WO2021131057A1 - Vacuum-insulated double container - Google Patents

Vacuum-insulated double container Download PDF

Info

Publication number
WO2021131057A1
WO2021131057A1 PCT/JP2019/051562 JP2019051562W WO2021131057A1 WO 2021131057 A1 WO2021131057 A1 WO 2021131057A1 JP 2019051562 W JP2019051562 W JP 2019051562W WO 2021131057 A1 WO2021131057 A1 WO 2021131057A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
vacuum
liquefied gas
storage container
insulated double
Prior art date
Application number
PCT/JP2019/051562
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 新倉
早川 慎司
将仁 内藤
沙織 堀内
孝則 三分一
山田 隆哉
Original Assignee
株式会社エムダップ
ニプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エムダップ, ニプロ株式会社 filed Critical 株式会社エムダップ
Priority to JP2021566756A priority Critical patent/JPWO2021131057A1/ja
Priority to PCT/JP2019/051562 priority patent/WO2021131057A1/en
Publication of WO2021131057A1 publication Critical patent/WO2021131057A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation

Definitions

  • the present invention relates to a vacuum-insulated double container that can be used as a container for transporting a sample in a frozen state or below freezing point.
  • a container body 66 having a vacuum heat insulating structure made of stainless steel is used, and the sample container is fixed in the container body 66 via the content fixture 64.
  • a tool 63 and a cryogenic liquefied gas adsorption / holding agent 61 are provided, respectively.
  • the sample container fixture 63 is formed with a plurality of sample container holding holes (not shown) for holding the sample container 62, and the outer shape thereof is formed to have the same shape as the horizontal cross-sectional shape inside the container body 66. Further, the sample container holding holes (not shown) are formed as a plurality of holes for holding the sample container 62, and penetrate in the vertical direction of the container body.
  • a plurality of cryogenic liquefied gas adsorption holders 61 are used in a laminated state, and the bottom surface of the cryogenic liquefied gas adsorption holder 61 is placed on the bottom of the container body 66 on the inner surface side. Further, a plurality of laminated cryogenic liquefied gas adsorption holders 61 are laminated so as to cover the periphery of the sample container 62 inserted into each of the plurality of sample container holding holes (not shown).
  • a content fixture between the outer peripheral surfaces of the sample container fixture 63 and the cryogenic liquefied gas adsorption / holding agent 61 and the inner peripheral surface of the container body 66 in order to ensure adhesion between the two. 64 is used.
  • the content fixture 64 is made of an elastic material such as polyethylene foam, and the inner peripheral surface of the content fixture 64 formed in a cylindrical shape allows the sample container fixture 64 to be formed.
  • the outer peripheral surfaces of 63 and the cryogenic liquefied gas adsorption / holding agent 61 are fixed in close contact with each other. Further, the outer peripheral surface of the content fixture 64 is configured to be in close contact with the inner peripheral surface of the container body 66.
  • the opening 65 of the container body 66 with the upper part open is covered with a screwed lid 67 so that it can be opened and closed. Further, a recess 68 for ventilation is formed on the outer peripheral surface of the opening 65 and / or the inner peripheral surface of the lid 67.
  • the venting recess 68 functions as a gap through which vaporized cryogenic liquefied gas can flow.
  • a heat insulating container 70 having a double-walled vacuum structure including an outer wall 70a and an inner wall 70b is used.
  • a storage material entrance / exit 73 is formed in the upper part of the heat insulating container 70, and a lid that can be opened / closed is provided in the storage material entrance / exit 73.
  • the heat insulating container 70 has a circular cross-sectional shape, and its peripheral wall has a vacuum structure surrounded by an outer wall 70a and an inner wall 70b.
  • the inside of the heat insulating container 70 (inside of the inner wall 70b) is hollow, and the hollow portion is provided with a storage portion 71 for storing storage items such as pharmaceuticals.
  • the storage portion 71 is composed of a stainless steel square cylinder with a bottom and an open top, and the side surface portion of the square cylinder is composed of a plate-shaped member 74 made of an angle material so as to surround the four corners of the storage portion.
  • a frame member (not shown) is welded to the outer peripheral portion near the upper end of the storage portion 71, and the bent portion (not shown) and the frame member (not shown) at the upper end of the plate-shaped member 74 are , It is integrated in a caulking structure by a fixed connecting member 75.
  • a waviness suppressing plate 72 is erected on the outer peripheral surface of the plate-shaped member 74, and the wavy suppressing plate 72 is arranged in the horizontal direction between the storage portion 71 and the inner wall 70b of the heat insulating container 70. It suppresses sloshing of liquid nitrogen stored in the space between the storage unit 71 and the inner wall 70b of the heat insulating container 70.
  • a space is formed between the upper part of the storage portion for accommodating the sample container 62 and the lid 67, and the vaporized ultra-low temperature liquefied gas is used for ventilation. It is configured to be discharged to the outside through a gap consisting of recesses 68. Therefore, with the passage of time, the concentration of the cryogenic liquefied gas adsorbed on the cryogenic liquefied gas adsorption / holding agent 61 decreases, which causes a problem that the low temperature holding time becomes short.
  • the sample container 62 from the middle portion to the upper end side is held by the sample container fixture 63 made of a resin material such as foamed polyethylene or polyurethane, the middle portion to the upper end portion side of the sample container 62 is poled. It cannot be cooled directly with cryogenic liquefied gas. Therefore, as the sample container 62, the lower end side in contact with the cryogenic liquefied gas adsorption holder 61 can be cooled, but a temperature gradient is generated between the lower end side and the middle part to the upper end side. I will let you.
  • cryogenic liquefied gas adsorption / holding agent 61 laminated on the side surface of the sample container 62 vaporizes the cryogenic liquefied gas, and the concentration of the cryogenic liquefied gas from the laminated upper cryogenic liquefied gas adsorption / holding agent 61 increases. It will decrease. Further, since the adsorbed cryogenic liquefied gas moves downward due to the influence of gravity, the cryogenic liquefied gas decreases on the upper side of the adsorption retainer 61. As described above, it is difficult to maintain the inside of the sample container 62 in a uniform temperature state.
  • the cryogenic liquefied gas adsorption / holding agent 61 has a laminated structure in which the cryogenic liquefied gas adsorption holder 61 is laminated.
  • the injected cryogenic liquefied gas is adsorbed from the cryogenic liquefied gas adsorption / holding agent 61 in the upper layer. Therefore, it takes a long time to be evenly adsorbed on all of the cryogenic liquefied gas adsorption and holding agents 61.
  • the vaporized cryogenic liquefied gas leaks to the outside through the opening of the storage portion, and the amount of the cryogenic liquefied gas used increases. Become. Moreover, when the amount of vaporization becomes large, it becomes difficult for the cryogenic liquefied gas adsorption / holding agent 61 to sufficiently absorb the cryogenic liquefied gas.
  • the container for both cryopreservation and transportation described in Patent Document 2 has a configuration in which liquid nitrogen is stored as it is in the space between the storage unit 71 and the inner wall 70b of the heat insulating container 70. Rippling (slozing) of nitrogen occurs, and it is necessary to suppress this. Therefore, the structure is provided with the rippling suppression plate 72, but as the vaporization of liquid nitrogen progresses, the liquid level height of the liquid nitrogen facing the rippling suppression plate 72 decreases, and rippling motion is likely to occur. Become. Moreover, the rippling motion becomes more intense with the vaporization of liquid nitrogen, and it becomes difficult to suppress the violent rippling (sloshing) by the suppression plate 72.
  • the heat insulating container 70 itself is largely moved on a mounting table or the like. Force will act.
  • the storage portion 71 has a square tubular shape, there is a risk of deforming the storage portion 71 itself when a concentrated load acts on the corners due to the energy of the rippling motion. In the worst case, there is a risk that the heat insulating container 70 will be damaged and that the sample will be damaged.
  • the gap space acts as a heat insulating space.
  • the cooling efficiency to the storage unit 71 will decrease.
  • the heat transfer effect of heat conduction through the fixed connecting member 75 is also reduced. Therefore, the cooling efficiency for cooling the storage unit 71 is low.
  • the stored sample can be efficiently frozen or cooled, and the sample can be effectively cryopreserved or transported below freezing point. .. Further, it is possible to shorten the adsorption time of the cryogenic liquefied gas adsorbed on the adsorbent, increase the adsorption amount of the adsorbent, and maintain an appropriate adsorption amount of the cryogenic liquefied gas for a long time.
  • the issue is to provide a heat-insulated double container.
  • the present invention is a vacuum-insulated double container in which an inner container is arranged in an outer container in a separated state and a sealed space between the outer container and the inner container is evacuated.
  • a connecting pipe that connects and fixes the opening edge of the inner lid that is fixed to the inner container and has an open central portion and the opening edge of the outer lid that is fixed to the outer container and has an open central portion.
  • a bottomed storage container arranged in the inner container, a plurality of partition plates erected on the outer peripheral surface of the storage container and separated from each other in parallel along the longitudinal direction of the storage container, and the contents.
  • the inner bottom surface of the container and the adsorbent block placed on each of the partition plates are provided.
  • the most important feature is that a plurality of intake / exhaust ports of the cryogenic liquefied gas adsorbed on each of the adsorbent blocks are formed at a plurality of locations of the storage container.
  • the vacuum-insulated double container according to the present invention has a configuration in which the inner container and the outer container are supported and connected by a connecting pipe, heat conduction from the inner container to the outer container via the connecting pipe is slow. It will be slow. Moreover, since a vacuum is set between the inner container and the outer container, the temperature inside the inner container drops slowly. Then, the temperature inside the inner container can be maintained so as not to drop for a long period of time. Further, if the outer peripheral surface of the connecting pipe is formed to be uneven, the strength of the connecting pipe in the longitudinal direction can be improved even if the connecting pipe is formed with a thin wall.
  • the cryogenic liquefied gas can be adsorbed on the adsorbent block.
  • the adsorption time can be shortened.
  • the adsorbent is configured as a plurality of adsorption blocks, and each adsorption block is placed on a partition plate and arranged separately, the plurality of adsorption blocks are laminated and integrated.
  • the adsorption amount of the cryogenic liquefied gas can be increased, and the adsorption time can be shortened.
  • the partition plate can prevent the cryogenic liquefied gas from moving downward, a stable temperature can be maintained for a long time.
  • the amount of the cryogenic liquefied gas decreases from the upper end side of the laminated adsorption blocks due to the vaporization of the cryogenic liquefied gas. Therefore, the entire surface of the storage container cannot be cooled in a uniform state.
  • the cryogenic temperature is low from the upper end side of each adsorption block due to the vaporization of the cryogenic liquefied gas. Even if the amount of liquefied gas is reduced, the side surface of the storage container can be cooled in a substantially uniform state.
  • FIG. 1 is a vertical cross-sectional view of a vacuum insulated double container.
  • FIG. 2 is a front view of the vacuum insulated double container.
  • FIG. 3 is a vertical cross-sectional view with the work carrier attached.
  • FIG. 4 is a perspective view of a main part of the laminated adsorbent block.
  • FIG. 5 is a vertical cross-sectional view of FIG. (Embodiment)
  • FIG. 6 is a front view of the work carrier and the vacuum insulated double vessel.
  • FIG. 7 is a vertical cross-sectional view of FIG. (Embodiment) FIG.
  • FIG. 8 is a perspective view of the work carrier and the vacuum insulated double container.
  • (Embodiment) 9 (A) is a front view of the storage container
  • FIG. 9 (B) is a perspective view of the storage container.
  • FIG. 10A is a front view of the storage container according to another configuration
  • FIG. 10B is a perspective view of the storage container.
  • FIG. 11 is a cross-sectional view of the biological sample transport container.
  • FIG. 12 is a perspective view including a partial cross section of the container for both cryopreservation and transportation.
  • the vacuum-insulated double container according to the present invention has a configuration other than that shown in the following examples, as long as it satisfies the technical idea of the present invention and can solve the problem of the present invention. It is not limited to the configuration described, and various changes can be made.
  • an inner container 10 having an open upper end is arranged in an outer container 3 having an open upper end, and a plurality of suction containers 10 are adsorbed in the inner container 10.
  • the structure is provided with a connecting pipe 20 for connecting the agent block 30, the storage container 25, and the outer container 3 and the inner container.
  • the bottom 6 of the outer container 3 is formed with an annular cylindrical portion that vertically supports the outer container 3 and a bottom plate portion that seals the inside of the outer container 3.
  • the bottom plate portion is formed in a curved surface shape protruding outward in a curved shape, and a vacuum suction portion 34 is formed at a desired portion of the bottom plate portion.
  • a bottom portion 6 is provided at the lower end portion of the outer container 3, and the bottom portion 6 includes an annular support portion in which the outer peripheral surface of the outer container 3 extends downward and a bottom surface portion that covers the bottom surface of the outer container 3. Is configured.
  • the bottom surface portion is formed in a curved surface shape that protrudes outward in a curved shape, and the annular support portion and the bottom surface portion are integrally fixed by the fixing portion 45.
  • An annular inner lid 11 having an open central portion is fixed to the upper end of the inner container 10 by a fixing portion 45, and the fixing portion 45 is integrally fixed by welding, brazing, and adhesion.
  • the bottom portion 12 of the inner container 10 is integrally formed by drawing or the like, and is formed in a curved shape protruding outward in a curved shape.
  • a thin aluminum plate can be wrapped so as to cover the entire outer peripheral surface of the inner container 10.
  • the thin-walled aluminum plate may be formed as a flat plate-like smooth surface, or may be formed as a rough surface such as wrinkled or satin-finished or grained.
  • the opening edge of the upper end of the outer lid 4 and the inner peripheral edge of the inner lid 11 are integrally fixed by the fixing portion 45 at the upper end and the lower end of the connecting pipe 20, respectively.
  • the space portion 21 surrounded by the outer lid 4, the outer container 3, the inner container 10, and the connecting pipe 20 is configured as a closed space portion.
  • the peripheral surface of the connecting pipe 20 can be formed in an uneven shape by using a thin metal, and by configuring in this way, the connecting pipe 20 can be connected even if the connecting pipe 20 is formed of the thin metal.
  • the surface strength of the pipe 20 is improved.
  • the connecting pipe 20 may be made of a thick pipe material in order to increase its surface strength, but the weight of the connecting pipe 20 increases and the thermal conductivity of the connecting pipe 20 increases. ..
