WO2021130938A1 - Brake control device, drive control system, and brake control method - Google Patents

Brake control device, drive control system, and brake control method Download PDF

Info

Publication number
WO2021130938A1
WO2021130938A1 PCT/JP2019/050995 JP2019050995W WO2021130938A1 WO 2021130938 A1 WO2021130938 A1 WO 2021130938A1 JP 2019050995 W JP2019050995 W JP 2019050995W WO 2021130938 A1 WO2021130938 A1 WO 2021130938A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking force
deceleration
electric
brake
target
Prior art date
Application number
PCT/JP2019/050995
Other languages
French (fr)
Japanese (ja)
Inventor
俊平 小野寺
悦司 松山
卓矢 岡原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112019007996.4T priority Critical patent/DE112019007996T5/en
Priority to JP2021566666A priority patent/JP7038930B2/en
Priority to PCT/JP2019/050995 priority patent/WO2021130938A1/en
Publication of WO2021130938A1 publication Critical patent/WO2021130938A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • B60T13/588Combined or convertible systems both fluid and mechanical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/665Electrical control in fluid-pressure brake systems the systems being specially adapted for transferring two or more command signals, e.g. railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/228Devices for monitoring or checking brake systems; Signal devices for railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H11/00Applications or arrangements of braking or retarding apparatus not otherwise provided for; Combinations of apparatus of different kinds or types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D61/00Brakes with means for making the energy absorbed available for use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2250/00Monitoring, detecting, estimating vehicle conditions
    • B60T2250/02Vehicle mass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to a brake control device, a drive control system, and a brake control method.
  • Electric railway vehicles accelerate by receiving driving force from a rotating motor that receives electric power from a power source, and decelerates by receiving the mechanical braking force of a mechanical braking device.
  • the electric railroad vehicle has a power conversion device that converts the electric power supplied from the power source into electric power for supplying the electric motor, and an electric railroad vehicle that receives power from the power conversion device and rotates. It is equipped with an electric motor that generates a driving force, a mechanical brake device that generates a mechanical braking force by pressing a wheel control element against a wheel, and a brake control device that controls the mechanical braking device.
  • the brake control device performs feedback control to bring the actual braking force, which is the actually generated braking force, closer to the required braking force, which is the braking force required to obtain the deceleration indicated by the brake command.
  • This type of brake control device is disclosed in Patent Document 1.
  • Some electric railcars decelerate by receiving the mechanical braking force generated by the mechanical braking and the electric braking force generated by the consumption of the electric power generated by the electric motor operating as a generator.
  • the feedback control of the brake control device disclosed in Patent Document 1 when the feedback control of the brake control device disclosed in Patent Document 1 is performed, the followability of the actual braking force with respect to the required braking force is lowered due to the difference in responsiveness between the mechanical brake and the electric brake. Brake stability can be reduced.
  • the actual braking force indicates the total of the actually generated mechanical braking force and the actually generated electric braking force.
  • the responsiveness of the mechanical brake is lower than the responsiveness of the electric brake. Therefore, if the feedback gain is lowered in accordance with the mechanical brake in order to prevent the occurrence of overshoot in the mechanical brake having low responsiveness, the followability of the actual braking force to the required braking force during the feedback control of the electric brake is lowered. Sometimes. Further, if the feedback gain is increased in accordance with the electric brake in order to improve the followability with the highly responsive electric brake, overshoot may occur during the feedback control of the mechanical brake, and the stability of the brake may be lowered.
  • the present disclosure has been made in view of the above circumstances, and enhances the followability of the actual braking force to the required braking force and the stability of the brake in the brake control of the vehicle that decelerates in response to the electric braking force and the mechanical braking force. It is an object of the present invention to provide a brake control device, a drive control system, and a brake control method capable of this.
  • the brake control device of the present disclosure operates as a generator by obtaining a driving force from a rotating electric motor supplied from a power source and being supplied with the power converted by the power converter.
  • the brake control of the vehicle that decelerates by receiving the electric braking force generated by the consumption of the electric power supplied from the electric motor and the mechanical braking force generated by the mechanical braking device is performed.
  • the brake control device includes a target adjusting unit, a required braking force calculation unit, and a mechanical brake control unit.
  • the target adjusting unit acquires the actual deceleration of the vehicle and the target deceleration of the vehicle indicated by the brake command, and adjusts the target deceleration in order to bring the actual deceleration closer to the target deceleration.
  • the required braking force calculation unit calculates the required braking force, which is the braking force required to obtain the target deceleration adjusted by the target adjusting unit, and issues the required brake command signal indicating the value of the required braking force to the required brake command. It is sent to the power converter control unit that controls the power converter according to the signal.
  • the mechanical brake control unit controls the mechanical brake device according to the difference between the required braking force and the electric braking force to generate the mechanical braking force.
  • the target adjusting unit adjusts the target deceleration according to the difference between the actual deceleration and the target deceleration and the ratio of the electric braking force to the required braking force.
  • the target deceleration is adjusted according to the difference between the actual deceleration and the target deceleration and the ratio of the electric braking force to the required braking force, and according to the required braking force based on the adjusted target deceleration.
  • the power converter is controlled.
  • the mechanical braking device is controlled according to the difference between the required braking force and the electric braking force based on the adjusted target deceleration. Since the target deceleration is adjusted according to the ratio of the electric braking force to the required braking force, it is possible to improve the followability of the actual braking force to the required braking force and the stability of the brake.
  • Block diagram showing the configuration of the drive control system according to the first embodiment The block diagram which shows the structure of the brake control device which concerns on Embodiment 1.
  • the figure which shows the example of the feedback gain table which concerns on Embodiment 1. A flowchart showing an example of the operation of the brake control performed by the brake control device according to the first embodiment.
  • Block diagram showing the configuration of the brake control device according to the third embodiment A block diagram showing a configuration of a modified example of the brake control device according to the embodiment.
  • the brake control device 5 and the drive control system 100 according to the first embodiment will be described by taking as an example a brake control device and a drive control system mounted on an electric railway vehicle which is an example of a vehicle.
  • the drive control system 100 shown in FIG. 1 performs drive control and brake control of the vehicle.
  • the electric motor 8 described later rotates, so that the vehicle can obtain a driving force and accelerate.
  • the brake control by the drive control system 100 consumes the electric power generated by the electric motor 8 operating as a generator, and the mechanical braking device 9 described later operates to apply a braking force to the vehicle.
  • the vehicle can decelerate.
  • the drive control system 100 generates an electric braking force and a mechanical braking force, so that the vehicle decelerates.
  • the drive control system 100 employs regenerative braking control that supplies electric power to vehicles located nearby as a method of consuming electric power generated by the electric motor 8 that operates as a generator.
  • the drive control system 100 performs brake control in order to generate the required braking force, which is the braking force required to obtain the target deceleration, which is the target value for deceleration of the vehicle.
  • the drive control system 100 controls according to the ratio of the electric braking force to the required braking force, so that the followability of the actual braking force to the required braking force and the stability of the brake can be improved. ..
  • the actual braking force indicates the total of the actually generated mechanical braking force and the actually generated electric braking force.
  • the drive control system 100 has a master controller 1 that outputs an operation command according to the operation of the operator, a target deceleration calculation unit 2 that calculates a target deceleration, and an actual deceleration that is the actual deceleration of the vehicle. It includes an actual deceleration calculation unit 3 for calculating, a weight calculation unit 4 for calculating the weight of the vehicle, and a brake control device 5 for controlling the brake of the vehicle. Further, the drive control system 100 converts the electric power supplied from the electric motor 8 for generating the driving force of the vehicle and the electric power supplied from the power source (not shown) into the electric power for supplying the electric power 8 and the converted electric power to supply the electric power 8 to the electric motor 8.
  • the device 7 includes a power conversion device control unit 6 that controls the power conversion device 7, and a mechanical braking device 9 that generates a mechanical braking force of the vehicle.
  • the master controller 1 is provided in the cab of the vehicle, for example, and outputs an operation command including a power running command or a brake command according to the operation of the operator.
  • the power running command and the brake command are stepwise command values, respectively.
  • the target deceleration calculation unit 2 acquires an operation command from the master controller 1, and when the operation command includes a brake command, calculates the target deceleration according to the brake command. Specifically, the target deceleration calculation unit 2 holds in advance a target deceleration table in which the command value indicated by the brake command and the target deceleration are associated with each other. Then, the target deceleration calculation unit 2 calculates the target deceleration based on the brake command acquired from the master controller 1 and the target deceleration table, and sends it to the brake control device 5.
  • the actual deceleration calculation unit 3 calculates the speed V1 of the vehicle described above at regular intervals, calculates the actual deceleration from the change in the speed of the vehicle, and sends it to the brake control device 5.
  • the weight calculation unit 4 acquires the measured values of the loads of passengers and luggage from the load-bearing valve provided on the bogie of the vehicle. Then, the weight calculation unit 4 adds a predetermined weight of the vehicle body to the measured value of the load to calculate the vehicle weight which is the total weight of the vehicle body, passengers, and luggage, and the brake control device 5 Send to. It is assumed that the weight calculation unit 4 holds information about the weight of the vehicle body in advance.
  • the brake control device 5 calculates the required braking force and sends the required brake command signal S1 indicating the value of the required braking force to the power converter control unit 6. Further, the brake control device 5 acquires an electronically controlled feedback signal S2 indicating the value of the electric braking force generated by consuming the electric power generated by the electric motor 8 operating as a generator from the power converter control unit 6. Then, the brake control device 5 controls the mechanical brake device 9 according to the difference between the required braking force and the electric braking force. Specifically, when the electric brake force is smaller than the required braking force, the brake control device 5 controls the mechanical braking device 9 in order to compensate the difference between the required braking force and the electric braking force with the mechanical braking device 9.
  • the power converter control unit 6 sends a control signal to a switching element described later that the power converter 7 has in response to at least one of an operation command acquired from the main controller 1 and a required brake command signal S1 acquired from the brake control device 5. To switch the switching element on and off.
  • the power conversion device control unit 6 acquires a measured value of the phase current flowing from the electric motor 8 to the power conversion device 7 from a current sensor (not shown) that detects the current flowing between the power conversion device 7 and the electric motor 8. The control described later is performed based on the measured value of the current.
  • the power converter control unit 6 calculates the target torque for obtaining the target acceleration, which is the target value of the vehicle acceleration indicated by the power running command. Further, the power converter control unit 6 calculates the actual torque, which is the actual torque of the motor 8, from the measured value of the phase current. Then, the power converter control unit 6 sends a control signal to the switching element of the power converter 7 to switch the switching element on and off in order to bring the actual torque of the motor 8 closer to the target torque.
  • the power conversion device control unit 6 controls the power conversion device 7 in order to convert the power supplied from the motor 8 operating as a generator into desired power.
  • the desired electric power indicates the electric power to be supplied to a vehicle located in the vicinity.
  • the power converter control unit 6 sends a control signal to the switching element of the power converter 7 to switch the switching element on and off in order to convert the electric power supplied from the electric motor 8 into a desired electric power.
  • the power converter control unit 6 supplies electricity from the electric motor 8 operating as a generator based on the measured value of the phase current, and supplies the electric power converted by the power converter 7 to a vehicle located nearby. Calculate the braking force.
  • the power conversion device control unit 6 sends an electronically controlled feedback signal S2 indicating the value of the electric braking force to the brake control device 5.
  • the power conversion device 7 has, for example, a switching element which is an IGBT (Insulated Gate Bipolar Transistor).
  • the power conversion device 7 performs power conversion by controlling the switching element by the power conversion device control unit 6.
  • the power conversion device 7 receives the supply of electric power acquired from the overhead wire by a current collector (not shown), converts the supplied electric power into electric power for driving the electric motor 8, and converts the converted electric power into the electric motor 8. Supply to.
  • the current collector corresponds to a power source that supplies electric power to the electric power converter 7.
  • the electric power conversion device 7 converts the electric power supplied from the electric motor 8 operating as a generator into electric power to be supplied to other vehicles located in the vicinity via the overhead wire, and outputs the electric power.
  • the motor 8 rotates when it receives power from the power converter 7, and transmits power from the shaft to the axle via joints and gears. As a result, the vehicle can obtain a driving force and accelerate. Further, when the vehicle is braked, the electric motor 8 operates as a generator and supplies electric power to the electric power converter 7.
  • the electric motor 8 is, for example, a three-phase induction motor.
  • the mechanical brake device 9 includes a brake cylinder, a piston that displaces according to the pressure of air inside the brake cylinder, and a brake shoe attached to the piston.
  • the pressure of the air inside the brake cylinder is controlled by the brake control device 5.
  • the brake control device 5 When the pressure of the air inside the brake cylinder increases, the brake shoes are pressed against the wheel treads, and mechanical braking force is generated.
  • the brake control device 5 shown in FIG. 2 acquires the actual deceleration and the target deceleration, and adjusts the target deceleration acquired in order to approach the acquired target deceleration, and the required brake.
  • a mechanical brake control unit 14 for controlling the brake device 9 is provided.
  • Target adjusting unit 11 in order to approximate the actual deceleration beta c in the target deceleration beta in, the target deceleration beta in the deceleration difference is a difference between the actual deceleration beta c (beta in - ⁇ c), and electric brake duty calculated by the percentage calculation unit 13 according to the R v, to adjust the target deceleration. Then, the target adjusting unit 11 outputs the adjusted target deceleration ⁇ out.
  • the required brake force calculation unit 12 sends a necessary brake command signal S1 indicating the value of the required brake force F1 to the power conversion device control unit 6, the ratio calculation unit 13, and the mechanical brake control unit 14.
  • the percentage calculation unit 13 obtains the necessary brake command signal S1 indicating the value of the required braking force F1 from the need braking force calculation unit 12, electronically controlled feedback signal indicative of the power converter controller 6 a value of the electric braking force F v Acquire S2.
  • the percentage calculation unit 13 calculates the ratio of the electric braking force F v of the necessity braking force F1.
  • the percentage calculation unit 13 as shown in the following equation (3), electrically controlled value F v of the electric braking force feedback signal S2 is shown, the value F1 of the required braking force indicated by the required brake command signal S1 Divide to calculate the electric brake usage rate Rv.
  • the ratio calculation unit 13 sends the calculated electric brake usage rate Rv to the target adjustment unit 11.
  • the electric brake usage rate R v satisfies 0 ⁇ R v ⁇ 1.
  • R v F v / F1 ... (3)
  • Mechanical brake control unit 14 obtains the necessary brake command signal S1 indicating the value F1 of the required braking force from the required braking force calculation unit 12, feedback electronically controlled showing a power converter controlling unit 6 the value F v of the electric braking force Acquire the signal S2. Then, the mechanical brake control unit 14 controls the mechanical brake device 9 in order to compensate the difference between the required braking force F1 and the electric braking force Fv with the mechanical braking force of the mechanical braking device 9.
  • the mechanical brake control unit 14 the air supplied from the air reservoir (not shown), compressed in accordance with a target value P t of the air pressure in the brake cylinder, via a relay valve (not shown) the compressed air mechanical brake device 9 Send to.
  • the pressure of the brake cylinder of the mechanical brake device 9 changes.
  • the mechanical brake control unit 14 measures the pressure of the air output from the relay valve with a pressure sensor and performs pressure feedback control based on the measured value.
  • the target adjusting unit 11 that makes it possible to improve the followability of the actual braking force to the required braking force and the stability of the brake when the brake is controlled by the brake control device 5 having the above configuration will be described in detail.
  • the target deceleration beta in the deceleration difference is a difference between the actual deceleration ⁇ c ( ⁇ in - ⁇ c) , and electric brake duty calculated by the percentage calculation unit 13
  • the deceleration adjustment amount ⁇ to be added to the target deceleration ⁇ in is calculated according to R v.
  • the target adjusting unit 11, as shown in equation (5) below, and outputs the adjusted target deceleration beta out is obtained by adding the deceleration adjustment amount ⁇ to the target deceleration beta in.
  • ⁇ out ⁇ in + ⁇ ⁇ ⁇ ⁇ (5)
  • the configuration of the target adjusting unit 11 will be described in detail.
  • the target adjusting unit 11 subtracts the actual deceleration ⁇ c acquired from the actual deceleration calculation unit 3 from the target deceleration ⁇ in acquired from the target deceleration calculation unit 2, and decelerates the difference ( ⁇ in ⁇ ⁇ c). ) Is calculated by the subtractor 21 and the feedback control using the feedback gain adjusted by the gain adjusting unit 24 described later is used to add the deceleration to the target deceleration ⁇ in based on the deceleration difference ( ⁇ in ⁇ ⁇ c).
  • a feedback control section 22 for calculating the speed adjustment amount [Delta] [beta], an adder 23 for adding the deceleration adjustment amount [Delta] [beta] to the target deceleration beta in, the feedback gain in response to an electrical brake duty R v obtained from the percentage calculation unit 13
  • a gain adjusting unit 24 for adjusting the speed is provided.
  • the subtractor 21 subtracts the actual deceleration ⁇ c from the target deceleration ⁇ in , calculates the deceleration difference ( ⁇ in ⁇ c ), and sends it to the feedback control unit 22.
  • the feedback control unit 22 performs deceleration feedback control, calculates the deceleration adjustment amount ⁇ , and sends the deceleration adjustment amount ⁇ to the adder 23. Feedback control is performed using at least one feedback gain.
