WO2021129876A1 - 电池包温度调节方法及系统、充电箱、换电站或储能站 - Google Patents

电池包温度调节方法及系统、充电箱、换电站或储能站 Download PDF

Info

Publication number
WO2021129876A1
WO2021129876A1 PCT/CN2020/140271 CN2020140271W WO2021129876A1 WO 2021129876 A1 WO2021129876 A1 WO 2021129876A1 CN 2020140271 W CN2020140271 W CN 2020140271W WO 2021129876 A1 WO2021129876 A1 WO 2021129876A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
temperature
charging
fluid
unit
Prior art date
Application number
PCT/CN2020/140271
Other languages
English (en)
French (fr)
Inventor
张建平
陆文成
陈志浩
Original Assignee
奥动新能源汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911370637.9A external-priority patent/CN113043873A/zh
Priority claimed from CN201911365554.0A external-priority patent/CN113054274A/zh
Priority claimed from CN201911365604.5A external-priority patent/CN113131075A/zh
Application filed by 奥动新能源汽车科技有限公司 filed Critical 奥动新能源汽车科技有限公司
Publication of WO2021129876A1 publication Critical patent/WO2021129876A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the invention relates to the field of battery swapping for electric vehicles, in particular to a method and system for adjusting the temperature of a battery pack, a charging box, a swap station or an energy storage station.
  • a battery swap station is a place for quick-change electric vehicles to replace batteries.
  • the battery that is lost from the electric vehicle needs to be charged in the swap station or energy storage station, and the battery pack is placed on the charging rack in the station. Recharge.
  • the temperature of the battery pack needs to be maintained within an appropriate range, generally 10-30 degrees Celsius. If the temperature of the battery pack is too high or too low, the performance of the battery pack will decrease.
  • the factors that affect the temperature of the battery pack include: ambient temperature and the temperature rise of the battery pack itself due to heat during the charging process. If the ambient temperature is high and the battery pack generates heat when charging, if necessary cooling measures are not taken, the temperature of the battery pack will continue to rise above 30 degrees Celsius, and even the local temperature will reach 100 degrees Celsius. There is a risk of fire and explosion. . If the ambient temperature is low, the temperature of the battery pack may still be lower than 10 degrees Celsius even if the battery pack itself heats up, which is not conducive to maintaining the performance of the battery pack, and long-term shortens the life of the battery pack.
  • the technical problem to be solved by the present invention is to eliminate the above-mentioned risks and provide a battery pack temperature adjustment method and system, charging box, replacement station or energy storage station.
  • a method for adjusting the temperature of a battery pack used in a battery pack or an energy storage station The battery pack or the energy storage station has a charging compartment for charging the battery pack and a temperature adjustment system, wherein the temperature of the battery pack is
  • the adjustment method includes the following steps:
  • the temperature adjustment system is controlled to adjust the temperature of the battery pack.
  • the temperature of the battery pack is collected in real time, and the temperature of the battery pack is adjusted in real time by controlling the temperature adjustment system, so that the temperature of the battery pack is always within an appropriate working temperature, so that the battery pack is maintained in the best working performance state .
  • the step of adjusting the temperature of the battery pack includes performing heat exchange on the outer surface of the battery pack to achieve temperature adjustment.
  • the step of adjusting the temperature of the battery pack includes adjusting the temperature of the battery pack by controlling a heat exchange component outside the battery pack to exchange external heat of the battery pack.
  • a heat exchange component for heat exchange is provided on the outer surface of the battery pack to increase the contact area with the battery pack and improve the heat exchange efficiency.
  • the step of adjusting the temperature of the battery pack includes controlling the temperature of the fluid in the fluid pipeline to adjust the temperature of the battery pack.
  • the temperature of the battery pack is raised or lowered by controlling the temperature of the fluid entering the inner fluid pipeline of the battery pack, so that the temperature adjustment effect is better.
  • the step of adjusting the temperature of the battery pack includes: inputting fluid into the heat exchange assembly in the charging compartment and the fluid pipeline inside the battery pack, and controlling the temperature of the fluid The battery pack is temperature-regulated.
  • collecting the temperature of the battery pack includes collecting the temperature of multiple regions of the battery pack.
  • the step of adjusting the temperature of the battery pack includes: according to the collected temperature of different areas of the battery pack, by controlling the heat exchange components corresponding to the different areas of the battery pack, exchanging the corresponding parts of the battery pack The external heat of the area.
  • the temperature can be adjusted according to the temperature of different areas of the battery pack, so that the temperature of the entire battery pack is kept consistent.
  • the step of collecting the temperature of the battery pack is:
  • the temperature of the battery pack is obtained according to the temperatures of a plurality of the side surfaces.
  • the process of collecting the temperature of any one of the side surfaces is:
  • the one with the highest temperature value among the multiple collection points is selected as the temperature of the side surface.
  • the method for controlling the temperature adjustment system to adjust the temperature of the battery pack includes:
  • the first temperature threshold is smaller than the second temperature threshold
  • the temperature adjustment system is controlled to output the heated fluid to adjust the temperature of the battery pack.
  • a battery pack temperature adjustment system for adjusting the temperature of the battery pack during the charging process in a switching station or an energy storage station.
  • the battery pack temperature adjustment system includes:
  • a fluid circulation unit the fluid circulation unit is arranged corresponding to the battery pack, and is used to exchange heat with the battery pack;
  • a fluid supply unit which is connected to the fluid circulation unit, and is used to provide fluid to the fluid circulation unit.
  • the fluid provided by the fluid supply unit is used to circulate in the fluid circulation unit to exchange heat with the battery pack, that is, to heat or cool the battery pack to maintain the temperature of the battery pack within an appropriate range, thereby ensuring the performance of the battery pack At its best.
  • the switching station or the energy storage station has a plurality of charging bins for charging the battery pack, and the fluid circulation unit is provided at a corresponding position of the battery pack in the charging bin.
  • the fluid circulation unit is provided on the upper surface or the lower surface of the battery pack in the charging compartment.
  • the fluid circulation unit directly contacts the surface of the battery pack, so that the fluid exchanges heat with the battery pack more effectively.
  • the fluid circulation unit includes a circulation pipeline matching the size of the battery pack.
  • the size of the circulation pipeline and the battery pack are matched, so that the contact area between the fluid circulation unit and the battery pack is maximized, and the efficiency of heat exchange with the battery pack is improved.
  • the charging compartment has a support for carrying the battery pack, and the circulation pipeline is provided on the support, so that when the battery pack is placed on the support, the circulation pipeline contacts the battery pack.
  • the lower surface of the battery pack is provided on the support, so that when the battery pack is placed on the support, the circulation pipeline contacts the battery pack.
  • the circulation pipeline is directly arranged on the bracket, which does not occupy additional space, saves the internal space of the charging bin, and can directly contact the battery pack to improve the heat exchange efficiency.
  • the fluid circulation unit is arranged above the battery pack in the charging compartment,
  • the charging bin is also provided with a moving device for moving the fluid circulation unit in an up-and-down direction so that the fluid circulation unit abuts against the upper surface of the battery pack.
  • the fluid circulation unit in the initial state, is not in contact with the battery pack. It is a far away state, which will not hinder the insertion or removal of the battery pack or natural heat dissipation.
  • the mobile device is only used when heat exchange is required for the battery pack. Just move the fluid circulation unit to abut on the upper surface of the battery pack, which is easy to adjust and control.
  • the charging bin is further provided with a fluid internal circulation plug-in interface, and the fluid internal circulation plug-in interface is used to connect with the battery pack liquid cooling interface.
  • the fluid supply unit includes a liquid storage device and a delivery device, and the delivery device is used to deliver the fluid in the liquid storage device to the fluid circulation unit.
  • the battery pack temperature adjustment system further includes a heat exchange unit, which is provided between the fluid circulation unit and the fluid supply unit, and is used to adjust the flow rate of the fluid flowing through the heat exchange unit. temperature.
  • a heat exchange unit which is provided between the fluid circulation unit and the fluid supply unit, and is used to adjust the flow rate of the fluid flowing through the heat exchange unit. temperature.
  • the heat exchange unit includes a refrigeration unit and/or a heating unit.
  • the heat exchange unit is a refrigeration unit
  • the battery pack temperature adjustment system includes: a heat dissipation fan arranged close to the battery pack.
  • a cooling fan is used to better dissipate the battery pack.
  • a charging unit is provided in each charging compartment, and the charging unit is used to provide direct current for the battery pack.
  • the charging unit and the battery pack are arranged in a one-to-one correspondence, which is more conducive to the sufficient heat dissipation of the battery pack and the charging unit than the arrangement of the charging unit to charge multiple battery packs.
  • the temperature adjustment system further includes a shut-off valve provided at the inlet end of the fluid circulation unit.
  • a charging box includes the above-mentioned battery pack temperature adjustment system, a charging rack is provided in the charging box, the charging rack includes a plurality of charging bins, and each charging bin is provided with one charging unit, and The charging unit and the battery pack are arranged one to one, and the corresponding battery pack is charged by the charging unit.
  • each of the charging compartments is provided with a charging unit and a connecting socket, the charging unit is electrically connected to the connecting socket, and the connecting socket is used to connect the battery pack so as to realize the connection to the battery. Pack charging.
  • a heat exchange assembly is provided in the charging bin, and the heat exchange assembly is used to exchange external heat of the battery pack to adjust the temperature of the battery pack,
  • a heat-insulating plate is arranged between the heat exchange assembly and the charging unit, and the heat-insulating plate is arranged on the lower shell of the charging unit, and the heat exchange assembly is sequentially arranged below the heat-insulating plate With the battery pack.
  • a switching station or an energy storage station includes the battery pack temperature adjustment system as described above.
  • the positive improvement effect of the present invention is that the charging unit is cooled by the fluid circulation unit, so that the charging unit can work within a normal temperature.
  • the battery pack temperature adjustment method of the present invention collects the temperature of the battery pack in real time, and adjusts the temperature of the battery pack in real time by controlling the temperature adjustment system, so that the temperature of the battery pack is always within a suitable working temperature range, and the battery pack is in the best performance .
