WO2021129699A1 - 信道测量参考信号传输方法及终端 - Google Patents

信道测量参考信号传输方法及终端 Download PDF

Info

Publication number
WO2021129699A1
WO2021129699A1 PCT/CN2020/138804 CN2020138804W WO2021129699A1 WO 2021129699 A1 WO2021129699 A1 WO 2021129699A1 CN 2020138804 W CN2020138804 W CN 2020138804W WO 2021129699 A1 WO2021129699 A1 WO 2021129699A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
resource set
target
transmission
side link
Prior art date
Application number
PCT/CN2020/138804
Other languages
English (en)
French (fr)
Inventor
纪子超
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020227025170A priority Critical patent/KR20220115103A/ko
Priority to EP20904509.5A priority patent/EP4075834A4/en
Publication of WO2021129699A1 publication Critical patent/WO2021129699A1/zh
Priority to US17/740,335 priority patent/US20220272670A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the embodiment of the present invention provides a channel measurement reference signal transmission method to solve the problem of low reliability of side link transmission.
  • an embodiment of the present invention provides a channel measurement reference signal transmission method, which is applied to a terminal, and includes:
  • the target signal is transmitted in all or part of the frequency domain bandwidth of the side link according to the target configuration information, and the target signal includes a channel measurement reference signal.
  • an embodiment of the present invention provides a terminal, including:
  • the transmission module is configured to transmit the target signal in all or part of the frequency domain bandwidth of the side link according to the target configuration information, and the target signal includes a channel measurement reference signal.
  • the terminal can transmit the channel measurement reference signal on all or part of the frequency domain bandwidth of the side link based on the target configuration information, so as to realize the channel state measurement of the side link. Therefore, The embodiments of the present invention can effectively improve the reliability of side link transmission.
  • Figure 1 is a structural diagram of a network system applicable to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for transmitting a channel measurement reference signal according to an embodiment of the present invention
  • FIG. 3 is a diagram of a resource set transmission example in a channel measurement reference signal transmission method provided by an embodiment of the present invention
  • FIG. 4 is a second example diagram of resource set transmission in a channel measurement reference signal transmission method provided by an embodiment of the present invention.
  • FIG. 5 is the third diagram of a resource set transmission example in a channel measurement reference signal transmission method provided by an embodiment of the present invention.
  • FIG. 6 is the fourth diagram of a resource set transmission example in a channel measurement reference signal transmission method provided by an embodiment of the present invention.
  • FIG. 8 is a diagram of a resource set transmission example in a channel measurement reference signal transmission method provided by an embodiment of the present invention.
  • FIG. 9 is a structural diagram of a terminal provided by an embodiment of the present invention.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiment of the present invention should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the terminal of a method for transmitting a channel measurement reference signal provided by an embodiment of the present invention can be applied to a wireless communication system.
  • the wireless communication system may be a 5G system, or an evolved Long Term Evolution (eLTE) system, or a subsequent evolved communication system.
  • eLTE evolved Long Term Evolution
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present invention. As shown in FIG. 1, it includes a first terminal 11, a second terminal 10, and a control node 13, wherein the first terminal 11 And the second terminal 10 may be a user terminal or other terminal-side equipment, such as a mobile phone, a tablet (Personal Computer), a laptop (a laptop computer), a personal digital assistant (personal digital assistant, PDA), a mobile Internet device Terminal-side devices such as Mobile Internet Device (MID) or Wearable Device (Wearable Device). It should be noted that the specific types of the first terminal 11 and the second terminal 10 are not limited in the embodiment of the present invention.
  • One terminal 11 can be understood as the sending end of a sidelink (SL), and the second terminal 10 can be understood as the receiving end of the sidelink.
  • the above-mentioned control node 13 may be a network device or a terminal-side device.
  • the network device may be a 5G base station, or a later version base station, or a base station in other communication systems, or it is called Node B, Evolved Node B, or a sending and receiving point. (Transmission Reception Point, TRP), or Access Point (Access Point, AP), or other vocabulary in the field, as long as the same technical effect is achieved, the network device is not limited to a specific technical vocabulary.
  • the aforementioned network device may be a master node (Master Node, MN) or a secondary node (Secondary Node, SN). It should be noted that, in the embodiment of the present invention, only a 5G base station is taken as an example, but the specific type of network equipment is not limited.
  • FIG. 2 is a flowchart of a channel measurement reference signal transmission method according to an embodiment of the present invention. The method is applied to a terminal. As shown in FIG. 2, it includes the following steps:
  • the terminal can transmit the channel measurement reference signal on all or part of the frequency domain bandwidth of the side link based on the target configuration information, so as to realize the channel state measurement of the side link. Therefore, The embodiments of the present invention can effectively improve the reliability of side link transmission.
  • the foregoing target configuration information includes the time domain configuration of the target signal and the frequency domain configuration of the target signal.
  • the target signal further includes an automatic gain control AGC signal
  • the time domain configuration is used to configure the first time domain unit occupied by the channel measurement reference signal in the second time domain unit for transmitting the target signal And the number of first time domain units occupied by the AGC signal.
  • the above-mentioned target configuration information is used to configure x first time domain units and y first time domain units.
  • the first time domain unit may be a symbol.
  • the target configuration information is used to configure the channel measurement reference signal occupies x symbols and the AGC signal occupies y symbols.
  • the content of the first time domain unit occupied by the AGC signal can be filled in by the UE, or the content of the first time domain unit occupied by the AGC signal can also be obtained through agreement or configuration (pre-configuration) (for example, the first time domain unit can be copied).
  • x CSI-RS sequences can be filled in the first time domain unit occupied by the AGC signal, and a fixed CSI-RS sequence can also be filled.
  • the first time domain unit occupied by the AGC signal can also be filled according to the CSI-RS (pre- Configure) Configure to generate the corresponding CSI-RS sequence).
  • the x first time domain units and the y first time domain units are configured through the target configuration information, thereby satisfying the requirement that the power of SL transmission changes at different moments and the AGC needs to be re-adjusted.
  • the second time domain unit can be understood as a time slot (slot) or a short time slot (Sub-slot), can also be called SL slot or SL Sub-slot, can also be called logical slot (logical slot) or Logical sub-slot.
  • the first time domain unit occupied by the channel measurement reference signal and the first time domain unit occupied by the AGC signal may be combined to form a resource set of the channel measurement reference signal and the AGC.
  • a resource set may include one or more first time domain units occupied by a channel measurement reference signal and one or more first time domain units occupied by an AGC signal.
  • the first time domain unit occupied by the channel measurement reference signal is located after the first time domain unit occupied by the AGC signal;
  • the resource set consists of an AGC symbol and a CSI-RS symbol, and a resource set can be configured for each slot through the above-mentioned target configuration information, as shown in Fig. 3. It is also possible to configure two resource sets for each slot through the above-mentioned target configuration information, as shown in Figure 4.
  • the position of the resource set in the second time domain unit can be set according to actual needs.
  • the position of the at least one resource set in the second time domain unit satisfies any one of the following:
  • the N first time domain units occupied by the at least one resource set are located in the last N first time domain units in the second time domain unit, and N is a positive integer;
  • the N first time domain units occupied by the at least one resource set are located at any position of the second time domain unit;
  • the following configuration may be adopted:
  • the target resource includes at least one of the following:
  • PSSCH symbol AGC symbol before PSSCH symbol, AGC symbol after PSSCH symbol, physical side link feedback channel symbol (PSFCH symbol), and guard period symbol (Guard Period symbol, GP symbol).
  • the second time domain unit period and offset of the resource set may be defined through a protocol, or may be obtained through configuration or pre-configuration.
  • it may be configured based on the bandwidth part (Bandwidth Part, BWP) (that is, per BWP) or based on the resource pool (that is, per resource pool).
  • BWP Bandwidth Part
  • the first object on each first time domain unit of the resource set remains unchanged, and the first object includes at least one of the following:
  • the resource set consists of one AGC symbol and three CSI-RS symbols, and the slot contains one resource set.
  • the transmission on the three CSI-RS symbols in the slot needs to use the same precoder, as shown in Fig. 5.
  • the resource set consists of an AGC symbol and a CSI-RS symbol, and the slot contains Three collections of this resource.
  • the transmission on the three CSI-RS symbols of the set can adopt different precoders, as shown in FIG. 6 specifically.
  • the resource set is time-division multiplexed or frequency-division multiplexed with a third object
  • the third object is at least one of physical side link control channels PSCCH, PSSCH, and physical side link feedback channel PSFCH.
  • the third object and the resource set satisfy any one of the following :
  • rate matching or puncturing is performed on the transmission of the third object.
  • the third object is the PSFCH and the resource set is time-division multiplexed with a third object
  • the third object and the resource set satisfy any one of the following:
  • multiplexing modes among the resource sets PSCCH, PSSCH, and PSFCH are specified, so that the reliability of the resource set transmission can be guaranteed.