  • the feedback control unit 22 performs PID (Proportional Integral Different) control. Specifically, the feedback control unit 22 performs PID control based on the following equation (6). In the following equation (6), K1 indicates a proportional gain, K2 indicates an integrated gain, and K3 indicates a differential gain. The feedback control unit 22 acquires the proportional gain K1, the integrated gain K2, and the differential gain K3 from the gain adjusting unit 24.
  • PID Proportional Integral Different
  • the adder 23 adds the deceleration adjustment amount ⁇ to the target deceleration ⁇ in acquired from the target deceleration calculation unit 2, and sends the adjusted target deceleration ⁇ out to the required braking force calculation unit 12.
  • Gain adjusting unit 24 one at least of the at least one feedback used in the feedback control unit 22 is adjusted according to the electric brake duty R v obtained from the percentage calculation unit 13. Specifically, the gain adjusting unit 24, at least one of the at least one feedback used by the feedback controller 22, adjusted imparted a positive correlation with the electric brake duty R v.
  • the gain adjusting unit 24 sends electric brake duty R v proportional gain K1 corresponding to the integral gain K2, and the differential gain K3 to the feedback control unit 22.
  • the proportional gain K1, the integrated gain K2, and the differential gain K3 each have a positive correlation with the electric brake utilization rate Rv.
  • the gain adjusting unit 24 holds in advance a feedback gain table that associates the electric brake usage rate Rv with the proportional gain K1, the integrated gain K2, and the differential gain K3, respectively.
  • K 11 > K 12 > K 13 > K 14 > K 15 holds.
  • K 21 > K 22 > K 23 > K 24 > K 25 holds.
  • K 31 > K 32 > K 33 > K 34 > K 35 holds.
  • the proportional gain K1, the integrated gain K2, and the differential gain K3 each increase, and the absolute value of the deceleration adjustment amount ⁇ calculated by the above equation (6) increases.
  • the feedback gain is increased when the electric brake duty R v is a utilization of the highly responsive electric brake is increased, it is possible to enhance the followability to required braking force of the actual braking force.
  • the power converter control unit 6 calculates the target torque for obtaining the target acceleration indicated by the power running command. Further, the power converter control unit 6 calculates the actual torque of the motor 8 from the measured value of the phase current acquired from the current sensor. Then, the power converter control unit 6 sends a control signal to the switching element of the power converter 7 to switch the switching element on and off in order to bring the actual torque of the motor 8 closer to the target torque.
  • the power conversion device 7 converts, for example, the DC power supplied from the current collector into three-phase AC power, and supplies the three-phase AC power to the motor 8.
  • the motor 8 supplied with the three-phase AC power rotates, and power is transmitted from the shaft of the motor 8 to the axles of the wheels via joints and gears. As a result, the vehicle gains driving force and accelerates.
  • the target deceleration calculation unit 2 calculates the target deceleration ⁇ in according to the brake command and sends it to the brake control device 5. Further, the actual deceleration calculation unit 3 calculates the actual deceleration ⁇ c and sends it to the brake control device 5. Further, the weight calculation unit 4 acquires the measured values of the loads of passengers and luggage from the load-bearing valve provided on the bogie of the vehicle. Then, the weight calculation unit 4 adds a predetermined weight of the vehicle body to the measured value of the load to calculate the vehicle weight W1 which is the total weight of the vehicle body, passengers, and luggage, and the brake control device 5 Send to.
  • the target adjusting unit 11 repeats the process of step S11 while the target deceleration ⁇ in is not acquired from the target deceleration calculation unit 2 (step S11; No).
  • the target adjusting unit 11 acquires the target deceleration ⁇ in (step S11; Yes)
  • the target adjusting unit 11 acquires the actual deceleration ⁇ c from the actual deceleration calculation unit 3 (step S12).
  • the target adjusting unit 11 adjusts the target deceleration according to the difference between the target deceleration ⁇ in and the actual deceleration ⁇ c , and the electric brake usage rate R v (step S13).
  • the required braking force calculation unit 12 acquires the vehicle weight W1 from the weight calculation unit 4 (step S14). Then, the required braking force calculation unit 12 calculates the required braking force F1, which is the braking force required to obtain the target deceleration ⁇ out adjusted in step S13, and indicates the required braking force value F1 indicating the required braking force value F1.
  • the signal S1 is sent to the power converter control unit 6, the ratio calculation unit 13, and the mechanical brake control unit 14 (step S15).
  • the power converter control unit 6 When the power converter control unit 6 acquires the required brake command signal S1 sent in step S15, the power converter control unit 6 controls the switching element of the power converter 7 according to the required brake force value F1 indicated by the required brake command signal S1. A signal is sent to switch the switching element on and off. As a result, the electric power supplied from the electric motor 8 operating as a generator is converted by the power conversion device 7 and supplied to other vehicles located in the vicinity via the current collector and the overhead wire. By consuming the electric power generated by the electric motor 8 that operates as a generator in this way, an electric braking force is generated. The power converter controller 6 calculates the electric braking force F v, sending the electronically controlled feedback signal S2 indicating the value F v of the electric braking force to the percentage calculation unit 13 and the mechanical brake control unit 14 of the brake control apparatus 5 ..
  • the percentage calculation unit 13 obtains the electronically controlled feedback signal S2, and calculates the electric brake duty R v (step S16).
  • the mechanical brake control unit 14 acquires the electronically controlled feedback signal S2
  • the mechanical brake control unit 14 controls the mechanical brake device 9 in order to compensate the difference between the required braking force F1 and the electric braking force Fv with the mechanical braking force of the mechanical braking device 9. (Step S17).
  • the brake control device 5 repeats the above process from step S11.
  • the brake control device 5 adjusts the target deceleration ⁇ in according to the electric brake usage rate R v , and the required braking force F1 according to the adjusted target deceleration ⁇ out. Based on, an electric braking force and a mechanical braking force are generated. Therefore, when the usage rate of the highly responsive electric brake is high, the feedback gain can be increased to improve the followability of the actual braking force to the required braking force. Further, by reducing the feedback gain when the usage rate of the mechanical brake having low responsiveness becomes high, the occurrence of overshoot in the mechanical brake can be suppressed, and the stability of the brake can be improved.
  • the configuration of the target adjusting unit 11 is arbitrary as long as feedback control for bringing the actual deceleration ⁇ c closer to the target deceleration ⁇ in is possible.
  • the target adjusting unit 15 for adjusting the target deceleration ⁇ in within a range in which the absolute value of the deceleration adjusting amount ⁇ is equal to or less than the threshold value will be described in the second embodiment.
  • the configuration of the drive control system 100 and the brake control device 5 is the same as that of the first embodiment.
  • the brake control device 5 includes a target adjusting unit 15 for adjusting the target deceleration ⁇ in.
  • the target adjusting unit 15 shown in FIG. 6 further includes a limiting unit 25 in addition to the configuration of the target adjusting unit 11 included in the brake control device 5 according to the first embodiment shown in FIG.
  • the limiting unit 25 corrects and corrects the deceleration adjustment amount ⁇ according to the threshold value Th ⁇ . Outputs the deceleration adjustment amount ⁇ '. If the absolute value of the deceleration adjustment amount ⁇ output by the feedback control unit 22 is equal to or less than the threshold value, the limiting unit 25 sets the deceleration adjustment amount ⁇ obtained from the feedback control unit 22 as a corrected deceleration adjustment amount ⁇ '. Output.
  • the threshold value Th ⁇ is, for example, the magnitude of the error that can be included in the actual deceleration ⁇ c calculated by the actual deceleration calculation unit 3.
  • the threshold Th beta it is preferable that changes according to the electric brake duty R v.
  • the error error E c included in the actual deceleration beta c used as the threshold value Th beta is included as shown in the following equation (7), the actual deceleration beta c in a case where only the electric brake force is acting It may be calculated based on the error E v, which is the error included in the actual deceleration ⁇ c when only the mechanical braking force is working, and the error E p.
  • E c R v ⁇ E v + (1-R v ) ⁇ E p ... (7)
  • the limiting unit 25 holds in advance the values of the error E v and the error E p calculated in advance, and uses the electric brake usage rate R v obtained from the ratio calculation unit 13 from the above equation (7).
  • the calculated error E c may be used as the threshold value Th ⁇ .
  • the error Ev is the actual deceleration ⁇ cv calculated by the actual deceleration calculation unit 3 when only the electric braking force is working, and only the electric braking force is working. It is defined based on the actual deceleration ⁇ v that actually occurs when there is.
  • E v ⁇ cv- ⁇ v ... (8)
  • the actual deceleration ⁇ cv calculated by the actual deceleration calculation unit 3 when only the electric braking force is working includes an error.
  • the actual deceleration beta cv as shown in the following equation (9), the electric brake force F v actually occurring when only the electric braking force is acting, indicated electronically controlled feedback signal S2 It is defined based on the error E Fv included in the value of the electric braking force F v , the actual vehicle weight M1, and the error E W1 included in the vehicle weight W1 calculated by the weight calculation unit 4.
  • ⁇ cv (F v + E Fv ) / (M1 + E W1 ) ⁇ ⁇ ⁇ (9)
  • the error E Fv in the above equation (9) may be determined according to the upper limit of the measurement error of the current sensor.
  • the error E W1 in Equation (9) is only to be determined in accordance with the upper limit of the measurement error of the variable load valve.
  • the error E c is calculated from the above equations (8)-(10) based on the ideal values of the actual deceleration ⁇ v , the electric braking force F v, and the vehicle weight M1 obtained by the simulation.
  • the actual deceleration ⁇ cp calculated by the actual deceleration calculation unit 3 includes an error.
  • the actual deceleration ⁇ cp is the mechanical brake force F p actually generated when only the mechanical brake force is applied, and the pressure of the mechanical brake control unit 14.
  • the error E Fp included in the value of the mechanical braking force F p calculated based on the measured value of the sensor , the actual vehicle weight M1, and the error E W1 included in the vehicle weight W1 calculated by the weight calculation unit 4 Defined based on.
  • ⁇ cp (F p + E Fp ) / (M1 + E W1 ) ⁇ ⁇ ⁇ (12)
  • the error E W1 may be determined according to the upper limit value of the measurement error of the load-bearing valve. For example, from the above equations (11)-(14) based on the ideal values of the actual deceleration ⁇ p , the mechanical braking force F p , the vehicle weight M1, the air pressure P m , and the friction coefficient ⁇ m obtained by the simulation. The error E p is calculated.
  • the threshold Th ⁇ preferably has a positive correlation with the target deceleration ⁇ in.
  • the limiting unit 25 may hold in advance a threshold table for associating the target deceleration ⁇ in with the threshold Th ⁇ . Then, the limiting unit 25 may acquire the target deceleration ⁇ in from the target deceleration calculation unit 2 and correct the deceleration adjustment amount ⁇ by using the threshold value Th ⁇ corresponding to the target deceleration ⁇ in.
  • the threshold value Th ⁇ When the error E c represented by the above equation (7) is used as the threshold value Th ⁇ , the limiting unit 25 holds in advance a threshold value table for associating the target deceleration ⁇ in with the error E v and the error E p. Just do it.
  • the absolute value of the deceleration adjustment amount ⁇ is maintained below the threshold value Th ⁇ , so that the feedback control in the feedback control unit 22 causes an overshoot. Occurrence is suppressed. As a result, the stability of the brake can be improved.
  • the ratio calculation unit 13 sets the value indicated by the electronically controlled feedback signal S2. Yorazu, the electric brake usage rate R v to 0. As a result, the feedback gain output by the gain adjusting unit 24 becomes a value suitable for the mechanical braking device 9. Therefore, the feedback control suppresses the occurrence of overshoot of the mechanical brake.
  • the power converter control unit 6 may determine that no electric braking force is generated when, for example, the voltage between terminals close to the power supply of the power converter 7 becomes overvoltage.
  • the brake control device 31 when the electric braking force is no longer generated, the feedback gain used in the feedback control in the feedback control unit 22 becomes a value suitable for the mechanical brake device 9. .. As a result, the feedback control suppresses the occurrence of overshoot of the mechanical brake, and it is possible to improve the stability of the brake.
  • the brake control device 31 according to the third embodiment may include the target adjusting unit 15 according to the second embodiment.
  • the brake control devices 5 and 31 may adjust the target deceleration ⁇ in by using the predetermined relationship between the vehicle speed and the electric brake usage rate R v.
  • the brake control device 32 shown in FIG. 8 does not include the ratio calculation unit 13.
  • the target adjusting unit 11 included in the brake control device 32 holds in advance the relationship between the speed of the vehicle and the electric brake usage rate Rv. Further, the target adjusting unit 11 acquires the speed of the vehicle from the actual deceleration calculation unit 3, and calculates the electric brake usage rate R v'from the relationship between the vehicle speed and the electric brake usage rate R v '.
  • the target adjusting unit 11 the difference between the target deceleration beta in the actual deceleration beta c, and calculated according to the electric brake duty R v ', to adjust the target deceleration beta in, adjusted the reduction targets Output velocity ⁇ out.
  • the brake control device 32 shown in FIG. 8 may acquire the revocation signal S3 from the power conversion device control unit 6.
  • the electric brake usage rate Rv is set to 0 regardless of the value indicated by the electronically controlled feedback signal S2.
  • the target adjusting unit 11 the difference between the target deceleration beta in the actual deceleration beta c, and calculated according to the electric brake duty R v ', to adjust the target deceleration beta in, adjusted the reduction targets Output velocity ⁇ out.
  • each of the brake control devices 5, 31 and 32 includes a processor 41, a memory 42, and an interface 43 as a hardware configuration for controlling each part.
  • Each function of the brake control devices 5, 31 and 32 is realized by the processor 41 executing a program stored in the memory 42.
  • the interface 43 is for connecting the brake control device 5 and another device and establishing communication.
  • the brake control devices 5, 31 and 32 may be provided with a plurality of types of interfaces 43, if necessary.
  • the brake control devices 5, 31 and 32 each include one processor 41 and one memory 42, but the brake control devices 5, 31 and 32 each include a plurality of processors 41 and a plurality of memories 42, respectively. And may be provided. In this case, the functions of the brake control devices 5, 31 and 32 may be realized by the cooperation of the plurality of processors 41 and the plurality of memories 42.
  • the brake control devices 5, 31 and 32 that execute the above-mentioned processing may be realized by installing a program for executing the above-mentioned operation in a computer.
  • the brake control devices 5, 31 and 32 may be realized by storing the computer program in a storage device of a server device on a communication network and downloading it to a normal computer system.
  • step S14 may be performed in parallel with the process of step S12.
  • step S16 may be performed in parallel with the process of step S17, or may be performed after the process of step S17.
  • the drive control system 100 can be mounted on both a DC feeder system and an AC feeder system railway vehicle. Further, the drive control system 100 may be mounted on an electric railway vehicle that acquires electric power via a third rail. Further, the drive control system 100 can be mounted on any vehicle, not limited to electric railway vehicles.
  • the method of generating the electric braking force is not limited to the above example, and any method can be used as long as it is a method of consuming the electric power supplied from the electric motor 8 operating as a generator and converted by the electric power converter 7.
  • a discharge circuit connected between terminals close to the power supply of the power conversion device 7 may be used to consume the power supplied from the electric motor 8 operating as a generator and converted by the power conversion device 7.
  • the target deceleration calculation unit 2 may acquire an operation command from ATC (Automatic Train Control: automatic train control device), ATO (Automatic Train Operation: automatic train operation device), or the like.
  • ATC Automatic Train Control: automatic train control device
  • ATO Automatic Train Operation: automatic train operation device
  • the actual deceleration calculation unit 3 may calculate the speed of the vehicle by any method. As an example, the actual deceleration calculation unit 3 may acquire the wheel rotation speed from the ATC and calculate the vehicle speed from the wheel rotation speed acquired from the ATC. As another example, the actual deceleration calculation unit 3 may acquire the speed of the vehicle from TIMS (Train Information Management System).
  • TIMS Traffic Information Management System
  • Each part of the brake control device 5 may be realized as a function of a control system mounted on a railway vehicle.
  • the power converter control unit 6 may acquire an operation command from ATC, ATO, or the like. Further, the power converter control unit 6 may be realized as a function of a control system mounted on a railway vehicle.
  • the structure of the power conversion device 7 is not limited to the above example, and is arbitrary as long as it has an arbitrary power conversion circuit capable of bidirectional power conversion.
  • the power converter 7 may be a DC (Direct Current) -DC converter.
  • the motor 8 is an arbitrary motor capable of transmitting a driving force to the vehicle.
  • the electric motor 8 may be a synchronous electric motor.
  • the electric motor 8 may be a DC motor.
  • the mechanical braking device 9 is an arbitrary braking device that generates a braking force by mechanical operation.
  • the mechanical brake device 9 may generate a braking force by pressing a brake pad against each of the brake discs provided on both side surfaces of the wheel.
  • the mechanical brake device 9 may generate a braking force by pressing the brake shoe against a drum, which is a cylindrical member that has a brake shoe and rotates together with the axle.
  • the mechanical brake device 9 may be a brake device using a fluid other than air.
  • the target adjusting unit 11 may perform feedback control using a feedback gain having a negative correlation with the mechanical brake usage rate, which is the ratio of the mechanical braking force to the required braking force.
  • the ratio calculation unit 13 may send the mechanical brake usage rate obtained by dividing the value of the mechanical braking force by the required braking force value F1 to the target adjusting unit 11.
  • the feedback control performed by the feedback control unit 22 included in the target adjusting unit 11 is arbitrary as long as it is a control for bringing the actual deceleration ⁇ c closer to the target deceleration ⁇ in.
  • the feedback control unit 22 may perform P (Proportional) control, PI (Proportional Integral) control, and the like. If the feedback control unit 22 performs a P control, gain adjustment unit 24, it send a proportional gain K1 was adjusted according to the electric brake duty R v to the feedback control unit 22. Also when the feedback control unit 22 performs the PI control, the gain adjusting unit 24 adjusts at least one of the proportional gain K1 and integration gain K2 in accordance with an electric brake duty R v, may send the feedback control unit 22 ..
  • the gain adjusting unit 24 may adjust at least one of the proportional gain K1, the integrated gain K2, and the differential gain K3 according to the electric brake usage rate Rv. As an example, the gain adjusting unit 24 adjusts by remembering positive correlation with the proportional gain K1 only the electrical brake duty R v, may be used a fixed value as the integral gain K2 and the derivative gain K3.
  • the required braking force calculation unit 12 may calculate the required braking force for each vehicle based on the above equation (2), or after calculating the required braking force for the entire formation, for example, determine the likelihood of gliding. In consideration of this, the required braking force for the entire formation may be distributed to each vehicle to calculate the required braking force for each vehicle.
  • Mechanical brake control unit 14 uses the coefficient of friction mu v which varies depending on the speed of the vehicle, the (4) may calculate the target value P t of the pneumatic brake cylinders based on equation.
  • the mechanical brake control unit 14 has only to hold a graph showing the relationship between speed and the friction coefficient mu v of the vehicle, etc. Friction coefficient table for associating the speed and the friction coefficient mu v of the vehicle in advance. Then, the mechanical brake control unit 14 acquires the speed of the vehicle from the actual deceleration calculation unit 3, calculates the friction coefficient ⁇ v according to the speed of the vehicle, and uses the friction coefficient ⁇ v to use the above equation (4). it may be calculated target value P t of the pneumatic brake cylinders based on.

