WO2021129581A1 - 一种信号处理方法及装置 - Google Patents

一种信号处理方法及装置 Download PDF

Info

Publication number
WO2021129581A1
WO2021129581A1 PCT/CN2020/138132 CN2020138132W WO2021129581A1 WO 2021129581 A1 WO2021129581 A1 WO 2021129581A1 CN 2020138132 W CN2020138132 W CN 2020138132W WO 2021129581 A1 WO2021129581 A1 WO 2021129581A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
phase difference
signal
detection device
transmitting antenna
Prior art date
Application number
PCT/CN2020/138132
Other languages
English (en)
French (fr)
Inventor
汪义凯
殷潜
程增飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20908258.5A priority Critical patent/EP4071501A4/en
Publication of WO2021129581A1 publication Critical patent/WO2021129581A1/zh
Priority to US17/846,906 priority patent/US20220326376A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/588Velocity or trajectory determination systems; Sense-of-movement determination systems deriving the velocity value from the range measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9316Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles combined with communication equipment with other vehicles or with base stations

Definitions

  • the embodiments of the present application relate to the field of automatic driving technology or assisted driving technology, and in particular to a signal processing method and device.
  • Sensors play a very important role in assisted driving and autonomous driving of smart cars.
  • a variety of sensors installed on the car can sense the surrounding environment and collect data at any time during the driving process of the car to identify and track moving objects, as well as the recognition of stationary scenes such as lane lines and signage, combined with navigators And map data for path planning. Sensors can perceive possible dangers in advance and promptly help the driver or even take necessary evasive measures autonomously, effectively increasing the safety and comfort of car driving.
  • sensors can include detection devices such as millimeter wave radar, lidar, camera, and ultrasonic radar.
  • detection devices such as millimeter wave radar, lidar, camera, and ultrasonic radar.
  • safety is a very important factor, which puts forward requirements for the road environment and the detection of target objects.
  • the detection device, especially for the radar device, detects the relevant information of the target object is a problem to be solved in the embodiment of the present application.
  • the embodiments of the present application provide a signal processing method and device, so as to realize that the detection device detects relevant information of the target object.
  • a signal processing method is provided, which is applied to a detection device, and the detection device includes at least a first transmitting antenna.
  • the detection device may receive at least one first signal corresponding to the first transmitting antenna, and perform beamforming processing on the at least one first signal to generate the first beam.
  • the detection device can determine the information of the first target according to the phase of the first beam and the phase of the second beam.
  • the foregoing second beam corresponds to the detection device receiving at least one second signal, and there is a first time difference between the first beam and the second beam.
  • the beamforming can be implemented by Fourier transform, adaptive beamforming, or minimum variance distortionless response (MVDR), etc., without limitation.
  • the performing beamforming processing on at least one first signal to generate the first beam includes: the detection device may perform Fourier transform on the at least one first signal to obtain Multiple beams; among multiple beams, determine the first beam. For example, among multiple beams, the beam with the strongest energy may be selected as the first beam.
  • the at least one first signal may include at least two first signals
  • the at least one second signal may include at least two second signals.
  • the detection device determines the information of the first target according to the phase of the first beam and the phase of the second beam, thereby realizing the detection of the target object. Further, the detection device can determine the Doppler phase difference according to the phase of the first beam and the phase of the second beam. According to the Doppler phase difference, the velocity ambiguity can be resolved, and the accuracy of the detection device for detecting the target can be further improved.
  • the so-called speed blur refers to the phenomenon that the speed detected by the detection device is wrong when the moving speed of the target object exceeds the detection speed range of the detection device. For example, if the detection device detects the speed range of [-6, 6] km/h. If the actual speed of the target object relative to the detection device is 8km/h, but because 8km/h exceeds the detection range of the detection device, the speed of the target object detected by the detection device relative to the detection device is likely to be 2km/h. h.
  • the virtual sub-arrays corresponding to the two groups of different transmitting antennas have overlapping elements. Because the phase difference of the overlapping virtual subarrays is only caused by the Doppler phase difference. Therefore, by measuring the phase difference of the overlapping virtual sub-arrays, the Doppler phase difference can be determined. According to the Doppler phase difference, the velocity ambiguity can be resolved.
  • the array aperture becomes smaller, which is not conducive to system design, and is easily affected by array errors.
  • the probe wave setting can respectively perform beamforming on at least one first signal and at least one second signal to obtain the first beam and the second beam.
  • the phases of the two beams can determine the Doppler phase difference, and then the velocity ambiguity can be resolved. It can be seen that in the above-mentioned first aspect of the design, there is no need to set the virtual sub-arrays of the detection device in an overlapping manner. Therefore, the above-mentioned problems such as the reduction of the array aperture caused by the above-mentioned overlapping virtual sub-arrays, the disadvantage of system design, and the susceptibility to array errors can be solved.
  • the second beam is generated after beamforming processing is performed on at least one second signal.
  • the detection device may perform beamforming on at least one second signal to generate a second beam.
  • the detection device may also include a second transmitting antenna.
  • At least one second signal may be a signal corresponding to the first transmitting antenna, or a signal corresponding to the second transmitting antenna, etc., which is not limited.