  • the number of frequency domain resources in each of the sub-bands is the same;
  • the sub-frequency band is a basic unit of transmission of the target signal.
  • the manner of performing frequency hopping in the M sub-bands includes any one of the following:
  • the resource set includes a combination formed by bundling a first time domain unit occupied by the channel measurement reference signal and a first time domain unit occupied by the AGC signal.
  • the frequency domain configuration is further used to indicate the frequency of the target signal according to at least one of the following: Domain resources:
  • the frequency domain resources are indicated based on sub-channels.
  • the above-mentioned target configuration information when the above-mentioned target configuration information is obtained through configuration, specifically, it can be directly configured by the control node, and the control node relays to the receiving end through the sending end, or the sending end determines the target configuration information corresponding to the receiving end. After that, the target configuration information is sent to the receiving end.
  • the above-mentioned target configuration information is sent by a control node, and the control node may be a uu control node or a sidelink control node. It can include the following situations:
  • Case 1 The control node notifies the target configuration information of each link to the sender and receiver.
  • Link information for example, the UE ID of the transceiver
  • Transceiver end indication information such as 1bit flag (flag).
  • control node can notify the sending end through signaling such as (PC5-)RRC, MAC CE, DCI, or SCI; at the same time, the signaling needs to include at least the following information: link information, for example, the UE ID of the sending and receiving end.
  • signaling such as (PC5-)RRC, MAC CE, DCI, or SCI.
  • the sending end can notify the receiving end through signaling such as PC5-RRC, MAC CE or SCI.
  • Case 3 The control node configures a set of available configuration information for the sender, and the sender determines the target configuration information for each link.
  • control node can notify the sending end through signaling such as (PC5-)RRC, MAC CE, DCI, or SCI; at the same time, the signaling needs to include at least the following information: link information, for example, the UE ID of the sending and receiving end.
  • signaling such as (PC5-)RRC, MAC CE, DCI, or SCI.
  • the sending end can notify the receiving end through signaling such as PC5-RRC, MAC CE or SCI.
  • Case 4 The sending end determines the target configuration information of each link and notifies the receiving end of the target configuration information.
  • the sending end can notify the receiving end through signaling such as PC5-RRC, MAC CE, or SCI.
  • the method when the terminal is the sender of side link transmission, before transmitting the target signal in all or part of the frequency domain bandwidth of the side link according to the target configuration information, the method also includes:
  • the method further includes:
  • the first configuration includes at least two second configurations
  • the target configuration information is one determined by the terminal in the at least two second configurations. Item configuration.
  • the Methods also include:
  • the method also includes any of the following:
  • the target configuration information is used to configure the channel measurement reference signal to be carried on the PSSCH, and a preset frequency hopping rule is used to transmit the target signal.
  • the frequency domain bandwidth includes K sub-bands, and K is an integer greater than 1.
  • a second time domain unit for transmitting the target signal includes L third time domain units, L Is an integer greater than 1.
  • the frequency domain bandwidth may be each resource pool bandwidth or BWP bandwidth or carrier bandwidth
  • the division can be standard/(pre-)configured; for example, configure one/more of the following parameters:
  • the bandwidth of the sub-band (for example, the number of PRB/sub-channel);
  • the starting position of the sub-band (for example, the starting position of PRB/sub-channel);
  • Each second time domain unit is divided into multiple third time domain units (also can be understood as sub-time domain units)
  • the division can be standard/(pre-)configured; for example, configure one/more of the following parameters:
  • the length of the third time domain unit (for example, the number of symbols);
  • the start position of the third time domain unit (for example, the start position of the symbol);
  • the third time domain unit interval The third time domain unit interval.
  • each sub-time domain unit can carry a channel measurement reference signal respectively.
  • the transmission of each of the third time domain units performing frequency hopping between the sub-bands includes:
  • T_i represents the subband corresponding to the i-th third time domain unit
  • T_1 represents the subband corresponding to the first third time domain unit
  • Q represents the frequency hopping step length .
  • each slot is divided into three third time domain units, and the resource pool is divided into three sub-bands.
  • the PSSCH transmission is non-frequency hopping transmission, as shown in Figure 7, where The number represents the nth third time domain.
  • the PSSCH transmission is frequency hopping transmission
  • the step size of frequency hopping is a sub-band
  • the PSSCH transmission after frequency hopping becomes broadband transmission
  • the CSI-RS carried by it can measure broadband CSI, as shown in Figure 8.
  • the number in the figure represents the nth third time domain.
  • the terminal since the PSSCH frequency hopping transmission is used to carry the channel measurement reference signal, the terminal does not need to select the transmission resource of the channel measurement reference signal separately, which reduces the complexity of resource selection and the interference or collision of resource reselection. problem.
  • Option 1 configure broadband SL CSI-RS.
  • the SL symbol(s) before the SL CSI-RS symbol is set to AGCsymbol(s).
  • the content of the AGC symbol can be filled in by the UE, or the content of the AGC symbol is specified/(pre)configured (for example, the xth CSI-RS sequence can be copied to the AGC symbol; the fixed CSI-RS sequence can be filled; The AGC symbol generates the corresponding CSI-RS sequence according to the (pre)configuration of the CSI-RS).
  • the symbol combination of AGC and CSI-RS can be bundled to form a resource set of AGC and CSI-RS (also referred to as a CSI-RS set).
  • each (sub-)slot can be (pre-)configured with one or more resource sets.
  • the position of the protocol definition/(pre)configuration resource set in the (sub-)slot which satisfies any of the following:
  • the protocol stipulates that the symbol used for resource collection transmission is the target resource to be removed; the target resource includes at least one of the following: PSSCH symbol, AGC symbol before PSSCH symbol, AGC symbol after PSSCH symbol, PSFCH symbol and GP symbol;
  • the (sub-)slot period and offset of the resource set can be defined by agreement/(pre)configured (for example, per BWP or per resource pool configuration).
  • the configuration of the aforementioned CSI-RS/resource set can be configured separately for each panel (antenna panel)/antenna port (antenna port).
  • the UE behavior on the resource set includes one or more of the following
  • the UE sends on all symbols in the resource set
  • the UE keeps the transmit power unchanged on each symbol in the resource set
  • the precoder/panel of the UE remains unchanged on each symbol of the resource set (as shown in Figure 5 and Figure 6).
  • the protocol stipulates/(pre)configures the frequency domain resources of the SL CSI-RS.
  • the stipulation/(pre)configuration is the entire BWP/resource pool/carrier.
  • the SL CSI-RS frequency domain transmission resource may be indicated based on BWP/resource pool/carrier/sub-channel. For example: specifying/(pre)configuration start position and length; or specifying/(pre)configuration indicating SL CSI-RS frequency domain transmission resources through bitmap.
  • the frequency domain resources of the SL CSI-RS may be divided into multiple sub-bands, and the division may be prescribed/(pre-)configured.
  • each sub-band has the same number of frequency domain resources; it can also be specified that the sub-band can be the basic unit of CSI-RS transmission.
  • the UE can perform frequency hopping in different sub-bands when sending SL CSI-RS, and the frequency hopping mode can include any of the following:
  • sequence of SL CSI-RS, resource mapping and antenna port mapping can reuse the rules of NR and SRS.
  • the multiplexing of the resource set and PSCCH/PSSCH includes time division multiplexing.
  • the time division multiplexing mode is any one of the following:
  • PSSCH/PSSCH transmission and resource collection collide in the time domain, and PSSCH/PSSCH transmission performs rate matching/puncturing.
  • the multiplexing of the resource set and PSFCH includes frequency division multiplexing.
  • the frequency division multiplexing mode is any one of the following:
  • the PSFCH and the AGC symbol (pre) of the resource set are configured on the same symbol;
  • PSFCH transmission and resource set collide PSFCH transmission and resource set collide, PSFCH transmission or CSI-RS transmission is discarded.
  • the control node (for example, the base station or the group header of the scheduling UE or UE group) notifies the SL CSI-RS configuration of each link to the transmitting end and the receiving end.
  • control node is notified through (PC5-)RRC, MAC CE, DCI, or SCI signaling; the signaling must contain at least the following information:
  • Link information for example, the UE ID of the transceiver
  • Transceiver indication information such as 1bit flag.
  • Method 2 The control node (for example, the base station or the group header that schedules the UE or UE group) notifies the SL CSI-RS configuration of each link to the sending end, and the sending end relays the SL CSI-RS configuration information to the receiving end .
  • the control node for example, the base station or the group header that schedules the UE or UE group
  • control node can notify the sending end through signaling such as (PC5-)RRC, MAC CE, DCI, or SCI; at the same time, the signaling needs to include at least the following information: link information, for example, the UE ID of the sending and receiving end.
  • signaling such as (PC5-)RRC, MAC CE, DCI, or SCI.
  • the sending end can notify the receiving end through signaling such as PC5-RRC, MAC CE or SCI.
  • control node can notify the sending end through signaling such as (PC5-)RRC, MAC CE, DCI, or SCI; at the same time, the signaling needs to include at least the following information: link information, for example, the UE ID of the sending and receiving end.
  • signaling such as (PC5-)RRC, MAC CE, DCI, or SCI.
  • the sending end can notify the receiving end through signaling such as PC5-RRC, MAC CE or SCI.
  • control node only needs moderate control, so as to reduce the overhead of control signaling and improve the flexibility of UE side configuration.