Abstract

This brake control device (5) is provided with: a target adjustment unit (11) which acquires an actual deceleration and a target deceleration and which then makes an adjustment to the target deceleration so as to bring the actual deceleration closer to the target deceleration; a required brake force calculation unit (12) which calculates a required brake force that is necessary to obtain the adjusted target deceleration; and a mechanical brake control unit (14) which performs control on a mechanical brake device (9) according to the difference between the required brake force and an electric brake force. The target adjustment unit (11) adjusts the target deceleration according to the ratio of the electric brake force to the required brake force.

Description

ブレーキ制御装置、駆動制御システム、およびブレーキ制御方法Brake control device, drive control system, and brake control method
 本開示は、ブレーキ制御装置、駆動制御システム、およびブレーキ制御方法に関する。 The present disclosure relates to a brake control device, a drive control system, and a brake control method.
 電気鉄道車両は、電源から電力の供給を受けて回転する電動機から駆動力を得て加速し、機械ブレーキ装置による機械ブレーキ力を受けて減速する。詳細には、電気鉄道車両には、電源から供給される電力を電動機に供給するための電力に変換する電力変換装置と、電力変換装置から電力の供給を受けて回転することで電気鉄道車両の駆動力を生じさせる電動機と、制輪子を車輪に押し付けることで機械ブレーキ力を生じさせる機械ブレーキ装置と、機械ブレーキ装置を制御するブレーキ制御装置と、が搭載される。なおブレーキ制御装置は、実際に生じているブレーキ力である実ブレーキ力をブレーキ指令が示す減速度を得るために必要なブレーキ力である必要ブレーキ力に近づけるためのフィードバック制御を行う。この種のブレーキ制御装置が特許文献1に開示されている。 Electric railway vehicles accelerate by receiving driving force from a rotating motor that receives electric power from a power source, and decelerates by receiving the mechanical braking force of a mechanical braking device. Specifically, the electric railroad vehicle has a power conversion device that converts the electric power supplied from the power source into electric power for supplying the electric motor, and an electric railroad vehicle that receives power from the power conversion device and rotates. It is equipped with an electric motor that generates a driving force, a mechanical brake device that generates a mechanical braking force by pressing a wheel control element against a wheel, and a brake control device that controls the mechanical braking device. The brake control device performs feedback control to bring the actual braking force, which is the actually generated braking force, closer to the required braking force, which is the braking force required to obtain the deceleration indicated by the brake command. This type of brake control device is disclosed in Patent Document 1.
特開2015-147485号公報Japanese Unexamined Patent Publication No. 2015-147485
 電気鉄道車両には、機械ブレーキによる機械ブレーキ力、および発電機として動作する電動機で発生した電力が消費されることで生じる電気ブレーキ力を受けて減速するものがある。この種の電気鉄道車両において、特許文献1に開示されるブレーキ制御装置のフィードバック制御を実施すると、機械ブレーキと電気ブレーキの応答性の違いによって、実ブレーキ力の必要ブレーキ力に対する追従性の低下またはブレーキの安定性の低下が起こり得る。なお実ブレーキ力は、実際に生じている機械ブレーキ力と実際に生じている電気ブレーキ力の合計を示す。 Some electric railcars decelerate by receiving the mechanical braking force generated by the mechanical braking and the electric braking force generated by the consumption of the electric power generated by the electric motor operating as a generator. In this type of electric railroad vehicle, when the feedback control of the brake control device disclosed in Patent Document 1 is performed, the followability of the actual braking force with respect to the required braking force is lowered due to the difference in responsiveness between the mechanical brake and the electric brake. Brake stability can be reduced. The actual braking force indicates the total of the actually generated mechanical braking force and the actually generated electric braking force.
 具体的には、機械ブレーキの応答性は、電気ブレーキの応答性より低い。このため、応答性の低い機械ブレーキでのオーバーシュートの発生を防ぐために、機械ブレーキにあわせてフィードバックゲインを低くすると、電気ブレーキのフィードバック制御時に、実ブレーキ力の必要ブレーキ力に対する追従性が低下することがある。また応答性の高い電気ブレーキで追従性をよくするために、電気ブレーキにあわせてフィードバックゲインを高くすると、機械ブレーキのフィードバック制御時にオーバーシュートが生じて、ブレーキの安定性が低下することがある。 Specifically, the responsiveness of the mechanical brake is lower than the responsiveness of the electric brake. Therefore, if the feedback gain is lowered in accordance with the mechanical brake in order to prevent the occurrence of overshoot in the mechanical brake having low responsiveness, the followability of the actual braking force to the required braking force during the feedback control of the electric brake is lowered. Sometimes. Further, if the feedback gain is increased in accordance with the electric brake in order to improve the followability with the highly responsive electric brake, overshoot may occur during the feedback control of the mechanical brake, and the stability of the brake may be lowered.
 本開示は上述の事情に鑑みてなされたものであり、電気ブレーキ力および機械ブレーキ力を受けて減速する車両のブレーキ制御において、実ブレーキ力の必要ブレーキ力に対する追従性およびブレーキの安定性を高めることが可能なブレーキ制御装置、駆動制御システム、およびブレーキ制御方法を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and enhances the followability of the actual braking force to the required braking force and the stability of the brake in the brake control of the vehicle that decelerates in response to the electric braking force and the mechanical braking force. It is an object of the present invention to provide a brake control device, a drive control system, and a brake control method capable of this.
 上記目的を達成するために、本開示のブレーキ制御装置は、電源から供給され、電力変換装置で変換された電力の供給を受けて回転する電動機から駆動力を得て加速し、発電機として動作する電動機から供給され、電力変換装置で変換された電力が消費されることで生じる電気ブレーキ力と機械ブレーキ装置による機械ブレーキ力とを受けて減速する車両のブレーキ制御を行う。ブレーキ制御装置は、目標調節部と、必要ブレーキ力算出部と、機械ブレーキ制御部と、を備える。目標調節部は、車両の実減速度とブレーキ指令が示す車両の目標減速度とを取得し、実減速度を目標減速度に近づけるために目標減速度を調節する。必要ブレーキ力算出部は、目標調節部で調節された目標減速度を得るために必要なブレーキ力である必要ブレーキ力を算出し、必要ブレーキ力の値を示す必要ブレーキ指令信号を、必要ブレーキ指令信号に応じて電力変換装置を制御する電力変換装置制御部に送る。機械ブレーキ制御部は、必要ブレーキ力と電気ブレーキ力との差分に応じて機械ブレーキ装置を制御して機械ブレーキ力を生じさせる。目標調節部は、実減速度と目標減速度の差分および必要ブレーキ力に対する電気ブレーキ力の割合に応じて目標減速度を調節する。 In order to achieve the above object, the brake control device of the present disclosure operates as a generator by obtaining a driving force from a rotating electric motor supplied from a power source and being supplied with the power converted by the power converter. The brake control of the vehicle that decelerates by receiving the electric braking force generated by the consumption of the electric power supplied from the electric motor and the mechanical braking force generated by the mechanical braking device is performed. The brake control device includes a target adjusting unit, a required braking force calculation unit, and a mechanical brake control unit. The target adjusting unit acquires the actual deceleration of the vehicle and the target deceleration of the vehicle indicated by the brake command, and adjusts the target deceleration in order to bring the actual deceleration closer to the target deceleration. The required braking force calculation unit calculates the required braking force, which is the braking force required to obtain the target deceleration adjusted by the target adjusting unit, and issues the required brake command signal indicating the value of the required braking force to the required brake command. It is sent to the power converter control unit that controls the power converter according to the signal. The mechanical brake control unit controls the mechanical brake device according to the difference between the required braking force and the electric braking force to generate the mechanical braking force. The target adjusting unit adjusts the target deceleration according to the difference between the actual deceleration and the target deceleration and the ratio of the electric braking force to the required braking force.
 本開示によれば、実減速度と目標減速度の差分および必要ブレーキ力に対する電気ブレーキ力の割合に応じて目標減速度が調節され、調節された目標減速度に基づく必要ブレーキ力に応じて、電力変換装置が制御される。また調節された目標減速度に基づく必要ブレーキ力と電気ブレーキ力との差分に応じて機械ブレーキ装置が制御される。必要ブレーキ力に対する電気ブレーキ力の割合に応じて目標減速度が調節されているため、実ブレーキ力の必要ブレーキ力に対する追従性およびブレーキの安定性を高めることが可能となる。 According to the present disclosure, the target deceleration is adjusted according to the difference between the actual deceleration and the target deceleration and the ratio of the electric braking force to the required braking force, and according to the required braking force based on the adjusted target deceleration. The power converter is controlled. Further, the mechanical braking device is controlled according to the difference between the required braking force and the electric braking force based on the adjusted target deceleration. Since the target deceleration is adjusted according to the ratio of the electric braking force to the required braking force, it is possible to improve the followability of the actual braking force to the required braking force and the stability of the brake.
実施の形態1に係る駆動制御システムの構成を示すブロック図Block diagram showing the configuration of the drive control system according to the first embodiment 実施の形態1に係るブレーキ制御装置の構成を示すブロック図The block diagram which shows the structure of the brake control device which concerns on Embodiment 1. 実施の形態1に係る目標調節部の構成を示すブロック図The block diagram which shows the structure of the target adjustment part which concerns on Embodiment 1. 実施の形態1に係るフィードバックゲインテーブルの例を示す図The figure which shows the example of the feedback gain table which concerns on Embodiment 1. 実施の形態1に係るブレーキ制御装置が行うブレーキ制御の動作の一例を示すフローチャートA flowchart showing an example of the operation of the brake control performed by the brake control device according to the first embodiment. 実施の形態2に係る目標調節部の構成を示すブロック図The block diagram which shows the structure of the target adjustment part which concerns on Embodiment 2. 実施の形態3に係るブレーキ制御装置の構成を示すブロック図Block diagram showing the configuration of the brake control device according to the third embodiment 実施の形態に係るブレーキ制御装置の変形例の構成を示すブロック図A block diagram showing a configuration of a modified example of the brake control device according to the embodiment. 実施の形態に係るブレーキ制御装置のハードウェアの構成を示す図The figure which shows the hardware structure of the brake control device which concerns on embodiment.
 以下、実施の形態に係るブレーキ制御装置、駆動制御システム、およびブレーキ制御方法について図面を参照して詳細に説明する。なお図中、同一または同等の部分には同一の符号を付す。 Hereinafter, the brake control device, the drive control system, and the brake control method according to the embodiment will be described in detail with reference to the drawings. In the figure, the same or equivalent parts are designated by the same reference numerals.
 (実施の形態1)
 車両の一例である電気鉄道車両に搭載されるブレーキ制御装置および駆動制御システムを例にして、実施の形態1に係るブレーキ制御装置5および駆動制御システム100について説明する。
(Embodiment 1)
The brake control device 5 and the drive control system 100 according to the first embodiment will be described by taking as an example a brake control device and a drive control system mounted on an electric railway vehicle which is an example of a vehicle.
 図1に示す駆動制御システム100は、車両の駆動制御およびブレーキ制御を行う。駆動制御システム100による駆動制御によって、後述の電動機8が回転することで、車両は駆動力を得て加速することが可能となる。また駆動制御システム100によるブレーキ制御によって、発電機として動作する電動機8で生じる電力が消費され、また後述の機械ブレーキ装置9が作動することで車両にブレーキ力がかかる。この結果、車両は減速をすることが可能となる。換言すれば、駆動制御システム100が電気ブレーキ力および機械ブレーキ力を生じさせることで、車両が減速する。なお駆動制御システム100は、発電機として動作する電動機8で生じる電力を消費する方法として、近隣に位置する車両に電力を供給する回生ブレーキ制御を採用する。 The drive control system 100 shown in FIG. 1 performs drive control and brake control of the vehicle. By the drive control by the drive control system 100, the electric motor 8 described later rotates, so that the vehicle can obtain a driving force and accelerate. Further, the brake control by the drive control system 100 consumes the electric power generated by the electric motor 8 operating as a generator, and the mechanical braking device 9 described later operates to apply a braking force to the vehicle. As a result, the vehicle can decelerate. In other words, the drive control system 100 generates an electric braking force and a mechanical braking force, so that the vehicle decelerates. The drive control system 100 employs regenerative braking control that supplies electric power to vehicles located nearby as a method of consuming electric power generated by the electric motor 8 that operates as a generator.
 詳細については後述するが、駆動制御システム100は、車両の減速度の目標値である目標減速度を得るために必要なブレーキ力である必要ブレーキ力を生じさせるために、ブレーキ制御を行う。ブレーキ制御時に、駆動制御システム100が、必要ブレーキ力に対する電気ブレーキ力の割合に応じた制御を行うことで、実ブレーキ力の必要ブレーキ力に対する追従性およびブレーキの安定性を高めることが可能となる。なお実ブレーキ力は、実際に生じている機械ブレーキ力と実際に生じている電気ブレーキ力の合計を示す。 Although the details will be described later, the drive control system 100 performs brake control in order to generate the required braking force, which is the braking force required to obtain the target deceleration, which is the target value for deceleration of the vehicle. At the time of brake control, the drive control system 100 controls according to the ratio of the electric braking force to the required braking force, so that the followability of the actual braking force to the required braking force and the stability of the brake can be improved. .. The actual braking force indicates the total of the actually generated mechanical braking force and the actually generated electric braking force.
 駆動制御システム100の構成について説明する。駆動制御システム100は、運転員の操作に応じた運転指令を出力する主幹制御器1と、目標減速度を算出する目標減速度算出部2と、車両の実際の減速度である実減速度を算出する実減速度算出部3と、車両の重量を算出する重量算出部4と、車両のブレーキ制御を行うブレーキ制御装置5と、を備える。さらに駆動制御システム100は、車両の駆動力を発生させる電動機8と、図示しない電源から供給される電力を電動機8に供給するための電力に変換し、変換した電力を電動機8に供給する電力変換装置7と、電力変換装置7を制御する電力変換装置制御部6と、車両の機械ブレーキ力を生じさせる機械ブレーキ装置9と、を備える。 The configuration of the drive control system 100 will be described. The drive control system 100 has a master controller 1 that outputs an operation command according to the operation of the operator, a target deceleration calculation unit 2 that calculates a target deceleration, and an actual deceleration that is the actual deceleration of the vehicle. It includes an actual deceleration calculation unit 3 for calculating, a weight calculation unit 4 for calculating the weight of the vehicle, and a brake control device 5 for controlling the brake of the vehicle. Further, the drive control system 100 converts the electric power supplied from the electric motor 8 for generating the driving force of the vehicle and the electric power supplied from the power source (not shown) into the electric power for supplying the electric power 8 and the converted electric power to supply the electric power 8 to the electric motor 8. The device 7 includes a power conversion device control unit 6 that controls the power conversion device 7, and a mechanical braking device 9 that generates a mechanical braking force of the vehicle.
 主幹制御器1は、例えば車両の運転台に設けられ、運転員の操作に応じた力行指令またはブレーキ指令を含む運転指令を出力する。例えば、力行指令およびブレーキ指令はそれぞれ、段階的な指令値である。 The master controller 1 is provided in the cab of the vehicle, for example, and outputs an operation command including a power running command or a brake command according to the operation of the operator. For example, the power running command and the brake command are stepwise command values, respectively.
 目標減速度算出部2は、主幹制御器1から運転指令を取得し、運転指令がブレーキ指令を含む場合、ブレーキ指令に応じて目標減速度を算出する。詳細には、目標減速度算出部2は、ブレーキ指令が示す指令値と目標減速度とを対応付けた目標減速度テーブルを予め保持している。そして、目標減速度算出部2は、主幹制御器1から取得したブレーキ指令、および目標減速度テーブルに基づいて、目標減速度を算出し、ブレーキ制御装置5に送る。 The target deceleration calculation unit 2 acquires an operation command from the master controller 1, and when the operation command includes a brake command, calculates the target deceleration according to the brake command. Specifically, the target deceleration calculation unit 2 holds in advance a target deceleration table in which the command value indicated by the brake command and the target deceleration are associated with each other. Then, the target deceleration calculation unit 2 calculates the target deceleration based on the brake command acquired from the master controller 1 and the target deceleration table, and sends it to the brake control device 5.
 実減速度算出部3は、車両が有する車輪の車軸に取り付けられたPG(Pulse Generator:パルスジェネレーター)が出力するパルス信号から、車軸の回転数を得る。そして、実減速度算出部3は、車軸の回転数から車輪の角速度ω(単位:rad/s)を算出する。そして、実減速度算出部3は、車輪の角速度ωと車輪の直径D1(単位:m)から、下記(1)式を用いて、車両の速度V1を算出する。
  V1=D1・ω/2   ・・・(1)
The actual deceleration calculation unit 3 obtains the rotation speed of the axle from the pulse signal output by the PG (Pulse Generator) attached to the axle of the wheel of the vehicle. Then, the actual deceleration calculation unit 3 calculates the angular velocity ω (unit: rad / s) of the wheel from the rotation speed of the axle. Then, the actual deceleration calculation unit 3 calculates the vehicle speed V1 from the angular velocity ω of the wheel and the diameter D1 (unit: m) of the wheel by using the following equation (1).
V1 = D1 ・ ω / 2 ・ ・ ・ (1)
 さらに、実減速度算出部3は、上述した車両の速度V1の算出を一定間隔で行い、車両の速度の変化から実減速度を算出し、ブレーキ制御装置5に送る。 Further, the actual deceleration calculation unit 3 calculates the speed V1 of the vehicle described above at regular intervals, calculates the actual deceleration from the change in the speed of the vehicle, and sends it to the brake control device 5.
 重量算出部4は、車両が有する台車に設けられた応荷重弁から乗客および荷物の荷重の測定値を取得する。そして、重量算出部4は、荷重の測定値に、予め定められている車体の重量を加算して、車体、乗客および荷物のそれぞれの重量の合計である車両重量を算出し、ブレーキ制御装置5に送る。なお重量算出部4は、車体の重量についての情報を予め保持しているものとする。 The weight calculation unit 4 acquires the measured values of the loads of passengers and luggage from the load-bearing valve provided on the bogie of the vehicle. Then, the weight calculation unit 4 adds a predetermined weight of the vehicle body to the measured value of the load to calculate the vehicle weight which is the total weight of the vehicle body, passengers, and luggage, and the brake control device 5 Send to. It is assumed that the weight calculation unit 4 holds information about the weight of the vehicle body in advance.
 詳細については後述するが、ブレーキ制御装置5は、必要ブレーキ力を算出し、必要ブレーキ力の値を示す必要ブレーキ指令信号S1を電力変換装置制御部6に送る。またブレーキ制御装置5は、発電機として動作する電動機8で生じる電力を消費することで生じる電気ブレーキ力の値を示す電制フィードバック信号S2を電力変換装置制御部6から取得する。そして、ブレーキ制御装置5は、必要ブレーキ力と電気ブレーキ力との差分に応じて機械ブレーキ装置9を制御する。詳細には、ブレーキ制御装置5は、電気ブレーキ力が必要ブレーキ力より小さい場合に、必要ブレーキ力と電気ブレーキ力との差分を機械ブレーキ装置9で補うために、機械ブレーキ装置9を制御する。 Although the details will be described later, the brake control device 5 calculates the required braking force and sends the required brake command signal S1 indicating the value of the required braking force to the power converter control unit 6. Further, the brake control device 5 acquires an electronically controlled feedback signal S2 indicating the value of the electric braking force generated by consuming the electric power generated by the electric motor 8 operating as a generator from the power converter control unit 6. Then, the brake control device 5 controls the mechanical brake device 9 according to the difference between the required braking force and the electric braking force. Specifically, when the electric brake force is smaller than the required braking force, the brake control device 5 controls the mechanical braking device 9 in order to compensate the difference between the required braking force and the electric braking force with the mechanical braking device 9.
