WO2021129834A1 - 一种可提早检测轴承故障的检测仪 - Google Patents

一种可提早检测轴承故障的检测仪 Download PDF

Info

Publication number
WO2021129834A1
WO2021129834A1 PCT/CN2020/139602 CN2020139602W WO2021129834A1 WO 2021129834 A1 WO2021129834 A1 WO 2021129834A1 CN 2020139602 W CN2020139602 W CN 2020139602W WO 2021129834 A1 WO2021129834 A1 WO 2021129834A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
sensor
capacitor
electrode conductive
conductive rod
Prior art date
Application number
PCT/CN2020/139602
Other languages
English (en)
French (fr)
Inventor
杨庆德
来银方
庞桥
项忠栋
Original Assignee
杭州欧贲科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州欧贲科技有限公司 filed Critical 杭州欧贲科技有限公司
Priority to US17/777,717 priority Critical patent/US11719601B2/en
Publication of WO2021129834A1 publication Critical patent/WO2021129834A1/zh
Priority to ZA2022/05082A priority patent/ZA202205082B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices

Definitions

  • the invention relates to the technical field of mechanical equipment failure monitoring, in particular to a detector capable of early detection of bearing failures.
  • the main sensors used in the field of mechanical equipment fault diagnosis and condition monitoring are still vibration sensors, such as piezoelectric acceleration sensors (also called accelerometers or acceleration sensors), whose function is to convert mechanical vibrations into electrical signals.
  • piezoelectric acceleration sensor feels a vibration signal
  • its output terminal will generate a charge proportional to the vibration acceleration. It can measure the acceleration, velocity and displacement of the vibration, as well as some vibration and shock signals with larger amplitude. . Because of its small size, light weight, frequency bandwidth, high reliability and large dynamic range, it can be widely used in the field of vibration measurement.
  • the fault signal appears as a transient, small-amplitude impact signal, which cannot be detected by current vibration sensors and vibrometers, including poor lubrication of bearings. , The detection cannot be done by vibration analysis.
  • the defects of the vibration sensor are very obvious, mainly in the following aspects:
  • vibration sensors are of a reduced resonance type, that is to say, in order to extract more frequency signals, the original intention of the sensor design is to absorb the residual vibration, so the vibration analyzer is mainly used to collect periodic signals, and for impact energy Limited transient fault signals are difficult to capture.
  • the frequency component of the fault signal is very complicated, and it is difficult to pass the frequency band limit of the vibration analyzer. And for the analysis of a too wide frequency band, both the hardware and software overheads are very large.
  • the object of the present invention is to provide a detector that can improve signal strength, reduce environmental noise interference, can effectively obtain the initial transient signal of bearing failure and generate failure information in time, and can detect bearing failure early.
  • the present invention provides a detector for early detection of bearing faults, including a microprocessor, the input end of the microprocessor is connected with a power supply, and the output end of the microprocessor is connected with a detector.
  • An information output device further comprising a resonance-enhanced piezoelectric sensor, a sensor trigger detection circuit is electrically connected between the resonance-enhanced piezoelectric sensor and the microprocessor, and a sensor signal is connected in parallel at the input end of the sensor trigger detection circuit
  • a selection circuit the sensor signal selection circuit is connected in series with a sensor signal processing circuit, the output end of the sensor signal processing circuit is connected with a programmable gain circuit, the programmable gain circuit is connected to the microprocessor, and the sensor triggers
  • the detection circuit, the sensor signal selection circuit, the sensor signal processing circuit and the programmable gain circuit are also respectively connected to the power supply.
  • the resonance-enhanced piezoelectric sensor includes a positive electrode conductive rod and a negative electrode conductive rod disposed oppositely, a piezoelectric ceramic sheet is sandwiched between the positive electrode conductive rod and the negative electrode conductive rod, and the positive electrode
  • the conductive rod and the negative conductive rod clamp the piezoelectric ceramic sheet on the outer side of one end sleeved with an electric rod connection fastening sleeve, and the electric rod connection fastening sleeve is provided between the positive electrode conductive rod and the piezoelectric ceramic sheet.
  • There is an electric insulation device and the electric rod connection fastening sleeve is connected with the negative electrode conductive rod in a clearance fit.
  • the electrical insulation device includes an electrical insulation ring arranged between the piezoelectric ceramic sheet and the electric rod connection fastening sleeve, and is arranged on the positive electrode conductive rod and the electric rod connection fastening sleeve One end of the electrical insulation sleeve abuts on the electrical insulation ring, and the other end of the electrical insulation sleeve extends to the outside of the electric rod connection fastening sleeve.
  • the end surfaces of the positive electrode conductive rod, the negative electrode conductive rod, and the piezoelectric ceramic sheet are respectively arranged in a circular shape, and the end surface diameter of the negative electrode conductive rod is larger than the end surface of the piezoelectric ceramic sheet.
  • the diameter of the negative electrode conductive rod beyond the part of the end surface of the piezoelectric ceramic sheet forms an insulating ring positioning platform of the electrically insulating ring.
  • the end of the positive electrode conductive rod in contact with the piezoelectric ceramic sheet is provided with an insulating sleeve limiting convex ring, and the electrical insulating sleeve is provided with an insulating sleeve matching the insulating sleeve limiting platform Limit concave ring.
  • the sensor trigger detection circuit includes a low-pass filter resistor R31 electrically connected to the output terminal of the resonance-enhanced piezoelectric sensor, and the output terminal of the low-pass filter resistor R31 is grounded through a low-pass filter capacitor C34
  • the output terminal of the low-pass filter resistor R31 is also connected to the non-inverting input terminal of the operational amplifier A1, the inverting input terminal of the operational amplifier A1 is connected to its output terminal, and the output terminal of the operational amplifier A1 is connected to the In the microprocessor, the power terminal of the operational amplifier A1 is connected to the power supply through a voltage dividing resistor R59, and the voltage dividing resistor R59 is also safely grounded through a capacitor C52.
  • the sensor signal selection circuit includes a series frequency selection circuit and a parallel frequency selection circuit serially connected to the input end of the low-pass filter resistance in sequence, and the output end of the series frequency selection circuit is also connected to the sensor signal.
  • the series frequency selection circuit includes a polar capacitor C33 connected to the input end of the low-pass filter resistor R31, the output end of the polar capacitor C33 is sequentially connected in series with a capacitor C45 and an inductor L3, and the output end of the inductor L3 is connected to
  • the sensor signal processing circuit includes an inductor L4 and a capacitor C16 connected in parallel at the output end of the inductor L3, and the capacitor C16 and the output end of the inductor L4 are connected to the ground together.
  • the sensor signal processing circuit is configured as a band-pass filter circuit, including a resistor R50 and a capacitor C48 arranged in series, the input end of the resistor R50 is connected to the output end of the inductor L3, and the capacitor C48 A capacitor C47 is connected to the input end of the capacitor C48, a resistor R51 is connected to the output end of the capacitor C48, and the output end of the capacitor C48, the output end of the capacitor C47 and the output end of the resistor R51 are respectively connected to the programmable Gain circuit.
  • the programmable gain circuit includes a programmable amplifier U1, the external reference terminal of the programmable amplifier U1 is connected to the reference voltage circuit, and the analog input terminal of the programmable amplifier U1 is connected to the band pass In the filter circuit, the analog output terminal of the programmable amplifier U1 is connected to the microprocessor.
  • the detection information output device includes an audio conversion circuit provided in the microprocessor, an audio player is connected to the output end of the audio conversion circuit, and also includes LCD display at the output of the device.
  • the present invention discloses the following technical effects:
  • the present invention provides a detector for early detection of bearing faults, including a microprocessor, the input end of the microprocessor is connected with a power supply, and the output end of the microprocessor is connected with a detection information output device;
  • a resonance-enhanced piezoelectric sensor, a sensor trigger detection circuit is electrically connected between the resonance-enhanced piezoelectric sensor and the microprocessor, and a sensor signal selection circuit is connected in parallel with the input end of the sensor trigger detection circuit, the sensor The signal selection circuit is connected in series with a sensor signal processing circuit, the output end of the sensor signal processing circuit is connected with a programmable gain circuit, the programmable gain circuit is connected to the microprocessor, the sensor trigger detection circuit, the sensor The signal selection circuit, the sensor signal processing circuit, and the programmable gain circuit are respectively connected to the power supply; the beneficial effect of the present invention is that the resonance-enhanced piezoelectric sensor can detect the failure of heavy-load, slow-rotating equipment Signal, the above-mentioned fault