  • the connecting pipe 20 formed in this way, the inner container 10 can be firmly supported and fixed to the outer container 4.
  • the outer container 3 and the inner container 10 are made of a thin metal material, and the outer container 3, the inner container 10 and the connecting pipe 20 are made of aluminum, an aluminum alloy or stainless steel. Further, the outer container 3 and the inner container 10 may be made of a thin plate having high physical strength and heat resistance.
  • the connecting pipe 20 may be made of a metal material such as a zinc alloy, a tin alloy, or a heat-resistant magnesium alloy, which has a lower thermal conductivity than aluminum, an aluminum alloy, or stainless steel.
  • the connecting pipe 20 is also made of the same material as the outer container 3 and the inner container 10. You can also do it.
  • a metal bottomed storage container 25 with an open upper end is stored in a state of being separated from the inner surface of the inner container 10.
  • a plurality of adsorbent blocks 30 are arranged on the bottom surface and the outer peripheral surface of the storage container 25, and the storage container 25 is a suction device arranged between the bottom surface of the storage container 25 and the bottom portion 12 of the inner container 10. Supported by agent block 30.
  • each partition plate 27 protruding toward the inner peripheral surface side of the inner container 10 are erected, and each partition plate 27 is along the longitudinal direction of the storage container 25. They are arranged in parallel with each other separated from each other. As shown in FIGS. 3, 4 and 5, an upwardly bent stopper piece 28 is formed on the tip end side of the partition plate 27, and the adsorbent block 30 placed on the partition plate 27 is positioned. The movement of the adsorbent block 30 on the partition plate 27 is restricted.
  • the partition plate 27 As the material of the partition plate 27, aluminum, aluminum alloy, or stainless steel is used as in the storage container 25.
  • the partition plate 27 can be integrally fixed to the outer peripheral surface of the storage container 25 by welding, brazing, and gluing. Further, although the illustrated example is omitted, it is also possible to wind the aluminum foil around each adsorbent block 30 to form the partition plate 27 and the stopper piece 28. In this case, it is desirable to form the adsorption port for the cryogenic liquefied gas on the wrapped aluminum foil so that the cryogenic liquefied gas supplied to the adsorbent block 30 can be adsorbed. Further, when the outer container 3 and the inner container 10 are made of a thin material having high physical strength and heat resistance, the partition plate 27 can also be made of the same material as the storage container 25.
  • the outer peripheral surface of the inner container 10 can be wrapped with a thin aluminum plate.
  • the outer peripheral surface of the inner container 10 made of metal can be made to have a metal laminated structure, and the radiant heat transfer from the outer peripheral surface of the inner container 10 can be minimized.
  • the outer peripheral surface of the inner container 10 can be wrapped with a thin-walled aluminum plate. ..
  • Each adsorbent block 30 can be arranged in close contact with the storage container 25. Further, as shown in FIG. 5, it is desirable that the stopper piece 28 of the partition plate 27 is arranged so that each adsorbent block 30 does not come into contact with the inner side surface of the inner container 10.
  • the storage container 25 is formed in a bottomed tubular shape, and the opening at the upper end is covered with a ring-shaped upper surface extending outward.
  • a plate 26 is provided.
  • the upper surface covering plate 26 can be integrally molded by bending the upper end portion of the storage container 25, or can be fixed to the upper end portion of the storage container 25 by welding, brazing, or adhesion.
  • the upper surface covering plate 26 can cover the upper surface of the adsorbent block 30 placed on the partition plate 27.
  • a plurality of intake / exhaust ports 33 for cryogenic liquefied gas are formed on the bottom surface of the top cover plate 26 and the storage container 25. Further, as shown in FIGS. 10A and 10B, a plurality of intake / exhaust ports 33 may be formed on the side surface of the storage container 25. The intake / exhaust port 33 may be formed above one-third of the total length of the storage container 25 and below one-third of the total length. Further, when the intake / exhaust port 33 is formed on the side surface of the storage container 25, it is desirable to open the intake / exhaust port 33 facing the upper end side of the adsorbent block 30 on the partition plate 27.
  • adsorbent used in the adsorbent block 30 an appropriate material can be used as long as it is a material capable of adsorbing the cryogenic liquefied gas.
  • zeolite, activated carbon, oil saw vent, glass wool and the like can be used as the adsorbent.
  • the plurality of adsorbent blocks 30 are arranged so as to cover the bottom surface side and the side surface side of the storage container 25.
  • the plurality of adsorbent blocks 30 arranged on the bottom surface side and the side surface side of the storage container 25 are arranged at equal intervals in the circumferential direction and the vertical direction.
  • a heat insulating tube 40 made of foamed resin may be installed so as to cover the entire inner surface of the connecting pipe 20.
  • a flange portion is formed at the upper end portion of the heat insulating tube 40, and the lid 2 of the work carrier 50, which will be described later, can be placed and fixed so as to be openable and closable.
  • the fixing between the flange portion of the heat insulating tube 40 and the lid body 2 of the work carrier 50 can be fixed by sandwiching the upper surface of the lid body 2 and the lower surface of the flange portion with a clip member, or by screwing. You can also do it. It can also be fixed using other known fixing methods.
  • a work carrier 50 that inserts and supports the sample in the storage container 25 is used.
  • the work carrier 50 holds the sample in the storage container 25 in a cryogenic state.
  • the work carrier 50 is provided at the lid 2 and the carrier guide 52 attached to the lower surface of the lid 2, the plate-shaped portion 54 attached downward to the lower surface of the carrier guide 52, and the lower end of the plate-shaped portion 54. It is configured to have a work storage section 51.
  • the lid 2 is detachably configured with a flange provided at the upper end of the heat insulating tube 40, and the upper surface of the lid 2 and the lower surface of the flange are sandwiched between the upper surface of the lid 2 and the lower surface of the flange by a clip or the like to bring them into close contact with each other. It can be held by letting it.
  • a screwed portion may be formed between the facing surfaces between the lid 2 and the flange portion.
  • the outer peripheral surface of the carrier guide 52 can be in close contact with the inner surface of the heat insulating tube 40 and also with the upper end side of the storage container 25.
  • the inside of the storage container 25 covered with the carrier guide 52 can be maintained in a sealed state.
  • the cryogenic liquefied gas vaporized from the adsorbent block 30 is exhausted to the outside through the heat insulating tube 40 and the carrier guide 52, and the inside of the inner container 10 is brought into a high pressure state by the vaporized cryogenic liquefied gas. Can be prevented.
  • the plate-shaped portion 54 is composed of a plate-shaped member having a predetermined width, and is arranged in a non-contact state with the storage container 25 together with the work storage portion 51. As the plate-shaped portion 54, even if an external force acts on the vacuum-insulated double container 1 and the vacuum-insulated double container 1 vibrates, the vibration can be absorbed by the long rectangular cross section of the plate-shaped portion 54. It is possible to prevent the work storage portion 51 arranged at the lower end portion from vibrating.
  • the work storage unit 51 is configured to have a storage space for storing a sample to be stored in the vacuum-insulated double container 1.
  • the lid 2, the carrier guide 52, the plate-shaped portion 54, and the work accommodating portion 51 constituting the work carrier 50 can be made of synthetic resin having high heat insulating properties.
  • the lid 2 and the plate-shaped portion 54 may be made of a rigid resin material.
  • the vacuum-insulated double container 1 As the sample to be stored in the vacuum-insulated double container 1, it is possible to use a sample that needs to be stored and transported in a frozen sample transport container, especially in the medical industry or research institutes, or a sample that needs to be transported below freezing point. it can. For example, tissues and cells of humans, animals and plants, biological structures, artificial biological structures such as cultured cells, and the like. Then, the vacuum-insulated double container 1 of the present invention can be used as a container used for transporting a sample that needs to be transported in a low temperature state.
  • cryogenic liquefied gas adsorbed on the adsorbent block 30 a gas that is stored in the vacuum-insulated double container 1 and transported according to the situation of the sample can be used.
  • a gas that is stored in the vacuum-insulated double container 1 and transported according to the situation of the sample can be used.
  • liquid nitrogen, liquid helium, liquefied argon, liquefied oxygen, liquefied carbon dioxide, or the like can be used as the cryogenic liquefied gas, but it may be appropriately selected depending on the condition of the sample to be transported in a frozen state. it can. [assembly]
  • the adsorbent block 30 is arranged on each of the plurality of partition plates 27 fixed to the sample storage container 25, and the top cover plate 26 is integrally fixed to the upper end portion of the sample storage container 25. To do. After the top cover plate 26 is integrally fixed to the upper end of the sample storage container 25, the adsorbent blocks 30 can be arranged on the plurality of partition plates 27, respectively.
  • the sample storage container 25 with the top cover plate 26 in which the adsorbent block 30 is placed on the bottom 12 of the inner container 10 before the inner lid 11 is fixed and the adsorbent block 30 is arranged on the peripheral surface is placed.
  • the sample storage container 25 is positioned and installed on the adsorbent block 30 placed on the bottom 12 of the inner container 10.
  • the peripheral edge of the lower end of the connecting pipe 20 is integrally fixed to the inner peripheral edge of the inner lid 11, and the inner lid 11 is integrally fixed to the inner container 10.
  • the peripheral edge of the upper end portion of the connecting pipe 20 is integrally fixed to the opening edge 5 at the upper end portion of the outer lid 4, and the lower end edge of the outer lid 4 is integrally fixed to the upper end outer peripheral edge of the outer container 3. To do.
  • the heat insulating tube 40 After that, insert the heat insulating tube 40 so that it is in close contact with the inner peripheral surface of the connecting tube 20 and the upper end of the sample storage container 25. As the heat insulating tube 40, the connecting pipe 20 can be inserted before being fixed to the inner lid 11.
  • the lid 2 provided with the work storage portion 51, the plate-shaped portion 54, and the work carrier 50 is inserted into the heat insulating tube 40, and the lid 2 and the flange portion formed at the upper end of the heat insulating tube 40 are attached and detached. By fixing it freely, the vacuum insulation double container 1 provided with the work carrier 50 can be completed.
  • the sample storage container 25 When storing the sample in the vacuum-insulated double container 1, remove the work carrier 50 from the vacuum-insulated double container 1 and inject the cryogenic liquefied gas through the inner peripheral surface of the heat-insulating tube 40.
  • the sample storage container 25 has the configurations shown in FIGS. 9 (a) and 9 (b)
  • the injected ultra-low temperature liquefied gas creates a gap between the lower end of the heat insulating tube 40 and the upper end of the sample storage container 25.
  • the sample is injected into each adsorbent block 30 through the plurality of intake / exhaust ports 33 formed on the upper surface covering plate 26 and the intake / exhaust ports 33 formed on the bottom surface of the sample storage container 25.
  • the injected cryogenic liquefied gas is discharged from each adsorbent block from the intake / exhaust ports 33 formed on the peripheral surface of the sample storage container 25. Infused into 30.
  • the intake / exhaust ports 33 formed on the peripheral surface of the sample storage container 25 are formed at positions corresponding to the upper end side of the adsorbent block 30 placed on each partition plate 27. .. Further, if necessary, the intake / exhaust port 33 can be formed on the bottom surface portion other than the peripheral surface of the sample storage container 25.
  • the adsorbent block 30 is configured in a block shape, and each adsorbent block 30 arranged on the peripheral surface of the sample storage container 25 is placed on the partition plate 27, and a plurality of intake / exhaust ports are provided. 33 is formed corresponding to the arrangement position of the adsorbent block 30.
  • the adsorption amount of the cryogenic liquefied gas can be set to an appropriate adsorption amount.
  • the adsorbent block 30 is configured in a block shape, and each adsorption block 30 arranged on the peripheral surface of the sample storage container 25 is partitioned. It is configured to be placed on the board 27.
  • the inner container 10 is suspended from the outer container 3 by using a connecting pipe 20 which is thin and has an uneven outer peripheral surface.
  • a heat insulating tube 40 is arranged on the inner surface of the connecting pipe 20.
  • the amount of heat transferred from the inner container 10 to the outside via the outer container 3 can be suppressed. Further, since the adsorption blocks 30 arranged on the peripheral surface of the sample storage container 25 are arranged on the partition plate 27 in a state of being separated in the vertical direction, an appropriate adsorption amount of extremely low liquefied gas can be obtained. Can be done.
  • the amount of the cryogenic liquefied gas adsorbed on each adsorption block 30 individually decreases from the upper end side, so that the entire surface of the sample storage container 25 is Can be maintained in a nearly uniform state.
  • the outer peripheral surface of the metal inner container 10 By wrapping the outer peripheral surface of the inner container 10 with a thin aluminum plate, the outer peripheral surface of the metal inner container 10 can be made into a metal laminated structure, and radiation is transmitted from the outer peripheral surface of the inner container 10. The heat can be minimized.
  • each adsorbent block 30 can be arranged in a state where each adsorbent block 30 does not come into contact with the inner surface of the inner container 10 by the stopper piece 28 of the partition plate 27.
  • an air layer that functions as a heat insulating layer is formed between each adsorbent block 30 arranged on the inner surface of the inner container 10 and the inner peripheral surface of the inner container 10. It is possible to prevent the cold air of the cryogenic liquefied gas adsorbed on each adsorbent block 30 from being transferred to the inner container 10.
  • the adsorption amount of the cryogenic liquefied gas is individually reduced from the upper end side of each adsorption block 30.
  • the entire surface of the sample storage container 25 can be maintained in a substantially uniform state.
  • the work carrier 50 as a fixing device can maintain the inside of the inner container 10 in a sealed state by the carrier guide 52 which is in close contact with the heat insulating tube 40 provided on the inner peripheral surface of the connecting pipe 20.
  • the lid 2 and the carrier guide 52 can be configured to be in close contact with the heat insulating tube 40 made of synthetic resin such as foamed resin, and the plate-shaped portion 54 and the lower end of the plate-shaped portion 54 provided at the lower end portion of the carrier guide 52.
  • the work storage portion 51 provided in the above is arranged in a non-contact state with respect to the sample storage container 25. With this configuration, even if an external force such as an impact acts on the vacuum-insulated double container 1, vibration or impact is less likely to be applied to the sample in the work storage portion 51.

