).
 バインダー組成物の粘度は、3000mPa・s以下であることが好ましく、1000mPa・s以下であることがより好ましく、80mPa・s以下であることがさらに好ましい。後述する電極スラリー作製時のバインダーのロス削減、及びスラリーの脱泡工程の時間短縮のためである。バインダー組成物の粘度は、ブルックフィールド型粘度計を用いて、液温23℃、回転数60rpm、No.1、No.2、No.3またはNo.4のローターを用いて測定した値である。バインダー組成物の粘度は、バインダー組成物の不揮発分濃度による影響が大きい。 The viscosity of the binder composition is preferably 3000 mPa · s or less, more preferably 1000 mPa · s or less, and even more preferably 80 mPa · s or less. This is to reduce the loss of the binder when producing the electrode slurry, which will be described later, and to shorten the time required for the defoaming step of the slurry. The viscosity of the binder composition was determined by using a Brookfield viscometer at a liquid temperature of 23 ° C., a rotation speed of 60 rpm, and No. 1, No. 2. No. 3 or No. It is a value measured using the rotor of 4. The viscosity of the binder composition is greatly affected by the non-volatile content concentration of the binder composition.
<4.電極スラリー>
 次に、電極スラリーについて詳述する。電極スラリーは、共重合体(A)と電極活物質と、が水性媒体中に分散している構成を有する。電極スラリーは、これらの成分の他に、増粘剤、導電助剤、共重合体(A)の合成に用いた上記の成分等を含んでもよい。
<4. Electrode slurry>
Next, the electrode slurry will be described in detail. The electrode slurry has a structure in which the copolymer (A) and the electrode active material are dispersed in an aqueous medium. In addition to these components, the electrode slurry may contain a thickener, a conductive auxiliary agent, the above-mentioned components used for synthesizing the copolymer (A), and the like.
〔4-1.電極バインダー用共重合体(A)の含有量〕
 共重合体(A)の含有量は、電極活物質100質量部に対して、0.50質量部以上であることが好ましく、1.0質量部以上であることがより好ましい。共重合体(A)による効果を十分に発現させるためである。
[4-1. Content of copolymer (A) for electrode binder]
The content of the copolymer (A) is preferably 0.50 parts by mass or more, and more preferably 1.0 parts by mass or more with respect to 100 parts by mass of the electrode active material. This is to fully exhibit the effect of the copolymer (A).
 共重合体(A)の含有量は、電極活物質100質量部に対して、5.0質量部以下であることが好ましく、4.0質量部以下であることがより好ましく、3.0質量部以下であることがさらに好ましい。電極スラリーを用いて作製される電極活物質層において、電極活物質の含有率を高めるためである。 The content of the copolymer (A) is preferably 5.0 parts by mass or less, more preferably 4.0 parts by mass or less, and 3.0 parts by mass with respect to 100 parts by mass of the electrode active material. More preferably, it is less than or equal to a portion. This is to increase the content of the electrode active material in the electrode active material layer produced by using the electrode slurry.
〔4-2.電極活物質〕
 電極活物質は、リチウムイオン等の電荷キャリアとなるイオンを挿入(Intercaration)/脱離(Deintercalation)可能な材料である。電荷キャリアとなるイオンがアルカリ金属イオンであることが好ましく、リチウムイオン、ナトリウムイオン、カリウムイオンであることがより好ましく、リチウムイオンであることがさらに好ましい。
[4-2. Electrode active material]
The electrode active material is a material capable of inserting / removing ions such as lithium ions that serve as charge carriers. The ion serving as a charge carrier is preferably an alkali metal ion, more preferably a lithium ion, a sodium ion, or a potassium ion, and even more preferably a lithium ion.
 電極が負極である場合、電極活物質、すなわち負極活物質は、炭素材料、ケイ素を含む材料、チタンを含む材料のうち少なくともいずれかを含むことが好ましい。電極活物質として用いられる炭素材料としては、例えば、石油コークス、ピッチコークス、石炭コークス等のコークス、有機高分子の炭素化物、人造黒鉛、天然黒鉛等の黒鉛が挙げられる。ケイ素を含む材料としては、例えば、ケイ素単体、酸化ケイ素等のケイ素化合物が挙げられる。チタンを含む材料としては、例えばチタン酸リチウム等が挙げられる。これらの材料は、単独で用いてもよいが、混合あるいは複合化して用いてもよい。 When the electrode is a negative electrode, the electrode active material, that is, the negative electrode active material preferably contains at least one of a carbon material, a material containing silicon, and a material containing titanium. Examples of the carbon material used as the electrode active material include coke such as petroleum coke, pitch coke, and coal coke, carbonized organic polymer, artificial graphite, and graphite such as natural graphite. Examples of the material containing silicon include a simple substance of silicon and a silicon compound such as silicon oxide. Examples of the material containing titanium include lithium titanate and the like. These materials may be used alone, or may be mixed or combined.
 負極活物質は、炭素材料、ケイ素を含む材料のうち少なくともいずれかを含むことが好ましく、炭素材料を含むことがより好ましい。本発明のバインダー用共重合体(A)による電極活物質間、及び電極活物質と集電体との間の結着性を向上させる効果が非常に大きいためである。 The negative electrode active material preferably contains at least one of a carbon material and a material containing silicon, and more preferably contains a carbon material. This is because the binder copolymer (A) of the present invention has a very large effect of improving the binding property between the electrode active materials and between the electrode active material and the current collector.
 電極が正極である場合、電極活物質、すなわち正極活物質は、負極活物質よりも標準電極電位が貴な物質を用いる。正極活物質としては、Ni-Co-Mn系のリチウム複合酸化物、Ni-Mn-Al系のリチウム複合酸化物、Ni-Co-Al系のリチウム複合酸化物などのニッケルを含むリチウム複合酸化物;コバルト酸リチウム(LiCoO);スピネル型マンガン酸リチウム(LiMn);オリビン型燐酸鉄リチウム;TiS、MnO、MoO、V等のカルコゲン化合物等が挙げられる。正極活物質として、これらの物質は1種で用いてもよく、あるいは2種類以上を組み合わせて用いてもよい。 When the electrode is a positive electrode, the electrode active material, that is, the positive electrode active material, uses a material having a higher standard electrode potential than the negative electrode active material. As the positive electrode active material, a lithium composite oxide containing nickel such as a Ni—Co—Mn-based lithium composite oxide, a Ni—Mn—Al based lithium composite oxide, and a Ni—Co—Al based lithium composite oxide. Lithium cobalt oxide (LiCoO 2 ); spinel-type lithium manganate (LiMn 2 O 4 ); olivine-type lithium iron phosphate; TiS 2 , MnO 2 , MoO 3 , V 2 O 5, and other chalcogen compounds. As the positive electrode active material, these substances may be used alone or in combination of two or more.
〔4-3.増粘剤〕
 増粘剤としては、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等のセルロース類、セルロース類のアンモニウム塩、セルロース類のアルカリ金属塩、ポリビニルアルコ-ル、ポリビニルピロリドン等が挙げられる。増粘剤は、カルボキシメチルセルロース、カルボキシメチルセルロースのアンモニウム塩、カルボキシメチルセルロースアルカリ金属塩のうち少なくともいずれかを含むことが好ましい。電極スラリー中で電極活物質が分散しやすくなるためである。
[4-3. Thickener]
Examples of the thickener include celluloses such as carboxymethyl cellulose (CMC), hydroxyethyl cellulose and hydroxypropyl cellulose, ammonium salts of celluloses, alkali metal salts of celluloses, polyvinyl alcohol, polyvinylpyrrolidone and the like. The thickener preferably contains at least one of carboxymethyl cellulose, an ammonium salt of carboxymethyl cellulose, and an alkali metal salt of carboxymethyl cellulose. This is because the electrode active material is easily dispersed in the electrode slurry.
 電極スラリーにおける増粘剤の含有量は、電極活物質100質量部に対して0.50質量部以上であることが好ましく、0.80質量部以上であることがより好ましい。電極スラリーを用いて作製される電極活物質層において、電極活物質間、及び電極活物質と集電体との間の結着性を向上させるためである。 The content of the thickener in the electrode slurry is preferably 0.50 parts by mass or more, and more preferably 0.80 parts by mass or more with respect to 100 parts by mass of the electrode active material. This is to improve the binding property between the electrode active materials and between the electrode active material and the current collector in the electrode active material layer produced by using the electrode slurry.
