WO2022097683A1 - Copolymer, binder for non-aqueous secondary battery electrode, and slurry for non-aqueous secondary battery electrode - Google Patents

Copolymer, binder for non-aqueous secondary battery electrode, and slurry for non-aqueous secondary battery electrode Download PDF

Info

Publication number
WO2022097683A1
WO2022097683A1 PCT/JP2021/040613 JP2021040613W WO2022097683A1 WO 2022097683 A1 WO2022097683 A1 WO 2022097683A1 JP 2021040613 W JP2021040613 W JP 2021040613W WO 2022097683 A1 WO2022097683 A1 WO 2022097683A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
monomer
mass
group
copolymer
Prior art date
Application number
PCT/JP2021/040613
Other languages
French (fr)
Japanese (ja)
Inventor
勇汰 川原
亮介 池端
秀雄 堀越
充 花▲崎▼
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020237016146A priority Critical patent/KR20230101828A/en
Priority to CN202180073191.2A priority patent/CN116547328A/en
Priority to JP2022560809A priority patent/JPWO2022097683A1/ja
Publication of WO2022097683A1 publication Critical patent/WO2022097683A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a copolymer, a binder for a non-aqueous secondary battery electrode, and a slurry for a non-aqueous secondary battery electrode.
  • the non-aqueous secondary battery includes, for example, a positive electrode using a metal oxide or the like as an active material, a negative electrode using a carbon material such as graphite as an active material, and an electrolytic solution.
  • a non-aqueous secondary battery is a secondary battery in which ions move between a positive electrode and a negative electrode to charge and discharge the battery.
  • a typical example is a lithium ion secondary battery as a non-aqueous secondary battery.
  • Non-aqueous secondary batteries are used as power sources for notebook computers, mobile phones, power tools, and electronic / communication devices in terms of miniaturization and weight reduction. Recently, it has also been used for electric vehicles and hybrid vehicles from the viewpoint of application to environmental vehicles. Under these circumstances, there is a strong demand for higher output, higher capacity, longer life, etc. of non-aqueous secondary batteries.
  • the binder used for the positive electrode and the negative electrode has a role of binding the active material to each other and a role of binding the active material and the current collector.
  • Water dispersion binders are being developed to improve the capacity of non-aqueous secondary batteries and protect the working environment.
  • a styrene-butadiene rubber (SBR) -based aqueous dispersion using carboxymethyl cellulose (CMC) as a thickener is known.
  • Patent Document 1 describes a method for polymerizing ethylene oxide with an alkylene oxide other than ethylene oxide, an alkyl glycidyl ether, an allyl glycidyl ether, or a combination thereof. It is described that the composition containing the copolymer obtained by polymerization can be used as a binder material in a battery electrode containing electroactive particles.
  • Patent Document 2 a copolymer obtained from a (meth) acrylic acid ester and a vinyl monomer having an acid component, a polyoxyethylene alkyl ether derivative, polyoxyethylene-polyoxypropylene condensate, and polyoxyethylene- Described is a secondary battery negative electrode comprising an electrode layer containing at least one selected from the group consisting of polyoxypropylene alkyl ether derivatives.
  • Patent Documents 1 and 2 when used as a binder for electrodes, there is room for improving the peel strength of the electrode active material layer with respect to the current collector, and the internal resistance is reduced when the battery is manufactured. There is room for.
  • the present invention is a copolymer and non-aqueous secondary battery that can effectively improve the peel strength of the electrode active material layer with respect to the current collector in a non-aqueous secondary battery, and contribute to the reduction of the internal resistance of the battery and the improvement of the cycle characteristics. It is an object of the present invention to provide a binder for a battery electrode and a slurry for a non-aqueous secondary battery electrode.
  • a polymer of a compound having an ethylenically unsaturated bond A first structural unit derived from the monomer (a1) and a second structural unit derived from the monomer (a2). It has a third structural unit derived from the monomer (a3); or a first structural unit derived from the monomer (a1) and a second structural unit derived from the monomer (a2). , A third structural unit derived from the monomer (a3) and a fourth structural unit derived from the internal cross-linking agent (a4).
  • the monomer (a1) has an ethylenically unsaturated bond, has neither a hydroxy group nor a cyano group, has no polyoxyalkylene structure, and has a plurality of independent ethylenically unsaturated bonds. It is a nonionic compound that does not
  • the monomer (a2) is a compound having an ethylenically unsaturated bond and an anionic functional group, and has neither a polyoxyalkylene structure nor a plurality of independent ethylenically unsaturated bonds.
  • the monomer (a3) has a 31st structural unit represented by the following formula (1), a 32nd structural unit represented by the following formula (2), and a 33rd structural unit represented by the following formula (3).
  • the second structural unit is included in an amount of 1.0 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the first structural unit.
  • the third structural unit is contained in an amount of 0.010 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the first structural unit.
  • the content of the fourth structural unit with respect to 100 parts by mass of the first structural unit is 0 parts by mass or more and 20 parts by mass or less.
  • the internal cross-linking agent (a4) does not correspond to the monomer (a3), has a plurality of independent ethylenically unsaturated bonds, and has the monomer (a1), the monomer (a2), and the like.
  • R 1 is an alkyl group having 1 or more and 6 or less carbon atoms which may have a branch.
  • R 2 is a functional group having an ethylenically unsaturated bond.
  • the monomer (a3) is With respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit.
  • the 31st structural unit contains 5.0 mol% or more and 98 mol% or less.
  • the 32nd structural unit contains 0.30 mol% or more and 90 mol% or less.
  • R 2 is a copolymer according to any one of [1] to [4] represented by the following formula (4).
  • R 21 is an alkylene group having 1 to 5 carbon atoms which may have a branch
  • R 22 is a vinyloxy group, an allyloxy group, a (meth) acryloyl group, and a (meth) acryloyloxy. It is one functional group selected from the group consisting of groups.
  • the monomer (a3) has a first block composed of the 31st structural unit, a second block composed of the 32nd structural unit, and a third block composed of the 33rd structural unit [1].
  • the monomer (a3) contains 90% by mass or more of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit in the total structural units [1] to [6].
  • the copolymer according to any one of. [8] The copolymer according to any one of [1] to [7], wherein the monomer (a1) does not have a polar functional group.
  • the copolymer according to any one of [1] to [8], wherein the monomer (a2) is a compound having at least one of a carboxy group and a sulfo group.
  • the binder according to [13], the electrode active material, and the aqueous medium are included.
  • the binder and the electrode active material are dispersed in an aqueous medium, and the binder is dispersed in the aqueous medium.
  • the aqueous medium is a slurry for a non-aqueous secondary battery electrode, which is one medium selected from the group consisting of water, a hydrophilic solvent, and a mixture containing water and a hydrophilic solvent.
  • the peeling strength of the electrode active material layer with respect to the current collector can be effectively improved, and the internal resistance of the battery can be reduced and the cycle characteristics can be improved.
  • a binder for a secondary battery electrode and a slurry for a non-aqueous secondary battery electrode can be provided.
  • a copolymer a binder for a non-aqueous secondary battery electrode, a binder composition for a non-aqueous secondary battery electrode, a slurry for a non-aqueous secondary battery electrode, a non-aqueous secondary battery electrode, and A non-aqueous secondary battery will be described.
  • (Meta) acrylic is a general term for acrylic and methacrylic
  • (meth) acrylate is a general term for acrylate and methacrylate.
  • the “nonvolatile component” is a component remaining after weighing 1 g of the composition in an aluminum dish having a diameter of 5 cm and drying at 105 ° C. for 1 hour while circulating air in a dryer at 1 atm (1013 hPa).
  • the form of the composition includes, but is not limited to, a solution, a dispersion, and a slurry.
  • the “nonvolatile content concentration” is the mass ratio (mass%) of the non-volatile content after drying under the above conditions with respect to the mass (1 g) of the composition before drying.
  • Ethylene unsaturated bond refers to an ethylenically unsaturated bond having radical polymerization unless otherwise specified.
  • the structural unit derived from the compound having a certain ethylenically unsaturated bond is the chemical structure of the portion other than the ethylenically unsaturated bond of the compound and its in the polymer. It is assumed that the chemical structure of the part other than the part corresponding to the ethylenically unsaturated bond of the structural unit is the same.
  • the structural unit derived from sodium acrylate has a -CH 2 CH (COONa)-structure in the polymer.
  • an ethylenically unsaturated bond may remain as a structural unit of the polymer.
  • a plurality of independent ethylenically unsaturated bonds are a plurality of ethylenically unsaturated bonds that do not form conjugated diene with each other.
  • the structural unit derived from divinylbenzene may have a structure having no ethylenically unsaturated bond (a form in which a portion corresponding to any ethylenically unsaturated bond is incorporated into a polymer chain), or one ethylene.
  • a structure having a sex-unsaturated bond (a form in which only the portion corresponding to one ethylenically unsaturated bond is incorporated into the polymer chain) may be used.
  • the chemical structure of the monomer does not correspond to the chemical structure of the polymer, such as chemical reaction of the part other than the chain corresponding to the ethylenically unsaturated bond after polymerization
  • the chemical structure after polymerization is used as a reference. ..
  • vinyl acetate is polymerized and then saponified, it is not a structural unit derived from vinyl acetate but a structural unit derived from vinyl alcohol in consideration of the chemical structure of the polymer.
  • the copolymer (P) is a copolymer for a non-aqueous secondary battery electrode binder.
  • the copolymer (P) is a polymer of a compound having an ethylenically unsaturated bond.
  • the copolymer (P) has a first structural unit derived from the monomer (a1), a second structural unit derived from the monomer (a2), and a third structure derived from the monomer (a3). It has a unit and.
  • the copolymer (P) may further have a fourth structural unit derived from the internal cross-linking agent (a4).
  • the copolymer (P) can be used as another monomer (a5) which does not correspond to any of the monomer (a1), the monomer (a2), the monomer (a3) and the internal cross-linking agent (a4). It may contain the structural unit from which it is derived. Details of each monomer and internal cross-linking agent will be described below.
  • Monomer (a1) > The monomer (a1) has an ethylenically unsaturated bond, does not have a polyoxyalkylene structure, and does not have a plurality of independent ethylenically unsaturated bonds.
  • No polyoxyalkylene structure means an alkylene group sandwiched between two ether bonds (a bond represented by -C-OC x -OC- (x is an integer of 1 or more)). Say you don't have.
  • the monomer (a1) has neither a hydroxy group nor a cyano group.
  • the monomer (a1) preferably has no polar functional group.
  • the monomer (a1) may contain only one kind of compound, or may contain two or more kinds of compounds.
  • the monomer (a1) is preferably at least one of a (meth) acrylic acid ester having no polar functional group and an aromatic vinyl compound, and more preferably containing both.
  • the (meth) acrylic acid ester having no polar functional group more preferably contains a (meth) acrylic acid alkyl ester.
  • the total content of the (meth) acrylic acid alkyl ester and the aromatic vinyl compound in the monomer (a1) is more preferably 80% by mass or more, further preferably 90% by mass or more, and 100% by mass. Is most preferable.
  • composition of the monomer (a1) in order to adjust the glass transition point of the copolymer (P) or to adjust the polymerization rate according to the molecular design, within the range specified in the present invention. It is preferable to appropriately adjust the preferred compound and the amount thereof.
  • Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and n-butyl (meth) acrylic acid. , (Meta) tert-butyl acrylate, (meth) cyclohexyl acrylate, (meth) 2-ethylhexyl acrylate, isobornyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate and the like. ..
  • the aromatic vinyl compound does not contain a (meth) acryloyl group.
  • the aromatic vinyl compound include styrene, t-butylstyrene, ⁇ -methylstyrene, p-methylstyrene, 1,1-diphenylethylene and the like.
  • the monomer (a1) contains an aromatic vinyl compound
  • the monomer (a1) more preferably contains at least one of styrene and ⁇ -methylstyrene, and further preferably contains styrene.
  • the monomer (a1) may contain a plurality of ethylenically unsaturated bonds forming conjugated diene with each other.
  • Examples of the compound having a plurality of ethylenically unsaturated bonds forming conjugated diene with each other include 1,3-butadiene, 1,3-pentadiene and the like.
  • the monomer (a2) is a compound having an ethylenically unsaturated bond and an anionic functional group.
  • the monomer (a2) has neither a polyoxyalkylene structure nor a plurality of independent ethylenically unsaturated bonds.
  • the anionic functional group include a carboxy group, a sulfo group, a phosphoric acid group and the like.
  • the monomer (a2) preferably contains a compound having at least one of a carboxy group and a sulfo group, and more preferably contains a compound having a carboxy group.
  • the monomer (a2) may contain only one kind of compound, or may contain two or more kinds of compounds.
  • the monomer (a2) may contain a compound having a plurality of the same kind of anionic functional groups in one molecule. That is, the copolymer (P) may contain a plurality of anionic functional groups of the same type in one structural unit.
  • the monomer (a2) may contain a compound having two or more different anionic functional groups in one molecule. That is, the copolymer (P) may contain two or more different anionic functional groups in one structural unit.
  • the monomer (a2) may contain two or more kinds of compounds containing different anionic functional groups. That is, the copolymer (P) may contain two or more structural units containing different anionic functional groups.
  • Examples of the monomer (a2) include unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid; unsaturated dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid; half esters of unsaturated dicarboxylic acids; parastyrene. Examples include sulfonic acid.
  • the monomer (a2) preferably contains at least one of (meth) acrylic acid and itaconic acid.
  • At least a part of the structural unit derived from the monomer (a2) may form a salt with a basic substance.
  • examples of the monomer (a2) forming the salt include sodium (meth) acrylate, sodium parastyrene sulfonate, and the like.
  • the monomer (a2) preferably contains at least one of a sulfonic acid having an ethylenically unsaturated bond and a salt thereof, and more preferably contains a sulfonic acid salt having an ethylenically unsaturated bond.
  • the sulfonic acid preferably contains an aromatic vinyl compound having a sulfo group, and more preferably contains parastyrene sulfonic acid.
  • the sulfonate preferably contains a salt of an aromatic vinyl compound having a sulfo group, more preferably contains a parastyrene sulfonate, and even more preferably contains sodium parastyrene sulfonate. This is because the generation of coarse particles can be suppressed in the binder composition.
  • the monomer (a3) has a 31st structural unit represented by the following formula (1), a 32nd structural unit represented by the following formula (2), and a 33rd structural unit represented by the following formula (3).
  • the monomer (a3) preferably has a plurality of ethylenically unsaturated bonds in one molecule.
  • the monomer (a3) may contain only one kind of compound, or may contain two or more kinds of compounds.
  • the terminal structure when describing the structure of the structural unit, the terminal structure is not considered unless otherwise specified.
  • the content of a certain structural unit in the monomer (a3) is the content of the structural unit in the structure excluding the terminal structure unless otherwise specified.
  • the monomer (a3) when the monomer (a3) is composed of a certain structural unit, it may contain a terminal structure in addition to the structural unit.
  • the terminal structure in the monomer (a3) is on the molecular terminal side of the ether bond closest to the molecular end, and is not included in any of the structures of the following formulas (1) to (3). It is a structure. Further, the terminal structure does not include the structures represented by the following formulas (1) to (3).
  • R 1 is an alkyl group having 1 or more and 6 or less carbon atoms which may have a branch.
  • R 1 preferably has 4 or less carbon atoms, more preferably 2 or less carbon atoms, and even more preferably a methyl group.
  • R 2 is a group having an ethylenically unsaturated bond.
  • the number of ethylenically unsaturated bonds contained in one 33rd structural unit is preferably one.
  • R2 is preferably represented by the following formula (4).
  • R 21 is an alkylene group having 1 to 5 carbon atoms which may have a branch
  • R 22 is a vinyloxy group, an allyloxy group, a (meth) acryloyl group, a (meth) acryloyloxy group, and-.
  • OCH 2 -CH 2 -CH 2 CH 2 is any one of them.
  • R 21 is preferably an alkylene group having 1 or 2 carbon atoms, and more preferably a methylene group.
  • R 22 is more preferably any one of an allyloxy group, a (meth) acryloyl group, and a (meth) acryloyloxy group, and even more preferably an allyloxy group.
  • the hydrophilicity of the monomer (a3) is adjusted to an appropriate range.
  • the hydrophilicity of the copolymer (P) can be controlled. For example, if the content of the 31st structural unit in the monomer (a3) is increased, the hydrophilicity of the copolymer (P) is improved, and if the content of the 31st structural unit is decreased, the copolymer (P) is used. The hydrophilicity of is reduced.
  • the crystallinity of the monomer (a3) is adjusted to an appropriate range.
  • the crystallinity of the copolymer (P) can be controlled. For example, if the content of the 31st structural unit in the monomer (a3) is increased, the crystallinity of the copolymer (P) is improved, and if the content of the 31st structural unit is decreased, the copolymer (P) is used. Crystallinity is reduced.
  • the crosslink density of the copolymer (P) can be adjusted, and the electrode activity containing the copolymer (P) as an electrode binder is possible.
  • the flexibility and strength of the material layer can be controlled. For example, if the content of the 33rd structural unit in the monomer (a3) is increased, the crosslink density of the copolymer (P) is increased, and the strength of the electrode active material layer can be further improved. On the other hand, if the content of the 33rd structural unit is reduced, the crosslink density of the copolymer (P) is lowered, and the flexibility of the electrode active material layer can be further improved.
  • the content of the 31st structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit is preferably 5.0 mol% or more, preferably 18 mol. % Or more, more preferably 25 mol% or more.
  • the content of the 31st structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit is preferably 98 mol% or less, preferably 97 mol% or less. Is more preferable.
  • the content of the 32nd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit is preferably 0.30 mol% or more, and 0. It is more preferably 50 mol% or more, and further preferably 0.70 mol% or more.
  • the content of the 32nd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit is preferably 90 mol% or less, preferably 80 mol% or less. It is more preferable that it is 75 mol% or less, and it is further preferable that it is 75 mol% or less.
  • the content of the 33rd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit is preferably 0.30 mol% or more, and 0. It is more preferably 50 mol% or more, and further preferably 0.70 mol% or more.
  • the content of the 33rd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit is preferably 10 mol% or less, preferably 6.0 mol. % Or less, more preferably 4.5 mol% or less.
  • the monomer (a3) may contain a structural unit that does not fall under any of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit.
  • the total content of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit in the monomer (a3) is preferably 90% by mass or more, preferably 95% by mass. The above is more preferable, 98% by mass is further preferable, and 100% by mass is most preferable.
  • the structural unit constituting the monomer (a3) does not include the terminal structure (definition is as described above). The same applies to the monomer (a31) according to the first form and the monomer (a32) according to the second form described below.
  • Examples of the monomer (a3) include the following two preferable forms having different hydrophilicity. Hereinafter, these forms will be described as the monomer (a31) according to the first form and the monomer (a32) according to the second form.
  • the monomer (a32) according to the second form is more hydrophilic than the monomer (a31) according to the first form.
  • the content of the 31st structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit is 5.0 mol% or more. It is preferably 18 mol% or more, more preferably 25 mol% or more, and even more preferably 25 mol% or more.
  • the content of the 31st structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit may be 50 mol% or less. It is preferably 40 mol% or less, more preferably 40 mol% or less.
  • the content of the 32nd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit may be 40 mol% or more. It is more preferably 50 mol% or more, and even more preferably 60 mol% or more.
  • the content of the 32nd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit may be 90 mol% or less. It is more preferably 80 mol% or less, still more preferably 75 mol% or less.
  • the content of the 33rd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit is 0.30 mol% or more. It is preferably 0.50 mol% or more, more preferably 0.70 mol% or more, and even more preferably 0.70 mol% or more.
  • the content of the 33rd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit may be 10 mol% or less. It is more preferably 6.0 mol% or less, still more preferably 4.5 mol% or less.
  • the content of the 31st structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit may be 70 mol% or more. It is more preferably 80 mol% or more, and even more preferably 90 mol% or more.
  • the content of the 31st structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit may be 98 mol% or less. It is preferably 97 mol% or less, and more preferably 97 mol% or less.
  • the content of the 32nd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit is 0.30 mol% or more. It is preferably 0.50 mol% or more, more preferably 0.70 mol% or more, and even more preferably 0.70 mol% or more.
  • the content of the 32nd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit may be 20 mol% or less. It is more preferably 15 mol% or less, still more preferably 10 mol% or less.
  • the content of the 33rd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit is 0.30 mol% or more. It is preferably 0.50 mol% or more, more preferably 0.70 mol% or more, and even more preferably 0.70 mol% or more.
  • the content of the 33rd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit may be 10 mol% or less. It is more preferably 6.0 mol% or less, still more preferably 4.5 mol% or less.
  • the monomer (a3) is preferably a block copolymer having a first block composed of the 31st structural unit, a second block composed of the 32nd structural unit, and a third block composed of the 33rd structural unit. It is more preferable that the monomer (a3) is a ternary block copolymer composed of a first block, a second block, and a third block (however, the terminal structure may be included as defined above).
  • the monomer (a3) is a ternary in which the first block, the second block, and the third block are arranged in that order (that is, the second block exists between the first block and the third block). It is more preferably a block copolymer.
  • the preferred range of the weight average molecular weight of the monomer (a3) depends on the presence or absence of water solubility of the monomer (a3).
  • the weight average of the monomer (a3) is a pullulan-converted value measured by an aqueous GPC under the conditions shown below.
  • the weight average molecular weight M w (pullulan equivalent value) of the monomer (a3) is preferably 10,000 or more, more preferably 30,000 or more, and further preferably 50,000 or more. This is because the strength of the electrode is improved. Further, in this case, the weight average molecular weight M w (pullulan equivalent value) of the monomer (a3) is preferably 300,000 or less, more preferably 200,000 or less, and further preferably 120,000 or less. This is because the dispersibility of the solid content in the electrode slurry described later is improved.
  • the monomer (a3) is used.
  • the weight average molecular weight of is a polystyrene-equivalent value measured by a solvent-based GPC under the following conditions.
  • the weight average molecular weight M w (polystyrene conversion value) of the monomer (a3) is preferably 10,000 or more, more preferably 20,000 or more, and further preferably 30,000 or more. This is because the strength of the electrode is improved. Further, in this case, the weight average molecular weight M w (polystyrene equivalent value) of the monomer (a3) is preferably 200,000 or less, more preferably 150,000 or less, and further preferably 80,000 or less. This is because the dispersibility of the solid content in the electrode slurry described later is improved.
  • the monomer (a3) is preferably, for example, a ternary block copolymer represented by the following formula (5).
  • n: m: l 5.0 to 98: 0.30 to 90: 0.30 to 4.5
  • n: m: l 18 to 97: 0.50 to 80: 0.
  • the preferred range of weight average molecular weight is as described above.
  • the weight average molecular weight is 10,000 to 200,000 in terms of polystyrene, and 20,000 to 20,000. It is preferably 150,000, more preferably 30,000 to 80,000.
  • the weight average molecular weight is 10,000 to 300,000 in terms of pullulan, and 30,000 to 200,000. It is preferably 50,000 to 120,000, and more preferably 50,000 to 120,000.
  • the method for synthesizing the monomer (a3) is not particularly limited, but can be obtained, for example, by ring-opening polymerization of the epoxide using an acid catalyst.
  • the internal cross-linking agent (a4) does not correspond to the monomer (a3), has a plurality of independent ethylenically unsaturated bonds, and contains the monomers (a1), (a2), and (a3). It is a compound capable of forming a crosslinked structure in radical polymerization of a monomer. Examples of such a compound include divinylbenzene, ethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 2-hydroxy-3-acryloyloxypropyl methacrylate and the like.
  • the other monomer (a5) does not correspond to any of the monomers (a1) to (a4).
  • the other monomer (a5) is a compound having an ethylenically unsaturated bond and a polar functional group, a surfactant having an ethylenically unsaturated bond (hereinafter, may be referred to as “polymerizable surfactant”), and the like. Examples thereof include compounds having an ethylenically unsaturated bond and a function as a silane coupling agent, but the present invention is not limited thereto.
  • the polar functional group preferably contains at least one of a hydroxy group and a cyano group.
  • the monomer having an ethylenically unsaturated bond and a polar functional group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl acrylate, and (meth) acrylonitrile.
  • the copolymer (P) preferably contains a structural unit derived from an ethylenically unsaturated bond and a compound containing a hydroxy group, and more preferably has a structural unit derived from a (meth) acrylate having a hydroxy group. It is more preferable to contain a structural unit derived from 2-hydroxyethyl (meth) acrylate.
  • Examples of the polymerizable surfactant include compounds having an ethylenically unsaturated bond and having a function as a surfactant, and examples thereof include compounds represented by the following chemical formulas (6) to (9). ..
  • R 3 is preferably an alkyl group, and p is preferably an integer of 10 to 40. It is more preferable that R 3 has 10 to 40 carbon atoms, and it is further preferable that R 3 is a linear unsubstituted alkyl group having 10 to 40 carbon atoms.
  • R 4 is preferably an alkyl group, and q is preferably an integer of 10 to 12. It is more preferable that R 4 has 10 to 40 carbon atoms, and it is further preferable that R 4 is a linear unsubstituted alkyl group having 10 to 40 carbon atoms.
  • R 5 is preferably an alkyl group, and M 1 is preferably NH 4 or Na. It is more preferable that R 5 has 10 to 40 carbon atoms, and it is further preferable that R 5 is a linear unsubstituted alkyl group having 10 to 40 carbon atoms.
  • R 6 is preferably an alkyl group, and M 2 is preferably NH 4 or Na. It is more preferable that R 6 has 10 to 40 carbon atoms, and it is further preferable that R 6 is a linear unsubstituted alkyl group having 10 to 40 carbon atoms.
  • Examples of the compound having an ethylenically unsaturated bond and functioning as a silane coupling agent include vinyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, vinyltriethoxysilane, and ⁇ -methacryloxypropyltriethoxysilane. And so on.
  • the content of the second structural unit derived from the monomer (a2) is 1.0 part by mass or more with respect to 100 parts by mass of the first structural unit derived from the monomer (a1). It is preferably 1.5 parts by mass or more, and more preferably 3.0 parts by mass or more. This is because the mechanical stability of the copolymer (P) is improved. This is also because the peel strength of the electrode active material layer containing the copolymer (P) as an electrode binder is improved.
  • the content of the second structural unit derived from the monomer (a2) is 30 parts by mass or less with respect to 100 parts by mass of the first structural unit derived from the monomer (a1). , 15 parts by mass or less, more preferably 7.5 parts by mass or less. This is to suppress gelation of the copolymer (P). This is also because the mechanical stability of the copolymer (P) is improved.
  • the content of the third structural unit derived from the monomer (a3) is 0.010 parts by mass or more with respect to 100 parts by mass of the first structural unit derived from the monomer (a1). It is preferably 0.030 parts by mass or more, more preferably 0.15 parts by mass or more, and further preferably 0.65 parts by mass or more. This is because the peel strength of the electrode active material layer containing the copolymer (P) as the electrode binder is improved. Further, it is possible to reduce the DCR of the battery using the electrode containing the copolymer (P) as the electrode binder in the electrode active material layer.
  • the content of the third structural unit derived from the monomer (a3) is 70 parts by mass or less with respect to 100 parts by mass of the first structural unit derived from the monomer (a1). , 40 parts by mass or less, more preferably 35 parts by mass or less. This is because the polymerization stability in radical polymerization is improved and the generation of coarse particles of the copolymer (P) is suppressed. This is also to suppress gelation of the copolymer (P).
  • the mass ratio of the first structural unit, the second structural unit, and the third structural unit to the copolymer (P) is preferably 80% by mass or more in total, and more preferably 85% by mass or more. , 90% by mass or more is more preferable. This is because the effect obtained by the present invention is further enhanced by increasing the content of these structural units.
  • the internal cross-linking agent (a4) is used with respect to 100 parts by mass of the first structural unit derived from the monomer (a1).
  • the content of the derived fourth structural unit is preferably 0.050 parts by mass or more, more preferably 0.075 parts by mass or more, and further preferably 0.50 parts by mass or more. This is because the deterioration of the copolymer (P) can be suppressed, and the discharge capacity retention rate of the battery using the electrode containing the copolymer (P) as the electrode binder in the electrode active material layer can be improved.
  • the copolymer (P) contains a structural unit derived from the internal cross-linking agent (a4), it is derived from the internal cross-linking agent (a4) with respect to 100 parts by mass of the first structural unit derived from the monomer (a1).
  • the content of the fourth structural unit is 20 parts by mass or less, preferably 7.5 parts by mass or less, and more preferably 2.5 parts by mass or less. This is to suppress gelation of the copolymer (P).
  • the glass transition point Tg of the copolymer (P) is obtained as a temperature differential of DSC by performing DSC measurement in a nitrogen gas atmosphere at a heating rate of 10 ° C./min using EXSTAR DSC / SS7020 manufactured by Hitachi High-Tech Science. The peak top temperature of the DDSC chart.
  • the glass transition point Tg of the copolymer (P) is preferably ⁇ 30 ° C. or higher, more preferably ⁇ 10 ° C. or higher, and even more preferably 0 ° C. or higher. This is because the cycle characteristics of the non-aqueous secondary battery using the copolymer (P) as the electrode binder are improved.
  • the glass transition point Tg of the copolymer (P) is preferably 100 ° C. or lower, more preferably 50 ° C. or lower, and even more preferably 30 ° C. or lower. This is because the adhesion of the electrode active material layer containing the copolymer (P) as the electrode binder to the current collector foil is improved.
  • the copolymer (P) can be obtained by copolymerizing a monomer containing the monomers (a1) to (a3).
  • a monomer an internal cross-linking agent (a4) and another monomer (a5) may be copolymerized, if necessary.
  • the monomers used for synthesizing the copolymer (P) may be collectively referred to as the monomer (a).
  • Examples of the polymerization method include emulsion polymerization of the monomer (a) in the aqueous medium (b).
  • components used in the synthesis of the copolymer (P) by emulsion polymerization include, for example, a non-polymerizable surfactant (c), a basic substance (d), a radical polymerization initiator (e), and the like. Examples thereof include a chain transfer agent (f).
  • the aqueous medium (b) is water, a hydrophilic solvent, or a mixture thereof.
  • the hydrophilic solvent include methanol, ethanol, isopropyl alcohol, N-methylpyrrolidone and the like.
  • the aqueous medium (b) is preferably water.
  • a water to which a hydrophilic solvent is added may be used as long as the polymerization stability is not impaired.
  • Non-polymerizable Surfactant (c) In the emulsion polymerization of the monomer (a), a non-polymerizable surfactant (c) may be used.
  • the surfactant (c) can improve the dispersion stability of the dispersion liquid (emulsion) during and / or after the polymerization.
  • As the surfactant (c) it is preferable to use an anionic surfactant or a nonionic surfactant.
  • anionic surfactant examples include alkylbenzene sulfonates, alkyl sulfates, polyoxyethylene alkyl ether sulfates, and fatty acid salts.
  • nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polycyclic phenyl ether, polyoxyalkylene alkyl ether, sorbitan fatty acid ester, and polyoxyethylene sorbitan fatty acid ester.
  • the above-mentioned surfactant may be used alone or in combination of two or more.
  • Basic substance (d) When the monomer (a) is emulsion-polymerized in the aqueous medium (b), the basic substance (d) may be added. By adding the basic substance (d), the acidic component contained in the monomer (a) can be neutralized and the pH can be adjusted. By adjusting the pH, the mechanical stability and chemical stability of the dispersion during and / or after emulsion polymerization can be improved.
  • the pH of the dispersion liquid at 23 ° C. may be appropriately adjusted depending on the specifications of the electrodes, the conditions for preparing the slurry described later, and the like, and is not limited, but is preferably 1.5 to 10, preferably 6.0 to 9. It is more preferably 0, and even more preferably 5.0 to 9.0. This is to suppress the sedimentation of the active material in the electrode slurry described later.
  • Examples of the basic substance (d) include ammonia, triethylamine, sodium hydroxide, lithium hydroxide and the like. These basic substances (d) may be used alone or in combination of two or more.
  • the radical polymerization initiator (e) used in the emulsion polymerization is not particularly limited, and known ones can be used.
  • the radical polymerization initiator include persulfates such as ammonium persulfate and potassium persulfate; hydrogen peroxide; azo compounds; organic peroxides such as t-butylhydroperoxide, tert-butylperoxybenzoate and cumenehydroperoxide. Examples include oxides. Of these, persulfates and organic peroxides are preferable.
  • a radical polymerization initiator and a reducing agent such as sodium bisulfite, longalit, and ascorbic acid may be used in combination during emulsion polymerization for redox polymerization.
  • the amount of the radical polymerization initiator added is preferably 0.10 part by mass or more, and more preferably 0.80 part by mass or more with respect to 100 parts by mass of the monomer (a). This is because the conversion rate of the monomer (a) to the copolymer (P) at the time of polymerization can be increased.
  • the amount of the radical polymerization initiator added is preferably 3.0 parts by mass or less, and more preferably 2.0 parts by mass or less with respect to 100 parts by mass of the monomer (a). This is because the molecular weight of the copolymer (P) can be increased and the swelling rate of the electrode active material layer with respect to the electrolytic solution can be reduced.
  • the chain transfer agent (f) is used to adjust the molecular weight of the copolymer (P) in emulsion polymerization.
  • Examples of the chain transfer agent (f) include n-dodecyl mercaptan, tert-dodecyl mercaptan, n-butyl mercaptan, 2-ethylhexylthioglycolate, 2-mercaptoethanol, ⁇ -mercaptopropionic acid, methyl alcohol, and n-propyl alcohol. Examples thereof include isopropyl alcohol, t-butyl alcohol and benzyl alcohol.
  • Emulsification polymerization method examples include a method of emulsion polymerization while continuously supplying each component used for emulsion polymerization.
  • the temperature of the emulsion polymerization is not particularly limited, but is, for example, 30 to 90 ° C, preferably 50 to 85 ° C, and even more preferably 55 to 80 ° C.
  • Emulsion polymerization is preferably carried out with stirring. Further, it is preferable that the monomer (a) and the radical polymerization initiator are continuously supplied so as to be uniform in the reaction vessel.
  • Binder for non-aqueous secondary battery electrodes contains the copolymer (P) described above. ..
  • the electrode binder may contain other components, and may contain, for example, a polymer other than the copolymer (P), a surfactant, or the like.
  • the electrode binder is composed of a component that remains without volatilizing in a process involving heating in the battery manufacturing process described later. Specifically, the components constituting the electrode binder remained after weighing 1 g of the mixture containing the electrode binder in an aluminum dish having a diameter of 5 cm and drying at 105 ° C. for 1 hour while circulating air in a dryer at atmospheric pressure. It is an ingredient.
  • the content of the copolymer (P) in the electrode binder is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, and 98% by mass. The above is more preferable. This is to increase the contribution of the copolymer (P) to the desired effect of the present invention.
  • Binder composition for non-aqueous secondary battery electrodes In the binder composition for a non-aqueous secondary battery electrode of the present embodiment (hereinafter, may be referred to as a binder composition), the copolymer (P) is dispersed in the aqueous medium (B).
  • the binder composition may contain, for example, the above-mentioned components used in the synthesis of the copolymer (P).
  • the binder composition may be a dispersion obtained by a method for synthesizing the copolymer (P), or may be obtained by dispersing the copolymer (P) obtained by a method other than emulsion polymerization in an aqueous medium (B). The dispersion may be obtained, or may be a dispersion obtained by another method.
  • the aqueous medium (B) is water, a hydrophilic solvent, or a mixture thereof.
  • hydrophilic solvents are as mentioned in the description of the aqueous medium (b) in the synthesis of the copolymer (P).
  • the aqueous medium (B) may be the same as or different from the aqueous medium (b) used for the synthesis of the copolymer (P).
  • the aqueous medium (b) used for the synthesis of the copolymer (P) may be used as it is, or the aqueous medium (b) may be configured by adding an aqueous solvent, or the copolymer (P) may be used. ) May be replaced with a new aqueous solvent after the synthesis of the aqueous medium (b).
  • the aqueous solvent to be added or replaced may have the same composition as the solvent used for the synthesis of the copolymer (P), or may have a different composition.
  • Non-volatile content concentration of binder composition The non-volatile content concentration of the binder composition is preferably 20% by mass or more, more preferably 25% by mass or more, and further preferably 30% by mass or more. This is to increase the amount of the active ingredient contained in the binder composition.
  • the non-volatile content concentration of the binder composition can be adjusted by the amount of the aqueous medium (B).
  • the non-volatile content concentration of the binder composition is preferably 80% by mass or less, more preferably 70% by mass or less, and further preferably 60% by mass or less. This is to suppress an increase in the viscosity of the binder composition and facilitate the production of a slurry described later.
  • the electrode slurry has a structure in which the copolymer (P) and the electrode active material are dispersed in an aqueous medium.
  • the electrode slurry may contain a thickener, a conductive auxiliary agent, the above-mentioned components used for synthesizing the copolymer (P), and the like.
  • the content of the copolymer (P) is preferably 0.50 part by mass or more, and more preferably 1.0 part by mass or more with respect to 100 parts by mass of the electrode active material. This is to fully exhibit the effect of the copolymer (P).
  • the content of the copolymer (P) is preferably 5.0 parts by mass or less, more preferably 4.0 parts by mass or less, and 3.0 parts by mass with respect to 100 parts by mass of the electrode active material. More preferably, it is less than or equal to a portion. This is to increase the content of the electrode active material in the electrode active material layer produced by using the electrode slurry.
  • the electrode active material is a material capable of inserting / desorbing ions such as lithium ions that serve as charge carriers.
  • the ion serving as a charge carrier is preferably an alkali metal ion, more preferably a lithium ion, a sodium ion, or a potassium ion, and even more preferably a lithium ion.
  • the electrode active material that is, the negative electrode active material preferably contains at least one of a carbon material, a material containing silicon, and a material containing titanium.
  • the carbon material used as the electrode active material include coke such as petroleum coke, pitch coke, and coal coke, carbonized organic polymer, artificial graphite, and graphite such as natural graphite.
  • the material containing silicon include a simple substance of silicon and a silicon compound such as silicon oxide.
  • the material containing titanium include lithium titanate and the like. These materials may be used alone, or may be mixed or combined.
  • the negative electrode active material preferably contains at least one of a carbon material and a material containing silicon, and more preferably contains a carbon material. This is because the copolymer (P) has a very large effect of improving the binding property between the electrode active materials and between the electrode active material and the current collector.
  • the electrode active material uses a substance having a higher standard electrode potential than the negative electrode active material.
  • a lithium composite oxide containing nickel such as a Ni—Co—Mn-based lithium composite oxide, a Ni—Mn—Al based lithium composite oxide, and a Ni—Co—Al based lithium composite oxide.
  • these substances may be used alone or in combination of two or more.
  • thickener examples include celluloses such as carboxymethyl cellulose (CMC), hydroxyethyl cellulose and hydroxypropyl cellulose, ammonium salts of celluloses, alkali metal salts of celluloses, polyvinyl alcohol, polyvinylpyrrolidone and the like.
  • the thickener preferably contains at least one of carboxymethyl cellulose, an ammonium salt of carboxymethyl cellulose, and an alkali metal salt of carboxymethyl cellulose. This is because the electrode active material is easily dispersed in the electrode slurry.
  • the content of the thickener in the electrode slurry is preferably 0.50 part by mass or more, and more preferably 0.80 part by mass or more with respect to 100 parts by mass of the electrode active material. This is to improve the bondability between the electrode active materials and between the electrode active material and the current collector in the electrode active material layer produced by using the electrode slurry.
  • the content of the thickener in the electrode slurry is preferably 3.0 parts by mass or less, more preferably 2.0 parts by mass or less, and 1.5 parts by mass with respect to 100 parts by mass of the electrode active material. The following is more preferable. This is because the coatability of the electrode slurry is improved.
  • the aqueous medium is water, a hydrophilic solvent, or a mixture thereof.
  • hydrophilic solvents are as mentioned in the description of the aqueous medium (b) in the synthesis of the copolymer (P).
  • the aqueous medium contained in the electrode slurry may be the same as or different from the aqueous medium (B) contained in the binder composition or the aqueous medium (b) used for synthesizing the copolymer (P).
  • Conductive aid As the conductive auxiliary agent, it is preferable to use carbon black, carbon fiber or the like.
  • carbon black include furnace black, acetylene black, denka black (registered trademark) (manufactured by Denka Co., Ltd.), and Ketjen black (registered trademark) (manufactured by Ketjen Black International Co., Ltd.).
  • the carbon fiber include carbon nanotubes and carbon nanofibers, and examples of the carbon nanotube include VGCF (registered trademark, manufactured by Showa Denko Co., Ltd.), which is a vapor phase carbon fiber.
  • the non-volatile content concentration of the electrode slurry is preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably 40% by mass or more. This is because the concentration of the active ingredient in the electrode slurry becomes high, and a sufficient amount of the electrode active material layer can be formed with a small amount of the electrode slurry.
  • the non-volatile content concentration of the electrode slurry can be adjusted by adjusting the amount of the aqueous medium in the electrode slurry.
  • the non-volatile content concentration of the electrode slurry is preferably 85% by mass or less, more preferably 75% by mass or less, and further preferably 65% by mass or less. This is to maintain good coatability of the electrode slurry.
  • the viscosity of the electrode slurry is preferably 20000 mPa ⁇ s or less, more preferably 10,000 mPa ⁇ s or less, and further preferably 5000 mPa ⁇ s or less. This is because the applicability of the electrode slurry to the current collector is improved and the productivity of the electrodes is improved.
  • the viscosity of the electrode slurry is greatly affected by the non-volatile content concentration of the electrode slurry and the type and amount of the thickener.
  • the pH of the electrode slurry at 23 ° C. may be appropriately adjusted depending on the specifications of the electrode, the production conditions, and the like, and is not limited, but is preferably 2.0 to 10, and more preferably 4.0 to 9.0. , More preferably 6.0 to 9.0. This is to improve the durability of the battery manufactured by using the electrode slurry.
  • a binder composition As a method for preparing the electrode slurry in the present embodiment, a binder composition, an electrode active material, a thickener if necessary, an aqueous medium if necessary, and a conductive auxiliary agent if necessary are required.
  • a method of mixing with other components may be mentioned depending on the above, but the method is not limited to this.
  • the order of the components to be added is not particularly limited and may be appropriately determined. Examples of the mixing method include a method using a mixing device such as a stirring type, a rotary type, and a shaking type.
  • Non-aqueous secondary battery electrode includes a current collector and an electrode active material layer formed on the current collector.
  • Examples of the shape of the electrode include a laminated body and a wound body, but the shape is not particularly limited. Further, the range of forming the electrode active material layer on the current collector is not particularly limited, and it may be formed on the entire surface of the current collector or may be formed on a part of the surface of the current collector. When the current collector is in the shape of a plate, foil, or the like, the electrode active material layer may be formed on both sides of the current collector, or may be formed on only one side.
  • the current collector is preferably a metal sheet having a thickness of 0.001 mm or more and 0.5 mm or less, and examples of the metal include iron, copper, aluminum, nickel, and stainless steel.
  • the current collector is preferably a copper foil.
  • the electrode active material layer according to the present embodiment includes an electrode binder and an electrode active material.
  • the electrode active material layer may contain a conductive auxiliary agent, a thickener and the like. The components listed here are as described above.
  • Electrode manufacturing method As a method for manufacturing an electrode, for example, an electrode slurry is applied onto a current collector, dried to form an electrode active material layer, and then cut into an appropriate size.
  • the method of applying the electrode slurry onto the current collector is not particularly limited, but for example, the reverse roll method, the direct roll method, the doctor blade method, the knife method, the extrusion method, the curtain method, the gravure method, the bar method, and the dip method. Law, squeeze method, etc. can be mentioned.
  • the doctor blade method, the knife method, or the extrusion method is preferably used in consideration of various physical properties such as the viscosity of the electrode slurry and the drying property. This is because it is possible to obtain an electrode active material layer having a smooth surface and a small variation in thickness.
  • the electrode slurry may be applied to only one side of the current collector or may be applied to both sides. When the electrode slurry is applied to both sides of the current collector, it may be applied sequentially on one side at a time or on both sides at the same time. Further, the electrode slurry may be continuously applied to the current collector or may be applied intermittently.
  • the coating amount of the electrode slurry can be appropriately determined according to the design capacity of the battery, the composition of the electrode slurry, and the like. The coating amount of the electrode slurry depends on the properties of the electrode slurry, but is preferably 13 mg / cm 2 or less (when coated on both sides, the coating amount per one side). This is because the occurrence of cracks on the electrode surface can be suppressed in the process of drying the electrode slurry.
  • an electrode active material layer is formed on the current collector.
  • the method for drying the electrode slurry is not particularly limited, and for example, hot air, reduced pressure or vacuum environment, (far) infrared rays, and low temperature air can be used alone or in combination.
  • the drying temperature and drying time of the electrode slurry can be appropriately adjusted depending on the concentration of non-volatile components in the electrode slurry, the amount of coating on the current collector, and the like.
  • the drying temperature is preferably 40 ° C. or higher and 350 ° C. or lower, and more preferably 60 ° C. or higher and 100 ° C. or lower from the viewpoint of productivity.
  • the drying time is preferably 1 minute or more and 30 minutes or less.
  • the electrode sheet on which the electrode active material layer is formed on the current collector may be cut in order to obtain an appropriate size and shape as an electrode.
  • the method for cutting the electrode sheet is not particularly limited, but for example, a slit, a laser, a wire cut, a cutter, a Thomson, or the like can be used.
  • the electrode sheet may be pressed as needed before or after cutting the electrode sheet.
  • the electrode active material is firmly bound to the current collector, and the electrode can be made thinner, so that the non-aqueous battery can be miniaturized.
  • a pressing method a general method can be used, and it is particularly preferable to use a die pressing method or a roll pressing method.
  • the pressing pressure is not particularly limited, but is preferably 0.5 t / cm 2 or more and 5 t / cm 2 or less.
  • the linear pressure is not particularly limited, but is preferably 0.5 t / cm or more and 5 t / cm or less. This is to suppress the insertion of charge carriers such as lithium ions into the electrode active material and the decrease in the desorption capacity while obtaining the above effects by the press.
  • Non-water-based secondary battery > A lithium ion secondary battery will be described as a preferred example of the non-aqueous secondary battery according to the present embodiment, but the battery configuration is not limited to that described here.
  • the non-aqueous secondary battery according to the present embodiment has a positive electrode, a negative electrode, an electrolytic solution, and, if necessary, components such as a separator, housed in an exterior body, and is one of a positive electrode and a negative electrode. Alternatively, the electrodes produced by the above method are used for both.
  • at least one of the positive electrode and the negative electrode contains the copolymer (P) in the electrode binder, but it is preferable that at least the negative electrode contains the copolymer (P).
  • Electrolyte As the electrolytic solution, a non-aqueous liquid having ionic conductivity is used.
  • the electrolytic solution include a solution in which an electrolyte is dissolved in an organic solvent, an ionic liquid, and the like, and the former is preferable. This is because a non-aqueous battery having a low manufacturing cost and a low internal resistance can be obtained.
  • an alkali metal salt can be used and can be appropriately selected depending on the type of the electrode active material and the like.
  • the electrolyte include LiClO 4 , LiBF 6 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiB 10 Cl 10 , LiAlCl 4 , LiCl, LiBr, LiB (C2H 5 ). 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, lithium aliphatic carboxylate and the like can be mentioned. Further, other alkali metal salts can also be used as the electrolyte.
  • the organic solvent that dissolves the electrolyte is not particularly limited, and is, for example, ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), dimethyl carbonate (DMC), and fluoroethylene carbonate.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DEC diethyl carbonate
  • MEC methyl ethyl carbonate
  • DMC dimethyl carbonate
  • FEC fluoroethylene carbonate
  • carbonic acid ester compounds such as vinylene carbonate (VC)
  • nitrile compounds such as acetonitrile
  • carboxylic acid esters such as ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate and the like.
  • These organic solvents may be used alone or in combination of two or more. Above all, it is preferable to use a combination of a linear carbonate solvent
  • the exterior body for example, a laminated material of an aluminum foil and a resin film can be appropriately used, but the exterior body is not limited to this.
  • the shape of the battery may be any shape such as a coin type, a button type, a sheet type, a cylindrical type, a square type, and a flat type.
  • a negative electrode of a lithium ion secondary battery and a lithium ion secondary battery are manufactured, and the negative electrode of the lithium ion secondary battery and the lithium ion secondary battery according to the comparative example are used.
  • the effect of the present invention is confirmed.
  • the present invention is not limited thereto.
  • the water used in the following Examples and Comparative Examples is ion-exchanged water.
  • the composition of the compound (a3-1), the compound (a3-2), and the compound (a3-3) in Tables 1 and 2 is as follows.
  • the compound (a3-1), the compound (a3-2), and the compound (a3-3) are all a block composed of a structural unit (10), a block composed of a structural unit (11), and a structural unit (12).
  • the blocks consisting of are ternary block copolymers arranged in this order.
  • the structures of the structural units (10), (11), and (12) are as shown below.
  • the compound (a3-1) contains 30 mol% of the structural unit (10), 69 mol% of the structural unit (11), and 1.0 mol% of the structural unit (12), and has a polystyrene-equivalent weight average molecular weight of 50,000. be.
  • the compound (a3-2) contains 93 mol% of the structural unit (10), 6.0 mol% of the structural unit (11), and 1.0 mol% of the structural unit (12), and has a weight average molecular weight in terms of pullulan. It is 80,000.
  • the compound (a3-3) contains 96 mol% of the structural unit (10), 1.0 mol% of the structural unit (11), and 3.0 mol% of the structural unit (12), and has a weight average molecular weight in terms of pullulan. It is 80,000.
  • tert-butylperoxybenzoate Kayabutyl B manufactured by Kayaku Akzo Corporation
  • ascorbic acid as the polymerization initiator (e2) were added to 8.1 parts by mass of water.
  • the dissolved aqueous solution was added.
  • a polymerization initiator (e3) an aqueous solution prepared by dissolving 2.3 parts by mass of tert-butyl hydroperoxide (Kayabutyl H-70 manufactured by Kayaku Akzo Corporation) in 15 parts by mass of water and Longalit 2.3.
  • the obtained aqueous emulsion was cooled to room temperature. Then, in order to neutralize the aqueous emulsion, 19 parts by mass of 25% by mass of ammonia water and 155 parts by mass of water were added to the separable flask, and the binder composition containing the copolymer (P) according to the examples was added. , And a binder composition containing the polymer (CP) according to the examples were obtained.
  • the amount of ammonia shown in Tables 1 and 2 indicates the amount of ammonia contained in the aqueous ammonia.
  • Tables 1 and 2 show the total amount of water used in the copolymer (P) synthesis step and the polymer (CP) synthesis step.
  • the amount of water shown in Tables 1 and 2 includes not only water added alone but also water contained in the aqueous acrylic acid solution and aqueous ammonia, and water added together with a polymerization initiator and the like.
  • the peak top temperature of the DDSC chart obtained as the temperature differential of DSC was measured, and this temperature was defined as the glass transition point Tg (° C.) of the copolymer (P) and the polymer (CP).
  • the measurement temperature range was ⁇ 40 ° C. to 200 ° C.
  • Non-volatile content concentration 1 g of the binder composition was weighed on an aluminum dish having a diameter of 5 cm, dried at 105 ° C. for 1 hour at 1 atm (1013 hPa) while circulating air in a dryer, and the mass of the remaining components was measured. The mass ratio (mass%) of the above-mentioned components remaining after drying with respect to the mass (1 g) of the binder composition before drying was calculated as the non-volatile content concentration.
  • the binder composition was sieved by 1 L using a wire mesh having a 300 mesh opening, and then the wire mesh was washed with ion-exchanged water to remove the liquid residue of the binder composition.
  • the mass of the wire mesh after washing was measured at 1 atm (1013 hPa) and dried at 105 ° C. for 1 hour while circulating air in the dryer. The difference between the mass of the wire mesh after drying and the mass of the wire mesh used alone was calculated as the coarse grain amount (g / L).
  • N - N- _ 50 parts by mass of methylpyrrolidone was added and further mixed to prepare a positive electrode slurry.
  • the positive electrode slurry was applied to both sides of an aluminum foil (positive electrode current collector) having a thickness of 15 ⁇ m by the direct roll method.
  • the amount of the positive electrode slurry applied to the positive electrode current collector was adjusted so that the thickness after the roll press treatment described later was 125 ⁇ m per side.
  • the positive electrode slurry applied on the positive electrode current collector was dried at 120 ° C. for 5 minutes and pressed by a roll press (manufactured by Thunk Metal Co., Ltd., press load 5 tons, roll width 7 cm) to form a positive electrode active material layer.
  • a positive electrode sheet was obtained.
  • the obtained positive electrode sheet was cut out to a size of 50 mm ⁇ 40 mm, and a conductive tab was attached to prepare a positive electrode.
  • CMC Carboxymethyl Cellulose-Sodium Salt, Sunrose (registered trademark) MAC500LC manufactured by Nippon Paper Chemicals Co., Ltd.
  • Negative electrode slurry was applied to both sides of a copper foil (negative electrode current collector) having a thickness of 10 ⁇ m by the direct roll method.
  • the amount of the negative electrode slurry applied to the negative electrode current collector was adjusted so that the thickness after the roll press treatment described later was 170 ⁇ m per side.
  • the negative electrode slurry applied on the negative electrode current collector is dried at 90 ° C. for 10 minutes, pressed by a roll press (manufactured by Thunk Metal, press load 8 t, roll width 7 cm), and the negative electrode active material layer is placed on the current collector.
  • a roll press manufactured by Thunk Metal, press load 8 t, roll width 7 cm
  • the negative electrode active material layer is placed on the current collector.
  • the obtained negative electrode sheet was cut out to a size of 52 mm ⁇ 42 mm, and a conductive tab was attached to prepare a negative electrode.
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • DEC diethyl carbonate
  • the negative electrode active material layer was peeled off by 20 mm in the length direction from one end of the test piece, and the test piece on the copper foil side was folded back 180 ° to this portion ( The copper foil side of the part of the test piece from which the negative electrode active material layer was peeled off) was grasped by the chuck on the upper side of the testing machine. Further, one end of the SUS plate from which the negative electrode active material layer was peeled off was grasped by the lower chuck. In that state, the copper foil was peeled off from the test piece at a speed of 100 ⁇ 10 mm / min, and a graph of peeling length (mm) -peeling force (mN) was obtained.
  • the average value (mN) of the peeling force at the peeling length of 10 to 45 mm was calculated, and the value obtained by dividing the average value of the peeling force by the width of the test piece of 25 mm was the peeling strength (mN / mN /) of the negative electrode active material layer. mm).
  • peeling between the double-sided tape and the SUS plate and interfacial peeling between the double-sided tape and the negative electrode active material layer did not occur during the test.
  • the time integral value of the current in the steps (i) and (ii) is the charge capacity
  • the time integral value of the current in the step (iv) is the discharge capacity.
  • the discharge capacity in the first cycle and the discharge capacity in the 100th cycle were measured.
  • 100 ⁇ (discharge capacity in the 100th cycle) / (discharge capacity in the first cycle) [%] was calculated as the cycle capacity retention rate under high temperature of the battery, and is shown in Tables 1 and 2.
  • Comparative Example 1 a polymer derived from the monomer (a3) and having no third structural unit was synthesized.
  • the peel strength of the negative electrode active material layer was low in the electrode manufactured by using the polymer according to Comparative Example 1 as the electrode binder, and the internal resistance of the battery manufactured by using this electrode was high.
  • Comparative Example 2 a polymer containing an excess of a third structural unit derived from the monomer (a3) was synthesized, but gelation progressed, and an electrode and a battery using this polymer as an electrode binder could be produced. There wasn't.
  • Comparative Example 3 a polymer containing no second structural unit derived from the monomer (a2) was synthesized. In the electrode prepared by using the polymer according to Comparative Example 3 as an electrode binder, the peel strength of the negative electrode active material layer was low.
  • Comparative Example 4 a polymer containing an excess of the second structural unit derived from the monomer (a2) was synthesized, but gelation progressed, and an electrode and a battery using this polymer as an electrode binder could be produced. There wasn't.
  • Comparative Example 5 a polymer containing an excess of the fourth structural unit derived from the internal cross-linking agent (a4) was synthesized, but gelation progressed, and an electrode and a battery using this polymer as an electrode binder could be produced. There wasn't.
  • the copolymer (P) having the configuration according to the present invention the peel strength of the electrode active material layer with respect to the current collector is effectively improved in the non-aqueous secondary battery, and the battery It can contribute to the reduction of internal resistance and the improvement of cycle characteristics.