Abstract

In a vacuum-insulated double container 1, adsorbent blocks 30 are formed in a block-like configuration, and the respective adsorbent blocks 30 are arranged at a circumferential surface of a sample housing container 25 so as to be placed on a divider plate 27. This double container is further configured such that an inner container 10 is suspended on an outer container 3 using a thin connecting tube 20 having recesses/projections on the outer circumferential surface thereof, and the connecting tube 20 has a heat insulation tube 40 disposed on the inner surface thereof. In this double container, it is also possible to minimize the amount of heat transferred from the inner container 10 to the outside via the outer container 3, and the respective adsorbent blocks 30 disposed on the divider plate 27 make it possible to ensure an appropriate amount of adsorption of cryogenic liquefied gas. Furthermore, this double container is capable of keeping the entire surface of the sample housing container 25 in a nearly uniformly cooled state.

Description

真空断熱二重容器Vacuum insulated double container
 本願発明は、試料を凍結した状態又は氷点下で輸送する容器に用いることのできる真空断熱二重容器に関する。 The present invention relates to a vacuum-insulated double container that can be used as a container for transporting a sample in a frozen state or below freezing point.
 従来から、試料を凍結した状態又は氷点下で輸送するための容器として各種の容器が用いられている。この種の容器としては、生体試料輸送容器(特許文献1参照)や凍結保存・輸送兼用容器(特許文献2参照)などが提案されている。 Conventionally, various containers have been used as containers for transporting samples in a frozen state or below freezing point. As this type of container, a biological sample transport container (see Patent Document 1), a cryopreservation / transport container (see Patent Document 2), and the like have been proposed.
 特許文献1に記載された発明では図11に示すように、ステンレス製の真空断熱構造の容器本体66が用いられており、容器本体66内には、内容物固定具64を介して試料容器固定具63と極低温液化ガス吸着保持剤61とがそれぞれ設けられている。試料容器固定具63には、試料容器62を保持する試料容器保持穴(不図示)が複数形成されており、その外形は、容器本体66内の水平断面形状と同形状に形成されている。また、試料容器保持穴(不図示)は、試料容器62を保持する複数の穴として形成されており、容器本体の上下方向に貫通している。 In the invention described in Patent Document 1, as shown in FIG. 11, a container body 66 having a vacuum heat insulating structure made of stainless steel is used, and the sample container is fixed in the container body 66 via the content fixture 64. A tool 63 and a cryogenic liquefied gas adsorption / holding agent 61 are provided, respectively. The sample container fixture 63 is formed with a plurality of sample container holding holes (not shown) for holding the sample container 62, and the outer shape thereof is formed to have the same shape as the horizontal cross-sectional shape inside the container body 66. Further, the sample container holding holes (not shown) are formed as a plurality of holes for holding the sample container 62, and penetrate in the vertical direction of the container body.
 極低温液化ガス吸着保持剤61は、複数枚積層した状態で用いられており、極低温液化ガス吸着保持剤61の底面は、容器本体66の内面側の底部に載置されている。また、複数枚積層した極低温液化ガス吸着保持剤61は、複数個の試料容器保持穴(不図示)のそれぞれに挿入した試料容器62の周囲を覆うように積層されている。 A plurality of cryogenic liquefied gas adsorption holders 61 are used in a laminated state, and the bottom surface of the cryogenic liquefied gas adsorption holder 61 is placed on the bottom of the container body 66 on the inner surface side. Further, a plurality of laminated cryogenic liquefied gas adsorption holders 61 are laminated so as to cover the periphery of the sample container 62 inserted into each of the plurality of sample container holding holes (not shown).
 試料容器固定具63及び極低温液化ガス吸着保持剤61のそれぞれの外周面と、容器本体66の内周面との間には、両者の間での密着性を確保するため、内容物固定具64が用いられている。内容物固定具64は、試料容器固定具63と同様に発泡ポリエチレン等の伸縮性を有する材質によって構成されており、円筒形に形成した内容物固定具64の内周面によって、試料容器固定具63と極低温液化ガス吸着保持剤61のそれぞれの外周面を、密着した状態で固定している。また、内容物固定具64の外周面は、容器本体66の内周面に密着した構成になっている。 A content fixture between the outer peripheral surfaces of the sample container fixture 63 and the cryogenic liquefied gas adsorption / holding agent 61 and the inner peripheral surface of the container body 66 in order to ensure adhesion between the two. 64 is used. Like the sample container fixture 63, the content fixture 64 is made of an elastic material such as polyethylene foam, and the inner peripheral surface of the content fixture 64 formed in a cylindrical shape allows the sample container fixture 64 to be formed. The outer peripheral surfaces of 63 and the cryogenic liquefied gas adsorption / holding agent 61 are fixed in close contact with each other. Further, the outer peripheral surface of the content fixture 64 is configured to be in close contact with the inner peripheral surface of the container body 66.
 上部が開放した容器本体66の開口部65は、ねじ螺合した蓋体67によって開閉可能に覆われている。また、開口部65の外周面及び/又は蓋体67の内周面には通気用の凹部68が形成されている。そして、この通気用の凹部68は、気化した極低温液化ガスが流通できる隙間として機能している。 The opening 65 of the container body 66 with the upper part open is covered with a screwed lid 67 so that it can be opened and closed. Further, a recess 68 for ventilation is formed on the outer peripheral surface of the opening 65 and / or the inner peripheral surface of the lid 67. The venting recess 68 functions as a gap through which vaporized cryogenic liquefied gas can flow.
 特許文献2に記載された発明では図12に示すように、外壁70aと内壁70bを備えた二重壁の真空構造に構成された断熱容器70が用いられている。断熱容器70の上部には、収納物出入口73が形成され、収納物出入口73には、開閉可能な蓋体が設けられている。断熱容器70は、横断面形状が円形であり、その周壁は外壁70aと内壁70bで囲まれた真空構造になっている。断熱容器70の内部(内壁70bの内側)は、空洞になっており、空洞部には医薬品等の収納物を収納する収納部71が設けられている。 In the invention described in Patent Document 2, as shown in FIG. 12, a heat insulating container 70 having a double-walled vacuum structure including an outer wall 70a and an inner wall 70b is used. A storage material entrance / exit 73 is formed in the upper part of the heat insulating container 70, and a lid that can be opened / closed is provided in the storage material entrance / exit 73. The heat insulating container 70 has a circular cross-sectional shape, and its peripheral wall has a vacuum structure surrounded by an outer wall 70a and an inner wall 70b. The inside of the heat insulating container 70 (inside of the inner wall 70b) is hollow, and the hollow portion is provided with a storage portion 71 for storing storage items such as pharmaceuticals.
 収納部71は、有底で上部が開口したステンレス製の四角筒体から構成されており、四角筒体の側面部は、収納部の四隅を囲む形でアングル材からなる板状部材74が構成されている。また、収納部71の上端付近の外周部には、枠部材(不図示)が溶接されており、そして、板状部材74の上端の屈曲部 (不図示)と枠部材 (不図示)とは、固定連結部材75によってかしめ構造で一体化されている。 The storage portion 71 is composed of a stainless steel square cylinder with a bottom and an open top, and the side surface portion of the square cylinder is composed of a plate-shaped member 74 made of an angle material so as to surround the four corners of the storage portion. Has been done. A frame member (not shown) is welded to the outer peripheral portion near the upper end of the storage portion 71, and the bent portion (not shown) and the frame member (not shown) at the upper end of the plate-shaped member 74 are , It is integrated in a caulking structure by a fixed connecting member 75.
 板状部材74に外周面には、波立ち抑制板72が立設されており、波立ち抑制板72は、収納部71と断熱容器70の内壁70bとの間に水平方向に配設されており、収納部71と断熱容器70の内壁70bとの空間に貯蔵された液体窒素の波立ち(スロッシング、sloshing)を抑制している。 A waviness suppressing plate 72 is erected on the outer peripheral surface of the plate-shaped member 74, and the wavy suppressing plate 72 is arranged in the horizontal direction between the storage portion 71 and the inner wall 70b of the heat insulating container 70. It suppresses sloshing of liquid nitrogen stored in the space between the storage unit 71 and the inner wall 70b of the heat insulating container 70.
特開2017-165487号公報JP-A-2017-165487 特開2017-138244号公報JP-A-2017-138244
 特許文献1に記載された生体試料輸送容器では、試料容器62を収納する収納部の上部と蓋体67との間が空間部として構成されており、気化した極低温液化ガスは、通気用の凹部68からなる隙間を通って外部に排出される構成になっている。そのため、時間の経過とともに、極低温液化ガス吸着保持剤61に吸着させていた極低温液化ガスの濃度が低下することになり、低温保持時間が短くなってしまう問題が生じている。 In the biological sample transport container described in Patent Document 1, a space is formed between the upper part of the storage portion for accommodating the sample container 62 and the lid 67, and the vaporized ultra-low temperature liquefied gas is used for ventilation. It is configured to be discharged to the outside through a gap consisting of recesses 68. Therefore, with the passage of time, the concentration of the cryogenic liquefied gas adsorbed on the cryogenic liquefied gas adsorption / holding agent 61 decreases, which causes a problem that the low temperature holding time becomes short.
 また、試料容器62の中間部から上端部側は、発泡ポリエチレンやポリウレタン等の樹脂材からなる試料容器固定具63によって保持された構成であるため、試料容器62の中間部から上端部側を極低温液化ガスで直接冷却しておくことができない。そのため、試料容器62としては、極低温液化ガス吸着保持剤61に接触している下端部側は冷却することができるが、下端部側と中間部から上端部側との間に温度勾配を生じさせてしまう。 Further, since the sample container 62 from the middle portion to the upper end side is held by the sample container fixture 63 made of a resin material such as foamed polyethylene or polyurethane, the middle portion to the upper end portion side of the sample container 62 is poled. It cannot be cooled directly with cryogenic liquefied gas. Therefore, as the sample container 62, the lower end side in contact with the cryogenic liquefied gas adsorption holder 61 can be cooled, but a temperature gradient is generated between the lower end side and the middle part to the upper end side. I will let you.
 更に、試料容器62の側面に複数枚積層した極低温液化ガス吸着保持剤61は、極低温液化ガスの気化とともに、積層した上部の極低温液化ガス吸着保持剤61から極低温液化ガスの濃度が低下することになる。更に、吸着した極低温液化ガスは重力の影響で下方に移動するため、吸着保持剤61の上側は極低温液化ガスが減少していく。このように、試料容器62内を均一の温度状態に維持しておくことが難しくなっている。 Further, the cryogenic liquefied gas adsorption / holding agent 61 laminated on the side surface of the sample container 62 vaporizes the cryogenic liquefied gas, and the concentration of the cryogenic liquefied gas from the laminated upper cryogenic liquefied gas adsorption / holding agent 61 increases. It will decrease. Further, since the adsorbed cryogenic liquefied gas moves downward due to the influence of gravity, the cryogenic liquefied gas decreases on the upper side of the adsorption retainer 61. As described above, it is difficult to maintain the inside of the sample container 62 in a uniform temperature state.
 更に、試料容器62を試料容器62内に収納した状態で試料容器62の収納部内に極低温液化ガスを注入しても、極低温液化ガス吸着保持剤61は重ね合わされた積層構造であるため、注入した極低温液化ガスは上層部の極低温液化ガス吸着保持剤61から吸着されていくことになる。このため、極低温液化ガス吸着保持剤61の全てに満遍なく吸着されるまでに長時間を要することになる。そして、収納部内に極低温液化ガスを注入している間も、気化した極低温液化ガスは、収納部の開口部から外部に漏れ出てしまい、極低温液化ガスの使用量が増大することになる。しかも、気化量が大量になると、極低温液化ガス吸着保持剤61に対して極低温液化ガスを十分に吸収させておくことが難しくなる。 Further, even if the cryogenic liquefied gas is injected into the storage portion of the sample container 62 with the sample container 62 housed in the sample container 62, the cryogenic liquefied gas adsorption / holding agent 61 has a laminated structure in which the cryogenic liquefied gas adsorption holder 61 is laminated. The injected cryogenic liquefied gas is adsorbed from the cryogenic liquefied gas adsorption / holding agent 61 in the upper layer. Therefore, it takes a long time to be evenly adsorbed on all of the cryogenic liquefied gas adsorption and holding agents 61. Then, even while the cryogenic liquefied gas is injected into the storage portion, the vaporized cryogenic liquefied gas leaks to the outside through the opening of the storage portion, and the amount of the cryogenic liquefied gas used increases. Become. Moreover, when the amount of vaporization becomes large, it becomes difficult for the cryogenic liquefied gas adsorption / holding agent 61 to sufficiently absorb the cryogenic liquefied gas.