 電極スラリーにおける増粘剤の含有量は、電極活物質100質量部に対して3.0質量部以下であることが好ましく、2.0質量部以下であることがより好ましく、1.5質量部以下であることがさらに好ましい。電極スラリーの塗布性が向上するためである。 The content of the thickener in the electrode slurry is preferably 3.0 parts by mass or less, more preferably 2.0 parts by mass or less, and 1.5 parts by mass with respect to 100 parts by mass of the electrode active material. The following is more preferable. This is because the coatability of the electrode slurry is improved.
〔4-4.水性媒体〕
 水性媒体は、水、親水性の溶媒、またはこれらの混合物である。親水性の溶媒の例は、電極バインダー用共重合体(A)の合成における水性媒体(b)の説明で挙げた通りである。電極スラリーに含まれる水性媒体は、電極バインダー樹脂組成物に含まれる水性媒体(B)、あるいは共重合体(A)の合成に用いた水性媒体(b)と同じでもよく、異なっていてもよい。
[4-4. Aqueous medium]
The aqueous medium is water, a hydrophilic solvent, or a mixture thereof. Examples of the hydrophilic solvent are as described in the description of the aqueous medium (b) in the synthesis of the copolymer (A) for the electrode binder. The aqueous medium contained in the electrode slurry may be the same as or different from the aqueous medium (B) contained in the electrode binder resin composition or the aqueous medium (b) used for synthesizing the copolymer (A). ..
〔4-5.導電助剤〕
 導電助剤としては、カーボンブラック、炭素繊維等を用いることが好ましい。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、デンカブラック(登録商標)(デンカ株式会社製)、ケッチェンブラック(登録商標)(ケッチェンブラックインターナショナル株式会社製)等が挙げられる。炭素繊維は、カーボンナノチューブ、カーボンナノファイバー等が挙げられ、カーボンナノチューブとしては、気相法炭素繊維であるVGCF(登録商標、昭和電工株式会社製)が好ましい例として挙げられる。
[4-5. Conductive aid]
As the conductive auxiliary agent, it is preferable to use carbon black, carbon fiber or the like. Examples of carbon black include furnace black, acetylene black, denka black (registered trademark) (manufactured by Denka Co., Ltd.), and Ketjen black (registered trademark) (manufactured by Ketjen Black International Co., Ltd.). Examples of carbon fibers include carbon nanotubes and carbon nanofibers, and examples of carbon nanotubes include VGCF (registered trademark, manufactured by Showa Denko Co., Ltd.), which is a vapor phase carbon fiber.
〔4-6.電極スラリーの性質〕
 電極スラリーの不揮発分濃度は、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。電極スラリー中の有効成分の濃度が高くなり、少ない電極スラリーの量で、十分な量の電極活物質層を形成できるためである。電極スラリーの不揮発分濃度は、電極スラリー中の水性媒体の量で調整できる。
[4-6. Properties of electrode slurry]
The non-volatile content concentration of the electrode slurry is preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably 40% by mass or more. This is because the concentration of the active ingredient in the electrode slurry becomes high, and a sufficient amount of the electrode active material layer can be formed with a small amount of the electrode slurry. The non-volatile content concentration of the electrode slurry can be adjusted by adjusting the amount of the aqueous medium in the electrode slurry.
 電極スラリーの粘度は、20000mPa・s以下であることが好ましく、10000mPa・s以下であることがより好ましく、5000mPa・s以下であることがさらに好ましい。電極スラリーの集電体への塗布性を向上させ、電極の生産性が向上するためである。電極スラリーの粘度は、電極スラリーの不揮発分濃度、及び増粘剤の種類及び量により大きく影響される。 The viscosity of the electrode slurry is preferably 20000 mPa · s or less, more preferably 10000 mPa · s or less, and further preferably 5000 mPa · s or less. This is because the applicability of the electrode slurry to the current collector is improved and the productivity of the electrodes is improved. The viscosity of the electrode slurry is greatly affected by the non-volatile content concentration of the electrode slurry and the type and amount of the thickener.
 23℃における電極スラリーのpHは、好ましくは2.0~10であり、より好ましくは4.0~9.0であり、さらに好ましくは6.0~9.0である。電極スラリーを用いて作製される電池の耐久性を向上させるためである。 The pH of the electrode slurry at 23 ° C. is preferably 2.0 to 10, more preferably 4.0 to 9.0, and even more preferably 6.0 to 9.0. This is to improve the durability of the battery manufactured by using the electrode slurry.
〔4-7.電極スラリーの製造方法〕
 本実施形態において電極スラリーを調製する方法としては、バインダー組成物と、電極活物質と、必要に応じて増粘剤と、必要に応じて水性媒体と、必要に応じて導電助剤と、必要に応じてその他の成分とを混合する。添加する成分の順序は、特に限定されず、適宜決めればよい。混合方法としては、攪拌式、回転式、振とう式等の混合装置を使用する方法が挙げられる。
[4-7. Method of manufacturing electrode slurry]
As a method for preparing the electrode slurry in the present embodiment, a binder composition, an electrode active material, a thickener if necessary, an aqueous medium if necessary, and a conductive auxiliary agent if necessary are required. Mix with other ingredients depending on. The order of the components to be added is not particularly limited and may be appropriately determined. Examples of the mixing method include a method using a mixing device such as a stirring type, a rotary type, and a shaking type.
<5.非水系二次電池電極>
 本実施形態にかかる非水系二次電池電極(以下、「電極」とすることもある)は、集電体と、集電体上に形成された電極活物質層と、を備える。電極の形状としては、例えば、積層体や捲回体が挙げられるが、特に限定されない。また、集電体上への電極活物質層の形成範囲は特に限定されず、集電体の全面に形成されていてもよく、集電体の一部の面に形成されていてもよい。集電体が板、箔等の形状である場合、電極活物質層は、両面に形成されていてもよく、片面のみに形成されていてもよい。
<5. Non-aqueous secondary battery electrode >
The non-aqueous secondary battery electrode (hereinafter, may be referred to as “electrode”) according to the present embodiment includes a current collector and an electrode active material layer formed on the current collector. The shape of the electrode includes, for example, a laminated body and a wound body, but is not particularly limited. Further, the range of forming the electrode active material layer on the current collector is not particularly limited, and it may be formed on the entire surface of the current collector or on a part of the surface of the current collector. When the current collector is in the shape of a plate, foil, or the like, the electrode active material layer may be formed on both sides or only on one side.
〔5-1.集電体〕
 集電体は、厚さ0.001mm以上0.5mm以下の金属シートであることが好ましく、金属としては、鉄、銅、アルミニウム、ニッケル、ステンレス等が挙げられる。金属シートは、例えば、金属箔でもよく金属板でもよい。非水系電池電極が、リチウムイオン二次電池の負極である場合、集電体は、銅箔であることが好ましい。
[5-1. Current collector]
The current collector is preferably a metal sheet having a thickness of 0.001 mm or more and 0.5 mm or less, and examples of the metal include iron, copper, aluminum, nickel, and stainless steel. The metal sheet may be, for example, a metal foil or a metal plate. When the non-aqueous battery electrode is the negative electrode of the lithium ion secondary battery, the current collector is preferably a copper foil.
〔5-2.電極活物質層〕
 本実施形態にかかる電極活物質層は、バインダー用共重合体(A)及び電極活物質を含む。電極活物質層は、上記のバインダー組成物に含まれるその他の成分を含んでもよく、上記の電極スラリーに含まれるその他の成分を含んでもよい。
[5-2. Electrode active material layer]
The electrode active material layer according to the present embodiment contains a binder copolymer (A) and an electrode active material. The electrode active material layer may contain other components contained in the above-mentioned binder composition, or may contain other components contained in the above-mentioned electrode slurry.
〔5-3.電極の製造方法〕
 電極の製造方法としては、例えば、電極スラリーを集電体上に塗布し、乾燥させて電極活物質層を形成した後、適当な大きさに切断することにより製造できる。
[5-3. Electrode manufacturing method]
As a method for producing an electrode, for example, an electrode slurry is applied onto a current collector, dried to form an electrode active material layer, and then cut into an appropriate size.