  • (Sub-) slot can be replaced with SL/logical (Sub-) slot, or any other time domain unit.
  • Solution 2 The PSSCH transmitted by the UE carries the SL CSI-RS, and the PSSCH hopping method is used to implement broadband CSI-RS transmission.
  • Frequency domain bandwidth is divided into multiple sub-bands
  • the frequency domain bandwidth may be the bandwidth of each resource pool/BWP bandwidth/carrier bandwidth
  • the division can be standard/(pre-)configured; for example, configure one/more of the following parameters:
  • the bandwidth of the sub-band (for example, the number of PRB/sub-channel);
  • the starting position of the sub-band (for example, the starting position of PRB/sub-channel);
  • each (Sub-)slot is divided into multiple sub-time domain units, and the division may be standard/(pre-)configured; for example, configure one/more of the following parameters:
  • the length of the sub-time domain unit (for example, the number of symbols);
  • the starting position of the sub-time domain unit (for example, the starting position of the symbol);
  • each sub-time domain unit can carry SL CSI-RS respectively.
  • the protocol stipulates/(pre)configuration
  • i is an integer greater than 1 and less than or equal to L
  • T_i represents the subband corresponding to the i-th third time domain unit
  • T_1 represents the subband corresponding to the first third time domain unit
  • Q represents the frequency hopping step length .
  • FIG. 9 is a structural diagram of a terminal according to an embodiment of the present invention.
  • a terminal 900 includes:
  • the transmission module 901 is configured to transmit a target signal in all or part of the frequency domain bandwidth of the side link according to the target configuration information, and the target signal includes a channel measurement reference signal.
  • the target configuration information includes: a time domain configuration of the target signal and a frequency domain configuration of the target signal.
  • the target signal further includes an automatic gain control AGC signal
  • the time domain configuration is used to configure the first time domain unit occupied by the channel measurement reference signal in the second time domain unit for transmitting the target signal And the number of first time domain units occupied by the AGC signal.
  • the time domain configuration is configured to include at least one resource set in the second time domain unit for transmitting the target signal, and the resource set includes the first time domain unit occupied by the channel measurement reference signal and A combination formed by binding the first time domain unit occupied by the AGC signal.
  • the frequency domain resource of the target signal includes M sub-bands, and M is an integer greater than 1.
  • the M sub-bands satisfy at least one of the following:
  • the number of frequency domain resources in each of the sub-bands is the same;
  • the sub-frequency band is a basic unit of transmission of the target signal.
  • the manner of performing frequency hopping in the M sub-bands includes any one of the following:
  • the resource set includes a combination formed by bundling a first time domain unit occupied by the channel measurement reference signal and a first time domain unit occupied by an AGC signal.
  • the target configuration information is used to configure the channel measurement reference signal to be carried on the PSSCH, and preset frequency hopping rules to perform the target signal transmission.
  • the frequency domain bandwidth includes K sub-bands, and K is an integer greater than one; a second time domain unit for transmitting the target signal includes L third time domain units, and L is an integer greater than one.
  • the preset frequency hopping rule includes: performing frequency hopping between the sub-bands for each transmission of the third time domain unit.
  • the transmission of each of the third time domain units performing frequency hopping between the sub-bands includes:
  • T_i represents the subband corresponding to the i-th third time domain unit
  • T_1 represents the subband corresponding to the first third time domain unit
  • Q represents the frequency hopping step length .
  • the terminal provided in the embodiment of the present invention can implement the various processes implemented by the terminal in the method embodiment of FIG. 2. In order to avoid repetition, details are not described herein again.
  • FIG. 10 is a schematic diagram of the hardware structure of a terminal for implementing various embodiments of the present invention.
  • the terminal 1000 includes but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, a processor 1010, and a power supply 1011 and other parts.
  • a radio frequency unit 1001 a radio frequency unit 1001
  • a network module 1002 an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, a processor 1010, and a power supply 1011 and other parts.
  • the terminal structure shown in FIG. 10 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than those shown in the figure, or combine certain components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal, a wearable
  • the radio frequency unit 1001 is configured to transmit a target signal in all or part of the frequency domain bandwidth of the side link according to the target configuration information, and the target signal includes a channel measurement reference signal.
  • processor 1010 and radio frequency unit 1001 can implement various processes implemented by the terminal in the method embodiment of FIG.
  • the radio frequency unit 1001 can be used to receive and send signals during information transmission or communication. Specifically, the downlink data from the base station is received and sent to the processor 1010 for processing; in addition, Uplink data is sent to the base station.
  • the radio frequency unit 1001 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 1001 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 1002, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 1003 can convert the audio data received by the radio frequency unit 1001 or the network module 1002 or stored in the memory 1009 into audio signals and output them as sounds. Moreover, the audio output unit 1003 may also provide audio output related to a specific function performed by the terminal 1000 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 1003 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 1004 is used to receive audio or video signals.
  • the input unit 1004 may include a graphics processing unit (GPU) 10041 and a microphone 10042, and the graphics processor 10041 is configured to respond to still pictures or video images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame can be displayed on the display unit 1006.
  • the image frame processed by the graphics processor 10041 may be stored in the memory 1009 (or other storage medium) or sent via the radio frequency unit 1001 or the network module 1002.
  • the microphone 10042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 1001 in the case of a telephone call mode for output.
  • the terminal 1000 further includes at least one sensor 1005, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 10061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 10061 and/or when the terminal 1000 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal gestures (such as horizontal and vertical screen switching, related games, Magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 1005 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 1006 is used to display information input by the user or information provided to the user.
  • the display unit 1006 may include a display panel 10061, and the display panel 10061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 1007 can be used to receive input digital or character information, and to generate key signal input related to user settings and function control of the terminal.
  • the user input unit 1007 includes a touch panel 10071 and other input devices 10072.
  • the touch panel 10071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 10071 or near the touch panel 10071. operating).
  • the touch panel 10071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 1010, the command sent by the processor 1010 is received and executed.
  • the touch panel 10071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 1007 may also include other input devices 10072.
  • other input devices 10072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 10071 can cover the display panel 10061.
  • the touch panel 10071 detects a touch operation on or near it, it transmits it to the processor 1010 to determine the type of the touch event, and then the processor 1010 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 10061.
  • the touch panel 10071 and the display panel 10061 are used as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 10071 and the display panel 10061 may be integrated Realize the input and output functions of the terminal, which are not specifically limited here.
  • the interface unit 1008 is an interface for connecting an external device with the terminal 1000.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 1008 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 1000 or can be used to communicate between the terminal 1000 and the external device. Transfer data between.
  • the memory 1009 can be used to store software programs and various data.
  • the memory 1009 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 1009 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 1010 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 1009, and calling data stored in the memory 1009. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 1010 may include one or more processing units; preferably, the processor 1010 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs, etc., the modem The processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 1010.
  • the terminal 1000 may also include a power source 1011 (such as a battery) for supplying power to various components.
  • a power source 1011 such as a battery
  • the power source 1011 may be logically connected to the processor 1010 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system.
  • the terminal 1000 includes some functional modules that are not shown, which will not be repeated here.
  • the embodiment of the present invention also provides a terminal, including a processor 1010, a memory 1009, a computer program stored in the memory 1009 and capable of running on the processor 1010, and the computer program is implemented when the processor 1010 is executed.
  • a terminal including a processor 1010, a memory 1009, a computer program stored in the memory 1009 and capable of running on the processor 1010, and the computer program is implemented when the processor 1010 is executed.
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the implementation of the channel measurement reference signal transmission method on the terminal side provided by the embodiment of the present invention is implemented.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a base station, etc.) execute the method described in each embodiment of the present invention.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a base station, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种信道测量参考信号传输方法及终端,该方法包括:根据目标配置信息在旁链路的全部或部分频域带宽传输目标信号,目标信号包括信道测量参考信号。