  • the charging box, switching station and energy storage station have the same effect.
  • FIG. 1 is a schematic flowchart of a method for adjusting the temperature of a battery pack in Embodiment 1 of the present invention.
  • Fig. 2 is a schematic diagram of the planar structure of the substations in Embodiments 1 and 2 of the present invention.
  • FIG. 3 is a schematic diagram of the structure of the charging stand in Embodiments 1 and 2 of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the battery compartment in Embodiment 1 of the present invention.
  • Fig. 5 is a schematic diagram of the structure of the connecting socket in the first and second embodiments of the present invention.
  • FIG. 6 is a schematic diagram of the module structure of the temperature adjustment system in Embodiment 1 of the present invention.
  • Fig. 7 is a schematic diagram of the module structure of the temperature adjustment system according to the second embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the structure of a charging bin according to Embodiment 2 of the present invention.
  • Fig. 9 is a schematic structural diagram of a charging bin according to another embodiment of the present invention.
  • Fig. 10 is a schematic structural diagram of a charging bin according to another embodiment of the present invention.
  • Swap station 100 full-function container 110; charging room 111; battery swap platform 112; monitoring room 113; charging container 120; battery swap trolley 130; palletizer 140; rail 150; charging rack 160; charging bin 161; charging unit 162 ; Temperature regulation system 200; battery pack 300
  • Battery pack temperature adjustment system 200 fluid circulation unit 210; fluid supply unit 220; liquid storage device 221; conveying device 222; heat exchange unit 230; mobile unit 240; connection socket 260; fluid internal circulation plug-in interface 262
  • Fig. 2 shows a switching station 100 according to an embodiment of the present invention.
  • the swap station 100 is a container-type swap station.
  • the swap station 100 includes a full-function container 110 and a charging container 120 (charging box).
  • the full-function container 110 includes a charging room 111, a power exchange platform 112, and a monitoring room 113.
  • the charging container 120 is vertically connected to the full-function container 110 and communicates with the charging chamber 111 of the full-function container 110.
  • a charging rack 160 is provided in the charging chamber 111 of the full-function container 110 and the charging container 120.
  • the monitoring room 113 is used to monitor the operation of the entire switching station.
  • the battery exchange platform 112 is used to exchange electricity for the vehicle.
  • the battery swapping station 100 is also provided with a battery swapping trolley 130 and a palletizer 140.
  • the battery swapping trolley 130 can move between the battery swapping platform 112 and the charging chamber 111, and the movement is generally linear, and its moving direction is generally perpendicular to the moving direction of the palletizer 140.
  • the palletizer 140 can move back and forth in the charging chamber 111 and the charging container 120 along the rail 150 to be able to reach each charging rack 160.
  • the vehicle is parked on the battery swapping platform 112, and the battery swapping trolley 130 moves between the battery swapping platform 112 and the charging chamber 111 in a direction perpendicular to the track 150 to remove the battery pack 300 to be charged from the vehicle and transport it to the yard.
  • the palletizer 140, or the fully charged battery pack 300 is received from the palletizer 140 and transported and installed on the vehicle.
  • the palletizer 140 moves along the rail 150 to move the battery pack 300 to be charged to each charging rack 160 in the charging chamber 111 for charging, or take out a fully charged battery pack from each charging rack 160 in the charging chamber 111 300, and transfer it to the battery exchange trolley 130.
  • the vehicle may be a variety of quick-change electric vehicles or hybrid vehicles such as SUVs, cars, off-road vehicles, trucks, and buses.
  • the switching station 100 may also be of other types and forms.
  • the charging rack 160 includes a plurality of charging bins 161.
  • the charging bins 161 are used to place the battery packs 300.
  • the charging bins 161 are provided with a charging unit 162.
  • the charging unit 162 charges the battery packs 300 that need to be charged. .
  • a battery pack temperature adjustment method for a battery swap station in this embodiment, the battery swap station 100 has a temperature adjustment system 200.
  • the method for adjusting the temperature of the battery pack 300 by the temperature adjusting system 200 includes the following steps:
  • control the temperature adjustment system 200 According to the collected temperature of the battery pack, control the temperature adjustment system 200 to adjust the temperature of the battery pack 300.
  • the temperature of the battery pack 300 is collected in real time, and the temperature of the battery pack 300 is adjusted in real time by controlling the temperature adjustment system 200, so that the battery pack 300 is always within a suitable operating temperature range, thereby maintaining the battery pack 300 The performance is at its best.
  • the step of adjusting the temperature of the battery pack 300 includes performing heat exchange with the outer surface of the battery pack 300 to achieve temperature adjustment.
  • the heat exchange is performed by the heat exchange assembly 264.
  • the heat exchange assembly 264 is arranged in the vicinity of the outside of the battery pack 300.
  • the temperature adjustment system 200 controls the heat exchange assembly 264 to contact the outer surface of the battery pack 300 to achieve heat exchange.
  • the battery pack 300 performs temperature adjustment.
  • collecting the temperature of the battery pack 300 includes collecting the temperature of multiple areas of the battery pack 300. By collecting the temperature of multiple areas of the battery pack 300, a more accurate temperature of the battery pack 300 can be obtained, avoiding the problem of inaccurate temperature data obtained by collecting only a single area of the battery pack 300 and affecting the service life of the battery pack 300.
  • the overall temperature of the battery pack 300 is always within a suitable working temperature range.
  • the temperature adjustment system 200 controls the heat exchange components 264 in the corresponding area to exchange heat.
  • the temperature of each area of the battery pack 300 can be kept consistent, and the local temperature of the battery pack 300 may not drop or rise to a suitable normal operating temperature range.
  • the steps of collecting the temperature of the battery pack 300 are:
  • the process of collecting the temperature of any one side of the battery pack 300 is as follows: multiple collection points are set on one side of the battery pack 300, and the one with the highest temperature value among the multiple collection points is selected as the temperature of the side In this way, the problem of inaccurate temperature values obtained when only one collection point is set can be avoided, thereby affecting the temperature adjustment effect of the battery pack 300.
  • the method for controlling the temperature adjustment system 200 to adjust the temperature of the battery pack 300 includes: preset a first temperature threshold and a second temperature threshold in the temperature adjustment system 200, and the first temperature threshold is less than the second temperature threshold; When the collected temperature of the battery pack 300 is between the first temperature threshold and the second temperature threshold, the temperature adjustment system 200 is controlled to output normal temperature fluid to perform constant temperature adjustment on the battery pack 300; when the collected temperature of the battery pack 300 is greater than the second temperature threshold At the temperature threshold, the temperature adjustment system 200 is controlled to output the cooled fluid to cool the battery pack 300; when the collected temperature of the battery pack 300 is less than the first temperature threshold, the temperature adjustment system 200 is controlled to output the heated fluid to the battery pack.
  • the package 300 performs temperature rise adjustment.
  • the temperature adjustment system 200 in this embodiment includes: a fluid supply unit 210, a cooling and heating unit 220, and a fluid passage 230.
  • the fluid supply unit 210 includes a water pump and a liquid storage tank, and the water pump is used to circulate the fluid in the liquid storage tank.
  • the water pump can be a piston pump, a gear pump, a vane pump, a centrifugal pump, an axial flow pump, etc.
  • the liquid storage tank provides the fluid passage 230 with fluid for heat exchange.
  • the liquid storage tank is preferably a tank body with a heat preservation effect.
  • the cooling and heating unit 220 includes a cooling unit and a heating unit, and the cooling unit and the heating unit are used for cooling and heating the fluid, respectively.
  • the charging compartment 161 of the charging rack 160 is a non-closed structure to facilitate heat dissipation.
  • Each charging bin 161 is provided with a charging unit 162, and all the charging units 162 are connected in parallel with an external power supply.
  • a temperature sensor is provided in the charging compartment 161, and the temperature sensor is used to collect the temperature of the battery pack 300.
  • the temperature of the battery pack 300 is collected in real time by the temperature sensor, and the cooling and heating unit 220 is controlled to heat or cool the fluid when the temperature of the battery pack 300 is too low or too high.
  • the cooling and heating unit 220 does not work, so that the battery pack 300 is always in a suitable operating temperature range.
  • a minimum temperature threshold and a maximum temperature threshold are preset in the temperature adjustment system 200 (the minimum temperature threshold and the maximum temperature threshold are respectively the minimum temperature and the maximum temperature of the normal operating temperature of the battery pack 300), and the temperature adjustment system 200
  • the controller compares the temperature value collected by the temperature sensor with two preset temperature thresholds, and then controls the working state of the cooling and heating unit 220 according to the comparison result.
  • the refrigeration and heating unit 220 is controlled to heat or cool the fluid output by the fluid supply unit 210, thereby increasing or decreasing the temperature of the battery pack 300. Temperature; when the temperature value collected by the temperature sensor is greater than the minimum temperature threshold and less than the maximum temperature threshold, the refrigeration and heating unit 220 does not work, and there is no need to heat or cool the fluid output by the fluid supply unit 210. It can be made by only circulating the fluid itself The temperature of the battery pack 300 is maintained within a normal range. The specific process is:
  • the temperature of the battery pack 300 is often lower than the minimum temperature of its normal operation. In order to ensure the best performance of the battery pack, the battery pack 300 needs to be kept warm.
  • the heating unit of the refrigeration and heating unit 220 to heat the fluid, the heated fluid can transfer heat to the battery pack 300 to increase its temperature during the circulation of the fluid pipeline.
  • the continuous circulation of the fluid makes the battery The temperature of the bag 300 is always kept within a suitable temperature range.
  • the temperature of the battery pack 300 When the external environment temperature is high, such as in the hot summer, the temperature of the battery pack 300 will usually exceed its normal operating temperature because the battery pack 300 itself emits heat when charging, in order to ensure the best performance of the battery pack , The battery pack 300 needs to be cooled.
  • the fluid is cooled by controlling the refrigeration unit of the refrigeration and heating unit 220, so that the cooled fluid can absorb the heat of the battery pack 300 during the circulation of the fluid pipeline to reduce its temperature. Through the continuous circulation of the fluid, the battery pack 300 The temperature is always kept within a suitable temperature range.