 電極スラリーを集電体上に塗布する方法としては、特に限定されないが、例えば、リバースロール法、ダイレクトロール法、ドクターブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法、スクイーズ法等が挙げられる。これらの中でも、電極スラリーの粘性等の諸物性及び乾燥性を考慮すると、ドクターブレード法、ナイフ法、またはエクストルージョン法を用いることが好ましい。表面が滑らかで、厚さのばらつきが小さな電極活物質層を得ることができるためである。 The method of applying the electrode slurry onto the current collector is not particularly limited, but for example, the reverse roll method, the direct roll method, the doctor blade method, the knife method, the extrusion method, the curtain method, the gravure method, the bar method, and the dip method. Law, squeeze method, etc. can be mentioned. Among these, the doctor blade method, the knife method, or the extrusion method is preferably used in consideration of various physical properties such as the viscosity of the electrode slurry and the drying property. This is because it is possible to obtain an electrode active material layer having a smooth surface and a small variation in thickness.
 電極スラリーは、集電体の片面にのみ塗布してもよいし、両面に塗布してもよい。電極スラリーを集電体の両面に塗布する場合は、片面ずつ逐次塗布してもよいし、両面同時に塗布してもよい。また、電極スラリーは、集電体へ連続的に塗布してもよいし、間欠的に塗布してもよい。電極スラリーの塗布量は、電池の設計容量、及び電極スラリーの組成などに応じて適宜決定できる。電極スラリーの塗布量は、電極スラリーの性質にもよるが、13mg/cm以下(両面に塗布する場合、片面あたりの塗布量)であることが好ましい。電極スラリーの乾燥工程において電極表面の亀裂の発生を抑制できるためである。 The electrode slurry may be applied to only one side of the current collector, or may be applied to both sides. When the electrode slurry is applied to both sides of the current collector, it may be applied sequentially on one side at a time, or on both sides at the same time. Further, the electrode slurry may be continuously applied to the current collector or may be applied intermittently. The coating amount of the electrode slurry can be appropriately determined according to the design capacity of the battery, the composition of the electrode slurry, and the like. The coating amount of the electrode slurry depends on the properties of the electrode slurry, but is preferably 13 mg / cm 2 or less (when coated on both sides, the coating amount per one side). This is because the occurrence of cracks on the electrode surface can be suppressed in the process of drying the electrode slurry.
 集電体上に塗布された電極スラリーを乾燥することにより、集電体上に電極活物質層が形成される。電極スラリーの乾燥方法は、特に限定されないが、例えば、熱風、減圧あるいは真空環境、(遠)赤外線、低温風を単独あるいは組み合わせて用いることができる。電極スラリーの乾燥温度及び乾燥時間は、電極スラリー中の不揮発分濃度、集電体への塗布量等によって適宜調整することができる。乾燥温度は、40℃以上350℃以下であることが好ましく、生産性の観点から、60℃以上100℃以下であることがより好ましい。乾燥時間は1分以上30分以下であることが好ましい。 By drying the electrode slurry applied on the current collector, an electrode active material layer is formed on the current collector. The method for drying the electrode slurry is not particularly limited, and for example, hot air, reduced pressure or vacuum environment, (far) infrared rays, and low temperature air can be used alone or in combination. The drying temperature and drying time of the electrode slurry can be appropriately adjusted depending on the concentration of non-volatile components in the electrode slurry, the amount of coating on the current collector, and the like. The drying temperature is preferably 40 ° C. or higher and 350 ° C. or lower, and more preferably 60 ° C. or higher and 100 ° C. or lower from the viewpoint of productivity. The drying time is preferably 1 minute or more and 30 minutes or less.
 集電体上に電極活物質層が形成された電極シートは、電極として適当な大きさ及び形状にするために切断されてもよい。電極シートの切断方法は特に限定されないが、例えば、スリット、レーザー、ワイヤーカット、カッター、トムソン等を用いることができる。 The electrode sheet on which the electrode active material layer is formed on the current collector may be cut in order to obtain an appropriate size and shape as an electrode. The method for cutting the electrode sheet is not particularly limited, and for example, a slit, a laser, a wire cut, a cutter, a Thomson, or the like can be used.
 電極シートを切断する前または後に、必要に応じて電極シートをプレスしてもよい。それによって電極活物質を集電体により強固に結着させ、さらに電極を薄くすることによる非水系電池の小型化が可能になる。プレスの方法としては、一般的な方法を用いることができ、特に金型プレス法またはロールプレス法を用いることが好ましい。金型プレス法の場合、プレス圧は、特に限定されないが、0.5t/cm以上5t/cm以下とすることが好ましい。ロールプレス法の場合、線圧は、特に限定されないが、0.5t/cm以上5t/cm以下とすることが好ましい。プレスによる上記効果を得つつ、電極活物質へのリチウムイオン等の電荷キャリアの挿入及び脱離容量の低下を抑制するためである。 If necessary, the electrode sheet may be pressed before or after cutting the electrode sheet. As a result, the electrode active material is firmly bound to the current collector, and the electrode can be made thinner, so that the non-aqueous battery can be miniaturized. As a pressing method, a general method can be used, and it is particularly preferable to use a die pressing method or a roll pressing method. In the case of the die pressing method, the pressing pressure is not particularly limited, but is preferably 0.5 t / cm 2 or more and 5 t / cm 2 or less. In the case of the roll press method, the linear pressure is not particularly limited, but is preferably 0.5 t / cm or more and 5 t / cm or less. This is to suppress the insertion and desorption capacity of charge carriers such as lithium ions into the electrode active material while obtaining the above effect by pressing.
<6.非水系二次電池>
 本実施形態にかかる非水系二次電池の好ましい一例として、リチウムイオン二次電池について説明するが、電池の構成はここで説明したものに限られない。本実施形態にかかる非水系二次電池は、正極と、負極と、電解液と、必要に応じてセパレータ等の部品と、が外装体に収容されたものであり、正極及び負極のうちの一方または両方に上記の方法により作製された電極を用いる。本実施形態にかかる非水系二次電池において、正極及び負極の少なくとも一方が、電極バインダー中に共重合体(A)を含むが、少なくとも負極が共重合体(A)を含むことが好ましい。
<6. Non-aqueous secondary battery >
A lithium ion secondary battery will be described as a preferable example of the non-aqueous secondary battery according to the present embodiment, but the battery configuration is not limited to that described here. The non-aqueous secondary battery according to the present embodiment is one in which a positive electrode, a negative electrode, an electrolytic solution, and, if necessary, parts such as a separator are housed in an exterior body, and one of the positive electrode and the negative electrode. Alternatively, the electrodes produced by the above method are used for both. In the non-aqueous secondary battery according to the present embodiment, at least one of the positive electrode and the negative electrode contains the copolymer (A) in the electrode binder, but it is preferable that at least the negative electrode contains the copolymer (A).
〔6-1.電解液〕
 電解液としては、イオン伝導性を有する非水系の液体を使用する。電解液としては、電解質を有機溶媒に溶解させた溶液、イオン液体等が挙げられるが、前者が好ましい。製造コストが低く、内部抵抗の低い非水系電池が得られるためである。
[6-1. Electrolyte]
As the electrolytic solution, a non-aqueous liquid having ionic conductivity is used. Examples of the electrolytic solution include a solution in which an electrolyte is dissolved in an organic solvent, an ionic liquid, and the like, but the former is preferable. This is because a non-aqueous battery having a low manufacturing cost and a low internal resistance can be obtained.
 電解質としては、アルカリ金属塩を用いることができ、電極活物質の種類等に応じ適宜選択できる。電解質としては、例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCFSO、LiCSO、Li(CFSON、脂肪族カルボン酸リチウム等が挙げられる。また、電解質として、その他のアルカリ金属塩を用いることもできる。 As the electrolyte, an alkali metal salt can be used and can be appropriately selected depending on the type of electrode active material and the like. As the electrolyte, for example, LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, lithium aliphatic carboxylate and the like. Further, other alkali metal salts can also be used as the electrolyte.
 電解質を溶解する有機溶媒としては、特に限定されないが、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、ジメチルカーボネート(DMC)、フルオロエチレンカーボネート(FEC)、ビニレンカーボネート(VC)等の炭酸エステル化合物;アセトニトリル等のニトリル化合物;酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピルなどのカルボン酸エステルが挙げられる。これらの有機溶媒は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。中でも、直鎖カーボネート系溶媒を組合せたものを用いることが好ましい。直鎖カーボネート系溶媒としては炭酸ジエチル、炭酸ジメチル、炭酸エチルメチルが挙げられる。 The organic solvent for dissolving the electrolyte is not particularly limited, but for example, ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), dimethyl carbonate (DMC), fluoroethylene carbonate. Carbonic acid ester compounds such as (FEC) and vinylene carbonate (VC); nitrile compounds such as acetonitrile; carboxylic acid esters such as ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and propyl propionate. These organic solvents may be used alone or in combination of two or more. Above all, it is preferable to use a combination of linear carbonate-based solvents. Examples of the linear carbonate solvent include diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate.