Description

信道测量参考信号传输方法及终端
相关申请的交叉引用
本申请主张在2019年12月25日在中国提交的中国专利申请号No.201911360708.7的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,尤其涉及一种信道测量参考信号传输方法及终端。
背景技术
在传统的V2X旁链路(sidelink)传输中,由于以广播业务为主,所以未进行信道状态的测量,从而无法获得链路状态信息,在选择发送参数时无法根据实际链路情况进行选择,容易出现在资源浪费或者传输失败的问题。因此,现有技术存在旁链路传输的可靠性较低的问题。
发明内容
本发明实施例提供一种信道测量参考信号传输方法,以解旁链路传输的可靠性较低的问题。
第一方面,本发明实施例提供一种信道测量参考信号传输方法,应用于终端,包括:
根据目标配置信息在旁链路的全部或部分频域带宽传输目标信号,所述目标信号包括信道测量参考信号。
第二方面,本发明实施例提供一种终端,包括:
传输模块,用于根据目标配置信息在旁链路的全部或部分频域带宽传输目标信号,所述目标信号包括信道测量参考信号。
本发明实施例中,通过设置目标配置信息,从而使得终端可以基于目标配置信息在旁链路的全部或部分频域带宽传输信道测量参考信号,以实现对旁链路的信道状态测量,因此,本发明实施例可以有效提高旁链路传输的可 靠性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例可应用的一种网络系统的结构图;
图2是本发明实施例提供的一种信道测量参考信号传输方法的流程图;
图3是本发明实施例提供的一种信道测量参考信号传输方法中资源集合传输示例图之一;
图4是本发明实施例提供的一种信道测量参考信号传输方法中资源集合传输示例图之二;
图5是本发明实施例提供的一种信道测量参考信号传输方法中资源集合传输示例图之三;
图6是本发明实施例提供的一种信道测量参考信号传输方法中资源集合传输示例图之四;
图7是传统信道测量参考信号传输方法中资源集合传输示例图;
图8是本发明实施例提供的一种信道测量参考信号传输方法中资源集合传输示例图之一;
图9是本发明实施例提供的一种终端的结构图;
图10是本发明实施例提供的另一种终端的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意 图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本发明的实施例。本发明实施例提供的一种信道测量参考信号传输方法终端可以应用于无线通信系统中。该无线通信系统可以为5G系统,或者演进型长期演进(Evolved Long Term Evolution,eLTE)系统,或者后续演进通信系统。
请参见图1,图1是本发明实施例可应用的一种网络系统的结构图,如图1所示,包括第一终端11、第二终端10和控制节点13,其中,第一终端11和第二终端10可以是用户终端或者其他终端侧设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本发明实施例中并不限定第一终端11和第二终端10的具体类型,该第一终端11可以理解为旁链路(sidelink,SL)的发送端,第二终端10可以理解为旁链路的接收端。上述控制节点13可以为网络设备或者终端侧设备,该网络设备可以是5G基站,或者以后版本的基站,或者其他通信系统中的基站,或者称之为节点B,演进节点B,或者发送接收点(Transmission Reception Point,TRP),或者接入点(Access Point,AP),或者所述领域中其他词汇,只要达到相同的技术效果,所述网络设备不限于特定技术词汇。另外,上述网络设备可以是主节点(Master Node,MN),或者辅节点(Secondary Node,SN)。需要说明的是,在本发明实施例中仅以5G基站为例,但是并不限定网络设备的具体类型。
请参见图2,图2是本发明实施例提供的一种信道测量参考信号传输方法的流程图,该方法应用于终端,如图2所示,包括以下步骤:
步骤201,根据目标配置信息在旁链路的全部或部分频域带宽传输目标信号,所述目标信号包括信道测量参考信号。
本发明实施例中,上述目标配置信息可以是配置或者预配置得到,也可以通过协议约定得到。该目标配置信息用于配置终端在旁链路的全部或部分频域带宽传输信道测量参考信号,该信道测量参考信号可以理解为信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)或信道状态信息干扰测量(Channel State Information Interfernce Measurement,CSI-IM),CSI-RS可以包括非零功率(Non-Zero Power,NZP)CSI-RS或ZP CSI-RS。应理解,上述CSI-RS在sidelink上传输,因此也可以称之为SL CSI-RS。
本发明实施例中,通过设置目标配置信息,从而使得终端可以基于目标配置信息在旁链路的全部或部分频域带宽传输信道测量参考信号,以实现对旁链路的信道状态测量,因此,本发明实施例可以有效提高旁链路传输的可靠性。
应理解,上述目标配置信息的具体形式可以根据实际需要进行设置,例如在一实施例中,上述目标配置信息包括所述目标信号的时域配置和所述目标信号的频域配置。
可选的,所述目标信号还包括自动增益控制AGC信号,所述时域配置用于配置在传输所述目标信号的第二时域单元内所述信道测量参考信号占用的第一时域单元的数量和所述AGC信号占用的第一时域单元的数量。
换句话说,上述目标配置信息用于配置x个第一时域单元以及配置y个第一时域单元。例如该第一时域单元可以为符号(symbol)。也就是说,目标配置信息用于配置信道测量参考信号占用x个symbol以及AGC信号占用y个symbol,具体的x和y的大小可以通过协议约定或者配置(预配置)得到,在此不做进一步的限定,例如y=0,或y=0.5,或y=1等。
其中,AGC信号占用的第一时域单元的内容可以通过UE实现来填充,或者AGC信号占用的第一时域单元的内容也可以通过协议约定或配置(预配置)得到(例如,可以复制第x个CSI-RS序列到AGC信号占用的第一时域 单元中,还可以填充固定的CSI-RS序列。进一步,还可以在AGC信号占用的第一时域单元填充按照CSI-RS的(预配置)配置生成相应的CSI-RS序列)。在本发明实施例中,由于通过目标配置信息配置x个第一时域单元以及配置y个第一时域单元,从而满足SL传输在不同时刻有功率变化,需要进行AGC的重新调整的需求。
可选的,所述时域配置用于配置在传输所述目标信号的第二时域单元内包括至少一个资源集合,所述资源集合包括所述信道测量参考信号占用的第一时域单元和所述AGC信号占用的第一时域单元绑定形成的组合。
该第二时域单元可以理解为时隙(slot)或者短时隙(Sub-slot),也可以称之为SL slot或SL Sub-slot,还可以称之为逻辑时隙(logical slot)或逻辑短时隙(logical Sub-slot)。本实施例中,可以对信道测量参考信号占用的第一时域单元和AGC信号占用的第一时域单元组合可以进行捆绑,形成信道测量参考信号和AGC的资源集合。应理解,一个资源集合可以包括信道测量参考信号占用的一个或者多个第一时域单元以及AGC信号占用的一个或者多个第一时域单元。
可选的,在一实施例中,上述资源集合可以满足以下至少一项:
在所述资源集合中,所述信道测量参考信号占用的第一时域单元位于所述AGC信号占用的第一时域单元之后;
在所述资源集合中,所述信道测量参考信号占用的第一时域单元和所述所述AGC信号占用的第一时域单元在时域上相邻。
进一步的,在一实施例中,在所述资源集合的数量大于1时,各所述资源集合在时域上连续。
例如,资源集合由一个AGC symbol和一个CSI-RS symbol组成,可以通过上述目标配置信息为每个slot配置一个资源集合,具体如图3所示。也可以通过上述目标配置信息为每个slot配置两个资源集合,具体如图4所示。
可选的,对于资源集合在第二时域单元中的位置可以根据实际需要进行设置。例如,在本发明实施例中,所述至少一个资源集合在所述第二时域单元的位置满足以下任一项:
所述至少一个资源集合占用的N个第一时域单元位于所述第二时域单元 中的最后N个第一时域单元,N为正整数;
所述至少一个资源集合占用的N个第一时域单元位于所述第二时域单元的任意位置;
所述至少一个资源集合占用的N个第一时域单元位于物理旁链路共享信道(Pysical Sidelink Share Channel,PSSCH)占用的最后一个第一时域单元之后。
可选的,对于所述至少一个资源集合占用的N个第一时域单元位于所述第二时域单元的任意位置时,可以采用以下方式配置:
配置相对于第二时域单元的开始时刻的偏移量offset;
或者协议约定用于传输资源集合的第一时域单元为去除目标资源的symbol。该目标资源包括以下至少一个:
PSSCH symbol、PSSCH symbol前的AGC symbol、PSSCH symbol后的AGC symbol、物理旁链路反馈信道符号(PSFCH symbol)和保护时间符号(Guard Period symbol,GP symbol)。
可选的,资源集合的第二时域单元周期和offset可以通过协议定义,也可以通过配置或者预配置得到。例如,可以基于带宽部分(Bandwidth Part,BWP)(即per BWP)或者基于资源池(resource pool)(即per resource pool)进行配置)。
应理解,上述目标配置信息的配置可以为每个天线面板(panel)或天线端口(antenna port)进行单独配置。换句话说,所述时域配置与第二对象一一对应,所述第二对象为天线面板或天线端口。
可选的,所述资源集合的每个第一时域单元上的第一对象保持不变,所述第一对象包括以下至少一项:
发送功率;
预编码(precoder);
矩阵;
天线面板。
在一实施例中,资源集合由一个AGC symbol和三个CSI-RS symbol组成,slot内包含一个该资源集合。该slot中的三个CSI-RS symbol上的传输需 要采用同样的precoder,具体如图5所示,在另一实施例中,资源集合由一个AGC symbol和一个CSI-RS symbol组成,slot内包含三个该资源集合。该集合的三个CSI-RS symbol上的传输可以采用不同的precoder,具体如图6所示。
可选的,所述资源集合与第三对象时分复用或频分复用,所述第三对象为物理旁链路控制信道PSCCH、PSSCH和物理旁链路反馈信道PSFCH至少之一。
一实施例中,所述第三对象为所述PSCCH或所述PSSCH,且所述资源集合与第三对象时分复用的情况下,所述第三对象和所述资源集合满足以下任一项:
第三对象的时域资源配置中不包括所述资源集合;
所述第三对象的传输和所述资源集合在时域上发生冲突的情况下,对所述第三对象的传输进行速率匹配(rate matching)或打孔(puncturing)。
另一实施例中,所述第三对象为所述PSFCH,且所述资源集合与第三对象时分复用的情况下,所述第三对象和所述资源集合满足以下任一项:
第三对象和所述资源集合的AGC信号在相同的第一时域单元上;
所述第三对象的传输和所述资源集合在时域上发生冲突的情况下,丢弃所述第三对象的传输或所述资源集合的传输。
在本发明实施例中,规定了资源集合PSCCH、PSSCH和PSFCH之间的复用方式,从而可以保证资源集合传输的可靠性。