 特許文献2に記載された凍結保存・輸送兼用容器では、収納部71と断熱容器70の内壁70bとの空間に液体窒素をそのまま貯蔵する構成であるため、搬送中に外部からの刺激によって、液体窒素の波立ち(スロッシング)が発生し、これを抑制する必要がある。そのため、波立ち抑制板72を設けた構成になっているが、液体窒素の気化が進んでいくと、波立ち抑制板72に面する液体窒素の液面高さが低下して、波立ち運動が生じ易くなる。しかも、波立ち運動は、液体窒素の気化と共に激しさを増すことになり、抑制板72によって激しくなった波立ち(スロッシング)を抑制することが難しくなる。 The container for both cryopreservation and transportation described in Patent Document 2 has a configuration in which liquid nitrogen is stored as it is in the space between the storage unit 71 and the inner wall 70b of the heat insulating container 70. Rippling (slozing) of nitrogen occurs, and it is necessary to suppress this. Therefore, the structure is provided with the rippling suppression plate 72, but as the vaporization of liquid nitrogen progresses, the liquid level height of the liquid nitrogen facing the rippling suppression plate 72 decreases, and rippling motion is likely to occur. Become. Moreover, the rippling motion becomes more intense with the vaporization of liquid nitrogen, and it becomes difficult to suppress the violent rippling (sloshing) by the suppression plate 72.
 しかも、液体窒素に波立ち運動が生じて、波立ち運動の固有振動数と板状部材74や断熱容器70等の固有振動数とが一致すると、断熱容器70自体が載置台等の上で大きく移動させる力が作用することになる。特に、収納部71は、四角筒体の形状であるので、波立ち運動のエネルギーによって隅部に集中荷重が作用すると、収納部71自体を変形させてしまう危険性もある。最悪の場合には、断熱容器70が破損してしまう危険性や、試料が破損してしまう危険性もある。 Moreover, when rippling motion occurs in liquid nitrogen and the natural frequency of the rippling motion matches the natural frequency of the plate-shaped member 74, the heat insulating container 70, etc., the heat insulating container 70 itself is largely moved on a mounting table or the like. Force will act. In particular, since the storage portion 71 has a square tubular shape, there is a risk of deforming the storage portion 71 itself when a concentrated load acts on the corners due to the energy of the rippling motion. In the worst case, there is a risk that the heat insulating container 70 will be damaged and that the sample will be damaged.
 収納部71と板状部材74との間には、隙間空間が形成されているため、液体窒素で板状部材74が冷却されていても、前記隙間空間が断熱空間として作用することになり、収納部71への冷却効率は低下することになる。また、固定連結部材75を介しての熱伝導の伝熱効果も低下することになる。このため、収納部71を冷やす冷却効率は、低くなる。 Since a gap space is formed between the storage portion 71 and the plate-shaped member 74, even if the plate-shaped member 74 is cooled by liquid nitrogen, the gap space acts as a heat insulating space. The cooling efficiency to the storage unit 71 will decrease. In addition, the heat transfer effect of heat conduction through the fixed connecting member 75 is also reduced. Therefore, the cooling efficiency for cooling the storage unit 71 is low.
 本願発明では、これらの問題を解決することができ、収納した試料を効率的に冷凍又は冷却させておくことができ、しかも、効果的に凍結保存した状態又は氷点下で試料を搬送することができる。更に、吸着剤に吸着させる極低温液化ガスの吸着時間を短縮し、吸着剤の吸着量を増やすことができ、適切な極低温液化ガスの吸着量を長時間に亘って維持することができる真空断熱二重容器の提供を課題にしている。 In the present invention, these problems can be solved, the stored sample can be efficiently frozen or cooled, and the sample can be effectively cryopreserved or transported below freezing point. .. Further, it is possible to shorten the adsorption time of the cryogenic liquefied gas adsorbed on the adsorbent, increase the adsorption amount of the adsorbent, and maintain an appropriate adsorption amount of the cryogenic liquefied gas for a long time. The issue is to provide a heat-insulated double container.
 上記目的を達成するために、本願発明に係る課題は、請求項1~6に記載した真空断熱二重容器によって達成することができる。
 即ち、本願発明は、外容器内に離間状態で内容器を配設し、前記外容器と前記内容器との間の密閉された空間部を真空にした真空断熱二重容器であって、前記内容器に固定され中央部が開口した内蓋の開口縁と、前記外容器に固定され中央部が開口した外蓋の開口縁とを連結固定する連結管と、
前記内容器内に配設された有底の収納容器と、前記収納容器の外周面に立設され、前記収納容器の長手方向に沿って互いに平行で離間した複数個の仕切り皿と、前記内容器の内底面及び前記各仕切り皿上に載置された吸着剤ブロックと、を備え、
 前記各吸着剤ブロックに吸着させる極低温液化ガスの吸排気口が、前記収納容器の複数箇所に複数個形成されていることを最も主要な特徴としている。
In order to achieve the above object, the subject of the present invention can be achieved by the vacuum-insulated double container according to claims 1 to 6.
That is, the present invention is a vacuum-insulated double container in which an inner container is arranged in an outer container in a separated state and a sealed space between the outer container and the inner container is evacuated. A connecting pipe that connects and fixes the opening edge of the inner lid that is fixed to the inner container and has an open central portion and the opening edge of the outer lid that is fixed to the outer container and has an open central portion.
A bottomed storage container arranged in the inner container, a plurality of partition plates erected on the outer peripheral surface of the storage container and separated from each other in parallel along the longitudinal direction of the storage container, and the contents. The inner bottom surface of the container and the adsorbent block placed on each of the partition plates are provided.
The most important feature is that a plurality of intake / exhaust ports of the cryogenic liquefied gas adsorbed on each of the adsorbent blocks are formed at a plurality of locations of the storage container.
 本願発明に係る真空断熱二重容器では、内容器と外容器とが連結管によって支持連結された構成になっているので、内容器から連結管を介して外容器に伝達される熱伝導は遅くゆっくりとしたものになる。しかも、内容器と外容器との間は真空に設定されているので、内容器内の温度低下はゆっくりとしたものになる。そして、長時間に亘って内容器内の温度が低下しないように維持しておくことができる。また、連結管の外周面を凹凸に形成しておけば、薄肉で連結管を形成しても連結管の長手方向における強度を向上させることができる。 Since the vacuum-insulated double container according to the present invention has a configuration in which the inner container and the outer container are supported and connected by a connecting pipe, heat conduction from the inner container to the outer container via the connecting pipe is slow. It will be slow. Moreover, since a vacuum is set between the inner container and the outer container, the temperature inside the inner container drops slowly. Then, the temperature inside the inner container can be maintained so as not to drop for a long period of time. Further, if the outer peripheral surface of the connecting pipe is formed to be uneven, the strength of the connecting pipe in the longitudinal direction can be improved even if the connecting pipe is formed with a thin wall.
 また、吸着剤ブロックに吸着させる極低温液化ガスの注入口兼ガス抜き孔である吸排気口が、収納容器の複数箇所に複数個形成されているので、吸着剤ブロックへの極低温液化ガスの吸着時間を短縮することができる。 Further, since a plurality of intake / exhaust ports, which are injection ports and gas vent holes for the cryogenic liquefied gas to be adsorbed on the adsorbent block, are formed at a plurality of locations in the storage container, the cryogenic liquefied gas can be adsorbed on the adsorbent block. The adsorption time can be shortened.
 更に、吸着剤を複数個の吸着ブロックとして構成しており、しかも、各吸着ブロックを仕切り皿上に載置して分割配置しているので、複数個の吸着ブロックを積層して一体化したものに比べて、極低温液化ガスの吸着量を増やすことができ、吸着時間を短縮することができる。更に、仕切り皿によって、極低温液化ガスが下方に移動するのを阻害できるため、安定した温度を長時間維持できる。 Further, since the adsorbent is configured as a plurality of adsorption blocks, and each adsorption block is placed on a partition plate and arranged separately, the plurality of adsorption blocks are laminated and integrated. The adsorption amount of the cryogenic liquefied gas can be increased, and the adsorption time can be shortened. Further, since the partition plate can prevent the cryogenic liquefied gas from moving downward, a stable temperature can be maintained for a long time.
 しかも、従来技術のように複数個の吸着ブロックを重ね合わせて積層した場合には、極低温液化ガスの気化によって積層した吸着ブロックの上端部側から極低温液化ガスの量が減少していくことになり、収納容器の全面を均一な状態で冷却しておくことができなくなる。これに対して、本願発明では、複数個の吸着ブロックをそれぞれ仕切り皿上に分割して載置した構成になっているので、極低温液化ガスの気化によって各吸着ブロックの上端部側から極低温液化ガスの量が減少していっても、収納容器の側面をほぼ均一な状態で冷却しておくことができる。 Moreover, when a plurality of adsorption blocks are laminated and laminated as in the prior art, the amount of the cryogenic liquefied gas decreases from the upper end side of the laminated adsorption blocks due to the vaporization of the cryogenic liquefied gas. Therefore, the entire surface of the storage container cannot be cooled in a uniform state. On the other hand, in the present invention, since a plurality of adsorption blocks are divided and placed on the partition plate, the cryogenic temperature is low from the upper end side of each adsorption block due to the vaporization of the cryogenic liquefied gas. Even if the amount of liquefied gas is reduced, the side surface of the storage container can be cooled in a substantially uniform state.
図1は、真空断熱二重容器の縦断面図である。(実施形態)FIG. 1 is a vertical cross-sectional view of a vacuum insulated double container. (Embodiment) 図2は、真空断熱二重容器の正面図である。(実施形態)FIG. 2 is a front view of the vacuum insulated double container. (Embodiment) 図3は、ワークキャリアを装着した状態での縦断面図である。(実施形態)FIG. 3 is a vertical cross-sectional view with the work carrier attached. (Embodiment) 図4は、積層した吸着剤ブロックの要部斜視図である。(実施形態)FIG. 4 is a perspective view of a main part of the laminated adsorbent block. (Embodiment) 図5は、図4の縦断面図である。(実施形態)FIG. 5 is a vertical cross-sectional view of FIG. (Embodiment) 図6は、ワークキャリアと真空断熱二重容器の正面図である。(実施形態)FIG. 6 is a front view of the work carrier and the vacuum insulated double vessel. (Embodiment) 図7は、図6の縦断面図である。(実施形態)FIG. 7 is a vertical cross-sectional view of FIG. (Embodiment) 図8は、ワークキャリアと真空断熱二重容器の斜視図である。(実施形態)FIG. 8 is a perspective view of the work carrier and the vacuum insulated double container. (Embodiment) 図9(A)は、収納容器の正面図であり、図9(B)は、収納容器の斜視図である。(実施形態)9 (A) is a front view of the storage container, and FIG. 9 (B) is a perspective view of the storage container. (Embodiment) 図10(A)は、他の構成に係る収納容器の正面図であり、図10(B)は、収納容器の斜視図である。(実施形態)FIG. 10A is a front view of the storage container according to another configuration, and FIG. 10B is a perspective view of the storage container. (Embodiment) 図11は、生体試料輸送容器の断面図である。(従来例1)FIG. 11 is a cross-sectional view of the biological sample transport container. (Conventional example 1) 図12は、凍結保存・輸送兼用容器の一部断面を含む斜視図である。(従来例2)FIG. 12 is a perspective view including a partial cross section of the container for both cryopreservation and transportation. (Conventional example 2)
 以下、本願発明を実施するための形態について、実施形態を挙げて図面を参照しながら具体的に説明する。本願発明に係わる真空断熱二重容器としては、以下の実施例で示す構成以外であっても、本願発明の技術思想を満たし、本願発明の課題を解決することができる構成であれば、以下に説明する構成に限定されるものではなく、多様な変更が可能である。
[実施形態]
Hereinafter, embodiments for carrying out the present invention will be specifically described with reference to the drawings with reference to the embodiments. The vacuum-insulated double container according to the present invention has a configuration other than that shown in the following examples, as long as it satisfies the technical idea of the present invention and can solve the problem of the present invention. It is not limited to the configuration described, and various changes can be made.
[Embodiment]
 図1、図2に示すように、真空断熱二重容器1は、上端部が開口した外容器3内に上端部が開口した内容器10を配設し、内容器10内に複数個の吸着剤ブロック30と収納容器25及び外容器3と内容器とを連結する連結管20を備えた構成になっている。
[外容器と内容器及び連結管の構成]
As shown in FIGS. 1 and 2, in the vacuum-insulated double container 1, an inner container 10 having an open upper end is arranged in an outer container 3 having an open upper end, and a plurality of suction containers 10 are adsorbed in the inner container 10. The structure is provided with a connecting pipe 20 for connecting the agent block 30, the storage container 25, and the outer container 3 and the inner container.
