WO2021130391A1 - Procedimiento de reparación de ejes de aerogeneradores mediante aporte por soldadura fcaw - Google Patents

Procedimiento de reparación de ejes de aerogeneradores mediante aporte por soldadura fcaw Download PDF

Info

Publication number
WO2021130391A1
WO2021130391A1 PCT/ES2019/070878 ES2019070878W WO2021130391A1 WO 2021130391 A1 WO2021130391 A1 WO 2021130391A1 ES 2019070878 W ES2019070878 W ES 2019070878W WO 2021130391 A1 WO2021130391 A1 WO 2021130391A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
machining
welding
repaired
pocket
Prior art date
Application number
PCT/ES2019/070878
Other languages
English (en)
French (fr)
Inventor
Isabel ARRULA ARBIZU
Juanita VILLALOBOS GUERRERO
Adrián GASTESI IRIARTE
Jaime Gascón Álvarez
Original Assignee
Acciona Energia, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acciona Energia, S.A. filed Critical Acciona Energia, S.A.
Priority to PCT/ES2019/070878 priority Critical patent/WO2021130391A1/es
Publication of WO2021130391A1 publication Critical patent/WO2021130391A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • B23K9/046Built-up welding on three-dimensional surfaces on surfaces of revolution
    • B23K9/048Built-up welding on three-dimensional surfaces on surfaces of revolution on cylindrical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/50Maintenance or repair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/20Manufacture essentially without removing material
    • F05B2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05B2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/80Repairing, retrofitting or upgrading methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/46Coating surfaces by welding, e.g. by using a laser to build a layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0006Disassembling, repairing or modifying dynamo-electric machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention falls within the technical field of electric arc welding for purposes other than those of joining, and relates in particular to a repair method by means of tubular wire welding of the main shaft of a wind turbine.
  • FCAW Flux Cored Are Welding
  • FCAW welding those electric arc welding processes that use the arc formed between a continuously fed electrode, which is the metal of contribution, and a weld pool.
  • FCAW welding is also known as cored wire welding with slag, since after the solidification of the melt pool, the residues of the chemical reactions of oxidation, denitrification, etc., accumulate on the surface in the form of slag.
  • the process uses gas, which comes from certain components of a flux contained within a cored wire to be melted.
  • a system for repairing worn, distorted, cracked, or degraded portions of high-temperature rotors, such as those used in superheat, high-pressure steam turbines, is described in US patent publication number US5914055. Repairs are applicable to low alloy steels generally described in the ASTM A-470 class 3, 7, and 8 specification. Explicit controls are shown on the welding process, welding consumables, and weld fusion line placement. .
  • a new "relative heat input" staging is described for applying the initial tungsten electrode inert gas arc welding (GTAW) spread coat.
  • GTAW tungsten electrode inert gas arc welding
  • Spanish patent with publication number ES2084953 presents a process for welding a component of a rotating machine that consists of rotating the component around a longitudinal axis of rotation thereof; preheat an area of the component to be welded; depositing a plurality of weld beads in the area; after welding treat the area thermally; and refrigerate the area to room temperature. During the entire process, from preheating to cooling, the component is continuously rotated around its longitudinal axis.
  • Spanish patent ES2049142 describes a method of repair by welding a section of a metallic cylindrical member, such as a turbine shaft, which has surface defects and a keyway in it, machining to do so by surface and inserting a key member into the keyway, and machining the combination to produce a continuous surface for welding.
  • a weld material is then deposited on the formed continuous surface to a thickness that produces a diameter greater than the initial diameter of the cylindrical member.
  • the weld material is machined to produce a member having the initial diameter, and the key member is removed to provide a repaired member having a keyway.
  • the object of the invention consists of a repair procedure by means of tubular wire welding of the shafts of a wind turbine of wind turbines.
  • wind turbines or wind turbines are machines that are used to transform wind energy into electrical energy.
  • the three main components for the conversion of wind energy in wind turbines are the rotor or wind collection system, the gearbox or multiplier and the electric generator.
  • the rotor consisting mainly of blades and a hub, converts the kinetic energy of the wind into mechanical energy that is transmitted to an input shaft known as the slow shaft.
  • Said slow shaft connects the hub to a gearbox, which makes an output shaft or fast shaft rotate faster than the input shaft, and thus achieve a rotation speed of 50 to 80 times higher.
  • the mechanical energy is transformed into electrical energy in the generator.
  • wind turbine shafts are subjected to continuous wear and tear that make periodic repair necessary to ensure proper operation.
  • the repair procedure by tubular wire welding basically comprises the following sequence of consecutive stages:
  • a location of the sector to be repaired of the shaft must be made, either by visual inspection or by non-destructive tests. Once the damaged area has been delimited, which usually coincides with the area of the bearing seat of a shaft, a pocket is machined considering avoiding the introduction of additional stresses in the shaft. When machining has been completed, a new inspection must be carried out to verify the absence of surface defects that, when in contact with the electric welding arc, could be the source of major defects.
  • FCAW welding it is carried out with a gun mounted on a movable carriage located on a guide parallel to the axis to be repaired.
  • the main problem that may arise is the high temperature to which the welding gun is going to be subjected due to its proximity to the shaft during the reloading operation, which, as already indicated, is at approximately 250 ° C. .
  • Welding is carried out by placing the gun above the shaft and on one side of the pocket, and applying a weld bead sequentially until the pocket width is completed. At this time, the first layer of solder, of a total of two layers, is considered to be finished. Subsequently, the heat source used in the preheating of the shaft is applied again until it reaches 250 ° C again, to resume the second layer of welding under the same conditions and with the same sequence used in the first layer.
  • the heat source used in the previous heating is reapplied to increase the temperature until reaching 300 ° C, always with the shaft rotating on the lathe, maintaining said temperature until approximately two hours. Finally, with the repaired area covered with thermal blankets, it is allowed to cool for 12-14 hours.
  • the shaft is subjected to final machining, consisting of consecutive turning and grinding operations, after which the already repaired shaft can be reinstalled in the wind turbine.
  • Figure 1. Shows a perspective view of the wind turbine shaft arranged on a winch for repair.
  • Figure 2.- Shows a detailed view of the pocket after machining.
  • Figure 3. Shows a schematic side view of the arrangement of the welding gun with respect to the axis to be repaired.
  • Figure 4. Shows a schematic front view of the arrangement of the welding gun with respect to the axis to be repaired.