Abstract

Provided are: a copolymer which has less generation of coarse grains and effectively improved peel strength from a current collector of an electrode active material layer, and thus can contribute to a reduction in the internal resistance of a battery and excellent cycle characteristics; a binder for a non-aqueous secondary battery electrode; and a slurry for a non-aqueous secondary battery electrode. A copolymer according to the present invention includes a first structural unit to a third structural unit which are respectively derived from monomers (a1)-(a3). The monomer (a1) is composed of a nonionic compound having an ethylenically unsaturated bond, the monomer (a2) has an ethylenically unsaturated bond and an anionic functional group, and the monomer (a3) has 31st to 33rd structural units represented by formulae (1)-(3). 1.0-30 parts by mass of the second structural unit and 0.010-70 parts by mass of the third structural unit are included with respect to 100 parts by mass of the first structural unit.

Description

共重合体、非水系二次電池電極用バインダー、及び非水系二次電池電極用スラリーCopolymers, binders for non-aqueous secondary battery electrodes, and slurries for non-aqueous secondary battery electrodes
 本発明は、共重合体、非水系二次電池電極用バインダー、及び非水系二次電池電極用スラリーに関する。
 本願は、2020年11月4日に、日本に出願された特願2020-184544号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a copolymer, a binder for a non-aqueous secondary battery electrode, and a slurry for a non-aqueous secondary battery electrode.
This application claims priority based on Japanese Patent Application No. 2020-184544 filed in Japan on November 4, 2020, the contents of which are incorporated herein by reference.
 非水系二次電池は、例えば、金属酸化物などを活物質とした正極と、黒鉛等の炭素材料を活物質とした負極と、及び電解液とを含む。非水系二次電池は、イオンが正極と負極間を移動することにより電池の充放電が行われる二次電池である。 The non-aqueous secondary battery includes, for example, a positive electrode using a metal oxide or the like as an active material, a negative electrode using a carbon material such as graphite as an active material, and an electrolytic solution. A non-aqueous secondary battery is a secondary battery in which ions move between a positive electrode and a negative electrode to charge and discharge the battery.
 非水系二次電池としてリチウムイオン二次電池が代表例として挙げられる。非水系二次電池は、小型化、軽量化の面からノート型パソコン、携帯電話、電動工具、電子・通信機器の電源として使用されている。また、最近では環境車両適用の観点から電気自動車やハイブリッド自動車用にも使用されている。その中で、非水系二次電池の高出力化、高容量化、長寿命化等が強く求められてきている。 A typical example is a lithium ion secondary battery as a non-aqueous secondary battery. Non-aqueous secondary batteries are used as power sources for notebook computers, mobile phones, power tools, and electronic / communication devices in terms of miniaturization and weight reduction. Recently, it has also been used for electric vehicles and hybrid vehicles from the viewpoint of application to environmental vehicles. Under these circumstances, there is a strong demand for higher output, higher capacity, longer life, etc. of non-aqueous secondary batteries.
 正極及び負極に使用されるバインダーには、活物質同士を結着させる役割、及び活物質と集電体とを結着させる役割がある。非水系二次電池の容量向上、作業環境保全のため、水分散系バインダーの開発が進められている。たとえば、増粘剤としてカルボキシメチルセルロース(CMC)を併用したスチレン-ブタジエンゴム(SBR)系の水分散体が知られている。 The binder used for the positive electrode and the negative electrode has a role of binding the active material to each other and a role of binding the active material and the current collector. Water dispersion binders are being developed to improve the capacity of non-aqueous secondary batteries and protect the working environment. For example, a styrene-butadiene rubber (SBR) -based aqueous dispersion using carboxymethyl cellulose (CMC) as a thickener is known.
 特許文献1では、エチレンオキシドと、エチレンオキシド以外のアルキレンオキシド、アルキルグリシジルエーテル、アリルグリシジルエーテル又はそれらの組合せとを重合する方法が記載されている。重合して得られるコポリマーを含む組成物は、電気活性粒子を含む電池電極におけるバインダー材として使用することができることが記載されている。 Patent Document 1 describes a method for polymerizing ethylene oxide with an alkylene oxide other than ethylene oxide, an alkyl glycidyl ether, an allyl glycidyl ether, or a combination thereof. It is described that the composition containing the copolymer obtained by polymerization can be used as a binder material in a battery electrode containing electroactive particles.
 特許文献2では、(メタ)アクリル酸エステル及び酸成分を有するビニル単量体から得られる共重合体と、ポリオキシエチレンアルキルエーテル誘導体、ポリオキシエチレン-ポリオキシプロピレン縮合物、及びポリオキシエチレン-ポリオキシプロピレンアルキルエーテル誘導体からなる群より選択される少なくとも一種と、を含有する電極層を備えた二次電池負極が記載されている。 In Patent Document 2, a copolymer obtained from a (meth) acrylic acid ester and a vinyl monomer having an acid component, a polyoxyethylene alkyl ether derivative, polyoxyethylene-polyoxypropylene condensate, and polyoxyethylene- Described is a secondary battery negative electrode comprising an electrode layer containing at least one selected from the group consisting of polyoxypropylene alkyl ether derivatives.
特表2012-517519号公報Special Table 2012-517519 Gazette 特開2014-239070号公報Japanese Unexamined Patent Publication No. 2014-239070
 しかしながら、特許文献1及び2に記載の成分においては、電極用バインダーとして用いた場合に、電極活物質層の集電体に対する剥離強度の向上の余地、及び電池を作成した場合の内部抵抗の低減の余地がある。 However, in the components described in Patent Documents 1 and 2, when used as a binder for electrodes, there is room for improving the peel strength of the electrode active material layer with respect to the current collector, and the internal resistance is reduced when the battery is manufactured. There is room for.
 本発明は、非水系二次電池において電極活物質層の集電体に対する剥離強度を効果的に向上させ、電池の内部抵抗の低減及びサイクル特性の向上に貢献できる共重合体、非水系二次電池電極用バインダー、及び非水系二次電池電極用スラリーを提供することを目的とする。 The present invention is a copolymer and non-aqueous secondary battery that can effectively improve the peel strength of the electrode active material layer with respect to the current collector in a non-aqueous secondary battery, and contribute to the reduction of the internal resistance of the battery and the improvement of the cycle characteristics. It is an object of the present invention to provide a binder for a battery electrode and a slurry for a non-aqueous secondary battery electrode.
 上記課題を解決するため、本発明は以下の[1]~[15]の通りである。
[1] エチレン性不飽和結合を有する化合物の重合体であって、
 単量体(a1)に由来する第1構造単位と、単量体(a2)に由来する第2構造単位と、
 単量体(a3)に由来する第3構造単位と、を有し;或いは、単量体(a1)に由来する第1構造単位と、単量体(a2)に由来する第2構造単位と、単量体(a3)に由来する第3構造単位と、内部架橋剤(a4)に由来する第4構造単位と、を有し、
 前記単量体(a1)は、エチレン性不飽和結合を有し、ヒドロキシ基及びシアノ基のいずれも有さず、ポリオキシアルキレン構造を有さず、独立した複数のエチレン性不飽和結合を有しないノニオン性化合物であり、
 前記単量体(a2)は、エチレン性不飽和結合及びアニオン性官能基を有し、ポリオキシアルキレン構造及び独立した複数のエチレン性不飽和結合のいずれも有さない化合物であり、
 前記単量体(a3)は、下記式(1)で表される第31構造単位と、下記式(2)で表される第32構造単位と、下記式(3)で表される第33構造単位と、を有し、
 前記第1構造単位100質量部に対して、前記第2構造単位を、1.0質量部以上30質量部以下含み、
 前記第1構造単位100質量部に対して、前記第3構造単位を、0.010質量部以上70質量部以下含み、
 前記第1構造単位100質量部に対する、前記第4構造単位の含有量は、0質量部以上20質量部以下である化合物であり、
 前記内部架橋剤(a4)は、前記単量体(a3)に該当せず、独立した複数のエチレン性不飽和結合を有し、前記単量体(a1)、前記単量体(a2)、及び前記単量体(a3)を含む単量体のラジカル重合において架橋構造を形成可能な化合物である
ことを特徴とする共重合体。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 (式(2)において、Rは、分岐を有してもよい炭素数1以上6以下のアルキル基である。)
Figure JPOXMLDOC01-appb-C000007
 (式(3)において、Rは、エチレン性不飽和結合を有する官能基である。)
[2] 前記単量体(a3)は、
 前記第31構造単位、前記第32構造単位、及び前記第33構造単位の合計量に対して、
 前記第31構造単位を、5.0モル%以上98モル%以下含み、
 前記第32構造単位を、0.30モル%以上90モル%以下含み、
 前記第33構造単位を、0.30モル%以上10モル%以下含む[1]に記載の共重合体。
[3] 前記単量体(a3)は、1分子中に独立した複数のエチレン性不飽和結合を有する[1]または[2]に記載の共重合体。
[4] 前記式(3)において、Rは、ビニルオキシ基、アリルオキシ基、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、及び-OCH-CH-CH=CHからなる群より選ばれる少なくともいずれか1つを有する[1]~[3]のいずれかに記載の共重合体。
[5] 前記式(3)において、Rは、下記式(4)で表される[1]~[4]のいずれかに記載の共重合体。
Figure JPOXMLDOC01-appb-C000008
(式(4)において、R21は分岐を有してもよい炭素数1~5のアルキレン基であり、R22は、ビニルオキシ基、アリルオキシ基、(メタ)アクリロイル基、及び(メタ)アクリロイルオキシ基からなる群より選ばれる1つの官能基である。)
[6] 前記単量体(a3)は、前記第31構造単位からなる第1ブロック、前記第32構造単位からなる第2ブロック、及び前記第33構造単位からなる第3ブロックを有する[1]~[5]のいずれかに記載の共重合体。
[7] 前記単量体(a3)は、全構造単位中、前記第31構造単位、前記第32構造単位、及び前記第33構造単位を合計で90質量%以上含む[1]~[6]のいずれかに記載の共重合体。
[8] 前記単量体(a1)は、極性官能基を有さない[1]~[7]のいずれかに記載の共重合体。
[9] 前記単量体(a2)は、カルボキシ基、及びスルホ基のうち少なくともいずれかを有する化合物である[1]~[8]のいずれかに記載の共重合体。
[10] 前記第1構造単位、前記第2構造単位、及び前記第3構造単位を合計で80質量%以上含む[1]~[9]のいずれかに記載の共重合体。
[11] 前記第1構造単位100質量部に対する、前記第4構造単位の含有量は、0.050質量部以上である[1]~[10]のいずれかに記載の共重合体。
[12] [1]~[11]のいずれかに記載の共重合体が水性媒体中に分散している非水系二次電池電極用バインダー組成物。
[13] [1]~[11]のいずれかに記載の共重合体を含む非水系二次電池電極用バインダー。
[14] [13]に記載のバインダーと、電極活物質と、水性媒体と、を含み、
 前記バインダーと前記電極活物質とが、水性媒体中に分散しており、
 該水性媒体は、水、親水性の溶媒、及び水と親水性の溶媒とを含む混合物からなる群から選択される1つ媒体である非水系二次電池電極用スラリー。
[15] [13]に記載のバインダーを含む非水系二次電池電極。
In order to solve the above problems, the present invention is as follows [1] to [15].
[1] A polymer of a compound having an ethylenically unsaturated bond.
A first structural unit derived from the monomer (a1) and a second structural unit derived from the monomer (a2).
It has a third structural unit derived from the monomer (a3); or a first structural unit derived from the monomer (a1) and a second structural unit derived from the monomer (a2). , A third structural unit derived from the monomer (a3) and a fourth structural unit derived from the internal cross-linking agent (a4).
The monomer (a1) has an ethylenically unsaturated bond, has neither a hydroxy group nor a cyano group, has no polyoxyalkylene structure, and has a plurality of independent ethylenically unsaturated bonds. It is a nonionic compound that does not
The monomer (a2) is a compound having an ethylenically unsaturated bond and an anionic functional group, and has neither a polyoxyalkylene structure nor a plurality of independent ethylenically unsaturated bonds.
The monomer (a3) has a 31st structural unit represented by the following formula (1), a 32nd structural unit represented by the following formula (2), and a 33rd structural unit represented by the following formula (3). With structural units,
The second structural unit is included in an amount of 1.0 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the first structural unit.
The third structural unit is contained in an amount of 0.010 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the first structural unit.
The content of the fourth structural unit with respect to 100 parts by mass of the first structural unit is 0 parts by mass or more and 20 parts by mass or less.
The internal cross-linking agent (a4) does not correspond to the monomer (a3), has a plurality of independent ethylenically unsaturated bonds, and has the monomer (a1), the monomer (a2), and the like. A copolymer characterized by being a compound capable of forming a crosslinked structure in radical polymerization of a monomer containing the monomer (a3).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
(In the formula (2), R 1 is an alkyl group having 1 or more and 6 or less carbon atoms which may have a branch.)
Figure JPOXMLDOC01-appb-C000007
(In formula (3), R 2 is a functional group having an ethylenically unsaturated bond.)
[2] The monomer (a3) is
With respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit.
The 31st structural unit contains 5.0 mol% or more and 98 mol% or less.
The 32nd structural unit contains 0.30 mol% or more and 90 mol% or less.
The copolymer according to [1], which contains the 33rd structural unit in an amount of 0.30 mol% or more and 10 mol% or less.
[3] The copolymer according to [1] or [2], wherein the monomer (a3) has a plurality of independent ethylenically unsaturated bonds in one molecule.
[4] In the above formula (3), R 2 is composed of a vinyloxy group, an allyloxy group, a (meth) acryloyl group, a (meth) acryloyloxy group, and -OCH 2 -CH 2 -CH 2 = CH 2 . The copolymer according to any one of [1] to [3], which has at least one selected.
[5] In the formula (3), R 2 is a copolymer according to any one of [1] to [4] represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000008
(In the formula (4), R 21 is an alkylene group having 1 to 5 carbon atoms which may have a branch, and R 22 is a vinyloxy group, an allyloxy group, a (meth) acryloyl group, and a (meth) acryloyloxy. It is one functional group selected from the group consisting of groups.)
[6] The monomer (a3) has a first block composed of the 31st structural unit, a second block composed of the 32nd structural unit, and a third block composed of the 33rd structural unit [1]. The copolymer according to any one of [5].
[7] The monomer (a3) contains 90% by mass or more of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit in the total structural units [1] to [6]. The copolymer according to any one of.
[8] The copolymer according to any one of [1] to [7], wherein the monomer (a1) does not have a polar functional group.
[9] The copolymer according to any one of [1] to [8], wherein the monomer (a2) is a compound having at least one of a carboxy group and a sulfo group.
[10] The copolymer according to any one of [1] to [9], which contains the first structural unit, the second structural unit, and the third structural unit in a total amount of 80% by mass or more.
[11] The copolymer according to any one of [1] to [10], wherein the content of the fourth structural unit with respect to 100 parts by mass of the first structural unit is 0.050 parts by mass or more.
[12] A binder composition for a non-aqueous secondary battery electrode in which the copolymer according to any one of [1] to [11] is dispersed in an aqueous medium.
[13] A binder for a non-aqueous secondary battery electrode containing the copolymer according to any one of [1] to [11].
[14] The binder according to [13], the electrode active material, and the aqueous medium are included.
The binder and the electrode active material are dispersed in an aqueous medium, and the binder is dispersed in the aqueous medium.
The aqueous medium is a slurry for a non-aqueous secondary battery electrode, which is one medium selected from the group consisting of water, a hydrophilic solvent, and a mixture containing water and a hydrophilic solvent.
[15] A non-aqueous secondary battery electrode containing the binder according to [13].
 本発明によれば、非水系二次電池において電極活物質層の集電体に対する剥離強度を効果的に向上させ、電池の内部抵抗の低減及びサイクル特性の向上に貢献できる共重合体、非水系二次電池電極用バインダー、及び非水系二次電池電極用スラリーを提供することができる。 According to the present invention, in a non-aqueous secondary battery, the peeling strength of the electrode active material layer with respect to the current collector can be effectively improved, and the internal resistance of the battery can be reduced and the cycle characteristics can be improved. A binder for a secondary battery electrode and a slurry for a non-aqueous secondary battery electrode can be provided.
 以下、本発明の実施形態として、共重合体、非水系二次電池電極用バインダー、非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー、非水系二次電池電極、及び非水系二次電池について説明する。 Hereinafter, as embodiments of the present invention, a copolymer, a binder for a non-aqueous secondary battery electrode, a binder composition for a non-aqueous secondary battery electrode, a slurry for a non-aqueous secondary battery electrode, a non-aqueous secondary battery electrode, and A non-aqueous secondary battery will be described.
 「(メタ)アクリル」とは、アクリル及びメタクリルの総称であり、「(メタ)アクリレート」とは、アクリレート及びメタクリレートの総称である。 "(Meta) acrylic" is a general term for acrylic and methacrylic, and "(meth) acrylate" is a general term for acrylate and methacrylate.
 「不揮発分」は、直径5cmのアルミ皿に組成物を1g秤量し、1気圧(1013hPa)で、乾燥器内で空気を循環させながら105℃で1時間乾燥させ後に残った成分である。組成物の形態は、溶液、分散液、スラリーが挙げられるが、これらに限られない。「不揮発分濃度」とは、乾燥前の組成物の質量(1g)に対する、上記条件下で乾燥後の不揮発分の質量割合(質量%)である。 The "nonvolatile component" is a component remaining after weighing 1 g of the composition in an aluminum dish having a diameter of 5 cm and drying at 105 ° C. for 1 hour while circulating air in a dryer at 1 atm (1013 hPa). The form of the composition includes, but is not limited to, a solution, a dispersion, and a slurry. The "nonvolatile content concentration" is the mass ratio (mass%) of the non-volatile content after drying under the above conditions with respect to the mass (1 g) of the composition before drying.
 「エチレン性不飽和結合」とは、特に断りがない限り、ラジカル重合性を有するエチレン性不飽和結合を指す。 "Ethylene unsaturated bond" refers to an ethylenically unsaturated bond having radical polymerization unless otherwise specified.
 エチレン性不飽和結合を有する化合物の重合体において、あるエチレン性不飽和結合を有する化合物に由来する構造単位とは、その化合物のエチレン性不飽和結合以外の部分の化学構造と、重合体におけるその構造単位のエチレン性不飽和結合に対応する部分以外の部分の化学構造とが同じであるとする。例えば、アクリル酸ナトリウム由来の構造単位は、重合体において-CHCH(COONa)-の構造を有している。 In the polymer of a compound having an ethylenically unsaturated bond, the structural unit derived from the compound having a certain ethylenically unsaturated bond is the chemical structure of the portion other than the ethylenically unsaturated bond of the compound and its in the polymer. It is assumed that the chemical structure of the part other than the part corresponding to the ethylenically unsaturated bond of the structural unit is the same. For example, the structural unit derived from sodium acrylate has a -CH 2 CH (COONa)-structure in the polymer.
 また、独立した複数のエチレン性不飽和結合を有する化合物については、重合体の構造単位としてエチレン性不飽和結合が残っていてもよい。独立した複数のエチレン性不飽和結合とは、互いに共役ジエンを形成しない複数のエチレン性不飽和結合を言う。例えば、ジビニルベンゼン由来の構造単位は、エチレン性不飽和結合を有さない構造(いずれのエチレン性不飽和結合に対応する部分も重合体の鎖に取り込まれた形態)でもよく、1個のエチレン性不飽和結合を有する構造(一方のエチレン性不飽和結合に対応する部分のみ重合体の鎖に取り込まれた形態)でもよい。 Further, for a compound having a plurality of independent ethylenically unsaturated bonds, an ethylenically unsaturated bond may remain as a structural unit of the polymer. A plurality of independent ethylenically unsaturated bonds are a plurality of ethylenically unsaturated bonds that do not form conjugated diene with each other. For example, the structural unit derived from divinylbenzene may have a structure having no ethylenically unsaturated bond (a form in which a portion corresponding to any ethylenically unsaturated bond is incorporated into a polymer chain), or one ethylene. A structure having a sex-unsaturated bond (a form in which only the portion corresponding to one ethylenically unsaturated bond is incorporated into the polymer chain) may be used.
 さらに、重合後にエチレン性不飽和結合に対応する鎖以外の部分を化学反応させる等、単量体の化学構造と重合体の化学構造とで対応しない場合は、重合後の化学構造を基準とする。例えば、酢酸ビニルを重合し、その後けん化した場合においては、重合体の化学構造を基準に考えて、酢酸ビニル由来の構造単位ではなく、ビニルアルコール由来の構造単位とする。 Furthermore, if the chemical structure of the monomer does not correspond to the chemical structure of the polymer, such as chemical reaction of the part other than the chain corresponding to the ethylenically unsaturated bond after polymerization, the chemical structure after polymerization is used as a reference. .. For example, when vinyl acetate is polymerized and then saponified, it is not a structural unit derived from vinyl acetate but a structural unit derived from vinyl alcohol in consideration of the chemical structure of the polymer.
<1.共重合体(P)>
 共重合体(P)は、本実施形態では、非水系二次電池電極バインダー用共重合体である。共重合体(P)は、エチレン性不飽和結合を有する化合物の重合体である。共重合体(P)は、単量体(a1)に由来する第1構造単位と、単量体(a2)に由来する第2構造単位と、単量体(a3)に由来する第3構造単位と、を有する。共重合体(P)は、さらに内部架橋剤(a4)に由来する第4構造単位を有してもよい。共重合体(P)は、単量体(a1)、単量体(a2)、単量体(a3)及び内部架橋剤(a4)のいずれにも該当しないその他の単量体(a5)に由来する構造単位を含んでもよい。それぞれの単量体及び内部架橋剤の詳細については以下に説明する。
<1. Copolymer (P)>
In the present embodiment, the copolymer (P) is a copolymer for a non-aqueous secondary battery electrode binder. The copolymer (P) is a polymer of a compound having an ethylenically unsaturated bond. The copolymer (P) has a first structural unit derived from the monomer (a1), a second structural unit derived from the monomer (a2), and a third structure derived from the monomer (a3). It has a unit and. The copolymer (P) may further have a fourth structural unit derived from the internal cross-linking agent (a4). The copolymer (P) can be used as another monomer (a5) which does not correspond to any of the monomer (a1), the monomer (a2), the monomer (a3) and the internal cross-linking agent (a4). It may contain the structural unit from which it is derived. Details of each monomer and internal cross-linking agent will be described below.
 <1-1.単量体(a1)>
 単量体(a1)は、エチレン性不飽和結合を有し、ポリオキシアルキレン構造を有さず、独立した複数のエチレン性不飽和結合を有しないノニオン性(アニオン性官能基及びカチオン性官能基のいずれも有さない)化合物である。「ポリオキシアルキレン構造を有さない」とは、2つのエーテル結合に挟まれたアルキレン基(-C-O-C-O-C-(xは1以上の整数)で表される結合)を有さないことを言う。
<1-1. Monomer (a1)>
The monomer (a1) has an ethylenically unsaturated bond, does not have a polyoxyalkylene structure, and does not have a plurality of independent ethylenically unsaturated bonds. Nonionic (anionic functional group and cationic functional group). It is a compound (which does not have any of the above). "No polyoxyalkylene structure" means an alkylene group sandwiched between two ether bonds (a bond represented by -C-OC x -OC- (x is an integer of 1 or more)). Say you don't have.
 単量体(a1)は、ヒドロキシ基及びシアノ基のいずれも有さない。単量体(a1)は、極性官能基を有さないことが好ましい。単量体(a1)は、1種類の化合物のみを含んでもよく、2種類以上の化合物を含んでもよい。単量体(a1)は、極性官能基を有しない(メタ)アクリル酸エステル及び芳香族ビニル化合物のうち少なくともいずれかであることが好ましく、両方を含むことがより好ましい。極性官能基を有しない(メタ)アクリル酸エステルは、(メタ)アクリル酸アルキルエステルを含むことがさらに好ましい。単量体(a1)における、(メタ)アクリル酸アルキルエステル及び芳香族ビニル化合物の合計含有率は80質量%以上であることがさらに好ましく、90質量%以上であることがさらに好ましく、100質量%であることが最も好ましい。 The monomer (a1) has neither a hydroxy group nor a cyano group. The monomer (a1) preferably has no polar functional group. The monomer (a1) may contain only one kind of compound, or may contain two or more kinds of compounds. The monomer (a1) is preferably at least one of a (meth) acrylic acid ester having no polar functional group and an aromatic vinyl compound, and more preferably containing both. The (meth) acrylic acid ester having no polar functional group more preferably contains a (meth) acrylic acid alkyl ester. The total content of the (meth) acrylic acid alkyl ester and the aromatic vinyl compound in the monomer (a1) is more preferably 80% by mass or more, further preferably 90% by mass or more, and 100% by mass. Is most preferable.
 また、単量体(a1)の組成について、共重合体(P)のガラス転移点を調整するため、あるいは分子設計に応じた重合速度を調整するために、本発明で規定する範囲内で、好ましい化合物及びその量を適宜調整することが好ましい。 Further, regarding the composition of the monomer (a1), in order to adjust the glass transition point of the copolymer (P) or to adjust the polymerization rate according to the molecular design, within the range specified in the present invention. It is preferable to appropriately adjust the preferred compound and the amount thereof.
 (メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル等が挙げられる。 Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and n-butyl (meth) acrylic acid. , (Meta) tert-butyl acrylate, (meth) cyclohexyl acrylate, (meth) 2-ethylhexyl acrylate, isobornyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate and the like. ..
 ここで芳香族ビニル化合物は、(メタ)アクリロイル基を含まない。芳香族ビニル化合物としては、例えば、スチレン、t-ブチルスチレン、α-メチルスチレン、p-メチルスチレン、1,1-ジフェニルエチレン等が挙げられる。単量体(a1)が芳香族ビニル化合物を含む場合、単量体(a1)は、スチレン、α-メチルスチレンの少なくともいずれかを含むことがより好ましく、スチレンを含むことがさらに好ましい。 Here, the aromatic vinyl compound does not contain a (meth) acryloyl group. Examples of the aromatic vinyl compound include styrene, t-butylstyrene, α-methylstyrene, p-methylstyrene, 1,1-diphenylethylene and the like. When the monomer (a1) contains an aromatic vinyl compound, the monomer (a1) more preferably contains at least one of styrene and α-methylstyrene, and further preferably contains styrene.
 単量体(a1)は、互いに共役ジエンを形成する複数のエチレン性不飽和結合を含んでもよい。互いに共役ジエンを形成する複数のエチレン性不飽和結合を有する化合物としては、例えば、1,3-ブタジエン、1,3-ペンタジエン等が挙げられる。 The monomer (a1) may contain a plurality of ethylenically unsaturated bonds forming conjugated diene with each other. Examples of the compound having a plurality of ethylenically unsaturated bonds forming conjugated diene with each other include 1,3-butadiene, 1,3-pentadiene and the like.
〔1-2.単量体(a2)〕
 単量体(a2)は、エチレン性不飽和結合及びアニオン性官能基を有する化合物である。単量体(a2)は、ポリオキシアルキレン構造及び独立した複数のエチレン性不飽和結合のいずれも有しない。アニオン性官能基としては、例えば、カルボキシ基、スルホ基、及びリン酸基等が挙げられる。単量体(a2)は、カルボキシ基、及びスルホ基のうち少なくともいずれかを有する化合物を含むことが好ましく、カルボキシ基を有する化合物を含むことがより好ましい。
[1-2. Monomer (a2)]
The monomer (a2) is a compound having an ethylenically unsaturated bond and an anionic functional group. The monomer (a2) has neither a polyoxyalkylene structure nor a plurality of independent ethylenically unsaturated bonds. Examples of the anionic functional group include a carboxy group, a sulfo group, a phosphoric acid group and the like. The monomer (a2) preferably contains a compound having at least one of a carboxy group and a sulfo group, and more preferably contains a compound having a carboxy group.