〔6-2.外装体〕
 外装体としては、例えばアルミニウム箔と樹脂フィルムとのラミネート材などを適宜使用できるが、これに限られない。電池の形状は、コイン型、ボタン型、シート型、円筒型、角型、扁平型等、いずれの形状であってもよい。
[6-2. Exterior]
As the exterior body, for example, a laminating material of an aluminum foil and a resin film can be appropriately used, but the exterior body is not limited to this. The shape of the battery may be any shape such as a coin type, a button type, a sheet type, a cylindrical type, a square type, and a flat type.
 以下の実施例では、本発明の構成の一例としてリチウムイオン二次電池の負極、及びリチウムイオン二次電池を作製し、比較例にかかるリチウムイオン二次電池の負極、及びリチウムイオン二次電池と比較して、本発明の効果を確認する。なお、本発明はこれらによって限定されるものではない。なお、以下の実施例及び比較例で用いられる水は、特に断りがなければ、イオン交換水である。 In the following examples, as an example of the configuration of the present invention, a negative electrode of a lithium ion secondary battery and a lithium ion secondary battery are manufactured, and the negative electrode of the lithium ion secondary battery and the lithium ion secondary battery according to the comparative example are used. By comparison, the effect of the present invention is confirmed. The present invention is not limited thereto. Unless otherwise specified, the water used in the following Examples and Comparative Examples is ion-exchanged water.
<1.電極バインダー用共重合体(A)の合成工程>
〔1-1.実施例1〕
 水を356質量部と、スチレンを270質量部と、メタクリル酸メチルを0.24質量部と、アクリル酸2-エチルヘキシルを210質量部と、イタコン酸を10質量部と、アクリル酸80%水溶液を20質量部(アクリル酸を16質量部及び水を4.0質量部)と、ジビニルベンゼンを6.9質量部と、アクアロン(登録商標)AR10(詳細は表2に示す)を1.2質量部と、p-スチレンスルホン酸ナトリウムを3.0質量部と、重合性を有さない界面活性剤としてポリオキシエチレンアルキルエーテル硫酸エステル塩(第一工業製薬株式会社製、ハイテノール08E)を1.0質量部と、β-メルカプトプロピオン酸を0.10質量部と、を混合して乳化した単量体乳化液を作製した。
<1. Synthesis step of copolymer (A) for electrode binder>
[1-1. Example 1]
356 parts by mass of water, 270 parts by mass of styrene, 0.24 parts by mass of methyl methacrylate, 210 parts by mass of 2-ethylhexyl acrylate, 10 parts by mass of itaconic acid, and 80% aqueous solution of acrylic acid. 20 parts by mass (16 parts by mass of acrylic acid and 4.0 parts by mass of water), 6.9 parts by mass of divinylbenzene, and 1.2 parts by mass of Aqualon® AR10 (details are shown in Table 2). 1 part, 3.0 parts by mass of sodium p-styrene sulfonate, and 1 polyoxyethylene alkyl ether sulfate ester salt (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Hytenol 08E) as a non-polymerizable surfactant. A monomer emulsion was prepared by mixing 0.0 parts by mass and 0.10 parts by mass of β-mercaptopropionic acid.
 冷却管、温度計、攪拌機、滴下ロートを有するセパラブルフラスコに、水169質量部を入れて、75℃に昇温した。このセパラブルフラスコに、上記の単量体乳化液と、重合開始剤として過硫酸カリウム2.2質量部を水48質量部に溶解した水溶液と、を80℃で4時間かけて攪拌しながら滴下し、乳化重合した。単量体乳化液と過硫酸カリウム水溶液とを滴下した後、セパラブルフラスコ内の混合液を80℃で60分攪拌した。 169 parts by mass of water was placed in a separable flask having a cooling tube, a thermometer, a stirrer, and a dropping funnel, and the temperature was raised to 75 ° C. To this separable flask, the above-mentioned monomeric emulsion and an aqueous solution prepared by dissolving 2.2 parts by mass of potassium persulfate as a polymerization initiator in 48 parts by mass of water are added dropwise at 80 ° C. over 4 hours with stirring. And emulsion polymerization. After dropping the monomer emulsified solution and the potassium persulfate aqueous solution, the mixed solution in the separable flask was stirred at 80 ° C. for 60 minutes.
 次に、tert-ブチルパーオキシベンゾエート(化薬アクゾ株式会社製、カヤブチルB)0.81質量部及びアスコルビン酸0.52質量部を、8.1質量部の水に溶解した水溶液を加えた。次に、tert-ブチルヒドロパーオキサイド(化薬アクゾ株式会社製、カヤブチルH-70)2.3質量部を15質量部の水に溶解した水溶液と、ロンガリット2.3質量部を15質量部の水に溶解した水溶液と、を滴下しながら60分攪拌し、重合を行った。共重合体(A)の水系エマルジョンが得られた。 Next, an aqueous solution prepared by dissolving 0.81 parts by mass of tert-butylperoxybenzoate (Kayabutyl B manufactured by Kayaku Akzo Corporation) and 0.52 parts by mass of ascorbic acid in 8.1 parts by mass of water was added. Next, 2.3 parts by mass of tert-butyl hydroperoxide (Kayabutyl H-70 manufactured by Kayaku Akzo Corporation) was dissolved in 15 parts by mass of water, and 2.3 parts by mass of Longalit was added to 15 parts by mass. The aqueous solution dissolved in water and the aqueous solution were stirred for 60 minutes while dropping, and polymerization was carried out. An aqueous emulsion of the copolymer (A) was obtained.
〔1-2.比較例1~3〕
 アクアロンAR10の代わりに、比較例1ではアデカリアソープ(登録商標)SR10を、比較例2ではアクアロン(登録商標)KH10を、比較例3ではエレミノール(登録商標)JS20を、それぞれ、実施例1と同じく1.2質量部用いた。このこと以外は各比較例とも実施例1と同様である。なお、比較例1~3で用いたこれらの成分はいずれも界面活性剤としての機能を有する単量体であるが、重合性界面活性剤(a4)には該当しない。
[1-2. Comparative Examples 1 to 3]
Instead of Aqualon AR10, Adecaria Soap (registered trademark) SR10 in Comparative Example 1, Aqualon (registered trademark) KH10 in Comparative Example 2, and Eleminor (registered trademark) JS20 in Comparative Example 3, respectively, with Example 1. Similarly, 1.2 parts by mass was used. Other than this, each Comparative Example is the same as in Example 1. Although all of these components used in Comparative Examples 1 to 3 are monomers having a function as a surfactant, they do not correspond to the polymerizable surfactant (a4).
 アクアロンAR10、アデカリアソープSR10、アクアロンKH10、及びエレミノールJS20に詳細について表2に示す。 Table 2 shows the details of Aqualon AR10, Adecaria Soap SR10, Aqualon KH10, and Eleminor JS20.
<2.電極バインダー樹脂組成物の調製工程>
 実施例及び各比較例で同様に行った。得られた共重合体(A)の水系エマルジョンを室温までに冷却し、セパラブルフラスコに、25質量%のアンモニア水19質量部、及び水155質量部を添加して中和して、共重合体(A)を含むバインダー組成物を得た。
<2. Preparation process of electrode binder resin composition>
The same was performed in the examples and each comparative example. The obtained aqueous emulsion of the copolymer (A) was cooled to room temperature, and 19 parts by mass of 25% by mass of ammonia water and 155 parts by mass of water were added to a separable flask to neutralize the obtained copolymer (A), and the copolymer weight was equalized. A binder composition containing the coalescence (A) was obtained.