  • the repair procedure by tubular wire welding of the main shaft of a wind turbine of wind turbines that is described comprises a sequence of consecutive stages, which are mainly:
  • the procedure begins with the arrangement of a shaft (1) to be repaired of the wind turbine on a horizontal turning winch (2). It is necessary to take into account that the lathe (2) must comply with dimensional and resistance requirements that allow machining operations of the shaft (1) arranged between a plate and a tailstock, without vibrations.
  • an inspection of the surface of said shaft (1) is carried out to locate a deteriorated sector for its subsequent repair by means of recharging by welding. Said localization can be done by visual inspection and / or non-destructive tests, such as penetrating liquids or magnetic particles.
  • the sector to be repaired usually coincides with the seat of a shaft bearing (1), since it is the area that suffers the greatest wear due to friction.
  • an annular pocket (3) is machined, transverse to the axis (1). In the machining operation of said pocket (3) the machining passes with the lathe (2) must be less than 2 mm, to avoid the introduction of additional stresses on the shaft (1).
  • the pocket (3) resulting from the machining, shown in figure 2, comprises chamfered side edges (4), with an angle comprised in the range 30-45 °. Said chamfering, instead of leaving some lateral edges (4) at the usual right angle, avoids that during the subsequent reloading of the pocket (3) by welding, penetration or fusion faults occur at the intersection between these lateral edges (4 ) and the bottom (5) of the pocket (3).
  • Said bottom (5) has a depth with respect to the surface of the shaft (1) comprised in the range between 4 and 6 mm. This range of depths makes it possible to ensure the elimination of defects present in the sector to be repaired, as well as to facilitate the deposition of two superimposed layers of weld overlay. In this way, and due to the dilution effect, a recharge will be obtained that is very similar in chemical composition to that of the filler metal used, giving rise to the desired hardness.
  • the state of the resulting surface is inspected, through the aforementioned non-destructive tests, whether they are penetrating liquids or magnetic particles, to verify the absence of defects that could cause contact problems with the electric arc of welding.
  • the control means used must be adequately removed and cleaned from the box (3) before proceeding to the next phase, corresponding to a preheating of the shaft (1).
  • preheating it is intended to bring the shaft (1) to a temperature of 250 ° C, for which elements such as electric blankets or inductors can be used or, as in this preferred embodiment of the procedure, by direct application of a high power flame on the surface of said shaft (1), especially in the inner sector of the shaft (1) and in the vicinity of the pocket (3).
  • the gases used to obtain the flame are a mixture of Propane (C3H8) and Oxygen (O2), and the flame is located at a distance of approximately 300 mm from the axis (1), being applied for a period of time comprised in the interval between 1.5 and 7 hours.
  • the lathe (2) comprises a support carriage (7), preferably placed on a parallel guide to the shaft (1) to be repaired, on which the gun (6) is mounted on an arm equipped with a device for adjusting the position (8) of said gun (6), which thus moves linearly on the shaft (1 ). It is also necessary to indicate that, during the welding operation, the shaft (1) must be kept at a temperature comprised in the range of 200-250 ° C.
  • the motor torque of the lathe (2) must allow a uniform rotary movement of the shaft (1), which usually has a weight of around 8 tons, at very low revolutions, less than 1 rpm, without presenting bumps or sudden stops in the turn.
  • the winch (2) comprises a warning device, not shown in the attached figures, which for each 370 ° turn of the shaft (1), that is, slightly more than a full turn, emits a warning signal, preferably of sonic type.
  • the position adjustment device (8) which can be linked to the lathe warning device (2), is made up of a threaded shaft or endless thread, with a thread pitch or number of thread entries such that , at each turn of the endless screw, which corresponds to a 370 ° rotation of the shaft (1), the gun moves a distance equal to half the width of the previously deposited bead towards the inside of the pocket (3) .
  • Figures 3 and 4 schematically illustrate the initial positioning of the gun (6) with respect to the axis (1) arranged on the lathe (2). Said movement of the gun (6) with respect to the axis (1) can be automatic or manual, carried out by an operator after issuing the complete turn warning by the warning device. In the first case, the support carriage (7) and the warning device are synchronized with each other.
  • the support carriage (7) comprises elements necessary for FCAW welding, such as a spool of wire or filler metal and a winder for feeding the gun (6).
  • Said gun (6) must comprise a nozzle located at the end of a straight neck and equipped with cooling means, due to the high temperature to which it will be subjected due to its proximity to the axis (1) which, as mentioned , is at an approximate temperature of 250 ° C.
  • FCAW welding on the box (3), which comprises two complete sequences to give rise to two superimposed layers of recharge, it begins with the placement of the gun (6) superior to the shaft (1) and in a side of the pocket (3), as illustrated in Figures 3 and 4.
  • a layer is defined as the set of overlapping recharge cords that cover the entire bottom (5) of the pocket (3).
  • the gun will make a displacement of 0.5 times the width of the initial bead towards the inside of the the pocket (3), so that it continues to make a second weld bead parallel to the first, but offset 12 mm from the arc.
  • This deposition is carried out until the width of the pocket (3) is completed.
  • the operator must perform a chopping to eliminate the slag produced in the welding of the cored wire and accumulated in the pocket (3).
  • the gun (6) is removed and a heat source is applied again to the shaft (1) until reaching 250 ° C again. This operation takes approximately 20 minutes.
  • the gun (6) is re-arranged as at the beginning of the first layer, that is, as shown in Figures 3 and 4, and a new layer of reload, similar to the previously mentioned.
  • the stick-out that is, the distance between the lower edge of the gun nozzle (6) and the starting point of the electric arc, must be maintained. To do this, it is necessary to raise the height approximately 5mm at the position of the gun itself (6).
  • the post-heating and cooling phase of the shaft (1) begins.
  • the heat source is applied again to increase the temperature of the shaft (1) to 300 ° C.
  • Said heat source is applied to the box (3) already recharged with the two superimposed recharge layers, and at least 700 mm on both sides of said sector, for 2 hours. Once this time has elapsed, the recharged area is covered and also up to a minimum of 700mm on each side of the recharge with thermal blankets, to achieve a slow cooling down to room temperature, which usually lasts for about 14 hours.
  • the final machining phase of the axis (1) begins, which comprises a turning operation followed by grinding.
  • Turning involves a succession of lathe passes, of a maximum of 1 mm per pass to avoid the introduction of additional residual stresses.
  • the purpose of turning is to adjust the dimensions of the repaired shaft sector (1) to the dimensions necessary for a correct bearing seat.
  • the shaft (1) is introduced into a grinding machine for final adjustment of the shaft (1) by means of abrasive elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Arc Welding In General (AREA)