  • the cooling and heating unit 220 stops working and does not heat or cool the fluid.
  • the fluid in the normal temperature state circulates in the fluid pipeline and exchanges heat with the battery pack 300 to maintain the temperature of the battery pack 300 within a suitable temperature range.
  • Each charging bin 161 is provided with a charging unit 162 and a connecting socket 260.
  • the charging unit 162 is electrically connected to the connecting socket 260, and the connecting socket 260 is used to connect the battery pack 300 to charge the battery pack 300.
  • Such a one-to-one arrangement of the charging unit 162 and the battery pack 300 is easier to dissipate the heat of the charging unit 162 than the centralized placement of the charging unit 162.
  • the charging unit 162 also emits heat at the same time.
  • the heat dissipated by the charging unit 162 will further affect the temperature of the battery pack 300.
  • the charging unit 162 needs to be cooled.
  • a fluid pipeline may be provided in the charging unit 162, and the fluid pipeline is also connected to the fluid passage 230, so that the cooled fluid can take away the heat emitted by the charging unit 162, so as to avoid damage to the charging unit 162 due to untimely internal heat dissipation.
  • a heat dissipation assembly 265 is also provided in the charging compartment 161, and the heat dissipation assembly 265 is provided on the outer surface of the charging unit 162.
  • the heat dissipation assembly 265 is a plate-shaped member with a built-in fluid pipeline. In other embodiments, the heat dissipation assembly 265 may not have a built-in fluid pipeline.
  • the heat dissipation component 265 can also be arranged at any position on the outer surface of the charging unit 162 according to needs, and the number of the heat dissipation components 265 can be set according to needs. In FIG. 4, the heat dissipation component 265 is provided on the upper surface of the charging unit 162.
  • the heat dissipation assembly 265 may also be provided between the charging unit 162 and the battery pack 300. When the heat dissipating component 265 is located at the above position, it can not only dissipate heat to the charging unit 162 but also dissipate heat to the battery pack 300.
  • a heat shield 266 is provided between the heat exchange assembly 264 and the charging unit 162. As shown in FIG. 4, the heat insulation board 266 is provided on the lower casing of the charging unit 162, and the heat exchange assembly 264 and the battery pack 300 are sequentially provided under the heat insulation board 266. The heat insulation plate 266 can insulate the influence of the heat emitted by the heat exchange assembly 264 on the charging unit 162.
  • a shut-off valve 263 is arranged at the front entrance of the built-in fluid pipeline of each charging unit 162, so that the shut-off valve 263 can be closed when the external environment temperature is low to prevent fluid from flowing inside the charging unit 162. This is because when the outside temperature is low, the battery pack 300 needs to be kept warm. At this time, the fluid flowing from the cooling and heating unit 220 is hot, and the charging unit 162 itself generates heat when it is working. The charging unit 162 is heated, and at this time, it is necessary to prevent the heated fluid from entering the inside of the charging unit 162.
  • the cut-off valve 263 is preferably an electromagnetic cut-off valve, which is convenient for automatic control.
  • the temperature adjustment of the battery pack 300 can be achieved by controlling the temperature of the fluid entering the built-in fluid pipeline.
  • the temperature of the battery pack 300 can be adjusted at the same time through the heat exchange assembly 264 in the charging bin 161 and the fluid pipeline built in the battery pack 300, specifically controlling the access to the heat exchange assembly 264 and the fluid pipeline.
  • the temperature of the fluid is achieved.
  • Fig. 1 shows a switching station 100 according to Embodiment 2 of the present invention.
  • the switching station 100 is a container-type switching station 100.
  • the swap station 100 includes a full-function container 110 and a charging container 120 (charging box).
  • the charging rack 160 includes a plurality of charging bins 161, and the charging bins 161 are used to place the battery packs 300 and charge the battery packs 300 as needed.
  • the battery pack temperature adjustment system 200 is applied to the charging chamber 111 and the charging container 120 of the above-mentioned switching station 100.
  • the battery pack temperature adjustment system 200 is used to adjust the temperature of the battery pack 300 during the charging process in the switching station 100 and the charging container 120.
  • the battery pack temperature adjustment system 200 includes: a fluid circulation unit 210, the fluid circulation unit 210 is arranged corresponding to the battery pack 300, and is used for heat exchange with the battery pack 300; and a fluid supply unit 220, a fluid supply unit 220 communicates with the fluid circulation unit 210 and is used to provide fluid to the fluid circulation unit 210.
  • the battery pack temperature regulation system utilizes the fluid provided by the fluid supply unit to circulate in the fluid circulation unit to exchange heat with the battery pack, that is, to heat or cool the battery pack to maintain the temperature of the battery pack within an appropriate range, thereby ensuring the battery pack’s Performance is at its best.
  • the switching station 100 has a plurality of charging bins 161 for charging the battery pack 300, and the fluid circulation unit 210 is provided in each charging bin 161 at a corresponding position to the battery pack 300.
  • the fluid circulation unit 210 is provided on the upper surface or the lower surface of the battery pack 300 in the charging compartment 161.
  • FIG. 8 illustrates an example in which the fluid circulation unit 210 is provided on the upper surface of the battery pack 300
  • FIG. 5 illustrates an example in which the fluid circulation unit 210 is provided on the lower surface of the battery pack 300.
  • the present invention is not limited to this, and the fluid circulation unit 210 may also be provided on the upper surface or the lower surface of the battery pack 300 in other ways.
  • the fluid circulation unit 210 is provided on the surface of the battery pack 300, and it is in direct contact with the surface of the battery pack 300 to more effectively exchange heat with the battery pack 300.
  • the fluid circulation unit 210 includes a circulation line matching the size of the battery pack 300.
  • the circulation pipeline covers the entire upper or lower surface of the battery pack 300, which increases the contact area and can exchange heat with the battery pack 300 more effectively.
  • the charging compartment 161 has a support for carrying the battery pack 300.
  • the circulation pipeline is arranged on the support, so that the battery pack 300 directly contacts the battery pack 300 when it is placed on the support. surface.
  • the fluid circulation unit 210 may also be a component separately provided on the lower surface of the battery pack 300.
  • the circulation pipeline is directly arranged on the bracket, which does not occupy additional space and saves the internal space of the charging compartment 161.
  • FIG. 10 illustrates an example in which the fluid circulation unit 210 is provided above the battery pack 300 according to another embodiment of the present invention.
  • the fluid circulation unit 210 is provided above the battery pack 300 in the charging compartment 161.
  • the charging compartment 161 is also provided with a moving device for moving the fluid circulation unit 210 up and down to make the fluid circulation unit 210 abuts against the upper surface of the battery pack 300.
  • the moving device may be a device with a telescopic arm or a wall that can move up and down that is driven by one or more of a linear motor, a hydraulic motor, a rotary motor, and the like.
  • the mobile device may also be in other forms.
  • the fluid circulation unit 210 In the initial state, the fluid circulation unit 210 is located above and is not in contact with the battery pack 300. When it is necessary to exchange heat for the battery pack 300, the fluid circulation unit 210 is moved to the upper surface of the battery pack 300 by a mobile device; when the heat exchange of the battery pack 300 is not required, the fluid circulation unit 210 is reversed by the mobile device. Move to the initial state, that is, away from the battery pack 300, so as not to hinder the insertion and removal of the battery pack 300 or natural heat dissipation.
  • the charging bin 161 is also provided with a fluid internal circulation plug-in interface 262, which is used to connect with the liquid cooling interface built in the battery pack 300, and is suitable for a battery pack with a built-in liquid cooling circuit.
  • the fluid internal circulation plug-in interface 262 is provided on the connection socket 260 and is integrated with the circuit connector. Alternatively, a separate fluid internal circulation plug-in interface 262 may also be provided in the charging compartment.
  • the fluid supply unit 220 includes a liquid storage device 221 and a delivery device 222, and the delivery device 222 is used to deliver the fluid in the liquid storage device 221 to the fluid circulation unit 210.
  • the conveying device 222 may be a water pump such as a piston pump, a gear pump, a vane pump, a centrifugal pump, and an axial flow pump.
  • the battery pack temperature adjustment system 200 further includes a heat exchange unit 230 provided between the fluid circulation unit 210 and the fluid supply unit 220 for adjusting the temperature of the fluid flowing through the heat exchange unit 230.
  • the heat exchange unit 230 includes a refrigeration unit and/or a heating unit.
  • the battery pack temperature adjustment system 200 includes: a heat dissipation fan arranged close to the battery pack 300.
  • the cooling fan can be directly installed in the charging compartment 161 or beside the battery rack.
  • the heat dissipation fan is used to better dissipate the battery pack 300.
  • Each charging compartment 161 is provided with a charging unit 162, and the charging unit 162 is used to provide the DC power required for charging the battery pack 300.
  • This arrangement is more conducive to the heat dissipation of the battery pack 300 and the charging unit 162 than the arrangement in which the charging unit 162 charges the multiple battery packs 300 collectively.
  • the charging unit 162 includes a converter that converts the external power source into direct current.
  • the charging unit 162 may also include other components such as a voltage regulator, a supercharger, and a cable.
  • the present invention also provides an energy storage station.
  • the energy storage station also includes a battery pack temperature adjustment system.
  • the battery pack temperature adjustment system has the same structure as the battery pack temperature adjustment system 200 described in the foregoing embodiment, and will not be omitted here. Go into details.
  • the battery pack temperature regulation system utilizes the fluid provided by the fluid supply unit to circulate in the fluid circulation unit to exchange heat with the battery pack, that is, to heat or cool the battery pack to maintain the temperature of the battery pack within an appropriate range, thereby ensuring the battery pack’s Performance is at its best.
  • the charging box, the switching station and the energy storage station including the battery pack temperature adjustment system have the same effect as described above.
  • orientation or positional relationship indicated by “right”, “vertical”, “horizontal”, “top”, “bottom”, “inner”, “outer” etc. is based on the placement position of the device or component when it is used normally. In order to facilitate the description of the present invention and simplify the description, it does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation at any time, unless otherwise specified in the context.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种电池包(300)温度调节方法及系统(200)、充电箱(120)、换电站(100)或储能站,所述换电站(100)或储能站具有对电池包(300)进行充电的充电仓(161)以及温度调节系统(200),所述电池包(300)温度调节方法包括以下步骤:采集电池包(300)温度;根据采集到的所述电池包(300)温度,控制所述温度调节系统(200)对所述电池包(300)进行温度调节,该电池包(300)温度调节方法通过实时采集电池包(300)温度,并通过控制温度调节系统(200)对电池包(300)温度进行实时调节,使电池包(300)的温度始终处于适宜的工作温度范围内,确保电池包(300)性能处于最佳状态。