 単量体(a2)は、1種類の化合物のみを含んでもよく、2種類以上の化合物を含んでもよい。単量体(a2)は、1分子中に、同種のアニオン性官能基を複数有する化合物を含んでもよい。すなわち、共重合体(P)は、1つの構造単位中に同種のアニオン性官能基を複数含んでもよい。単量体(a2)は、1分子中に、2種類以上の異なるアニオン性官能基を有する化合物を含んでもよい。すなわち、共重合体(P)は、1つの構造単位中に2種類以上の異なるアニオン性官能基を含んでもよい。また、単量体(a2)は、異なるアニオン性官能基を含む2種類以上の化合物を含んでいてもよい。すなわち、共重合体(P)は、異なるアニオン性官能基を含む2種類以上の構造単位を含んでもよい。 The monomer (a2) may contain only one kind of compound, or may contain two or more kinds of compounds. The monomer (a2) may contain a compound having a plurality of the same kind of anionic functional groups in one molecule. That is, the copolymer (P) may contain a plurality of anionic functional groups of the same type in one structural unit. The monomer (a2) may contain a compound having two or more different anionic functional groups in one molecule. That is, the copolymer (P) may contain two or more different anionic functional groups in one structural unit. Further, the monomer (a2) may contain two or more kinds of compounds containing different anionic functional groups. That is, the copolymer (P) may contain two or more structural units containing different anionic functional groups.
 単量体(a2)としては、(メタ)アクリル酸、クロトン酸等の不飽和モノカルボン酸;マレイン酸、フマル酸、イタコン酸等の不飽和ジカルボン酸;不飽和ジカルボン酸のハーフエステル;パラスチレンスルホン酸等が挙げられる。これらの中でも、単量体(a2)は(メタ)アクリル酸、イタコン酸のうち少なくとも1つを含むことが好ましい。 Examples of the monomer (a2) include unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid; unsaturated dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid; half esters of unsaturated dicarboxylic acids; parastyrene. Examples include sulfonic acid. Among these, the monomer (a2) preferably contains at least one of (meth) acrylic acid and itaconic acid.
 単量体(a2)に由来する構造単位の少なくとも一部は、塩基性物質との塩を形成していてもよい。ここで、塩を形成している単量体(a2)としては、(メタ)アクリル酸ナトリウム、パラスチレンスルホン酸ナトリウム等が挙げられる。 At least a part of the structural unit derived from the monomer (a2) may form a salt with a basic substance. Here, examples of the monomer (a2) forming the salt include sodium (meth) acrylate, sodium parastyrene sulfonate, and the like.
 単量体(a2)は、エチレン性不飽和結合を有するスルホン酸及びその塩のうち少なくともいずれかを含むことが好ましく、エチレン性不飽和結合を有するスルホン酸塩を含むことがより好ましい。スルホン酸としては、スルホ基を有する芳香族ビニル化合物を含むことが好ましく、パラスチレンスルホン酸を含むことがより好ましい。スルホン酸塩としては、スルホ基を有する芳香族ビニル化合物の塩を含むことが好ましく、パラスチレンスルホン酸塩を含むことがより好ましく、パラスチレンスルホン酸ナトリウムを含むことがさらに好ましい。バインダー組成物において粗粒の発生を抑制できるためである。 The monomer (a2) preferably contains at least one of a sulfonic acid having an ethylenically unsaturated bond and a salt thereof, and more preferably contains a sulfonic acid salt having an ethylenically unsaturated bond. The sulfonic acid preferably contains an aromatic vinyl compound having a sulfo group, and more preferably contains parastyrene sulfonic acid. The sulfonate preferably contains a salt of an aromatic vinyl compound having a sulfo group, more preferably contains a parastyrene sulfonate, and even more preferably contains sodium parastyrene sulfonate. This is because the generation of coarse particles can be suppressed in the binder composition.
〔1-3.単量体(a3)〕
 単量体(a3)は、下記式(1)で表される第31構造単位と、下記式(2)で表される第32構造単位と、下記式(3)で表される第33構造単位と、を含む化合物である。単量体(a3)は、1分子中にエチレン性不飽和結合を複数有することが好ましい。単量体(a3)は、1種類の化合物のみを含んでもよく、2種類以上の化合物を含んでもよい。
[1-3. Monomer (a3)]
The monomer (a3) has a 31st structural unit represented by the following formula (1), a 32nd structural unit represented by the following formula (2), and a 33rd structural unit represented by the following formula (3). A compound containing a unit. The monomer (a3) preferably has a plurality of ethylenically unsaturated bonds in one molecule. The monomer (a3) may contain only one kind of compound, or may contain two or more kinds of compounds.
 なお、単量体(a3)において、構造単位の構成について述べる際には、特に断りがなければ末端構造は考慮しない。例えば、単量体(a3)における、ある構造単位の含有率については、特に断りがなければ、末端構造を除く構造中のその構造単位の含有率である。また、単量体(a3)が、ある構造単位からなるとされる場合、その構造単位以外に末端構造を含んでもよい。ここで単量体(a3)における末端構造とは、分子末端に最も近いエーテル結合よりも分子末端側にあり、かつ下記の式(1)~(3)のいずれの構造中にも含まれない構造である。さらに、末端構造中には下記の式(1)~(3)に示される構造は含まれない。 In the monomer (a3), when describing the structure of the structural unit, the terminal structure is not considered unless otherwise specified. For example, the content of a certain structural unit in the monomer (a3) is the content of the structural unit in the structure excluding the terminal structure unless otherwise specified. Further, when the monomer (a3) is composed of a certain structural unit, it may contain a terminal structure in addition to the structural unit. Here, the terminal structure in the monomer (a3) is on the molecular terminal side of the ether bond closest to the molecular end, and is not included in any of the structures of the following formulas (1) to (3). It is a structure. Further, the terminal structure does not include the structures represented by the following formulas (1) to (3).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(2)において、Rは、分岐を有してもよい炭素数1以上6以下のアルキル基である。Rは、炭素数4以下であることが好ましく、炭素数2以下であることがより好ましく、メチル基であることがさらに好ましい。 In the formula (2), R 1 is an alkyl group having 1 or more and 6 or less carbon atoms which may have a branch. R 1 preferably has 4 or less carbon atoms, more preferably 2 or less carbon atoms, and even more preferably a methyl group.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(3)において、Rは、エチレン性不飽和結合を有する基である。Rは、ビニルオキシ基(-OCH=CH)、アリルオキシ基(-OCH-CH=CH)、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、及び-OCH-CH-CH=CHからなる群より選ばれる少なくともいずれか1つを有することが好ましく、アリルオキシ基、(メタ)アクリロイル基、及び(メタ)アクリロイルオキシ基からなる群より選ばれる少なくともいずれか1つを有することがより好ましく、アリルオキシ基を有することがさらに好ましい。1つの第33構造単位に含まれるエチレン性不飽和結合は、1個であることが好ましい。 In formula (3), R 2 is a group having an ethylenically unsaturated bond. R2 is a vinyloxy group (-OCH 2 = CH 2 ), an allyloxy group (-OCH 2 -CH 2 = CH 2 ), a (meth) acryloyl group, a (meth) acryloyloxy group, and -OCH 2 -CH 2- . It is preferable to have at least one selected from the group consisting of CH 2 = CH 2 , and at least one selected from the group consisting of an allyloxy group, a (meth) acryloyl group, and a (meth) acryloyloxy group. It is more preferable to have it, and it is further preferable to have an allyloxy group. The number of ethylenically unsaturated bonds contained in one 33rd structural unit is preferably one.
 Rの構造は、下記式(4)で表されることが好ましい。 The structure of R2 is preferably represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(4)において、R21は分岐を有してもよい炭素数1~5のアルキレン基、R22は、ビニルオキシ基、アリルオキシ基、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、及び-OCH-CH-CH=CHのうちいずれか1つである。 In formula (4), R 21 is an alkylene group having 1 to 5 carbon atoms which may have a branch, and R 22 is a vinyloxy group, an allyloxy group, a (meth) acryloyl group, a (meth) acryloyloxy group, and-. OCH 2 -CH 2 -CH 2 = CH 2 is any one of them.
 式(4)において、R21は炭素数1または2のアルキレン基であることが好ましく、メチレン基であることがより好ましい。式(4)において、R22は、アリルオキシ基、(メタ)アクリロイル基、及び(メタ)アクリロイルオキシ基のうちいずれか1つであることがより好ましく、アリルオキシ基であることがさらに好ましい。 In the formula (4), R 21 is preferably an alkylene group having 1 or 2 carbon atoms, and more preferably a methylene group. In the formula (4), R 22 is more preferably any one of an allyloxy group, a (meth) acryloyl group, and a (meth) acryloyloxy group, and even more preferably an allyloxy group.
 単量体(a3)における、第31構造単位、第32構造単位、及び第33構造単位それぞれの含有量を調整することで、単量体(a3)の親水性を適切な範囲に調整し、共重合体(P)の親水性をコントロールできる。例えば、単量体(a3)における第31構造単位の含有量を増やせば、共重合体(P)の親水性は向上し、第31構造単位の含有量を減らせば、共重合体(P)の親水性は低下する。 By adjusting the content of each of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit in the monomer (a3), the hydrophilicity of the monomer (a3) is adjusted to an appropriate range. The hydrophilicity of the copolymer (P) can be controlled. For example, if the content of the 31st structural unit in the monomer (a3) is increased, the hydrophilicity of the copolymer (P) is improved, and if the content of the 31st structural unit is decreased, the copolymer (P) is used. The hydrophilicity of is reduced.
 単量体(a3)における、第31構造単位、第32構造単位、及び第33構造単位それぞれの含有量を調整することで、単量体(a3)の結晶性を適切な範囲に調整し、共重合体(P)の結晶性をコントロールできる。例えば、単量体(a3)における第31構造単位の含有量を増やせば、共重合体(P)の結晶性は向上し、第31構造単位の含有量を減らせば、共重合体(P)の結晶性は低下する。 By adjusting the content of each of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit in the monomer (a3), the crystallinity of the monomer (a3) is adjusted to an appropriate range. The crystallinity of the copolymer (P) can be controlled. For example, if the content of the 31st structural unit in the monomer (a3) is increased, the crystallinity of the copolymer (P) is improved, and if the content of the 31st structural unit is decreased, the copolymer (P) is used. Crystallinity is reduced.
 単量体(a3)における、第33構造単位の含有量を調整することで、共重合体(P)の架橋密度を調整することができ、共重合体(P)を電極バインダーとして含む電極活物質層の柔軟性及び強度をコントロールできる。例えば、単量体(a3)における第33構造単位の含有量を増やせば、共重合体(P)の架橋密度は上昇し、電極活物質層の強度をより向上させることができる。一方、第33構造単位の含有量を減らせば、共重合体(P)の架橋密度が低下し、電極活物質層の柔軟性をより向上させることができる。 By adjusting the content of the 33rd structural unit in the monomer (a3), the crosslink density of the copolymer (P) can be adjusted, and the electrode activity containing the copolymer (P) as an electrode binder is possible. The flexibility and strength of the material layer can be controlled. For example, if the content of the 33rd structural unit in the monomer (a3) is increased, the crosslink density of the copolymer (P) is increased, and the strength of the electrode active material layer can be further improved. On the other hand, if the content of the 33rd structural unit is reduced, the crosslink density of the copolymer (P) is lowered, and the flexibility of the electrode active material layer can be further improved.
 以下、単量体(a3)に含まれるこれらの構造単位の含有量の関係について説明する。 Hereinafter, the relationship between the contents of these structural units contained in the monomer (a3) will be described.
 単量体(a3)において、第31構造単位、第32構造単位、及び第33構造単位の合計量に対する第31構造単位の含有率は、5.0モル%以上であることが好ましく、18モル%以上であることがより好ましく、25モル%以上であることがさらに好ましい。 In the monomer (a3), the content of the 31st structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit is preferably 5.0 mol% or more, preferably 18 mol. % Or more, more preferably 25 mol% or more.
 単量体(a3)において、第31構造単位、第32構造単位、及び第33構造単位の合計量に対する第31構造単位の含有率は、98モル%以下であることが好ましく、97モル%以下であることがより好ましい。 In the monomer (a3), the content of the 31st structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit is preferably 98 mol% or less, preferably 97 mol% or less. Is more preferable.
 単量体(a3)において、第31構造単位、第32構造単位、及び第33構造単位の合計量に対する第32構造単位の含有率は、0.30モル%以上であることが好ましく、0.50モル%以上であることがより好ましく、0.70モル%以上であることがさらに好ましい。 In the monomer (a3), the content of the 32nd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit is preferably 0.30 mol% or more, and 0. It is more preferably 50 mol% or more, and further preferably 0.70 mol% or more.
 単量体(a3)において、第31構造単位、第32構造単位、及び第33構造単位の合計量に対する第32構造単位の含有率は、90モル%以下であることが好ましく、80モル%以下であることがより好ましく、75モル%以下であることがさらに好ましい。 In the monomer (a3), the content of the 32nd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit is preferably 90 mol% or less, preferably 80 mol% or less. It is more preferable that it is 75 mol% or less, and it is further preferable that it is 75 mol% or less.
 単量体(a3)において、第31構造単位、第32構造単位、及び第33構造単位の合計量に対する第33構造単位の含有率は、0.30モル%以上であることが好ましく、0.50モル%以上であることがより好ましく、0.70モル%以上であることがさらに好ましい。 In the monomer (a3), the content of the 33rd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit is preferably 0.30 mol% or more, and 0. It is more preferably 50 mol% or more, and further preferably 0.70 mol% or more.
 単量体(a3)において、第31構造単位、第32構造単位、及び第33構造単位の合計量に対する第33構造単位の含有率は、10モル%以下であることが好ましく、6.0モル%以下であることがより好ましく、4.5モル%以下であることがさらに好ましい。 In the monomer (a3), the content of the 33rd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit is preferably 10 mol% or less, preferably 6.0 mol. % Or less, more preferably 4.5 mol% or less.
 単量体(a3)は、第31構造単位、第32構造単位、及び第33構造単位のいずれにも該当しない構造単位を含んでもよい。ただし、単量体(a3)における、全構造単位中の、第31構造単位、第32構造単位、及び第33構造単位の合計含有率は、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、98質量%であることがさらに好ましく、100質量%であることが最も好ましい。ここで、単量体(a3)を構成する構造単位には、末端構造(定義は上記の通り)は含まない。この点については、以下に述べる第1の形態にかかる単量体(a31)、及び第2の形態にかかる単量体(a32)についても同様である。 The monomer (a3) may contain a structural unit that does not fall under any of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit. However, the total content of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit in the monomer (a3) is preferably 90% by mass or more, preferably 95% by mass. The above is more preferable, 98% by mass is further preferable, and 100% by mass is most preferable. Here, the structural unit constituting the monomer (a3) does not include the terminal structure (definition is as described above). The same applies to the monomer (a31) according to the first form and the monomer (a32) according to the second form described below.
 単量体(a3)として、親水性の異なる以下の2つの好ましい形態が挙げられる。以下これらの形態を、第1の形態にかかる単量体(a31)、及び第2の形態にかかる単量体(a32)として説明する。第2の形態にかかる単量体(a32)の方が第1の形態にかかる単量体(a31)よりも親水性が高い。 Examples of the monomer (a3) include the following two preferable forms having different hydrophilicity. Hereinafter, these forms will be described as the monomer (a31) according to the first form and the monomer (a32) according to the second form. The monomer (a32) according to the second form is more hydrophilic than the monomer (a31) according to the first form.
 第1の形態にかかる単量体(a31)において、第31構造単位、第32構造単位、及び第33構造単位の合計量に対する第31構造単位の含有率は、5.0モル%以上であることが好ましく、18モル%以上であることがより好ましく、25モル%以上であることがさらに好ましい。 In the monomer (a31) according to the first embodiment, the content of the 31st structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit is 5.0 mol% or more. It is preferably 18 mol% or more, more preferably 25 mol% or more, and even more preferably 25 mol% or more.
 第1の形態にかかる単量体(a31)において、第31構造単位、第32構造単位、及び第33構造単位の合計量に対する第31構造単位の含有率は、50モル%以下であることが好ましく、40モル%以下であることがより好ましい。 In the monomer (a31) according to the first embodiment, the content of the 31st structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit may be 50 mol% or less. It is preferably 40 mol% or less, more preferably 40 mol% or less.
 第1の形態にかかる単量体(a31)において、第31構造単位、第32構造単位、及び第33構造単位の合計量に対する第32構造単位の含有率は、40モル%以上であることが好ましく、50モル%以上であることがより好ましく、60モル%以上であることがさらに好ましい。 In the monomer (a31) according to the first embodiment, the content of the 32nd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit may be 40 mol% or more. It is more preferably 50 mol% or more, and even more preferably 60 mol% or more.
 第1の形態にかかる単量体(a31)において、第31構造単位、第32構造単位、及び第33構造単位の合計量に対する第32構造単位の含有率は、90モル%以下であることが好ましく、80モル%以下であることがより好ましく、75モル%以下であることがさらに好ましい。 In the monomer (a31) according to the first embodiment, the content of the 32nd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit may be 90 mol% or less. It is more preferably 80 mol% or less, still more preferably 75 mol% or less.
 第1の形態にかかる単量体(a31)において、第31構造単位、第32構造単位、及び第33構造単位の合計量に対する第33構造単位の含有率は、0.30モル%以上であることが好ましく、0.50モル%以上であることがより好ましく、0.70モル%以上であることがさらに好ましい。 In the monomer (a31) according to the first embodiment, the content of the 33rd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit is 0.30 mol% or more. It is preferably 0.50 mol% or more, more preferably 0.70 mol% or more, and even more preferably 0.70 mol% or more.
 第1の形態にかかる単量体(a31)において、第31構造単位、第32構造単位、及び第33構造単位の合計量に対する第33構造単位の含有率は、10モル%以下であることが好ましく、6.0モル%以下であることがより好ましく、4.5モル%以下であることがさらに好ましい。 In the monomer (a31) according to the first embodiment, the content of the 33rd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit may be 10 mol% or less. It is more preferably 6.0 mol% or less, still more preferably 4.5 mol% or less.
 第2の形態にかかる単量体(a32)において、第31構造単位、第32構造単位、及び第33構造単位の合計量に対する第31構造単位の含有率は、70モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることがさらに好ましい。 In the monomer (a32) according to the second embodiment, the content of the 31st structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit may be 70 mol% or more. It is more preferably 80 mol% or more, and even more preferably 90 mol% or more.
 第2の形態にかかる単量体(a32)において、第31構造単位、第32構造単位、及び第33構造単位の合計量に対する第31構造単位の含有率は、98モル%以下であることが好ましく、97モル%以下であることがより好ましい。 In the monomer (a32) according to the second embodiment, the content of the 31st structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit may be 98 mol% or less. It is preferably 97 mol% or less, and more preferably 97 mol% or less.
 第2の形態にかかる単量体(a3)において、第31構造単位、第32構造単位、及び第33構造単位の合計量に対する第32構造単位の含有率は、0.30モル%以上であることが好ましく、0.50モル%以上であることがより好ましく、0.70モル%以上であることがさらに好ましい。 In the monomer (a3) according to the second embodiment, the content of the 32nd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit is 0.30 mol% or more. It is preferably 0.50 mol% or more, more preferably 0.70 mol% or more, and even more preferably 0.70 mol% or more.
 第2の形態にかかる単量体(a32)において、第31構造単位、第32構造単位、及び第33構造単位の合計量に対する第32構造単位の含有率は、20モル%以下であることが好ましく、15モル%以下であることがより好ましく、10モル%以下であることがさらに好ましい。 In the monomer (a32) according to the second embodiment, the content of the 32nd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit may be 20 mol% or less. It is more preferably 15 mol% or less, still more preferably 10 mol% or less.
 第2の形態にかかる単量体(a32)において、第31構造単位、第32構造単位、及び第33構造単位の合計量に対する第33構造単位の含有率は、0.30モル%以上であることが好ましく、0.50モル%以上であることがより好ましく、0.70モル%以上であることがさらに好ましい。 In the monomer (a32) according to the second embodiment, the content of the 33rd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit is 0.30 mol% or more. It is preferably 0.50 mol% or more, more preferably 0.70 mol% or more, and even more preferably 0.70 mol% or more.
 第2の形態にかかる単量体(a32)において、第31構造単位、第32構造単位、及び第33構造単位の合計量に対する第33構造単位の含有率は、10モル%以下であることが好ましく、6.0モル%以下であることがより好ましく、4.5モル%以下であることがさらに好ましい。 In the monomer (a32) according to the second embodiment, the content of the 33rd structural unit with respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit may be 10 mol% or less. It is more preferably 6.0 mol% or less, still more preferably 4.5 mol% or less.
 単量体(a3)は、第31構造単位からなる第1ブロック、第32構造単位からなる第2ブロック、及び第33構造単位からなる第3ブロックを有するブロック共重合体であることが好ましい。単量体(a3)は、第1ブロック、第2ブロック、及び第3ブロックからなる(ただし、上記定義の通り末端構造は含んでもよい)3元ブロック共重合体であることがより好ましい。単量体(a3)は、第1ブロック、第2ブロック、及び第3ブロックがその順に配列された(すなわち、第1ブロックと、第3ブロックとの間に第2ブロックが存在する)3元ブロック共重合体であることがさらに好ましい。 The monomer (a3) is preferably a block copolymer having a first block composed of the 31st structural unit, a second block composed of the 32nd structural unit, and a third block composed of the 33rd structural unit. It is more preferable that the monomer (a3) is a ternary block copolymer composed of a first block, a second block, and a third block (however, the terminal structure may be included as defined above). The monomer (a3) is a ternary in which the first block, the second block, and the third block are arranged in that order (that is, the second block exists between the first block and the third block). It is more preferably a block copolymer.
 単量体(a3)の重量平均分子量の好ましい範囲は、単量体(a3)の水溶性の有無によって異なる。単量体(a3)を、0.1M NaNO水溶液に溶解させて、単量体(a3)を0.1質量%含む水溶液の作製が可能である場合、単量体(a3)の重量平均分子量は、以下に示す条件の水系GPCで測定したプルラン換算値である。 The preferred range of the weight average molecular weight of the monomer (a3) depends on the presence or absence of water solubility of the monomer (a3). When the monomer (a3) can be dissolved in a 0.1 M NaNO 3 aqueous solution to prepare an aqueous solution containing 0.1% by mass of the monomer (a3), the weight average of the monomer (a3) The molecular weight is a pullulan-converted value measured by an aqueous GPC under the conditions shown below.
[水系GPC]
 GPC装置: GPC‐101(昭和電工(株)製))
 溶媒:0.1M NaNO水溶液
 サンプルカラム:Shodex Column Ohpak SB-806 HQ(8.0mmI.D. x 300mm) ×2
 リファレンスカラム:Shodex Column Ohpak SB-800 RL(8.0mmI.D. x 300mm) ×2
 カラム温度:40℃
 サンプル濃度:0.1質量%
 検出器:RI-71S(株式会社島津製作所製)
 流量:1ml/min
 分子量スタンダード:プルラン(P‐5、P-10、P‐20、P-50、P‐100、P-200、P-400、P-800、P-1300、P-2500(昭和電工株式会社製))
[Water-based GPC]
GPC device: GPC-101 (manufactured by Showa Denko KK))
Solvent: 0.1M NaNO 3 aqueous solution Sample column: Shodex Volume Ohpak SB-806 HQ (8.0 mm ID x 300 mm) x 2
Reference column: Shodex Colon Ohpak SB-800 RL (8.0 mm ID x 300 mm) x 2
Column temperature: 40 ° C
Sample concentration: 0.1% by mass
Detector: RI-71S (manufactured by Shimadzu Corporation)
Flow rate: 1 ml / min
Molecular weight standard: Pullulan (P-5, P-10, P-20, P-50, P-100, P-200, P-400, P-800, P-1300, P-2500 (manufactured by Showa Denko KK) )))
 この場合、単量体(a3)の重量平均分子量M(プルラン換算値)は、10000以上であることが好ましく、30000以上であることがより好ましく、50000以上であることがさらに好ましい。電極の強度が向上するためである。また、この場合、単量体(a3)の重量平均分子量M(プルラン換算値)は、300000以下であることが好ましく、200000以下であることがより好ましく、120000以下であることがさらに好ましい。後述する電極スラリーにおける固形分の分散性が向上するためである。 In this case, the weight average molecular weight M w (pullulan equivalent value) of the monomer (a3) is preferably 10,000 or more, more preferably 30,000 or more, and further preferably 50,000 or more. This is because the strength of the electrode is improved. Further, in this case, the weight average molecular weight M w (pullulan equivalent value) of the monomer (a3) is preferably 300,000 or less, more preferably 200,000 or less, and further preferably 120,000 or less. This is because the dispersibility of the solid content in the electrode slurry described later is improved.
 単量体(a3)を、0.1M NaNO水溶液に溶解させて、単量体(a3)を0.1質量%含む水溶液を作製することが不可能である場合、単量体(a3)の重量平均分子量は、以下に示す条件の溶剤系GPCで測定したポリスチレン換算値である。 When it is impossible to dissolve the monomer (a3) in a 0.1 M NaNO 3 aqueous solution to prepare an aqueous solution containing 0.1% by mass of the monomer (a3), the monomer (a3) is used. The weight average molecular weight of is a polystyrene-equivalent value measured by a solvent-based GPC under the following conditions.
[溶剤系GPC]
 GPC装置: Waters GPC System e2695
 溶媒:テトラヒドロフラン
 カラム:SHODEX KF-806L ×2、SHODEX KF-G(昭和電工(株)製))カラム温度:40℃
 カラム温度:40℃
 サンプル濃度:0.2質量%
 検出器:Waters 2414RI
 流量:0.65mL/min
 分子量スタンダード:ポリスチレン(Shodex Polystyrene STANDARD SL-105、SM-105(昭和電工株式会社製))
[Solvent-based GPC]
GPC device: Waters GPC System e2695
Solvent: Tetrahydrofuran Column: SHODEX KF-806L x 2, SHODEX KF-G (manufactured by Showa Denko KK) Column temperature: 40 ° C.
Column temperature: 40 ° C
Sample concentration: 0.2% by mass
Detector: Waters 2414RI
Flow rate: 0.65 mL / min
Molecular weight standard: Polystyrene (Shodex Polystyrene STANDARD SL-105, SM-105 (manufactured by Showa Denko KK))
 この場合、単量体(a3)の重量平均分子量M(ポリスチレン換算値)は、10000以上であることが好ましく、20000以上であることがより好ましく、30000以上であることがさらに好ましい。電極の強度が向上するためである。また、この場合、単量体(a3)の重量平均分子量M(ポリスチレン換算値)は、200000以下であることが好ましく、150000以下であることがより好ましく、80000以下であることがさらに好ましい。後述する電極スラリーにおける固形分の分散性が向上するためである。 In this case, the weight average molecular weight M w (polystyrene conversion value) of the monomer (a3) is preferably 10,000 or more, more preferably 20,000 or more, and further preferably 30,000 or more. This is because the strength of the electrode is improved. Further, in this case, the weight average molecular weight M w (polystyrene equivalent value) of the monomer (a3) is preferably 200,000 or less, more preferably 150,000 or less, and further preferably 80,000 or less. This is because the dispersibility of the solid content in the electrode slurry described later is improved.
[単量体(a3)の具体例]
 単量体(a3)は、例えば、以下の式(5)で表される3元ブロック共重合体であることが好ましい。
[Specific example of monomer (a3)]
The monomer (a3) is preferably, for example, a ternary block copolymer represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(5)において、n:m:l=5.0~98:0.30~90:0.30~4.5、n:m:l=18~97:0.50~80:0.50~6.0であることが好ましく、n:m:l=25~97:0.70~75:0.80~4.5であることがより好ましい。重量平均分子量の好ましい範囲については上記の通りである。 In the formula (5), n: m: l = 5.0 to 98: 0.30 to 90: 0.30 to 4.5, n: m: l = 18 to 97: 0.50 to 80: 0. It is preferably 50 to 6.0, and more preferably n: m: l = 25 to 97: 0.70 to 75: 0.80 to 4.5. The preferred range of weight average molecular weight is as described above.
 上記式(5)で表される前記化合物の第1の形態は、上記式(5)において、n:m:l=5.0~50:40~90:0.30~4.5であり、n:m:l=18~40:50~80:0.50~6であることが好ましく、n:m:l=25~40:60~75:0.80~4.5であることがより好ましい。0.1M NaNO水溶液に溶解させて、第1の形態にかかる化合物を0.1質量%含む水溶液の作製が不可能である場合、重量平均分子量はポリスチレン換算で10000~200000であり、20000~150000であることが好ましく、30000~80000であることがより好ましい。 The first form of the compound represented by the above formula (5) is n: m: l = 5.0 to 50:40 to 90: 0.30 to 4.5 in the above formula (5). , N: m: l = 18-40: 50-80: 0.50-6, preferably n: m: l = 25-40: 60-75: 0.80-4.5. Is more preferable. When it is impossible to prepare an aqueous solution containing 0.1% by mass of the compound according to the first embodiment by dissolving it in a 0.1 M NaNO 3 aqueous solution, the weight average molecular weight is 10,000 to 200,000 in terms of polystyrene, and 20,000 to 20,000. It is preferably 150,000, more preferably 30,000 to 80,000.