  • the detection device determines the information of the first target according to the phase of the first beam and the phase of the second beam. Specifically, the detection device determines the information of the first target according to the phase of the first beam and the phase of the second beam. Puller phase difference; the detection device determines the information of the first target according to the Doppler phase difference.
  • the detection device can determine the velocity ambiguity coefficient based on the Doppler phase difference. Then, according to the velocity ambiguity coefficient, the true Doppler frequency shift can be determined. Furthermore, according to the real Doppler frequency shift, the speed, angle and/or distance of the target object can be determined, so as to reduce the influence of speed ambiguity on the detection device.
  • the above-mentioned at least one second signal corresponds to the second transmitting antenna
  • the detection device determines the Doppler phase difference according to the phase of the first beam and the phase of the second beam, specifically: The phase of one beam and the phase of the second beam determine the first phase difference; the detecting device determines the second phase difference according to the phase of the first transmitting antenna and the phase of the second transmitting antenna; the detecting device determines the second phase difference according to the first phase difference and the second phase difference.
  • Phase difference determine the Doppler phase difference.
  • the aforementioned Doppler phase difference may be specifically the difference between the first phase difference and the second phase difference. For example, if the first phase difference is 91 degrees and the second phase difference is 90 degrees, the above-mentioned Doppler phase difference may be 1 degree.
  • the detection device may include a first transmitting antenna and a second transmitting antenna.
  • the first transmitting antenna transmits a signal, which is reflected by the target object to form the above-mentioned at least one first signal.
  • the receiving sub-array of the detecting device can receive the above-mentioned at least one first signal. Perform beamforming processing on at least one first signal to generate a first beam.
  • the second transmitting antenna can transmit a signal, which is reflected by the target object to form the above-mentioned at least one second signal.
  • the receiving sub-array of the detecting device can receive the above-mentioned at least one second signal. Perform beamforming processing on at least one second signal to generate a second beam.
  • the above-mentioned phase difference between the first beam and the second beam in addition to the Doppler phase difference, also includes the spatial phase difference between the above two transmissions. That is, the spatial phase difference between the two transmitting antennas and the Doppler phase difference, and the sum of the two is equal to the phase difference between the first beam and the second beam. Therefore, the detection device can calculate the phase difference between the first beam and the second beam, and the spatial phase difference between the first transmitting antenna and the second transmitting antenna, and can determine the Doppler phase difference.
  • the Doppler phase difference is 0.5 degrees. Furthermore, the influence of the Doppler phase difference on the detection device can be eliminated or reduced.
  • At least one first signal corresponds to the first virtual sub-array
  • at least one second signal corresponds to the second virtual sub-array
  • the sub-array receiving the above-mentioned first signal in the detection device may be referred to as the first virtual sub-array
  • the sub-array receiving the above-mentioned second signal may be referred to as the second virtual sub-array. It can also be described as: the first transmitting antenna corresponds to the first virtual sub-array, the second transmitting antenna corresponds to the second virtual sub-array, and so on.
  • At least one second signal corresponds to the first transmitting antenna
  • the detection device determines the Doppler phase difference according to the phase of the first beam and the phase of the second beam, specifically: The phase of the beam and the phase of the second beam determine the first phase difference; the detection device determines the Doppler phase difference according to the first phase difference.
  • the detection device includes the first transmitting antenna, and the first transmitting antenna can belong to different TDM groups at the same time.
  • the first transmitting antenna belongs to the first TDM group and the second TDM group at the same time.
  • the first transmitting antenna can transmit a signal in a time period corresponding to the first TDM group, and the above-mentioned signal is reflected by the target object to form the above-mentioned at least one first signal.
  • the virtual sub-array of the detection device can receive the above-mentioned at least one first signal, perform beamforming on the at least one first signal, and generate a first beam.
  • the first transmitting antenna can transmit a signal in a time period corresponding to the second TDM group, and the above-mentioned signal can be reflected by the target object to form the above-mentioned at least one second signal.
  • the detection device may perform beamforming on the at least one second signal to generate a second beam. Because the first signal and the second signal are transmitted by the same first transmitting antenna. Therefore, the above-mentioned phase difference between the first beam and the second beam only includes the Doppler phase difference, and does not include the spatial phase difference between different transmitting antennas. That is, the phase difference between the first beam and the second beam is equal to the Doppler phase difference.
  • the two TDM teams use the same antenna to transmit, which can effectively reduce the influence of the array and antenna errors on the Doppler phase difference measurement.
  • At least one first signal and at least one second signal correspond to the first virtual sub-array.
  • the first pointing angle of the first beam and the second pointing angle of the second beam indicate the first target, and/or the first pointing angle of the first beam and the second pointing angle of the second beam The angle difference between the angles is less than or equal to the first threshold, and/or the energy difference between the first beam and the second beam is less than or equal to the second threshold.
  • the information of the first target includes at least one of the angle, speed, or distance of the first target.
  • the first time difference is the time difference between different time division multiplexing TDM groups.