Description

电池包温度调节方法及系统、充电箱、换电站或储能站
本申请要求申请日为2019年12月26日的中国专利申请CN2019113655540、CN2019113706379和CN2019113656045的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及电动车换电领域,特别涉及一种电池包温度调节方法及系统、充电箱、换电站或储能站。
背景技术
目前,汽车尾气的排放仍然是环境污染问题的重要因素,为了治理汽车尾气,人们研制出了天然汽车、氢燃料汽车、太阳能汽车和电动汽车以替代燃油型汽车。而其中最具有应用前景的是电动汽车。目前的电动汽车主要包括直充式和快换式两种。
由于受充电时间和地点的限制,目前很多新能源电动汽车逐步采用快换式(即、快速更换电池的模式)进行能源补给。
换电站是一种为快换式的电动汽车进行电池更换的场所,由电动汽车上换下的亏电电池需要在换电站或储能站内进行充电,将电池包放置在站内的充电架上进行充电。为了使电池包的性能维持在最佳状态,需要使电池包的温度维持在适宜范围内,一般为10-30摄氏度。电池包温度过高或过低,都将导致电池包的性能下降。
影响电池包温度的因素有:环境温度和电池包自身在充电过程中因发热而导致的温度升高。如果环境温度较高,再加上电池包充电时自身发热,如果不采取必要的降温措施,电池包温度将持续升高而超过30摄氏度,甚至局部温度达到100摄氏度以上,有起火和爆炸的风险。如果环境温度较低,即便电池包自身发热其温度可能仍会低于10摄氏度,不利于维持电池包的性能,长期导致电池包寿命缩短。
发明内容
本发明要解决的技术问题是为了消除上述风险,提供一种电池包温度调节方法及系统、充电箱、换电站或储能站。
一种用于换电站或储能站的电池包温度调节方法,所述换电站或所述储能站具有对电池包进行充电的充电仓以及温度调节系统,其特点在于,所述电池包温度调节方法包括以下步骤:
采集电池包温度;
根据采集到的所述电池包温度,控制所述温度调节系统对所述电池包进行温度调节。
在本方案中,通过实时采集电池包温度,并通过控制温度调节系统对电池包温度进行实时调节,使电池包的温度始终处于适宜的工作温度内,从而使电池包维持在最佳工作性能状态。
较佳地,对所述电池包进行温度调节的步骤包括对所述电池包外表面进行热交换以实现温度调节。
在本方案中,通过对电池包的外表面进行热交换,在电池包温度过高或过低时,及时降低或升高电池包的温度,使其维持在适宜的温度范围内,保证电池包性能最佳。
较佳地,对所述电池包进行温度调节的步骤包括通过控制所述电池包外部的换热组件交换所述电池包的外部热量对所述电池包进行温度调节。
在本方案中,在电池包的外表面设有进行热交换的换热组件,增加与电池包的接触面积,提高换热效率。
较佳地,当所述电池包内部设有流体管路时,对所述电池包进行温度调节的步骤包括控制所述流体管路内流体的温度对所述电池包进行温度调节。
在本方案中,在电池包内部有流体管路的情况下,通过控制进入电池包内部流体管路中流体的温度对电池包进行升温或降温,使得温度调节效果更好。
较佳地,对所述电池包进行温度调节的步骤包括:向所述充电仓内换热组件和所述电池包内部的流体管路内输入流体,并通过控制所述流体的温度对所述电池包进行温度调节。
在本方案中,在电池包内部有流体管路的情况下,采用对电池包内部和外部共同进行调节,这样可以加快电池包的升温或降温,使电池包可以快速进入适宜的工作温度范围,温度调节效率更高。
较佳地,采集电池包温度包括采集所述电池包多个区域的温度。
在本方案中,通过采集电池包多个区域的温度,可以得到更准确的电池包温度,避免只对一个区域进行采集导致的温度数据不准确问题。
较佳地,对所述电池包进行温度调节的步骤包括:根据采集的所述电池包不同区域的温度,通过控制与所述电池包不同区域相对应的换热组件,交换所述电池包对应区域的外部热量。
在本方案中,通过在电池包外的不同区域分别对应设置换热组件,可以根据电池包不同区域的温度分别调节温度,使电池包整体的温度保持一致。
较佳地,采集电池包温度的步骤为:
采集所述电池包多个侧面的温度;
根据多个所述侧面的温度得到所述电池包温度。
较佳地,在采集所述电池包多个所述侧面的温度的步骤中,采集任意一个所述侧面的温度的过程为:
在所述电池包当前侧面设置多个采集点;
选择所述多个采集点中温度值最高的一个作为所述侧面的温度。
在本方案中,通过采集多个点并将其中最高温度的一个作为电池包在该侧面的实际温度,可以避免在只设置一个采集点的情况下得到的不合适的温度值,影响电池包的温度调节效果。
较佳地,控制所述温度调节系统对所述电池包进行温度调节的方法包括:
在所述温度调节系统内预设第一温度阈值和第二温度阈值,所述第一温度阈值小于所述第二温度阈值;
当采集所述电池包温度在所述第一温度阈值和所述第二温度阈值之间时,控制所述温度调节系统的输出常温流体对所述电池包进行恒温调节;
当采集所述电池包温度大于所述第二温度阈值时,控制所述温度调节系统输出冷却后的流体对所述电池包进行降温调节;
当采集所述电池包温度小于所述第一温度阈值时,控制所述温度调节系统输出加热后的流体对所述电池包进行升温调节。
一种电池包温度调节系统,用于对换电站或储能站内充电过程中的电池包的温度进行调节,所述电池包温度调节系统包括:
流体循环单元,所述流体循环单元与所述电池包相对应设置,用于与所述电池包进行热交换;以及
流体供应单元,所述流体供应单元与所述流体循环单元相连通,用于为所述流体循环单元提供流体。
在本方案中,利用流体供应单元提供的流体在流体循环单元中循环流动,与电池包进行热交换,即加热或冷却电池包使电池包的温度维持在适宜范围内,从而保证电池包的性能处于最佳状态。
优选地,所述换电站或所述储能站具有对所述电池包充电的多个充电仓,所述流体循环单元设于所述充电仓内的电池包的对应位置。
优选地,所述流体循环单元设于所述充电仓内的电池包的上表面或下表面。
在本方案中,流体循环单元直接与电池包的表面相接触,使得流体与对电池包更有效地换热。
优选地,所述流体循环单元包含与所述电池包大小匹配的循环管路。
在本方案中,循环管路与电池包的大小匹配,使得流体循环单元与电池包的接触面积最大化,提高与电池包进行换热的效率。
优选地,所述充电仓具有承载所述电池包的支架,所述循环管路设于所述支架上,以使所述电池包被置于所述支架上时,所述循环管路接触所述电池包下表面。
在本方案中,循环管路直接设于支架上,既不占用额外空间,节省充电仓内部空间,又能够与电池包直接接触,提高换热效率。
优选地,所述流体循环单元设于所述充电仓内的电池包的上方,
所述充电仓还设有移动装置,所述移动装置用于在上下方向上移动所述流体循环单元以使得所述流体循环单元贴靠所述电池包的上表面。
在本方案中,初始状态下,流体循环单元与电池包不接触,为远离状态,不会妨碍电池包的放入或取出或自然散热,仅在当需要对电池包换热时,通过移动装置移动流体循环单元至贴靠在电池包的上表面即可,易于调整支配。
优选地,所述充电仓还设有流体内循环插拔接口,所述流体内循环插拔接口用于与所述电池包液冷接口连接。
优选地,所述流体供应单元包含储液装置和输送装置,所述输送装置用于将所述储液装置中的流体输送到所述流体循环单元。
优选地,所述电池包温度调节系统还包括热交换单元,所述热交换单元设于所述流体循环单元和所述流体供应单元之间,用于调节流经所述热交换单元的流体的温度。
优选地,所述热交换单元包括制冷单元和/或加热单元。
优选地,所述热交换单元为制冷单元,
所述电池包温度调节系统包括:靠近所述电池包设置的散热风机。
在本方案中,通过散热风机实现更好地对电池包进行散热。
优选地,每一所述充电仓内设有一个充电单元,所述充电单元用于为所述电池包提供直流电。
在本方案中,将充电单元与电池包一一对应设置,相比于充电单元集中为多个电池包充电的设置,更有利于电池包和充电单元的充分散热。
优选地,所述温度调节系统还包括截止阀,所述截止阀设于所述流体循环单元的入口端。
一种充电箱,包括上述电池包温度调节系统,所述充电箱内设置有充电架,所述充电架包括多个充电仓,每个所述充电仓内设置有一个所述充电单元,所述充电单元与所述电池包一对一设置,通过所述充电单元对相对应的电池包进行充电。
优选地,每个所述充电仓内均设有一个充电单元和一个连接插座,所述充电单元电连接于所述连接插座,所述连接插座用于连接所述电池包从而实现对所述电池包充电。
优选地,所述充电仓内设置有换热组件,所述换热组件用于交换所述电池包的外部热量以对所述电池包进行温度调节,
所述换热组件与所述充电单元之间设有隔热板,所述隔热板设于所述充电单元的下壳体上,所述隔热板的下方依次设有所述换热组件与所述电池包。
一种换电站或储能站,其包括如上所述的电池包温度调节系统。
本发明的积极进步效果在于:通过流体循环单元对充电单元进行冷却,使得充电单元能够在正常温度内工作。本发明的电池包温度调节方法通过实时采集电池包温度,并通过控制温度调节系统对电池包温度进行实时调节,使电池包的温度始终处于适宜的工作温度范围内,使电池包处于最佳性能。该充电箱、换电站及储能站具有相同效果。