[Structure of outer container, inner container and connecting pipe]
 外容器3の底部6には、外容器3を立設支持する環状の円筒部と外容器3内を密閉する底板部とが形成されている。この底板部は、外側へ湾曲状に突出した曲面形状に形成されており、底板部の所望の部位には、真空吸引部34が形成されている。真空吸引部34に真空吸引機を接続することで、外容器3と内容器10との間の空間部21を真空状態にすることができる。 The bottom 6 of the outer container 3 is formed with an annular cylindrical portion that vertically supports the outer container 3 and a bottom plate portion that seals the inside of the outer container 3. The bottom plate portion is formed in a curved surface shape protruding outward in a curved shape, and a vacuum suction portion 34 is formed at a desired portion of the bottom plate portion. By connecting a vacuum suction machine to the vacuum suction unit 34, the space portion 21 between the outer container 3 and the inner container 10 can be evacuated.
 外容器3の上端部には、中央部が開口した裁頭円錐形の外蓋4の下端部が固定部45によって固定されており、固定部45では溶接、ロウ付け、接着により一体的に固定されている。また、外容器3の下端部には、底部6が設けられており、底部6としては、外容器3の外周面が下方に延設した環状支持部と外容器3の底面を覆う底面部とが構成されている。底面部は、外側へ湾曲状に突出した曲面形状に形成されており、環状支持部と底面部とは、固定部45によって一体的に固定されている。 At the upper end of the outer container 3, the lower end of the conical outer lid 4 having an open central portion is fixed by a fixing portion 45, and the fixing portion 45 is integrally fixed by welding, brazing, and adhesion. Has been done. Further, a bottom portion 6 is provided at the lower end portion of the outer container 3, and the bottom portion 6 includes an annular support portion in which the outer peripheral surface of the outer container 3 extends downward and a bottom surface portion that covers the bottom surface of the outer container 3. Is configured. The bottom surface portion is formed in a curved surface shape that protrudes outward in a curved shape, and the annular support portion and the bottom surface portion are integrally fixed by the fixing portion 45.
 内容器10の上端部には、中央部が開口した環状の内蓋11が固定部45によって固定されており、固定部45では溶接、ロウ付け、接着により一体的に固定されている。内容器10の底部12は、絞り加工等によって一体的に成形されており、外側へ湾曲状に突出した曲面形状に形成されている。外容器3の底面部と、内容器10の底部12とを同方向に突出した曲面形状に形成しておくことにより、空間部21を真空状態にしたときの面強度を高めている。 An annular inner lid 11 having an open central portion is fixed to the upper end of the inner container 10 by a fixing portion 45, and the fixing portion 45 is integrally fixed by welding, brazing, and adhesion. The bottom portion 12 of the inner container 10 is integrally formed by drawing or the like, and is formed in a curved shape protruding outward in a curved shape. By forming the bottom surface portion of the outer container 3 and the bottom portion 12 of the inner container 10 into a curved surface shape protruding in the same direction, the surface strength when the space portion 21 is evacuated is enhanced.
 図示例は省略しているが、内容器10の外周面全面を覆う形で薄肉のアルミニウム板を巻装しておくことができる。薄肉のアルミニウム板としては、平板状の滑らかな面として構成しておくことも、皺だらけまたは梨地加工、シボ加工のようにザラザラの面として形成しておくこともできる。 Although the illustrated example is omitted, a thin aluminum plate can be wrapped so as to cover the entire outer peripheral surface of the inner container 10. The thin-walled aluminum plate may be formed as a flat plate-like smooth surface, or may be formed as a rough surface such as wrinkled or satin-finished or grained.
 外蓋4の上端部の開口縁と内蓋11の内周縁は、それぞれ連結管20の上端部と下端部とが、固定部45によって一体的に固定されている。外蓋4、外容器3、内容器10及び連結管20で囲まれる空間部21が、密閉された空間部として構成されている。 The opening edge of the upper end of the outer lid 4 and the inner peripheral edge of the inner lid 11 are integrally fixed by the fixing portion 45 at the upper end and the lower end of the connecting pipe 20, respectively. The space portion 21 surrounded by the outer lid 4, the outer container 3, the inner container 10, and the connecting pipe 20 is configured as a closed space portion.
 連結管20は、薄肉の金属を用いて、その周面は凹凸状に形成しておくことができ、このように構成しておくことにより、薄肉の金属で連結管20を構成しても連結管20の面強度を向上させている。連結管20としては、その面強度を高めるために厚肉のパイプ材で構成しておくこともできるが、連結管20の重量が増大するとともに、連結管20の熱伝導率が高くなってしまう。 The peripheral surface of the connecting pipe 20 can be formed in an uneven shape by using a thin metal, and by configuring in this way, the connecting pipe 20 can be connected even if the connecting pipe 20 is formed of the thin metal. The surface strength of the pipe 20 is improved. The connecting pipe 20 may be made of a thick pipe material in order to increase its surface strength, but the weight of the connecting pipe 20 increases and the thermal conductivity of the connecting pipe 20 increases. ..
 そのため、連結管20の重量を軽減し、面強度を高めるため、薄肉の金属を用いて、その周面を凹凸状に形成しておくことが望ましい構成となる。このように形成した連結管20を用いることで、内容器10を外容器4に対して強固に支持固定することができる。 Therefore, in order to reduce the weight of the connecting pipe 20 and increase the surface strength, it is desirable to use a thin metal to form the peripheral surface in an uneven shape. By using the connecting pipe 20 formed in this way, the inner container 10 can be firmly supported and fixed to the outer container 4.
 外容器3及び内容器10は、薄板の金属材によって構成されており、外容器3、内容器10及び連結管20は、アルミニウム、アルミニウム合金又はステンレス鋼を用いて構成されている。また、外容器3及び内容器10を構成する材質としては、薄板で物理的な強度や熱に対する強度の高い材質で構成しておくこともできる。
 尚、連結管20としては、アルミニウム、アルミニウム合金又はステンレス鋼よりも熱伝導率の低い亜鉛合金やスズ合金、耐熱性マグネシウム合金等の金属材を用いて構成しておくこともできる。また、外容器3及び内容器10を構成する材質としては、薄板で物理的な強度や熱に対する強度の高い材質で構成したときには、連結管20も外容器3及び内容器10と同じ材質で構成することもできる。
[収納容器及び吸着剤ブロックの構成]
The outer container 3 and the inner container 10 are made of a thin metal material, and the outer container 3, the inner container 10 and the connecting pipe 20 are made of aluminum, an aluminum alloy or stainless steel. Further, the outer container 3 and the inner container 10 may be made of a thin plate having high physical strength and heat resistance.
The connecting pipe 20 may be made of a metal material such as a zinc alloy, a tin alloy, or a heat-resistant magnesium alloy, which has a lower thermal conductivity than aluminum, an aluminum alloy, or stainless steel. When the outer container 3 and the inner container 10 are made of a thin plate having high physical strength and heat resistance, the connecting pipe 20 is also made of the same material as the outer container 3 and the inner container 10. You can also do it.
[Structure of storage container and adsorbent block]
 内容器10内には、上端部が開口した金属製で有底の収納容器25が、内容器10の内面から離間した状態で収納されている。収納容器25の底面と外周面には、複数個の吸着剤ブロック30が配設されており、収納容器25は、収納容器25の底面と内容器10の底部12との間に配設した吸着剤ブロック30によって支持されている。 Inside the inner container 10, a metal bottomed storage container 25 with an open upper end is stored in a state of being separated from the inner surface of the inner container 10. A plurality of adsorbent blocks 30 are arranged on the bottom surface and the outer peripheral surface of the storage container 25, and the storage container 25 is a suction device arranged between the bottom surface of the storage container 25 and the bottom portion 12 of the inner container 10. Supported by agent block 30.
 また、収納容器25の外周面には、内容器10の内周面側に突出した複数個の仕切り皿27が立設されており、各仕切り皿27は、収納容器25の長手方向に沿って互いに離間した状態で平行に配設されている。図3、図4及び図5に示すように、仕切り皿27の先端部側は、上方に屈折したストッパ片28が形成されており、仕切り皿27上に載置した吸着剤ブロック30の位置決めと仕切り皿27上で吸着剤ブロック30が移動するのを規制している。 Further, on the outer peripheral surface of the storage container 25, a plurality of partition plates 27 protruding toward the inner peripheral surface side of the inner container 10 are erected, and each partition plate 27 is along the longitudinal direction of the storage container 25. They are arranged in parallel with each other separated from each other. As shown in FIGS. 3, 4 and 5, an upwardly bent stopper piece 28 is formed on the tip end side of the partition plate 27, and the adsorbent block 30 placed on the partition plate 27 is positioned. The movement of the adsorbent block 30 on the partition plate 27 is restricted.
 仕切り皿27の材質としては、収納容器25と同様にアルミニウム、アルミニウム合金又はステンレス鋼を用いて構成されている。仕切り皿27は、溶接、ロウ付け、接着により収納容器25の外周面に一体的に固定することができる。また、図示例は省略しているが、吸着剤ブロック30毎にアルミ箔を巻き付けて、仕切り皿27とストッパ片28とを形成しておくこともできる。この場合、吸着剤ブロック30に供給した極低温液化ガスを吸着できるように、極低温液化ガス用の吸着口を巻装したアルミ箔に形成しておくことが望ましい構成となる。
 また、外容器3及び内容器10を薄肉で物理的な強度や熱に対する強度の高い材質で構成したときには、仕切り皿27も収納容器25と同様の材質で構成しておくことができる。
As the material of the partition plate 27, aluminum, aluminum alloy, or stainless steel is used as in the storage container 25. The partition plate 27 can be integrally fixed to the outer peripheral surface of the storage container 25 by welding, brazing, and gluing. Further, although the illustrated example is omitted, it is also possible to wind the aluminum foil around each adsorbent block 30 to form the partition plate 27 and the stopper piece 28. In this case, it is desirable to form the adsorption port for the cryogenic liquefied gas on the wrapped aluminum foil so that the cryogenic liquefied gas supplied to the adsorbent block 30 can be adsorbed.
Further, when the outer container 3 and the inner container 10 are made of a thin material having high physical strength and heat resistance, the partition plate 27 can also be made of the same material as the storage container 25.
 図示例は省略しているが、内容器10の外周面を薄肉のアルミニウム板で巻装しておくことができる。これにより、金属製で構成した内容器10の外周面を金属の積層構造としておくことができ、内容器10の外周面からの輻射伝熱を最小とすることができる。
また、外容器3及び内容器10を薄肉で物理的な強度や熱に対する強度の高い材質で構成したときにも、内容器10の外周面を薄肉のアルミニウム板で巻装しておくこともできる。
Although the illustrated example is omitted, the outer peripheral surface of the inner container 10 can be wrapped with a thin aluminum plate. As a result, the outer peripheral surface of the inner container 10 made of metal can be made to have a metal laminated structure, and the radiant heat transfer from the outer peripheral surface of the inner container 10 can be minimized.
Further, even when the outer container 3 and the inner container 10 are made of a thin-walled material having high physical strength and heat resistance, the outer peripheral surface of the inner container 10 can be wrapped with a thin-walled aluminum plate. ..
 各吸着剤ブロック30としては、収納容器25に密着させた状態に配設しておくことができる。また、図5に示すように、仕切り皿27のストッパ片28によって、各吸着剤ブロック30が内容器10の内側面に接触しない状態に配設しておくことが望ましい構成になる。 Each adsorbent block 30 can be arranged in close contact with the storage container 25. Further, as shown in FIG. 5, it is desirable that the stopper piece 28 of the partition plate 27 is arranged so that each adsorbent block 30 does not come into contact with the inner side surface of the inner container 10.
 このように構成しておくことにより、内容器10の内側面に配設した各吸着剤ブロック30と内容器10の内周面との間に断熱層として機能する空気層を形成しておくことができ、各吸着剤ブロック30に吸着した極低温液化ガスの冷気が内容器10に伝熱するのを防止しておくことができる。 With this configuration, an air layer that functions as a heat insulating layer is formed between each adsorbent block 30 arranged on the inner surface of the inner container 10 and the inner peripheral surface of the inner container 10. It is possible to prevent the cold air of the cryogenic liquefied gas adsorbed on each adsorbent block 30 from being transferred to the inner container 10.
 図9(a)、図9(b)に示すように、収納容器25は、有底の筒状形状に形成されており、上端の開口部には外方に延設したリング状の上面覆い板26が設けられている。上面覆い板26は、収納容器25の上端部を屈曲成形させて一体的に成形することも、溶接、ロウ付け、接着により収納容器25の上端部に固定しておくこともできる。上面覆い板26によって、仕切り皿27上に載置した吸着剤ブロック30の上面を覆っておくことができる。 As shown in FIGS. 9 (a) and 9 (b), the storage container 25 is formed in a bottomed tubular shape, and the opening at the upper end is covered with a ring-shaped upper surface extending outward. A plate 26 is provided. The upper surface covering plate 26 can be integrally molded by bending the upper end portion of the storage container 25, or can be fixed to the upper end portion of the storage container 25 by welding, brazing, or adhesion. The upper surface covering plate 26 can cover the upper surface of the adsorbent block 30 placed on the partition plate 27.