 前記第1の形態の具体例は、式(5)において、n:m:l=30:69:1.0、Mw=50000である化合物(a3-1)を含む。 A specific example of the first embodiment includes a compound (a3-1) having n: m: l = 30: 69: 1.0 and Mw = 50,000 in the formula (5).
 上記式(5)で表される前記化合物の第2の形態は、上記の式(5)で表される化合物であって、式(5)において、n:m:l=70~98:0.30~20:0.30~10であり、n:m:l=80~97:0.50~15:0.50~6.0であることが好ましく、n:m:l=90~97:0.70~10:0.80~4.5、Mw=50000~80000であることがより好ましい。0.1M NaNO水溶液に溶解させて、第2の形態にかかる化合物を0.1質量%含む水溶液の作製が可能である場合、重量平均分子量はプルラン換算で10000~300000であり、30000~200000であることが好ましく、50000~120000であることがより好ましい。 The second form of the compound represented by the above formula (5) is a compound represented by the above formula (5), and in the formula (5), n: m: l = 70 to 98: 0. .30 to 20: 0.30 to 10, preferably n: m: l = 80 to 97: 0.50 to 15: 0.50 to 6.0, and n: m: l = 90 to It is more preferable that 97: 0.70 to 10: 0.80 to 4.5 and Mw = 50,000 to 80,000. When it is possible to prepare an aqueous solution containing 0.1% by mass of the compound according to the second embodiment by dissolving it in a 0.1 M NaNO 3 aqueous solution, the weight average molecular weight is 10,000 to 300,000 in terms of pullulan, and 30,000 to 200,000. It is preferably 50,000 to 120,000, and more preferably 50,000 to 120,000.
 前記第2の形態の具体例は、式(5)において、n:m:l=93:6.0:1.0、Mw=80,000である化合物(a3-2)と、n:m:l=96:1.0:3.0、Mw=80,000である化合物(a3-3)と、を含む。 Specific examples of the second embodiment include the compound (a3-2) having n: m: l = 93: 6.0: 1.0 and Mw = 80,000 in the formula (5), and n: m. : L = 96: 1.0: 3.0, Mw = 80,000, and the compound (a3-3).
[単量体(a3)の合成方法]
 単量体(a3)の合成方法は、特に限定されないが、例えば、酸触媒を用いたエポキシドの開環重合により得られる。
[Method for synthesizing monomer (a3)]
The method for synthesizing the monomer (a3) is not particularly limited, but can be obtained, for example, by ring-opening polymerization of the epoxide using an acid catalyst.
〔1-4.内部架橋剤(a4)〕
 内部架橋剤(a4)は、単量体(a3)に該当せず、独立した複数のエチレン性不飽和結合を有し、単量体(a1)、(a2)、及び(a3)を含む単量体のラジカル重合において架橋構造を形成可能な化合物である。このような化合物としては、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート等が挙げられる。
[1-4. Internal cross-linking agent (a4)]
The internal cross-linking agent (a4) does not correspond to the monomer (a3), has a plurality of independent ethylenically unsaturated bonds, and contains the monomers (a1), (a2), and (a3). It is a compound capable of forming a crosslinked structure in radical polymerization of a monomer. Examples of such a compound include divinylbenzene, ethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 2-hydroxy-3-acryloyloxypropyl methacrylate and the like.
〔1-5.その他の単量体(a5)〕
 その他の単量体(a5)は、単量体(a1)~(a4)のいずれにも該当しない。その他の単量体(a5)は、エチレン性不飽和結合及び極性官能基を有する化合物、エチレン性不飽和結合を有する界面活性剤(以下、「重合性界面活性剤」とすることもある)、エチレン性不飽和結合を有しシランカップリング剤としての機能を有する化合物等が挙げられるがこれらに限られない。
[1-5. Other monomers (a5)]
The other monomer (a5) does not correspond to any of the monomers (a1) to (a4). The other monomer (a5) is a compound having an ethylenically unsaturated bond and a polar functional group, a surfactant having an ethylenically unsaturated bond (hereinafter, may be referred to as “polymerizable surfactant”), and the like. Examples thereof include compounds having an ethylenically unsaturated bond and a function as a silane coupling agent, but the present invention is not limited thereto.
 極性官能基としては、ヒドロキシ基及びシアノ基のうち少なくともいずれかを含むことが好ましい。エチレン性不飽和結合及び極性官能基を有する単量体としては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、(メタ)アクリロニトリル等が挙げられる。共重合体(P)は、エチレン性不飽和結合及びヒドロキシ基を含む化合物に由来する構造単位を含むことが好ましく、ヒドロキシ基を有する(メタ)アクリレートに由来する構造単位を有することがより好ましく、(メタ)アクリル酸2-ヒドロキシエチルに由来する構造単位を含むことがさらに好ましい。 The polar functional group preferably contains at least one of a hydroxy group and a cyano group. Examples of the monomer having an ethylenically unsaturated bond and a polar functional group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl acrylate, and (meth) acrylonitrile. The copolymer (P) preferably contains a structural unit derived from an ethylenically unsaturated bond and a compound containing a hydroxy group, and more preferably has a structural unit derived from a (meth) acrylate having a hydroxy group. It is more preferable to contain a structural unit derived from 2-hydroxyethyl (meth) acrylate.
 重合性界面活性剤としては、エチレン性不飽和結合を有し、かつ界面活性剤としての機能を有する化合物で、例えば、以下の化学式(6)~(9)で表される化合物等が挙げられる。 Examples of the polymerizable surfactant include compounds having an ethylenically unsaturated bond and having a function as a surfactant, and examples thereof include compounds represented by the following chemical formulas (6) to (9). ..
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(6)中、Rはアルキル基であることが好ましく、pは10~40の整数であることが好ましい。Rの炭素数は10~40であることがより好ましく、Rは炭素数10~40の直鎖無置換アルキル基であることがさらに好ましい。 In formula (6), R 3 is preferably an alkyl group, and p is preferably an integer of 10 to 40. It is more preferable that R 3 has 10 to 40 carbon atoms, and it is further preferable that R 3 is a linear unsubstituted alkyl group having 10 to 40 carbon atoms.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(7)中、Rはアルキル基であることが好ましく、qは10~12の整数であることが好ましい。Rの炭素数は10~40であることがより好ましく、Rは炭素数10~40の直鎖無置換アルキル基であることがさらに好ましい。 In formula (7), R 4 is preferably an alkyl group, and q is preferably an integer of 10 to 12. It is more preferable that R 4 has 10 to 40 carbon atoms, and it is further preferable that R 4 is a linear unsubstituted alkyl group having 10 to 40 carbon atoms.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(8)中、Rはアルキル基であることが好ましく、MはNHまたはNaであることが好ましい。Rの炭素数は10~40であることがより好ましく、Rは炭素数10~40の直鎖無置換アルキル基であることがさらに好ましい。 In formula (8), R 5 is preferably an alkyl group, and M 1 is preferably NH 4 or Na. It is more preferable that R 5 has 10 to 40 carbon atoms, and it is further preferable that R 5 is a linear unsubstituted alkyl group having 10 to 40 carbon atoms.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(9)中、Rはアルキル基であることが好ましく、MはNHまたはNaであることが好ましい。Rの炭素数は10~40であることがより好ましく、Rは炭素数10~40の直鎖無置換アルキル基であることがさらに好ましい。 In formula (9), R 6 is preferably an alkyl group, and M 2 is preferably NH 4 or Na. It is more preferable that R 6 has 10 to 40 carbon atoms, and it is further preferable that R 6 is a linear unsubstituted alkyl group having 10 to 40 carbon atoms.
 エチレン性不飽和結合を有しシランカップリング剤としての機能を有する化合物としては、例えば、ビニルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン等が挙げられる。 Examples of the compound having an ethylenically unsaturated bond and functioning as a silane coupling agent include vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, vinyltriethoxysilane, and γ-methacryloxypropyltriethoxysilane. And so on.
〔1-6.共重合体(P)における各構造単位の含有量〕
 共重合体(P)において、単量体(a1)に由来する第1構造単位100質量部に対する、単量体(a2)に由来する第2構造単位の含有量は、1.0質量部以上であり、1.5質量部以上であることが好ましく、3.0質量部以上であることがより好ましい。共重合体(P)の機械的安定性が向上するためである。また、共重合体(P)を電極バインダーとして含む電極活物質層の剥離強度が向上するためである。
[1-6. Content of each structural unit in the copolymer (P)]
In the copolymer (P), the content of the second structural unit derived from the monomer (a2) is 1.0 part by mass or more with respect to 100 parts by mass of the first structural unit derived from the monomer (a1). It is preferably 1.5 parts by mass or more, and more preferably 3.0 parts by mass or more. This is because the mechanical stability of the copolymer (P) is improved. This is also because the peel strength of the electrode active material layer containing the copolymer (P) as an electrode binder is improved.
 共重合体(P)において、単量体(a1)に由来する第1構造単位100質量部に対する、単量体(a2)に由来する第2構造単位の含有量は、30質量部以下であり、15質量部以下であることが好ましく、7.5質量部以下であることがより好ましい。共重合体(P)のゲル化を抑制するためである。また、共重合体(P)の機械的安定性が向上するためである。 In the copolymer (P), the content of the second structural unit derived from the monomer (a2) is 30 parts by mass or less with respect to 100 parts by mass of the first structural unit derived from the monomer (a1). , 15 parts by mass or less, more preferably 7.5 parts by mass or less. This is to suppress gelation of the copolymer (P). This is also because the mechanical stability of the copolymer (P) is improved.
 共重合体(P)において、単量体(a1)に由来する第1構造単位100質量部に対する、単量体(a3)に由来する第3構造単位の含有量は、0.010質量部以上であり、0.030質量部以上であることが好ましく、0.15質量部以上であることがより好ましく、0.65質量部以上であることがさらに好ましい。共重合体(P)を電極バインダーとして含む電極活物質層の剥離強度が向上するためである。また、共重合体(P)を電極バインダーとして電極活物質層に含む電極を用いた電池のDCRを低下させることができるためである。 In the copolymer (P), the content of the third structural unit derived from the monomer (a3) is 0.010 parts by mass or more with respect to 100 parts by mass of the first structural unit derived from the monomer (a1). It is preferably 0.030 parts by mass or more, more preferably 0.15 parts by mass or more, and further preferably 0.65 parts by mass or more. This is because the peel strength of the electrode active material layer containing the copolymer (P) as the electrode binder is improved. Further, it is possible to reduce the DCR of the battery using the electrode containing the copolymer (P) as the electrode binder in the electrode active material layer.
 共重合体(P)において、単量体(a1)に由来する第1構造単位100質量部に対する、単量体(a3)に由来する第3構造単位の含有量は、70質量部以下であり、40質量部以下であることが好ましく、35質量部以下であることがより好ましい。ラジカル重合における重合安定性が向上し、共重合体(P)の粗粒の発生を抑制するためである。また、共重合体(P)のゲル化を抑制するためである。 In the copolymer (P), the content of the third structural unit derived from the monomer (a3) is 70 parts by mass or less with respect to 100 parts by mass of the first structural unit derived from the monomer (a1). , 40 parts by mass or less, more preferably 35 parts by mass or less. This is because the polymerization stability in radical polymerization is improved and the generation of coarse particles of the copolymer (P) is suppressed. This is also to suppress gelation of the copolymer (P).
 第1構造単位、第2構造単位、及び第3構造単位の共重合体(P)に占める質量割合は、合計で80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。これらの構造単位の含有率を高めることで、本発明により得られる効果がより一層大きくなるためである。 The mass ratio of the first structural unit, the second structural unit, and the third structural unit to the copolymer (P) is preferably 80% by mass or more in total, and more preferably 85% by mass or more. , 90% by mass or more is more preferable. This is because the effect obtained by the present invention is further enhanced by increasing the content of these structural units.
 共重合体(P)において、内部架橋剤(a4)に由来する第4構造単位を含む場合、単量体(a1)に由来する第1構造単位100質量部に対する、内部架橋剤(a4)に由来する第4構造単位の含有量は、0.050質量部以上であることが好ましく、0.075質量部以上であることがより好ましく、0.50質量部以上であることがさらに好ましい。共重合体(P)の劣化を抑制し、共重合体(P)を電極バインダーとして電極活物質層に含む電極を用いた電池の放電容量維持率を向上させることができるためである。 When the copolymer (P) contains a fourth structural unit derived from the internal cross-linking agent (a4), the internal cross-linking agent (a4) is used with respect to 100 parts by mass of the first structural unit derived from the monomer (a1). The content of the derived fourth structural unit is preferably 0.050 parts by mass or more, more preferably 0.075 parts by mass or more, and further preferably 0.50 parts by mass or more. This is because the deterioration of the copolymer (P) can be suppressed, and the discharge capacity retention rate of the battery using the electrode containing the copolymer (P) as the electrode binder in the electrode active material layer can be improved.
 共重合体(P)において、内部架橋剤(a4)に由来する構造単位を含む場合、単量体(a1)に由来する第1構造単位100質量部に対する、内部架橋剤(a4)に由来する第4構造単位の含有量は、20質量部以下であり、7.5質量部以下であることが好ましく、2.5質量部以下であることがより好ましい。共重合体(P)のゲル化を抑制するためである。 When the copolymer (P) contains a structural unit derived from the internal cross-linking agent (a4), it is derived from the internal cross-linking agent (a4) with respect to 100 parts by mass of the first structural unit derived from the monomer (a1). The content of the fourth structural unit is 20 parts by mass or less, preferably 7.5 parts by mass or less, and more preferably 2.5 parts by mass or less. This is to suppress gelation of the copolymer (P).
〔1-7.共重合体(P)のガラス転移点〕
 共重合体(P)のガラス転移点Tgは、日立ハイテクサイエンス社製 EXSTAR DSC/SS7020を用いて昇温速度10℃/分、窒素ガス雰囲気下でDSC測定を行い、DSCの温度微分として得られるDDSCチャートのピークトップ温度である。
[1-7. Glass transition point of copolymer (P)]
The glass transition point Tg of the copolymer (P) is obtained as a temperature differential of DSC by performing DSC measurement in a nitrogen gas atmosphere at a heating rate of 10 ° C./min using EXSTAR DSC / SS7020 manufactured by Hitachi High-Tech Science. The peak top temperature of the DDSC chart.
 共重合体(P)のガラス転移点Tgは、-30℃以上であることが好ましく、-10℃以上であることがより好ましく、0℃以上であることがさらに好ましい。共重合体(P)を電極バインダーとして用いた非水系二次電池のサイクル特性が向上するためである。 The glass transition point Tg of the copolymer (P) is preferably −30 ° C. or higher, more preferably −10 ° C. or higher, and even more preferably 0 ° C. or higher. This is because the cycle characteristics of the non-aqueous secondary battery using the copolymer (P) as the electrode binder are improved.
 共重合体(P)のガラス転移点Tgは、100℃以下であることが好ましく、50℃以下であることがより好ましく、30℃以下であることがさらに好ましい。共重合体(P)を電極バインダーとして含む電極活物質層の集電箔に対する密着性が向上するためである。 The glass transition point Tg of the copolymer (P) is preferably 100 ° C. or lower, more preferably 50 ° C. or lower, and even more preferably 30 ° C. or lower. This is because the adhesion of the electrode active material layer containing the copolymer (P) as the electrode binder to the current collector foil is improved.
<2.共重合体(P)の合成方法>
 共重合体(P)は、単量体(a1)~(a3)を含む単量体を共重合することで得られる。単量体として、必要に応じて内部架橋剤(a4)、他の単量体(a5)も共重合してよい。ここで、共重合体(P)を合成するために用いられる単量体を総称して単量体(a)と呼ぶこともある。重合方法としては、例えば、水性媒体(b)中での単量体(a)の乳化重合が挙げられる。乳化重合による共重合体(P)の合成において用いられるその他の成分としては、例えば、重合性を有さない界面活性剤(c)、塩基性物質(d)、ラジカル重合開始剤(e)、連鎖移動剤(f)等が挙げられる。以下、共重合体(P)の合成のために必要な、あるいは必要に応じて用いてもよいこれらの成分、及び乳化重合法について説明するが、単量体(a)については、上述した通りのため、以下においては説明しない。
<2. Method for synthesizing copolymer (P)>
The copolymer (P) can be obtained by copolymerizing a monomer containing the monomers (a1) to (a3). As the monomer, an internal cross-linking agent (a4) and another monomer (a5) may be copolymerized, if necessary. Here, the monomers used for synthesizing the copolymer (P) may be collectively referred to as the monomer (a). Examples of the polymerization method include emulsion polymerization of the monomer (a) in the aqueous medium (b). Other components used in the synthesis of the copolymer (P) by emulsion polymerization include, for example, a non-polymerizable surfactant (c), a basic substance (d), a radical polymerization initiator (e), and the like. Examples thereof include a chain transfer agent (f). Hereinafter, these components necessary for the synthesis of the copolymer (P) or may be used as needed, and the emulsion polymerization method will be described, but the monomer (a) will be described as described above. Therefore, it will not be described below.
〔2-1.水性媒体(b)〕
 水性媒体(b)は、水、親水性の溶媒、またはこれらの混合物である。親水性の溶媒としては、メタノール、エタノール、イソプロピルアルコール、及びN-メチルピロリドン等が挙げられる。重合安定性の観点から、水性媒体(b)は水であることが好ましい。なお、重合安定性を損なわない限り、水性媒体(b)として、水に親水性の溶媒を添加したものを用いてもよい。
[2-1. Aqueous medium (b)]
The aqueous medium (b) is water, a hydrophilic solvent, or a mixture thereof. Examples of the hydrophilic solvent include methanol, ethanol, isopropyl alcohol, N-methylpyrrolidone and the like. From the viewpoint of polymerization stability, the aqueous medium (b) is preferably water. As the aqueous medium (b), a water to which a hydrophilic solvent is added may be used as long as the polymerization stability is not impaired.
〔2-2.重合性を有さない界面活性剤(c)〕
 単量体(a)の乳化重合において、重合性を有さない界面活性剤(c)を用いてもよい。界面活性剤(c)は、重合中及び/または重合後の分散液(エマルジョン)の分散安定性を向上させることができる。界面活性剤(c)としては、アニオン性界面活性剤、ノニオン性界面活性剤を用いることが好ましい。
[2-2. Non-polymerizable Surfactant (c)]
In the emulsion polymerization of the monomer (a), a non-polymerizable surfactant (c) may be used. The surfactant (c) can improve the dispersion stability of the dispersion liquid (emulsion) during and / or after the polymerization. As the surfactant (c), it is preferable to use an anionic surfactant or a nonionic surfactant.
 アニオン性界面活性剤としては、例えば、アルキルベンゼンスルホン酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、脂肪酸塩が挙げられる。 Examples of the anionic surfactant include alkylbenzene sulfonates, alkyl sulfates, polyoxyethylene alkyl ether sulfates, and fatty acid salts.
 ノニオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン多環フェニルエーテル、ポリオキシアルキレンアルキルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステルが挙げられる。 Examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polycyclic phenyl ether, polyoxyalkylene alkyl ether, sorbitan fatty acid ester, and polyoxyethylene sorbitan fatty acid ester.
 上記の界面活性剤は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The above-mentioned surfactant may be used alone or in combination of two or more.
〔2-3.塩基性物質(d)〕
 単量体(a)を水性媒体(b)中で乳化重合する場合は、塩基性物質(d)を加えてもよい。塩基性物質(d)を加えることで、単量体(a)に含まれる酸性成分を中和し、pHを調整することができる。pHを調整することで、乳化重合中及び/または乳化重合後の分散液の機械的安定性、化学的安定性を向上させることができる。
[2-3. Basic substance (d)]
When the monomer (a) is emulsion-polymerized in the aqueous medium (b), the basic substance (d) may be added. By adding the basic substance (d), the acidic component contained in the monomer (a) can be neutralized and the pH can be adjusted. By adjusting the pH, the mechanical stability and chemical stability of the dispersion during and / or after emulsion polymerization can be improved.
 分散液の23℃でのpHは、電極の仕様、後述するスラリー作製の条件等によって適宜調整すればよく、限定はされないが、1.5~10であることが好ましく、6.0~9.0であることがより好ましく、5.0~9.0であることがさらに好ましい。後述の電極スラリー中の活物質の沈降を抑制するためである。 The pH of the dispersion liquid at 23 ° C. may be appropriately adjusted depending on the specifications of the electrodes, the conditions for preparing the slurry described later, and the like, and is not limited, but is preferably 1.5 to 10, preferably 6.0 to 9. It is more preferably 0, and even more preferably 5.0 to 9.0. This is to suppress the sedimentation of the active material in the electrode slurry described later.
 塩基性物質(d)としては、アンモニア、トリエチルアミン、水酸化ナトリウム、水酸化リチウム等が挙げられる。これらの塩基性物質(d)は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of the basic substance (d) include ammonia, triethylamine, sodium hydroxide, lithium hydroxide and the like. These basic substances (d) may be used alone or in combination of two or more.
〔2-4.ラジカル重合開始剤(e)〕
 乳化重合の際に用いられるラジカル重合開始剤(e)としては、特に限定されるものではなく、公知のものを用いることができる。ラジカル重合開始剤としては、例えば、過硫酸アンモニウム、過硫酸カリウムなどの過硫酸塩;過酸化水素;アゾ化合物;t-ブチルハイドロパーオキサイド、tert-ブチルパーオキシベンゾエート、クメンハイドロパーオキサイドなどの有機過酸化物が挙げられる。中でも、過硫酸塩及び有機過酸化物が好ましい。本実施形態においては、乳化重合の際にラジカル重合開始剤と、重亜硫酸ナトリウム、ロンガリット、アスコルビン酸等の還元剤とを併用して、レドックス重合してもよい。
[2-4. Radical Polymerization Initiator (e)]
The radical polymerization initiator (e) used in the emulsion polymerization is not particularly limited, and known ones can be used. Examples of the radical polymerization initiator include persulfates such as ammonium persulfate and potassium persulfate; hydrogen peroxide; azo compounds; organic peroxides such as t-butylhydroperoxide, tert-butylperoxybenzoate and cumenehydroperoxide. Examples include oxides. Of these, persulfates and organic peroxides are preferable. In the present embodiment, a radical polymerization initiator and a reducing agent such as sodium bisulfite, longalit, and ascorbic acid may be used in combination during emulsion polymerization for redox polymerization.
 ラジカル重合開始剤の添加量は、単量体(a)100質量部に対して0.10質量部以上であることが好ましく、0.80質量部以上であることがより好ましい。単量体(a)の重合時の共重合体(P)への転化率を高くすることができるためである。ラジカル重合開始剤の添加量は、単量体(a)100質量部に対して3.0質量部以下であることが好ましく、2.0質量部以下であることがより好ましい。共重合体(P)の分子量を高くすることができ、電極活物質層の電解液に対する膨潤率を下げることができるためである。 The amount of the radical polymerization initiator added is preferably 0.10 part by mass or more, and more preferably 0.80 part by mass or more with respect to 100 parts by mass of the monomer (a). This is because the conversion rate of the monomer (a) to the copolymer (P) at the time of polymerization can be increased. The amount of the radical polymerization initiator added is preferably 3.0 parts by mass or less, and more preferably 2.0 parts by mass or less with respect to 100 parts by mass of the monomer (a). This is because the molecular weight of the copolymer (P) can be increased and the swelling rate of the electrode active material layer with respect to the electrolytic solution can be reduced.
〔2-5.連鎖移動剤(f)〕
 連鎖移動剤(f)は、乳化重合において共重合体(P)の分子量を調整するために用いられる。連鎖移動剤(f)としては、n-ドデシルメルカプタン、tert-ドデシルメルカプタン、n-ブチルメルカプタン、2-エチルヘキシルチオグリコレート、2-メルカプトエタノール、β-メルカプトプロピオン酸、メチルアルコール、n-プロピルアルコール、イソプロピルアルコール、t-ブチルアルコール、ベンジルアルコール等が挙げられる。
[2-5. Chain transfer agent (f)]
The chain transfer agent (f) is used to adjust the molecular weight of the copolymer (P) in emulsion polymerization. Examples of the chain transfer agent (f) include n-dodecyl mercaptan, tert-dodecyl mercaptan, n-butyl mercaptan, 2-ethylhexylthioglycolate, 2-mercaptoethanol, β-mercaptopropionic acid, methyl alcohol, and n-propyl alcohol. Examples thereof include isopropyl alcohol, t-butyl alcohol and benzyl alcohol.
〔2-6.乳化重合法〕
 乳化重合法としては、例えば、乳化重合に使用する各成分を連続供給しながら乳化重合する方法等が挙げられる。乳化重合の温度は、特に限定はされないが、例えば、30~90℃であり、50~85℃であることが好ましく、55~80℃であることがさらに好ましい。乳化重合は攪拌しながら行うことが好ましい。また、単量体(a)及びラジカル重合開始剤は反応容器内で均一になるよう連続供給することが好ましい。
[2-6. Emulsification polymerization method]
Examples of the emulsion polymerization method include a method of emulsion polymerization while continuously supplying each component used for emulsion polymerization. The temperature of the emulsion polymerization is not particularly limited, but is, for example, 30 to 90 ° C, preferably 50 to 85 ° C, and even more preferably 55 to 80 ° C. Emulsion polymerization is preferably carried out with stirring. Further, it is preferable that the monomer (a) and the radical polymerization initiator are continuously supplied so as to be uniform in the reaction vessel.
<3.非水系二次電池電極用バインダー>
 本実施形態にかかる非水系二次電池電極用バインダー(または、非水系二次電池電極バインダー。以下、「電極バインダー」とすることがある)は、以上に説明した共重合体(P)を含む。電極バインダーは、その他の成分を含んでもよく、例えば、共重合体(P)以外の重合体、界面活性剤等を含んでもよい。
<3. Binder for non-aqueous secondary battery electrodes >
The binder for a non-aqueous secondary battery electrode (or a non-aqueous secondary battery electrode binder; hereinafter, may be referred to as an “electrode binder”) according to the present embodiment contains the copolymer (P) described above. .. The electrode binder may contain other components, and may contain, for example, a polymer other than the copolymer (P), a surfactant, or the like.
 ここで電極バインダーは、後述する電池の製造工程における加熱を伴う工程において揮発せずに残る成分からなる。具体的には電極バインダーを構成する成分は、電極バインダーを含む混合物を直径5cmのアルミ皿に1g秤量し、大気圧、乾燥器内で空気を循環させながら105℃で1時間乾燥させ後に残った成分である。 Here, the electrode binder is composed of a component that remains without volatilizing in a process involving heating in the battery manufacturing process described later. Specifically, the components constituting the electrode binder remained after weighing 1 g of the mixture containing the electrode binder in an aluminum dish having a diameter of 5 cm and drying at 105 ° C. for 1 hour while circulating air in a dryer at atmospheric pressure. It is an ingredient.
 電極バインダー中の共重合体(P)の含有率は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、98質量%以上であることがさらに好ましい。共重合体(P)による本発明の目的とする効果への寄与を大きくするためである。 The content of the copolymer (P) in the electrode binder is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, and 98% by mass. The above is more preferable. This is to increase the contribution of the copolymer (P) to the desired effect of the present invention.
<4.非水系二次電池電極用バインダー組成物>
 本実施形態の非水系二次電池電極用バインダー組成物(以下、バインダー組成物とすることもある)は、共重合体(P)が水性媒体(B)中に分散している。バインダー組成物は、これらの成分の他に、例えば、共重合体(P)の合成に用いた上記の成分等を含んでいてもよい。バインダー組成物は、共重合体(P)の合成方法によって得られた分散液でもよく、乳化重合以外の方法で得られた共重合体(P)を水性媒体(B)に分散させることにより得られる分散液でもよく、その他の方法により得られる分散液でもよい。
<4. Binder composition for non-aqueous secondary battery electrodes>