 電力変換装置制御部6は、主幹制御器1から取得した運転指令およびブレーキ制御装置5から取得した必要ブレーキ指令信号S1の少なくともいずれかに応じて電力変換装置7が有する後述のスイッチング素子に制御信号を送り、スイッチング素子のオンオフを切り替える。なお電力変換装置制御部6は、電力変換装置7と電動機8との間に流れる電流を検出する図示しない電流センサから、電動機8から電力変換装置7に流れる相電流の測定値を取得し、相電流の測定値に基づいて後述の制御を行う。 The power converter control unit 6 sends a control signal to a switching element described later that the power converter 7 has in response to at least one of an operation command acquired from the main controller 1 and a required brake command signal S1 acquired from the brake control device 5. To switch the switching element on and off. The power conversion device control unit 6 acquires a measured value of the phase current flowing from the electric motor 8 to the power conversion device 7 from a current sensor (not shown) that detects the current flowing between the power conversion device 7 and the electric motor 8. The control described later is performed based on the measured value of the current.
 運転指令が力行指令を含む場合、電力変換装置制御部6は、力行指令が示す車両の加速度の目標値である目標加速度を得るための目標トルクを算出する。また電力変換装置制御部6は、相電流の測定値から電動機8の実際のトルクである実トルクを算出する。そして、電力変換装置制御部6は、電動機8の実トルクを目標トルクに近づけるために、電力変換装置7のスイッチング素子に制御信号を送って、スイッチング素子のオンオフを切り替える。 When the driving command includes the power running command, the power converter control unit 6 calculates the target torque for obtaining the target acceleration, which is the target value of the vehicle acceleration indicated by the power running command. Further, the power converter control unit 6 calculates the actual torque, which is the actual torque of the motor 8, from the measured value of the phase current. Then, the power converter control unit 6 sends a control signal to the switching element of the power converter 7 to switch the switching element on and off in order to bring the actual torque of the motor 8 closer to the target torque.
 また運転指令がブレーキ指令を含む場合、電力変換装置制御部6は、発電機として動作する電動機8から供給される電力を所望の電力に変換するために電力変換装置7を制御する。なお所望の電力は、近隣に位置する車両に供給するための電力を示す。詳細には、電力変換装置制御部6は、電動機8から供給される電力を所望の電力に変換するめに、電力変換装置7のスイッチング素子に制御信号を送ってスイッチング素子のオンオフを切り替える。また電力変換装置制御部6は、相電流の測定値から、発電機として動作する電動機8から供給され、電力変換装置7で変換された電力を近隣に位置する車両に供給することで得られる電気ブレーキ力を算出する。そして、電力変換装置制御部6は、電気ブレーキ力の値を示す電制フィードバック信号S2をブレーキ制御装置5に送る。 When the operation command includes a brake command, the power conversion device control unit 6 controls the power conversion device 7 in order to convert the power supplied from the motor 8 operating as a generator into desired power. The desired electric power indicates the electric power to be supplied to a vehicle located in the vicinity. Specifically, the power converter control unit 6 sends a control signal to the switching element of the power converter 7 to switch the switching element on and off in order to convert the electric power supplied from the electric motor 8 into a desired electric power. Further, the power converter control unit 6 supplies electricity from the electric motor 8 operating as a generator based on the measured value of the phase current, and supplies the electric power converted by the power converter 7 to a vehicle located nearby. Calculate the braking force. Then, the power conversion device control unit 6 sends an electronically controlled feedback signal S2 indicating the value of the electric braking force to the brake control device 5.
 電力変換装置7は、例えばIGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)であるスイッチング素子を有する。スイッチング素子が電力変換装置制御部6によって制御されることで、電力変換装置7は電力変換を行う。詳細には、電力変換装置7は、図示しない集電装置が架線から取得した電力の供給を受け、供給された電力を、電動機8を駆動するための電力に変換し、変換した電力を電動機8に供給する。なお集電装置は、電力変換装置7に対して電力を供給する電源に相当する。また電力変換装置7は、発電機として動作する電動機8から供給される電力を、架線を介して近隣に位置する他の車両に供給するための電力に変換し、出力する。 The power conversion device 7 has, for example, a switching element which is an IGBT (Insulated Gate Bipolar Transistor). The power conversion device 7 performs power conversion by controlling the switching element by the power conversion device control unit 6. Specifically, the power conversion device 7 receives the supply of electric power acquired from the overhead wire by a current collector (not shown), converts the supplied electric power into electric power for driving the electric motor 8, and converts the converted electric power into the electric motor 8. Supply to. The current collector corresponds to a power source that supplies electric power to the electric power converter 7. Further, the electric power conversion device 7 converts the electric power supplied from the electric motor 8 operating as a generator into electric power to be supplied to other vehicles located in the vicinity via the overhead wire, and outputs the electric power.
 電動機8は、電力変換装置7から電力の供給を受けると回転し、シャフトから継手および歯車を介して車軸に動力を伝達する。この結果、車両が駆動力を得て加速することが可能となる。また車両のブレーキ時には、電動機8は、発電機として動作し、電力を電力変換装置7に供給する。なお電動機8は、例えば三相誘導電動機である。 The motor 8 rotates when it receives power from the power converter 7, and transmits power from the shaft to the axle via joints and gears. As a result, the vehicle can obtain a driving force and accelerate. Further, when the vehicle is braked, the electric motor 8 operates as a generator and supplies electric power to the electric power converter 7. The electric motor 8 is, for example, a three-phase induction motor.
 機械ブレーキ装置9は、ブレーキシリンダと、ブレーキシリンダの内部の空気の圧力に応じて変位するピストンと、ピストンに取り付けられた制輪子と、を備える。ブレーキシリンダの内部の空気の圧力は、ブレーキ制御装置5によって制御される。ブレーキシリンダの内部の空気の圧力が高まると、制輪子が車輪踏面に押し付けられ、機械ブレーキ力が生じる。 The mechanical brake device 9 includes a brake cylinder, a piston that displaces according to the pressure of air inside the brake cylinder, and a brake shoe attached to the piston. The pressure of the air inside the brake cylinder is controlled by the brake control device 5. When the pressure of the air inside the brake cylinder increases, the brake shoes are pressed against the wheel treads, and mechanical braking force is generated.
 上記構成を有する駆動制御システム100において、ブレーキ制御を担うブレーキ制御装置5の構成の詳細について説明する。図2に示すブレーキ制御装置5は、実減速度および目標減速度を取得し、実減速度を取得した目標減速度に近づけるために取得した目標減速度を調節する目標調節部11と、必要ブレーキ力を算出する必要ブレーキ力算出部12と、必要ブレーキ力に対する電気ブレーキ力の割合である電気ブレーキ使用率を算出する割合算出部13と、必要ブレーキ力と電気ブレーキ力との差分に応じて機械ブレーキ装置9を制御する機械ブレーキ制御部14と、を備える。 The details of the configuration of the brake control device 5 responsible for the brake control in the drive control system 100 having the above configuration will be described. The brake control device 5 shown in FIG. 2 acquires the actual deceleration and the target deceleration, and adjusts the target deceleration acquired in order to approach the acquired target deceleration, and the required brake. The required braking force calculation unit 12 for calculating the force, the ratio calculation unit 13 for calculating the electric brake usage rate, which is the ratio of the electric braking force to the required braking force, and the machine according to the difference between the required braking force and the electric braking force. A mechanical brake control unit 14 for controlling the brake device 9 is provided.
 目標調節部11は、詳細については後述するが、実減速度βを目標減速度βinに近づけるために、目標減速度βinと実減速度βとの差分である減速度差分(βin-β)、および割合算出部13で算出された電気ブレーキ使用率Rに応じて、目標減速度を調節する。そして、目標調節部11は調節された目標減速度βoutを出力する。 Target adjusting unit 11 will be described later in detail, in order to approximate the actual deceleration beta c in the target deceleration beta in, the target deceleration beta in the deceleration difference is a difference between the actual deceleration beta c (beta in -β c), and electric brake duty calculated by the percentage calculation unit 13 according to the R v, to adjust the target deceleration. Then, the target adjusting unit 11 outputs the adjusted target deceleration β out.
 必要ブレーキ力算出部12は、目標調節部11で調節された目標減速度βoutを得るために必要なブレーキ力である必要ブレーキ力F1を算出する。詳細には、必要ブレーキ力算出部12は、下記(2)式に示すように、目標調節部11で調節された目標減速度βoutに、重量算出部4から取得した車両重量W1を乗算して、必要ブレーキ力F1を算出する。
  F1=βout・W1   ・・・(2)
The required braking force calculation unit 12 calculates the required braking force F1, which is the braking force required to obtain the target deceleration β out adjusted by the target adjusting unit 11. Specifically, the required braking force calculation unit 12 multiplies the target deceleration β out adjusted by the target adjustment unit 11 by the vehicle weight W1 acquired from the weight calculation unit 4, as shown in the following equation (2). Then, the required braking force F1 is calculated.
F1 = β out・ W1 ・ ・ ・ (2)
 そして、必要ブレーキ力算出部12は、必要ブレーキ力F1の値を示す必要ブレーキ指令信号S1を電力変換装置制御部6、割合算出部13、および機械ブレーキ制御部14に送る。 Then, the required brake force calculation unit 12 sends a necessary brake command signal S1 indicating the value of the required brake force F1 to the power conversion device control unit 6, the ratio calculation unit 13, and the mechanical brake control unit 14.
 割合算出部13は、必要ブレーキ力算出部12から必要ブレーキ力F1の値を示す必要ブレーキ指令信号S1を取得し、電力変換装置制御部6から電気ブレーキ力Fの値を示す電制フィードバック信号S2を取得する。そして、割合算出部13は、必要ブレーキ力F1に対する電気ブレーキ力Fの割合を算出する。詳細には、割合算出部13は、下記(3)式に示すように、電制フィードバック信号S2が示す電気ブレーキ力の値Fを、必要ブレーキ指令信号S1が示す必要ブレーキ力の値F1で除算して、電気ブレーキ使用率Rを算出する。そして、割合算出部13は、算出した電気ブレーキ使用率Rを目標調節部11に送る。なお電気ブレーキ使用率Rは、0≦R≦1を満たす。
  R=F/F1   ・・・(3)
The percentage calculation unit 13 obtains the necessary brake command signal S1 indicating the value of the required braking force F1 from the need braking force calculation unit 12, electronically controlled feedback signal indicative of the power converter controller 6 a value of the electric braking force F v Acquire S2. The percentage calculation unit 13 calculates the ratio of the electric braking force F v of the necessity braking force F1. In particular, the percentage calculation unit 13, as shown in the following equation (3), electrically controlled value F v of the electric braking force feedback signal S2 is shown, the value F1 of the required braking force indicated by the required brake command signal S1 Divide to calculate the electric brake usage rate Rv. Then, the ratio calculation unit 13 sends the calculated electric brake usage rate Rv to the target adjustment unit 11. The electric brake usage rate R v satisfies 0 ≦ R v ≦ 1.
R v = F v / F1 ... (3)
 機械ブレーキ制御部14は、必要ブレーキ力算出部12から必要ブレーキ力の値F1を示す必要ブレーキ指令信号S1を取得し、電力変換装置制御部6から電気ブレーキ力の値Fを示す電制フィードバック信号S2を取得する。そして、機械ブレーキ制御部14は、必要ブレーキ力F1と電気ブレーキ力Fとの差分を機械ブレーキ装置9による機械ブレーキ力で補うために、機械ブレーキ装置9を制御する。 Mechanical brake control unit 14 obtains the necessary brake command signal S1 indicating the value F1 of the required braking force from the required braking force calculation unit 12, feedback electronically controlled showing a power converter controlling unit 6 the value F v of the electric braking force Acquire the signal S2. Then, the mechanical brake control unit 14 controls the mechanical brake device 9 in order to compensate the difference between the required braking force F1 and the electric braking force Fv with the mechanical braking force of the mechanical braking device 9.
 詳細には、機械ブレーキ制御部14は、必要ブレーキ力の値F1から電気ブレーキ力の値Fを減算し、機械ブレーキ力の目標値Fを算出する。そして、機械ブレーキ制御部14は、下記(4)式に示すように、機械ブレーキ力の目標値Fを、機械ブレーキ装置9が有する制輪子と車輪との接触面の摩擦係数μおよび機械ブレーキ装置9のブレーキシリンダの断面積に依存した換算係数Sで除算することで、ブレーキシリンダの空気圧の目標値Pを算出する。なお機械ブレーキ制御部14は、摩擦係数μおよび換算係数Sの値を予め保持しているものとする。
   P=F/(μ・S)   ・・・(4)
Specifically, the mechanical brake control unit 14, the value F v of the electric braking force is subtracted from the value F1 of required braking force calculates a target value F p of the mechanical brake force. Then, the mechanical brake control unit 14, as shown in the following equation (4), the target value F p of the mechanical brake force, coefficient of friction μ and the mechanical brake of the contact surface between the brake shoe and the wheel mechanical braking device 9 has by dividing the scaling factor S that is dependent on the sectional area of the brake cylinder of the device 9, to calculate a target value P t of the air pressure in the brake cylinder. It is assumed that the mechanical brake control unit 14 holds in advance the values of the friction coefficient μ and the conversion coefficient S.
P t = F p / (μ ・ S) ・ ・ ・ (4)
 そして、機械ブレーキ制御部14は、図示しない空気溜めから供給される空気を、ブレーキシリンダの空気圧の目標値Pに応じて圧縮し、圧縮した空気を図示しない中継弁を介して機械ブレーキ装置9に送る。この結果、機械ブレーキ装置9のブレーキシリンダの圧力が変化する。ブレーキシリンダの圧力が高くなり、ピストンが変位して制輪子が車輪踏面に押し付けられると、機械ブレーキ力が生じる。なお機械ブレーキ制御部14は、中継弁が出力する空気の圧力を圧力センサで測定し、測定値に基づいて圧力フィードバック制御を行うことが好ましい。 Then, the mechanical brake control unit 14, the air supplied from the air reservoir (not shown), compressed in accordance with a target value P t of the air pressure in the brake cylinder, via a relay valve (not shown) the compressed air mechanical brake device 9 Send to. As a result, the pressure of the brake cylinder of the mechanical brake device 9 changes. When the pressure of the brake cylinder becomes high, the piston is displaced and the brake shoe is pressed against the wheel tread, mechanical braking force is generated. It is preferable that the mechanical brake control unit 14 measures the pressure of the air output from the relay valve with a pressure sensor and performs pressure feedback control based on the measured value.
 上記構成を有するブレーキ制御装置5によるブレーキ制御時に、実ブレーキ力の必要ブレーキ力に対する追従性およびブレーキの安定性を高めることを可能にする目標調節部11について詳細に説明する。 The target adjusting unit 11 that makes it possible to improve the followability of the actual braking force to the required braking force and the stability of the brake when the brake is controlled by the brake control device 5 having the above configuration will be described in detail.
 図3に示す目標調節部11は、目標減速度βinと実減速度βとの差分である減速度差分(βin-β)、および割合算出部13で算出された電気ブレーキ使用率Rに応じて、目標減速度βinに加算する減速度調節量Δβを算出する。そして、目標調節部11は、下記(5)式に示すように、目標減速度βinに減速度調節量Δβを加算して得られる調節された目標減速度βoutを出力する。
  βout=βin+Δβ   ・・・(5)
Target adjusting unit shown in FIG. 3. 11, the target deceleration beta in the deceleration difference is a difference between the actual deceleration β c (β in -β c) , and electric brake duty calculated by the percentage calculation unit 13 The deceleration adjustment amount Δβ to be added to the target deceleration β in is calculated according to R v. Then, the target adjusting unit 11, as shown in equation (5) below, and outputs the adjusted target deceleration beta out is obtained by adding the deceleration adjustment amount Δβ to the target deceleration beta in.
β out = β in + Δβ ・ ・ ・ (5)
 目標調節部11の構成について詳細に説明する。目標調節部11は、目標減速度算出部2から取得した目標減速度βinから、実減速度算出部3から取得した実減速度βを減算して、減速度差分(βin-β)を算出する減算器21と、後述のゲイン調節部24で調節されたフィードバックゲインを用いたフィードバック制御によって、減速度差分(βin-β)に基づいて目標減速度βinに加算する減速度調節量Δβを算出するフィードバック制御部22と、目標減速度βinに減速度調節量Δβを加算する加算器23と、割合算出部13から取得した電気ブレーキ使用率Rに応じてフィードバックゲインを調節するゲイン調節部24と、を備える。 The configuration of the target adjusting unit 11 will be described in detail. The target adjusting unit 11 subtracts the actual deceleration β c acquired from the actual deceleration calculation unit 3 from the target deceleration β in acquired from the target deceleration calculation unit 2, and decelerates the difference (β in − β c). ) Is calculated by the subtractor 21 and the feedback control using the feedback gain adjusted by the gain adjusting unit 24 described later is used to add the deceleration to the target deceleration β in based on the deceleration difference (β in − β c). a feedback control section 22 for calculating the speed adjustment amount [Delta] [beta], an adder 23 for adding the deceleration adjustment amount [Delta] [beta] to the target deceleration beta in, the feedback gain in response to an electrical brake duty R v obtained from the percentage calculation unit 13 A gain adjusting unit 24 for adjusting the speed is provided.
 減算器21は、目標減速度βinから実減速度βを減算して、減速度差分(βin-β)を算出し、フィードバック制御部22に送る。 The subtractor 21 subtracts the actual deceleration β c from the target deceleration β in , calculates the deceleration difference (β in −β c ), and sends it to the feedback control unit 22.
 フィードバック制御部22は、減速度のフィードバック制御を行って、減速度調節量Δβを算出し、減速度調節量Δβを加算器23に送る。フィードバック制御は少なくとも1つのフィードバックゲインを用いて行われる。 The feedback control unit 22 performs deceleration feedback control, calculates the deceleration adjustment amount Δβ, and sends the deceleration adjustment amount Δβ to the adder 23. Feedback control is performed using at least one feedback gain.
 なお実施の形態1では、フィードバック制御部22は、PID(Proportional Integral Differential)制御を行う。詳細には、フィードバック制御部22は、下記(6)式に基づいて、PID制御を行う。下記(6)式において、K1は比例ゲイン、K2は積分ゲイン、K3は微分ゲインを示す。なおフィードバック制御部22は、比例ゲインK1、積分ゲインK2、および微分ゲインK3をゲイン調節部24から取得する。 In the first embodiment, the feedback control unit 22 performs PID (Proportional Integral Different) control. Specifically, the feedback control unit 22 performs PID control based on the following equation (6). In the following equation (6), K1 indicates a proportional gain, K2 indicates an integrated gain, and K3 indicates a differential gain. The feedback control unit 22 acquires the proportional gain K1, the integrated gain K2, and the differential gain K3 from the gain adjusting unit 24.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 加算器23は、目標減速度算出部2から取得した目標減速度βinに、減速度調節量Δβを加算し、調節された目標減速度βoutを必要ブレーキ力算出部12に送る。 The adder 23 adds the deceleration adjustment amount Δβ to the target deceleration β in acquired from the target deceleration calculation unit 2, and sends the adjusted target deceleration β out to the required braking force calculation unit 12.
 ゲイン調節部24は、フィードバック制御部22で用いられる少なくとも1つのフィードバックの少なくともいずれかを、割合算出部13から取得した電気ブレーキ使用率Rに応じて調節する。詳細には、ゲイン調節部24は、フィードバック制御部22で用いられる少なくとも1つのフィードバックの少なくともいずれかを、電気ブレーキ使用率Rに対して正の相関関係をもたせて調節する。 Gain adjusting unit 24, one at least of the at least one feedback used in the feedback control unit 22 is adjusted according to the electric brake duty R v obtained from the percentage calculation unit 13. Specifically, the gain adjusting unit 24, at least one of the at least one feedback used by the feedback controller 22, adjusted imparted a positive correlation with the electric brake duty R v.
 実施の形態1では、ゲイン調節部24は、電気ブレーキ使用率Rに応じた比例ゲインK1、積分ゲインK2、および微分ゲインK3をフィードバック制御部22に送る。詳細には、比例ゲインK1、積分ゲインK2、および微分ゲインK3はそれぞれ、電気ブレーキ使用率Rと正の相関関係を有する。 In the first embodiment, the gain adjusting unit 24 sends electric brake duty R v proportional gain K1 corresponding to the integral gain K2, and the differential gain K3 to the feedback control unit 22. Specifically, the proportional gain K1, the integrated gain K2, and the differential gain K3 each have a positive correlation with the electric brake utilization rate Rv.
 例えば、ゲイン調節部24は、図4に示すように、電気ブレーキ使用率Rと比例ゲインK1、積分ゲインK2、および微分ゲインK3のそれぞれとを対応付けるフィードバックゲインテーブルを予め保持している。なお比例ゲインK1については、K11>K12>K13>K14>K15が成り立つ。同様に、積分ゲインK2については、K21>K22>K23>K24>K25が成り立つ。また微分ゲインK3については、K31>K32>K33>K34>K35が成り立つ。 For example, as shown in FIG. 4, the gain adjusting unit 24 holds in advance a feedback gain table that associates the electric brake usage rate Rv with the proportional gain K1, the integrated gain K2, and the differential gain K3, respectively. For the proportional gain K1, K 11 > K 12 > K 13 > K 14 > K 15 holds. Similarly, for the integrated gain K2, K 21 > K 22 > K 23 > K 24 > K 25 holds. For the differential gain K3, K 31 > K 32 > K 33 > K 34 > K 35 holds.
 電気ブレーキ使用率Rが大きくなると、比例ゲインK1、積分ゲインK2、および微分ゲインK3がそれぞれ大きくなり、上記(6)式で算出される減速度調節量Δβの絶対値が大きくなる。換言すれば、応答性の高い電気ブレーキの使用率である電気ブレーキ使用率Rが大きくなるとフィードバックゲインが大きくなるため、実ブレーキ力の必要ブレーキ力に対する追従性を高めることが可能となる。 As the electric brake usage rate R v increases, the proportional gain K1, the integrated gain K2, and the differential gain K3 each increase, and the absolute value of the deceleration adjustment amount Δβ calculated by the above equation (6) increases. In other words, since the feedback gain is increased when the electric brake duty R v is a utilization of the highly responsive electric brake is increased, it is possible to enhance the followability to required braking force of the actual braking force.