  • the energy of the detected impact signal can finally be enriched at a frequency between 30KHz and 40KHz, which improves the signal strength and minimizes It may reduce the interference of environmental noise, making the fault signal easy to detect; in addition, after the cooperation of various circuits, the output signal can be formed into a resonance enhancement signal with a slower attenuation (lasting more than 20 cycles), which plays a role in the microprocessor
  • the audio signal can be formed under the detection information output device, which can be analyzed by the fault diagnosis engineer, so as to obtain the initial fault signal of the tested equipment, which is convenient for timely processing and troubleshooting.
  • Figure 1 is a block diagram of the structure of an embodiment of the present invention.
  • Figure 2 is a schematic structural diagram of an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an enlarged structure at A in FIG. 1 according to an embodiment of the present invention
  • FIG. 4 is a schematic circuit diagram of a sensor trigger detection circuit, a sensor signal selection circuit, a sensor signal processing circuit, and a programmable gain circuit according to an embodiment of the present invention
  • FIG. 5 is a diagram of detection signals of a resonance-enhanced piezoelectric sensor according to an embodiment of the present invention.
  • FIG. 6 is an envelope signal diagram corresponding to a detection signal of a resonance-enhanced piezoelectric sensor generated by an embodiment of the present invention
  • Fig. 7 is an audio signal diagram corresponding to a detection signal of a resonance-enhanced piezoelectric sensor according to an embodiment of the present invention.
  • the purpose of the present invention is to provide a detector that can improve signal strength, reduce environmental noise interference, can effectively obtain the initial transient signal of bearing failure and generate failure information in time, which can detect bearing failure early.
  • a detector capable of early detection of bearing faults includes a microprocessor, the input end of the microprocessor is connected with a power supply, and the output end of the microprocessor is connected with a detection information output device.
  • the power supply can provide working voltage for the electronic components in the whole detector.
  • the detection information output device includes an audio conversion circuit arranged in the microprocessor, an audio player is connected to the output end of the audio conversion circuit, and an LCD display connected to the output end of the microprocessor.
  • the audio player can be set as a headset and worn by a fault diagnosis engineer.
  • the microprocessor is an ARM microprocessor, which can convert the fault signal into an audio signal and play it through earphones.
  • the button in Figure 1 is the input device of the testing instrument and is used for human-computer interaction. The buttons include the up button, the down button, the confirm button, the return button and the measurement button.
  • This embodiment also includes a resonance-enhanced piezoelectric sensor.
  • a sensor trigger detection circuit is electrically connected between the resonance-enhanced piezoelectric sensor and the microprocessor, and a sensor signal selection circuit is connected in parallel at the input of the sensor trigger detection circuit.
  • the sensor signal selection circuit is connected in series with a sensor signal processing circuit, the output end of the sensor signal processing circuit is connected with a programmable gain circuit, the programmable gain circuit is connected to the microprocessor, and the sensor triggers detection
  • the circuit, the sensor signal selection circuit, the sensor signal processing circuit and the programmable gain circuit are also respectively connected to the power supply.
  • the resonance-enhanced piezoelectric sensor is responsible for picking up the fault signal, the resonance-enhanced piezoelectric sensor is used to detect whether it is directly connected to the microprocessor normally, the sensor signal selection circuit, the sensor signal processing The circuit and the programmable gain circuit realize the selection and processing of the frequency of the detection signal of the resonance-enhanced piezoelectric sensor for further analysis and use by the microprocessor.
  • the resonance-enhanced piezoelectric sensor includes a positive electrode conductive rod 1 and a negative electrode conductive rod 2 which are arranged oppositely.
  • An electric ceramic sheet 3 the positive electrode conductive rod 1 and the negative electrode conductive rod 2 are covered with an electric rod connecting fastening sleeve 4 outside one end of the piezoelectric ceramic sheet 3 sandwiched therebetween, the electric rod connecting fastening sleeve 4 and the An electrical insulation device is provided between the positive electrode conductive rod 1 and the piezoelectric ceramic sheet 3, and the electrical rod connection fastening sleeve 4 is connected to the negative electrode conductive rod 2 in a clearance fit.
  • the main body of the positive electrode conductive rod 1 is a cylindrical structure with a diameter of 7 mm and a length of 35 mm
  • the negative electrode conductive rod 2 is a cylindrical structure with a diameter of 7 mm and a length of 40 mm.
  • the material of the negative electrode conductive rod 2 and the electric rod connection fastening sleeve 4 are both 304 stainless steel, which has good high temperature resistance and corrosion resistance, and has low requirements for the use environment; and the preferred size of the piezoelectric ceramic sheet 3 is 7mm in diameter,
  • the disc structure with a thickness of 1 mm is made of lead zirconate titanate, and the various parts of the sensor are assembled and fixed together by using the electric rod connecting fastening sleeve 4.
  • the electrical insulation device includes an electrical insulation ring 5 arranged between the piezoelectric ceramic sheet 3 and the electric rod connection fastening sleeve 4, and is arranged on the positive electrode conductive rod 1 and the electric rod to be connected and fastened.
  • the electrical insulation ring 5 is configured as a ceramic insulation ring
  • the electrical insulation sleeve 6 is configured as a plastic sleeve.
  • the electrical insulation sleeve 6 and the electrical insulation ring 5 can separate the positive electrode conductive rod 1 and the negative electrode conductive rod 2 to prevent the internal short circuit of the sensor.
  • the electric rod connecting fastening sleeve 4 and the negative electrode conductive rod 2 are in direct contact, so there is electrical conduction between the two, and at the same time, the negative electrode conductive rod 2 is electrically connected to one end surface of the piezoelectric ceramic sheet 3 .
  • a resonant system is cleverly constructed inside the electric rod connecting fastening sleeve 4.
  • the vibrator of this resonant system is the piezoelectric ceramic sheet 3, and the restoring force of the system comes from the electric rod connecting tightly.
  • the fixed sleeve 4 preloads the positive electrode conductive rod 1, the negative electrode conductive rod 2 and the piezoelectric ceramic sheet 3.
  • the restoring force F is approximately equal to -k ⁇ x.
  • the piezoelectric ceramic sheet 3 of the present embodiment is used as a mass block and is light in weight, which is beneficial to the formation of resonance of the sensor structure, and becomes the basis for picking up transient weak shock signals, thereby realizing the pickup of fault signals and the enhancement of resonance.
  • the end surfaces of the positive electrode conductive rod 1, the negative electrode conductive rod 2, and the piezoelectric ceramic sheet 3 are respectively circular, and the end surface diameter of the negative electrode conductive rod 2 is larger than that of the piezoelectric ceramic sheet.
  • the negative conductive rod 2 extends beyond the part of the end face of the piezoelectric ceramic sheet 3 to form an insulating ring positioning platform for the electrically insulating ring 5, so that the electrically insulating ring 5 and the piezoelectric ceramic sheet 3 A clearance fit is formed between the connecting fastening sleeve 4 and the electric rod.
  • the end of the positive electrode conductive rod 1 in contact with the piezoelectric ceramic sheet 3 is provided with an insulating sleeve limiting convex ring, and the electrical insulating sleeve 6 is provided with an insulating sleeve limiting recess that matches with the insulating sleeve limiting table. Ring to form an interference fit between the positive electrode conductive rod 1 and the electrical insulating sleeve 6.
  • the end of the negative conductive rod 2 in contact with the piezoelectric ceramic sheet 3 is provided with a fastening sleeve limiting ring platform, and the electric rod connecting fastening sleeve 4 is provided with a fastening sleeve limiting ring platform.
  • the fastening sleeve limiting ring groove, the electrical insulating ring 5 and part of the electrical insulating sleeve 6 are respectively assembled in the fastening sleeve limiting ring groove, so that the electric rod is connected to the fastening sleeve 4 and the negative electrode is electrically conductive A clearance fit is formed between the rods 2.
  • a clamping pre-tightening inclined surface 7 is provided on the outer peripheral surface of one end of the positive electrode conductive rod 1 of the electric rod connection fastening sleeve 4.
  • a clamping tool can be used Clamp the clamping pre-tightening slope 7 and squeeze it inwardly, so that the inner surface of the clamping pre-tightening slope 7 clamps the outer circumference of the electrical insulating sleeve 6 to achieve the effect of maintaining the pre-tightening force.