 共重合体(A)の合成及びバインダー組成物の調製に用いた成分の使用量を表1に示す。なお、表1で、水の量は、上記合成工程及び調製工程で用いられた水の合計量であり、上記のアクリル酸水溶液及びアンモニア水に含まれている水も計算に含まれる。また、表1において、アクリル酸及びアンモニアの添加量は、上記のアクリル酸水溶液及びアンモニア水に含まれる溶質のみの量である。 Table 1 shows the amounts of the components used for the synthesis of the copolymer (A) and the preparation of the binder composition. In Table 1, the amount of water is the total amount of water used in the synthesis step and the preparation step, and the water contained in the acrylic acid aqueous solution and the ammonia water is also included in the calculation. Further, in Table 1, the amount of acrylic acid and ammonia added is the amount of only the solute contained in the above aqueous acrylic acid solution and aqueous ammonia.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表2に示す成分の接触角は次のように測定した。表2に示される成分各々について20質量%水溶液を調製した。ドクターブレードを用いてガラス板に、調製した水溶液を塗布し、60℃で5分間乾燥させ、皮膜を形成させた。この皮膜に炭酸エチルメチルを4μL滴下したときの1/2θ法で求めた静的接触角を測定した。測定結果は、表2に示した通りである。 The contact angles of the components shown in Table 2 were measured as follows. A 20% by mass aqueous solution was prepared for each of the components shown in Table 2. The prepared aqueous solution was applied to a glass plate using a doctor blade and dried at 60 ° C. for 5 minutes to form a film. The static contact angle determined by the 1 / 2θ method when 4 μL of ethylmethyl carbonate was added dropwise to this film was measured. The measurement results are as shown in Table 2.
<3.バインダー組成物の評価>
 実施例および比較例で得られたバインダー組成物、これらバインダー組成物を用いて得た電池の物性および性能評価試験は、以下の方法により行った。評価結果を表3に示す。
<3. Evaluation of binder composition>
The binder compositions obtained in Examples and Comparative Examples, and the physical characteristics and performance evaluation tests of the batteries obtained using these binder compositions were carried out by the following methods. The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
〔3-1.不揮発分濃度〕
 直径5cmのアルミ皿にバインダー組成物を1g秤量し、1気圧(1013hPa)で、乾燥器内で空気を循環させながら105℃で1時間乾燥させ後に残った成分の質量を測定した。乾燥前のバインダー組成物の質量(1g)に対する、乾燥後に残った上記成分の質量割合(質量%)を不揮発分濃度として算出した。
[3-1. Non-volatile content concentration]
1 g of the binder composition was weighed on an aluminum dish having a diameter of 5 cm, dried at 105 ° C. for 1 hour at 1 atm (1013 hPa) while circulating air in a dryer, and the mass of the remaining components was measured. The mass ratio (mass%) of the above-mentioned components remaining after drying with respect to the mass (1 g) of the binder composition before drying was calculated as the non-volatile content concentration.
〔3-2.粘度〕
 ブルックフィールド型粘度計を用いて、液温23℃、回転数60rpm、No.1、No.2、No.3またはNo.4のローターを用いて測定した。
[3-2. viscosity〕
Using a Brookfield viscometer, the liquid temperature was 23 ° C., the rotation speed was 60 rpm, and No. 1, No. 2. No. 3 or No. It was measured using the rotor of 4.
<4.電極バインダーの評価>
 ポリエチレンシート上にバインダー組成物を流延し、50℃、5時間乾燥させたのち、50℃で1時間真空乾燥させて厚さ0.5mmのフィルムを得た。このフィルムを用いて以下の評価を行った。評価結果を表3に示す。
<4. Evaluation of electrode binder>
The binder composition was cast on a polyethylene sheet, dried at 50 ° C. for 5 hours, and then vacuum dried at 50 ° C. for 1 hour to obtain a film having a thickness of 0.5 mm. The following evaluation was performed using this film. The evaluation results are shown in Table 3.
〔4-1.共重合体(A)のガラス転移点Tg〕
 得られたフィルムを2mm×2mmにカットし、アルミパンに密封して日立ハイテクサイエンス社製 EXSTAR DSC/SS7020を用いて昇温速度10℃/分、窒素ガス雰囲気下でDSC測定を行った。DSCの温度微分として得られるDDSCチャートのピークトップ温度を測定し、この温度を共重合体(A)のガラス転移点Tg(℃)とした。測定温度範囲は-40℃~200℃とした。
[4-1. Glass transition point Tg of copolymer (A)]
The obtained film was cut into 2 mm × 2 mm, sealed in an aluminum pan, and DSC measurement was performed using EXSTAR DSC / SS7020 manufactured by Hitachi High-Tech Science Co., Ltd. at a heating rate of 10 ° C./min in a nitrogen gas atmosphere. The peak top temperature of the DDSC chart obtained as the temperature derivative of DSC was measured, and this temperature was defined as the glass transition point Tg (° C.) of the copolymer (A). The measurement temperature range was −40 ° C. to 200 ° C.
〔4-2.電極バインダーの耐電解液性〕
 上記フィルムを30mm×10mmのサイズにカッターナイフで切り出した。切り出したフィルムの質量M0を測定した。切り出されたフィルムをエチルメチルカーボネート(EMC)に、密閉容器中で60℃、24時間浸漬して、フィルムを取り出した。取り出した直後のフィルムの質量M1を測定した。次に、フィルムを60℃で、12時間真空乾燥させ、乾燥後のフィルムの質量M2を測定した。測定された質量M0、M1及びM2から以下の式(6)及び(7)により、電極バインダーの電解液中での膨潤率(質量%)、電解液に対する溶出率(質量%)を算出した。
[4-2. Electrolyte resistance of electrode binder]
The film was cut out to a size of 30 mm × 10 mm with a cutter knife. The mass M0 of the cut out film was measured. The cut film was immersed in ethyl methyl carbonate (EMC) at 60 ° C. for 24 hours in a closed container, and the film was taken out. The mass M1 of the film immediately after being taken out was measured. Next, the film was vacuum dried at 60 ° C. for 12 hours, and the mass M2 of the dried film was measured. From the measured masses M0, M1 and M2, the swelling rate (mass%) of the electrode binder in the electrolytic solution and the elution rate (mass%) with respect to the electrolytic solution were calculated by the following formulas (6) and (7).
    膨潤率(質量%)=100×(M2-M1)/M1 (6)
    溶出率(質量%)=100×(M2-M0)/M0 (7)
Swelling rate (mass%) = 100 × (M2-M1) / M1 (6)
Elution rate (mass%) = 100 × (M2-M0) / M0 (7)
<5.電極及び電池性能の評価>
 各実施例及び比較例で作製したバインダー組成物を用いて、負極及びリチウムイオン二次電池を作製して、評価を行った。
<5. Evaluation of electrode and battery performance>
Using the binder compositions prepared in each Example and Comparative Example, a negative electrode and a lithium ion secondary battery were prepared and evaluated.
〔5-1.電池の作製〕
[5-1-1.正極の作製]
 正極活物質としてLiNi0.6Mn0.2Co0.2を94質量部、導電助剤としてアセチレンブラックを3質量部、バインダーとしてポリフッ化ビニリデン3質量部を混合したものに、N-メチルピロリドンを50質量部加えてさらに混合して正極スラリーを作製した。
[5-1. Battery production]
[5-1-1. Preparation of positive electrode]
A mixture of 94 parts by mass of LiNi 0.6 Mn 0.2 Co 0.2 O 2 as a positive electrode active material, 3 parts by mass of acetylene black as a conductive auxiliary agent, and 3 parts by mass of polyvinylidene fluoride as a binder is mixed with N-. 50 parts by mass of methylpyrrolidone was added and further mixed to prepare a positive electrode slurry.
 厚さ15μmのアルミニウム箔(正極集電体)の両面に、正極スラリーを、ダイレクトロール法により塗布した。正極集電体への正極スラリーの塗布量は、後述するロールプレス処理後の厚さが片面当たり125μmになるように調整した。 A positive electrode slurry was applied to both sides of a 15 μm-thick aluminum foil (positive electrode current collector) by a direct roll method. The amount of the positive electrode slurry applied to the positive electrode current collector was adjusted so that the thickness after the roll press treatment described later was 125 μm per side.
 正極集電体上に塗布された正極スラリーを、120℃で5分乾燥し、ロールプレスにより(サンクメタル社製、プレス荷重5t、ロール幅7cm)でプレスし、正極活物質層が形成された正極シートを得た。得られた正極シートを50mm×40mmに切り出し、導電タブをつけて正極を作製した。 The positive electrode slurry applied on the positive electrode current collector was dried at 120 ° C. for 5 minutes and pressed by a roll press (manufactured by Thunk Metal Co., Ltd., press load 5 tons, roll width 7 cm) to form a positive electrode active material layer. A positive electrode sheet was obtained. The obtained positive electrode sheet was cut out to a size of 50 mm × 40 mm, and a conductive tab was attached to prepare a positive electrode.