 図9(a)、(b)に示すように、上面覆い板26及び収納容器25の底面には、極低温液化ガスの吸排気口33が複数形成されている。また、吸排気口33としては、図10(a)、(b)に示すように、収納容器25の側面に複数形成しておくこともできる。吸排気口33の形成箇所としては、収納容器25の全長の三分の一より上側と、同全長の三分の一より下側に形成しておくことができる。また、収納容器25の側面に吸排気口33を形成する場合には、仕切り皿27上の吸着剤ブロック30の上端部側に対向して開口させておくことが望ましい構成となる。 As shown in FIGS. 9A and 9B, a plurality of intake / exhaust ports 33 for cryogenic liquefied gas are formed on the bottom surface of the top cover plate 26 and the storage container 25. Further, as shown in FIGS. 10A and 10B, a plurality of intake / exhaust ports 33 may be formed on the side surface of the storage container 25. The intake / exhaust port 33 may be formed above one-third of the total length of the storage container 25 and below one-third of the total length. Further, when the intake / exhaust port 33 is formed on the side surface of the storage container 25, it is desirable to open the intake / exhaust port 33 facing the upper end side of the adsorbent block 30 on the partition plate 27.
 吸着剤ブロック30で用いる吸着剤としては、極低温液化ガスを吸着しておくことができる材料であれば適宜の材料を使用することができる。例えば、吸着剤としては、ゼオライトや活性炭、オイルソーベント、グラスウールなどを用いることができる。 As the adsorbent used in the adsorbent block 30, an appropriate material can be used as long as it is a material capable of adsorbing the cryogenic liquefied gas. For example, as the adsorbent, zeolite, activated carbon, oil saw vent, glass wool and the like can be used.
 図3~図5に示すように、複数個の吸着剤ブロック30は、収納容器25の底面側及び側面側を覆うように配設されている。収納容器25の底面側及び側面側に配設された複数個の吸着剤ブロック30は周方向と上下方向に等間隔に配設されている。このように配設しておくことにより、極低温液化ガスを各吸着剤ブロック30に吸着させた状態で、収納容器25を均一な状態にて冷却することができる。
[断熱チューブの構成]
As shown in FIGS. 3 to 5, the plurality of adsorbent blocks 30 are arranged so as to cover the bottom surface side and the side surface side of the storage container 25. The plurality of adsorbent blocks 30 arranged on the bottom surface side and the side surface side of the storage container 25 are arranged at equal intervals in the circumferential direction and the vertical direction. By arranging in this way, the storage container 25 can be cooled in a uniform state with the cryogenic liquefied gas adsorbed on each adsorbent block 30.
[Structure of insulation tube]
 図3、図7に示すように、連結管20の内面全面を覆う形で、発泡樹脂製の断熱チューブ40を設置してもよい。これにより、収納容器25内の冷気が連結管20に伝熱されるのを防止している。また、断熱チューブ40の上端部には、フランジ部が形成されており、後述するワークキャリア50の蓋体2を開閉自在に載置固定することができる。断熱チューブ40のフランジ部とワークキャリア50の蓋体2との間での固定は、クリップ部材により蓋体2の上面とフランジ部の下面を挟持して固定することも、ネジ螺合により固定することもできる。また、他の公知の固定方法を用いて固定することもできる。 As shown in FIGS. 3 and 7, a heat insulating tube 40 made of foamed resin may be installed so as to cover the entire inner surface of the connecting pipe 20. As a result, the cold air in the storage container 25 is prevented from being transferred to the connecting pipe 20. Further, a flange portion is formed at the upper end portion of the heat insulating tube 40, and the lid 2 of the work carrier 50, which will be described later, can be placed and fixed so as to be openable and closable. The fixing between the flange portion of the heat insulating tube 40 and the lid body 2 of the work carrier 50 can be fixed by sandwiching the upper surface of the lid body 2 and the lower surface of the flange portion with a clip member, or by screwing. You can also do it. It can also be fixed using other known fixing methods.
 そして、図9(a)、図9(b)に示した収納容器25の構成では、断熱チューブ40の下端部と収納容器25の上端部との間に、極低温液化ガスを流す隙間を形成しておくことができる。また、図10(a)、図10(b)に示した収納容器25の構成では、断熱チューブ40の下端部と収納容器25の上端部とを密接させた構成にしておくことができる。
[ワークキャリアの構成]
Then, in the configuration of the storage container 25 shown in FIGS. 9A and 9B, a gap through which the cryogenic liquefied gas flows is formed between the lower end of the heat insulating tube 40 and the upper end of the storage container 25. Can be done. Further, in the configuration of the storage container 25 shown in FIGS. 10A and 10B, the lower end portion of the heat insulating tube 40 and the upper end portion of the storage container 25 can be brought into close contact with each other.
[Work carrier composition]
 図3、図6~図8に示すように、収納容器25内に試料を挿入支持するワークキャリア50が用いられている。ワークキャリア50は、収納容器25内で極低温状態にて試料を保持するものである。そして、ワークキャリア50は、蓋体2と蓋体2の下面に取り付けたキャリアガイド52、キャリアガイド52の下面に下方に向かって取り付けた板状部54、及び板状部54の下端に設けたワーク収納部51を備えた構成になっている。 As shown in FIGS. 3, 6 to 8, a work carrier 50 that inserts and supports the sample in the storage container 25 is used. The work carrier 50 holds the sample in the storage container 25 in a cryogenic state. The work carrier 50 is provided at the lid 2 and the carrier guide 52 attached to the lower surface of the lid 2, the plate-shaped portion 54 attached downward to the lower surface of the carrier guide 52, and the lower end of the plate-shaped portion 54. It is configured to have a work storage section 51.
 蓋体2は、断熱チューブ40の上端部に設けたフランジ部と着脱自在に構成されており、蓋体2の上面とフランジ部の下面との間をクリップ等により挟持して、両者を圧接密着させて挟持することができる。蓋体2の上面とフランジ部との間での着脱自在の構成としては、蓋体2とフランジ部との間の対向する面間に螺合部を形成させておくこともできる。 The lid 2 is detachably configured with a flange provided at the upper end of the heat insulating tube 40, and the upper surface of the lid 2 and the lower surface of the flange are sandwiched between the upper surface of the lid 2 and the lower surface of the flange by a clip or the like to bring them into close contact with each other. It can be held by letting it. As a detachable configuration between the upper surface of the lid 2 and the flange portion, a screwed portion may be formed between the facing surfaces between the lid 2 and the flange portion.
 キャリアガイド52の外周面は、ワークキャリア50を真空断熱二重容器1内に嵌入したとき、断熱チューブ40の内面に密着するとともに、収納容器25の上端部側とも密着することができる。これにより、キャリアガイド52で覆われた収納容器25の内部を密閉状態に維持することができる。
 尚、吸着剤ブロック30から気化した極低温液化ガスは、断熱チューブ40とキャリアガイド52とを通って、外部に排気され、内容器10内が気化した極低温液化ガスによって高圧状態になるのを防止できる。
When the work carrier 50 is fitted into the vacuum heat insulating double container 1, the outer peripheral surface of the carrier guide 52 can be in close contact with the inner surface of the heat insulating tube 40 and also with the upper end side of the storage container 25. As a result, the inside of the storage container 25 covered with the carrier guide 52 can be maintained in a sealed state.
The cryogenic liquefied gas vaporized from the adsorbent block 30 is exhausted to the outside through the heat insulating tube 40 and the carrier guide 52, and the inside of the inner container 10 is brought into a high pressure state by the vaporized cryogenic liquefied gas. Can be prevented.
 板状部54は、所定幅を有する板状部材から構成されており、ワーク収納部51とともに収納容器25に非接触状態に配されている。板状部54としては、真空断熱二重容器1に外力が作用して真空断熱二重容器1が振動したとしても、長尺の矩形断面で振動を吸収することができ、板状部54の下端部に配設したワーク収納部51が振動するのを防止しておくことができる。 The plate-shaped portion 54 is composed of a plate-shaped member having a predetermined width, and is arranged in a non-contact state with the storage container 25 together with the work storage portion 51. As the plate-shaped portion 54, even if an external force acts on the vacuum-insulated double container 1 and the vacuum-insulated double container 1 vibrates, the vibration can be absorbed by the long rectangular cross section of the plate-shaped portion 54. It is possible to prevent the work storage portion 51 arranged at the lower end portion from vibrating.
 ワーク収納部51は、真空断熱二重容器1内に収納する試料を収納させておくための収納空間を有する形状に構成されている。
 ワークキャリア50を構成する、蓋体2とキャリアガイド52、板状部54及びワーク収納部51は、断熱性が高い合成樹脂製で構成しておくことができる。蓋体2及び板状部54としては、剛性を有する樹脂材と構成しておくこともできる。
The work storage unit 51 is configured to have a storage space for storing a sample to be stored in the vacuum-insulated double container 1.
The lid 2, the carrier guide 52, the plate-shaped portion 54, and the work accommodating portion 51 constituting the work carrier 50 can be made of synthetic resin having high heat insulating properties. The lid 2 and the plate-shaped portion 54 may be made of a rigid resin material.
 これにより、真空断熱二重容器1が振動したとしても、板状部54を支持しているキャリアガイド52と断熱チューブ40とによって、真空断熱二重容器1の振動が板状部54及びワーク収納部51に伝達されるのを防止しておくことができる。
[真空断熱二重容器1内に収納する試料、極低温液化ガス]
As a result, even if the vacuum-insulated double container 1 vibrates, the vibration of the vacuum-insulated double container 1 is caused by the carrier guide 52 supporting the plate-shaped portion 54 and the heat-insulating tube 40 to store the plate-shaped portion 54 and the work. It can be prevented from being transmitted to the unit 51.
[Sample stored in vacuum-insulated double container 1, cryogenic liquefied gas]
 真空断熱二重容器1内に収納する試料としては、特に医療業界や研究機関において凍結試料輸送容器内に収納して搬送する必要にある試料や、氷点下で輸送する必要のある試料を用いることができる。
例えば、人間や動植物の組織や細胞、生体構造物、培養した細胞などの人工生体構造物などである。そして、低温状態に保って搬送する必要のある試料を搬送するために用いる容器として、本願発明の真空断熱二重容器1を用いることができる。
As the sample to be stored in the vacuum-insulated double container 1, it is possible to use a sample that needs to be stored and transported in a frozen sample transport container, especially in the medical industry or research institutes, or a sample that needs to be transported below freezing point. it can.
For example, tissues and cells of humans, animals and plants, biological structures, artificial biological structures such as cultured cells, and the like. Then, the vacuum-insulated double container 1 of the present invention can be used as a container used for transporting a sample that needs to be transported in a low temperature state.
 吸着剤ブロック30に吸着させる極低温液化ガスとしては、真空断熱二重容器1内に収納して搬送する試料の状況に応じたものを用いることができる。例えば、極低温液化ガスとしては、液体窒素、液体ヘリウム、液化アルゴン、液化酸素、液化炭酸ガスなどを使用することができるが、凍結状態で搬送する試料の状況に応じて、適宜選択することができる。
[組立]
As the cryogenic liquefied gas adsorbed on the adsorbent block 30, a gas that is stored in the vacuum-insulated double container 1 and transported according to the situation of the sample can be used. For example, liquid nitrogen, liquid helium, liquefied argon, liquefied oxygen, liquefied carbon dioxide, or the like can be used as the cryogenic liquefied gas, but it may be appropriately selected depending on the condition of the sample to be transported in a frozen state. it can.
[assembly]
 図3を用いて説明すると、試料収納容器25に固定した複数の仕切り皿27上に吸着剤ブロック30をそれぞれ配設して、上面覆い板26を試料収納容器25の上端部に一体的に固定する。試料収納容器25の上端部に上面覆い板26を一体的に固定した後で、複数の仕切り皿27上に吸着剤ブロック30をそれぞれ配設することもできる。 Explaining with reference to FIG. 3, the adsorbent block 30 is arranged on each of the plurality of partition plates 27 fixed to the sample storage container 25, and the top cover plate 26 is integrally fixed to the upper end portion of the sample storage container 25. To do. After the top cover plate 26 is integrally fixed to the upper end of the sample storage container 25, the adsorbent blocks 30 can be arranged on the plurality of partition plates 27, respectively.
 次に、内蓋11を固定する前の内容器10の底部12上に吸着剤ブロック30を載置し、吸着剤ブロック30を周面に配設した上面覆い板26付きの試料収納容器25を内容器10内に設置する。そして、試料収納容器25を内容器10の底部12上に載置した吸着剤ブロック30上に位置決めして設置する。 Next, the sample storage container 25 with the top cover plate 26 in which the adsorbent block 30 is placed on the bottom 12 of the inner container 10 before the inner lid 11 is fixed and the adsorbent block 30 is arranged on the peripheral surface is placed. Install in the inner container 10. Then, the sample storage container 25 is positioned and installed on the adsorbent block 30 placed on the bottom 12 of the inner container 10.