附图说明
图1为本发明的实施例1中电池包温度调节方法的流程示意图。
图2为本发明的实施例1和2中换电站的平面结构示意图。
图3为本发明的实施例1和2中充电架的结构示意图。
图4为本发明的实施例1中电池仓的结构示意图。
图5为本发明的实施例1和2中连接插座的结构示意图。
图6为本发明的实施例1中温度调节系统的模块结构示意图。
图7为根据本发明的实施例2的温度调节系统的模块结构示意图。
图8为根据本发明的实施例2的充电仓的结构示意图。
图9为根据本发明的另一个实施例的充电仓的结构示意图。
图10为根据本发明的又一个实施例的充电仓的结构示意图。
附图标记说明:
所有实施例共用:
换电站100;全功能集装箱110;充电室111;换电平台112;监控室113;充电集装 箱120;换电小车130;码垛机140;轨道150;充电架160;充电仓161;充电单元162;温度调节系统200;电池包300
实施例1:
流体供应单元210;制冷制热单元220;流体通路230;连接插座260;电路接头261;液路接头262;截止阀263;换热组件264;散热组件265;隔热板266;
实施例2:
电池包温度调节系统200;流体循环单元210;流体供应单元220;储液装置221;输送装置222;热交换单元230;移动单元240;连接插座260;流体内循环插拔接口262
具体实施方式
下面结合附图,通过实施例的方式进一步说明本发明,但并不因此将本发明限制在下述的实施例范围之中。
实施例1
图2根据本发明的一个实施例示出的一种换电站100。
该换电站100为集装箱式换电站。该换电站100包括:全功能集装箱110和充电集装箱120(充电箱)。
全功能集装箱110包括:充电室111、换电平台112和监控室113。充电集装箱120垂直地连接于全功能集装箱110,并与全功能集装箱110的充电室111连通。
全功能集装箱110的充电室111和充电集装箱120中设置充电架160。监控室113用于监控整个换电站的运行。换电平台112用于给车辆换电。
换电站100中还设有换电小车130和码垛机140。换电小车130能够在换电平台112和充电室111之间移动,该移动一般为直线运动,其移动方向一般垂直于码垛机140的移动方向。码垛机140可沿着轨道150在充电室111和充电集装箱120中来回移动,以能够接触到每个充电架160。
车辆停靠于换电平台112上,换电小车130在垂直于轨道150的方向上在换电平台112和充电室111之间移动,以将待充电的电池包300从车辆上拆卸并运送到码垛机140,或从码垛机140上接收充满电的电池包300并将其运送并安装到车辆上。
码垛机140沿着轨道150移动,将待充电的电池包300移动到充电室111中的各个充电架160上进行充电,或者从充电室111中的各个充电架160上取出充满电的电池包 300,并将其转移到换电小车130上。
车辆可以是例如SUV、小轿车、越野车、卡车、大巴等各种快换式的电动车或混合动力车。
当然,换电站100也可以是其他类型和形式。
如图3所示,充电架160包括多个充电仓161,充电仓161中用于放置电池包300,充电仓161内设有充电单元162,通过充电单元162对需要充电的电池包300进行充电。
如图1-5所示,本实施例的一种用于换电站的电池包温度调节方法,该换电站100具有温度调节系统200。该温度调节系统200对电池包300的温度调节方法包括以下步骤:
S1、采集电池包温度;
S2、根据采集到的电池包温度,控制温度调节系统200对所述电池包300进行温度调节。
在本实施例中,通过实时采集电池包300的温度,并通过控制温度调节系统200对电池包300的温度进行实时调节,使电池包300始终处于适宜的工作温度范围内,从而维持电池包300的性能为最佳状态。
在本实施例中,对电池包300进行温度调节的步骤包括与电池包300外表面进行热交换以实现温度调节。通过与电池包300的外表面进行热交换,在电池包300的温度过高或过低时,交换电池包300表面的温度,以降低或升高电池包300的温度。其中,进行热交换通过换热组件264执行,换热组件264设在电池包300外部的附近区域,温度调节系统200通过控制换热组件264与电池包300的外表面相接触实现热量交换,从而对电池包300进行温度调节。
在本实施例中,采集电池包300的温度包括采集电池包300多个区域的温度。通过采集电池包300多个区域的温度,可以得到更准确的电池包300的温度,避免仅对电池包300的单个区域进行采集导致得到的温度数据不准确而影响电池包300使用寿命问题,使电池包300的整体温度始终处于适宜工作温度范围内。
在本实施例中,通过在电池包300外的不同区域都对应设置一个换热组件264,采集电池包300多个区域的温度后,根据采集的电池包300不同区域的温度,通过温度调节系统200控制对应区域的换热组件264进行热量交换。通过对电池包300各个区域的温度分别进行调节,可以使电池包300各个区域的温度保持一致,避免电池包300的局部温度没有降到或升到适宜的正常工作温度范围内。
在本实施例中,采集电池包300的温度的步骤为:
S11、采集电池包300多个侧面的温度;
S12、根据多个侧面的温度得到电池包300温度。
其中,在上述步骤S11中,采集电池包300任意一个侧面的温度的过程为:在电池包300的一个侧面设置多个采集点,选择多个采集点中温度值最高的一个作为该侧面的温度,这样,可以避免在只设置一个采集点的情况下得到的温度值不准确问题,进而影响电池包300的温度调节效果。
在本实施例中,控制温度调节系统200对电池包300进行温度调节的方法包括:温度调节系统200内预设第一温度阈值和第二温度阈值,第一温度阈值小于第二温度阈值;当采集到的电池包300的温度在第一温度阈值和第二温度阈值之间时,控制温度调节系统200输出常温流体对电池包300进行恒温调节;当采集到的电池包300的温度大于第二温度阈值时,控制温度调节系统200输出冷却后的流体对电池包300进行降温调节;当采集到的电池包300的温度小于第一温度阈值时,控制温度调节系统200输出加热后的流体对电池包300进行升温调节。
如图6所示,为本实施例中温度调节系统的模块结构示意图。该实施例中的温度调节系统200包括:流体供应单元210、制冷制热单元220、流体通路230。
流体供应单元210、制冷制热单元220、流体通路230与换热组件264内部流体管路相互连通形成闭合的流通回路。流体供应单元210包括水泵和储液罐,水泵用于使储液罐内的流体循环流动。水泵可以是活塞泵、齿轮泵、叶片泵、离心泵、轴流泵等。储液罐为流体通路230提供换热用的流体。储液罐优选具有保温效果的罐体。
制冷制热单元220包括制冷单元和制热单元,制冷单元和制热单元用于对流体分别进行制冷和加热。
如图3所示,充电架160的充电仓161为非封闭式结构,以方便散热。每个充电仓161内部分别设有一个充电单元162,所有的充电单元162与外部的供电电源并联连接。
充电仓161内设有温度传感器,该温度传感器用于采集电池包300的温度。通过温度传感器实时采集电池包300的温度,在电池包300温度过低或过高时通过控制制冷制热单元220对流体进行加热或制冷,在电池包300温度处于正常温度时,制冷制热单元220不工作,使得电池包300始终处于适宜的工作温度范围内。
具体地,温度调节系统200内预设有一个最低温度阈值和一个最高温度阈值(最低温度阈值和最高温度阈值分别为电池包300的正常工作温度的最低温度和最高温度),温度调节系统200的控制器将温度传感器采集到的温度值与两个预设的温度阈值进行比较,进而根据比较结果控制制冷制热单元220的工作状态。
当温度传感器采集的电池包300的温度值小于最低温度阈值或大于最高温度阈值时, 控制制冷制热单元220对流体供应单元210输出的流体进行加热或冷却,从而升高或降低电池包300的温度;当温度传感器采集的温度值大于最低温度阈值且小于最高温度阈值时,制冷制热单元220不工作,无需对流体供应单元210输出的流体进行加热或冷却,仅通过流体自身循环即可使电池包300的温度维持在正常范围内。具体过程为:
当外界环境温度较低时,例如在寒冷的冬季,电池包300的温度往往会低于其正常工作的最低温度,为了确保电池包的性能最佳,需要对电池包300进行保温操作。通过控制制冷制热单元220的制热单元对流体进行加热,这样加热后的流体在流体管路循环过程中能够将热量传递给电池包300使其温度升高,通过流体的不断循环,使电池包300的温度始终保持在适宜的温度范围内。
当外界环境温度较高时,例如在炎热的夏季,又由于电池包300在充电时自身也会散发热量,使得电池包300的温度通常会超过其正常工作温度,为了确保电池包的性能最佳,需要对电池包300进行冷却操作。通过控制制冷制热单元220的制冷单元对流体进行冷却,这样冷却后的流体在流体管路循环过程中能够吸收电池包300的热量使其温度降低,通过流体的不断循环,使电池包300的温度始终保持在适宜的温度范围内。