[5-1-2.負極の作製]
 負極活物質として人造黒鉛(G49、江西紫宸科技有限公司製)を100質量部、各実施例及び比較例で作製したバインダー組成物を3.9質量部(不揮発分として1.5質量部)、およびCMC(カルボキシメチルセルロース-ナトリウム塩・日本製紙ケミカル(株)製サンローズ(登録商標)MAC500LC)の2質量%水溶液を62質量部混合し、さらに水を28質量部添加して、負極スラリーを得た。
[5-1-2. Fabrication of negative electrode]
100 parts by mass of artificial graphite (G49, manufactured by Kosai Shiho Technology Co., Ltd.) as the negative electrode active material, and 3.9 parts by mass of the binder composition prepared in each Example and Comparative Example (1.5 parts by mass as a non-volatile content). , And CMC (carboxymethyl cellulose-sodium salt, Sunrose (registered trademark) MAC500LC manufactured by Nippon Paper Chemicals Co., Ltd.) are mixed by 62 parts by mass, and 28 parts by mass of water is further added to prepare a negative electrode slurry. Obtained.
 厚さ10μmの銅箔(負極集電体)の両面に、負極スラリーを、ダイレクトロール法により塗布した。負極集電体への負極スラリーの塗布量は、後述するロールプレス処理後の厚さが片面当たり170μmになるように調整した。 Negative electrode slurry was applied to both sides of a copper foil (negative electrode current collector) having a thickness of 10 μm by the direct roll method. The amount of the negative electrode slurry applied to the negative electrode current collector was adjusted so that the thickness after the roll press treatment described later was 170 μm per side.
 負極集電体上に塗布された負極スラリーを、90℃で10分乾燥させ、ロールプレスにより(サンクメタル社製、プレス荷重8t、ロール幅7cm)プレスし、集電体上に負極活物質層が形成された負極シートを得た。得られた負極シートを52mm×42mmに切り出し、導電タブをつけて負極を作製した。 The negative electrode slurry coated on the negative electrode current collector is dried at 90 ° C. for 10 minutes, pressed by a roll press (manufactured by Thunk Metal Co., Ltd., press load 8 t, roll width 7 cm), and the negative electrode active material layer is placed on the current collector. Was formed to obtain a negative electrode sheet. The obtained negative electrode sheet was cut out to a size of 52 mm × 42 mm, and a conductive tab was attached to prepare a negative electrode.
[5-1-3.電池の作製]
 正極と負極との間にポリオレフィン系の多孔性フィルムからなるセパレータ(ポリエチレン製、25μm)を介在させて、正極活物質層と負極活物質層とが互いに対向するようにアルミラミネート外装体(電池パック)の中に収納した。この外装体中に電解液を注液し真空含浸を行い、真空ヒートシーラーでパッキングし、評価用のリチウムイオン二次電池を作製した。電解液は、エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジエチルカーボネート(DEC)=30/50/20(体積比)の混合溶媒にLiPFを1.0mol/Lで溶解させた溶液99質量部に、ビニレンカーボネート1質量部を混合して作製した。
[5-1-3. Battery production]
An aluminum-laminated exterior body (battery pack) with a separator (made of polyethylene, 25 μm) made of a polyolefin-based porous film interposed between the positive electrode and the negative electrode so that the positive electrode active material layer and the negative electrode active material layer face each other. ). An electrolytic solution was injected into the exterior body, vacuum impregnated, and packed with a vacuum heat sealer to prepare a lithium ion secondary battery for evaluation. The electrolytic solution is a solution 99 in which LiPF 6 is dissolved at 1.0 mol / L in a mixed solvent of ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / diethyl carbonate (DEC) = 30/50/20 (volume ratio). It was prepared by mixing 1 part by mass of vinylene carbonate with 1 part by mass of vinylene carbonate.
〔5-2.電極及び電池の評価〕
[5-2-1.負極活物質層の剥離強度(電極性能)]
 負極活物質層の集電体に対する剥離強度を以下のように測定した。上記の負極作製工程におけるプレス後の負極シートを25mm×100mmのサイズにカットし、試験片とした。試験片上の負極活物質層と、幅50mm、長さ200mmSUS板とを両面テープ(NITTOTAPE(登録商標) No.5、日東電工(株)製)を用いて、試験片の中心とSUS板の中心とが一致するように貼り合わせた。なお、両面テープは試験片の全範囲をカバーするように貼り合わせた。
[5-2. Evaluation of electrodes and batteries]
[5-2-1. Peeling strength of negative electrode active material layer (electrode performance)]
The peel strength of the negative electrode active material layer with respect to the current collector was measured as follows. The negative electrode sheet after pressing in the above negative electrode manufacturing step was cut into a size of 25 mm × 100 mm to obtain a test piece. Using double-sided tape (NITTO TAPE (registered trademark) No. 5, manufactured by Nitto Denko KK), the negative electrode active material layer on the test piece and the SUS plate with a width of 50 mm and a length of 200 mm are used to form the center of the test piece and the center of the SUS plate. It was pasted so that they match. The double-sided tape was attached so as to cover the entire range of the test piece.
 試験片とSUS板とを貼り合わせた状態で10分放置した後、負極活物質層を、試験片の一端から長さ方向に20mm剥がし、銅箔側の試験片を180°折り返し、この部分(負極活物質層を剥がした試験片の部分の銅箔側)を試験機の上側のチャックで掴んだ。さらに、負極活物質層を剥がした側のSUS板の一端を下側チャックで掴んだ。その状態で、試験片から銅箔を100±10mm/minの速度で引き剥がし、剥離長さ(mm)-剥離力(mN)のグラフを得た。得られたグラフにおいて剥離長さ10~45mmにおける剥離力の平均値(mN)を算出し、剥離力の平均値を試験片の幅25mmで割った数値を負極活物質層の剥離強度(mN/mm)とした。なお、いずれの実施例及び比較例においても、試験中、両面テープとSUS板の間での剥離、及び両面テープと負極活物質層との間での界面剥離は起こらなかった。 After leaving the test piece and the SUS plate bonded together for 10 minutes, the negative electrode active material layer was peeled off by 20 mm in the length direction from one end of the test piece, and the test piece on the copper foil side was folded back 180 ° to this part ( The copper foil side of the part of the test piece from which the negative electrode active material layer was peeled off) was grasped by the chuck on the upper side of the testing machine. Further, one end of the SUS plate on the side where the negative electrode active material layer was peeled off was grasped by the lower chuck. In that state, the copper foil was peeled off from the test piece at a speed of 100 ± 10 mm / min to obtain a graph of peeling length (mm) -peeling force (mN). In the obtained graph, the average value (mN) of the peeling force at a peeling length of 10 to 45 mm was calculated, and the value obtained by dividing the average value of the peeling force by the width of the test piece of 25 mm was the peeling strength (mN / mN / of the negative electrode active material layer. mm). In each of the Examples and Comparative Examples, peeling between the double-sided tape and the SUS plate and interfacial peeling between the double-sided tape and the negative electrode active material layer did not occur during the test.
[5-2-2.高温下でのサイクル容量維持率(電池性能)]
 電池の、高温下でのサイクル容量維持率は、45℃の条件下、以下の工程(i)~(iv)の順で繰り返し行った。ここで、(i)~(iv)の一連の操作1回分を1サイクルとする。
[5-2-2. Cycle capacity retention rate at high temperature (battery performance)]
The cycle capacity retention rate of the battery at high temperature was repeated in the following steps (i) to (iv) under the condition of 45 ° C. Here, one cycle of a series of operations (i) to (iv) is defined as one cycle.
(i)電圧4.2Vになるまで、電流1Cで充電する(定電流(CC)充電)。
(ii)電圧4.2Vで、電流0.05Cになるまで充電する(定電圧(CV)充電)。(iii)30分静置する。
(iv)電圧2.75Vになるまで電流1Cで放電する(定電流(CC)放電)。
(I) Charge with a current of 1C until the voltage reaches 4.2V (constant current (CC) charging).
(Ii) Charge at a voltage of 4.2 V until the current reaches 0.05 C (constant voltage (CV) charge). (Iii) Let stand for 30 minutes.
(Iv) Discharge with a current of 1 C until the voltage reaches 2.75 V (constant current (CC) discharge).