  • the sensor trigger detection circuit includes a low-pass filter resistor R31 electrically connected to the output terminal of the resonance-enhanced piezoelectric sensor, and the output terminal of the low-pass filter resistor R31 is grounded through a low-pass filter capacitor C34.
  • the output terminal of the low-pass filter resistor R31 is also connected to the non-inverting input terminal of the operational amplifier A1, the inverting input terminal of the operational amplifier A1 is connected to its output terminal, and the output terminal of the operational amplifier A1 is connected to the In the microprocessor, the power terminal of the operational amplifier A1 is connected to the power supply through a voltage dividing resistor R59, and the voltage dividing resistor R59 is also safely grounded through a capacitor C52.
  • J is the coaxial input port of the signal
  • J7 is the shrapnel contact, which is the signal internal and external input respectively.
  • R76 and C65 form a low-pass filter
  • ADC0 and ADC1 are two-level output signals, which are connected to the data acquisition pins of the single-chip microcomputer.
  • C19 is the input bypass capacitor of the amplifier, which can play a role in filtering and decoupling.
  • the combination of R42 and C57 can play a role in power supply stabilization.
  • R33 provides a bias voltage for the sensor.
  • the model of the operational amplifier A1 can be selected as TLC2272ACD, the low-pass filter resistor R31 and the low-pass filter capacitor C34 form a low-pass filter, and then the operational amplifier A1 is used for signal following to overcome the resonance enhancement type The problem of small charge signal at the output of piezoelectric sensor and weak driving capability. After the operational amplifier A1 forms a signal follow, it enters the chip STM32F429 in the microprocessor to perform analog/digital conversion and use, so as to achieve the purpose of whether the resonance enhanced piezoelectric sensor is normally connected.
  • the sensor signal selection circuit includes a series frequency selection circuit and a parallel frequency selection circuit serially connected to the input end of the low-pass filter resistor in series, and the output end of the series frequency selection circuit is also connected to the sensor signal processing circuit.
  • the series frequency selection circuit includes a polar capacitor C33 connected to the input terminal of the low-pass filter resistor R31, the output terminal of the polar capacitor C33 is connected in series with a capacitor C45 and an inductor L3 in series, and the output of the inductor L3 The terminal is connected to the sensor signal processing circuit;
  • the parallel frequency selection circuit includes an inductor L4 and a capacitor C16 connected in parallel to the output terminal of the inductor L3, and the output terminal of the capacitor C16 and the inductor L4 are connected to the ground.
  • the capacitor C45 and the inductor L3 form a series LC frequency selection circuit.
  • the impedance of the series frequency selection circuit to the signal is close to zero, and the inductor L4 and the capacitor C16 form Parallel LC frequency selection circuit, when the signal frequency reaches the resonance frequency, its equivalent impedance is close to infinity.
  • the frequency of the output signal of the resonance-enhanced piezoelectric sensor is 32KHz
  • the two LC loops will form a very high quality factor (Q (High value) frequency selection circuit.
  • Q High value
  • the sensor signal processing circuit is configured as a band-pass filter circuit, including a resistor R50 and a capacitor C48 arranged in series, the input end of the resistor R50 is connected to the output end of the inductor L3, and the capacitor C48 The input terminal is connected with a capacitor C47, the output terminal of the capacitor C48 is connected with a resistor R51, and the output terminal of the capacitor C48, the output terminal of the capacitor C47 and the output terminal of the resistor R51 are respectively connected to the programmable gain Circuit.
  • the resistor R50, the capacitor C47, the capacitor C48, and the resistor R51 further select the frequency of the signal, and send the signal to the programmable gain circuit, and the sound signal detected by the resonance-enhanced piezoelectric sensor
  • the amplitude variation range of is relatively large, and the programmable gain circuit can be used to cover a wide range.
  • the programmable gain circuit includes a programmable amplifier U1, an external reference terminal of the programmable amplifier U1 is connected to a reference voltage circuit, an analog input terminal of the programmable amplifier U1 is connected to the band-pass filter circuit, and the The analog output terminal of the programming amplifier U1 is connected to the microprocessor.
  • the programmable amplifier U1 can use the chip MCP6S21. In order to make the output signal Vout of the chip MCP6S21 within the collection range of the chip STM32F429, the reference voltage needs to be raised to 1.65V. In this embodiment, a reference voltage circuit is specially designed .
  • U1 is a programmable gain amplifier
  • U1 pin 1 (VOUT) is output
  • U1 pin 2 is input
  • U1 pin 3 (VREF) is the reference voltage
  • U1 pin 4 (VSS)
  • U1 pin 8 ( VDD) is the power supply
  • the signals at pins 5, 6, and 7 of U1 come from the microcontroller to configure the gain of the amplifier.
  • the model of U1 is MCP6S21.
  • the reference voltage circuit includes an operational amplifier A2.
  • the forward input terminal of the operational amplifier A2 is connected to the power supply voltage through a voltage dividing resistor R47.
  • the voltage dividing resistor R47 and the power supply voltage terminal are sequentially connected in parallel with a grounding capacitor C35 and a grounding capacitor.
  • C32 and a grounding capacitor C37, and the grounding capacitor C35, the grounding capacitor C32, and the grounding capacitor C37 are jointly grounded, and the voltage divider resistor R47 is connected in parallel with the forward input terminal of the operational amplifier A2.
  • the voltage dividing resistor R48 and the grounding capacitor C39, the voltage dividing resistor R48 and the grounding capacitor C39 are jointly grounded, the inverting input terminal of the operational amplifier A2 is connected to the external reference terminal of the operational amplifier A2, and the operational amplifier A2 is connected to the external reference terminal of the operational amplifier A2.
  • the output terminal of the amplifier A2 is also connected to the external reference terminal of the operational amplifier A2 through a resistor R49, and there is a grounding capacitor C22 and a grounding capacitor C23 between the resistor R49 and the external reference terminal of the operational amplifier A2.
  • the grounding capacitor C22 and the grounding capacitor C23 are jointly grounded.
  • the operational amplifier A2 is set as the chip LMC6482IM/NS/SOP8.
  • the reference voltage circuit uses the voltage divider resistor R47 and the voltage divider resistor R48 to divide the voltage, and then uses the operational amplifier A2 to implement voltage following and improve the driving capability.
  • the VCC terminal voltage value of the chip MCP6S21 is 3.3V
  • VRE terminal voltage value is 1.65V.
  • the signal at the operational amplifier A2Vout is an amplitude-modulated 32KHz signal (as shown in Figure 5), and the ADC (sampling rate up to 2.4Msps) built in the ARM microprocessor is used to collect data on the signal.
  • the floating-point processor FPU equivalent to DSP
  • the ARM microprocessor performs fast sampling, detection, and envelope calculation on the signal to obtain an envelope signal (as shown in Figure 6), which forms an envelope
  • the signal can be directly displayed on the LCD display and can be used by the user of the bearing tester.
  • the actual process of obtaining the envelope in this process is the demodulation process, which is well known to those of ordinary skill in the art. Describe in detail.
  • the ARM microprocessor further modulates the envelope signal to an audio signal (with a frequency of several hundred hertz) that can be heard by human ears (as shown in Figure 7), so that the fault diagnosis engineer can hear it from the earphone, and realize Detection and utilization of shock pulse signals generated by early or early bearing failures.
  • the envelope signal can also be stored by the ARM microprocessor. After the measurement is completed, the signal in the process can be statistically analyzed to facilitate the use of dBm/dBc (peak value/carpet value), HR/LR (high frequency/ Low frequency) and other technologies to analyze the bearing status or failure.
  • the abscissa in Figure 5-7 represents time, and the ordinate represents voltage.
  • a pyroelectric module can be installed in the bearing tester to detect the temperature of the shaft cover.
  • the quality of the vibrometer used in the traditional technology is mainly reflected by the frequency pass capability, which means that there are many frequency signals that need to pass through the conditioning circuit.
  • the vibrometer mainly detects frequency information, which is a continuous signal with limited power and unlimited energy. What the detector of this embodiment can detect is a transient signal with limited energy. Therefore, it can detect the shock pulse signal formed by the collision of the ball and the raceway roughness texture in the early stage of the bearing failure due to poor lubrication.
  • This embodiment is currently the only device that can detect the thickness of the bearing oil film, and can detect and predict the occurrence of failure 3 to 6 months in advance.
  • this embodiment has the following advantages:
  • the fault signal after resonance enhancement is an energy signal, it mainly depends on the energy value and no longer carries frequency information. After detection processing, a lower frequency signal will be obtained. Therefore, a lower sampling rate can be used to achieve signal acquisition.
  • HR/LR high frequency/low frequency comparison method