Abstract

Procedimiento de reparación de ejes de aerogeneradores mediante aporte por soldadura FCAW que comprende la siguiente secuencia: - disposición de un eje (1) a reparar sobre un torno (2) volteador; - inspección del eje (1) y localización de un sector a reparar; - mecanizado de una cajera (3) en el sector del eje (1) a reparar; - precalentamiento del eje (1); - aplicación de soldadura FCAW sobre la cajera (3); - postcalentamiento y enfriamiento del eje (1); y - mecanizado final del eje (1). El mecanizado de la cajera (3) comprende unas pasadas de mecanizado sucesivas, cada una de las cuales es inferior a 2 mm, para dar lugar a una cajera (3) que comprende unos bordes laterales (4) achaflanados, con un ángulo comprendido en el rango 30-45º, y un fondo (5) con una profundidad respecto a la superficie del eje (1) comprendida entre 4 y 6 mm.

Description

PROCEDIMIENTO DE REPARACIÓN DE EJES DE AEROGENERADORES MEDIANTE APORTE POR SOLDADURA FCAW
DESCRIPCIÓN
Objeto de la invención
La presente invención se encuadra en el campo técnico de la soldadura por arco eléctrico con otros fines que no sean los de unión, y se refiere en particular a un procedimiento de reparación mediante soldeo por hilo tubular del eje principal de una turbina eólica.
Antecedentes de la invención
Dentro del campo técnico de la soldadura, se conoce como soldadura FCAW (de sus siglas en inglés, Flux Cored Are Welding), a aquellos procesos de soldadura de arco eléctrico que utilizan el arco formado entre un electrodo alimentado continuamente, que es el metal de aporte, y un baño de fusión de soldadura. La soldadura FCAW también se conoce como soldadura por hilo tubular con escoria, ya que tras la solidificación del baño de fusión se acumulan en la superficie, en forma de escoria, los residuos de las reacciones químicas de oxidación, desnitrificación, etc. El proceso emplea gas, que proviene de ciertos componentes de un fundente contenido dentro de un alambre tubular a fundir.
Por otro lado, debido al uso normal, algunas secciones de diversos componentes cilindricos metálicos de turbinas y generadores, tales como los rotores y similares, pueden sufrir defectos o desviaciones en la superficie. Son ejemplos típicos los cortes de poca profundidad, las mellas superficiales, el desgaste por rozamiento o la pérdida del ajuste con una parte coincidente. Un desarrollo para uso en la reparación de tales componentes cilindricos metálicos consiste en reparar los mismos por soldadura. Las reparaciones de ejes por soldadura para corregir tales defectos requieren que el componente tenga una superficie continua. Tales componentes son partes sometidas a altos esfuerzos o tensiones, y las soldaduras deben ser de la máxima integridad. Existe el riesgo de que las tensiones residuales, resultantes de una acumulación de soldadura relativamente gruesa sobre un eje, por ejemplo, cuando la acumulación de soldadura es grande con relación al diámetro del eje, puedan originar distorsión por "arqueamiento" del eje. Así, como principio general, se prescribe mantener reducido el grosor de la soldadura en comparación con el diámetro del eje, para garantizar así una reparación más segura y predecible.
En la patente norteamericana con número de publicación US5914055 se describe un sistema para reparar porciones desgastadas, distorsionadas, agrietadas o degradadas de rotores de alta temperatura, tales como los utilizados en turbinas de vapor de alta presión y recalentamiento. Las reparaciones son aplicables a los aceros de baja aleación generalmente descritos en la especificación ASTM A-470 clases 3, 7 y 8. Se muestran controles explícitos sobre el proceso de soldadura, los consumibles de soldadura y la colocación de la línea de fusión de soldadura. Para el proceso de soldadura, se describe una nueva puesta en escena de la "entrada de calor relativo" para aplicar la capa de untado inicial de soldadura por arco con gas inerte y electrodo de volframio (GTAW). Significativamente, las propiedades óptimas de soldadura se logran en el alambre frío GTAW utilizando una entrada de calor más baja para la segunda capa crucial en relación con la primera capa. La integridad de la soldadura de alambre caliente se garantiza mediante el control de una mezcla de gas de cubierta de helio-argón, la aplicación de una cubierta de gas posterior, la oscilación del cabezal de soldadura y el control del punto de inserción del alambre en el baño de fusión.
La patente española con número de publicación ES2084953 presenta un proceso para soldar un componente de una maquina rotativa que consiste en hacer rotar al componente alrededor de un eje longitudinal de rotación del mismo; precalentar un área del componente a soldar; depositar una pluralidad de cordones de soldadura en el área; tras la soldadura tratar el área térmicamente; y refrigerar el área a temperatura ambiente. Durante todo el proceso, del precalentamiento al enfriamiento, se hace rotar al componente continuamente alrededor de su eje longitudinal.