 工程(i)及び(ii)における、電流の時間積分値を充電容量、工程(iv)における、電流の時間積分値を放電容量とする。1サイクル目の放電容量、及び200サイクル目の放電容量を測定した。100×(200サイクル目の放電容量)/(1サイクル目の放電容量)[%]を電池の高温下でのサイクル容量維持率として算出し、表3に示した。 The time integral value of the current in the steps (i) and (ii) is the charge capacity, and the time integral value of the current in the step (iv) is the discharge capacity. The discharge capacity of the first cycle and the discharge capacity of the 200th cycle were measured. 100 × (discharge capacity in the 200th cycle) / (discharge capacity in the first cycle) [%] was calculated as the cycle capacity retention rate at high temperature of the battery, and is shown in Table 3.
<6.評価結果>
 表3の実施例1からわかるように、式(1)で示される構造の重合性界面活性剤(a4)に由来する構造単位を有する共重合体(A)を含む電極バインダー樹脂組成物を用いて作製された電極バインダーは耐電解液性が良好である。また、この共重合体(A)を電極バインダーとして含むことで、集電体に対する剥離強度が高い電極活物質層を有する電極が得られることがわかる。さらに、この電極を用いて作製された電池は優れたサイクル特性を有することがわかる。
<6. Evaluation result>
As can be seen from Example 1 of Table 3, an electrode binder resin composition containing a copolymer (A) having a structural unit derived from the polymerizable surfactant (a4) having the structure represented by the formula (1) was used. The electrode binder produced in the above method has good electrolyte resistance. Further, it can be seen that by including this copolymer (A) as an electrode binder, an electrode having an electrode active material layer having high peel strength with respect to the current collector can be obtained. Furthermore, it can be seen that the battery manufactured using this electrode has excellent cycle characteristics.
 一方、式(1)で示される構造の重合性界面活性剤(a4)に由来する構造単位を含まない共重合体を電極バインダーとした比較例1~3においては、いずれも作製された電池のサイクル特性が劣るものであった。 On the other hand, in Comparative Examples 1 to 3 in which a copolymer containing no structural unit derived from the polymerizable surfactant (a4) having the structure represented by the formula (1) was used as the electrode binder, all of the manufactured batteries The cycle characteristics were inferior.

Claims (15)

  1.  分子内に含まれるエチレン性不飽和結合が1個である(メタ)アクリル酸アルキルエステル、及び分子内に含まれるエチレン性不飽和結合が1個である炭化水素化合物からなる群より選ばれる少なくとも1種類からなる単量体(a1)に由来する構造単位と、
     分子内に含まれるエチレン性不飽和結合が1個であるカルボン酸、及びその塩からなる群から選ばれる少なくとも1種類からなる単量体(a2)に由来する構造単位と、
     1分子中に2つ以上のエチレン性不飽和結合を有する化合物からなる群より選ばれる少なくとも1種類からなる内部架橋剤(a3)に由来する構造単位と、
     下記の式(1)で示される化合物からなる群より選ばれる少なくとも1種類からなる重合性界面活性剤(a4)に由来する構造単位と、
    を含む共重合体であって、
     前記単量体(a1)に由来する構造単位を、50質量%以上98質量%以下含み、
     前記単量体(a2)に由来する構造単位を、1.0質量%以上15質量%以下含み、
     前記内部架橋剤(a3)に由来する構造単位を、0.020質量%以上10質量%以下含み、
     前記重合性界面活性剤(a4)に由来する構造単位を、0.010質量%以上10質量%以下含む
     ことを特徴とする電極バインダー用共重合体。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、Xは水素原子またはSONHであり、mは1以上4以下の整数、nは5以上40以下の整数である。
    At least one selected from the group consisting of a (meth) acrylic acid alkyl ester having one ethylenically unsaturated bond contained in the molecule and a hydrocarbon compound having one ethylenically unsaturated bond contained in the molecule. Structural units derived from the type of monomer (a1) and
    A structural unit derived from a monomer (a2) consisting of at least one selected from the group consisting of a carboxylic acid having one ethylenically unsaturated bond contained in the molecule and a salt thereof, and
    A structural unit derived from an internal cross-linking agent (a3) consisting of at least one selected from the group consisting of compounds having two or more ethylenically unsaturated bonds in one molecule, and
    A structural unit derived from a polymerizable surfactant (a4) consisting of at least one selected from the group consisting of compounds represented by the following formula (1), and
    It is a copolymer containing
    The structural unit derived from the monomer (a1) is contained in an amount of 50% by mass or more and 98% by mass or less.
    The structural unit derived from the monomer (a2) is contained in an amount of 1.0% by mass or more and 15% by mass or less.
    The structural unit derived from the internal cross-linking agent (a3) is contained in an amount of 0.020% by mass or more and 10% by mass or less.
    A copolymer for an electrode binder, which comprises 0.010% by mass or more and 10% by mass or less of a structural unit derived from the polymerizable surfactant (a4).
    Figure JPOXMLDOC01-appb-C000001
    In the formula (1), X is a hydrogen atom or SO 3 NH 4 , m is an integer of 1 or more and 4 or less, and n is an integer of 5 or more and 40 or less.
  2.  前記単量体(a1)は、ホモポリマーのガラス転移点Tgが5℃以上である高Tg単量体(a11)と、ホモポリマーのガラス転移点Tgが-5℃以下である低Tg単量体(a12)とを含む請求項1に記載の電極バインダー用共重合体。 The monomer (a1) is a high Tg monomer (a11) having a homopolymer glass transition point Tg of 5 ° C. or higher, and a low Tg single amount having a homopolymer glass transition point Tg of −5 ° C. or lower. The copolymer for an electrode binder according to claim 1, which comprises the body (a12).
  3.  前記高Tg単量体(a11)に由来する構造単位の含有量と、前記低Tg単量体(a12)に由来する構造単位の含有量との質量比は、30:70~70:30である請求項2に記載の電極バインダー用共重合体。 The mass ratio of the content of the structural unit derived from the high Tg monomer (a11) to the content of the structural unit derived from the low Tg monomer (a12) is 30:70 to 70:30. The copolymer for an electrode binder according to claim 2.
  4.  前記単量体(a1)に由来する構造単位の含有率は、70質量%以上97質量%以下である請求項1~3のいずれか1項に記載の電極バインダー用共重合体。 The copolymer for an electrode binder according to any one of claims 1 to 3, wherein the content of the structural unit derived from the monomer (a1) is 70% by mass or more and 97% by mass or less.
  5.  前記単量体(a2)に由来する構造単位の少なくとも一部は、カルボキシ基と塩基性物質との塩を形成している請求項1~4のいずれか1項に記載の電極バインダー用共重合体。 The copolymer for an electrode binder according to any one of claims 1 to 4, wherein at least a part of the structural unit derived from the monomer (a2) forms a salt of a carboxy group and a basic substance. Combined.
  6.  前記単量体(a2)に由来する構造単位の含有率は、2.0質量%以上10質量%以下である請求項1~5のいずれか1項に記載の電極バインダー用共重合体。 The copolymer for an electrode binder according to any one of claims 1 to 5, wherein the content of the structural unit derived from the monomer (a2) is 2.0% by mass or more and 10% by mass or less.
  7.  前記内部架橋剤(a3)に由来する構造単位の含有率は、0.50質量%以上5.0質量%以下である請求項1~6のいずれか1項に記載の電極バインダー用共重合体。 The copolymer for an electrode binder according to any one of claims 1 to 6, wherein the content of the structural unit derived from the internal cross-linking agent (a3) is 0.50% by mass or more and 5.0% by mass or less. ..
  8.  式(1)中、Xは、SONHである請求項1~7のいずれか1項に記載の電極バインダー用共重合体。 In the formula (1), X is the copolymer for an electrode binder according to any one of claims 1 to 7, which is SO 3 NH 4.
  9.  式(1)中、nは、8以上25以下である請求項1~8のいずれか1項に記載の電極バインダー用共重合体。 The copolymer for an electrode binder according to any one of claims 1 to 8, wherein n is 8 or more and 25 or less in the formula (1).
  10.  前記重合性界面活性剤(a4)に由来する構造単位の含有率は、0.10質量%以上3.0質量%以下である請求項1~9のいずれか1項に記載の電極バインダー用共重合体。 The copoly for the electrode binder according to any one of claims 1 to 9, wherein the content of the structural unit derived from the polymerizable surfactant (a4) is 0.10% by mass or more and 3.0% by mass or less. Polymer.