 また電気ブレーキ使用率Rが小さくなる、すなわち、機械ブレーキの使用率が大きくなると、比例ゲインK1、積分ゲインK2、および微分ゲインK3がそれぞれ小さくなるため、上記(6)式で算出される減速度調節量Δβの絶対値が小さくなる。換言すれば、応答性の低い機械ブレーキの使用率が大きくなるとフィードバックゲインが小さくなるため、オーバーシュートの発生が抑制され、ブレーキの安定性を高めることが可能となる。 Further, when the electric brake usage rate R v becomes small, that is, when the mechanical brake usage rate becomes large, the proportional gain K1, the integral gain K2, and the differential gain K3 become smaller, respectively, so that the reduction calculated by the above equation (6) is performed. The absolute value of the speed adjustment amount Δβ becomes smaller. In other words, as the usage rate of the mechanical brake with low responsiveness increases, the feedback gain decreases, so that the occurrence of overshoot is suppressed and the stability of the brake can be improved.
 上記構成を有する駆動制御システム100の動作について説明する。
 車両の力行時、すなわち、運転指令が力行指令を含む場合、電力変換装置制御部6は、力行指令が示す目標加速度を得るための目標トルクを算出する。また電力変換装置制御部6は、電流センサから取得した相電流の測定値から、電動機8の実トルクを算出する。そして、電力変換装置制御部6は、電動機8の実トルクを目標トルクに近づけるために、電力変換装置7のスイッチング素子に制御信号を送って、スイッチング素子のオンオフを切り替える。
The operation of the drive control system 100 having the above configuration will be described.
When the vehicle is power running, that is, when the driving command includes the power running command, the power converter control unit 6 calculates the target torque for obtaining the target acceleration indicated by the power running command. Further, the power converter control unit 6 calculates the actual torque of the motor 8 from the measured value of the phase current acquired from the current sensor. Then, the power converter control unit 6 sends a control signal to the switching element of the power converter 7 to switch the switching element on and off in order to bring the actual torque of the motor 8 closer to the target torque.
 この結果、電力変換装置7は、例えば、集電装置から供給される直流電力を三相交流電力に変換し、三相交流電力を電動機8に供給する。 As a result, the power conversion device 7 converts, for example, the DC power supplied from the current collector into three-phase AC power, and supplies the three-phase AC power to the motor 8.
 三相交流電力の供給を受けた電動機8は回転し、電動機8のシャフトから継手および歯車を介して車輪の車軸に動力が伝達される。この結果、車両が駆動力を得て加速する。 The motor 8 supplied with the three-phase AC power rotates, and power is transmitted from the shaft of the motor 8 to the axles of the wheels via joints and gears. As a result, the vehicle gains driving force and accelerates.
 車両のブレーキ時、すなわち、運転指令がブレーキ指令を含む場合、目標減速度算出部2は、ブレーキ指令に応じて、目標減速度βinを算出し、ブレーキ制御装置5に送る。
 また実減速度算出部3は、実減速度βを算出し、ブレーキ制御装置5に送る。
 また重量算出部4は、車両が有する台車に設けられた応荷重弁から乗客および荷物の荷重の測定値を取得する。そして、重量算出部4は、荷重の測定値に予め定められている車体の重量を加算して、車体、乗客および荷物のそれぞれの重量の合計である車両重量W1を算出し、ブレーキ制御装置5に送る。
When the vehicle is braked, that is, when the driving command includes the brake command, the target deceleration calculation unit 2 calculates the target deceleration β in according to the brake command and sends it to the brake control device 5.
Further, the actual deceleration calculation unit 3 calculates the actual deceleration β c and sends it to the brake control device 5.
Further, the weight calculation unit 4 acquires the measured values of the loads of passengers and luggage from the load-bearing valve provided on the bogie of the vehicle. Then, the weight calculation unit 4 adds a predetermined weight of the vehicle body to the measured value of the load to calculate the vehicle weight W1 which is the total weight of the vehicle body, passengers, and luggage, and the brake control device 5 Send to.
 目標減速度βin、実減速度β、および車両重量W1に基づいて、ブレーキ制御装置5が行うブレーキ制御について図5を用いて説明する。目標調節部11は、目標減速度算出部2から目標減速度βinを取得しない間は(ステップS11;No)、ステップS11の処理を繰り返す。目標調節部11は、目標減速度βinを取得すると(ステップS11;Yes)、実減速度算出部3から実減速度βを取得する(ステップS12)。そして、目標調節部11は、目標減速度βinと実減速度βの差分、および電気ブレーキ使用率Rに応じて、目標減速度を調節する(ステップS13)。 The brake control performed by the brake control device 5 based on the target deceleration β in , the actual deceleration β c , and the vehicle weight W1 will be described with reference to FIG. The target adjusting unit 11 repeats the process of step S11 while the target deceleration β in is not acquired from the target deceleration calculation unit 2 (step S11; No). When the target adjusting unit 11 acquires the target deceleration β in (step S11; Yes), the target adjusting unit 11 acquires the actual deceleration β c from the actual deceleration calculation unit 3 (step S12). Then, the target adjusting unit 11 adjusts the target deceleration according to the difference between the target deceleration β in and the actual deceleration β c , and the electric brake usage rate R v (step S13).
 必要ブレーキ力算出部12は、重量算出部4から車両重量W1を取得する(ステップS14)。そして、必要ブレーキ力算出部12は、ステップS13で調節された目標減速度βoutを得るために必要なブレーキ力である必要ブレーキ力F1を算出し、必要ブレーキ力の値F1を示す必要ブレーキ指令信号S1を電力変換装置制御部6、割合算出部13、および機械ブレーキ制御部14に送る(ステップS15)。 The required braking force calculation unit 12 acquires the vehicle weight W1 from the weight calculation unit 4 (step S14). Then, the required braking force calculation unit 12 calculates the required braking force F1, which is the braking force required to obtain the target deceleration β out adjusted in step S13, and indicates the required braking force value F1 indicating the required braking force value F1. The signal S1 is sent to the power converter control unit 6, the ratio calculation unit 13, and the mechanical brake control unit 14 (step S15).
 電力変換装置制御部6は、ステップS15で送られた必要ブレーキ指令信号S1を取得すると、必要ブレーキ指令信号S1が示す必要ブレーキ力の値F1に応じて、電力変換装置7が有するスイッチング素子に制御信号を送り、スイッチング素子のオンオフを切り替える。この結果、発電機として動作する電動機8から供給された電力は、電力変換装置7で変換され、集電装置および架線を介して近隣に位置する他の車両に供給される。このように発電機として動作する電動機8で生じた電力を消費することで、電気ブレーキ力が生じる。また電力変換装置制御部6は、電気ブレーキ力Fを算出し、電気ブレーキ力の値Fを示す電制フィードバック信号S2をブレーキ制御装置5の割合算出部13および機械ブレーキ制御部14に送る。 When the power converter control unit 6 acquires the required brake command signal S1 sent in step S15, the power converter control unit 6 controls the switching element of the power converter 7 according to the required brake force value F1 indicated by the required brake command signal S1. A signal is sent to switch the switching element on and off. As a result, the electric power supplied from the electric motor 8 operating as a generator is converted by the power conversion device 7 and supplied to other vehicles located in the vicinity via the current collector and the overhead wire. By consuming the electric power generated by the electric motor 8 that operates as a generator in this way, an electric braking force is generated. The power converter controller 6 calculates the electric braking force F v, sending the electronically controlled feedback signal S2 indicating the value F v of the electric braking force to the percentage calculation unit 13 and the mechanical brake control unit 14 of the brake control apparatus 5 ..
 割合算出部13は、電制フィードバック信号S2を取得すると、電気ブレーキ使用率Rを算出する(ステップS16)。
 機械ブレーキ制御部14は、電制フィードバック信号S2を取得すると、必要ブレーキ力F1と電気ブレーキ力Fとの差分を機械ブレーキ装置9による機械ブレーキ力で補うために、機械ブレーキ装置9を制御する(ステップS17)。ステップS17の処理が終了すると、ブレーキ制御装置5は、ステップS11から上述の処理を繰り返し行う。
The percentage calculation unit 13 obtains the electronically controlled feedback signal S2, and calculates the electric brake duty R v (step S16).
When the mechanical brake control unit 14 acquires the electronically controlled feedback signal S2, the mechanical brake control unit 14 controls the mechanical brake device 9 in order to compensate the difference between the required braking force F1 and the electric braking force Fv with the mechanical braking force of the mechanical braking device 9. (Step S17). When the process of step S17 is completed, the brake control device 5 repeats the above process from step S11.
 以上説明した通り、実施の形態1に係るブレーキ制御装置5は、電気ブレーキ使用率Rに応じて目標減速度βinを調節し、調節された目標減速度βoutに応じた必要ブレーキ力F1に基づいて、電気ブレーキ力および機械ブレーキ力を生じさせる。このため、応答性の高い電気ブレーキの使用率が高くなる場合にフィードバックゲインを大きくすることで、実ブレーキ力の必要ブレーキ力に対する追従性を高めることが可能となる。また応答性の低い機械ブレーキの使用率が高くなる場合にフィードバックゲインを小さくすることで、機械ブレーキでのオーバーシュートの発生が抑制され、ブレーキの安定性を高めることが可能となる。 As described above, the brake control device 5 according to the first embodiment adjusts the target deceleration β in according to the electric brake usage rate R v , and the required braking force F1 according to the adjusted target deceleration β out. Based on, an electric braking force and a mechanical braking force are generated. Therefore, when the usage rate of the highly responsive electric brake is high, the feedback gain can be increased to improve the followability of the actual braking force to the required braking force. Further, by reducing the feedback gain when the usage rate of the mechanical brake having low responsiveness becomes high, the occurrence of overshoot in the mechanical brake can be suppressed, and the stability of the brake can be improved.
 (実施の形態2)
 目標調節部11の構成は、実減速度βを目標減速度βinに近づけるためのフィードバック制御が可能であれば任意である。減速度調節量Δβの絶対値が閾値以下となる範囲で目標減速度βinを調節する目標調節部15について実施の形態2で説明する。
(Embodiment 2)
The configuration of the target adjusting unit 11 is arbitrary as long as feedback control for bringing the actual deceleration β c closer to the target deceleration β in is possible. The target adjusting unit 15 for adjusting the target deceleration β in within a range in which the absolute value of the deceleration adjusting amount Δβ is equal to or less than the threshold value will be described in the second embodiment.
 駆動制御システム100およびブレーキ制御装置5の構成は、実施の形態1と同様である。ただし、ブレーキ制御装置5は、目標減速度βinを調節するために目標調節部15を備える。 The configuration of the drive control system 100 and the brake control device 5 is the same as that of the first embodiment. However, the brake control device 5 includes a target adjusting unit 15 for adjusting the target deceleration β in.
 図6に示す目標調節部15は、図3に示す実施の形態1に係るブレーキ制御装置5が備える目標調節部11の構成に加えて、制限部25をさらに備える。 The target adjusting unit 15 shown in FIG. 6 further includes a limiting unit 25 in addition to the configuration of the target adjusting unit 11 included in the brake control device 5 according to the first embodiment shown in FIG.
 制限部25は、フィードバック制御部22が出力する減速度調節量Δβの絶対値が閾値Thβを超える場合には、絶対値を閾値Thβにあわせて減速度調節量Δβを補正し、補正した減速度調節量Δβ’を出力する。なお制限部25は、フィードバック制御部22が出力する減速度調節量Δβの絶対値が閾値以下であれば、フィードバック制御部22から取得した減速度調節量Δβを補正した減速度調節量Δβ’として出力する。 When the absolute value of the deceleration adjustment amount Δβ output by the feedback control unit 22 exceeds the threshold value Th β , the limiting unit 25 corrects and corrects the deceleration adjustment amount Δβ according to the threshold value Th β. Outputs the deceleration adjustment amount Δβ'. If the absolute value of the deceleration adjustment amount Δβ output by the feedback control unit 22 is equal to or less than the threshold value, the limiting unit 25 sets the deceleration adjustment amount Δβ obtained from the feedback control unit 22 as a corrected deceleration adjustment amount Δβ'. Output.
 閾値Thβは、例えば、実減速度算出部3が算出した実減速度βに含まれ得る誤差の大きさである。なお閾値Thβは、電気ブレーキ使用率Rに応じて変化することが好ましい。例えば、閾値Thβとして用いられる実減速度βに含まれる誤差Eは、下記(7)式に示すように、電気ブレーキ力のみが働いている場合の実減速度βに含まれる誤差である誤差Eおよび機械ブレーキ力のみが働いている場合の実減速度βに含まれる誤差である誤差Eに基づいて算出されればよい。
  E=R・E+(1-R)・E   ・・・(7)
The threshold value Th β is, for example, the magnitude of the error that can be included in the actual deceleration β c calculated by the actual deceleration calculation unit 3. Note the threshold Th beta, it is preferable that changes according to the electric brake duty R v. For example, the error error E c included in the actual deceleration beta c used as the threshold value Th beta is included as shown in the following equation (7), the actual deceleration beta c in a case where only the electric brake force is acting It may be calculated based on the error E v, which is the error included in the actual deceleration β c when only the mechanical braking force is working, and the error E p.
E c = R v · E v + (1-R v ) · E p ... (7)
 この場合、制限部25は、予め算出された誤差Eおよび誤差Eの値を予め保持しており、割合算出部13から取得した電気ブレーキ使用率Rを用いて上記(7)式から算出した誤差Eを閾値Thβとして用いればよい。 In this case, the limiting unit 25 holds in advance the values of the error E v and the error E p calculated in advance, and uses the electric brake usage rate R v obtained from the ratio calculation unit 13 from the above equation (7). The calculated error E c may be used as the threshold value Th β.
 誤差Eおよび誤差Eの算出の仕方について、以下に説明する。
 誤差Eは、下記(8)式で表されるように、電気ブレーキ力のみが働いている場合に実減速度算出部3の算出した実減速度βcvと、電気ブレーキ力のみが働いている場合に実際に生じている実減速度βに基づいて定義される。
  E=βcv-β   ・・・(8)
The method of calculating the error E v and the error E p will be described below.
As expressed by the following equation (8), the error Ev is the actual deceleration β cv calculated by the actual deceleration calculation unit 3 when only the electric braking force is working, and only the electric braking force is working. It is defined based on the actual deceleration β v that actually occurs when there is.
E v = β cv- β v ... (8)
 また電気ブレーキ力のみが働いている場合に実減速度算出部3が算出した実減速度βcvは誤差を含む。詳細には、実減速度βcvは、下記(9)式に示すように、電気ブレーキ力のみが働いている場合に実際に生じている電気ブレーキ力Fと、電制フィードバック信号S2が示す電気ブレーキ力Fの値に含まれる誤差EFvと、実際の車両重量M1と、重量算出部4で算出された車両重量W1に含まれる誤差EW1とに基づいて定義される。
  βcv=(F+EFv)/(M1+EW1)   ・・・(9)
Further, the actual deceleration β cv calculated by the actual deceleration calculation unit 3 when only the electric braking force is working includes an error. In particular, the actual deceleration beta cv, as shown in the following equation (9), the electric brake force F v actually occurring when only the electric braking force is acting, indicated electronically controlled feedback signal S2 It is defined based on the error E Fv included in the value of the electric braking force F v , the actual vehicle weight M1, and the error E W1 included in the vehicle weight W1 calculated by the weight calculation unit 4.
β cv = (F v + E Fv ) / (M1 + E W1 ) ・ ・ ・ (9)
 また電気ブレーキ力のみが働いている場合に実際に生じている実減速度βは、下記(10)式に示すように、電気ブレーキ力のみが働いている場合に実際に生じている電気ブレーキ力Fと、実際の車両重量M1とに基づいて定義される。
  β=F/M1   ・・・(10)
Further, the actual deceleration β v that actually occurs when only the electric braking force is working is the electric brake that actually occurs when only the electric braking force is working, as shown in the following equation (10). It is defined based on the force Fv and the actual vehicle weight M1.
β v = F v / M1 ・ ・ ・ (10)
 上記(9)式における誤差EFvは、電流センサの測定誤差の上限値に応じて定められればよい。また上記(9)式における誤差EW1は、応荷重弁の測定誤差の上限値に応じて定められればよい。例えばシミュレーションによって得られた実減速度β、電気ブレーキ力F、および車両重量M1のそれぞれの理想値に基づいて、上記(8)-(10)式から、誤差Eが算出される。 The error E Fv in the above equation (9) may be determined according to the upper limit of the measurement error of the current sensor. The error E W1 in Equation (9) is only to be determined in accordance with the upper limit of the measurement error of the variable load valve. For example, the error E c is calculated from the above equations (8)-(10) based on the ideal values of the actual deceleration β v , the electric braking force F v, and the vehicle weight M1 obtained by the simulation.
 また誤差Eは、下記(11)式で表されるように、機械ブレーキ力のみが働いている場合に実減速度算出部3の算出した実減速度βcpと、機械ブレーキ力のみが働いている場合に実際に生じている実減速度βに基づいて定義される。
  E=βcp-β   ・・・(11)
Further, as the error E p , as expressed by the following equation (11), when only the mechanical braking force is applied, only the actual deceleration β cp calculated by the actual deceleration calculation unit 3 and the mechanical braking force act. It is defined based on the actual deceleration β p that actually occurs when.
E p = β cpp ... (11)
 また機械ブレーキ力のみが働いている場合に実減速度算出部3の算出した実減速度βcpは誤差を含む。詳細には、実減速度βcpは、下記(12)式に示すように、機械ブレーキ力のみが働いている場合に実際に生じている機械ブレーキ力Fと、機械ブレーキ制御部14が圧力センサの測定値に基づいて算出する機械ブレーキ力Fの値に含まれる誤差EFpと、実際の車両重量M1と、重量算出部4で算出された車両重量W1に含まれる誤差EW1とに基づいて定義される。
  βcp=(F+EFp)/(M1+EW1)   ・・・(12)
Further, when only the mechanical braking force is working, the actual deceleration β cp calculated by the actual deceleration calculation unit 3 includes an error. Specifically, as shown in the following equation (12), the actual deceleration β cp is the mechanical brake force F p actually generated when only the mechanical brake force is applied, and the pressure of the mechanical brake control unit 14. The error E Fp included in the value of the mechanical braking force F p calculated based on the measured value of the sensor , the actual vehicle weight M1, and the error E W1 included in the vehicle weight W1 calculated by the weight calculation unit 4 Defined based on.
β cp = (F p + E Fp ) / (M1 + E W1 ) ・ ・ ・ (12)
 また機械ブレーキ力のみが働いている場合に実際に生じている実減速度βは、下記(13)式に示すように、機械ブレーキ力のみが働いている場合に実際に生じている機械ブレーキ力Fと、実際の車両重量M1とに基づいて定義される。
  β=F/M1   ・・・(13)
Further, the actual deceleration β p actually generated when only the mechanical braking force is applied is the mechanical brake actually generated when only the mechanical braking force is applied, as shown in the following equation (13). It is defined based on the force F p and the actual vehicle weight M1.
β p = F p / M1 ・ ・ ・ (13)
 誤差EFpは圧力センサの測定誤差および摩擦係数μの誤差に依存する。詳細には、誤差EFpは、下記(14)式に示すように、実際のブレーキシリンダ内の空気圧Pと、圧力センサの測定誤差EPmと、実際の摩擦係数μに対する誤差Δμとに基づいて、定められる。
  EFp=(P+EPm)・(μ+Δμ)・S-P・μ・S   
  ・・・(14)
The error E Fp depends on the measurement error of the pressure sensor and the error of the friction coefficient μ. Specifically, the error E Fp, as shown in the following equation (14), and the air pressure P m in the actual brake cylinder, a measurement error E Pm of the pressure sensor, to the error Δμ to the actual friction coefficient mu m It is determined based on.
E Fp = (P m + E Pm) · (μ m + Δμ) · S-P m · μ m · S
... (14)
 また誤差EW1は、応荷重弁の測定誤差の上限値に応じて定められればよい。例えばシミュレーションによって得られた実減速度β、機械ブレーキ力F、車両重量M1、空気圧P、および摩擦係数μのそれぞれの理想値に基づいて、上記(11)-(14)式から誤差Eは算出される。 Further, the error E W1 may be determined according to the upper limit value of the measurement error of the load-bearing valve. For example, from the above equations (11)-(14) based on the ideal values of the actual deceleration β p , the mechanical braking force F p , the vehicle weight M1, the air pressure P m , and the friction coefficient μ m obtained by the simulation. The error E p is calculated.
 さらに閾値Thβは、目標減速度βinと正の相関関係を有することが好ましい。この場合、制限部25は、目標減速度βinと閾値Thβを対応付ける閾値テーブルを予め保持していればよい。そして、制限部25は、目標減速度算出部2から、目標減速度βinを取得し、目標減速度βinに応じた閾値Thβを用いて、減速度調節量Δβを補正すればよい。なお上記(7)式で表される誤差Eを閾値Thβとして用いる場合、制限部25は、目標減速度βinと誤差Eおよび誤差Eとを対応付ける閾値テーブルを予め保持していればよい。 Further, the threshold Th β preferably has a positive correlation with the target deceleration β in. In this case, the limiting unit 25 may hold in advance a threshold table for associating the target deceleration β in with the threshold Th β. Then, the limiting unit 25 may acquire the target deceleration β in from the target deceleration calculation unit 2 and correct the deceleration adjustment amount Δβ by using the threshold value Th β corresponding to the target deceleration β in. When the error E c represented by the above equation (7) is used as the threshold value Th β , the limiting unit 25 holds in advance a threshold value table for associating the target deceleration β in with the error E v and the error E p. Just do it.