  • the detection device includes N TDM subgroups, and the N TDM subgroups are emitted at the same time. It is assumed that the N TDM groups include the L-th TDM group and the K-th TDM group. Both L and K are integers greater than or equal to 1 and less than or equal to N.
  • the L-th TDM group includes the first transmitting antenna and the The K TDM groups include the second transmitting antenna.
  • the first transmitting antenna in the detection device transmits the first signal in a time period corresponding to the L-th TDM group.
  • the second transmitting antenna in the detection device transmits the second signal in the time period corresponding to the Kth TDM group.
  • the above-mentioned first time difference may refer to the time difference between the L-th TDM group and the K-th TDM group.
  • the N TDM groups of the detection device include the M-th TDM group and the P-th TDM group, and the M and P are integers greater than or equal to 1 and less than or equal to N. It is assumed that the first transmitting antenna is included in the M-th TDM group, and the first transmitting antenna of the detection device transmits the first signal in a time period corresponding to the M-th TDM group.
  • the P-th TDM group also includes a first transmitting antenna, and the first transmitting antenna of the detection device transmits the second signal in a time period corresponding to the P-th TDM group.
  • the above-mentioned first time difference may refer to the time difference between the M-th TDM group and the P-th TDM group.
  • a device in a second aspect, may be a detection device or a device in a detection device.
  • the device may be a device in a vehicle-mounted terminal, or a device in a radar.
  • the device may include a processing unit and The communication unit, and the processing unit and the communication unit can perform any of the corresponding functions involved in the first aspect mentioned above, specifically:
  • the communication unit is configured to receive at least one first signal corresponding to the first transmitting antenna; the processing unit is configured to perform beamforming processing on the at least one first signal to generate a first beam; the processing unit is further configured to Determine the information of the first target according to the phase of the first beam and the phase of the second beam;
  • the second beam corresponds to at least one second signal received by the detection device, and there is a first time difference between the first beam and the second beam.
  • the second beam is generated after performing beamforming processing on the at least one second signal.
  • the processing unit determines the information of the first target according to the phase of the first beam and the phase of the second beam, it is specifically configured to: according to the phase of the first beam and the phase of the second beam. Determine the Doppler phase difference according to the phase of the second beam; and determine the information of the first target according to the Doppler phase difference.
  • the at least one second signal corresponds to the second transmitting antenna
  • the processing unit determines the Doppler phase difference according to the phase of the first beam and the phase of the second beam.
  • the processing unit determines the Doppler phase difference according to the phase of the first beam and the phase of the second beam.
  • It is specifically used to: determine the first phase difference according to the phase of the first beam and the phase of the second beam; determine the first phase difference according to the phase of the first transmitting antenna and the phase of the second transmitting antenna Two phase differences; determining the Doppler phase difference according to the first phase difference and the second phase difference.
  • the at least one first signal corresponds to a first virtual sub-array
  • the at least one second signal corresponds to a second virtual sub-array
  • the at least one second signal corresponds to the first transmitting antenna
  • the processing unit determines the Doppler according to the phase of the first beam and the phase of the second beam.
  • the phase difference it is specifically used to: determine the first phase difference according to the phase of the first beam and the phase of the second beam; and determine the Doppler phase difference according to the first phase difference.
  • the at least one first signal and the at least one second signal correspond to a first virtual sub-array.
  • the first pointing angle of the first beam and the second pointing angle of the second beam indicate the first target, and/or the first pointing angle of the first beam
  • the angle difference with the second pointing angle of the second beam is less than or equal to a first threshold, and/or the difference between the energy of the first beam and the energy of the second beam is less than or equal to a second threshold.
  • the information of the first target includes at least one of an angle, a speed, or a distance of the first target.
  • the first time difference is the time difference between different time division multiplexing TDM groups.
  • an apparatus in a third aspect, includes a processor, and is configured to implement the method described in the first aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and the processor executes the program instructions stored in the memory to implement the method described in the first aspect.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, an antenna (especially suitable for a radar device), or other types of communication interfaces.
  • the device includes:
  • Memory used to store program instructions
  • the processor is configured to call the instructions in the memory to execute: control the communication interface to receive at least one first signal corresponding to the first transmit antenna, perform beamforming processing on the at least one first signal, and generate a first beam according to The phase of the first beam and the phase of the second beam determine the information of the first target; wherein the second beam corresponds to at least one second signal received by the detection, and there is a first time difference between the first beam and the second beam.
  • the second beam is generated after beamforming processing is performed on the at least one second signal.
  • the processor determines the information of the first target according to the phase of the first beam and the phase of the second beam, it is specifically configured to: according to the phase of the first beam and the phase of the second beam, Determine the Doppler phase difference of the two beams; and determine the information of the first target according to the Doppler phase difference.
  • the at least one second signal corresponds to the second transmitting antenna
  • the processor determines the Doppler phase difference according to the phase of the first beam and the phase of the second beam, Specifically used for: determining the first phase difference according to the phase of the first beam and the phase of the second beam; determining the second phase according to the phase of the first transmitting antenna and the phase of the second transmitting antenna Difference; determine the Doppler phase difference according to the first phase difference and the second phase difference.