In the binder composition for a non-aqueous secondary battery electrode of the present embodiment (hereinafter, may be referred to as a binder composition), the copolymer (P) is dispersed in the aqueous medium (B). In addition to these components, the binder composition may contain, for example, the above-mentioned components used in the synthesis of the copolymer (P). The binder composition may be a dispersion obtained by a method for synthesizing the copolymer (P), or may be obtained by dispersing the copolymer (P) obtained by a method other than emulsion polymerization in an aqueous medium (B). The dispersion may be obtained, or may be a dispersion obtained by another method.
〔4-1.水性媒体(B)〕
 水性媒体(B)は、水、親水性の溶媒、またはこれらの混合物である。親水性の溶媒の例は、共重合体(P)の合成における水性媒体(b)の説明で挙げた通りである。水性媒体(B)は、共重合体(P)の合成に用いた水性媒体(b)と同じでもよく、異なっていてもよい。
[4-1. Aqueous medium (B)]
The aqueous medium (B) is water, a hydrophilic solvent, or a mixture thereof. Examples of hydrophilic solvents are as mentioned in the description of the aqueous medium (b) in the synthesis of the copolymer (P). The aqueous medium (B) may be the same as or different from the aqueous medium (b) used for the synthesis of the copolymer (P).
 水性媒体(B)は、共重合体(P)の合成に用いた水性媒体(b)をそのまま用いてもよく、水性媒体(b)に水性溶媒を添加した構成でもよく、共重合体(P)の合成後に水性媒体(b)を新たな水性溶媒に置き換えたものでもよい。ここで、添加する、あるいは置き換える水性溶媒は、共重合体(P)の合成に用いた溶媒と同じ組成でもよく、異なる組成でもよい。 As the aqueous medium (B), the aqueous medium (b) used for the synthesis of the copolymer (P) may be used as it is, or the aqueous medium (b) may be configured by adding an aqueous solvent, or the copolymer (P) may be used. ) May be replaced with a new aqueous solvent after the synthesis of the aqueous medium (b). Here, the aqueous solvent to be added or replaced may have the same composition as the solvent used for the synthesis of the copolymer (P), or may have a different composition.
〔4-2.バインダー組成物の不揮発分濃度〕
 バインダー組成物の不揮発分濃度は、20質量%以上であることが好ましく、25質量%以上であることがより好ましく、30質量%以上であることがさらに好ましい。バインダー組成物中に含まれる有効成分の量を多くするためである。バインダー組成物の不揮発分濃度は、水性媒体(B)の量により調整できる。
[4-2. Non-volatile content concentration of binder composition]
The non-volatile content concentration of the binder composition is preferably 20% by mass or more, more preferably 25% by mass or more, and further preferably 30% by mass or more. This is to increase the amount of the active ingredient contained in the binder composition. The non-volatile content concentration of the binder composition can be adjusted by the amount of the aqueous medium (B).
 バインダー組成物の不揮発分濃度は、80質量%以下であることが好ましく、70質量%以下であることがより好ましく、60質量%以下であることがさらに好ましい。バインダー組成物の粘度の上昇を抑制し、後述するスラリーを作製しやすくするためである。 The non-volatile content concentration of the binder composition is preferably 80% by mass or less, more preferably 70% by mass or less, and further preferably 60% by mass or less. This is to suppress an increase in the viscosity of the binder composition and facilitate the production of a slurry described later.
<5.非水系二次電池電極用スラリー>
 次に、非水系二次電池電極用スラリー(以下、「電極スラリー」とすることもある)について詳述する。電極スラリーは、共重合体(P)と、電極活物質と、が水性媒体中に分散している構成を有する。電極スラリーは、これらの成分の他に、増粘剤、導電助剤、共重合体(P)の合成に用いた上記の成分等を含んでもよい。
<5. Slurry for non-aqueous secondary battery electrodes >
Next, a slurry for a non-aqueous secondary battery electrode (hereinafter, may be referred to as an “electrode slurry”) will be described in detail. The electrode slurry has a structure in which the copolymer (P) and the electrode active material are dispersed in an aqueous medium. In addition to these components, the electrode slurry may contain a thickener, a conductive auxiliary agent, the above-mentioned components used for synthesizing the copolymer (P), and the like.
〔5-1.共重合体(P)の含有量〕
 共重合体(P)の含有量は、電極活物質100質量部に対して、0.50質量部以上であることが好ましく、1.0質量部以上であることがより好ましい。共重合体(P)による効果を十分に発現させるためである。
[5-1. Content of copolymer (P)]
The content of the copolymer (P) is preferably 0.50 part by mass or more, and more preferably 1.0 part by mass or more with respect to 100 parts by mass of the electrode active material. This is to fully exhibit the effect of the copolymer (P).
 共重合体(P)の含有量は、電極活物質100質量部に対して、5.0質量部以下であることが好ましく、4.0質量部以下であることがより好ましく、3.0質量部以下であることがさらに好ましい。電極スラリーを用いて作製される電極活物質層において、電極活物質の含有率を高めるためである。 The content of the copolymer (P) is preferably 5.0 parts by mass or less, more preferably 4.0 parts by mass or less, and 3.0 parts by mass with respect to 100 parts by mass of the electrode active material. More preferably, it is less than or equal to a portion. This is to increase the content of the electrode active material in the electrode active material layer produced by using the electrode slurry.
〔5-2.電極活物質〕
 電極活物質は、リチウムイオン等の電荷キャリアとなるイオンを挿入(Intercaration)/脱離(Deintercalation)可能な材料である。電荷キャリアとなるイオンはアルカリ金属イオンであることが好ましく、リチウムイオン、ナトリウムイオン、カリウムイオンであることがより好ましく、リチウムイオンであることがさらに好ましい。
[5-2. Electrode active material]
The electrode active material is a material capable of inserting / desorbing ions such as lithium ions that serve as charge carriers. The ion serving as a charge carrier is preferably an alkali metal ion, more preferably a lithium ion, a sodium ion, or a potassium ion, and even more preferably a lithium ion.
 電極が負極である場合、電極活物質、すなわち負極活物質は、炭素材料、ケイ素を含む材料、チタンを含む材料のうち少なくともいずれかを含むことが好ましい。電極活物質として用いられる炭素材料としては、例えば、石油コークス、ピッチコークス、石炭コークス等のコークス、有機高分子の炭素化物、人造黒鉛、天然黒鉛等の黒鉛が挙げられる。ケイ素を含む材料としては、例えば、ケイ素単体、酸化ケイ素等のケイ素化合物が挙げられる。チタンを含む材料としては、例えばチタン酸リチウム等が挙げられる。これらの材料は、単独で用いてもよいが、混合あるいは複合化して用いてもよい。 When the electrode is a negative electrode, the electrode active material, that is, the negative electrode active material preferably contains at least one of a carbon material, a material containing silicon, and a material containing titanium. Examples of the carbon material used as the electrode active material include coke such as petroleum coke, pitch coke, and coal coke, carbonized organic polymer, artificial graphite, and graphite such as natural graphite. Examples of the material containing silicon include a simple substance of silicon and a silicon compound such as silicon oxide. Examples of the material containing titanium include lithium titanate and the like. These materials may be used alone, or may be mixed or combined.
 負極活物質は、炭素材料、ケイ素を含む材料のうち少なくともいずれかを含むことが好ましく、炭素材料を含むことがより好ましい。共重合体(P)による電極活物質間、及び電極活物質と集電体との間の結着性を向上させる効果が非常に大きいためである。 The negative electrode active material preferably contains at least one of a carbon material and a material containing silicon, and more preferably contains a carbon material. This is because the copolymer (P) has a very large effect of improving the binding property between the electrode active materials and between the electrode active material and the current collector.
 電極が正極である場合、電極活物質、すなわち正極活物質は、負極活物質よりも標準電極電位が貴な物質を用いる。正極活物質としては、Ni-Co-Mn系のリチウム複合酸化物、Ni-Mn-Al系のリチウム複合酸化物、Ni-Co-Al系のリチウム複合酸化物などのニッケルを含むリチウム複合酸化物、コバルト酸リチウム(LiCoO)、スピネル型マンガン酸リチウム(LiMn)、オリビン型燐酸鉄リチウム、TiS、MnO、MoO、V等のカルコゲン化合物等が挙げられる。正極活物質として、これらの物質は1種で用いてもよく、あるいは2種類以上を組み合わせて用いてもよい。 When the electrode is a positive electrode, the electrode active material, that is, the positive electrode active material, uses a substance having a higher standard electrode potential than the negative electrode active material. As the positive electrode active material, a lithium composite oxide containing nickel such as a Ni—Co—Mn-based lithium composite oxide, a Ni—Mn—Al based lithium composite oxide, and a Ni—Co—Al based lithium composite oxide. , Lithium cobalt oxide (LiCoO 2 ), spinel-type lithium manganate (LiMn 2 O 4 ), olivine-type lithium iron phosphate, TiS 2 , MnO 2 , MoO 3 , V2 O 5 , and the like. As the positive electrode active material, these substances may be used alone or in combination of two or more.
〔5-3.増粘剤〕
 増粘剤としては、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等のセルロース類、セルロース類のアンモニウム塩、セルロース類のアルカリ金属塩、ポリビニルアルコ-ル、ポリビニルピロリドン等が挙げられる。増粘剤は、カルボキシメチルセルロース、カルボキシメチルセルロースのアンモニウム塩、カルボキシメチルセルロースアルカリ金属塩のうち少なくともいずれかを含むことが好ましい。電極スラリー中で電極活物質が分散しやすくなるためである。
[5-3. Thickener]
Examples of the thickener include celluloses such as carboxymethyl cellulose (CMC), hydroxyethyl cellulose and hydroxypropyl cellulose, ammonium salts of celluloses, alkali metal salts of celluloses, polyvinyl alcohol, polyvinylpyrrolidone and the like. The thickener preferably contains at least one of carboxymethyl cellulose, an ammonium salt of carboxymethyl cellulose, and an alkali metal salt of carboxymethyl cellulose. This is because the electrode active material is easily dispersed in the electrode slurry.
 電極スラリーにおける増粘剤の含有量は、電極活物質100質量部に対して0.50質量部以上であることが好ましく、0.80質量部以上であることがより好ましい。電極スラリーを用いて作製される電極活物質層において、電極活物質間、及び電極活物質と集電体との間の結着性を向上させるためである。 The content of the thickener in the electrode slurry is preferably 0.50 part by mass or more, and more preferably 0.80 part by mass or more with respect to 100 parts by mass of the electrode active material. This is to improve the bondability between the electrode active materials and between the electrode active material and the current collector in the electrode active material layer produced by using the electrode slurry.
 電極スラリーにおける増粘剤の含有量は、電極活物質100質量部に対して3.0質量部以下であることが好ましく、2.0質量部以下であることがより好ましく、1.5質量部以下であることがさらに好ましい。電極スラリーの塗工性が向上するためである。 The content of the thickener in the electrode slurry is preferably 3.0 parts by mass or less, more preferably 2.0 parts by mass or less, and 1.5 parts by mass with respect to 100 parts by mass of the electrode active material. The following is more preferable. This is because the coatability of the electrode slurry is improved.
〔5-4.水性媒体〕
 水性媒体は、水、親水性の溶媒、またはこれらの混合物である。親水性の溶媒の例は、共重合体(P)の合成における水性媒体(b)の説明で挙げた通りである。電極スラリーに含まれる水性媒体は、バインダー組成物に含まれる水性媒体(B)、あるいは共重合体(P)の合成に用いた水性媒体(b)と同じでもよく、異なっていてもよい。
[5-4. Aqueous medium]
The aqueous medium is water, a hydrophilic solvent, or a mixture thereof. Examples of hydrophilic solvents are as mentioned in the description of the aqueous medium (b) in the synthesis of the copolymer (P). The aqueous medium contained in the electrode slurry may be the same as or different from the aqueous medium (B) contained in the binder composition or the aqueous medium (b) used for synthesizing the copolymer (P).
〔5-5.導電助剤〕
 導電助剤としては、カーボンブラック、炭素繊維等を用いることが好ましい。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、デンカブラック(登録商標)(デンカ株式会社製)、ケッチェンブラック(登録商標)(ケッチェンブラックインターナショナル株式会社製)等が挙げられる。炭素繊維は、カーボンナノチューブ、カーボンナノファイバー等が挙げられ、カーボンナノチューブとしては、気相法炭素繊維であるVGCF(登録商標、昭和電工株式会社製)が好ましい例として挙げられる。
[5-5. Conductive aid]
As the conductive auxiliary agent, it is preferable to use carbon black, carbon fiber or the like. Examples of carbon black include furnace black, acetylene black, denka black (registered trademark) (manufactured by Denka Co., Ltd.), and Ketjen black (registered trademark) (manufactured by Ketjen Black International Co., Ltd.). Examples of the carbon fiber include carbon nanotubes and carbon nanofibers, and examples of the carbon nanotube include VGCF (registered trademark, manufactured by Showa Denko Co., Ltd.), which is a vapor phase carbon fiber.
〔5-6.電極スラリーの性質〕
 電極スラリーの不揮発分濃度は、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。電極スラリー中の有効成分の濃度が高くなり、少ない電極スラリーの量で、十分な量の電極活物質層を形成できるためである。電極スラリーの不揮発分濃度は、電極スラリー中の水性媒体の量で調整できる。
[5-6. Properties of electrode slurry]
The non-volatile content concentration of the electrode slurry is preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably 40% by mass or more. This is because the concentration of the active ingredient in the electrode slurry becomes high, and a sufficient amount of the electrode active material layer can be formed with a small amount of the electrode slurry. The non-volatile content concentration of the electrode slurry can be adjusted by adjusting the amount of the aqueous medium in the electrode slurry.
 電極スラリーの不揮発分濃度は、85質量%以下であることが好ましく、75質量%以下であることがより好ましく、65質量%以下であることがさらに好ましい。電極スラリーの塗工性を良好に保つためである。 The non-volatile content concentration of the electrode slurry is preferably 85% by mass or less, more preferably 75% by mass or less, and further preferably 65% by mass or less. This is to maintain good coatability of the electrode slurry.
 電極スラリーの粘度は、20000mPa・s以下であることが好ましく、10000mPa・s以下であることがより好ましく、5000mPa・s以下であることがさらに好ましい。電極スラリーの集電体への塗布性を向上させ、電極の生産性が向上するためである。電極スラリーの粘度は、電極スラリーの不揮発分濃度、及び増粘剤の種類及び量により大きく影響される。 The viscosity of the electrode slurry is preferably 20000 mPa · s or less, more preferably 10,000 mPa · s or less, and further preferably 5000 mPa · s or less. This is because the applicability of the electrode slurry to the current collector is improved and the productivity of the electrodes is improved. The viscosity of the electrode slurry is greatly affected by the non-volatile content concentration of the electrode slurry and the type and amount of the thickener.
 23℃における電極スラリーのpHは、電極の仕様及び作製条件等によって適宜調整すればよく、限定はされないが、好ましくは2.0~10であり、より好ましくは4.0~9.0であり、さらに好ましくは6.0~9.0である。電極スラリーを用いて作製される電池の耐久性を向上させるためである。 The pH of the electrode slurry at 23 ° C. may be appropriately adjusted depending on the specifications of the electrode, the production conditions, and the like, and is not limited, but is preferably 2.0 to 10, and more preferably 4.0 to 9.0. , More preferably 6.0 to 9.0. This is to improve the durability of the battery manufactured by using the electrode slurry.
〔5-7.電極スラリーの製造方法〕
 本実施形態において電極スラリーを調製する方法としては、バインダー組成物と、電極活物質と、必要に応じて増粘剤と、必要に応じて水性媒体と、必要に応じて導電助剤と、必要に応じてその他の成分とを混合する方法が挙げられるがこれに限られない。添加する成分の順序は、特に限定されず、適宜決めればよい。混合方法としては、攪拌式、回転式、振とう式等の混合装置を使用する方法が挙げられる。
[5-7. Method of manufacturing electrode slurry]
As a method for preparing the electrode slurry in the present embodiment, a binder composition, an electrode active material, a thickener if necessary, an aqueous medium if necessary, and a conductive auxiliary agent if necessary are required. A method of mixing with other components may be mentioned depending on the above, but the method is not limited to this. The order of the components to be added is not particularly limited and may be appropriately determined. Examples of the mixing method include a method using a mixing device such as a stirring type, a rotary type, and a shaking type.
<6.非水系二次電池電極>
 本実施形態にかかる非水系二次電池電極(以下、「電極」とすることもある)は、集電体と、集電体上に形成された電極活物質層と、を備える。電極の形状としては、例えば、積層体や捲回体が挙げられるが、特に限定されない。また、集電体上への電極活物質層の形成範囲は特に限定されず、集電体の全面に形成されていてもよく、集電体の一部の面に形成されていてもよい。集電体が板、箔等の形状である場合、電極活物質層は、集電体の両面に形成されていてもよく、片面のみに形成されていてもよい。
<6. Non-aqueous secondary battery electrode >
The non-aqueous secondary battery electrode (hereinafter, may be referred to as “electrode”) according to the present embodiment includes a current collector and an electrode active material layer formed on the current collector. Examples of the shape of the electrode include a laminated body and a wound body, but the shape is not particularly limited. Further, the range of forming the electrode active material layer on the current collector is not particularly limited, and it may be formed on the entire surface of the current collector or may be formed on a part of the surface of the current collector. When the current collector is in the shape of a plate, foil, or the like, the electrode active material layer may be formed on both sides of the current collector, or may be formed on only one side.
〔6-1.集電体〕
 集電体は、厚さ0.001mm以上0.5mm以下の金属シートであることが好ましく、金属としては、鉄、銅、アルミニウム、ニッケル、ステンレス等が挙げられる。非水系二次電池電極が、リチウムイオン二次電池の負極である場合、集電体は、銅箔であることが好ましい。
[6-1. Current collector]
The current collector is preferably a metal sheet having a thickness of 0.001 mm or more and 0.5 mm or less, and examples of the metal include iron, copper, aluminum, nickel, and stainless steel. When the non-aqueous secondary battery electrode is the negative electrode of the lithium ion secondary battery, the current collector is preferably a copper foil.
〔6-2.電極活物質層〕
 本実施形態にかかる電極活物質層は、電極バインダー及び電極活物質を含む。電極活物質層は、導電助剤、増粘剤等を含んでもよい。ここで挙げた成分については上述したとおりである。
[6-2. Electrode active material layer]
The electrode active material layer according to the present embodiment includes an electrode binder and an electrode active material. The electrode active material layer may contain a conductive auxiliary agent, a thickener and the like. The components listed here are as described above.
〔6-3.電極の製造方法〕
 電極の製造方法としては、例えば、電極スラリーを集電体上に塗布し、乾燥させて電極活物質層を形成した後、適当な大きさに切断することにより製造できる。
[6-3. Electrode manufacturing method]
As a method for manufacturing an electrode, for example, an electrode slurry is applied onto a current collector, dried to form an electrode active material layer, and then cut into an appropriate size.
 電極スラリーを集電体上に塗布する方法としては、特に限定されないが、例えば、リバースロール法、ダイレクトロール法、ドクターブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法、スクイーズ法等が挙げられる。これらの中でも、電極スラリーの粘性等の諸物性及び乾燥性を考慮すると、ドクターブレード法、ナイフ法、またはエクストルージョン法を用いることが好ましい。表面が滑らかで、厚さのばらつきが小さな電極活物質層を得ることができるためである。 The method of applying the electrode slurry onto the current collector is not particularly limited, but for example, the reverse roll method, the direct roll method, the doctor blade method, the knife method, the extrusion method, the curtain method, the gravure method, the bar method, and the dip method. Law, squeeze method, etc. can be mentioned. Among these, the doctor blade method, the knife method, or the extrusion method is preferably used in consideration of various physical properties such as the viscosity of the electrode slurry and the drying property. This is because it is possible to obtain an electrode active material layer having a smooth surface and a small variation in thickness.
 電極スラリーは、集電体の片面にのみ塗布してもよいし、両面に塗布してもよい。電極スラリーを集電体の両面に塗布する場合は、片面ずつ逐次塗布してもよいし、両面同時に塗布してもよい。また、電極スラリーは、集電体へ連続的に塗布してもよいし、間欠的に塗布してもよい。電極スラリーの塗布量は、電池の設計容量、及び電極スラリーの組成などに応じて適宜決定できる。電極スラリーの塗布量は、電極スラリーの性質にもよるが、13mg/cm以下(両面に塗布する場合、片面あたりの塗布量)であることが好ましい。電極スラリーの乾燥工程において電極表面の亀裂の発生を抑制できるためである。 The electrode slurry may be applied to only one side of the current collector or may be applied to both sides. When the electrode slurry is applied to both sides of the current collector, it may be applied sequentially on one side at a time or on both sides at the same time. Further, the electrode slurry may be continuously applied to the current collector or may be applied intermittently. The coating amount of the electrode slurry can be appropriately determined according to the design capacity of the battery, the composition of the electrode slurry, and the like. The coating amount of the electrode slurry depends on the properties of the electrode slurry, but is preferably 13 mg / cm 2 or less (when coated on both sides, the coating amount per one side). This is because the occurrence of cracks on the electrode surface can be suppressed in the process of drying the electrode slurry.
 集電体上に塗布された電極スラリーを乾燥することにより、集電体上に電極活物質層が形成される。電極スラリーの乾燥方法は、特に限定されないが、例えば、熱風、減圧あるいは真空環境、(遠)赤外線、低温風を単独あるいは組み合わせて用いることができる。電極スラリーの乾燥温度及び乾燥時間は、電極スラリー中の不揮発分濃度、集電体への塗布量等によって適宜調整することができる。乾燥温度は、40℃以上350℃以下であることが好ましく、生産性の観点から、60℃以上100℃以下であることがより好ましい。乾燥時間は1分以上30分以下であることが好ましい。 By drying the electrode slurry applied on the current collector, an electrode active material layer is formed on the current collector. The method for drying the electrode slurry is not particularly limited, and for example, hot air, reduced pressure or vacuum environment, (far) infrared rays, and low temperature air can be used alone or in combination. The drying temperature and drying time of the electrode slurry can be appropriately adjusted depending on the concentration of non-volatile components in the electrode slurry, the amount of coating on the current collector, and the like. The drying temperature is preferably 40 ° C. or higher and 350 ° C. or lower, and more preferably 60 ° C. or higher and 100 ° C. or lower from the viewpoint of productivity. The drying time is preferably 1 minute or more and 30 minutes or less.
 集電体上に電極活物質層が形成された電極シートは、電極として適当な大きさ及び形状にするために切断されてもよい。電極シートの切断方法は特に限定されないが、例えば、スリット、レーザー、ワイヤーカット、カッター、トムソン等を用いることができる。 The electrode sheet on which the electrode active material layer is formed on the current collector may be cut in order to obtain an appropriate size and shape as an electrode. The method for cutting the electrode sheet is not particularly limited, but for example, a slit, a laser, a wire cut, a cutter, a Thomson, or the like can be used.
 電極シートを切断する前または後に、必要に応じて電極シートをプレスしてもよい。それによって電極活物質を集電体により強固に結着させ、さらに電極を薄くすることによる非水系電池の小型化が可能になる。プレスの方法としては、一般的な方法を用いることができ、特に金型プレス法またはロールプレス法を用いることが好ましい。金型プレス法の場合、プレス圧は、特に限定されないが、0.5t/cm以上5t/cm以下とすることが好ましい。ロールプレス法の場合、線圧は、特に限定されないが、0.5t/cm以上5t/cm以下とすることが好ましい。プレスによる上記効果を得つつ、電極活物質へのリチウムイオン等の電荷キャリアの挿入及び脱離容量の低下を抑制するためである。 The electrode sheet may be pressed as needed before or after cutting the electrode sheet. As a result, the electrode active material is firmly bound to the current collector, and the electrode can be made thinner, so that the non-aqueous battery can be miniaturized. As a pressing method, a general method can be used, and it is particularly preferable to use a die pressing method or a roll pressing method. In the case of the die pressing method, the pressing pressure is not particularly limited, but is preferably 0.5 t / cm 2 or more and 5 t / cm 2 or less. In the case of the roll press method, the linear pressure is not particularly limited, but is preferably 0.5 t / cm or more and 5 t / cm or less. This is to suppress the insertion of charge carriers such as lithium ions into the electrode active material and the decrease in the desorption capacity while obtaining the above effects by the press.
<7.非水系二次電池>
 本実施形態にかかる非水系二次電池の好ましい一例として、リチウムイオン二次電池について説明するが、電池の構成はここで説明したものに限られない。本実施形態にかかる非水系二次電池は、正極と、負極と、電解液と、必要に応じてセパレータ等の部品と、が外装体に収容されたものであり、正極及び負極のうちの一方または両方に上記の方法により作製された電極を用いる。本実施形態にかかる非水系二次電池において、正極及び負極の少なくとも一方が、電極バインダー中に共重合体(P)を含むが、少なくとも負極が共重合体(P)を含むことが好ましい。
<7. Non-water-based secondary battery >
A lithium ion secondary battery will be described as a preferred example of the non-aqueous secondary battery according to the present embodiment, but the battery configuration is not limited to that described here. The non-aqueous secondary battery according to the present embodiment has a positive electrode, a negative electrode, an electrolytic solution, and, if necessary, components such as a separator, housed in an exterior body, and is one of a positive electrode and a negative electrode. Alternatively, the electrodes produced by the above method are used for both. In the non-aqueous secondary battery according to the present embodiment, at least one of the positive electrode and the negative electrode contains the copolymer (P) in the electrode binder, but it is preferable that at least the negative electrode contains the copolymer (P).
〔7-1.電解液〕
 電解液としては、イオン伝導性を有する非水系の液体を使用する。電解液としては、電解質を有機溶媒に溶解させた溶液、イオン液体等が挙げられるが、前者が好ましい。製造コストが低く、内部抵抗の低い非水系電池が得られるためである。
[7-1. Electrolyte]
As the electrolytic solution, a non-aqueous liquid having ionic conductivity is used. Examples of the electrolytic solution include a solution in which an electrolyte is dissolved in an organic solvent, an ionic liquid, and the like, and the former is preferable. This is because a non-aqueous battery having a low manufacturing cost and a low internal resistance can be obtained.
 電解質としては、アルカリ金属塩を用いることができ、電極活物質の種類等に応じ適宜選択できる。電解質としては、例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCFSO、LiCSO、Li(CFSON、脂肪族カルボン酸リチウム等が挙げられる。また、電解質として、その他のアルカリ金属塩を用いることもできる。 As the electrolyte, an alkali metal salt can be used and can be appropriately selected depending on the type of the electrode active material and the like. Examples of the electrolyte include LiClO 4 , LiBF 6 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiB 10 Cl 10 , LiAlCl 4 , LiCl, LiBr, LiB (C2H 5 ). 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, lithium aliphatic carboxylate and the like can be mentioned. Further, other alkali metal salts can also be used as the electrolyte.