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

一种可提早检测轴承故障的检测仪,包括微处理器,微处理器连接有供电电源和检测信息输出装置;还包括共振增强型压电传感器,共振增强型压电传感器与微处理器之间电连接有传感器触发检测电路和传感器信号选择电路,传感器信号选择电路串联有传感器信号处理电路,传感器信号处理电路的输出端连接有可编程增益电路,可编程增益电路连接至微处理器;共振增强型压电传感器能检测具有瞬态性、幅度小等特点的冲击信号,在相关电路的配合下将信号能量富集在30KHz~40KHz之间的频率上,使故障信号容易检出,最终使输出的信号形成衰减比较慢的共振增强信号且可形成音频信号并输出,以供技术人员分析并获取初期故障信号,便于及时处理、排除故障。

Description

一种可提早检测轴承故障的检测仪
本申请要求于2019年12月27日提交中国专利局、申请号为201911373318.3、发明名称为“一种可提早检测轴承故障的检测仪”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及机械设备故障监测技术领域,特别是涉及一种可提早检测轴承故障的检测仪。
背景技术
目前在机械设备故障诊断和状态监测领域采用的主要传感器仍然以振动传感器为主,如压电式加速度传感器(也称加速度计或加速度传感器),其功能是将机械振动转换成电信号。当压电式加速度传感器感受到振动信号时,其输出端会产生一个与振动加速度成正比的电荷量,既可以测量振动的加速度、速度和位移,也可以测量一些幅值较大的振动冲击信号。由于它体积小、重量轻、频带宽、可靠性高以及动态范围大,所以在振动测量领域中能够得到非常广泛的应用。
但是,对于重载荷、慢速的旋转设备,其故障信号表现为瞬态的、幅度较小的冲击信号,使用目前的振动传感器和测振仪是无法检测到的,包括轴承的润滑不良等状况,检测也是无法用振动分析的方法去完成。对于这些瞬态信号的检测,振动传感器存在的缺陷是很明显的,主要表现在以下几个方面:
1、常规的振动传感器是共振减弱型的,也就是说为了提取更多的频率信号,传感器设计的初衷是把余振吸收掉,因此振动分析仪主要是用于采集周期性信号,对于冲击能量有限的瞬态故障信号,难以捕捉到。
2、故障信号的频率成分非常复杂,难以通过振动分析仪的频带限制。而且对于太宽的频带进行分析,无论是硬件开销还是软件开销都是非常大的。
3、早期故障信号往往很小,很可能被外界噪声淹没。例如在工业设备实际运行环境中,环境噪声是非常嘈杂的,如果采用振动分析的方法, 对于没有特征频率的瞬态信号,是很难从环境噪声中提取出来的。
发明内容
基于此,本发明的目的是提供一种能够提高信号强度,减少环境噪音干扰,能够有效获取轴承故障初期瞬态信号并及时产生故障信息的可提早检测轴承故障的检测仪。
为实现上述目的,本发明提供了一种可提早检测轴承故障的检测仪,包括:微处理器,所述微处理器的输入端连接有供电电源,所述微处理器的输出端连接有检测信息输出装置;还包括共振增强型压电传感器,所述共振增强型压电传感器与所述微处理器之间电连接有传感器触发检测电路,所述传感器触发检测电路的输入端并联有传感器信号选择电路,所述传感器信号选择电路串联有传感器信号处理电路,所述传感器信号处理电路的输出端连接有可编程增益电路,所述可编程增益电路连接至所述微处理器,所述传感器触发检测电路、所述传感器信号选择电路、所述传感器信号处理电路和所述可编程增益电路还分别连接至所述供电电源。
作为优选的技术方案,所述共振增强型压电传感器包括相对设置的正极导电棒和负极导电棒,所述正极导电棒和所述负极导电棒之间夹装有压电陶瓷片,所述正极导电棒与所述负极导电棒夹装所述压电陶瓷片的一端外侧套装有电棒连接紧固套,所述电棒连接紧固套与所述正极导电棒及所述压电陶瓷片之间设有电绝缘装置,所述电棒连接紧固套与所述负极导电棒间隙配合连接。
作为优选的技术方案,所述电绝缘装置包括设于所述压电陶瓷片与所述电棒连接紧固套之间的电绝缘环,设于所述正极导电棒与所述电棒连接紧固套之间的电绝缘套,所述电绝缘套一端抵靠在所述电绝缘环上,所述电绝缘套另一端延伸至所述电棒连接紧固套的外侧。
作为优选的技术方案,所述正极导电棒、所述负极导电棒、所述压电陶瓷片的端面分别设置为圆形,且所述负极导电棒的端面直径大于所述压电陶瓷片的端面直径,所述负极导电棒超出所述压电陶瓷片的部分端面形成所述电绝缘环的绝缘环定位台。
作为优选的技术方案,所述正极导电棒与所述压电陶瓷片接触的一端设有绝缘套限位凸环,所述电绝缘套上设有与所述绝缘套限位台配合的绝 缘套限位凹环。
作为优选的技术方案,所述传感器触发检测电路包括与所述共振增强型压电传感器输出端电连接的低通滤波电阻R31,所述低通滤波电阻R31的输出端通过低通滤波电容C34接地,所述低通滤波电阻R31的输出端还连接至运算放大器A1的同相输入端,所述运算放大器A1的反相输入端连接至其输出端,所述运算放大器A1的输出端连接至所述微处理器,所述运算放大器A1的电源端通过分压电阻R59连接至所述供电电源,所述分压电阻R59还通过电容C52安全接地。
作为优选的技术方案,所述传感器信号选择电路包括依次串联在所述低通滤波电阻输入端串联选频电路和并联选频电路,所述串联选频电路的输出端还连接至所述传感器信号处理电路;
所述串联选频电路包括连接在所述低通滤波电阻R31输入端的极性电容C33,所述极性电容C33的输出端依次串联有电容C45和电感L3,所述电感L3的输出端连接至所述传感器信号处理电路;所述并联选频电路包括并联在所述电感L3输出端的电感L4和电容C16,所述电容C16和所述电感L4的输出端共同接地设置。
作为优选的技术方案,所述传感器信号处理电路设置为带通滤波电路,包括串联设置的电阻R50和电容C48,所述电阻R50的输入端连接至所述电感L3的输出端,所述电容C48的输入端连接有电容C47,所述电容C48的输出端连接有电阻R51,所述电容C48的输出端、所述电容C47的输出端和所述电阻R51的输出端分别连接至所述可编程增益电路。
作为优选的技术方案,所述可编程增益电路包括可编程放大器U1,所述可编程放大器U1的外部参考端连接至基准电压电路,所述可编程放大器U1的模拟输入端连接至所述带通滤波电路,所述可编程放大器U1的模拟输出端连接至所述微处理器。