Finalmente, la patente española ES2049142 describe un método de reparación por soldadura de una sección de un miembro cilindrico metálico, tal como un eje de turbina, que tiene defectos superficiales y un chavetero en el mismo, mecanizando para ello la superficie e introduciendo un miembro de chaveta en el chavetero, y mecanizando la combinación para producir una superficie continua para soldadura. Después se deposita un material de soldadura sobre la superficie continua formada, hasta un grosor que produzca un diámetro mayor que el diámetro inicial del miembro cilindrico. Finalmente, se mecaniza el material de soldadura para producir un miembro que tenga el diámetro inicial, y se retira el miembro de chaveta para proporcionar un miembro reparado que tiene un chavetero.
Sin embargo, ninguno de los documentos relativos a la reparación de ejes de turbinas parece estar destinado a la reparación concreta de turbinas eólicas mediante soldadura FCAW, por lo que no se tienen en cuenta las especificidades propias de dichos elementos. Existe por tanto la necesidad de disponer de procedimientos específicos de reparación mediante soldeo por hilo tubular del eje principal de turbinas eólicas.
Descripción de la invención
El objeto de la invención consiste en un procedimiento de reparación mediante soldeo por hilo tubular de los ejes de una turbina eólica de aerogeneradores.
Como es conocido, las turbinas eólicas o aerogeneradores son máquinas que se emplean para transformar la energía del viento en energía eléctrica. Los tres componentes principales para la conversión de la energía del viento en las turbinas eólicas son el rotor o sistema de captación de viento, la caja de engranajes o multiplicadora y el generador eléctrico. El rotor, formado principalmente por unas palas y un buje, convierte la energía cinética del viento en energía mecánica que se transmite a un eje de entrada conocido como eje lento. Dicho eje lento conecta el buje a una multiplicadora, la cual hace que conseguir que un eje de salida o eje rápido gire a mayor velocidad que el de entrada, y así conseguir una velocidad de giro de 50 a 80 veces mayor. A la salida del eje rápido la energía mecánica se transforma en eléctrica en el generador.
Como se ha indicado anteriormente, los ejes de aerogeneradores se ven sometidos a desgastes y tensiones continuas que hacen necesaria su reparación periódica para garantizar un adecuado funcionamiento.
Tras el desmontaje del eje a reparar y su traslado y colocación en posición horizontal sobre un torno volteador adecuado, el procedimiento de reparación mediante soldeo por hilo tubular comprende básicamente la siguiente secuencia de etapas consecutivas:
- mecanizado inicial de la cajera;
- precalentamiento;
- soldadura FCAW;
- postcalentamiento y enfriamiento; y
- mecanizado final.
Previamente al mecanizado inicial de la cajera, se debe realizar una localización del sector a reparar del eje, bien sea por inspección visual o mediante ensayos no destructivos. Una vez delimitada la zona dañada, que suele coincidir con la zona del asiento del rodamiento de un eje, se mecaniza una cajera considerando evitar la introducción de tensiones adicionales en el eje. Cuando se ha finalizado el mecanizado, es preciso realizar una nueva inspección para verificar la ausencia de defectos en la superficie que, al contacto con el arco eléctrico de soldadura, pudieran ser origen de defectos mayores.
Para la realización del precalentamiento, una vez colocado el eje en el torno volteador, y con éste girando a baja velocidad, se puede utilizar una llama de gran potencia, mantas eléctricas o bien inductores. En todos los casos deberá prestarse especial atención a no generar gradientes térmicos que puedan derivar en pequeñas fisuras en el núcleo del eje. La temperatura a alcanzar durante el precalentamiento será de aproximadamente 250°C.
En cuanto a la soldadura FCAW, se realiza con una pistola montada sobre un carro desplazable localizado sobre una guía paralela al eje a reparar. El principal problema que se puede presentar es la alta temperatura a la que la pistola de soldadura va a estar sometida debido a su proximidad al eje durante la operación de recargue, el cual, como ya se ha indicado, se encuentra a aproximadamente 250°C. La soldadura se realiza disponiendo la pistola superiormente al eje y en un lateral de la cajera, y aplicando un cordón de soldadura de manera secuencial hasta completar el ancho de cajera. En este momento se considera que la primera capa de soldadura, de un total de dos capas, ha finalizado. Posteriormente, se aplica de nuevo la fuente calorífica utilizada en el precalentamiento del eje hasta alcanzar nuevamente los 250° C, para reanudar la segunda capa de soldadura en las mismas condiciones y con la misma secuencia empleada en la primera capa.
Respecto al postcalentamiento y enfriamiento, e inmediatamente finalizada la soldadura, se vuelve a aplicar la fuente de calor usada en los calentamientos anteriores para aumentar la temperatura hasta alcanzar los 300° C, siempre con el eje rotando sobre el torno, manteniendo dicha temperatura hasta aproximadamente dos horas. Finalmente, con la zona reparada recubierta con mantas térmicas, se deja enfriar durante 12-14 horas.
Por último, se procede a someter al eje a un mecanizado final, consistente en unas operaciones consecutivas de torneado y rectificado, tras lo cual el eje ya reparado puede volver a ser instalado en el aerogenerador.
Descripción de los dibujos
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1.- Muestra una vista en perspectiva del eje del aerogenerador dispuesto sobre un torno para su reparación.
Figura 2.- Muestra una vista en detalle de la cajera tras su mecanización.