  • the at least one first signal corresponds to a first virtual sub-array
  • the at least one second signal corresponds to a second virtual sub-array
  • the at least one second signal corresponds to the first transmitting antenna
  • the processor determines the Doppler phase difference according to the phase of the first beam and the phase of the second beam When, it is specifically used to: determine the first phase difference according to the phase of the first beam and the phase of the second beam; and determine the Doppler phase difference according to the first phase difference.
  • the at least one first signal and the at least one second signal correspond to a first virtual sub-array.
  • the first pointing angle of the first beam and the second pointing angle of the second beam indicate the first target, and/or the first pointing angle of the first beam
  • the angle difference with the second pointing angle of the second beam is less than or equal to a first threshold, and/or the difference between the energy of the first beam and the energy of the second beam is less than or equal to a second threshold.
  • the information of the first target includes at least one of an angle, a speed, or a distance of the first target.
  • the first time difference is the time difference between different time division multiplexing TDM groups.
  • a computer-readable storage medium including instructions, which when run on a computer, cause the computer to execute the method of the first aspect.
  • a chip system in a fifth aspect, includes at least one processor and may also include at least one memory.
  • the at least one processor executes a program or instruction stored in the at least one memory to implement the first Any method of the aspect.
  • the chip system may be composed of chips or integrated circuits, and may also include chips or integrated circuits and other discrete devices.
  • a computer program product including instructions, which when run on a computer, cause the computer to execute the method of the first aspect.
  • a sensor including the device described in the second or third aspect.
  • a sensor system including at least one sensor, and the sensor may include the device described in the second or third aspect.
  • a vehicle which includes at least one sensor, and the sensor may include the device described in the second or third aspect.
  • Figure 1 is a schematic diagram of a virtual array provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of TDM waveforms provided by an embodiment of the application.
  • Figure 3 is a schematic diagram of an application scenario provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a signal processing flow provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of different transmitting antennas transmitting and receiving sub-array beams according to an embodiment of the application
  • FIG. 6 is a schematic diagram of the beam shape of the same transmitting antenna repeatedly transmitting and receiving subarrays according to an embodiment of the application;
  • FIG. 7 is a schematic diagram of TDM waveforms provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a virtual array provided by an embodiment of the application.
  • FIG. 9 is a signal processing flow provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a device provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of another structure of an apparatus provided by an embodiment of the application.
  • the detection device is a device used to detect target objects. For example, it can be used to detect at least one of the speed, angle, or distance of the target object, and the speed, angle, or distance of the target object detected by the detection device can be the absolute information of the target object, or it can be the target object There is no limit to the relative information of the detection device.
  • the detection device can be installed on a mobile device, for example, the detection device can be installed on a vehicle as a vehicle-mounted radar detection device. Alternatively, the detection device may be installed on a fixed device, for example, the detection device may be installed on a roadside unit (RSU) or other equipment.
  • RSU roadside unit
  • Detection devices can include radar, etc. Radars are divided according to frequency bands, including millimeter wave radar, microwave radar, over-the-horizon radar, and lidar, etc.; according to antenna scanning methods, they can include mechanical scanning radar and phased array radar, etc. ; According to the radar technology and signal processing method, it can include coherent accumulation radar, non-coherent accumulation radar, moving target display radar, moving target detection radar, pulse Doppler radar, synthetic aperture radar and tracking while scanning Radar; classified according to the parameters of the target measurement, including altimetry radar, two-coordinate radar, three-coordinate radar, identification friend or foe radar and multi-terminal radar, etc.; classified according to the angle tracking method, including monopulse radar, cone scanning radar and concealed cone Scan the radar. According to the form of radar signal, it can include pulse radar, continuous wave radar, pulse compression radar and frequency agile radar.
  • the device used to realize the function of the detection device may be a radar; it may also be a device capable of supporting the detection device to realize the function, such as a chip system, which may be installed in the radar.
  • the detection device may also be independent of the radar, for example, it may be set independently, or integrated in a vehicle-mounted central controller, a fusion unit, or other possible processing units.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device for realizing the function of the detection device is a radar as an example to describe the technical solutions provided in the embodiments of the present application.
  • a beam can be understood as a spatial resource, and can refer to a transmission or reception precoding vector with energy transmission directivity.
  • the transmission or reception precoding vector can be identified by index information.
  • the energy transmission directivity may mean that the energy of the transmitted signal is gathered in a certain spatial position through precoding processing, and the signal after the precoding processing of the precoding vector is received has better received power, such as It satisfies the signal-to-noise ratio of reception and demodulation, etc.; the energy transmission directivity may also mean that the same signal sent from different spatial positions received through the precoding vector has different reception power.
  • the same communication device may have different precoding vectors, and different devices may also have different precoding vectors, that is, corresponding to different beams.
  • one communication device can use one or more of multiple different precoding vectors at the same time, that is, one beam or multiple beams can be formed at the same time.
  • the beam information can be identified by index information.
  • the index information can also be index information that is explicitly or implicitly carried by a signal or channel carried by the beam.
  • the index information includes, but is not limited to, transmission by beam
  • the synchronization signal or broadcast channel indicates the index information of the beam.