作为对上述技术方案的改进,所述检测信息输出装置包括设于所述微处理器内的音频转换电路,所述音频转换电路的输出端连接有音频播放器,还包括连接于所述微处理器输出端的LCD显示器。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明提出了一种可提早检测轴承故障的检测仪,包括微处理器,所 述微处理器的输入端连接有供电电源,所述微处理器的输出端连接有检测信息输出装置;还包括共振增强型压电传感器,所述共振增强型压电传感器与所述微处理器之间电连接有传感器触发检测电路,所述传感器触发检测电路的输入端并联有传感器信号选择电路,所述传感器信号选择电路串联有传感器信号处理电路,所述传感器信号处理电路的输出端连接有可编程增益电路,所述可编程增益电路连接至所述微处理器,所述传感器触发检测电路、所述传感器信号选择电路、所述传感器信号处理电路和所述可编程增益电路还分别连接至所述供电电源;本发明的有益效果是:共振增强型压电传感器能够检测重载荷、慢速旋转设备的故障信号,上述故障信号一般具有瞬态性、幅度小等特点,在相关电路的配合下,最终能够将检测到的冲击信号能量富集在30KHz~40KHz之间的频率上,提高了信号强度,尽可能减少了环境噪音的干扰,使得故障信号容易检出;另外经过各电路配合后,可使输出的信号形成衰减比较慢(可持续20个周期以上)的共振增强信号,在微处理器的作用下可形成音频信号,通过检测信息输出装置输出,可供故障诊断工程师分析,从而获取到被测设备的初期故障信号,便于及时处理、排除故障。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例结构框图;
图2为本发明实施例结构示意图;
图3为本发明实施例图1中A处的放大结构示意图;
图4为本发明实施例传感器触发检测电路、传感器信号选择电路、传感器信号处理电路、可编程增益电路的电路原理图;
图5为本发明实施例共振增强型压电传感器的检测信号图;
图6为本发明实施例生成的与共振增强型压电传感器的检测信号对应的包络信号图;
图7为本发明实施例与共振增强型压电传感器的检测信号对应的音 频信号图;
图中:1-正极导电棒;2-负极导电棒;3-压电陶瓷片;4-电棒连接紧固套;5-电绝缘环;6-电绝缘套;7-夹装预紧斜面。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种能够提高信号强度,减少环境噪音干扰,能够有效获取轴承故障初期瞬态信号并及时产生故障信息的可提早检测轴承故障的检测仪。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,一种可提早检测轴承故障的检测仪,包括微处理器,所述微处理器的输入端连接有供电电源,所述微处理器的输出端连接有检测信息输出装置。所述供电电源可为整个检测仪中的电子部件提供工作电压。所述检测信息输出装置包括设于所述微处理器内的音频转换电路,所述音频转换电路的输出端连接有音频播放器,还包括连接于所述微处理器输出端的LCD显示器。所述音频播放器可以设置为耳机,由故障诊断工程师佩戴。所述微处理器为ARM微处理器可以将故障信号转变成音频信号并通过耳机播放。图1中的按键是检测仪器的输入装置,用于人机交互,按键包括向上键、向下键、确认键、返回键和测量键。
本实施例还包括共振增强型压电传感器,所述共振增强型压电传感器与所述微处理器之间电连接有传感器触发检测电路,所述传感器触发检测电路的输入端并联有传感器信号选择电路,所述传感器信号选择电路串联 有传感器信号处理电路,所述传感器信号处理电路的输出端连接有可编程增益电路,所述可编程增益电路连接至所述微处理器,所述传感器触发检测电路、所述传感器信号选择电路、所述传感器信号处理电路和所述可编程增益电路还分别连接至所述供电电源。所述共振增强型压电传感器负责故障信号的拾取,所述共振增强型压电传感器用于检测其与所述微处理器直接是否正常接通,所述传感器信号选择电路、所述传感器信号处理电路和所述可编程增益电路实现所述共振增强型压电传感器检测信号使用频率的选择及处理,以供所述微处理器进一步分析使用。
如图2和图3所示,所述共振增强型压电传感器包括相对设置的正极导电棒1和负极导电棒2,所述正极导电棒1和所述负极导电棒2之间夹装有压电陶瓷片3,所述正极导电棒1与所述负极导电棒2夹装所述压电陶瓷片3的一端外侧套装有电棒连接紧固套4,所述电棒连接紧固套4与所述正极导电棒1及所述压电陶瓷片3之间设有电绝缘装置,所述电棒连接紧固套4与所述负极导电棒2间隙配合连接。
本实施例中,所述正极导电棒1的主体部分为直径7mm、长35mm的圆柱体结构,所述负极导电棒2为直径7mm、长40mm的圆柱体结构,所述正极导电棒1、所述负极导电棒2和所述电棒连接紧固套4的材料均为304不锈钢,耐高温、耐腐蚀性好,对使用环境要求低;而所述压电陶瓷片3的优选尺寸为直径7mm,厚度1mm的圆片结构,材料为锆钛酸铅,利用所述电棒连接紧固套4将传感器的各个部件组装固定在一起。
具体地,所述电绝缘装置包括设于所述压电陶瓷片3与所述电棒连接紧固套4之间的电绝缘环5,设于所述正极导电棒1与所述电棒连接紧固 套4之间的电绝缘套6,所述电绝缘套6一端抵靠在所述电绝缘环5上,所述电绝缘套6另一端延伸至所述电棒连接紧固套4的外侧,所述电绝缘环5设置为陶瓷绝缘环,所述电绝缘套6设置为塑料套。通过上述结构可以看出,所述电绝缘套6和所述电绝缘环5可以将所述正极导电棒1和所述负极导电棒2隔开,防止传感器内部短路。所述电棒连接紧固套4与所述负极导电棒2是直接接触的,因此两者之间是电导通的,同时所述负极导电棒2与所述压电陶瓷片3的一个端面电导通。
传感器在实际工作过程中,在所述电棒连接紧固套4内部巧妙构建了一个谐振系统,这个谐振系统的振子是所述压电陶瓷片3,该系统的回复力来自于所述电棒连接紧固套4将所述正极导电棒1、所述负极导电棒2和所述压电陶瓷片3的预紧力。在合适的预紧力下,当所述压电陶瓷片3产生微小位移Δx时,回复力F近似等于-kΔx。设定压电陶瓷片3的质量为m,则谐振频率为:
Figure PCTCN2020139602-appb-000001
本实施例的所述压电陶瓷片3作为质量块,质量轻,有利于传感器结构形成谐振,成为拾取瞬态微弱冲击信号的基础,进而实现了故障信号的拾取和共振增强。
本实施例中,所述正极导电棒1、所述负极导电棒2、所述压电陶瓷片3的端面分别为圆形,且所述负极导电棒2的端面直径大于所述压电陶瓷片3的端面直径,所述负极导电棒2超出所述压电陶瓷片3的部分端面形成所述电绝缘环5的绝缘环定位台,使所述电绝缘环5与所述压电陶瓷 片3和所述电棒连接紧固套4之间形成间隙配合。所述正极导电棒1与所述压电陶瓷片3接触的一端设有绝缘套限位凸环,所述电绝缘套6上设有与所述绝缘套限位台配合的绝缘套限位凹环,使所述正极导电棒1与所述电绝缘套6之间形成过盈配合。所述负极导电棒2与所述压电陶瓷片3接触的一端设有紧固套限位环台,所述电棒连接紧固套4上设有与所述紧固套限位环台配合的紧固套限位环槽,所述电绝缘环5和部分所述电绝缘套6分别装配于所述紧固套限位环槽内,使所述电棒连接紧固套4与所述负极导电棒2之间形成间隙配合。