Figura 3.- Muestra una vista esquemática lateral de la disposición de la pistola de soldadura con respecto al eje a reparar. Figura 4.- Muestra una vista esquemática frontal de la disposición de la pistola de soldadura con respecto al eje a reparar.
Realización preferente de la invención
Seguidamente se proporciona, con ayuda de las figuras anteriormente referidas, una explicación detallada de un ejemplo de realización preferente del objeto de la presente invención.
El procedimiento de reparación mediante soldeo por hilo tubular del eje principal de una turbina eólica de aerogeneradores que se describe comprende una secuencia de etapas consecutivas, las cuales son principalmente:
- disposición de un eje (1) a reparar sobre un torno (2) volteador;
- inspección del eje (1) y localización de un sector a reparar;
- mecanizado inicial de una cajera (3) en el sector del eje (1) a reparar;
- precalentamiento del eje (1);
- aplicación de soldadura FCAW sobre la cajera (3);
- postcalentamiento y enfriamiento del eje (1); y
- mecanizado final del eje (1).
Como se ilustra en la figura 1, el procedimiento comienza con la disposición de un eje (1) a reparar del aerogenerador sobre un torno (2) volteador horizontal. Es necesario tener en cuenta que el torno (2) debe cumplir con unos requerimientos dimensionales y de resistencia que permitan realizar operaciones de mecanización del eje (1) dispuesto entre un plato y un contrapunto, sin que existan vibraciones.
Con el eje (1) correctamente dispuesto en el torno (2), se procede a una inspección de la superficie de dicho eje (1) para localización de un sector deteriorado para su posterior reparación mediante recargue por soldeo. Dicha localización puede realizarse mediante inspección visual y/o ensayos no destructivos, como por ejemplo líquidos penetrantes o partículas magnéticas. El sector a reparar suele coincidir con el asiento de un rodamiento del eje (1), ya que es la zona que sufre mayores desgastes por rozamiento. Una vez localizado el sector o sectores a reparar, se procede a mecanizar una cajera (3) anular, transversal al eje (1). En la operación de mecanización de dicha cajera (3) las pasadas de mecanizado con el torno (2) deben ser inferiores a 2 mm, para evitar la introducción de tensiones adicionales en el eje (1).
La cajera (3) resultante del mecanizado, mostrada en la figura 2, comprende unos bordes laterales (4) achaflanados, con un ángulo comprendido en el rango 30-45°. Dicho achaflanado, en lugar de dejar unos bordes laterales (4) en el habitual ángulo recto, evita que durante el posterior recargue de la cajera (3) por soldadura se produzcan faltas de penetración o de fusión en la intersección entre estos bordes laterales (4) y el fondo (5) de la cajera (3).
Dicho fondo (5) tiene una profundidad con respecto a la superficie del eje (1) comprendida en el rango entre 4 y 6 mm. Este rango de profundidades permite asegurar la eliminación de los defectos presentes en el sector a reparar, así como facilita la deposición de dos capas superpuestas de recargue por soldadura. De este modo y por efecto de dilución, se obtendrá un recargue muy similar en composición química al del metal de aporte utilizado, dando lugar a la dureza deseada.
Una vez definida la cajera (3), se procede a inspeccionar el estado de la superficie resultante, mediante los anteriormente mencionados ensayos no destructivos, bien sean líquidos penetrantes o bien partículas magnéticas, para verificación de la ausencia de defectos que podrían causar problemas al contacto con el arco eléctrico de la soldadura. Los medios de control empleados deben ser adecuadamente eliminados y limpiados de la cajera (3) antes de pasar a la siguiente fase, correspondiente a un precalentamiento del eje (1).
Mediante dicho precalentamiento se pretende llevar al eje (1) hasta una temperatura de 250°C, para lo cual se pueden emplear elementos como mantas eléctricas o inductores o, como en esta realización preferente del procedimiento, mediante aplicación directa de una llama de gran potencia sobre la superficie de dicho eje (1), especialmente en el sector interior del eje (1) y en las proximidades de la cajera (3).
En cuanto a los parámetros concretos del precalentamiento con llama, es necesario indicar en primer lugar que éste debe realizarse con el eje (1) rotando sobre el torno (2) con el fin de no calentar en exceso una zona puntual. Los gases utilizados para la obtención de la llama son una mezcla de Propano (C3H8) y Oxígeno (O2), y la llama se sitúa a una distancia aproximada de 300 mm del eje (1), aplicándose durante un periodo de tiempo comprendido en el intervalo entre 1.5 y 7 horas.
Puesto que la aplicación de la llama sobre la superficie del eje (1) genera la aparición de una capa superficial de óxido, es preciso eliminarla antes de proceder a la subsiguiente operación de soldadura, para evitar posibles contaminaciones.
Para un correcto desarrollo de la operación de soldadura, la cual se realiza mediante una pistola (6) de soldadura como la ilustrada en la figura 1, el torno (2) comprende un carro de soporte (7), colocado preferentemente sobre una guía paralela al eje (1) a reparar, sobre el cual se monta la pistola (6) en un brazo dotado de un dispositivo de regulación de la posición (8) de dicha pistola (6), la cual desplaza así linealmente sobre el eje (1). Es necesario indicar asimismo que, durante la operación de soldadura, el eje (1) debe ser mantenido a una temperatura comprendida en el intervalo de 200-250°C.