  • a beam pair may include a transmitting beam (Tx beam) at the transmitting end and a receiving beam (Rx beam) at the receiving end.
  • Beamforming is used for directional signal transmission or reception.
  • the signals received by at least one receiving array element can be weighted and combined to form the desired ideal signal. From the perspective of the antenna pattern, this is equivalent to forming a beam with a prescribed direction.
  • the original omni-directional receiving pattern is converted into a zero-point and maximum-directed lobe pattern.
  • the beamforming may be implemented using Fourier transform. For example, four signals are received through four receiving array elements, and Fourier transforms may be performed on the four signals to obtain multiple beams.
  • the above Fourier transform is a 128-point Fourier transform
  • 128 beams can be obtained.
  • the above Fourier transform is a 256-point Fourier transform
  • 256 beams can be obtained.
  • the beam with the strongest energy is selected, and the beam with the strongest energy can be directed to the position of the target object, and so on.
  • the Fourier transform may be a discrete Fourier transform, and an implementation algorithm of the discrete Fourier transform may be a fast Fourier transform, such as a two-dimensional fast Fourier transform.
  • the beamforming may be implemented by means of minimum variance distortionless response (MVDR), adaptive beamforming, etc., which is not limited.
  • MVDR minimum variance distortionless response
  • Beamforming technology is generally applied to multi-antenna systems.
  • multi-input multi-output MIMO
  • Using a certain algorithm at the receiving end to process signals received by multiple antennas (or called receiving elements) can significantly improve the signal-to-noise ratio at the receiving end. Even when the receiving end is far away, better signal quality can be obtained.
  • the transmitted signals emitted by multiple transmitting antennas are reflected by the target object to form a reflected signal, and the receiving antenna separates the reflected signal corresponding to each transmitting antenna.
  • These reflected signals correspond to the combination of each transmitting and receiving channel. Since these signals are signals received and separated by the receiving antenna, rather than the signals directly received by the physical antenna, these signals are called virtual signals.
  • the virtual signals corresponding to each transmitting and receiving channel are arranged according to the transmitting and receiving antennas to form a virtual sub-array, and a single signal is a virtual array element.
  • the transmitted signals transmitted by the multiple transmitting antennas may be orthogonal to each other.
  • the receiving antenna can separate the reflected signal corresponding to each transmitting antenna through signal orthogonality.
  • the virtual sub-array may also be referred to as a receiving sub-array or an antenna sub-array, etc.
  • the virtual sub-array may include one or more virtual array elements, and the virtual array element may also be referred to as a receiving array element or an antenna array element.
  • the transmitting antenna transmits signals in a time-sharing manner, which is reflected by the target object to form a reflected signal, and the receiving antenna can receive the reflected signal.
  • multiple receiving antennas receive the reflected signal corresponding to the signal, and the multiple receiving antennas may form a virtual sub-array.
  • the transmitting antenna array of the detection device is set to include a transmitting antenna T1, a transmitting antenna T2, and a transmitting antenna T3.
  • the above three transmitting antennas use time-division multiplexing (TDM) to transmit signals.
  • the receiving antenna array of the detection device includes a receiving antenna R1, a receiving antenna R2, a receiving antenna R3, and a receiving antenna R4.
  • the transmitting antenna T1 of the detection device transmits a signal
  • the signal reaches the target object and is reflected by the target object to form a reflected signal.
  • the receiving antenna R1, the receiving antenna R2, the receiving antenna R3, and the receiving antenna R4 of the detecting device can all receive the above-mentioned reflected signal.
  • the receiving antenna R1, the receiving antenna R2, the receiving antenna R3, and the receiving antenna R4 can form a virtual sub-array.
  • the virtual sub-array may include a virtual array element 1, a virtual array element 2, a virtual array element 3, and a virtual array element 4.
  • the receiving antenna R1, the receiving antenna R2, the receiving antenna R3, and the receiving antenna R4 of the detecting device can form another virtual sub-array.
  • the virtual sub-array may include virtual array element 5, virtual array element 6, virtual array element 7, and virtual array element 8.
  • the transmitting antenna T3 of the detecting device transmits a signal
  • the receiving antenna R1, the receiving antenna R2, the receiving antenna R3, and the receiving antenna R4 of the detecting device may form another virtual sub-array.
  • the virtual sub-array may include a virtual array element 9, a virtual array element 10, a virtual array element 11 and a virtual array element 12.
  • a detection device (such as a radar) includes multiple transmitting antennas, which can be divided into N TDM groups, and different TDM groups transmit signals in time sharing, where N is an integer greater than or equal to 1.
  • the multiple transmitting antennas of the detection device can be randomly divided into N TDM groups. Or, it can be divided into N TDM groups in sequence according to the antenna numbers of multiple transmitting antennas in the detection device.
  • the detection device includes a transmitting antenna T1, a transmitting antenna T2, and a transmitting antenna T3.
  • the above three transmitting antennas can be divided into three TDM groups, and each TDM group includes a transmitting antenna.
  • the above three transmitting antennas can be divided into two TDM groups, TDM group 1 and TDM group 2.
  • TDM group 1 may include transmitting antenna 1 and transmitting antenna 2.