在装配时,所述正极导电棒1、所述压电陶瓷片3和所述负极导电棒2之间施加一定的预紧力之后,再将所述电绝缘环5端部压紧,保持所述正极导电棒1、所述压电陶瓷片3和所述负极导电棒2之间的预紧力不变。在所述压电陶瓷片3的质量m不变的前提下,通过调节预紧力,来改变k值,可使共振频率f=31KHz左右。
本实施例在所述电棒连接紧固套4套装所述正极导电棒1的一端外周面设有夹装预紧斜面7。将所述电绝缘环5端部压紧后,为了保持所述正极导电棒1、所述压电陶瓷片3和所述负极导电棒2之间的预紧力不变,可以利用夹装工具夹住所述夹装预紧斜面7并向内挤压,使所述夹装预紧斜面7的内表面卡紧所述电绝缘套6的外周,达到预紧力保持的效果。
如图4所示,所述传感器触发检测电路包括与所述共振增强型压电传感器输出端电连接的低通滤波电阻R31,所述低通滤波电阻R31的输出端通过低通滤波电容C34接地,所述低通滤波电阻R31的输出端还连接至运算放大器A1的同相输入端,所述运算放大器A1的反相输入端连接 至其输出端,所述运算放大器A1的输出端连接至所述微处理器,所述运算放大器A1的电源端通过分压电阻R59连接至所述供电电源,所述分压电阻R59还通过电容C52安全接地。J是信号的同轴输入端口,J7是弹片触点,分别是信号内接和外接输入的方式。R76和C65构成低通滤波,ADC0和ADC1是两级输出信号,接单片机的数据采集管脚。C19是放大器的输入旁路电容,可起到滤波、解耦作用。R42和C57组合起来可起到电源稳压的作用。R33为传感器提供偏置电压。
所述运算放大器A1的型号可以选用TLC2272ACD,所述低通滤波电阻R31和所述低通滤波电容C34组成低通滤波器,然后用所述运算放大器A1进行信号跟随,来克服所述共振增强型压电传感器输出端电荷信号小,驱动能力较弱的问题。所述运算放大器A1形成信号跟随后,进入所述微处理器内的芯片STM32F429中进行模拟/数字转换并使用,达到所述共振增强型压电传感器是否正常接入的目的。
所述传感器信号选择电路包括依次串联在所述低通滤波电阻输入端串联选频电路和并联选频电路,所述串联选频电路的输出端还连接至所述传感器信号处理电路。具体地,所述串联选频电路包括连接在所述低通滤波电阻R31输入端的极性电容C33,所述极性电容C33的输出端依次串联有电容C45和电感L3,所述电感L3的输出端连接至所述传感器信号处理电路;所述并联选频电路包括并联在所述电感L3输出端的电感L4和电容C16,所述电容C16和所述电感L4的输出端共同接地设置。
其中所述电容C45与所述电感L3构成串联LC选频电路,当信号频率达到谐振频率时,所述串联选频电路对信号的阻抗接近于零,而所述电 感L4和所述电容C16组成并联LC选频电路,当信号频率达到谐振频率时,其等效阻抗接近于无穷大。例如假定所述共振增强型压电传感器输出信号的频率为32KHz,通过选取合适的电容值和电感值,使得LC回路的谐振频率为32KHz,则这两个LC回路会组成品质因数非常高(Q值很高)的选频电路。电容值和电感值的选取参考下面的公式:
Figure PCTCN2020139602-appb-000002
本实施例中,所述传感器信号处理电路设置为带通滤波电路,包括串联设置的电阻R50和电容C48,所述电阻R50的输入端连接至所述电感L3的输出端,所述电容C48的输入端连接有电容C47,所述电容C48的输出端连接有电阻R51,所述电容C48的输出端、所述电容C47的输出端和所述电阻R51的输出端分别连接至所述可编程增益电路。所述电阻R50、所述电容C47、所述电容C48和所述电阻R51对信号进行进一步选频,并将信号送入所述可编程增益电路,所述共振增强型压电传感器检测的声音信号的幅值变化范围较大,采用所述可编程增益电路才能覆盖较宽的量程范围。
所述可编程增益电路包括可编程放大器U1,所述可编程放大器U1的外部参考端连接至基准电压电路,所述可编程放大器U1的模拟输入端连接至所述带通滤波电路,所述可编程放大器U1的模拟输出端连接至所述微处理器。所述可编程放大器U1可采用芯片MCP6S21,为了使所述芯片MCP6S21的输出信号Vout能在芯片STM32F429的采集范围内,需要把其基准电压抬到1.65V,本实施例中专门设计了基准电压电路。U1 是一个可编程增益的放大器,U1的1脚(VOUT)为输出,U1的2脚为输入,U1的3脚(VREF)为参考电压,U1的4脚(VSS)、U1的8脚(VDD)为电源,U1的5、6、7脚的信号来自单片机用于配置放大器的增益。U1的型号为MCP6S21。
所述基准电压电路包括运算放大器A2,所述运算放大器A2的正向输入端通过分压电阻R47连接至电源电压,所述分压电阻R47与电源电压端依次并联设有接地电容C35、接地电容C32和接地电容C37,且所述接地电容C35、所述接地电容C32和所述接地电容C37共同接地设置,所述分压电阻R47与所述运算放大器A2的正向输入端之间依次并联有分压电阻R48和接地电容C39,所述分压电阻R48和所述接地电容C39共同接地设置,所述运算放大器A2的反向输入端连接至所述运算放大器A2的外部参考端,所述运算放大器A2的输出端通过电阻R49也连接至所述运算放大器A2的外部参考端,且所述电阻R49与所述运算放大器A2的外部参考端之间还C43设有接地电容C22和接地电容C23,所述接地电容C22和所述接地电容C23共同接地设置。所述运算放大器A2设置为芯片LMC6482IM/NS/SOP8。所述基准电压电路采用所述分压电阻R47和所述分压电阻R48进行分压,然后利用所述运算放大器A2实现电压跟随,提高驱动能力,所述芯片MCP6S21的VCC端压值为3.3V,VRE端压值为1.65V。
例如所述运算放大器A2Vout处的信号是一个幅度调制的32KHz信号(如图5所示),利用所述ARM微处理器内自带的ADC(采样率最高2.4Msps)对该信号进行数据采集,然后所述ARM微处理器内部的浮点处 理器FPU(相当于DSP),对信号进行快速的抽样、检波、求包络,得出包络信号(如图6所示),形成的包络信号可以直接用所述LCD显示器显示出来,能够被轴承检测仪的用户能够,该过程中实际求包络的过程就是解调的过程,为本技术领域普通技术人员所熟知的内容,在此不再详细描述。所述ARM微处理器将包络信号进一步调制成人耳可以听到的音频信号(频率为几百赫兹)(如图7所示),这样故障诊断工程师可以从所述耳机里听到,实现了轴承初期或早起故障产生的冲击脉冲信号的检测与利用。包络信号还可以通过所述ARM微处理器存储起来,测量完成后,处理过程中的信号可以进行统计分析,以便于利用dBm/dBc(峰值/地毯值)、HR/LR(高频次/低频次)等技术对轴承状态或者故障进行分析。图5-7中的横坐标表示时间,纵坐标表示电压。