El par motor del torno (2) debe permitir un desplazamiento giratorio uniforme del eje (1), que presenta habitualmente un peso de en torno a 8 toneladas, a muy bajas revoluciones, inferiores a 1 r.p.m., sin presentar golpeos o paradas bruscas en el giro. Asimismo, el torno (2) comprende un dispositivo avisador, no mostrado en las figuras adjuntas, que por cada giro de 370° del eje (1), es decir, ligeramente superior a un giro completo, emite una señal de aviso, preferentemente de tipo sónico.
En esta realización preferente, el dispositivo de regulación de la posición (8), vinculable al dispositivo avisador del torno (2), está conformado por un eje roscado o rosca sin fin, con un paso de rosca o número de entradas de rosca tales que, a cada vuelta de tornillo sin fin, lo que se corresponde con un giro de 370° del eje (1), la pistola se desplaza una distancia igual a la mitad del ancho del cordón depositado previamente hacia el interior de la cajera (3). En las figuras 3 y 4 se ilustra esquemáticamente el posicionamiento inicial de la pistola (6) con respecto al eje (1) dispuesto en el torno (2). Dicho desplazamiento de la pistola (6) respecto al eje (1) puede ser automático o manual, realizado por un operario tras emitirse el aviso de vuelta completa por parte del dispositivo avisador. En el primer caso, carro de soporte (7) y dispositivo avisador están sincronizados entre sí.
Asimismo, el carro de soporte (7) comprende elementos necesarios para la soldadura FCAW, tales como una bobina de hilo o metal de aporte y una devanadora para alimentación de la pistola (6). Dicha pistola (6) debe comprender una boquilla situada al final de un cuello recto y dotado de medios de refrigeración, debido a la alta temperatura a la que va a estar sometida debido a su proximidad al eje (1) que, como se ha mencionado, se encuentra a una temperatura aproximada de 250°C.
En cuanto a la aplicación de soldadura FCAW sobre la cajera (3), la cual comprende dos secuencias completas para dar lugar a dos capas de recargue superpuestas, comienza con la colocación de la pistola (6) superiormente al eje (1) y en un lateral de la cajera (3), como se ilustra en las figuras 3 y 4. Se define como capa al conjunto de cordones de recargue solapados que cubren el total del fondo (5) de la cajera (3).
A partir de ese momento comienza la aplicación de la soldadura de manera que, cuando el dispositivo avisador del torno (2) detecta un giro de 370°, la pistola realizará un desplazamiento de 0,5 veces el ancho del cordón inicial hacia el interior de la cajera (3), de forma que sigue realizando un segundo cordón de soldadura paralelo al primero, pero desplazado 12 mm respecto del arco. Se continúa realizando esta deposición hasta completar el ancho de la cajera (3). Durante la soldadura, el operario debe realizar un picado para eliminación de la escoria producida en la soldadura del hilo tubular y acumulada en la cajera (3).
Una vez finalizada la primera capa de recargue, se retira la pistola (6) y se vuelve a aplicar una fuente de calor sobre el eje (1) hasta alcanzar nuevamente los 250°C. Esta operación se realiza en aproximadamente 20 minutos.
Cuando el eje (1) alcanza de nuevo la temperatura indicada, se vuelve a disponer la pistola (6) como al comienzo de la primera capa, es decir, como se muestra en las figuras 3 y 4, y se aplica una nueva capa de recargue, de manera similar a la anteriormente mencionada. Sin embrago, para esta segunda capa es necesario considerar que el stick-out, es decir, la distancia entre el borde inferior de la boquilla de la pistola (6) y el punto de inicio del arco voltaico, debe de mantenerse. Para ello es necesario elevar aproximadamente 5mm la altura en la posición de la propia pistola (6).
La siguiente tabla recoge los principales parámetros de soldadura de acuerdo con la realización preferente aquí descrita.
Figure imgf000012_0001
Finalizada la segunda y última capa de recargue, y siempre con el eje (1) rotando sobre el torno (2) comienza la fase de postcalentamiento y enfriamiento del eje (1). Para el postcalentamiento se aplica de nuevo la fuente de calor para aumentar la temperatura del eje (1) hasta los 300°C. Dicha fuente de calor se aplica sobre la cajera (3) ya recargada con las dos capas superpuestas de recargue, y al menos a 700 mm a ambos lados de dicho sector, durante 2 horas. Una vez transcurrido este tiempo, se cubre la zona recargada y también hasta un mínimo de 700mm a cada lado del recargue con mantas térmicas, para conseguir un enfriamiento lento hasta alcanzar la temperatura ambiente, lo que suele prolongarse durante unas 14h.
Por último, con el eje (1) a temperatura ambiente, comienza la fase de mecanizado final del eje (1), la cual comprende una operación de torneado seguida de un rectificado.
En cuanto al torneado, comprende una sucesión de pasadas de torno, de un máximo de 1 mm por pasada para evitar la introducción de tensiones residuales adicionales. La finalidad del torneado es ajustar las dimensiones del sector del eje (1) reparado a las dimensiones necesarias para un correcto asiento del rodamiento. Finalmente, se introduce el eje (1) en una rectificadora para ajuste final del eje (1) mediante elementos abrasivos.