  • the TDM team 2 may include a transmitting antenna 3.
  • the TDM group 1 and the TDM group 2 transmit in a time-sharing manner, while the transmitting antenna 1 and the transmitting antenna 2 in the TDM group 1 transmit signals at the same time.
  • different TDM groups may include the same or different transmitting antennas, which is not limited.
  • two different TDM groups may include the same transmitting antenna, etc., that is, the same transmitting antenna repeatedly transmits signals in different TDM groups.
  • TDM group settings or divisions can be set when the radar leaves the factory (or the initial design of the radar), can also be set in the application, or can be set according to the type of radar, here There is no restriction on the specific setting method.
  • the detection device uses frequency modulated continuous wave (FMCW), and the signal emitted by the transmitting antenna of the detection device is called a chirp signal.
  • the period of the chirp signal is Tr, or called, the time interval of the chirp signal is Tr.
  • the detection device may allocate different chirp signals to the transmit antennas of different TDM groups, and at least one of the bandwidth, frequency, or period of the different chirp signals is the same or different.
  • TDM group 1 includes transmitting antenna 1
  • TDM group 2 includes transmitting antenna 2.
  • TDM Group 1 and TDM Group 2 will be launched in time. TDM group 1 transmits in the first time period, and TDM group 2 transmits in the second time period.
  • the first time period is different from the second time period.
  • the transmitting antenna 1 in the TDM group 1 can transmit the chirp signal 1 corresponding to the first time period in the first time period.
  • the transmitting antenna 2 in the group 2 on the TDM can transmit the chirp signal 2 corresponding to the second time period in the second time period.
  • the multiple transmitting antennas in the TDM group all transmit the chirp signals in the corresponding time period of the TDM group.
  • TDM group 2 corresponds to chirp signal 2. If the TDM group 2 includes the transmitting antenna 3 and the transmitting antenna 4, both the transmitting antenna 3 and the transmitting antenna 4 will transmit the chirp signal 2 in the second time period.
  • the pointing angle of the beam may have different definitions, which is not specifically limited in the embodiment of the present application.
  • the pointing angle of the beam generally refers to the angle at which the extension of the central axis of the sensor is taken as the axis, and the energy intensity is reduced by half.
  • the pointing angle of the beam may also be referred to as the direction angle of the beam, the beam angle, and the like. In the following embodiments, the pointing angle of the beam is taken as an example for description.
  • the theory of the Doppler effect is embodied in the fact that the wavelength of the object radiation changes due to the relative motion of the wave source and the observer.
  • the difference between the transmitting and receiving frequencies caused by the Doppler effect is called the Doppler frequency shift.
  • the Doppler frequency shift reveals the law that the properties of waves change in motion. Specifically, if the target moves, the echo signal of the radar will produce a Doppler shift phenomenon.
  • the Doppler phase difference is generally due to the movement of the target, resulting in the phase difference caused by the Doppler frequency shift.
  • the time to reach the same target for the signals transmitted by the two transmitting antennas is different, resulting in a spatial phase difference between the two transmitting antennas.
  • the so-called speed blur refers to the phenomenon that the speed detected by the detection device is wrong when the moving speed of the target object exceeds the detection speed range of the detection device. For example, if the detection device detects the speed range of [-6, 6] km/h. If the actual moving speed of the moving target relative to the detection device is 8km/h, but because 8km/h exceeds the detection range of the detection device, the movement speed of the target object detected by the detection device relative to the detection device is likely to be 2km/h. h.
  • M transmit antennas are included, and the M transmit antennas can transmit signals in a time division multiplexing (TDM) manner.
  • TDM time division multiplexing
  • MIMO radar can improve the angular resolution, the maximum speed range corresponding to MIMO radar is reduced to 1/M of the single input multiple output (SIMO) radar in the same transmission period, making it easier to calculate the speed of the target object Speed aliasing occurs, resulting in speed blur.
  • Velocity ambiguity can also mean that when the real velocity
  • the above-mentioned v max refers to the maximum speed at which the detection device can detect the target object. For example, if the detection device can only detect a target object up to 20km/h, the value of v max is 20km/h.
  • the above f d represents the Doppler frequency shift
  • T r represents the transmission period of chirp signals, or the time interval of adjacent chirp signals
  • N represents the TDM of the transmitting antenna in the detection device. The number of groups.
  • At least one of a, b, and c can represent a; b; a and b; a and c; b and c; a, b and c.
  • a, b, and c can be single or multiple.
  • At least one (item) can mean one (item) or more (item).
  • FIG. 3 it is a schematic diagram of a possible application scenario provided by an embodiment of this application.
  • the above-mentioned application scenarios can be unmanned driving, autonomous driving, assisted driving, intelligent driving, networked driving, etc.
  • the detection device in the embodiment of this application can be installed in motor vehicles (such as unmanned vehicles, smart cars, electric vehicles, digital cars, etc.), drones, track machines, bicycles, signal lights, speed measurement devices, or network equipment (such as various Base station, terminal equipment in the system) and so on.
  • the above-mentioned device can also be equipped with a processing device and a communication device.