 以上説明した通り、実施の形態2に係るブレーキ制御装置5によれば、減速度調節量Δβの絶対値は、閾値Thβ以下に維持されるため、フィードバック制御部22におけるフィードバック制御においてオーバーシュートの発生が抑制される。この結果、ブレーキの安定性を高めることが可能となる。 As described above, according to the brake control device 5 according to the second embodiment, the absolute value of the deceleration adjustment amount Δβ is maintained below the threshold value Th β, so that the feedback control in the feedback control unit 22 causes an overshoot. Occurrence is suppressed. As a result, the stability of the brake can be improved.
 (実施の形態3)
 近隣に力行中の車両が存在しない場合、他の車両に電力を供給して電動機8で生じた電力を消費することができず、電気ブレーキ力によって車両を減速することができない。電気ブレーキ力によって車両を減速することができない状態である回生失効が起こった場合には、機械ブレーキ装置9を作動させて機械ブレーキ力により車両を減速させる必要がある。実施の形態3では、機械ブレーキ装置9を安定的に作動させるためのブレーキ制御装置31について説明する。
(Embodiment 3)
When there is no powering vehicle in the vicinity, it is not possible to supply electric power to other vehicles to consume the electric power generated by the electric motor 8, and the vehicle cannot be decelerated by the electric braking force. When regenerative braking occurs in which the vehicle cannot be decelerated by the electric braking force, it is necessary to operate the mechanical braking device 9 to decelerate the vehicle by the mechanical braking force. In the third embodiment, the brake control device 31 for stably operating the mechanical brake device 9 will be described.
 図7に示すブレーキ制御装置31は、電力変換装置制御部6から、電気ブレーキ力が生じていないことを示す失効信号S3を取得すると、割合算出部13において、電制フィードバック信号S2が示す値によらず、電気ブレーキ使用率Rを0にする。この結果、ゲイン調節部24が出力するフィードバックゲインは、機械ブレーキ装置9に適した値となる。このため、フィードバック制御によって、機械ブレーキのオーバーシュートが発生することが抑制される。 When the brake control device 31 shown in FIG. 7 acquires the revocation signal S3 indicating that no electric braking force is generated from the power converter control unit 6, the ratio calculation unit 13 sets the value indicated by the electronically controlled feedback signal S2. Yorazu, the electric brake usage rate R v to 0. As a result, the feedback gain output by the gain adjusting unit 24 becomes a value suitable for the mechanical braking device 9. Therefore, the feedback control suppresses the occurrence of overshoot of the mechanical brake.
 なお電力変換装置制御部6は、例えば、電力変換装置7の電源に近い端子間電圧が過電圧となった場合に、電気ブレーキ力が生じていないと判別すればよい。 Note that the power converter control unit 6 may determine that no electric braking force is generated when, for example, the voltage between terminals close to the power supply of the power converter 7 becomes overvoltage.
 以上説明した通り、実施の形態3に係るブレーキ制御装置31によれば、電気ブレーキ力が生じなくなると、フィードバック制御部22におけるフィードバック制御で用いられるフィードバックゲインが機械ブレーキ装置9に適した値となる。この結果、フィードバック制御によって、機械ブレーキのオーバーシュートが発生することが抑制され、ブレーキの安定性を高めることが可能となる。 As described above, according to the brake control device 31 according to the third embodiment, when the electric braking force is no longer generated, the feedback gain used in the feedback control in the feedback control unit 22 becomes a value suitable for the mechanical brake device 9. .. As a result, the feedback control suppresses the occurrence of overshoot of the mechanical brake, and it is possible to improve the stability of the brake.
 なお各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。例えば、実施の形態3に係るブレーキ制御装置31は、実施の形態2に係る目標調節部15を備えてもよい。 It is possible to combine each embodiment, and to appropriately modify or omit each embodiment. For example, the brake control device 31 according to the third embodiment may include the target adjusting unit 15 according to the second embodiment.
 またブレーキ制御装置5,31は、予め定められた車両の速度と電気ブレーキ使用率Rとの関係を用いて、目標減速度βinを調節してもよい。一例として、図8に示すブレーキ制御装置32は、割合算出部13を備えない。ブレーキ制御装置32が有する目標調節部11は、車両の速度と電気ブレーキ使用率Rとの関係を予め保持している。また目標調節部11は、実減速度算出部3から車両の速度を取得し、車両の速度と電気ブレーキ使用率Rとの関係から、電気ブレーキ使用率R’を算出する。そして、目標調節部11は、目標減速度βinと実減速度βとの差分、および算出した電気ブレーキ使用率R’に応じて、目標減速度βinを調節し、調節した目標減速度βoutを出力する。 Further, the brake control devices 5 and 31 may adjust the target deceleration β in by using the predetermined relationship between the vehicle speed and the electric brake usage rate R v. As an example, the brake control device 32 shown in FIG. 8 does not include the ratio calculation unit 13. The target adjusting unit 11 included in the brake control device 32 holds in advance the relationship between the speed of the vehicle and the electric brake usage rate Rv. Further, the target adjusting unit 11 acquires the speed of the vehicle from the actual deceleration calculation unit 3, and calculates the electric brake usage rate R v'from the relationship between the vehicle speed and the electric brake usage rate R v '. Then, the target adjusting unit 11, the difference between the target deceleration beta in the actual deceleration beta c, and calculated according to the electric brake duty R v ', to adjust the target deceleration beta in, adjusted the reduction targets Output velocity β out.
 図8に示すブレーキ制御装置32は、実施の形態3に示したように、電力変換装置制御部6から失効信号S3を取得してもよい。例えば、目標調節部11は、電力変換装置制御部6から失効信号S3を取得すると、電制フィードバック信号S2が示す値によらず、電気ブレーキ使用率Rを0にする。そして、目標調節部11は、目標減速度βinと実減速度βとの差分、および算出した電気ブレーキ使用率R’に応じて、目標減速度βinを調節し、調節した目標減速度βoutを出力する。 As shown in the third embodiment, the brake control device 32 shown in FIG. 8 may acquire the revocation signal S3 from the power conversion device control unit 6. For example, when the target adjusting unit 11 acquires the revocation signal S3 from the power converter control unit 6, the electric brake usage rate Rv is set to 0 regardless of the value indicated by the electronically controlled feedback signal S2. Then, the target adjusting unit 11, the difference between the target deceleration beta in the actual deceleration beta c, and calculated according to the electric brake duty R v ', to adjust the target deceleration beta in, adjusted the reduction targets Output velocity β out.
 図9に示すように、ブレーキ制御装置5,31,32はそれぞれ、各部を制御するハードウェア構成として、プロセッサ41、メモリ42、およびインターフェース43を備える。ブレーキ制御装置5,31,32の各機能は、プロセッサ41がメモリ42に記憶されたプログラムを実行することにより実現される。インターフェース43はブレーキ制御装置5と、他の装置とを接続し、通信を確立させるためのものである。なおブレーキ制御装置5,31,32は、必要に応じて複数の種類のインターフェース43を備えてもよい。 As shown in FIG. 9, each of the brake control devices 5, 31 and 32 includes a processor 41, a memory 42, and an interface 43 as a hardware configuration for controlling each part. Each function of the brake control devices 5, 31 and 32 is realized by the processor 41 executing a program stored in the memory 42. The interface 43 is for connecting the brake control device 5 and another device and establishing communication. The brake control devices 5, 31 and 32 may be provided with a plurality of types of interfaces 43, if necessary.
 図9では、ブレーキ制御装置5,31,32がそれぞれ、プロセッサ41およびメモリ42を1つずつ備えているが、ブレーキ制御装置5,31,32はそれぞれ、複数のプロセッサ41と、複数のメモリ42と、を備えてもよい。この場合、複数のプロセッサ41および複数のメモリ42が連携することで、ブレーキ制御装置5,31,32の各機能が実現されればよい。 In FIG. 9, the brake control devices 5, 31 and 32 each include one processor 41 and one memory 42, but the brake control devices 5, 31 and 32 each include a plurality of processors 41 and a plurality of memories 42, respectively. And may be provided. In this case, the functions of the brake control devices 5, 31 and 32 may be realized by the cooperation of the plurality of processors 41 and the plurality of memories 42.
 プロセッサ41、メモリ42、およびインターフェース43を有し、制御処理を行う中心となる部分は、専用のシステムによらず、通常のコンピュータシステムを用いて実現可能である。一例として、上述の動作を実行するためのプログラムを、コンピュータにインストールすることにより、上述の処理を実行するブレーキ制御装置5,31,32を実現してもよい。他の一例として、通信ネットワーク上のサーバ装置が有する記憶装置に上記コンピュータプログラムを格納しておき、通常のコンピュータシステムにダウンロードすることでブレーキ制御装置5,31,32を実現してもよい。 It has a processor 41, a memory 42, and an interface 43, and the central part for performing control processing can be realized by using a normal computer system without relying on a dedicated system. As an example, the brake control devices 5, 31 and 32 that execute the above-mentioned processing may be realized by installing a program for executing the above-mentioned operation in a computer. As another example, the brake control devices 5, 31 and 32 may be realized by storing the computer program in a storage device of a server device on a communication network and downloading it to a normal computer system.
 上記のハードウェア構成およびフローチャートは一例であり、任意に変更および修正が可能である。
 一例として、ステップS14の処理は、ステップS12の処理に並行して行われてもよい。また他の一例として、ステップS16の処理は、ステップS17の処理に並行して行われてもよいし、ステップS17の処理の後に行われてもよい。
The above hardware configuration and flowchart are examples and can be changed and modified as desired.
As an example, the process of step S14 may be performed in parallel with the process of step S12. As another example, the process of step S16 may be performed in parallel with the process of step S17, or may be performed after the process of step S17.
 駆動制御システム100は、直流き電方式および交流き電方式のいずれの鉄道車両にも搭載することが可能である。また駆動制御システム100は、第三軌条を介して電力を取得する電気鉄道車両に搭載されてもよい。また駆動制御システム100は、電気鉄道車両に限られず任意の車両に搭載することが可能である。 The drive control system 100 can be mounted on both a DC feeder system and an AC feeder system railway vehicle. Further, the drive control system 100 may be mounted on an electric railway vehicle that acquires electric power via a third rail. Further, the drive control system 100 can be mounted on any vehicle, not limited to electric railway vehicles.
 電気ブレーキ力を生じさせる方法は、上述の例に限られず、発電機として動作する電動機8から供給され、電力変換装置7で変換された電力を消費する方法であれば任意である。一例として、電力変換装置7の電源に近い端子間に接続された放電回路を用いて、発電機として動作する電動機8から供給され、電力変換装置7で変換された電力を消費してもよい。 The method of generating the electric braking force is not limited to the above example, and any method can be used as long as it is a method of consuming the electric power supplied from the electric motor 8 operating as a generator and converted by the electric power converter 7. As an example, a discharge circuit connected between terminals close to the power supply of the power conversion device 7 may be used to consume the power supplied from the electric motor 8 operating as a generator and converted by the power conversion device 7.
 目標減速度算出部2は、ATC(Automatic Train Control:自動列車制御装置)、ATO(Automatic Train Operation:自動列車運転装置)等から運転指令を取得してもよい。 The target deceleration calculation unit 2 may acquire an operation command from ATC (Automatic Train Control: automatic train control device), ATO (Automatic Train Operation: automatic train operation device), or the like.
 実減速度算出部3は、任意の方法で車両の速度を算出すればよい。一例として、実減速度算出部3は、ATCから車輪の回転数を取得し、ATCから取得した車輪の回転数から車両の速度を算出してもよい。他の一例として、実減速度算出部3は、TIMS(Train Information Management System:列車情報管理システム)から車両の速度を取得してもよい。 The actual deceleration calculation unit 3 may calculate the speed of the vehicle by any method. As an example, the actual deceleration calculation unit 3 may acquire the wheel rotation speed from the ATC and calculate the vehicle speed from the wheel rotation speed acquired from the ATC. As another example, the actual deceleration calculation unit 3 may acquire the speed of the vehicle from TIMS (Train Information Management System).
 ブレーキ制御装置5の各部は、鉄道車両に搭載される制御システムの一機能として実現されてもよい。 Each part of the brake control device 5 may be realized as a function of a control system mounted on a railway vehicle.
 電力変換装置制御部6は、ATC、ATO等から運転指令を取得してもよい。また電力変換装置制御部6は、鉄道車両に搭載される制御システムの一機能として実現されてもよい。 The power converter control unit 6 may acquire an operation command from ATC, ATO, or the like. Further, the power converter control unit 6 may be realized as a function of a control system mounted on a railway vehicle.
 電力変換装置7の構造は上述の例に限られず、双方向の電力変換が可能な任意の電力変換回路を有すれば任意である。一例として、直流き電方式の電気鉄道車両に駆動制御システム100が搭載され、電動機8が直流電動機である場合、電力変換装置7は、DC(Direct Current:直流)-DCコンバータであればよい。 The structure of the power conversion device 7 is not limited to the above example, and is arbitrary as long as it has an arbitrary power conversion circuit capable of bidirectional power conversion. As an example, when the drive control system 100 is mounted on a direct current electric railway vehicle and the electric motor 8 is a direct current electric motor, the power converter 7 may be a DC (Direct Current) -DC converter.
 電動機8は、車両に駆動力を伝達することができる任意の電動機である。一例として、電動機8は、同期電動機でもよい。他の一例として、電動機8は、直流電動機でもよい。 The motor 8 is an arbitrary motor capable of transmitting a driving force to the vehicle. As an example, the electric motor 8 may be a synchronous electric motor. As another example, the electric motor 8 may be a DC motor.
 機械ブレーキ装置9は、機械的な動作でブレーキ力を生じさせる任意のブレーキ装置である。一例として、機械ブレーキ装置9は、車輪の両側面に設けられたブレーキディスクのそれぞれにブレーキパッドを押し当てることでブレーキ力を発生させてもよい。他の一例として、機械ブレーキ装置9は、ブレーキシューを有し、車軸と共に回転する円筒部材であるドラムにブレーキシューを押し付けることでブレーキ力を発生させてもよい。
 また機械ブレーキ装置9は、空気以外の流体を用いたブレーキ装置でもよい。
The mechanical braking device 9 is an arbitrary braking device that generates a braking force by mechanical operation. As an example, the mechanical brake device 9 may generate a braking force by pressing a brake pad against each of the brake discs provided on both side surfaces of the wheel. As another example, the mechanical brake device 9 may generate a braking force by pressing the brake shoe against a drum, which is a cylindrical member that has a brake shoe and rotates together with the axle.
Further, the mechanical brake device 9 may be a brake device using a fluid other than air.
 目標調節部11において目標減速度βinを調節する方法は、実減速度βと目標減速度βinの差分および電気ブレーキ使用率Rに応じて目標減速度βinを調節する方法であれば任意である。一例として、目標調節部11は、必要ブレーキ力に対する機械ブレーキ力の割合である機械ブレーキ使用率と負の相関関係を有するフィードバックゲインを用いてフィードバック制御をしてもよい。この場合、割合算出部13は、機械ブレーキ力の値を必要ブレーキ力の値F1で除算して得られる機械ブレーキ使用率を目標調節部11に送ればよい。 Methods of modulating target deceleration beta in the target adjusting unit 11, there a method of modulating the target deceleration beta in in accordance with the actual deceleration beta c and the target deceleration beta in differential and electric brake duty R v Is optional. As an example, the target adjusting unit 11 may perform feedback control using a feedback gain having a negative correlation with the mechanical brake usage rate, which is the ratio of the mechanical braking force to the required braking force. In this case, the ratio calculation unit 13 may send the mechanical brake usage rate obtained by dividing the value of the mechanical braking force by the required braking force value F1 to the target adjusting unit 11.
 また目標調節部11が有するフィードバック制御部22が行うフィードバック制御は、実減速度βを目標減速度βinに近づけるための制御であれば、任意である。一例として、フィードバック制御部22は、P(Proportional)制御、PI(Proportional Integral)制御等を行ってもよい。フィードバック制御部22がP制御を行う場合、ゲイン調節部24は、電気ブレーキ使用率Rに応じて調節した比例ゲインK1をフィードバック制御部22に送ればよい。またフィードバック制御部22がPI制御を行う場合、ゲイン調節部24は、電気ブレーキ使用率Rに応じて比例ゲインK1および積分ゲインK2の少なくともいずれかを調節し、フィードバック制御部22に送ればよい。 Further, the feedback control performed by the feedback control unit 22 included in the target adjusting unit 11 is arbitrary as long as it is a control for bringing the actual deceleration β c closer to the target deceleration β in. As an example, the feedback control unit 22 may perform P (Proportional) control, PI (Proportional Integral) control, and the like. If the feedback control unit 22 performs a P control, gain adjustment unit 24, it send a proportional gain K1 was adjusted according to the electric brake duty R v to the feedback control unit 22. Also when the feedback control unit 22 performs the PI control, the gain adjusting unit 24 adjusts at least one of the proportional gain K1 and integration gain K2 in accordance with an electric brake duty R v, may send the feedback control unit 22 ..
 ゲイン調節部24は、比例ゲインK1、積分ゲインK2、および微分ゲインK3の少なくともいずれかを電気ブレーキ使用率Rに応じて調節すればよい。一例として、ゲイン調節部24は、比例ゲインK1のみを電気ブレーキ使用率Rに対して正の相関関係をもたせて調節し、積分ゲインK2および微分ゲインK3として固定値を用いてもよい。 The gain adjusting unit 24 may adjust at least one of the proportional gain K1, the integrated gain K2, and the differential gain K3 according to the electric brake usage rate Rv. As an example, the gain adjusting unit 24 adjusts by remembering positive correlation with the proportional gain K1 only the electrical brake duty R v, may be used a fixed value as the integral gain K2 and the derivative gain K3.
 必要ブレーキ力算出部12は、車両ごとに上記(2)式に基づいて必要ブレーキ力を算出してもよいし、編成全体での必要ブレーキ力を算出してから、例えば滑走の起こりやすさを考慮して編成全体での必要ブレーキ力を各車両に振り分けて、各車両の必要ブレーキ力を算出してもよい。 The required braking force calculation unit 12 may calculate the required braking force for each vehicle based on the above equation (2), or after calculating the required braking force for the entire formation, for example, determine the likelihood of gliding. In consideration of this, the required braking force for the entire formation may be distributed to each vehicle to calculate the required braking force for each vehicle.
 機械ブレーキ制御部14は、車両の速度に応じて変化する摩擦係数μを用いて、上記(4)式に基づいてブレーキシリンダの空気圧の目標値Pを算出してもよい。この場合、機械ブレーキ制御部14は、車両の速度と摩擦係数μの関係を示すグラフ、車両の速度と摩擦係数μとを対応付ける摩擦係数テーブル等を予め保持していればよい。そして、機械ブレーキ制御部14は、実減速度算出部3から車両の速度を取得し、車両の速度に応じた摩擦係数μを算出し、摩擦係数μを用いて、上記(4)式に基づいてブレーキシリンダの空気圧の目標値Pを算出すればよい。 Mechanical brake control unit 14 uses the coefficient of friction mu v which varies depending on the speed of the vehicle, the (4) may calculate the target value P t of the pneumatic brake cylinders based on equation. In this case, the mechanical brake control unit 14 has only to hold a graph showing the relationship between speed and the friction coefficient mu v of the vehicle, etc. Friction coefficient table for associating the speed and the friction coefficient mu v of the vehicle in advance. Then, the mechanical brake control unit 14 acquires the speed of the vehicle from the actual deceleration calculation unit 3, calculates the friction coefficient μ v according to the speed of the vehicle, and uses the friction coefficient μ v to use the above equation (4). it may be calculated target value P t of the pneumatic brake cylinders based on.
 本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この開示を説明するためのものであり、本開示の範囲を限定するものではない。すなわち、本開示の範囲は、実施の形態ではなく、請求の範囲によって示される。そして請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、この開示の範囲内とみなされる。 The present disclosure allows for various embodiments and modifications without departing from the broad spirit and scope of the present disclosure. Moreover, the above-described embodiment is for explaining this disclosure, and does not limit the scope of the present disclosure. That is, the scope of the present disclosure is indicated by the scope of claims, not by the embodiment. And various modifications made within the scope of the claims and within the equivalent meaning of disclosure are considered to be within the scope of this disclosure.
 1 主幹制御器、2 目標減速度算出部、3 実減速度算出部、4 重量算出部、5,31,32 ブレーキ制御装置、6 電力変換装置制御部、7 電力変換装置、8 電動機、9 機械ブレーキ装置、11,15 目標調節部、12 必要ブレーキ力算出部、13 割合算出部、14 機械ブレーキ制御部、21 減算器、22 フィードバック制御部、23 加算器、24 ゲイン調節部、25 制限部、41 プロセッサ、42 メモリ、43 インターフェース、100 駆動制御システム、S1 必要ブレーキ指令信号、S2 電制フィードバック信号、S3 失効信号。 1 Main controller, 2 Target deceleration calculation unit, 3 Actual deceleration calculation unit, 4 Weight calculation unit, 5, 31, 32 Brake control device, 6 Power conversion device control unit, 7 Power conversion device, 8 Electric motor, 9 Machinery Brake device, 11, 15 target adjustment unit, 12 required braking force calculation unit, 13 ratio calculation unit, 14 mechanical brake control unit, 21 subtractor, 22 feedback control unit, 23 adder, 24 gain adjustment unit, 25 restriction unit, 41 processor, 42 memory, 43 interface, 100 drive control system, S1 required brake command signal, S2 electronically controlled feedback signal, S3 revocation signal.