Claims

REIVINDICACIONES
1. Procedimiento de reparación de ejes de aerogeneradores mediante aporte por soldadura FCAW que comprende la siguiente secuencia de actuación:
- disposición de un eje (1) a reparar sobre un torno (2) volteador;
- inspección del eje (1) y localización de un sector a reparar;
- mecanizado de una cajera (3) en el sector del eje (1) a reparar;
- precalentamiento del eje (1);
- aplicación de soldadura FCAW sobre la cajera (3);
- postcalentamiento y enfriamiento del eje (1); y
- mecanizado final del eje (1), estando el procedimiento caracterizado por que el mecanizado de la cajera (3) comprende unas pasadas de mecanizado sucesivas, cada una de las cuales es inferior a 2 mm, para dar lugar a una cajera (3) que comprende:
- unos bordes laterales (4) achaflanados, con un ángulo comprendido en el rango 30- 45°, y
- un fondo (5) con una profundidad con respecto a la superficie del eje (1) comprendida en el rango entre 4 y 6 mm.
2. Procedimiento de reparación de ejes de acuerdo con la reivindicación 1 caracterizado por que el precalentamiento del eje (1) aumenta la temperatura del eje hasta los 250°C.
3. Procedimiento de reparación de ejes de acuerdo con la reivindicación 2 caracterizado por que el precalentamiento del eje (1) se realiza mediante aplicación directa de una llama de gran potencia sobre la superficie del eje (1), especialmente en el sector interior del eje (1) y en las proximidades de la cajera (3).
4. Procedimiento de reparación de ejes de acuerdo con la reivindicación 3 caracterizado por que:
- los gases utilizados para la obtención de la llama son una mezcla de Propano (C3H8) y Oxígeno (O2),
- la llama se sitúa a una distancia aproximada de 300 mm del eje (1), y
- la llama se aplica durante un periodo de tiempo comprendido en el intervalo entre
1.5 y 7 horas.
5. Procedimiento de reparación de ejes de acuerdo con la reivindicación 2 caracterizado por que el precalentamiento del eje (1) se realiza mediante aplicación de mantas eléctricas y/o inductores.
PCT/ES2019/070878 2019-12-23 2019-12-23 Procedimiento de reparación de ejes de aerogeneradores mediante aporte por soldadura fcaw WO2021130391A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2019/070878 WO2021130391A1 (es) 2019-12-23 2019-12-23 Procedimiento de reparación de ejes de aerogeneradores mediante aporte por soldadura fcaw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2019/070878 WO2021130391A1 (es) 2019-12-23 2019-12-23 Procedimiento de reparación de ejes de aerogeneradores mediante aporte por soldadura fcaw