  • the detection device, processing device, and communication device can be installed on mobile equipment, for example, the detection device can be installed on a vehicle as a vehicle-mounted radar, or the detection device, processing device, and communication device can be installed on a fixed device, such as Roadside unit (RSU) and other equipment.
  • RSU Roadside unit
  • the detection device shown in FIG. 3 may include a millimeter-wave radar.
  • the working principle of the detection device and the problems of the detection device in the current solution are described below by taking the millimeter-wave radar as an example.
  • Millimeter-wave radar has the characteristics of all-weather, all-weather, low-cost, etc., and has become one of the important sensors in the field of automobile safe driving. As shown in Figure 2, millimeter-wave radar usually uses FMCW waveforms. FMCW waveforms can achieve large bandwidth and long coherent accumulation time, so it has high ranging, speed measurement accuracy and resolution capabilities. Millimeter-wave radar also uses multiple-input multiple-output (MIMO) technology to achieve high angle measurement accuracy and high resolution. The above-mentioned technology enables millimeter-wave radar to have high-resolution imaging and high-precision positioning capabilities, reducing the performance gap with expensive laser detectors.
  • MIMO multiple-input multiple-output
  • the maximum speed measurement range corresponding to the MIMO radar will drop to 1/M of the SIMO radar in the same transmission period (the M is the number of transmitting antennas in MIMO, and the above M transmitting antennas can transmit signals by TDM). Cause the phenomenon of speed blur.
  • the so-called speed blur refers to the phenomenon that the speed detected by the detection device is wrong when the moving speed of the target object exceeds the detection speed range of the detection device. For example, if the detection device detects the speed range of [-6, 6] km/h. If the actual moving speed of the moving target relative to the detection device is 8km/h, but because 8km/h exceeds the detection range of the detection device, the movement speed of the target object detected by the detection device relative to the detection device is likely to be 2km/h. h.
  • the virtual sub-arrays corresponding to the two groups of different transmitting antennas have overlapping elements. Because the phase difference of the overlapping virtual subarrays is only caused by the Doppler phase difference. Therefore, by measuring the phase difference of the overlapping virtual sub-arrays, the Doppler phase difference can be determined. According to the Doppler phase difference, the velocity ambiguity can be resolved.
  • the aperture of the array becomes smaller, which is not conducive to system design, and is easily affected by array errors.
  • the probe wave setting can perform beamforming on at least one first signal and at least one second signal, respectively, to obtain the first beam and the second beam.
  • the phases of the two beams can determine the Doppler phase difference, and then the velocity ambiguity can be resolved. It can be seen that in the above design, there is no need to set the virtual sub-arrays of the detection device in an overlapping manner. Therefore, the above-mentioned problems such as the reduction of the array aperture caused by the above-mentioned overlapping virtual sub-arrays, the disadvantage of system design, and the susceptibility to array errors can be solved.
  • a signal processing method and device are proposed.
  • the principle of the method is that the detection device can perform beamforming on at least one first signal and at least one second signal to obtain the first beam and the second beam.
  • the phases of the two beams can determine the Doppler phase difference, and then the velocity ambiguity can be resolved. It can be seen that in the above-mentioned signal processing method, there is no need to set the virtual sub-arrays of the detection device in an overlapping manner. Therefore, the above-mentioned problems such as the reduction of the array aperture caused by the overlapping virtual sub-arrays, the disadvantage of system design, and the susceptibility to array errors can be solved.
  • the execution subject of the flow is a detection device, and the detection device can be applied to the scenario shown in FIG. 3.
  • the detection device may be a radar (or, called a radar device), or the detection device may be a chip installed in a detection device, and the detection device may be a radar (or, called a radar device), or other equipment, etc. .
  • the process includes:
  • the detection apparatus receives at least one first signal corresponding to the first transmitting antenna.
  • the at least one first signal may include at least two first signals.
  • the detection apparatus performs beamforming processing on at least one first signal to generate a first beam.
  • the detection device performs beamforming processing on at least one first signal to generate the first beam, including: the detection device performs Fourier transform on the at least one signal to obtain multiple beams .
  • the first beam belongs to the multiple beams.
  • the first beam is the beam with the strongest energy among the multiple beams.
  • the detection device may determine the first beam among multiple beams. For example, the detection device may select the beam with the strongest energy among multiple beams as the first beam. Wherein, the first beam points to the position of the first target.
  • the beamforming may also be implemented by means of minimum variance distortionless response (MVDR), adaptive beamforming, etc., which is not limited.
  • the detection device may transmit a signal through the first transmitting antenna, and the signal reaches the first target object and is reflected by the first target object to form a reflected signal.
  • the first transmitting antenna may correspond to a first virtual sub-array, and the first virtual sub-array includes one or more virtual array elements.
  • the virtual array elements corresponding to the first virtual sub-array of the detection device can respectively receive the above-mentioned reflected signals. Perform beamforming on the above reflected signal to generate a first beam.
  • the first beam may be directed to the position of the first target object.
  • the "at least one first signal" may specifically be a signal reflected by the first target object.
  • the number of the "at least one first signal” is one or more, and the specific number is similar to the first virtual signal.