連結管20の下端部の周縁を内蓋11の内周縁に一体的に固定するとともに、内蓋11を内容器10に一体的に固定する。次に、連結管20の上端部の周縁を外蓋4の上端部における開口縁5に一体的に固定するとともに、外蓋4の下端部縁を外容器3の上端外周縁に一体的に固定する。 The peripheral edge of the lower end of the connecting pipe 20 is integrally fixed to the inner peripheral edge of the inner lid 11, and the inner lid 11 is integrally fixed to the inner container 10. Next, the peripheral edge of the upper end portion of the connecting pipe 20 is integrally fixed to the opening edge 5 at the upper end portion of the outer lid 4, and the lower end edge of the outer lid 4 is integrally fixed to the upper end outer peripheral edge of the outer container 3. To do.
 その後、連結管20の内周面と試料収納容器25の上端部に密着するように断熱チューブ40を挿入する。断熱チューブ40としては、連結管20を内蓋11に固定する前に挿入しておくこともできる。 After that, insert the heat insulating tube 40 so that it is in close contact with the inner peripheral surface of the connecting tube 20 and the upper end of the sample storage container 25. As the heat insulating tube 40, the connecting pipe 20 can be inserted before being fixed to the inner lid 11.
次に、ワーク収納部51、板状部54及びワークキャリア50を備えた蓋体2を断熱チューブ40内に挿入して、蓋体2と断熱チューブ40の上端部に形成したフランジ部とを着脱自在に固定することにより、ワークキャリア50を備えた真空断熱二重容器1を完成させることができる。 Next, the lid 2 provided with the work storage portion 51, the plate-shaped portion 54, and the work carrier 50 is inserted into the heat insulating tube 40, and the lid 2 and the flange portion formed at the upper end of the heat insulating tube 40 are attached and detached. By fixing it freely, the vacuum insulation double container 1 provided with the work carrier 50 can be completed.
 試料を真空断熱二重容器1内に収納保存する場合には、ワークキャリア50を真空断熱二重容器1から取外し、断熱チューブ40の内周面を通路にして極低温液化ガスを注入する。注入された極低温液化ガスは、試料収納容器25が図9(a)、図9(b)の構成のときには、断熱チューブ40の下端部と試料収納容器25の上端部との間の隙間を通って、上面覆い板26に形成した複数個の吸排気口33及び試料収納容器25の底面に形成した吸排気口33から各吸着剤ブロック30に注入される。 When storing the sample in the vacuum-insulated double container 1, remove the work carrier 50 from the vacuum-insulated double container 1 and inject the cryogenic liquefied gas through the inner peripheral surface of the heat-insulating tube 40. When the sample storage container 25 has the configurations shown in FIGS. 9 (a) and 9 (b), the injected ultra-low temperature liquefied gas creates a gap between the lower end of the heat insulating tube 40 and the upper end of the sample storage container 25. The sample is injected into each adsorbent block 30 through the plurality of intake / exhaust ports 33 formed on the upper surface covering plate 26 and the intake / exhaust ports 33 formed on the bottom surface of the sample storage container 25.
 試料収納容器25が図10(a)、図10(b)の構成のときには、注入された極低温液化ガスは、試料収納容器25の周面に複数形成した吸排気口33から各吸着剤ブロック30に注入される。このとき、試料収納容器25の周面に形成した吸排気口33を各仕切り皿27上に載置した吸着剤ブロック30の上端部側に対応した位置に形成しておくことが望ましい構成になる。また、必要に応じて吸排気口33を試料収納容器25の周面以外に底面部に形成しておくこともできる。 When the sample storage container 25 has the configurations shown in FIGS. 10 (a) and 10 (b), the injected cryogenic liquefied gas is discharged from each adsorbent block from the intake / exhaust ports 33 formed on the peripheral surface of the sample storage container 25. Infused into 30. At this time, it is desirable that the intake / exhaust ports 33 formed on the peripheral surface of the sample storage container 25 are formed at positions corresponding to the upper end side of the adsorbent block 30 placed on each partition plate 27. .. Further, if necessary, the intake / exhaust port 33 can be formed on the bottom surface portion other than the peripheral surface of the sample storage container 25.
 このように、吸着剤ブロック30をブロック状に構成するとともに、試料収納容器25の周面に配設した各吸着ブロック30を仕切り板27上に載置しておくとともに、複数個の吸排気口33を吸着材ブロック30の配設位置に対応して形成している。このように構成することによって、極低温液化ガスの吸着量を適切な吸着量に設定することができる。
 尚、吸着剤ブロック30毎にアルミ箔を巻き付けて、仕切り皿27とストッパ片28とを形成した場合には、少なくとも上下方向に隣接する吸着剤ブロック30間にはアルミ箔が介在しているので、介在したアルミ箔が仕切り板27としての機能を果たすことになる。
[効果]
In this way, the adsorbent block 30 is configured in a block shape, and each adsorbent block 30 arranged on the peripheral surface of the sample storage container 25 is placed on the partition plate 27, and a plurality of intake / exhaust ports are provided. 33 is formed corresponding to the arrangement position of the adsorbent block 30. With this configuration, the adsorption amount of the cryogenic liquefied gas can be set to an appropriate adsorption amount.
When the partition plate 27 and the stopper piece 28 are formed by winding the aluminum foil around each adsorbent block 30, the aluminum foil is interposed at least between the adsorbent blocks 30 adjacent in the vertical direction. , The intervening aluminum foil will function as a partition plate 27.
[effect]
 本願発明に係る真空断熱二重容器1では、真空構造に加えて、吸着剤ブロック30をブロック状に構成しており、しかも、試料収納容器25の周面に配設した各吸着ブロック30を仕切り板27上に載置した構成になっている。しかも、薄肉で外周面を凹凸に形成した連結管20を用いて外容器3に内容器10を吊り下げた構成になっている。加えて、連結管20の内面には、断熱チューブ40を配設している。 In the vacuum-insulated double container 1 according to the present invention, in addition to the vacuum structure, the adsorbent block 30 is configured in a block shape, and each adsorption block 30 arranged on the peripheral surface of the sample storage container 25 is partitioned. It is configured to be placed on the board 27. Moreover, the inner container 10 is suspended from the outer container 3 by using a connecting pipe 20 which is thin and has an uneven outer peripheral surface. In addition, a heat insulating tube 40 is arranged on the inner surface of the connecting pipe 20.
 このように構成しておくことにより、内容器10から外容器3を介して外部に伝熱される熱量を抑えておくことができる。また、試料収納容器25の周面に配設した各吸着ブロック30を上下方向に離間した状態で、仕切り皿27上に配設しているので、適切な極低液化ガスの吸着量を得ることができる。 With this configuration, the amount of heat transferred from the inner container 10 to the outside via the outer container 3 can be suppressed. Further, since the adsorption blocks 30 arranged on the peripheral surface of the sample storage container 25 are arranged on the partition plate 27 in a state of being separated in the vertical direction, an appropriate adsorption amount of extremely low liquefied gas can be obtained. Can be done.
 更に、各吸着ブロック30から極低温液化ガスの気化が進行しても、各吸着ブロック30は個別に上端部側から極低温液化ガスの吸着量が減少していくため、試料収納容器25の全面をほぼ均一な状態で維持しておくことができる。 Further, even if the vaporization of the cryogenic liquefied gas progresses from each adsorption block 30, the amount of the cryogenic liquefied gas adsorbed on each adsorption block 30 individually decreases from the upper end side, so that the entire surface of the sample storage container 25 is Can be maintained in a nearly uniform state.
 これに対して従来技術のように、上下方向に隣接する複数の吸着ブロックを、仕切り板を介在させずに直接重ね合わせた状態で配設した場合には、積層した吸着ブロックから気化した極低温液化ガスの吸着量は、積層した吸着ブロックの上端部側から減少していく。そのため、試料収納容器の上端部側から冷極低温液化ガスの吸着量が低下していくことになり、試料収納容器の全面を均一な状態で維持しておくことができなくなる。 On the other hand, when a plurality of adsorption blocks adjacent to each other in the vertical direction are arranged in a state of being directly overlapped without interposing a partition plate as in the prior art, the extremely low temperature vaporized from the laminated adsorption blocks. The amount of liquefied gas adsorbed decreases from the upper end side of the laminated adsorption blocks. Therefore, the amount of adsorbed cold cryogenic liquefied gas decreases from the upper end side of the sample storage container, and the entire surface of the sample storage container cannot be maintained in a uniform state.
 内容器10の外周面を薄肉のアルミニウム板で巻装しておくことにより、金属製の内容器10の外周面を金属の積層構造としておくことができ、内容器10の外周面からの輻射伝熱を最小とすることができる。 By wrapping the outer peripheral surface of the inner container 10 with a thin aluminum plate, the outer peripheral surface of the metal inner container 10 can be made into a metal laminated structure, and radiation is transmitted from the outer peripheral surface of the inner container 10. The heat can be minimized.
 各吸着剤ブロック30を図5に示すように、仕切り皿27のストッパ片28によって、各吸着剤ブロック30が内容器10の内側面に接触しない状態に配設しておくことができる。このように構成しておくことにより、内容器10の内側面に配設した各吸着剤ブロック30と内容器10の内周面との間に断熱層として機能する空気層を形成しておくことができ、各吸着剤ブロック30に吸着した極低温液化ガスの冷気が内容器10に伝熱するのを防止しておくことができる。 As shown in FIG. 5, each adsorbent block 30 can be arranged in a state where each adsorbent block 30 does not come into contact with the inner surface of the inner container 10 by the stopper piece 28 of the partition plate 27. With this configuration, an air layer that functions as a heat insulating layer is formed between each adsorbent block 30 arranged on the inner surface of the inner container 10 and the inner peripheral surface of the inner container 10. It is possible to prevent the cold air of the cryogenic liquefied gas adsorbed on each adsorbent block 30 from being transferred to the inner container 10.
 しかも、従来技術のように、上下方向に隣接する複数の吸着ブロックを、仕切り板を介在させずに重ね合わせた状態で配設した場合には、積層した吸着ブロックから気化した極低温液化ガスの吸着量は、吸着ブロックの上端部側から減少していく。そのため、試料収納容器の上端部側から冷却を行うことができなくなり、試料収納容器の全面を均一な状態で維持しておくことができなくなる。 Moreover, when a plurality of adsorption blocks adjacent to each other in the vertical direction are arranged in a stacked state without interposing a partition plate as in the prior art, the cryogenic liquefied gas vaporized from the laminated adsorption blocks The amount of adsorption decreases from the upper end side of the adsorption block. Therefore, cooling cannot be performed from the upper end side of the sample storage container, and the entire surface of the sample storage container cannot be maintained in a uniform state.
 これに対して、本願発明では、各吸着ブロック30から極低温液化ガスが気化して行っても、各吸着ブロック30は個別に上端部側から極低温液化ガスの吸着量が減少していくため、試料収納容器25の全面をほぼ均一な状態で維持しておくことができるようになる。 On the other hand, in the present invention, even if the cryogenic liquefied gas is vaporized from each adsorption block 30, the adsorption amount of the cryogenic liquefied gas is individually reduced from the upper end side of each adsorption block 30. , The entire surface of the sample storage container 25 can be maintained in a substantially uniform state.
 固定装置としてのワークキャリア50は、連結管20の内周面に設けた断熱チューブ40に密接するキャリアガイド52によって、内容器10内を密閉状態に維持することができる。しかも、蓋体2及びキャリアガイド52は、発泡樹脂等の合成樹脂製の断熱チューブ40に密着させた構成にでき、キャリアガイド52の下端部に設けた板状部54及び板状部54の下端に設けたワーク収納部51は、試料収納容器25に対して非接触状態に配されている。この構成により、真空断熱二重容器1に衝撃等の外力が作用してもワーク収納部51内の試料に対して振動や衝撃が加わりにくくなる。 The work carrier 50 as a fixing device can maintain the inside of the inner container 10 in a sealed state by the carrier guide 52 which is in close contact with the heat insulating tube 40 provided on the inner peripheral surface of the connecting pipe 20. Moreover, the lid 2 and the carrier guide 52 can be configured to be in close contact with the heat insulating tube 40 made of synthetic resin such as foamed resin, and the plate-shaped portion 54 and the lower end of the plate-shaped portion 54 provided at the lower end portion of the carrier guide 52. The work storage portion 51 provided in the above is arranged in a non-contact state with respect to the sample storage container 25. With this configuration, even if an external force such as an impact acts on the vacuum-insulated double container 1, vibration or impact is less likely to be applied to the sample in the work storage portion 51.
1・・・真空断熱二重容器
2・・・蓋体
3・・・外容器
4・・・外蓋
6・・・底部
10・・・内容器
11・・・内蓋
12・・・底部
20・・・連結管
21・・・ 空間部
25・・・収納容器
27・・・仕切り皿
30・・・吸着剤ブロック
33・・・ 給排気口
40・・・断熱チューブ
50・・・ワークキャリア
51・・・ワーク収納部
52・・・キャリアガイド
54・・・板状部
61・・・極低温液化ガス吸着保持剤
62・・・試料容器
63・・・試料容器固定具
64・・・内容物固定具
66・・・容器本体
67・・・蓋体
70・・・断熱容器
71・・・収納部
72・・・波立ち抑制板
74・・・板状部材
75・・・固定連結部材