可选的,所述频域配置用于配置所述目标信号的频域资源为BWP带宽、资源池带宽或载波带宽。
可选的,上述目标信号的发送可以通过跳频的方式提高频率覆盖范围,从而实现宽带SL CSI-RS的配置。具体的,对于频域资源的划分可以通过协议约定得到,也可以通过配置或预配置得到。本发明实施例中,所述频域资源包括M个子频段,M为大于1的整数。
可选的,所述M个子频段满足以下至少一项:
每个所述子频段的频域资源数相同;
所述子频段为所述目标信号传输的基本单元。
应理解对于跳频的方式的实现可以根据实际需要进行设置,例如,本发明实施例中,在传输所述目标信号时,在所述M个子频段内进行跳频的方式包括以下任一项:
在资源集合内进行跳频;
在资源集间进行跳频;
在时域单元内进行跳频;
在时域单元间进行跳频;
其中,所述资源集合包括一个所述信道测量参考信号占用的第一时域单元和一个所述AGC信号占用的第一时域单元绑定形成的组合。
应理解,SL CSI-RS的序列、资源映射和antenna port映射等可以参照相关技术,在此不再赘述。
需要说明的是,上述目标信号的频域资源的指示方式可以根据实际需要进行设置,例如,在一实施例中,所述频域配置还用于按照以下至少一项指示所述目标信号的频域资源:
基于BWP指示所述频域资源;
基于资源池指示所述频域资源;
基于载波(carrier)指示所述频域资源;
基于子频道(sub-channel)指示所述频域资源。
应理解,当上述目标配置信息通过配置得到的情况下,具体的,可以由控制节点直接配置得到,控制节点通过发送端中继到接收端,还可以是发送端确定接收端对应的目标配置信息后,将目标配置信息发送给接收端。上述目标配置信息由控制节点进行发送,该控制节点可以为uu控制节点,也可以为sidelink控制节点。可以包括以下几种情况:
情况1:控制节点通知每条链路的目标配置信息到发送端和接收端。
例如,控制节点可以通过(PC5-)RRC、媒体接入控制控制单元(Medium Access Control Control Element,MAC CE)、DCI或旁链路控制信息((Sidelink Control Information,SCI)等信令;信令需包含至少以下信息:
链路信息,例如,收发端的UE ID;
收发端指示信息,例如1bit标志(flag)。
情况2:控制节点通知每条链路的目标配置信息到发送端,发送端再将目标配置信息中继到接收端。
例如,控制节点可以通过(PC5-)RRC、MAC CE、DCI或SCI等信令通知到发送端;同时,信令需包含至少以下信息:链路信息,例如,收发端的UE ID。
发送端可以通过PC5-RRC、MAC CE或SCI等信令通知到接收端。
情况3:控制节点为发送端配置一组可用的配置信息,发送端决定每条链路的目标配置信息。
例如,控制节点可以通过(PC5-)RRC、MAC CE、DCI或SCI等信令通知到发送端;同时,信令需包含至少以下信息:链路信息,例如,收发端的UE ID。
发送端可以通过PC5-RRC、MAC CE或SCI等信令通知到接收端。
情况4,发送端决定每条链路的目标配置信息,并将该目标配置信息通知到接收端。
例如,发送端可以通过PC5-RRC、MAC CE或SCI等信令通知到接收端。
第一实施例中,针对上述情况1~3,在所述终端为旁链路传输的发送端的情况下,所述根据目标配置信息在旁链路的全部或部分频域带宽传输目标信号之前,所述方法还包括:
接收控制节点发送的每一旁链路对应的第一配置,所述第一配置包括所述目标配置信息。
可选的,在本发明实施例中,针对上述情况2,所述接收控制节点发送的每一旁链路对应的第一配置之后,所述方法还包括:
向旁链路传输的接收端转发对应的所述目标配置信息。
进一步的,在本发明实施例中,针对上述情况3,所述第一配置包括至少两项第二配置,所述目标配置信息为所述终端在所述至少两项第二配置中确定的一项配置。
第二实施例中,针对上述情况4,在所述终端为旁链路传输的发送端的情况下,所述根据目标配置信息在旁链路的全部或部分频域带宽传输目标信号之前,所述方法还包括:
确定每一旁链路传输对应的所述目标配置信息;
向旁链路传输的接收端发送对应的所述目标配置信息。
第三实施例中,针对上述情况1~4,在所述终端为旁链路传输的接收端的情况下,所述根据目标配置信息在旁链路的全部或部分频域带宽传输目标信号之前,所述方法还包括以下任一项:
接收控制节点发送的每一旁链路对应的第一配置,所述第一配置包括所述目标配置信息;
接收旁链路传输的发送端发送的所述目标配置信息。
进一步的,在一可选实施例中,所述目标配置信息用于配置所述信道测量参考信号承载于PSSCH,且预设跳频规则进行所述目标信号传输。
可选的,在本发明实施例中,所述频域带宽包括K个子频带,K为大于1的整数;传输所述目标信号的一个第二时域单元包括L个第三时域单元,L为大于1的整数。
本发明实施例中,该频域带宽可以是每个resource pool带宽或BWP带宽或carrier带宽
该划分可以是标准规定/(预)配置的;例如,配置一个/多个如下参数:
子频带的带宽(例如,PRB/sub-channel的个数);
子频带的开始位置(例如,PRB/sub-channel的开始位置);
子频带间隔。
每个第二时域单元划分为多个第三时域单元(也可以理解为子时域单元)
该划分可以是标准规定/(预)配置的;例如,配置一个/多个如下参数:
第三时域单元的长度(例如,symbol个数);
第三时域单元的开始位置(例如,symbol的开始位置);
第三时域单元间隔。
其中,每个子时域单元可以分别携带信道测量参考信号。
可选的,所述每个所述第三时域单元的传输在所述子频带间进行跳频包括:
按照T_i=(T_1+(i-1)*Q)mod K进行跳频;
其中,i为大于1且小于或等于L的整数,T_i表示第i个第三时域单元 对应的子频带,T_1表示第1个第三时域单元对应的子频带,Q表示跳频步长。
例如,每个slot划分为三个第三时域单元,resource pool划分为三个子频带,在一实施例中,PSSCH传输为非跳频方式传输的情况下,如图7所示,其中图中的数字表示第n个第三时域。在另一实施例中,PSSCH传输为跳频方式传输,跳频的步长为一个子频带,跳频后的PSSCH传输变为宽带传输,其携带的CSI-RS可以测量宽带CSI,如图8所示,其中图中的数字表示第n个第三时域。
在本发明实施例中,由于利用PSSCH跳频传输,以携带信道测量参考信号,这样,终端无需单独选择信道测量参考信号的发送资源,减少了资源选择的复杂度以及资源重选的干扰或碰撞问题。
为了更好的理解本发明,以下通过具体实例对本发明的具体实现进行详细说明。
方案1,配置宽带SL CSI-RS。
1.1,SL CSI-RS的时域配置
可选的,规定/(预)配置(sub-)slot内SL CSI-RS所占的symbol个数;例如,x个连续SL symbol;其中x是协议规定/(预)配置。
可选的,对于SL CSI-RS symbol前的SL symbol(s),设置为AGCsymbol(s)。
AGC时间长度可以是y个symbol;其中,y是协议规定/(预)配置(例如x=0,0.5,1,2…)。
AGC symbol的内容可以通过UE实现来填充,或者AGC symbol的内容是规定/(预)配置的(例如,可以复制第x个CSI-RS序列到AGC symbol中;填充固定的CSI-RS序列;在AGC symbol按照CSI-RS的(预)配置生成相应的CSI-RS序列)。
可选的,AGC和CSI-RS的symbol组合可以进行捆绑,形成AGC和CSI-RS的资源集合(也可以称之为CSI-RS集合)。
其中,每个(sub-)slot可以(预)配置一个或多个资源集合。协议定义/(预)配置资源集合在(sub-)slot中的位置,该位置满足以下任一项:
在(sub-)slot的最后;
在(sub-)slot的任何位置,例如配置相对于(sub-)slot中开始symbol的offset或,协议规定用于资源集合传输的symbol为去除以目标资源;该目标资源包括以下至少之一:PSSCH symbol、PSSCH symbol前的AGC symbol、PSSCH symbol后的AGC symbol、PSFCH symbol和GP symbol;
在PSSCH symbol后。
本实施例中,资源集合的(sub-)slot周期和offset可以协议定义/(预)配置,(例如,per BWP或者per resource pool进行配置)。
可选的,上述CSI-RS/资源集合的配置可以为每个panel(天线面板)/antenna port(天线端口)单独配置。
可选的,资源集合上的UE行为包括以下一项/多项
UE在资源集合的所有symbol上进行发送;
UE在资源集合的每个symbol上,保持发送功率不变;
UE在资源集合的每个symbol上,precoder/panel保持不变(如图5和图6所示)。
1.2,SL CSI-RS的频域配置
可选的,协议规定/(预)配置SL CSI-RS的频域资源。
一可选实施例中,规定/(预)配置为整个BWP/resource pool/carrier。
另一实施例中,可以基于BWP/resource pool/carrier/sub-channel指示SL CSI-RS频域传输资源。例如:规定/(预)配置开始位置和长度;或者规定/(预)配置通过bitmap指示SL CSI-RS频域传输资源。
可选的,SL CSI-RS的频域资源可以划分为多个子频段,该划分可以是规定/(预)配置的。
可以规定/(预)配置为每个子频段有同样的频域资源数;也可以规定子频段可以是CSI-RS发送的基本单元。其中,UE发送SL CSI-RS时可以在不同的子频段进行跳频,跳频的方式可以包括以下任一项:
资源集合内进行跳频;
资源集合间进行跳频;
(sub-)Slot内进行跳频;
(sub-)Slot间进行跳频。
可选的,SL CSI-RS的序列,资源映射和antenna port映射等可以重用NR Uu SRS的规则。
1.3,信道复用
可选的,资源集合和PSCCH/PSSCH的复用包括时分复用,具体的,时分复用的方式为以下任一项:
PSSCH/PSSCH配置排除资源集合
PSSCH/PSSCH传输和资源集合在时域上碰撞,PSSCH/PSSCH传输进行rate matching/puncturing。
可选的,资源集合和PSFCH的复用包括频分复用,具体的,频分复用的方式为以下任一项:
PSFCH和资源集合的AGC symbol(预)配置在同一个symbol上;
PSFCH传输和资源集合碰撞时,丢弃PSFCH传输或CSI-RS传输。
1.4,配置信令流程
方式1,控制节点(例如,基站或调度UE或UE分组的组头)通知每条链路的SL CSI-RS配置到发送端和接收端。
例如,控制节点通过(PC5-)RRC、MAC CE、DCI或SCI等信令进行通知;该信令需包含至少以下信息:
链路信息,例如,收发端的UE ID;
收发端指示信息,例如1bit flag。
方式2:控制节点(例如,基站或调度UE或UE分组的组头)通知每条链路的SL CSI-RS配置到发送端,发送端再将SL CSI-RS的配置信息中继到接收端。
例如,控制节点可以通过(PC5-)RRC、MAC CE、DCI或SCI等信令通知到发送端;同时,信令需包含至少以下信息:链路信息,例如,收发端的UE ID。
发送端可以通过PC5-RRC、MAC CE或SCI等信令通知到接收端。
方式3,控制节点(例如,基站或调度UE或UE分组的组头)为发送端配置一组可用的SL CSI-RS,发送端决定每条链路的CSI-RS配置,并将该配置通知到接收端。