Claims (11)

  1.  電源から供給され、電力変換装置で変換された電力の供給を受けて回転する電動機から駆動力を得て加速し、発電機として動作する前記電動機から供給され、前記電力変換装置で変換された電力が消費されることで生じる電気ブレーキ力と機械ブレーキ装置による機械ブレーキ力とを受けて減速する車両のブレーキ制御を行うブレーキ制御装置であって、
     前記車両の実減速度とブレーキ指令が示す前記車両の目標減速度とを取得し、前記実減速度を前記目標減速度に近づけるために前記目標減速度を調節する目標調節部と、
     前記目標調節部で調節された前記目標減速度を得るために必要なブレーキ力である必要ブレーキ力を算出し、前記必要ブレーキ力の値を示す必要ブレーキ指令信号を、前記必要ブレーキ指令信号に応じて前記電力変換装置を制御する電力変換装置制御部に送る必要ブレーキ力算出部と、
     前記必要ブレーキ力と前記電気ブレーキ力との差分に応じて前記機械ブレーキ装置を制御して前記機械ブレーキ力を生じさせる機械ブレーキ制御部と、を備え、
     前記目標調節部は、前記実減速度と前記目標減速度の差分および前記必要ブレーキ力に対する前記電気ブレーキ力の割合に応じて前記目標減速度を調節する、
     ブレーキ制御装置。
    Power supplied from a power source, supplied with power converted by a power converter, and accelerated by obtaining a driving force from a rotating motor, supplied from the motor operating as a generator, and converted by the power converter. It is a brake control device that controls the brakes of a vehicle that decelerates in response to the electric braking force generated by the consumption of
    A target adjusting unit that acquires the actual deceleration of the vehicle and the target deceleration of the vehicle indicated by the brake command and adjusts the target deceleration in order to bring the actual deceleration closer to the target deceleration.
    The required braking force, which is the braking force required to obtain the target deceleration adjusted by the target adjusting unit, is calculated, and the required brake command signal indicating the value of the required braking force is set according to the required brake command signal. The required braking force calculation unit to be sent to the power conversion device control unit that controls the power conversion device, and
    A mechanical brake control unit that controls the mechanical braking device according to the difference between the required braking force and the electric braking force to generate the mechanical braking force is provided.
    The target adjusting unit adjusts the target deceleration according to the difference between the actual deceleration and the target deceleration and the ratio of the electric braking force to the required braking force.
    Brake control device.
  2.  前記目標調節部は、前記実減速度と前記目標減速度の差分に応じて前記目標減速度に加算する減速度調節量を算出し、前記必要ブレーキ力に対する前記電気ブレーキ力の割合に応じて前記減速度調節量を調節し、調節された前記減速度調節量を前記目標減速度に加算することで、前記目標減速度を調節する、
     請求項1に記載のブレーキ制御装置。
    The target adjusting unit calculates a deceleration adjustment amount to be added to the target deceleration according to the difference between the actual deceleration and the target deceleration, and the deceleration adjustment amount is added according to the ratio of the electric braking force to the required braking force. The target deceleration is adjusted by adjusting the deceleration adjustment amount and adding the adjusted deceleration adjustment amount to the target deceleration.
    The brake control device according to claim 1.
  3.  前記目標調節部は、前記目標減速度および前記実減速度に基づいて前記目標減速度のフィードバック制御を行い、
     前記フィードバック制御で用いられる少なくとも1つのフィードバックゲインの少なくともいずれかと、前記必要ブレーキ力に対する前記電気ブレーキ力の割合とは正の相関関係を有する、
     請求項2に記載のブレーキ制御装置。
    The target adjusting unit performs feedback control of the target deceleration based on the target deceleration and the actual deceleration.
    At least one of the at least one feedback gains used in the feedback control has a positive correlation with the ratio of the electric braking force to the required braking force.
    The brake control device according to claim 2.
  4.  前記目標調節部は、前記減速度調節量の絶対値が閾値以下となる範囲で、前記減速度調節量を調節する、
     請求項2または3に記載のブレーキ制御装置。
    The target adjusting unit adjusts the deceleration adjustment amount within a range in which the absolute value of the deceleration adjustment amount is equal to or less than a threshold value.
    The brake control device according to claim 2 or 3.
  5.  前記閾値は、前記必要ブレーキ力に対する前記電気ブレーキ力の割合に応じて変化する、
     請求項4に記載のブレーキ制御装置。
    The threshold value changes according to the ratio of the electric braking force to the required braking force.
    The brake control device according to claim 4.
  6.  前記閾値と、前記目標減速度とは正の相関関係を有する、
     請求項4または5に記載のブレーキ制御装置。
    There is a positive correlation between the threshold and the target deceleration.
    The brake control device according to claim 4 or 5.
  7.  前記電力変換装置制御部から、前記電気ブレーキ力の値を示す電制フィードバック信号を取得し、前記電制フィードバック信号が示す前記電気ブレーキ力の値および前記必要ブレーキ力算出部で算出された前記必要ブレーキ力に基づいて、前記必要ブレーキ力に対する前記電気ブレーキ力の割合を算出する割合算出部をさらに備え、
     前記目標調節部は、前記実減速度と前記目標減速度の差分および前記割合算出部で算出された前記必要ブレーキ力に対する前記電気ブレーキ力の割合に応じて前記目標減速度を調節する、
     請求項1から6のいずれか1項に記載のブレーキ制御装置。
    An electronically controlled feedback signal indicating the value of the electric braking force is acquired from the power converter control unit, and the value of the electric braking force indicated by the electronically controlled feedback signal and the required required calculated by the required braking force calculation unit. A ratio calculation unit for calculating the ratio of the electric braking force to the required braking force based on the braking force is further provided.
    The target adjusting unit adjusts the target deceleration according to the difference between the actual deceleration and the target deceleration and the ratio of the electric braking force to the required braking force calculated by the ratio calculation unit.
    The brake control device according to any one of claims 1 to 6.
  8.  前記割合算出部は、前記電力変換装置制御部から、前記電気ブレーキ力が得られていないことを示す失効信号を取得すると、前記電制フィードバック信号によらず、前記必要ブレーキ力に対する前記電気ブレーキ力の割合を0として算出する、
     請求項7に記載のブレーキ制御装置。
    When the ratio calculation unit acquires the revocation signal indicating that the electric braking force has not been obtained from the power conversion device control unit, the electric braking force with respect to the required braking force is not affected by the electronically controlled feedback signal. Is calculated with 0 as the ratio of
    The brake control device according to claim 7.
  9.  前記目標調節部は、前記電力変換装置制御部から前記電気ブレーキ力が得られていないことを示す失効信号を取得すると、前記必要ブレーキ力に対する前記電気ブレーキ力の割合を0として、前記目標減速度を調節する、
     請求項1から6のいずれか1項に記載のブレーキ制御装置。
    When the target adjusting unit acquires a revocation signal indicating that the electric braking force has not been obtained from the power converter control unit, the target deceleration is set to 0 by setting the ratio of the electric braking force to the required braking force to 0. To adjust,
    The brake control device according to any one of claims 1 to 6.
  10.  力行指令またはブレーキ指令を含む運転指令を出力する主幹制御器と、
     入力された電力を、電動機を駆動するための電力に変換し、変換した電力を前記電動機に供給し、発電機として動作する前記電動機から供給される電力を変換し、変換した電力を出力する電力変換装置と、
     請求項1から9のいずれか1項に記載のブレーキ制御装置と、
     前記主幹制御器から取得した前記運転指令および前記ブレーキ制御装置から取得した必要ブレーキ指令信号の少なくともいずれかに応じて前記電力変換装置を制御する電力変換装置制御部と、
     を備える駆動制御システム。
    A master controller that outputs operation commands including power running commands or brake commands,
    The input electric power is converted into the electric power for driving the electric motor, the converted electric power is supplied to the electric motor, the electric power supplied from the electric motor operating as a generator is converted, and the converted electric power is output. With a converter
    The brake control device according to any one of claims 1 to 9.
    A power conversion device control unit that controls the power conversion device in response to at least one of the operation command acquired from the master controller and the required brake command signal acquired from the brake control device.
    Drive control system with.
  11.  電源から供給され、電力変換装置で変換された電力の供給を受けて回転する電動機から駆動力を得て加速し、発電機として動作する前記電動機から供給され、前記電力変換装置で変換された電力が消費されることで生じる電気ブレーキ力と機械ブレーキ装置による機械ブレーキ力とを受けて減速する車両のブレーキ制御方法であって、
     前記車両の実減速度をブレーキ指令に含まれる前記車両の目標減速度に近づけるために前記目標減速度を調節し、
     調節された前記目標減速度を得るために必要なブレーキ力である必要ブレーキ力に応じて前記電力変換装置を制御することで前記電気ブレーキ力を生じさせ、
     前記必要ブレーキ力と前記電気ブレーキ力との差分に応じて前記機械ブレーキ装置を制御することで前記機械ブレーキ力を生じさせ、
     前記目標減速度を調節する際に、前記実減速度と前記目標減速度の差分および前記必要ブレーキ力に対する前記電気ブレーキ力の割合に応じて前記目標減速度を調節する、
     ブレーキ制御方法。
    Power supplied from a power source, supplied with power converted by a power converter, and accelerated by obtaining a driving force from a rotating motor, supplied from the motor operating as a generator, and converted by the power converter. This is a vehicle brake control method that decelerates by receiving the electric braking force generated by the consumption of electric power and the mechanical braking force generated by the mechanical braking device.
    Adjust the target deceleration to bring the actual deceleration of the vehicle closer to the target deceleration of the vehicle included in the brake command.
    The electric braking force is generated by controlling the power conversion device according to the required braking force, which is the braking force required to obtain the adjusted target deceleration.
    The mechanical braking force is generated by controlling the mechanical braking device according to the difference between the required braking force and the electric braking force.
    When adjusting the target deceleration, the target deceleration is adjusted according to the difference between the actual deceleration and the target deceleration and the ratio of the electric braking force to the required braking force.
    Brake control method.
PCT/JP2019/050995 2019-12-25 2019-12-25 Brake control device, drive control system, and brake control method WO2021130938A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019007996.4T DE112019007996T5 (en) 2019-12-25 2019-12-25 BRAKE CONTROL DEVICE, DRIVE CONTROL SYSTEM AND BRAKE CONTROL METHOD
JP2021566666A JP7038930B2 (en) 2019-12-25 2019-12-25 Brake control device, drive control system, and brake control method
PCT/JP2019/050995 WO2021130938A1 (en) 2019-12-25 2019-12-25 Brake control device, drive control system, and brake control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/050995 WO2021130938A1 (en) 2019-12-25 2019-12-25 Brake control device, drive control system, and brake control method