 電解質を溶解する有機溶媒としては、特に限定されないが、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、ジメチルカーボネート(DMC)、フルオロエチレンカーボネート(FEC)、ビニレンカーボネート(VC)等の炭酸エステル化合物;アセトニトリル等のニトリル化合物;酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピルなどのカルボン酸エステルが挙げられる。これらの有機溶媒は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。中でも、直鎖カーボネート系溶媒を組合せたものを用いることが好ましい。直鎖カーボネート系溶媒としては炭酸ジエチル、炭酸ジメチル、炭酸エチルメチルが挙げられる。 The organic solvent that dissolves the electrolyte is not particularly limited, and is, for example, ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), dimethyl carbonate (DMC), and fluoroethylene carbonate. (FEC), carbonic acid ester compounds such as vinylene carbonate (VC); nitrile compounds such as acetonitrile; carboxylic acid esters such as ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate and the like. These organic solvents may be used alone or in combination of two or more. Above all, it is preferable to use a combination of a linear carbonate solvent. Examples of the linear carbonate-based solvent include diethyl carbonate, dimethyl carbonate, and ethylmethyl carbonate.
〔7-2.外装体〕
 外装体としては、例えばアルミニウム箔と樹脂フィルムとのラミネート材などを適宜使用できるが、これに限られない。電池の形状は、コイン型、ボタン型、シート型、円筒型、角型、扁平型等、いずれの形状であってもよい。
[7-2. Exterior]
As the exterior body, for example, a laminated material of an aluminum foil and a resin film can be appropriately used, but the exterior body is not limited to this. The shape of the battery may be any shape such as a coin type, a button type, a sheet type, a cylindrical type, a square type, and a flat type.
 以下の実施例では、本発明の構成の一例としてリチウムイオン二次電池の負極、及びリチウムイオン二次電池を作製し、比較例にかかるリチウムイオン二次電池の負極、及びリチウムイオン二次電池と比較して、本発明の効果を確認する。なお、本発明はこれらによっては限定されない。なお、以下の実施例及び比較例で用いられる水は、特に断りがなければ、イオン交換水である。 In the following examples, as an example of the configuration of the present invention, a negative electrode of a lithium ion secondary battery and a lithium ion secondary battery are manufactured, and the negative electrode of the lithium ion secondary battery and the lithium ion secondary battery according to the comparative example are used. By comparison, the effect of the present invention is confirmed. The present invention is not limited thereto. Unless otherwise specified, the water used in the following Examples and Comparative Examples is ion-exchanged water.
<1.共重合体(P)の合成及びバインダー組成物の調製>
 各実施例及び各比較例において、単量体(a)、界面活性剤(c)、連鎖移動剤(f)を表1及び表2に示す量で、水性媒体(b)として水と混合し、乳化させた単量体乳化液を作製した。なお、アクリル酸は、80質量%水溶液を用いており、表に示すアクリル酸の量は、水溶液に含まれるアクリル酸の量である。また、ここで添加した水の量は、アクリル酸水溶液に含まれる水の量との合計で360質量部になるようにした。
<1. Synthesis of copolymer (P) and preparation of binder composition>
In each Example and each Comparative Example, the monomer (a), the surfactant (c), and the chain transfer agent (f) are mixed with water as an aqueous medium (b) in the amounts shown in Tables 1 and 2. , An emulsified monomeric emulsion was prepared. As the acrylic acid, an 80% by mass aqueous solution is used, and the amount of acrylic acid shown in the table is the amount of acrylic acid contained in the aqueous solution. Further, the amount of water added here was adjusted to 360 parts by mass in total with the amount of water contained in the acrylic acid aqueous solution.
 単量体(a3)について、表1及び表2における化合物(a3-1)、化合物(a3-2)、及び化合物(a3-3)の構成は、以下の通りである。 Regarding the monomer (a3), the composition of the compound (a3-1), the compound (a3-2), and the compound (a3-3) in Tables 1 and 2 is as follows.
 化合物(a3-1)、化合物(a3-2)、及び化合物(a3-3)は、いずれも、構造単位(10)からなるブロック、構造単位(11)からなるブロック、及び構造単位(12)からなるブロックがこの順で配列された3元ブロック共重合体である。構造単位(10)、(11)、及び(12)の構造は以下に示すとおりである。化合物(a3-1)は、構造単位(10)を30モル%、構造単位(11)を69モル%、構造単位(12)を1.0モル%含み、ポリスチレン換算の重量平均分子量は50000である。化合物(a3-2)は、構造単位(10)を93モル%、構造単位(11)を6.0モル%、構造単位(12)を1.0モル%含み、プルラン換算の重量平均分子量は80000である。化合物(a3-3)は、構造単位(10)を96モル%、構造単位(11)を1.0モル%、構造単位(12)を3.0モル%含み、プルラン換算の重量平均分子量は80000である。 The compound (a3-1), the compound (a3-2), and the compound (a3-3) are all a block composed of a structural unit (10), a block composed of a structural unit (11), and a structural unit (12). The blocks consisting of are ternary block copolymers arranged in this order. The structures of the structural units (10), (11), and (12) are as shown below. The compound (a3-1) contains 30 mol% of the structural unit (10), 69 mol% of the structural unit (11), and 1.0 mol% of the structural unit (12), and has a polystyrene-equivalent weight average molecular weight of 50,000. be. The compound (a3-2) contains 93 mol% of the structural unit (10), 6.0 mol% of the structural unit (11), and 1.0 mol% of the structural unit (12), and has a weight average molecular weight in terms of pullulan. It is 80,000. The compound (a3-3) contains 96 mol% of the structural unit (10), 1.0 mol% of the structural unit (11), and 3.0 mol% of the structural unit (12), and has a weight average molecular weight in terms of pullulan. It is 80,000.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 冷却管、温度計、攪拌機、滴下ロートを有するセパラブルフラスコに、水169質量部を入れて、75℃に昇温した。このセパラブルフラスコに、上記の単量体乳化液と、重合開始剤(e1)として過硫酸カリウム2.2質量部を水48質量部に溶解した水溶液と、を80℃で4時間かけて攪拌しながら滴下し、乳化重合した。単量体乳化液と過硫酸カリウム水溶液とを滴下した後、セパラブルフラスコ内の混合液を80℃で60分攪拌した。 169 parts by mass of water was placed in a separable flask having a cooling tube, a thermometer, a stirrer, and a dropping funnel, and the temperature was raised to 75 ° C. In this separable flask, the above-mentioned monomer emulsion and an aqueous solution prepared by dissolving 2.2 parts by mass of potassium persulfate as a polymerization initiator (e1) in 48 parts by mass of water are stirred at 80 ° C. for 4 hours. While dropping, it was emulsion-polymerized. After dropping the monomeric emulsion and the aqueous potassium persulfate solution, the mixture in the separable flask was stirred at 80 ° C. for 60 minutes.
 次に、重合開始剤(e2)としてtert-ブチルパーオキシベンゾエート(化薬アクゾ株式会社製、カヤブチルB)0.81質量部及びアスコルビン酸0.52質量部を、8.1質量部の水に溶解した水溶液を加えた。次に、重合開始剤(e3)としてtert-ブチルヒドロパーオキサイド(化薬アクゾ株式会社製、カヤブチルH-70)2.3質量部を15質量部の水に溶解した水溶液と、ロンガリット2.3質量部を15質量部の水に溶解した水溶液と、を滴下しながら60分攪拌し、重合を行った。その後、実施例にかかる共重合体(P)の水系エマルジョン、及び比較例にかかる重合体(CP)の水系エマルジョンが得られた。 Next, 0.81 parts by mass of tert-butylperoxybenzoate (Kayabutyl B manufactured by Kayaku Akzo Corporation) and 0.52 parts by mass of ascorbic acid as the polymerization initiator (e2) were added to 8.1 parts by mass of water. The dissolved aqueous solution was added. Next, as a polymerization initiator (e3), an aqueous solution prepared by dissolving 2.3 parts by mass of tert-butyl hydroperoxide (Kayabutyl H-70 manufactured by Kayaku Akzo Corporation) in 15 parts by mass of water and Longalit 2.3. An aqueous solution in which a mass portion was dissolved in 15 parts by mass of water was stirred for 60 minutes while being added dropwise to carry out polymerization. Then, an aqueous emulsion of the copolymer (P) according to the example and an aqueous emulsion of the polymer (CP) according to the comparative example were obtained.
 得られた水系エマルジョンを室温までに冷却した。その後、水系エマルジョンを中和するために、セパラブルフラスコに、25質量%のアンモニア水19質量部、及び水155質量部を添加し、実施例にかかる共重合体(P)を含むバインダー組成物、及び実施例にかかる重合体(CP)を含むバインダー組成物を得た。なお、表1と表2に示されるアンモニアの量は、アンモニア水に含まれるアンモニアの量を示す。 The obtained aqueous emulsion was cooled to room temperature. Then, in order to neutralize the aqueous emulsion, 19 parts by mass of 25% by mass of ammonia water and 155 parts by mass of water were added to the separable flask, and the binder composition containing the copolymer (P) according to the examples was added. , And a binder composition containing the polymer (CP) according to the examples were obtained. The amount of ammonia shown in Tables 1 and 2 indicates the amount of ammonia contained in the aqueous ammonia.
 共重合体(P)の合成工程、及び重合体(CP)の合成工程で用いた水の合計量を表1及び表2に示す。表1と表2に示される水の量は、単独で添加した水だけでなく、上記アクリル酸水溶液及びアンモニア水に含まれる水、及び重合開始剤等とともに添加される水も含まれる。 Tables 1 and 2 show the total amount of water used in the copolymer (P) synthesis step and the polymer (CP) synthesis step. The amount of water shown in Tables 1 and 2 includes not only water added alone but also water contained in the aqueous acrylic acid solution and aqueous ammonia, and water added together with a polymerization initiator and the like.
<2.共重合体(P)、重合体(CP)及びバインダー組成物の評価>
 実施例及び比較例で得られたバインダー組成物、これらバインダー組成物を用いて得た電池の物性及び性能評価は、以下の方法により行った。評価結果を表1及び表2に示す。
<2. Evaluation of copolymer (P), polymer (CP) and binder composition>
The binder compositions obtained in Examples and Comparative Examples, and the physical properties and performance evaluation of the batteries obtained using these binder compositions were carried out by the following methods. The evaluation results are shown in Tables 1 and 2.
〔2-1.共重合体(P)及び重合体(CP)のガラス転移点Tg〕
 ポリエチレンシート上にバインダー組成物を流延し、50℃、5時間乾燥させたのち、50℃で1時間98kPa条件下で真空乾燥させて厚さ0.5mmのフィルムを得た。
 得られたフィルムを2mm×2mmにカットし、アルミパンに密封して日立ハイテクサイエンス社製 EXSTAR DSC/SS7020を用いて昇温速度10℃/分、窒素ガス雰囲気下でDSC測定を行った。DSCの温度微分として得られるDDSCチャートのピークトップ温度を測定し、この温度を共重合体(P)及び重合体(CP)のガラス転移点Tg(℃)とした。測定温度範囲は-40℃~200℃とした。
[2-1. Glass transition point Tg of copolymer (P) and polymer (CP)]
The binder composition was cast on a polyethylene sheet, dried at 50 ° C. for 5 hours, and then vacuum dried at 50 ° C. for 1 hour under 98 kPa conditions to obtain a film having a thickness of 0.5 mm.
The obtained film was cut into 2 mm × 2 mm, sealed in an aluminum pan, and DSC measurement was performed using EXSTAR DSC / SS7020 manufactured by Hitachi High-Tech Science Co., Ltd. at a heating rate of 10 ° C./min in a nitrogen gas atmosphere. The peak top temperature of the DDSC chart obtained as the temperature differential of DSC was measured, and this temperature was defined as the glass transition point Tg (° C.) of the copolymer (P) and the polymer (CP). The measurement temperature range was −40 ° C. to 200 ° C.
〔2-2.不揮発分濃度〕
 直径5cmのアルミ皿にバインダー組成物を1g秤量し、1気圧(1013hPa)で、乾燥器内で空気を循環させながら105℃で1時間乾燥させ後に残った成分の質量を測定した。乾燥前のバインダー組成物の質量(1g)に対する、乾燥後に残った上記成分の質量割合(質量%)を不揮発分濃度として算出した。
[2-2. Non-volatile content concentration]
1 g of the binder composition was weighed on an aluminum dish having a diameter of 5 cm, dried at 105 ° C. for 1 hour at 1 atm (1013 hPa) while circulating air in a dryer, and the mass of the remaining components was measured. The mass ratio (mass%) of the above-mentioned components remaining after drying with respect to the mass (1 g) of the binder composition before drying was calculated as the non-volatile content concentration.
〔2-3.粗粒量〕
 300meshの開き目の金網を用いてバインダー組成物を1L篩い分けし、その後、金網をイオン交換水で洗浄してバインダー組成物の液体残分を除去した。洗浄後の金網を1気圧(1013hPa)で、乾燥器内で空気を循環させながら105℃で1時間乾燥させた後の金網の質量を測定した。乾燥後の金網の質量と、用いた金網単独の質量との差を粗粒量(g/L)として算出した。
[2-3. Coarse grain amount]
The binder composition was sieved by 1 L using a wire mesh having a 300 mesh opening, and then the wire mesh was washed with ion-exchanged water to remove the liquid residue of the binder composition. The mass of the wire mesh after washing was measured at 1 atm (1013 hPa) and dried at 105 ° C. for 1 hour while circulating air in the dryer. The difference between the mass of the wire mesh after drying and the mass of the wire mesh used alone was calculated as the coarse grain amount (g / L).
<3.電極及び電池性能の評価>
 各実施例及び比較例で作製したバインダー組成物を用いて、負極及びリチウムイオン二次電池を作製して、評価を行った。
<3. Evaluation of electrode and battery performance>
Using the binder compositions prepared in each Example and Comparative Example, a negative electrode and a lithium ion secondary battery were prepared and evaluated.
〔3-1.電池の作製〕
[3-1-1.正極の作製]
 正極活物質としてLiNi0.6Mn0.2Co0.2を94質量部、導電助剤としてアセチレンブラックを3質量部、バインダーとしてポリフッ化ビニリデン3質量部を混合したものに、N-メチルピロリドンを50質量部加えてさらに混合して正極スラリーを作製した。
[3-1. Battery production]
[3-1-1. Fabrication of positive electrode]
N - N- _ 50 parts by mass of methylpyrrolidone was added and further mixed to prepare a positive electrode slurry.
 厚さ15μmのアルミニウム箔(正極集電体)の両面に、正極スラリーを、ダイレクトロール法により塗布した。正極集電体への正極スラリーの塗布量は、後述するロールプレス処理後の厚さが片面当たり125μmになるように調整した。 The positive electrode slurry was applied to both sides of an aluminum foil (positive electrode current collector) having a thickness of 15 μm by the direct roll method. The amount of the positive electrode slurry applied to the positive electrode current collector was adjusted so that the thickness after the roll press treatment described later was 125 μm per side.
 正極集電体上に塗布された正極スラリーを、120℃で5分乾燥し、ロールプレスにより(サンクメタル社製、プレス荷重5t、ロール幅7cm)でプレスし、正極活物質層が形成された正極シートを得た。得られた正極シートを50mm×40mmに切り出し、導電タブをつけて正極を作製した。 The positive electrode slurry applied on the positive electrode current collector was dried at 120 ° C. for 5 minutes and pressed by a roll press (manufactured by Thunk Metal Co., Ltd., press load 5 tons, roll width 7 cm) to form a positive electrode active material layer. A positive electrode sheet was obtained. The obtained positive electrode sheet was cut out to a size of 50 mm × 40 mm, and a conductive tab was attached to prepare a positive electrode.
[3-1-2.負極の作製]
 負極活物質として人造黒鉛(G49、江西紫宸科技有限公司製)を100質量部、各実施例及び比較例で作製したバインダー組成物を3.9質量部(不揮発分として1.5質量部)、及びCMC(カルボキシメチルセルロース-ナトリウム塩・日本製紙ケミカル(株)製サンローズ(登録商標)MAC500LC)の2質量%水溶液を62質量部混合し、さらに水を28質量部添加して、負極スラリーを得た。
[3-1-2. Fabrication of negative electrode]
100 parts by mass of artificial graphite (G49, manufactured by Esai Shiho Technology Co., Ltd.) as the negative electrode active material, and 3.9 parts by mass of the binder composition prepared in each Example and Comparative Example (1.5 parts by mass as a non-volatile content). , And CMC (Carboxymethyl Cellulose-Sodium Salt, Sunrose (registered trademark) MAC500LC manufactured by Nippon Paper Chemicals Co., Ltd.) are mixed in an amount of 62 parts by mass, and 28 parts by mass of water is added to prepare a negative slurry. Obtained.
 厚さ10μmの銅箔(負極集電体)の両面に、負極スラリーを、ダイレクトロール法により塗布した。負極集電体への負極スラリーの塗布量は、後述するロールプレス処理後の厚さが片面当たり170μmになるように調整した。 Negative electrode slurry was applied to both sides of a copper foil (negative electrode current collector) having a thickness of 10 μm by the direct roll method. The amount of the negative electrode slurry applied to the negative electrode current collector was adjusted so that the thickness after the roll press treatment described later was 170 μm per side.
 負極集電体上に塗布された負極スラリーを、90℃で10分乾燥させ、ロールプレスにより(サンクメタル社製、プレス荷重8t、ロール幅7cm)プレスし、集電体上に負極活物質層が形成された負極シートを得た。得られた負極シートを52mm×42mmに切り出し、導電タブをつけて負極を作製した。 The negative electrode slurry applied on the negative electrode current collector is dried at 90 ° C. for 10 minutes, pressed by a roll press (manufactured by Thunk Metal, press load 8 t, roll width 7 cm), and the negative electrode active material layer is placed on the current collector. Was formed to obtain a negative electrode sheet. The obtained negative electrode sheet was cut out to a size of 52 mm × 42 mm, and a conductive tab was attached to prepare a negative electrode.
[3-1-3.電池の作製]
 正極と負極との間にポリオレフィン系の多孔性フィルムからなるセパレータ(ポリエチレン製、25μm)を介在させて、正極活物質層と負極活物質層とが互いに対向するようにアルミラミネート外装体(電池パック)の中に収納した。この外装体中に電解液を注液し真空含浸を行い、真空ヒートシーラーでパッキングし、評価用のリチウムイオン二次電池を作製した。電解液は、エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジエチルカーボネート(DEC)=30/50/20(体積比)の混合溶媒にLiPFを1.0mol/Lで溶解させた溶液99質量部に、ビニレンカーボネート1質量部を混合して作製した。
[3-1-3. Battery production]
An aluminum-laminated exterior body (battery pack) with a separator (made of polyethylene, 25 μm) made of a polyolefin-based porous film interposed between the positive electrode and the negative electrode so that the positive electrode active material layer and the negative electrode active material layer face each other. ). An electrolytic solution was injected into the exterior body, vacuum impregnated, and packed with a vacuum heat sealer to prepare a lithium ion secondary battery for evaluation. The electrolytic solution is a solution 99 in which LiPF 6 is dissolved at 1.0 mol / L in a mixed solvent of ethylene carbonate (EC) / ethylmethyl carbonate (EMC) / diethyl carbonate (DEC) = 30/50/20 (volume ratio). It was prepared by mixing 1 part by mass of vinylene carbonate with 1 part by mass.
〔3-2.電極及び電池の評価〕
[3-2-1.負極活物質層の剥離強度(電極性能)]
 負極活物質層の集電体に対する剥離強度を以下のように測定した。上記の負極作製工程におけるプレス後の負極シートを25mm×100mmのサイズにカットし、試験片とした。試験片上の負極活物質層と、幅50mm、長さ200mmSUS板とを両面テープ(NITTOTAPE(登録商標) No.5、日東電工(株)製)を用いて、試験片の中心とSUS板の中心とが一致するように貼り合わせた。なお、両面テープは試験片の全範囲をカバーするように貼り合わせた。
[3-2. Evaluation of electrodes and batteries]
[3-2-1. Peeling strength of negative electrode active material layer (electrode performance)]
The peel strength of the negative electrode active material layer with respect to the current collector was measured as follows. The negative electrode sheet after pressing in the above negative electrode manufacturing step was cut into a size of 25 mm × 100 mm and used as a test piece. Using double-sided tape (NITTO TAPE (registered trademark) No. 5, manufactured by Nitto Denko KK) with the negative electrode active material layer on the test piece and a SUS plate with a width of 50 mm and a length of 200 mm, the center of the test piece and the center of the SUS plate. It was pasted so that it matches. The double-sided tape was attached so as to cover the entire range of the test piece.
 試験片とSUS板とを貼り合わせた状態で10分放置した後、負極活物質層を、試験片の一端から長さ方向に20mm剥がし、銅箔側の試験片を180°折り返し、この部分(負極活物質層を剥がした試験片の部分の銅箔側)を試験機の上側のチャックで掴んだ。さらに、負極活物質層を剥がされた方のSUS板の一端を下側チャックで掴んだ。その状態で、試験片から銅箔を100±10mm/minの速度で引き剥がし、剥離長さ(mm)-剥離力(mN)のグラフを得た。得られたグラフにおいて剥離長さ10~45mmにおける剥離力の平均値(mN)を算出し、剥離力の平均値を試験片の幅25mmで割った数値を負極活物質層の剥離強度(mN/mm)とした。なお、いずれの実施例及び比較例においても、試験中、両面テープとSUS板の間での剥離、及び両面テープと負極活物質層との間での界面剥離は起こらなかった。 After leaving the test piece and the SUS plate bonded together for 10 minutes, the negative electrode active material layer was peeled off by 20 mm in the length direction from one end of the test piece, and the test piece on the copper foil side was folded back 180 ° to this portion ( The copper foil side of the part of the test piece from which the negative electrode active material layer was peeled off) was grasped by the chuck on the upper side of the testing machine. Further, one end of the SUS plate from which the negative electrode active material layer was peeled off was grasped by the lower chuck. In that state, the copper foil was peeled off from the test piece at a speed of 100 ± 10 mm / min, and a graph of peeling length (mm) -peeling force (mN) was obtained. In the obtained graph, the average value (mN) of the peeling force at the peeling length of 10 to 45 mm was calculated, and the value obtained by dividing the average value of the peeling force by the width of the test piece of 25 mm was the peeling strength (mN / mN /) of the negative electrode active material layer. mm). In each of the Examples and Comparative Examples, peeling between the double-sided tape and the SUS plate and interfacial peeling between the double-sided tape and the negative electrode active material layer did not occur during the test.
[3-2-2.高温下でのサイクル容量維持率(電池性能)]
 電池の、高温下でのサイクル容量維持率は、45℃の条件下、以下の工程(i)~(iv)の順で繰り返し行った。ここで、(i)~(iv)の一連の操作1回分を1サイクルとする。
(i)電圧4.2Vになるまで、電流1Cで充電する(定電流(CC)充電)。
(ii)電圧4.2Vで、電流0.05Cになるまで充電する(定電圧(CV)充電)。(iii)30分静置する。
(iv)電圧2.75Vになるまで電流1Cで放電する(定電流(CC)放電)。
[3-2-2. Cycle capacity retention rate under high temperature (battery performance)]
The cycle capacity retention rate of the battery under high temperature was repeated in the following steps (i) to (iv) under the condition of 45 ° C. Here, one cycle of a series of operations (i) to (iv) is defined as one cycle.
(I) Charge with a current of 1 C until the voltage reaches 4.2 V (constant current (CC) charge).
(Ii) Charge at a voltage of 4.2 V until the current reaches 0.05 C (constant voltage (CV) charge). (Iii) Let stand for 30 minutes.
(Iv) Discharge with a current of 1 C until the voltage reaches 2.75 V (constant current (CC) discharge).
 工程(i)及び(ii)における、電流の時間積分値を充電容量、工程(iv)における、電流の時間積分値を放電容量とする。1サイクル目の放電容量、及び100サイクル目の放電容量を測定した。100×(100サイクル目の放電容量)/(1サイクル目の放電容量)[%]を電池の高温下でのサイクル容量維持率として算出し、表1と表2に示した。 The time integral value of the current in the steps (i) and (ii) is the charge capacity, and the time integral value of the current in the step (iv) is the discharge capacity. The discharge capacity in the first cycle and the discharge capacity in the 100th cycle were measured. 100 × (discharge capacity in the 100th cycle) / (discharge capacity in the first cycle) [%] was calculated as the cycle capacity retention rate under high temperature of the battery, and is shown in Tables 1 and 2.
〔3-2-3.内部抵抗(DCR)〕
 電池の内部抵抗(DCR(Ω))試験は、25℃の条件下、以下の手順で行った。レストポテンシャルから3.6Vまで0.2Cの定電流充電し、充電状態を初期容量の50%(SOC50%)にした。その後、0.2C、0.5C、1Cおよび2Cの各電流値で60秒間放電を行った。これらの4種の電流値(1秒間での値)と電圧の関係からSOC50%でのDCR(Ω)を決定した。結果を表1と2に示した。
[3-2-3. Internal resistance (DCR)]
The internal resistance (DCR (Ω)) test of the battery was carried out under the condition of 25 ° C. by the following procedure. A constant current charge of 0.2 C was performed from the rest potential to 3.6 V, and the charged state was set to 50% of the initial capacity (SOC 50%). Then, discharge was performed for 60 seconds at each current value of 0.2C, 0.5C, 1C and 2C. The DCR (Ω) at 50% SOC was determined from the relationship between these four types of current values (values per second) and voltage. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
<4.評価結果>
 各実施例の評価結果を見ると、いずれの実施例においても、バインダー組成物中の粗粒量が少ないことから、これらの実施例にかかる共重合体(P)は粗粒の発生が抑制できることがわかる。電極の評価において、いずれの実施例にかかる電極も負極活物質層の剥離強度が高いことがわかる。電池の評価において、いずれの実施例にかかる電池も低い内部抵抗及び高い放電容量維持率(優れたサイクル特性)を有する。
<4. Evaluation result>
Looking at the evaluation results of each example, since the amount of coarse particles in the binder composition is small in each of the examples, the copolymer (P) according to these examples can suppress the generation of coarse particles. I understand. In the evaluation of the electrodes, it can be seen that the electrodes according to any of the examples have high peel strength of the negative electrode active material layer. In the evaluation of the batteries, the batteries according to any of the embodiments have low internal resistance and high discharge capacity retention rate (excellent cycle characteristics).
 比較例1では、単量体(a3)に由来する第3構造単位を有さない重合体を合成した。比較例1にかかる重合体を電極バインダーとして用いて作製された電極では負極活物質層の剥離強度が低く、この電極を用いて作製された電池は内部抵抗が高かった。 In Comparative Example 1, a polymer derived from the monomer (a3) and having no third structural unit was synthesized. The peel strength of the negative electrode active material layer was low in the electrode manufactured by using the polymer according to Comparative Example 1 as the electrode binder, and the internal resistance of the battery manufactured by using this electrode was high.
 比較例2では、単量体(a3)に由来する第3構造単位を過剰に含む重合体を合成したが、ゲル化が進行し、この重合体を電極バインダーとして用いた電極及び電池を作成できなかった。 In Comparative Example 2, a polymer containing an excess of a third structural unit derived from the monomer (a3) was synthesized, but gelation progressed, and an electrode and a battery using this polymer as an electrode binder could be produced. There wasn't.
 比較例3では、単量体(a2)に由来する第2構造単位を含まない重合体を合成した。比較例3にかかる重合体を電極バインダーとして用いて作製された電極では負極活物質層の剥離強度が低かった。 In Comparative Example 3, a polymer containing no second structural unit derived from the monomer (a2) was synthesized. In the electrode prepared by using the polymer according to Comparative Example 3 as an electrode binder, the peel strength of the negative electrode active material layer was low.
 比較例4では、単量体(a2)に由来する第2構造単位を過剰に含む重合体を合成したが、ゲル化が進行し、この重合体を電極バインダーとして用いた電極及び電池を作成できなかった。 In Comparative Example 4, a polymer containing an excess of the second structural unit derived from the monomer (a2) was synthesized, but gelation progressed, and an electrode and a battery using this polymer as an electrode binder could be produced. There wasn't.
 比較例5では、内部架橋剤(a4)に由来する第4構造単位を過剰に含む重合体を合成したが、ゲル化が進行し、この重合体を電極バインダーとして用いた電極及び電池を作成できなかった。 In Comparative Example 5, a polymer containing an excess of the fourth structural unit derived from the internal cross-linking agent (a4) was synthesized, but gelation progressed, and an electrode and a battery using this polymer as an electrode binder could be produced. There wasn't.
 以上の結果からわかるように、本発明にかかる構成を有する共重合体(P)によれば、非水系二次電池において電極活物質層の集電体に対する剥離強度を効果的に向上させ、電池の内部抵抗の低減及びサイクル特性の向上に貢献できる。 As can be seen from the above results, according to the copolymer (P) having the configuration according to the present invention, the peel strength of the electrode active material layer with respect to the current collector is effectively improved in the non-aqueous secondary battery, and the battery It can contribute to the reduction of internal resistance and the improvement of cycle characteristics.