例如,控制节点可以通过(PC5-)RRC、MAC CE、DCI或SCI等信令通知到发送端;同时,信令需包含至少以下信息:链路信息,例如,收发端的UE ID。
发送端可以通过PC5-RRC、MAC CE或SCI等信令通知到接收端。
方式4,发送端决定每条链路的CSI-RS配置,并将该配置通知到接收端;例如,通过PC5-RRC、MAC CE或SCI等信令通知到接收端。
在本实施例中,针对上述方式3,控制节点仅需适度的控制,以减少控制信令的开销,提高UE侧配置的灵活性。
需要说明的是,在上述方案1中,(Sub-)slot可以替换成SL/logical(Sub-)slot,或者任意其他时域单元。
方案2:UE传输PSSCH中携带SL CSI-RS,采用PSSCH hopping的方式实现宽带CSI-RS传输。
频域带宽划分为多个子频带
可选的,该频域带宽可以是每个resource pool的带宽/BWP的带宽/carrier的带宽
该划分可以是标准规定/(预)配置的;例如,配置一个/多个如下参数:
子频带的带宽(例如,PRB/sub-channel的个数);
子频带的开始位置(例如,PRB/sub-channel的开始位置);
子频带间隔。
可选的,每个(Sub-)slot划分为多个子时域单元,该划分可以是标准规定/(预)配置的;例如,配置一个/多个如下参数:
子时域单元的长度(例如,symbol个数);
子时域单元的开始位置(例如,symbol的开始位置);
子时域单元间隔。
其中,每个子时域单元可以分别携带SL CSI-RS。
可选的,协议规定/(预)配置,每个子时域单元上的传输可以在子频带间进行跳频;例如,根据如下跳频规则:第i个子时域单元对应的子频域单元T_i,T_i=(T_1+(i-1)*Q)mod K。其中,i为大于1且小于或等于L的整数,T_i表示第i个第三时域单元对应的子频带,T_1表示第1个第三时域 单元对应的子频带,Q表示跳频步长。
请参见图9,图9是本发明实施例提供的一种终端的结构图,如图9所示,终端900包括:
传输模块901,用于根据目标配置信息在旁链路的全部或部分频域带宽传输目标信号,所述目标信号包括信道测量参考信号。
可选的,所述目标配置信息包括:所述目标信号的时域配置和所述目标信号的频域配置。
可选的,所述目标信号还包括自动增益控制AGC信号,所述时域配置用于配置在传输所述目标信号的第二时域单元内所述信道测量参考信号占用的第一时域单元的数量和所述AGC信号占用的第一时域单元的数量。
可选的,所述时域配置用于配置在传输所述目标信号的第二时域单元内包括至少一个资源集合,所述资源集合包括所述信道测量参考信号占用的第一时域单元和所述AGC信号占用的第一时域单元绑定形成的组合。
可选的,所述目标信号的频域资源包括M个子频段,M为大于1的整数。
可选的,所述M个子频段满足以下至少一项:
每个所述子频段的频域资源数相同;
所述子频段为所述目标信号传输的基本单元。
可选的,在传输所述目标信号时,在所述M个子频段内进行跳频的方式包括以下任一项:
在资源集合内进行跳频;
在资源集间进行跳频;
在时域单元内进行跳频;
在时域单元间进行跳频;
其中,所述资源集合包括所述信道测量参考信号占用的第一时域单元和AGC信号占用的第一时域单元绑定形成的组合。
可选的,所述目标配置信息用于配置所述信道测量参考信号承载于PSSCH,且预设跳频规则进行所述目标信号传输。
可选的,所述频域带宽包括K个子频带,K为大于1的整数;传输所述 目标信号的一个第二时域单元包括L个第三时域单元,L为大于1的整数。
可选的,所述预设跳频规则包括:每个所述第三时域单元的传输在所述子频带间进行跳频。
可选的,所述每个所述第三时域单元的传输在所述子频带间进行跳频包括:
按照T_i=(T_1+(i-1)*Q)mod K进行跳频;
其中,i为大于1且小于或等于L的整数,T_i表示第i个第三时域单元对应的子频带,T_1表示第1个第三时域单元对应的子频带,Q表示跳频步长。
本发明实施例提供的终端能够实现图2的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
图10为实现本发明各个实施例的一种终端的硬件结构示意图,
该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009、处理器1010、以及电源1011等部件。本领域技术人员可以理解,图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
射频单元1001,用于根据目标配置信息在旁链路的全部或部分频域带宽传输目标信号,所述目标信号包括信道测量参考信号。
应理解,本实施例中,上述处理器1010和射频单元1001能够实现图2的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
应理解的是,本发明实施例中,射频单元1001可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器1010处理;另外,将上行的数据发送给基站。通常,射频单元1001包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元1001还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块1002为用户提供了无线的宽带互联网访问,如帮助用 户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元1003可以将射频单元1001或网络模块1002接收的或者在存储器1009中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元1003还可以提供与终端1000执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元1003包括扬声器、蜂鸣器以及受话器等。
输入单元1004用于接收音频或视频信号。输入单元1004可以包括图形处理器(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元1006上。经图形处理器10041处理后的图像帧可以存储在存储器1009(或其它存储介质)中或者经由射频单元1001或网络模块1002进行发送。麦克风10042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元1001发送到移动通信基站的格式输出。
终端1000还包括至少一种传感器1005,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板10061的亮度,接近传感器可在终端1000移动到耳边时,关闭显示面板10061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器1005还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元1006用于显示由用户输入的信息或提供给用户的信息。显示单元1006可包括显示面板10061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板10061。
用户输入单元1007可用于接收输入的数字或字符信息,以及产生与终端 的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元1007包括触控面板10071以及其他输入设备10072。触控面板10071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板10071上或在触控面板10071附近的操作)。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1010,接收处理器1010发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板10071。除了触控面板10071,用户输入单元1007还可以包括其他输入设备10072。具体地,其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板10071可覆盖在显示面板10061上,当触控面板10071检测到在其上或附近的触摸操作后,传送给处理器1010以确定触摸事件的类型,随后处理器1010根据触摸事件的类型在显示面板10061上提供相应的视觉输出。虽然在图10中,触控面板10071与显示面板10061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板10071与显示面板10061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元1008为外部装置与终端1000连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元1008可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端1000内的一个或多个元件或者可以用于在终端1000和外部装置之间传输数据。
存储器1009可用于存储软件程序以及各种数据。存储器1009可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区 可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1009可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1010是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器1009内的软件程序和/或模块,以及调用存储在存储器1009内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器1010可包括一个或多个处理单元;优选的,处理器1010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
终端1000还可以包括给各个部件供电的电源1011(比如电池),优选的,电源1011可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端1000包括一些未示出的功能模块,在此不再赘述。
优选的,本发明实施例还提供一种终端,包括处理器1010,存储器1009,存储在存储器1009上并可在所述处理器1010上运行的计算机程序,该计算机程序被处理器1010执行时实现上述信道测量参考信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现本发明实施例提供的终端侧的信道测量参考信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方 法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者基站等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (56)