当外界环境温度比较适宜时,制冷制热单元220停止工作,不对流体进行加热或冷却。常温状态下的流体在流体管路内循环并与电池包300进行热量交换即可使电池包300的温度维持在适宜的温度范围内。
每个充电仓161内均设有一个充电单元162和一个连接插座260,充电单元162电连接于连接插座260,连接插座260用于连接电池包300从而实现对电池包300充电。这种将充电单元162与电池包300一对一的设置比充电单元162集中放置更易于充电单元162的散热。
在电池包充电过程中,充电单元162同时也会散发热量。在外界温度本身就较高时,充电单元162散发的热量就会对电池包300的温度造成进一步影响,此时还需要对充电单元162进行冷却。可以采用在充电单元162内设置流体管路,该流体管路也连通于流体通路230,使冷却后的流体带走充电单元162散发的热量,避免充电单元162因内部散热不及时造成损坏。
为了增加充电单元162的散热效率,充电仓161内还设有散热组件265,散热组件265设在充电单元162的外表面。在本实施例中,散热组件265是带有内置流体管路的板状件。在其它实施方式中,散热组件265也可以没有内置流体管路。
根据需要散热组件265也可以设于充电单元162的外表面任意位置,散热组件265的数量可以根据需要设置。在图4中,散热组件265设于充电单元162的上表面。
散热组件265也可以设在充电单元162与电池包300之间。当散热组件265位于上述位置时,其不但可以对充电单元162散热,也可以对电池包300散热。
由于在外界环境温度较低的时候,需要对电池包300加热,换热组件264散发的热量会使充电单元162的内部温度升高,可能会导致其工作时内部过热而损坏,影响电池包300的充电工作,因此在换热组件264与充电单元162之间设有隔热板266。如图4所示,隔热板266设在充电单元162的下壳体上,隔热板266的下方依次设有换热组件264和电池包300。隔热板266可以隔绝换热组件264散发的热量对充电单元162的影响。
每一个充电单元162的内置流体管路的前端进口处配置有截止阀263,这样可以在外界环境温度较低时关闭截止阀263,阻止流体流经充电单元162内部。这是因为在外界温度较低时,需要对电池包300进行保温操作,此时从制冷制热单元220内流出的流体是热的,而充电单元162在进行工作时自身会产生热量,不需要对充电单元162进行升温,此时需要阻止加热后的流体进入充电单元162内部。其中,截止阀263优选电磁截止阀,方便进行自动化控制。
在其它实施方式中,当电池包300自身内置有流体管路时,对电池包300进行温度调节可以通过控制进入内置的流体管路内的流体的温度来实现。
在其它实施方式中,还可以通过充电仓161内的换热组件264和电池包300内置的流体管路同时对电池包300的温度进行调节,具体是控制进入换热组件264和流体管路的流体的温度来实现。通过对电池包300内部和外部的一同进行调节,可以加速实现电池包300的升温或降温,使电池包300快速维持在适宜的工作温度范围,温度调节效率更高。
实施例2
图1根据本发明的实施例2示出了一种换电站100。该换电站100为集装箱式换电站100。该换电站100包括:全功能集装箱110和充电集装箱120(充电箱)。
如图2所示,充电架160包括多个充电仓161,充电仓161用于放置电池包300并根据需要对这些电池包300进行充电。
本发明的一个实施例的电池包温度调节系统200应用于上述换电站100的充电室111以及充电集装箱120。
该电池包温度调节系统200用于对换电站100和充电集装箱120内充电过程中的电池包300的温度进行调节。
如图7所示,电池包温度调节系统200包括:流体循环单元210,流体循环单元210 与电池包300相对应设置,用于与电池包300进行热交换;以及流体供应单元220,流体供应单元220与流体循环单元210相连通,用于为流体循环单元210提供流体。
该电池包温度调节系统利用流体供应单元提供的流体在流体循环单元中循环流动,与电池包进行热交换,即加热或冷却电池包使电池包的温度维持在适宜范围内,从而保证电池包的性能处于最佳状态。
换电站100具有对电池包300充电的多个充电仓161,流体循环单元210设于每个充电仓161内与电池包300的对应位置上。
如图8和9所示,流体循环单元210设于充电仓161内的电池包300的上表面或下表面。
图8示意了流体循环单元210设于电池包300的上表面的一个示例,图5示意了流体循环单元210设于电池包300的下表面的一个示例。但是本发明并不局限于此,流体循环单元210还可以通过其他方式设置于电池包300的上表面或下表面。
流体循环单元210设于电池包300的表面,与电池包300的表面直接接触可以更有效地与电池包300进行换热。
优选地,流体循环单元210包含与电池包300大小匹配的循环管路。
这样,循环管路覆盖电池包300的整个上表面或下表面,增加了接触面积,可以更有效地与电池包300进行换热。
充电仓161具有承载电池包300的支架,当流体循环单元210设于电池包300的下表面时,循环管路设于支架上,使电池包300被置于支架上时直接接触电池包300下表面。当然,可选择地,流体循环单元210也可以是另外设置于电池包300下表面的零部件。
循环管路直接设于支架,不占用额外空间,节省充电仓161内部空间。
图10根据本发明的又一个实施例示意了流体循环单元210设于电池包300上方的一个示例。
如图10所示,流体循环单元210设于充电仓161内的电池包300的上方,充电仓161还设有移动装置,移动装置用于在上下方向上移动流体循环单元210以使得流体循环单元210贴靠电池包300的上表面。移动装置可以是由直线电机、液压电机、旋转电机等中的一个或多个驱动的具有可伸缩臂或可上下移动的壁的装置。当然,可选择地,移动装置也可以是其他形式。
初始状态下,流体循环单元210位于上方,不与电池包300相接触。当需要对电池包300换热时,通过移动装置将流体循环单元210移动至贴靠电池包300的上表面;当 不需要对电池包300换热时,再通过移动装置使流体循环单元210反向移动至初始状态,即、远离电池包300,以免妨碍电池包300的放入和取出或自然散热。
充电仓161还设有流体内循环插拔接口262,流体内循环插拔接口262用于与电池包300中内置的液冷接口连接,适用于内置有液冷回路的电池包。
在本实施例中,如图5所示,流体内循环插拔接口262设于连接插座260上,与电路接头集成在一起。可选择地,也可以在充电仓中设置单独的流体内循环插拔接口262。
流体供应单元220包含储液装置221和输送装置222,输送装置222用于将储液装置221中的流体输送到流体循环单元210。
输送装置222可以是活塞泵、齿轮泵、叶片泵、离心泵、轴流泵等水泵。
电池包温度调节系统200还包括热交换单元230,热交换单元230设于流体循环单元210和流体供应单元220之间,用于调节流经热交换单元230的流体的温度。
热交换单元230包括制冷单元和/或加热单元。
当热交换单元230同时包括制冷单元和加热单元或只包括制冷单元时,电池包温度调节系统200包括:靠近电池包300设置的散热风机。该散热风机可以直接设于充电仓161中,也可以设于电池架旁边。
通过散热风机更好地对电池包300进行散热。
每一充电仓161内设有一个充电单元162,充电单元162用于为电池包300提供充电所需的直流电。
这种设置比充电单元162集中为多个电池包300充电的设置更有利于电池包300和充电单元162的散热。
充电单元162包括转换器,该转换器将外部电源转换为直流电。充电单元162还可以包括降压器、增压器、排线等等其他元件。
本发明还提供了一种储能站,储能站也包括电池包温度调节系统,该电池包温度调节系统与上述实施例中所述的电池包温度调节系统200的结构相同,此处不再赘述。
该电池包温度调节系统利用流体供应单元提供的流体在流体循环单元中循环流动,与电池包进行热交换,即加热或冷却电池包使电池包的温度维持在适宜范围内,从而保证电池包的性能处于最佳状态。同理,包含该电池包温度调节系统的充电箱、换电站及储能站具有上述相同效果。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、
“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于装 置或元件被正常使用时的放置位置,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须在任何时刻都具有特定的方位、以特定的方位构造和操作,除非文中另有说明。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式作出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (20)