在大部分轴承故障中,润滑不良、轴承故障和温度上升总是伴随发生的,因此可以在该轴承检测仪扩展设置一热释电模块对轴盖温度进行检测。
传统技术中使用的测振仪的品质主要靠通频能力来体现,也就是说有很多的频率信号需要通过调理电路,测振仪主要检测频率信息,即为功率有限,能量无限的连续信号。而本实施例的检测仪所能检测到的是能量有限的瞬态信号,因此通过它能够检测到轴承故障早期因为润滑不好,由滚珠与滚道粗糙度纹理碰撞形成的冲击脉冲信号,因此本实施例成为目前唯一一种能够检测轴承油膜厚度的设备,而且能够检测并提前3~6个月预测故障的发生。
综上所述,本实施例具有以下优点:
1、用共振增强的方法将信号在30KHz~40KHz的频段上进行富集,使得信号强度比原来没有富集前增大6~7倍以上,这样可以比振动分析法提前3~6个月发现故障问题,且能够准确采集轴承故障早期的瞬态信号。
2、由于信号的频率集中到一个窄带频段上,比较容易做到增益稳定的放大信号。
3、由于共振增强后的故障信号是能量信号,主要是看能量值,不再携带频率信息,做检波处理之后会得到更加低频的信号,因此采用较低的采样率就可以实现信号采集。
4、采用共振增强型压电传感器dBm/dBc(峰值/地毯值)、HR/LR(高频次/低频次)对比方法可以分析轴承的润滑情况。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种可提早检测轴承故障的检测仪,包括微处理器,其特征在于:所述微处理器的输入端连接有供电电源,所述微处理器的输出端连接有检测信息输出装置;还包括共振增强型压电传感器,所述共振增强型压电传感器与所述微处理器之间电连接有传感器触发检测电路,所述传感器触发检测电路的输入端并联有传感器信号选择电路,所述传感器信号选择电路串联有传感器信号处理电路,所述传感器信号处理电路的输出端连接有可编程增益电路,所述可编程增益电路连接至所述微处理器,所述传感器触发检测电路、所述传感器信号选择电路、所述传感器信号处理电路和所述可编程增益电路还分别连接至所述供电电源。
  2. 如权利要求1所述的一种可提早检测轴承故障的检测仪,其特征在于:所述共振增强型压电传感器包括相对设置的正极导电棒和负极导电棒,所述正极导电棒和所述负极导电棒之间夹装有压电陶瓷片,所述正极导电棒与所述负极导电棒夹装所述压电陶瓷片的一端外侧套装有电棒连接紧固套,所述电棒连接紧固套与所述正极导电棒及所述压电陶瓷片之间设有电绝缘装置,所述电棒连接紧固套与所述负极导电棒间隙配合连接。
  3. 如权利要求2所述的一种可提早检测轴承故障的检测仪,其特征在于:所述电绝缘装置包括设于所述压电陶瓷片与所述电棒连接紧固套之间的电绝缘环,设于所述正极导电棒与所述电棒连接紧固套之间的电绝缘套,所述电绝缘套一端抵靠在所述电绝缘环上,所述电绝缘套另一端延伸至所述电棒连接紧固套的外侧。
  4. 如权利要求3所述的一种可提早检测轴承故障的检测仪,其特征在于:所述正极导电棒、所述负极导电棒、所述压电陶瓷片的端面分别设置为圆形,且所述负极导电棒的端面直径大于所述压电陶瓷片的端面直径,所述负极导电棒超出所述压电陶瓷片的部分端面形成所述电绝缘环的绝缘环定位台。
  5. 如权利要求3所述的一种可提早检测轴承故障的检测仪,其特征在于:所述正极导电棒与所述压电陶瓷片接触的一端设有绝缘套限位凸环,所述电绝缘套上设有与所述绝缘套限位台配合的绝缘套限位凹环。
  6. 如权利要求1所述的一种可提早检测轴承故障的检测仪,其特征在于:所述传感器触发检测电路包括与所述共振增强型压电传感器输出端电连接的低通滤波电阻R31,所述低通滤波电阻R31的输出端通过低通滤波电容C34接地,所述低通滤波电阻R31的输出端还连接至运算放大器A1的同相输入端,所述运算放大器A1的反相输入端连接至其输出端,所述运算放大器A1的输出端连接至所述微处理器,所述运算放大器A1的电源端通过分压电阻R59连接至所述供电电源,所述分压电阻R59还通过电容C52安全接地。
  7. 如权利要求6所述的一种可提早检测轴承故障的检测仪,其特征在于:所述传感器信号选择电路包括依次串联在所述低通滤波电阻输入端串联选频电路和并联选频电路,所述串联选频电路的输出端还连接至所述传感器信号处理电路;
    所述串联选频电路包括连接在所述低通滤波电阻R31输入端的极性电容C33,所述极性电容C33的输出端依次串联有电容C45和电感L3,所述电感L3的输出端连接至所述传感器信号处理电路;所述并联选频电路包括并联在所述电感L3输出端的电感L4和电容16,所述电容16和所述电感L4的输出端共同接地设置。
  8. 如权利要求7所述的一种可提早检测轴承故障的检测仪,其特征在于:所述传感器信号处理电路设置为带通滤波电路,包括串联设置的电阻R50和电容C48,所述电阻R50的输入端连接至所述电感L3的输出端,所述电容C48的输入端连接有电容C47,所述电容C48的输出端连接有电阻R51,所述电容C48的输出端、所述电容C47的输出端和所述电阻R51的输出端分别连接至所述可编程增益电路。
  9. 如权利要求8所述的一种可提早检测轴承故障的检测仪,其特征在于:所述可编程增益电路包括可编程放大器U1,所述可编程放大器U1的外部参考端连接至基准电压电路,所述可编程放大器U1的模拟输入端连接至所述带通滤波电路,所述可编程放大器U1的模拟输出端连接至所述微处理器。
  10. 如权利要求1至9任一权利要求所述的一种可提早检测轴承故障的检测仪,其特征在于:所述检测信息输出装置包括设于所述微处理器内的音频转换电路,所述音频转换电路的输出端连接有音频播放器,还包括连接于所述微处理器输出端的LED显示器。
PCT/CN2020/139602 2019-12-27 2020-12-25 一种可提早检测轴承故障的检测仪 WO2021129834A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/777,717 US11719601B2 (en) 2019-12-27 2020-12-25 Detector capable of detecting bearing faults in advance
ZA2022/05082A ZA202205082B (en) 2019-12-27 2022-05-09 Detector capable of detecting bearing faults in advance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911373318.3 2019-12-27
CN201911373318.3A CN110907178A (zh) 2019-12-27 2019-12-27 一种可提早检测轴承故障的检测仪