 
1 ... Vacuum-insulated double container 2 ... Lid 3 ... Outer container 4 ... Outer lid 6 ... Bottom 10 ... Inner container 11 ... Inner lid 12 ... Bottom 20・ ・ ・ Connecting pipe 21 ・ ・ ・ Space 25 ・ ・ ・ Storage container 27 ・ ・ ・ Partition plate 30 ・ ・ ・ Adsorbent block 33 ・ ・ ・ Air supply / exhaust port 40 ・ ・ ・ Insulation tube 50 ・ ・ ・ Work carrier 51・ ・ ・ Work storage part 52 ・ ・ ・ Carrier guide 54 ・ ・ ・ Plate-shaped part 61 ・ ・ ・ Ultra-low temperature liquefied gas adsorption holder 62 ・ ・ ・ Sample container 63 ・ ・ ・ Sample container fixture 64 ・ ・ ・ Contents Fixture 66 ... Container body 67 ... Lid 70 ... Insulation container 71 ... Storage 72 ... Rippling suppression plate 74 ... Plate-shaped member 75 ... Fixed connecting member

Claims (6)

  1.  外容器内に離間状態で内容器を配設し、前記外容器と前記内容器との間の密閉された空間部を真空にした真空断熱二重容器であって、
    前記内容器に固定され中央部が開口した内蓋の開口縁と、前記外容器に固定され中央部が開口した外蓋の開口縁とを連結固定する連結管と、
    前記内容器内に配設された有底の収納容器と、
    前記収納容器の外周面に立設され、前記収納容器の長手方向に沿って互いに平行で離間した複数個の仕切り皿と、
    前記内容器の内底面及び前記各仕切り皿上に載置された吸着剤ブロックと、を備え、
     前記各吸着剤ブロックに吸着させる極低温液化ガスの吸排気口が、前記収納容器の複数箇所に複数個形成されていることを特徴とする真空断熱二重容器。
    A vacuum-insulated double container in which an inner container is arranged in an outer container in a separated state and a closed space between the outer container and the inner container is evacuated.
    A connecting pipe that connects and fixes the opening edge of the inner lid that is fixed to the inner container and has an open central portion and the opening edge of the outer lid that is fixed to the outer container and has an open central portion.
    A bottomed storage container arranged in the inner container and
    A plurality of partition plates erected on the outer peripheral surface of the storage container and separated from each other in parallel along the longitudinal direction of the storage container.
    The inner bottom surface of the inner container and the adsorbent block placed on each of the partition dishes are provided.
    A vacuum-insulated double container characterized in that a plurality of intake / exhaust ports for cryogenic liquefied gas adsorbed on each of the adsorbent blocks are formed at a plurality of locations in the storage container.
  2.  前記各仕切り皿の外周縁に立設されたストッパ片を備え、
     前記ストッパ片が前記内容器の内面に固定されずに配設されていることを特徴とする請求項1に記載の真空断熱二重容器。
    A stopper piece erected on the outer peripheral edge of each partition plate is provided.
    The vacuum-insulated double container according to claim 1, wherein the stopper piece is arranged without being fixed to the inner surface of the inner container.
  3. 吸着剤ブロックに吸着させる極低温液化ガスの注入口が、前記各吸着剤ブロックに面する前記収納容器の箇所に形成されていることを特徴とする請求項1又は2に記載の真空断熱二重容器。 The vacuum insulation double according to claim 1 or 2, wherein the injection port of the cryogenic liquefied gas adsorbed on the adsorbent block is formed at the position of the storage container facing each adsorbent block. container.
  4.  極低温液化ガスの吸排気口が、前記収納容器の全長の三分の一より上側と、同全長の三分の一より下側に形成されていることを特徴とする請求項1~3に記載の真空断熱二重容器。 According to claims 1 to 3, the intake and exhaust ports of the cryogenic liquefied gas are formed above one-third of the total length of the storage container and below one-third of the total length. Described vacuum insulated double container.
  5.  前記仕切り皿と前記ストッパ片は、前記吸着剤ブロックにアルミ箔を巻き付けて形成することを特徴とする請求項2~4に記載の真空断熱二重容器。 The vacuum-insulated double container according to claim 2, wherein the partition plate and the stopper piece are formed by winding an aluminum foil around the adsorbent block.
  6.  前記真空断熱二重容器が金属製であることを特徴とする請求項1~5に記載の真空断熱二重容器。

     
    The vacuum-insulated double container according to claim 1 to 5, wherein the vacuum-insulated double container is made of metal.

PCT/JP2019/051562 2019-12-27 2019-12-27 Vacuum-insulated double container WO2021131057A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021566756A JPWO2021131057A1 (en) 2019-12-27 2019-12-27
PCT/JP2019/051562 WO2021131057A1 (en) 2019-12-27 2019-12-27 Vacuum-insulated double container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/051562 WO2021131057A1 (en) 2019-12-27 2019-12-27 Vacuum-insulated double container

Publications (1)

Publication Number Publication Date
WO2021131057A1 true WO2021131057A1 (en) 2021-07-01

Family

ID=76573833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051562 WO2021131057A1 (en) 2019-12-27 2019-12-27 Vacuum-insulated double container

Country Status (2)

Country Link
JP (1) JPWO2021131057A1 (en)
WO (1) WO2021131057A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481779A (en) * 1983-06-22 1984-11-13 Union Carbide Corporation Cryogenic storage container
JP2007271279A (en) * 2006-03-30 2007-10-18 Japan Agengy For Marine-Earth Science & Technology Cryopreservation container
JP2010522863A (en) * 2007-03-29 2010-07-08 エリック コニャール, Transport and / or storage device with double wall insulated spheres

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481779A (en) * 1983-06-22 1984-11-13 Union Carbide Corporation Cryogenic storage container
JP2007271279A (en) * 2006-03-30 2007-10-18 Japan Agengy For Marine-Earth Science & Technology Cryopreservation container
JP2010522863A (en) * 2007-03-29 2010-07-08 エリック コニャール, Transport and / or storage device with double wall insulated spheres

Also Published As

Publication number Publication date
JPWO2021131057A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
US8956855B2 (en) Portable cryogenic container
US6467642B2 (en) Cryogenic shipping container
JP5999986B2 (en) Low temperature container for transportation
JP4881046B2 (en) Cryopreservation
US3168362A (en) Thermally insulated bulk storage container
US3207354A (en) Double-walled container
JP3958213B2 (en) Cryogenic shipping container
US11596148B2 (en) Dry vapor cryogenic container with absorbent core
US3167933A (en) Cryogenic storage apparatus
US2998708A (en) Container for low temperature liquids
WO2021131057A1 (en) Vacuum-insulated double container
CN208419342U (en) A kind of animal vaccine refrigeration storage and transportation apparatus
WO2021131056A1 (en) Specimen shipment anchoring device for use in vacuum-insulated double-walled container
JP6689583B2 (en) Storage tools, storage racks and storage shelves for sheet-like biological samples
US3088787A (en) Thermally insulated bulk storage containers
CN214892038U (en) A cold storage plant for cold chain transportation
US3191794A (en) Protective handle for thermally insulated bulk storage container
CN214297428U (en) Vacuum heat insulation square cabin
US3303667A (en) Cryogenic apparatus
CN210654212U (en) Straw transfer tank
JP7455952B2 (en) frozen transport container
US20220228789A1 (en) Freezing transport container, and cryogenic liquefied gas absorber case
CN210913424U (en) Packaging carton capable of reducing damage of fragile objects
US20020083718A1 (en) Specimen chamber for a cryogenic shipping container
CN218949992U (en) Integrated storage box

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566756

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957170

Country of ref document: EP

Kind code of ref document: A1