  1. 一种用于换电站或储能站的电池包温度调节方法,所述换电站或所述储能站具有对电池包进行充电的充电仓以及温度调节系统,其特征在于,所述电池包温度调节方法包括以下步骤:
    采集电池包温度;
    根据采集到的所述电池包温度,控制所述温度调节系统对所述电池包进行温度调节。
  2. 如权利要求1所述的用于换电站或储能站的电池包温度调节方法,其特征在于,对所述电池包进行温度调节的步骤包括对所述电池包外表面进行热交换以实现温度调节;
    优选地,对所述电池包进行温度调节的步骤包括通过控制所述电池包外部的换热组件交换所述电池包的外部热量对所述电池包进行温度调节;
    优选地,当所述电池包内部设有流体管路时,对所述电池包进行温度调节的步骤包括控制所述流体管路内流体的温度对所述电池包进行温度调节。
  3. 如权利要求2所述的用于换电站或储能站的电池包温度调节方法,其特征在于,对所述电池包进行温度调节的步骤包括:向所述充电仓内换热组件和所述电池包内部的流体管路内输入流体,并通过控制所述流体的温度对所述电池包进行温度调节。
  4. 如权利要求1-3中至少一项所述的用于换电站或储能站的电池包温度调节方法,其特征在于,采集电池包温度包括采集所述电池包多个区域的温度。
  5. 如权利要求4所述的用于换电站或储能站的电池包温度调节方法,其特征在于,对所述电池包进行温度调节的步骤包括:根据采集的所述电池包不同区域的温度,通过控制与所述电池包不同区域相对应的换热组件,交换所述电池包对应区域的外部热量。
  6. 如权利要求4或5所述的用于换电站或储能站的电池包温度调节方法,其特征在于,采集电池包温度的步骤为:
    采集所述电池包多个侧面的温度;
    根据多个所述侧面的温度得到所述电池包温度。
  7. 如权利要求6所述的用于换电站或储能站的电池包温度调节方法,其特征在于,在采集所述电池包多个所述侧面的温度的步骤中,采集任意一个所述侧面的温度的过程为:
    在所述电池包当前侧面设置多个采集点,
    选择所述多个采集点中温度值最高的一个作为所述侧面的温度。
  8. 如权利要求1-7中至少一项所述的用于换电站或储能站的电池包温度调节方法,其特征在于,控制所述温度调节系统对所述电池包进行温度调节的方法包括:
    在所述温度调节系统内预设第一温度阈值和第二温度阈值,所述第一温度阈值小于所述第二温度阈值;
    当采集所述电池包温度在所述第一温度阈值和所述第二温度阈值之间时,控制所述温度调节系统输出常温流体对所述电池包进行恒温调节;
    当采集所述电池包温度大于所述第二温度阈值时,控制所述温度调节系统的输出冷却后的流体对所述电池包进行降温调节;
    当采集所述电池包温度小于所述第一温度阈值时,控制所述温度调节系统的输出加热后的流体对所述电池包进行升温调节。
  9. 一种电池包温度调节系统,用于对换电站或储能站内充电过程中的电池包的温度进行调节,其特征在于,所述电池包温度调节系统包括:
    流体循环单元,所述流体循环单元与所述电池包相对应设置,用于与所述电池包进行热交换;以及
    流体供应单元,所述流体供应单元与所述流体循环单元相连通,用于为所述流体循环单元提供流体。
  10. 如权利要求9所述的电池包温度调节系统,其特征在于,所述换电站或所述储能站具有对所述电池包充电的多个充电仓,所述流体循环单元设于所述充电仓内的电池包的对应位置。
  11. 如权利要求10所述的电池包温度调节系统,其特征在于,所述流体循环单元设于所述充电仓内的电池包的上表面或下表面;
    优选地,所述流体循环单元包含与所述电池包大小匹配的循环管路;
    优选地,所述充电仓具有承载所述电池包的支架,所述循环管路设于所述支架上,以使所述电池包被置于所述支架上时,所述循环管路接触所述电池包下表面;
    优选地,每一所述充电仓内设有一个充电单元,所述充电单元用于为所述电池包提供直流电。
  12. 如权利要求10或11所述的电池包温度调节系统,其特征在于,所述流体循环单元设于所述充电仓内的电池包的上方,
    所述充电仓还设有移动装置,所述移动装置用于在上下方向上移动所述流体循环单元以使得所述流体循环单元贴靠所述电池包的上表面。
  13. 如权利要求10-12中至少一项所述的电池包温度调节系统,其特征在于,所述充电仓还设有流体内循环插拔接口,所述流体内循环插拔接口用于与所述电池包液冷接口连接。
  14. 如权利要求9-13中至少一项所述的电池包温度调节系统,其特征在于,所述流体供应单元包含储液装置和输送装置,所述输送装置用于将所述储液装置中的流体输送到所述流体循环单元。
  15. 如权利要求9-14中至少一项所述的电池包温度调节系统,其特征在于,所述电池包温度调节系统还包括热交换单元,所述热交换单元设于所述流体循环单元和所述流体供应单元之间,用于调节流经所述热交换单元的流体的温度;
    优选地,所述热交换单元包括制冷单元和/或加热单元;
    优选地,所述热交换单元为制冷单元,所述电池包温度调节系统包括:靠近所述电池包设置的散热风机。
  16. 如权利要求9-15中至少一项所述的电池包温度调节系统,其特征在于,所述温度调节系统还包括截止阀,所述截止阀设于所述流体循环单元的入口端。
  17. 一种充电箱,其特征在于,其包括如权利要求9-16中至少一项所述的电池包温度调节系统,所述充电箱内设置有充电架,所述充电架包括多个充电仓,每个所述充电仓内设置有一个所述充电单元,所述充电单元与所述电池包一对一设置,通过所述充电单元对相对应的电池包进行充电。
  18. 如权利要求17所述的充电箱,其特征在于,每个所述充电仓内均设有一个充电单元和一个连接插座,所述充电单元电连接于所述连接插座,所述连接插座用于连接所述电池包从而实现对所述电池包充电。
  19. 如权利要求17或18所述的充电箱,其特征在于,所述充电仓内设置有换热组件,所述换热组件用于交换所述电池包的外部热量以对所述电池包进行温度调节,
    所述换热组件与所述充电单元之间设有隔热板,所述隔热板设于所述充电单元的下壳体上,所述隔热板的下方依次设有所述换热组件与所述电池包。
  20. 一种换电站或储能站,其特征在于,其包括如权利要求9-16中至少一项所述的电池包温度调节系统。
PCT/CN2020/140271 2019-12-26 2020-12-28 电池包温度调节方法及系统、充电箱、换电站或储能站 WO2021129876A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201911370637.9A CN113043873A (zh) 2019-12-26 2019-12-26 充电单元温度调节系统、充电箱、换电站及储能站
CN201911370637.9 2019-12-26
CN201911365554.0A CN113054274A (zh) 2019-12-26 2019-12-26 用于换电站或储能站的电池包温度调节方法
CN201911365554.0 2019-12-26
CN201911365604.5 2019-12-26
CN201911365604.5A CN113131075A (zh) 2019-12-26 2019-12-26 电池包温度调节系统、充电箱、换电站及储能站