Publications (1)

Publication Number Publication Date
WO2021129834A1 true WO2021129834A1 (zh) 2021-07-01

Family

ID=69828024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139602 WO2021129834A1 (zh) 2019-12-27 2020-12-25 一种可提早检测轴承故障的检测仪

Country Status (4)

Country Link
US (1) US11719601B2 (zh)
CN (1) CN110907178A (zh)
WO (1) WO2021129834A1 (zh)
ZA (1) ZA202205082B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907178A (zh) * 2019-12-27 2020-03-24 杭州欧贲科技有限公司 一种可提早检测轴承故障的检测仪

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183228A (ja) * 1999-12-28 2001-07-06 Ngk Spark Plug Co Ltd 圧電共振型ノックセンサ
CN2543051Y (zh) * 2002-04-21 2003-04-02 赵联春 轴承振动测量用传振杆
JP2008139284A (ja) * 2006-10-06 2008-06-19 Ksb Sas 特に、回転機械用振動センサー
CN202083465U (zh) * 2011-05-26 2011-12-21 中国人民解放军军事交通学院 往复机械瞬变工况阶比跟踪装置
CN203981267U (zh) * 2014-07-25 2014-12-03 李伯良 陶瓷压电弹簧谐振式振动传感器
CN108955862A (zh) * 2017-05-20 2018-12-07 天津大学(青岛)海洋工程研究院有限公司 一种基于并联同步开关电感技术的新型振动频率传感器
CN110907178A (zh) * 2019-12-27 2020-03-24 杭州欧贲科技有限公司 一种可提早检测轴承故障的检测仪
CN210953406U (zh) * 2019-12-27 2020-07-07 杭州欧贲科技有限公司 一种可提早检测轴承故障的检测仪

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183228A (ja) * 1999-12-28 2001-07-06 Ngk Spark Plug Co Ltd 圧電共振型ノックセンサ
CN2543051Y (zh) * 2002-04-21 2003-04-02 赵联春 轴承振动测量用传振杆
JP2008139284A (ja) * 2006-10-06 2008-06-19 Ksb Sas 特に、回転機械用振動センサー
CN202083465U (zh) * 2011-05-26 2011-12-21 中国人民解放军军事交通学院 往复机械瞬变工况阶比跟踪装置
CN203981267U (zh) * 2014-07-25 2014-12-03 李伯良 陶瓷压电弹簧谐振式振动传感器
CN108955862A (zh) * 2017-05-20 2018-12-07 天津大学(青岛)海洋工程研究院有限公司 一种基于并联同步开关电感技术的新型振动频率传感器
CN110907178A (zh) * 2019-12-27 2020-03-24 杭州欧贲科技有限公司 一种可提早检测轴承故障的检测仪
CN210953406U (zh) * 2019-12-27 2020-07-07 杭州欧贲科技有限公司 一种可提早检测轴承故障的检测仪

Also Published As

Publication number Publication date
US20230003617A1 (en) 2023-01-05
CN110907178A (zh) 2020-03-24
US11719601B2 (en) 2023-08-08
ZA202205082B (en) 2022-08-31

Similar Documents

Publication Publication Date Title
CN105136404B (zh) 一种声纹检测系统
WO2021129834A1 (zh) 一种可提早检测轴承故障的检测仪
US3028450A (en) Gas leak detection apparatus
CN105510813A (zh) 一种基于振动原理的换流变分接开关状态在线监测系统
CN210953406U (zh) 一种可提早检测轴承故障的检测仪
CN110426121A (zh) 一种电机、或发动机异响检测装置及方法
CN201152880Y (zh) 四芯电压输出压电加速度计
JPS607219B2 (ja) エンジン・ノツキング・メ−タ
TWI633795B (zh) 一種訊號處理系統及其方法
CN210953096U (zh) 一种共振增强型压电传感器
CN105910772B (zh) 超声波检漏装置及超声波检漏方法
CN113503958B (zh) 宽频振动信号传感器及其信号处理装置
CN115327327A (zh) 一种基于超声波技术的电缆局部放电检测仪
JPS58187739U (ja) 振動計
CN208751701U (zh) 一种基于三维悬浮组合的振动检测器
Shrestha et al. Digital ultrasonic sensing device with programmable frequency: Development and analysis
JPH0282135A (ja) 可動部材の損傷検出方法及び装置
CN101713766B (zh) 采用双压电陶瓷片的宽频率响应抗噪声拾音探头
US3385930A (en) Electronic sound detector
CN106053590B (zh) 磁悬浮血栓弹力测试装置
CN108955862B (zh) 一种基于并联同步开关电感技术的新型振动频率传感器
JPS63111625U (zh)
US3141326A (en) Safety and arming monitoring device
CN109781788A (zh) 一种纳米级绝缘薄膜电压-电流特性测量系统
CN215573338U (zh) 一种具有pvdf膜的传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906802

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20906802

Country of ref document: EP

Kind code of ref document: A1