  11.  さらに、前記単量体(a1)と前記単量体(a2)と前記内部架橋剤(a3)と前記重合性界面活性剤(a4)とのいずれにも該当しない、エチレン性不飽和結合を有するスルホン酸またはその塩に由来する構造単位を含む請求項1~10のいずれか1項に記載の電極バインダー用共重合体。 Further, it has an ethylenically unsaturated bond which does not correspond to any of the monomer (a1), the monomer (a2), the internal cross-linking agent (a3), and the polymerizable surfactant (a4). The copolymer for an electrode binder according to any one of claims 1 to 10, which comprises a structural unit derived from sulfonic acid or a salt thereof.
  12.  請求項1~11のいずれか1項に記載の電極バインダー用共重合体が水性媒体(B)中に分散している電極バインダー樹脂組成物。 An electrode binder resin composition in which the copolymer for an electrode binder according to any one of claims 1 to 11 is dispersed in an aqueous medium (B).
  13.  請求項1~11のいずれか1項に記載の電極バインダー用共重合体と、電極活物質と、が水性媒体中に分散している電極スラリー。 An electrode slurry in which the copolymer for an electrode binder according to any one of claims 1 to 11 and an electrode active material are dispersed in an aqueous medium.
  14.  請求項1~11のいずれか1項に記載の電極バインダー用共重合体及び電極活物質を含む電極活物質層が、金属シートからなる集電体上に形成された非水系二次電池電極。 A non-aqueous secondary battery electrode in which an electrode active material layer containing the copolymer for an electrode binder and the electrode active material according to any one of claims 1 to 11 is formed on a current collector made of a metal sheet.
  15.  請求項1~11のいずれか1項に記載の電極バインダー用共重合体を、正極及び負極の少なくとも一方に含む非水系二次電池。 A non-aqueous secondary battery containing the copolymer for an electrode binder according to any one of claims 1 to 11 in at least one of a positive electrode and a negative electrode.
PCT/JP2020/046368 2019-12-27 2020-12-11 Copolymer for electrode binder, electrode binder resin composition, and electrode for non-aqueous secondary battery WO2021131813A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021567251A JP7384223B2 (en) 2019-12-27 2020-12-11 Copolymers for electrode binders, electrode binder resin compositions, and non-aqueous secondary battery electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-239174 2019-12-27
JP2019239174 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021131813A1 true WO2021131813A1 (en) 2021-07-01

Family

ID=76573068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046368 WO2021131813A1 (en) 2019-12-27 2020-12-11 Copolymer for electrode binder, electrode binder resin composition, and electrode for non-aqueous secondary battery

Country Status (3)

Country Link
JP (1) JP7384223B2 (en)
TW (1) TW202137612A (en)
WO (1) WO2021131813A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120066A1 (en) * 2021-12-23 2023-06-29 株式会社レゾナック Electrode binder copolymer for non-aqueous secondary battery, electrode binder resin composition for non-aqueous secondary battery, and non-aqueous secondary battery electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018051484A (en) * 2016-09-29 2018-04-05 第一工業製薬株式会社 Surfactant composition
WO2019131710A1 (en) * 2017-12-26 2019-07-04 昭和電工株式会社 Binder for nonaqueous battery electrodes, slurry for nonaqueous battery electrodes, nonaqueous battery electrode, and nonaqueous battery
JP2021022521A (en) * 2019-07-30 2021-02-18 株式会社大阪ソーダ Binder composition, binder, electrode material, electrode, and power storage device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6720040B2 (en) * 2016-09-29 2020-07-08 日鉄日新製鋼株式会社 Roll coater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018051484A (en) * 2016-09-29 2018-04-05 第一工業製薬株式会社 Surfactant composition
WO2019131710A1 (en) * 2017-12-26 2019-07-04 昭和電工株式会社 Binder for nonaqueous battery electrodes, slurry for nonaqueous battery electrodes, nonaqueous battery electrode, and nonaqueous battery
JP2021022521A (en) * 2019-07-30 2021-02-18 株式会社大阪ソーダ Binder composition, binder, electrode material, electrode, and power storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120066A1 (en) * 2021-12-23 2023-06-29 株式会社レゾナック Electrode binder copolymer for non-aqueous secondary battery, electrode binder resin composition for non-aqueous secondary battery, and non-aqueous secondary battery electrode

Also Published As

Publication number Publication date
JP7384223B2 (en) 2023-11-21
TW202137612A (en) 2021-10-01
JPWO2021131813A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
JP5701519B2 (en) Lithium ion secondary battery electrode binder, slurry obtained using these electrode binders, electrode obtained using these slurries, and lithium ion secondary battery obtained using these electrodes
JP7323003B2 (en) Aqueous binder composition for secondary battery electrode, slurry for secondary battery electrode, binder, secondary battery electrode, and secondary battery
JPWO2015146649A1 (en) Slurry for positive electrode of lithium ion secondary battery, positive electrode obtained using this slurry and method for producing the same, lithium ion secondary battery comprising this positive electrode and method for producing the same
US10541423B2 (en) Electrode mixture layer composition for nonaqueous electrolyte secondary battery, manufacturing method thereof and use therefor
JP7243968B2 (en) Binder for non-aqueous battery electrode, slurry for non-aqueous battery electrode, non-aqueous battery electrode, and non-aqueous battery
WO2014115802A1 (en) Method for producing binder for lithium secondary battery electrodes, and binder for lithium secondary battery electrodes
JP7272272B2 (en) Method for producing slurry for non-aqueous battery electrode
JPWO2019155980A1 (en) Slurry for non-aqueous battery electrodes, and method for manufacturing non-aqueous battery electrodes and non-aqueous batteries
WO2019004459A1 (en) Binder composition for electrochemical elements, slurry composition for electrochemical element functional layer, slurry composition for electrochemical element adhesion layer, and composite membrane
JP7384223B2 (en) Copolymers for electrode binders, electrode binder resin compositions, and non-aqueous secondary battery electrodes
WO2015146648A1 (en) Slurry for positive electrode of lithium-ion secondary cell, positive electrode obtained using said slurry, method for manufacturing said electrode, lithium-ion secondary cell using said positive electrode, and method for manufacturing said cell
JP6679142B2 (en) Lithium-ion secondary battery electrode forming composition, lithium-ion secondary battery electrode and lithium-ion secondary battery, and method for producing lithium-ion secondary battery electrode-forming composition
WO2020017442A1 (en) Copolymer for binder for non-aqueous battery electrode, and slurry for producing non-aqueous battery electrode
WO2022097683A1 (en) Copolymer, binder for non-aqueous secondary battery electrode, and slurry for non-aqueous secondary battery electrode
WO2023127311A1 (en) Binder polymer for nonaqueous secondary batteries, binder composition for nonaqueous secondary batteries, and nonaqueous secondary battery electrode
WO2024034574A1 (en) Non-aqueous secondary battery binder polymer, non-aqueous secondary battery binder composition, and non-aqueous secondary battery electrode
WO2019004460A1 (en) Binder composition for electrochemical elements, slurry composition for electrochemical element functional layer, slurry composition for electrochemical element adhesion layer, and composite membrane
JP6868751B1 (en) Non-aqueous secondary battery Electrodes, electrode slurries, and non-aqueous secondary batteries
WO2022138371A1 (en) Non-aqueous secondary battery electrode binder, non-aqueous secondary battery electrode binder composition, and non-aqueous secondary battery
WO2023120066A1 (en) Electrode binder copolymer for non-aqueous secondary battery, electrode binder resin composition for non-aqueous secondary battery, and non-aqueous secondary battery electrode
WO2024062954A1 (en) Composite particles, binder composition for non-aqueous secondary battery and non-aqueous secondary battery electrode
WO2023127300A1 (en) Non-aqueous secondary battery binder polymer, non-aqueous secondary battery binder composition, and non-aqueous secondary battery electrode
WO2021131278A1 (en) Nonaqueous secondary battery electrode, electrode slurry, and nonaqueous secondary battery
WO2021246376A1 (en) Binder for non-aqueous secondary battery electrode and slurry for non-aqueous secondary battery electrode
WO2024142959A1 (en) Binder composition for nonaqueous secondary battery negative electrode and nonaqueous secondary battery negative electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906574

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567251

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906574

Country of ref document: EP

Kind code of ref document: A1