Publications (1)

Publication Number Publication Date
WO2021129876A1 true WO2021129876A1 (zh) 2021-07-01

Family

ID=76572943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140271 WO2021129876A1 (zh) 2019-12-26 2020-12-28 电池包温度调节方法及系统、充电箱、换电站或储能站

Country Status (1)

Country Link
WO (1) WO2021129876A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113978311A (zh) * 2021-10-15 2022-01-28 潍柴动力股份有限公司 一种电池温度修正方法、装置及电子设备
CN115642348A (zh) * 2022-11-08 2023-01-24 昆山斯沃普智能装备有限公司 用于冷却新能源汽车换电站电池的水冷电控系统及方法
CN117134025A (zh) * 2023-08-29 2023-11-28 广东派沃新能源科技有限公司 一种储能液冷设备pack流量均匀分配方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040070368A1 (en) * 2002-07-12 2004-04-15 Bernd Heigl Storage battery charging station
CN208093695U (zh) * 2018-03-26 2018-11-13 蔚来汽车有限公司 用于充换电站的电池温度控制装置和电动车充换电站
CN109037831A (zh) * 2018-06-25 2018-12-18 蔚来汽车有限公司 热管理系统及其控制方法、充换电站
CN209104330U (zh) * 2018-10-09 2019-07-12 奥动新能源汽车科技有限公司 电池热管理系统、充电架及换电站
CN209496976U (zh) * 2018-12-24 2019-10-15 杭州烽正制冷科技有限公司 一种动力电池冷却装置
CN111780469A (zh) * 2020-06-23 2020-10-16 浙江吉智新能源汽车科技有限公司 一种换电站冷却循环系统
CN111864301A (zh) * 2020-07-20 2020-10-30 浙江吉智新能源汽车科技有限公司 一种换电站电池冷却系统分水装置
CN111916864A (zh) * 2020-07-20 2020-11-10 浙江吉智新能源汽车科技有限公司 一种换电站的热管理系统及换电站

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040070368A1 (en) * 2002-07-12 2004-04-15 Bernd Heigl Storage battery charging station
CN208093695U (zh) * 2018-03-26 2018-11-13 蔚来汽车有限公司 用于充换电站的电池温度控制装置和电动车充换电站
CN109037831A (zh) * 2018-06-25 2018-12-18 蔚来汽车有限公司 热管理系统及其控制方法、充换电站
CN209104330U (zh) * 2018-10-09 2019-07-12 奥动新能源汽车科技有限公司 电池热管理系统、充电架及换电站
CN209496976U (zh) * 2018-12-24 2019-10-15 杭州烽正制冷科技有限公司 一种动力电池冷却装置
CN111780469A (zh) * 2020-06-23 2020-10-16 浙江吉智新能源汽车科技有限公司 一种换电站冷却循环系统
CN111864301A (zh) * 2020-07-20 2020-10-30 浙江吉智新能源汽车科技有限公司 一种换电站电池冷却系统分水装置
CN111916864A (zh) * 2020-07-20 2020-11-10 浙江吉智新能源汽车科技有限公司 一种换电站的热管理系统及换电站

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113978311A (zh) * 2021-10-15 2022-01-28 潍柴动力股份有限公司 一种电池温度修正方法、装置及电子设备
CN113978311B (zh) * 2021-10-15 2024-05-17 潍柴动力股份有限公司 一种电池温度修正方法、装置及电子设备
CN115642348A (zh) * 2022-11-08 2023-01-24 昆山斯沃普智能装备有限公司 用于冷却新能源汽车换电站电池的水冷电控系统及方法
CN115642348B (zh) * 2022-11-08 2024-01-30 昆山斯沃普智能装备有限公司 用于冷却新能源汽车换电站电池的水冷电控系统及方法
CN117134025A (zh) * 2023-08-29 2023-11-28 广东派沃新能源科技有限公司 一种储能液冷设备pack流量均匀分配方法及装置
CN117134025B (zh) * 2023-08-29 2024-03-19 广东派沃新能源科技有限公司 一种储能液冷设备pack流量均匀分配方法及装置

Similar Documents

Publication Publication Date Title
WO2021129876A1 (zh) 电池包温度调节方法及系统、充电箱、换电站或储能站
WO2021129875A1 (zh) 充电单元温度调节系统、充电箱、换电站及储能站
CN104025335B (zh) 电池壳体和车辆
CN102689586A (zh) 一种用于电动汽车的一体化温度控制系统
US11142037B2 (en) Thermal management system for vehicle
EP3923398B1 (en) Battery pack thermal management system and thermal management system for electric vehicle
CN108973582A (zh) 用于车辆的加热、通风和空气调节系统
CN103407346A (zh) 一种纯电动汽车整车热管理系统
US10899191B2 (en) Heating and cooling system for vehicle
KR20130104615A (ko) 배터리 충전 시스템 및 그 충전 방법
KR101961796B1 (ko) 이차전지의 냉각 및 히팅 시스템
US20220396165A1 (en) Method and Device for Charging an Electric Vehicle
CN215989069U (zh) 电池包温度调节系统、充电箱、换电站及储能站
CN111788082A (zh) 用于电驱动车辆的热调节系统和包括这种系统的车辆
CN103779618B (zh) 用于管理电池的系统和方法
CN101186194A (zh) 一种车载充电器的冷却系统及冷却方法
CN211000836U (zh) 充电电池冷却系统和电动汽车
CN113479047B (zh) 热管理系统和新能源汽车
CN113131075A (zh) 电池包温度调节系统、充电箱、换电站及储能站
CN212783578U (zh) 一种电池箱冷却系统、车辆及换电站
CN211364326U (zh) 储能式电动汽车充电装置
CN208767996U (zh) 车用温差发电系统及具有该车用温差发电系统的车辆
CN214984886U (zh) 充电单元温度调节系统、充电箱、换电站及储能站
CN113131033A (zh) 电池包冷却系统、充电箱、换电站及储能站
CN114312484B (zh) 一种热管理装置、热管理系统及新能源汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904688

Country of ref document: EP

Kind code of ref document: A1