  1. 一种信道测量参考信号传输方法,应用于终端,包括:
    根据目标配置信息在旁链路的全部或部分频域带宽传输目标信号,所述目标信号包括信道测量参考信号。
  2. 根据权利要求1所述的方法,其中,所述目标配置信息包括:所述目标信号的时域配置和所述目标信号的频域配置。
  3. 根据权利要求2所述的方法,其中,所述目标信号还包括自动增益控制AGC信号,所述时域配置用于配置在传输所述目标信号的第二时域单元内所述信道测量参考信号占用的第一时域单元的数量和所述AGC信号占用的第一时域单元的数量。
  4. 根据权利要求3所述的方法,其中,所述时域配置用于配置在传输所述目标信号的第二时域单元内包括至少一个资源集合,所述资源集合包括所述信道测量参考信号占用的第一时域单元和所述AGC信号占用的第二时域单元绑定形成的组合。
  5. 根据权利要求4所述的方法,其中,在所述资源集合中,所述信道测量参考信号占用的第一时域单元位于所述AGC信号占用的第一时域单元之后。
  6. 根据权利要求4所述的方法,其中,在所述资源集合中,所述信道测量参考信号占用的第一时域单元和所述AGC信号占用的第一时域单元在时域上相邻。
  7. 根据权利要求4所述的方法,其中,在所述资源集合的数量大于1时,各所述资源集合在时域上连续。
  8. 根据权利要求4所述的方法,其中,所述至少一个资源集合在所述第二时域单元的位置满足以下任一项:
    所述至少一个资源集合占用的N个第一时域单元位于所述第二时域单元中的最后N个第一时域单元,N为正整数;
    所述至少一个资源集合占用的N个第一时域单元位于所述第二时域单元的任意位置;
    所述至少一个资源集合占用的N个第一时域单元位于物理旁链路共享信 道PSSCH占用的最后一个第一时域单元之后。
  9. 根据权利要求4所述的方法,其中,所述资源集合的每个第一时域单元上的第一对象保持不变,所述第一对象包括以下至少一项:
    发送功率;
    预编码;
    矩阵;
    天线面板。
  10. 根据权利要求4所述的方法,所述资源集合与第三对象时分复用或频分复用,所述第三对象为物理旁链路控制信道PSCCH、PSSCH和物理旁链路反馈信道PSFCH至少之一。
  11. 根据权利要求10所述的方法,其中,所述第三对象为所述PSCCH或所述PSSCH,且所述资源集合与第三对象时分复用的情况下,所述第三对象和所述资源集合满足以下任一项:
    第三对象的时域资源配置中不包括所述资源集合;
    所述第三对象的传输和所述资源集合在时域上发生冲突的情况下,对所述第三对象的传输进行速率匹配或打孔。
  12. 根据权利要求10所述的方法,其中,所述第三对象为所述PSFCH,且所述资源集合与第三对象时分复用的情况下,所述第三对象和所述资源集合满足以下任一项:
    第三对象和所述资源集合的AGC信号在相同的第一时域单元上;
    所述第三对象的传输和所述资源集合在时域上发生冲突的情况下,丢弃所述第三对象的传输或所述资源集合的传输。
  13. 根据权利要求2所述的方法,其中,所述时域配置与第二对象一一对应,所述第二对象为天线面板或天线端口。
  14. 根据权利要求2所述的方法,其中,所述目标信号的频域资源包括M个子频段,M为大于1的整数。
  15. 根据权利要求14所述的方法,其中,所述M个子频段满足以下至少一项:
    每个所述子频段的频域资源数相同;
    所述子频段为所述目标信号传输的基本单元。
  16. 根据权利要求14所述的方法,其中,在传输所述目标信号时,在所述M个子频段内进行跳频的方式包括以下任一项:
    在资源集合内进行跳频;
    在资源集间进行跳频;
    在时域单元内进行跳频;
    在时域单元间进行跳频;
    其中,所述资源集合包括所述信道测量参考信号占用的第一时域单元和AGC信号占用的第一时域单元绑定形成的组合。
  17. 根据权利要求2所述的方法,其中,所述频域配置还用于按照以下至少一项指示所述目标信号的频域资源:
    基于BWP指示所述频域资源;
    基于资源池指示所述频域资源;
    基于载波指示所述频域资源;
    基于子频道指示所述频域资源。
  18. 根据权利要求1所述的方法,其中,在所述终端为旁链路传输的发送端的情况下,所述根据目标配置信息在旁链路的全部或部分频域带宽传输目标信号之前,所述方法还包括:
    接收控制节点发送的每一旁链路对应的第一配置,所述第一配置包括所述目标配置信息。
  19. 根据权利要求18所述的方法,其中,所述接收控制节点发送的每一旁链路对应的第一配置之后,所述方法还包括:
    向旁链路传输的接收端转发对应的所述目标配置信息。
  20. 根据权利要求19所述的方法,其中,所述第一配置包括至少两项第二配置,所述目标配置信息为所述终端在所述至少两项第二配置中确定的一项配置。
  21. 根据权利要求1所述的方法,其中,在所述终端为旁链路传输的发送端的情况下,所述根据目标配置信息在旁链路的全部或部分频域带宽传输目标信号之前,所述方法还包括:
    确定每一旁链路传输对应的所述目标配置信息;
    向旁链路传输的接收端发送对应的所述目标配置信息。
  22. 根据权利要求1所述的方法,其中,在所述终端为旁链路传输的接收端的情况下,所述根据目标配置信息在旁链路的全部或部分频域带宽传输目标信号之前,所述方法还包括以下任一项:
    接收控制节点发送的每一旁链路对应的第一配置,所述第一配置包括所述目标配置信息;
    接收旁链路传输的发送端发送的所述目标配置信息。
  23. 根据权利要求1所述的方法,其中,所述目标配置信息用于配置所述目标信号承载于PSSCH,且预设跳频规则进行所述目标信号传输。
  24. 根据权利要求23所述的方法,其中,所述频域带宽包括K个子频带,K为大于1的整数;传输所述目标信号的一个第二时域单元包括L个第三时域单元,L为大于1的整数。
  25. 根据权利要求24所述的方法,其中,所述预设跳频规则包括:每个所述第三时域单元的传输在所述子频带间进行跳频。
  26. 根据权利要求25所述的方法,其中,所述每个所述第三时域单元的传输在所述子频带间进行跳频包括:
    按照T_i=(T_1+(i-1)*Q)mod K进行跳频;
    其中,i为大于1且小于或等于L的整数,T_i表示第i个第四时域单元对应的子频带,T_1表示第1个第四时域单元对应的子频带,Q表示跳频步长。
  27. 一种终端,包括:
    传输模块,用于根据目标配置信息在旁链路的全部或部分频域带宽传输目标信号,所述目标信号包括信道测量参考信号。
  28. 根据权利要求27所述的终端,其中,所述目标配置信息包括:所述目标信号的时域配置和所述目标信号的频域配置。
  29. 根据权利要求28所述的终端,其中,所述目标信号还包括自动增益控制AGC信号,所述时域配置用于配置在传输所述目标信号的第二时域单元内所述信道测量参考信号占用的第一时域单元的数量和所述AGC信号占用的 第一时域单元的数量。
  30. 根据权利要求29所述的终端,其中,所述时域配置用于配置在传输所述目标信号的第二时域单元内包括至少一个资源集合,所述资源集合包括所述信道测量参考信号占用的第一时域单元和所述AGC信号占用的第一时域单元绑定形成的组合。
  31. 根据权利要求30所述的终端,其中,在所述资源集合中,所述信道测量参考信号占用的第一时域单元位于所述AGC信号占用的第一时域单元之后。
  32. 根据权利要求30所述的终端,其中,在所述资源集合中,所述信道测量参考信号占用的第一时域单元和所述AGC信号占用的第一时域单元在时域上相邻。
  33. 根据权利要求30所述的终端,其中,在所述资源集合的数量大于1时,各所述资源集合在时域上连续。
  34. 根据权利要求30所述的终端,其中,所述至少一个资源集合在所述第二时域单元的位置满足以下任一项:
    所述至少一个资源集合占用的N个第一时域单元位于所述第二时域单元中的最后N个第一时域单元,N为正整数;
    所述至少一个资源集合占用的N个第一时域单元位于所述第二时域单元的任意位置;
    所述至少一个资源集合占用的N个第一时域单元位于物理旁链路共享信道PSSCH占用的最后一个第一时域单元之后。
  35. 根据权利要求30所述的终端,其中,所述资源集合的每个第一时域单元上的第一对象保持不变,所述第一对象包括以下至少一项:
    发送功率;
    预编码;
    矩阵;
    天线面板。
  36. 根据权利要求30所述的终端,所述资源集合与第三对象时分复用或频分复用,所述第三对象为物理旁链路控制信道PSCCH、PSSCH和物理旁链 路反馈信道PSFCH至少之一。
  37. 根据权利要求36所述的终端,其中,所述第三对象为所述PSCCH或所述PSSCH,且所述资源集合与第三对象时分复用的情况下,所述第三对象和所述资源集合满足以下任一项:
    第三对象的时域资源配置中不包括所述资源集合;
    所述第三对象的传输和所述资源集合在时域上发生冲突的情况下,对所述第三对象的传输进行速率匹配或打孔。
  38. 根据权利要求36所述的终端,其中,所述第三对象为所述PSFCH,且所述资源集合与第三对象时分复用的情况下,所述第三对象和所述资源集合满足以下任一项:
    第三对象和所述资源集合的AGC信号在相同的第一时域单元上;
    所述第三对象的传输和所述资源集合在时域上发生冲突的情况下,丢弃所述第三对象的传输或所述资源集合的传输。
  39. 根据权利要求28所述的终端,其中,所述时域配置与第二对象一一对应,所述第二对象为天线面板或天线端口。
  40. 根据权利要求28所述的终端,其中,所述目标信号的频域资源包括M个子频段,M为大于1的整数。
  41. 根据权利要求40所述的终端,其中,所述M个子频段满足以下至少一项:
    每个所述子频段的频域资源数相同;
    所述子频段为所述目标信号传输的基本单元。
  42. 根据权利要求40所述的终端,其中,在传输所述目标信号时,在所述M个子频段内进行跳频的方式包括以下任一项:
    在资源集合内进行跳频;
    在资源集间进行跳频;
    在时域单元内进行跳频;
    在时域单元间进行跳频;
    其中,所述资源集合包括所述信道测量参考信号占用的第一时域单元和AGC信号占用的第一时域单元绑定形成的组合。
  43. 根据权利要求28所述的终端,其中,所述频域配置还用于按照以下至少一项指示所述目标信号的频域资源:
    基于BWP指示所述频域资源;
    基于资源池指示所述频域资源;
    基于载波指示所述频域资源;
    基于子频道指示所述频域资源。
  44. 根据权利要求27所述的终端,其中,还包括第一接收模块,在所述终端为旁链路传输的发送端的情况下,所述根据目标配置信息在旁链路的全部或部分频域带宽传输目标信号之前,第一接收模块,用于接收控制节点发送的每一旁链路对应的第一配置,所述第一配置包括所述目标配置信息。
  45. 根据权利要求44所述的终端,其中,所述接收控制节点发送的每一旁链路对应的第一配置之后,所述方法还包括:
    向旁链路传输的接收端转发对应的所述目标配置信息。
  46. 根据权利要求45所述的终端,其中,所述第一配置包括至少两项第二配置,所述目标配置信息为所述终端在所述至少两项第二配置中确定的一项配置。
  47. 根据权利要求27所述的终端,其中,还包括:确定模块和发送模块,在所述终端为旁链路传输的发送端的情况下,所述根据目标配置信息在旁链路的全部或部分频域带宽传输目标信号之前,
    确定模块,用于确定每一旁链路传输对应的所述目标配置信息;
    发送模块,用于向旁链路传输的接收端发送对应的所述目标配置信息。
  48. 根据权利要求27所述的终端,其中,还包括第二接收模块和第三接收模块,在所述终端为旁链路传输的接收端的情况下,所述根据目标配置信息在旁链路的全部或部分频域带宽传输目标信号之前,
    第二接收模块,用于接收控制节点发送的每一旁链路对应的第一配置,所述第一配置包括所述目标配置信息;
    第三接收模块,用于接收旁链路传输的发送端发送的所述目标配置信息。
  49. 根据权利要求27所述的终端,其中,所述目标配置信息用于配置所述信道测量参考信号承载于PSSCH,且预设跳频规则进行所述目标信号传输。
  50. 根据权利要求49所述的终端,其中,所述频域带宽包括K个子频带,K为大于1的整数;传输所述目标信号的一个第二时域单元包括L个第三时域单元,L为大于1的整数。
  51. 根据权利要求50所述的终端,其中,所述预设跳频规则包括:每个所述第三时域单元的传输在所述子频带间进行跳频。
  52. 根据权利要求51所述的终端,其中,所述每个所述第三时域单元的传输在所述子频带间进行跳频包括:
    按照T_i=(T_1+(i-1)*Q)mod K进行跳频;
    其中,i为大于1且小于或等于L的整数,T_i表示第i个第三时域单元对应的子频带,T_1表示第1个第三时域单元对应的子频带,Q表示跳频步长。
  53. 一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至26中任一项所述的信道测量参考信号传输方法的步骤。
  54. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至26中任一项所述的信道测量参考信号传输方法的步骤。
  55. 一种计算机程序产品,其中,所述计算机程序产品被存储在非易失的存储介质中,所述程序产品被配置成被至少一个处理器执行以实现如权利要求1至26中任一项所述的信道测量参考信号传输方法的步骤。
  56. 一种信道测量参考信号传输装置,所述装置被配置成用于执行如权利要求1至26中任一项所述的信道测量参考信号传输方法。
PCT/CN2020/138804 2019-12-25 2020-12-24 信道测量参考信号传输方法及终端 WO2021129699A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227025170A KR20220115103A (ko) 2019-12-25 2020-12-24 채널 측정 기준 신호 전송 방법 및 단말기
EP20904509.5A EP4075834A4 (en) 2019-12-25 2020-12-24 TRANSMISSION METHOD AND TERMINAL FOR A CHANNEL MEASUREMENT REFERENCE SIGNAL
US17/740,335 US20220272670A1 (en) 2019-12-25 2022-05-09 Transmission method and terminal for channel measurement reference signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911360708.7A CN113038416B (zh) 2019-12-25 2019-12-25 一种信道测量参考信号传输方法及终端
CN201911360708.7 2019-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/740,335 Continuation US20220272670A1 (en) 2019-12-25 2022-05-09 Transmission method and terminal for channel measurement reference signal