Claims (15)

  1.  エチレン性不飽和結合を有する化合物の重合体であって、
     単量体(a1)に由来する第1構造単位と、単量体(a2)に由来する第2構造単位と、単量体(a3)に由来する第3構造単位と、を有し;或いは、単量体(a1)に由来する第1構造単位と、単量体(a2)に由来する第2構造単位と、単量体(a3)に由来する第3構造単位と、内部架橋剤(a4)に由来する第4構造単位と、を有し、
     前記単量体(a1)は、エチレン性不飽和結合を有し、ヒドロキシ基及びシアノ基のいずれも有さず、ポリオキシアルキレン構造を有さず、独立した複数のエチレン性不飽和結合を有しないノニオン性化合物であり、
     前記単量体(a2)は、エチレン性不飽和結合及びアニオン性官能基を有し、ポリオキシアルキレン構造及び独立した複数のエチレン性不飽和結合のいずれも有さない化合物であり、
     前記単量体(a3)は、下記式(1)で表される第31構造単位と、下記式(2)で表される第32構造単位と、下記式(3)で表される第33構造単位と、を有し、
     前記第1構造単位100質量部に対して、前記第2構造単位を、1.0質量部以上30質量部以下含み、
     前記第1構造単位100質量部に対して、前記第3構造単位を、0.010質量部以上70質量部以下含み、
     前記第1構造単位100質量部に対する、前記第4構造単位の含有量は、0質量部以上20質量部以下である化合物であり、
     前記内部架橋剤(a4)は、前記単量体(a3)に該当せず、独立した複数のエチレン性不飽和結合を有し、前記単量体(a1)、前記単量体(a2)、及び前記単量体(a3)を含む単量体のラジカル重合において架橋構造を形成可能な化合物である
    ことを特徴とする共重合体。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
     (式(2)において、Rは、分岐を有してもよい炭素数1以上6以下のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000003
     (式(3)において、Rは、エチレン性不飽和結合を有する官能基である。)
    A polymer of a compound having an ethylenically unsaturated bond.
    It has a first structural unit derived from the monomer (a1), a second structural unit derived from the monomer (a2), and a third structural unit derived from the monomer (a3); or , A first structural unit derived from the monomer (a1), a second structural unit derived from the monomer (a2), a third structural unit derived from the monomer (a3), and an internal cross-linking agent ( It has a fourth structural unit derived from a4), and
    The monomer (a1) has an ethylenically unsaturated bond, has neither a hydroxy group nor a cyano group, has no polyoxyalkylene structure, and has a plurality of independent ethylenically unsaturated bonds. It is a nonionic compound that does not
    The monomer (a2) is a compound having an ethylenically unsaturated bond and an anionic functional group, and has neither a polyoxyalkylene structure nor a plurality of independent ethylenically unsaturated bonds.
    The monomer (a3) has a 31st structural unit represented by the following formula (1), a 32nd structural unit represented by the following formula (2), and a 33rd structural unit represented by the following formula (3). With structural units,
    The second structural unit is included in an amount of 1.0 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the first structural unit.
    The third structural unit is contained in an amount of 0.010 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the first structural unit.
    The content of the fourth structural unit with respect to 100 parts by mass of the first structural unit is 0 parts by mass or more and 20 parts by mass or less.
    The internal cross-linking agent (a4) does not correspond to the monomer (a3), has a plurality of independent ethylenically unsaturated bonds, and has the monomer (a1), the monomer (a2), and the like. A copolymer characterized by being a compound capable of forming a crosslinked structure in radical polymerization of a monomer containing the monomer (a3).
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), R 1 is an alkyl group having 1 or more and 6 or less carbon atoms which may have a branch.)
    Figure JPOXMLDOC01-appb-C000003
    (In formula (3), R 2 is a functional group having an ethylenically unsaturated bond.)
  2.  前記単量体(a3)は、
     前記第31構造単位、前記第32構造単位、及び前記第33構造単位の合計量に対して、
     前記第31構造単位を、5.0モル%以上98モル%以下含み、
     前記第32構造単位を、0.30モル%以上90モル%以下含み、
     前記第33構造単位を、0.30モル%以上10モル%以下含む請求項1に記載の共重合体。
    The monomer (a3) is
    With respect to the total amount of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit.
    The 31st structural unit contains 5.0 mol% or more and 98 mol% or less.
    The 32nd structural unit contains 0.30 mol% or more and 90 mol% or less.
    The copolymer according to claim 1, which contains the 33rd structural unit in an amount of 0.30 mol% or more and 10 mol% or less.
  3.  前記単量体(a3)は、1分子中に独立した複数のエチレン性不飽和結合を有する請求項1または2に記載の共重合体。 The copolymer according to claim 1 or 2, wherein the monomer (a3) has a plurality of independent ethylenically unsaturated bonds in one molecule.
  4.  前記式(3)において、Rは、ビニルオキシ基、アリルオキシ基、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、及び-OCH-CH-CH=CHからなる群より選ばれる少なくともいずれか1つを有する請求項1~3のいずれか一項に記載の共重合体。 In the formula (3), R 2 is at least selected from the group consisting of a vinyloxy group, an allyloxy group, a (meth) acryloyl group, a (meth) acryloyloxy group, and -OCH 2 -CH 2 -CH 2 = CH 2 . The copolymer according to any one of claims 1 to 3, which has any one.
  5.  前記式(3)において、Rは、下記式(4)で表される請求項1~4のいずれか一項に記載の共重合体。
    Figure JPOXMLDOC01-appb-C000004
    (式(4)において、R21は分岐を有してもよい炭素数1~5のアルキレン基であり、R22は、ビニルオキシ基、アリルオキシ基、(メタ)アクリロイル基、及び(メタ)アクリロイルオキシ基からなる群より選ばれる1つの官能基である。)
    In the formula (3), R 2 is the copolymer according to any one of claims 1 to 4 represented by the following formula (4).
    Figure JPOXMLDOC01-appb-C000004
    (In the formula (4), R 21 is an alkylene group having 1 to 5 carbon atoms which may have a branch, and R 22 is a vinyloxy group, an allyloxy group, a (meth) acryloyl group, and a (meth) acryloyloxy. It is one functional group selected from the group consisting of groups.)
  6.  前記単量体(a3)は、前記第31構造単位からなる第1ブロック、前記第32構造単位からなる第2ブロック、及び前記第33構造単位からなる第3ブロックを有する請求項1~5のいずれか1項に記載の共重合体。 The monomer (a3) has a first block made of the 31st structural unit, a second block made of the 32nd structural unit, and a third block made of the 33rd structural unit. The copolymer according to any one item.
  7.  前記単量体(a3)は、全構造単位中、前記第31構造単位、前記第32構造単位、及び前記第33構造単位を合計で90質量%以上含む請求項1~6のいずれか1項に記載の共重合体。 One of claims 1 to 6, wherein the monomer (a3) contains 90% by mass or more in total of the 31st structural unit, the 32nd structural unit, and the 33rd structural unit in all the structural units. The copolymer according to.
  8.  前記単量体(a1)は、極性官能基を有さない請求項1~7のいずれか1項に記載の共重合体。 The copolymer according to any one of claims 1 to 7, wherein the monomer (a1) does not have a polar functional group.
  9.  前記単量体(a2)は、カルボキシ基、及びスルホ基のうち少なくともいずれかを有する化合物である請求項1~8のいずれか1項に記載の共重合体。 The copolymer according to any one of claims 1 to 8, wherein the monomer (a2) is a compound having at least one of a carboxy group and a sulfo group.
  10.  前記第1構造単位、前記第2構造単位、及び前記第3構造単位を合計で80質量%以上含む請求項1~9のいずれか1項に記載の共重合体。 The copolymer according to any one of claims 1 to 9, which contains the first structural unit, the second structural unit, and the third structural unit in a total amount of 80% by mass or more.
  11.  前記第1構造単位100質量部に対する、前記第4構造単位の含有量は、0.050質量部以上である請求項1~10のいずれか1項に記載の共重合体。 The copolymer according to any one of claims 1 to 10, wherein the content of the fourth structural unit is 0.050 parts by mass or more with respect to 100 parts by mass of the first structural unit.
  12.  請求項1~11のいずれか一項に記載の共重合体が水性媒体中に分散している非水系二次電池電極用バインダー組成物。 A binder composition for a non-aqueous secondary battery electrode in which the copolymer according to any one of claims 1 to 11 is dispersed in an aqueous medium.
  13.  請求項1~11のいずれか一項に記載の共重合体を含む非水系二次電池電極用バインダー。 A binder for a non-aqueous secondary battery electrode containing the copolymer according to any one of claims 1 to 11.
  14.  請求項13に記載のバインダーと、電極活物質と、水性媒体と、を含み、
     前記バインダーと前記電極活物質とが、水性媒体中に分散しており、
     該水性媒体は、水、親水性の溶媒、及び水と親水性の溶媒とを含む混合物からなる群から選択される1つ媒体である非水系二次電池電極用スラリー。
    The binder according to claim 13, the electrode active material, and the aqueous medium are included.
    The binder and the electrode active material are dispersed in an aqueous medium, and the binder is dispersed in the aqueous medium.
    The aqueous medium is a slurry for a non-aqueous secondary battery electrode, which is one medium selected from the group consisting of water, a hydrophilic solvent, and a mixture containing water and a hydrophilic solvent.
  15.  請求項13に記載のバインダーを含む非水系二次電池電極。 A non-aqueous secondary battery electrode containing the binder according to claim 13.
PCT/JP2021/040613 2020-11-04 2021-11-04 Copolymer, binder for non-aqueous secondary battery electrode, and slurry for non-aqueous secondary battery electrode WO2022097683A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237016146A KR20230101828A (en) 2020-11-04 2021-11-04 Copolymer, binder for non-aqueous secondary battery electrode and slurry for non-aqueous secondary battery electrode
CN202180073191.2A CN116547328A (en) 2020-11-04 2021-11-04 Copolymer, binder for nonaqueous secondary battery electrode, and slurry for nonaqueous secondary battery electrode
JP2022560809A JPWO2022097683A1 (en) 2020-11-04 2021-11-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020184544 2020-11-04
JP2020-184544 2020-11-04