Publications (1)

Publication Number Publication Date
WO2021130391A1 true WO2021130391A1 (es) 2021-07-01

Family

ID=69810884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070878 WO2021130391A1 (es) 2019-12-23 2019-12-23 Procedimiento de reparación de ejes de aerogeneradores mediante aporte por soldadura fcaw

Country Status (1)

Country Link
WO (1) WO2021130391A1 (es)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3611541A (en) * 1970-01-30 1971-10-12 Smith International Tool joint rebuilding
US4948936A (en) * 1988-09-28 1990-08-14 Gulf Engineering Company, Inc. Flux cored arc welding process
ES2049142A2 (es) 1990-11-01 1994-04-01 Westinghouse Electric Corp Metodo de reparacion por soldadura de una seccion de un miembro cilindrico metalico.
ES2084953T3 (es) 1991-12-30 1996-05-16 Gen Electric Soldadura en un rotor de turbina de vapor.
US5914055A (en) 1996-11-18 1999-06-22 Tennessee Valley Authority Rotor repair system and technique
US20100139092A1 (en) * 2009-01-22 2010-06-10 Sujith Sathian Shaft for wind turbine generator and method for assembling wind turbine generator
WO2015112978A1 (en) * 2014-01-24 2015-07-30 Electric Power Research Institute, Inc. Stepped design weld joint preparation
EP3009668A1 (en) * 2014-10-17 2016-04-20 General Electric Company Method for machining a shaft and apparatus made thereby

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3611541A (en) * 1970-01-30 1971-10-12 Smith International Tool joint rebuilding
US4948936A (en) * 1988-09-28 1990-08-14 Gulf Engineering Company, Inc. Flux cored arc welding process
ES2049142A2 (es) 1990-11-01 1994-04-01 Westinghouse Electric Corp Metodo de reparacion por soldadura de una seccion de un miembro cilindrico metalico.
ES2084953T3 (es) 1991-12-30 1996-05-16 Gen Electric Soldadura en un rotor de turbina de vapor.
US5914055A (en) 1996-11-18 1999-06-22 Tennessee Valley Authority Rotor repair system and technique
US20100139092A1 (en) * 2009-01-22 2010-06-10 Sujith Sathian Shaft for wind turbine generator and method for assembling wind turbine generator
WO2015112978A1 (en) * 2014-01-24 2015-07-30 Electric Power Research Institute, Inc. Stepped design weld joint preparation
EP3009668A1 (en) * 2014-10-17 2016-04-20 General Electric Company Method for machining a shaft and apparatus made thereby

Similar Documents

Publication Publication Date Title
ES2686366T3 (es) Método y dispositivo para producir un cilindro de laminación
JP6082740B2 (ja) ケーシングフランジ孔の抵抗溶接補修方法
US5667706A (en) Apparatus and method for laser welding the inner surface of a tube
US8436278B2 (en) Method for joining two rotationally symmetrical metal parts by tungsten inert gas (TIG) welding, and a device for carrying out the method
CN105345242B (zh) 核主泵电机轴套加硬层等离子喷焊工艺
KR20180044444A (ko) 강판의 마찰 교반 접합 방법 및 접합 이음매의 제조 방법
CN107598334B (zh) 双材质轴类零件在线焊接修复工艺
US20140042140A1 (en) Welding process for repair of thick sections
JP2008114290A (ja) 高温電子ビーム溶接
CN104384674B (zh) 主泵电机转子屏蔽套与转子护环的机动钨极氩弧焊接方法
JP2003065068A (ja) ガスタービン翼頂部の加工孔閉塞方法
CN103817414B (zh) 主泵电机轴和飞轮的钨极氩弧热丝焊堆焊工艺
US6781083B1 (en) Weld overlay system
BR112018001075B1 (pt) Método para reparar defeito em uma solda, sistema de processamento de agitação por fricção e sistema de tubulação
KR20160054001A (ko) 강판의 마찰 교반 접합 방법 및 접합 이음매의 제조 방법
BR112016024991B1 (pt) método e aparelho para fabricação de uma tubulação de metal por soldagem por fricção e mistura mecânica, estação de solda e embarcação de lançamento de tubos ou instalação de fabricação em terra
JP6050141B2 (ja) 硬化肉盛溶接装置及び方法
WO2021130391A1 (es) Procedimiento de reparación de ejes de aerogeneradores mediante aporte por soldadura fcaw
BRPI0601540B1 (pt) cobertura para o reparo da acanaladura e do dente de vedação de um componente acoplado
EP3162490B1 (en) Cylindrical-structure welding system and welding method
JP5622868B2 (ja) セーフエンド用配管の溶接方法、固定治具および溶接装置
ES2367355T3 (es) Soldadura de artículos de superaleación.
KR102661692B1 (ko) 관형 구조물을 수리하기 위한 방법 및 장치
JP2012228731A (ja) 大きな構造体の溶接工程
US20050258144A1 (en) TIG welding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19861253

Country of ref document: EP

Kind code of ref document: A1