Publications (1)

Publication Number Publication Date
WO2021130938A1 true WO2021130938A1 (en) 2021-07-01

Family

ID=76574089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050995 WO2021130938A1 (en) 2019-12-25 2019-12-25 Brake control device, drive control system, and brake control method

Country Status (3)

Country Link
JP (1) JP7038930B2 (en)
DE (1) DE112019007996T5 (en)
WO (1) WO2021130938A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113815431A (en) * 2021-10-14 2021-12-21 河南嘉晨智能控制股份有限公司 Method for improving driving feeling of industrial vehicle
JP2023044041A (en) * 2021-09-17 2023-03-30 株式会社アドヴィックス Vehicular control device
WO2023248378A1 (en) * 2022-06-22 2023-12-28 三菱電機株式会社 Actual deceleration acquisition device, deterioration discrimination device, brake control device, actual deceleration acquisition method, deterioration discrimination method, and brake control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205738A (en) * 2010-03-24 2011-10-13 Hitachi Ltd Automatic train operating device
JP2017099172A (en) * 2015-11-25 2017-06-01 三菱重工業株式会社 Brake control device, brake control method, train and program
WO2017134734A1 (en) * 2016-02-02 2017-08-10 三菱電機株式会社 Brake control device for electric vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205738A (en) * 2010-03-24 2011-10-13 Hitachi Ltd Automatic train operating device
JP2017099172A (en) * 2015-11-25 2017-06-01 三菱重工業株式会社 Brake control device, brake control method, train and program
WO2017134734A1 (en) * 2016-02-02 2017-08-10 三菱電機株式会社 Brake control device for electric vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023044041A (en) * 2021-09-17 2023-03-30 株式会社アドヴィックス Vehicular control device
JP7407154B2 (en) 2021-09-17 2023-12-28 株式会社アドヴィックス Vehicle control device
CN113815431A (en) * 2021-10-14 2021-12-21 河南嘉晨智能控制股份有限公司 Method for improving driving feeling of industrial vehicle
CN113815431B (en) * 2021-10-14 2022-04-15 河南嘉晨智能控制股份有限公司 Method for improving driving feeling of industrial vehicle
WO2023248378A1 (en) * 2022-06-22 2023-12-28 三菱電機株式会社 Actual deceleration acquisition device, deterioration discrimination device, brake control device, actual deceleration acquisition method, deterioration discrimination method, and brake control method

Also Published As

Publication number Publication date
JP7038930B2 (en) 2022-03-18
JPWO2021130938A1 (en) 2021-07-01
DE112019007996T5 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
JP7038930B2 (en) Brake control device, drive control system, and brake control method
US4671576A (en) Deceleration control system
US4659149A (en) Cross blending electro-dynamic/friction brake system for multi-car train consist having mixed power and non-power cars
US8612076B2 (en) Antilock braking for vehicles
JP2016111891A (en) Vehicular braking force controller
CN111391880A (en) Control method and control system for air-electricity hybrid braking of locomotive
JP3586140B2 (en) Electric vehicle air brake device and air brake method
EP2623361A1 (en) Brake control apparatus for vehicle, and brake control apparatus for multi-car train
JP2016005291A (en) vehicle
US9676280B2 (en) Braking management in a dual braking system
US20240010175A1 (en) Brake control system and brake control method
JPWO2022107318A5 (en)
JP6272166B2 (en) Brake control device and brake control method
WO2022037298A1 (en) Rail vehicle electromechanical braking system and rail vehicle electromechanical braking force control method
EP2226226A2 (en) Braking method combining electrodynamic brakes with mechanical brakes in case of emergency braking
JP3747858B2 (en) Inverter control method for vehicle and inverter controller
JP6715680B2 (en) Brake control device for railway vehicle and brake control system for railway vehicle
KR20190114504A (en) Brake device for rail vehicle and method thereof
JP2001218302A (en) Electric brake control method and device thereof
JP3577246B2 (en) Electric car braking device
JP6911735B2 (en) Vehicle brake control system
JP2004116621A (en) Braking force controlling apparatus for vehicle
WO2022054473A1 (en) Vehicle control device, vehicle control method, and vehicle control system
JP6451702B2 (en) Brake system for vehicles
JP2005304100A (en) Coordination controller of brake with combination system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566666

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19958025

Country of ref document: EP

Kind code of ref document: A1