Publications (1)

Publication Number Publication Date
WO2021129699A1 true WO2021129699A1 (zh) 2021-07-01

Family

ID=76458418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138804 WO2021129699A1 (zh) 2019-12-25 2020-12-24 信道测量参考信号传输方法及终端

Country Status (5)

Country Link
US (1) US20220272670A1 (zh)
EP (1) EP4075834A4 (zh)
KR (1) KR20220115103A (zh)
CN (1) CN113038416B (zh)
WO (1) WO2021129699A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220159753A1 (en) * 2020-11-16 2022-05-19 Asustek Computer Inc. Method and apparatus for uu radio bearer to pc5 radio link control (rlc) bearer mapping in a wireless communication system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171895A1 (en) * 2016-04-01 2017-10-05 Intel Corporation Link adaptation for low complexity device to device (d2d) communication
CN109644455A (zh) * 2018-11-29 2019-04-16 北京小米移动软件有限公司 Csi测量反馈方法、装置及存储介质
CN110100496A (zh) * 2017-03-31 2019-08-06 Lg电子株式会社 在无线通信系统中由终端发送信号以用于v2x通信的方法以及使用该方法的设备
CN110380828A (zh) * 2018-04-13 2019-10-25 维沃移动通信有限公司 Sidelink的操作方法和终端
CN110381599A (zh) * 2018-04-13 2019-10-25 维沃移动通信有限公司 Sidelink的传输方法和终端
CN110535611A (zh) * 2019-08-14 2019-12-03 中兴通讯股份有限公司 信号发送、接收、信息反馈方法、装置、通信节点及介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8121097B2 (en) * 2008-11-04 2012-02-21 Qualcomm Incorporated Transmission with hopping for peer-peer communication
CN107925534A (zh) * 2015-11-06 2018-04-17 华为技术有限公司 一种参考信号的传输方法、用户设备、基站及系统
CN107733609B (zh) * 2016-08-12 2023-10-13 华为技术有限公司 参考信号发送方法和参考信号发送装置
EP3493589A4 (en) * 2016-08-12 2019-08-07 Huawei Technologies Co., Ltd. METHOD AND APPARATUS FOR SENDING REFERENCE SIGNAL AND METHOD AND APPARATUS FOR RECEIVING REFERENCE SIGNAL
WO2018094872A1 (zh) * 2016-11-26 2018-05-31 华为技术有限公司 sidelink资源调度方法、装置和系统
EP3598660B1 (en) * 2017-05-04 2021-08-25 Huawei Technologies Co., Ltd. Method and terminal device for transmitting reference signal
US11252696B2 (en) * 2017-09-12 2022-02-15 Lg Electronics Inc. Method and device for performing sidelink communication in wireless communication system
US10863494B2 (en) * 2018-01-22 2020-12-08 Apple Inc. Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration
CN110166198B (zh) * 2018-02-12 2024-07-02 北京三星通信技术研究有限公司 旁路信号发送方法和设备
WO2019203609A1 (ko) * 2018-04-19 2019-10-24 엘지전자 주식회사 무선 통신 시스템에서 dm-rs (demodulation-reference signal) 전송 자원을 통해 dm-rs를 전송하는 방법 및 단말과 상기 dm-rs 전송 자원을 설정하는 방법 및 기지국

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171895A1 (en) * 2016-04-01 2017-10-05 Intel Corporation Link adaptation for low complexity device to device (d2d) communication
CN110100496A (zh) * 2017-03-31 2019-08-06 Lg电子株式会社 在无线通信系统中由终端发送信号以用于v2x通信的方法以及使用该方法的设备
CN110380828A (zh) * 2018-04-13 2019-10-25 维沃移动通信有限公司 Sidelink的操作方法和终端
CN110381599A (zh) * 2018-04-13 2019-10-25 维沃移动通信有限公司 Sidelink的传输方法和终端
CN109644455A (zh) * 2018-11-29 2019-04-16 北京小米移动软件有限公司 Csi测量反馈方法、装置及存储介质
CN110535611A (zh) * 2019-08-14 2019-12-03 中兴通讯股份有限公司 信号发送、接收、信息反馈方法、装置、通信节点及介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on resource allocation mechanism in NR V2X", 3GPP DRAFT; R1-1812620, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 11 November 2018 (2018-11-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051554576 *
See also references of EP4075834A4 *

Also Published As

Publication number Publication date
EP4075834A4 (en) 2023-01-25
KR20220115103A (ko) 2022-08-17
CN113038416A (zh) 2021-06-25
US20220272670A1 (en) 2022-08-25
EP4075834A1 (en) 2022-10-19
CN113038416B (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
CN110381599B (zh) Sidelink的传输方法和终端
CN110474724B (zh) 一种tci状态指示方法、终端及网络侧设备
CN110324859B (zh) 副链路的传输资源选择方法、配置方法、终端和网络设备
CN110022197B (zh) 参考信号的处理方法、网络设备和终端
EP3793252B1 (en) Method, device, and system for processing csi processing unit and resource
CN111817831B (zh) 一种传输方法和通信设备
CN111615179B (zh) Pdcch监听方法和终端
CN111818659B (zh) sidelink信息发送方法、接收方法、终端和控制节点
CN110958709A (zh) 数据传输方法及通信设备
WO2021164705A1 (zh) Srs的传输方法、码本传输方法、装置、终端及介质
CN111836280B (zh) 一种数据传输方法及终端
WO2020192547A1 (zh) 信息传输、接收方法、终端及网络侧设备
CN111130728A (zh) 一种传输方法、终端及网络侧设备
CN109788552A (zh) 一种载波配置方法、用户终端和网络侧设备
CN110661607A (zh) 一种上行冲突的处理方法和终端
WO2021155765A1 (zh) 物理上行控制信道传输方法、装置、设备及介质
CN111106909B (zh) 数据传输方法、数据传输配置方法、终端及网络侧设备
WO2021147918A1 (zh) 参考信号发送方法、设备及系统
WO2021129699A1 (zh) 信道测量参考信号传输方法及终端
JP7278397B2 (ja) 伝送リソース指示方法、伝送方法、ネットワーク機器及び端末
CN111107563B (zh) 一种数据处理方法及设备
WO2021204155A1 (zh) 资源确定方法及终端
WO2021204152A1 (zh) 资源确定方法及终端
CN113473605A (zh) 一种冲突资源确定方法和终端
US20220263561A1 (en) Transmission processing method and terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227025170

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020904509

Country of ref document: EP

Effective date: 20220714

NENP Non-entry into the national phase

Ref country code: DE