Publications (1)

Publication Number Publication Date
WO2022097683A1 true WO2022097683A1 (en) 2022-05-12

Family

ID=81457075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040613 WO2022097683A1 (en) 2020-11-04 2021-11-04 Copolymer, binder for non-aqueous secondary battery electrode, and slurry for non-aqueous secondary battery electrode

Country Status (4)

Country Link
JP (1) JPWO2022097683A1 (en)
KR (1) KR20230101828A (en)
CN (1) CN116547328A (en)
WO (1) WO2022097683A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024040489A1 (en) * 2022-08-25 2024-02-29 宁德时代新能源科技股份有限公司 Functional polymer, electrode slurry, electrode sheet, battery, and electric apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114890A (en) * 2011-11-29 2013-06-10 Kuraray Co Ltd Conductive paste and multilayer ceramic capacitor
JP2017508017A (en) * 2013-12-17 2017-03-23 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド Surfactant-responsive emulsion polymerization microgel
WO2020017442A1 (en) * 2018-07-19 2020-01-23 昭和電工株式会社 Copolymer for binder for non-aqueous battery electrode, and slurry for producing non-aqueous battery electrode
JP2021088479A (en) * 2019-12-04 2021-06-10 日本製紙株式会社 Hydraulic composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2752118A1 (en) 2009-02-11 2010-08-19 Dow Global Technologies Llc Ductile polymer binders and battery components using the same
JP5862909B2 (en) 2014-08-20 2016-02-16 Jsr株式会社 Lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114890A (en) * 2011-11-29 2013-06-10 Kuraray Co Ltd Conductive paste and multilayer ceramic capacitor
JP2017508017A (en) * 2013-12-17 2017-03-23 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド Surfactant-responsive emulsion polymerization microgel
WO2020017442A1 (en) * 2018-07-19 2020-01-23 昭和電工株式会社 Copolymer for binder for non-aqueous battery electrode, and slurry for producing non-aqueous battery electrode
JP2021088479A (en) * 2019-12-04 2021-06-10 日本製紙株式会社 Hydraulic composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024040489A1 (en) * 2022-08-25 2024-02-29 宁德时代新能源科技股份有限公司 Functional polymer, electrode slurry, electrode sheet, battery, and electric apparatus

Also Published As

Publication number Publication date
KR20230101828A (en) 2023-07-06
JPWO2022097683A1 (en) 2022-05-12
CN116547328A (en) 2023-08-04

Similar Documents

Publication Publication Date Title
JP5701519B2 (en) Lithium ion secondary battery electrode binder, slurry obtained using these electrode binders, electrode obtained using these slurries, and lithium ion secondary battery obtained using these electrodes
TWI683470B (en) Paste for positive electrode of lithium ion battery, positive electrode obtained by using the paste and manufacturing method thereof, lithium ion secondary battery using the positive electrode and manufacturing method thereof
JP7323003B2 (en) Aqueous binder composition for secondary battery electrode, slurry for secondary battery electrode, binder, secondary battery electrode, and secondary battery
KR20000048387A (en) Binder composition for lithium ion secondary cell electrode and use of it
JP7243968B2 (en) Binder for non-aqueous battery electrode, slurry for non-aqueous battery electrode, non-aqueous battery electrode, and non-aqueous battery
CN113227180A (en) Binder for secondary battery electrode and use thereof
CN110800128A (en) Binder composition for electrochemical element functional layer, functional layer for electrochemical element, and electrochemical element
JP6774415B2 (en) A positive electrode slurry for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery obtained by using a positive electrode slurry for a lithium ion secondary battery, a method for manufacturing the same, and a lithium ion provided with a positive electrode for a lithium ion secondary battery. Secondary battery and its manufacturing method
TWI712633B (en) Method of producing slurry for nonaqueous battery electrode
CN110741495B (en) Binder composition for electrochemical element, slurry composition for functional layer, slurry composition for adhesive layer, and composite film
WO2022097683A1 (en) Copolymer, binder for non-aqueous secondary battery electrode, and slurry for non-aqueous secondary battery electrode
JP7384223B2 (en) Copolymers for electrode binders, electrode binder resin compositions, and non-aqueous secondary battery electrodes
WO2014098233A1 (en) Binder resin material for energy device electrodes, energy device electrode, and energy device
JP6868751B1 (en) Non-aqueous secondary battery Electrodes, electrode slurries, and non-aqueous secondary batteries
WO2022138371A1 (en) Non-aqueous secondary battery electrode binder, non-aqueous secondary battery electrode binder composition, and non-aqueous secondary battery
EP3872906B1 (en) Nonaqueous secondary battery electrode, electrode slurry, and nonaqueous secondary battery
WO2024062954A1 (en) Composite particles, binder composition for non-aqueous secondary battery and non-aqueous secondary battery electrode
WO2024034574A1 (en) Non-aqueous secondary battery binder polymer, non-aqueous secondary battery binder composition, and non-aqueous secondary battery electrode
WO2023120066A1 (en) Electrode binder copolymer for non-aqueous secondary battery, electrode binder resin composition for non-aqueous secondary battery, and non-aqueous secondary battery electrode
JP2016143635A (en) Copolymer for energy device electrode and energy device using the same
WO2021246376A1 (en) Binder for non-aqueous secondary battery electrode and slurry for non-aqueous secondary battery electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889235

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560809

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180073191.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237016146

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21889235

Country of ref document: EP

Kind code of ref document: A1