  • the number of virtual elements in the sub-array is related. For example, if the first virtual sub-array includes 4 virtual array elements, the above-mentioned virtual array elements can receive 4 signals respectively, and the above-mentioned "at least one first signal" can include 4 signals.
  • beamforming processing may be performed on the foregoing four signals to generate a first beam, and the direction of the first beam is the position of the first target object.
  • the beamforming can be implemented in a Fourier transform manner.
  • the detection device can receive 4 signals through the above-mentioned 4 virtual array elements.
  • the detection device can perform Fourier transform on the above four signals to obtain multiple beams. For example, 128-point Fourier transform is performed on the above 4 signals, and 128 beams can be obtained.
  • the detection device may select the beam with the energy satisfying the condition (for example, the beam with the strongest energy) among the above-mentioned multiple beams as the first beam.
  • the detection device determines the information of the first target according to the phase of the first beam and the phase of the second beam.
  • the detection device may determine the Doppler phase difference according to the phase of the first beam and the phase of the second beam; the detection device may determine the information of the first target according to the phase of the Doppler, and the information of the first target may include At least one of the speed, angle, or distance of the first target.
  • the detection device can determine the velocity ambiguity coefficient according to the Doppler phase difference; according to the velocity ambiguity coefficient, the information of the first target can be determined. Information on how to determine the velocity ambiguity coefficient according to the Doppler phase difference and how to determine the first target according to the velocity ambiguity system will be described in detail in the following embodiments. It should be noted here that the Doppler phase difference may also be an intermediate variable or parameter, and it is not necessary to determine the Doppler phase difference separately, and finally determine the information of the first target.
  • the second beam may correspond to at least one second signal received by the detection device, there may be a first time difference between the first beam and the second beam, and the first The time difference can be the time difference between different TDM groups.
  • the detection device includes N TDM groups, and the N TDM small groups are emitted at the same time.
  • the N TDM groups include the L-th TDM group and the K-th TDM group. Both L and K are integers greater than or equal to 1 and less than or equal to N.
  • the L-th TDM group includes the first transmitting antenna and the The K TDM groups include the second transmitting antenna.
  • the first transmitting antenna in the detection device transmits the first signal in a time period corresponding to the L-th TDM group.
  • the second transmitting antenna in the detection device transmits the second signal in the time period corresponding to the Kth TDM group.
  • the above-mentioned first time difference may refer to the time difference between the L-th TDM group and the K-th TDM group.
  • the N TDM groups of the detection device include the M-th TDM group and the P-th TDM group, and the M and P are integers greater than or equal to 1 and less than or equal to N.
  • the first transmitting antenna is included in the M-th TDM group, and the first transmitting antenna of the detection device transmits the first signal in a time period corresponding to the M-th TDM group.
  • the P-th TDM group also includes a first transmitting antenna, and the first transmitting antenna of the detection device transmits the second signal in a time period corresponding to the P-th TDM group.
  • the above-mentioned first time difference may refer to the time difference between the M-th TDM group and the P-th TDM group.
  • the foregoing second beam is generated after beamforming processing is performed on the at least one second signal.
  • the first beam and the second beam may be directed to the position of the same target, for example, the same target may be the first target.
  • any one of the following methods can be adopted, but is not limited to:
  • the first pointing angle of the first beam and the second pointing angle of the second beam point to the position of the first target.
  • the first pointing angle of the first beam is 90 degrees
  • the second pointing angle of the second beam is also 90 degrees
  • the first target is at a position offset by 90 degrees relative to the detection device.
  • the angle difference between the first pointing angle of the first beam and the second pointing angle of the second beam is less than or equal to the first threshold.
  • the value of the first threshold may be pre-defined or pre-configured, or may be an empirical value in the field. In this way, when the pointing angles of the two beams are different, but the angle difference between the two beams is relatively small, it can also be considered that the two beams point to the same position of the same target. For example, if the first threshold is set to 5 degrees, the pointing angle of the first beam is 90 degrees, and the pointing angle of the second beam is 91 degrees, the angle difference between the two is 1 degree, which is less than the first threshold. It is considered that the first beam and the second beam are also directed to the same target position.
  • the angle difference between the first pointing angle of the first beam and the second pointing angle of the second beam is less than or equal to the first threshold, and the difference between the energy of the first beam and the energy of the second beam is less than or equal to the second threshold, etc. .
  • the angle difference between the two beams is constrained, but also the energy difference between the two beams is constrained.
  • the detection device can determine the Doppler phase difference according to the phase of the first beam and the phase of the second beam, and determine the message of the first target according to the Doppler phase difference.
  • the influence of the Doppler frequency shift on the detection of the first target can be reduced, so that information such as the speed, distance, or angle of the first target detected by the detection device is more accurate.
  • the detection device in the process shown in FIG. 4 above may include a first transmitting antenna.
  • the detection device transmits a first signal through the first transmitting antenna.
  • the first signal reaches the target object and is reflected by the target object to form a reflected signal.
  • a virtual sub-array receives the reflected signal corresponding to the first signal.
  • the detection device also includes a second transmitting antenna.
  • the detection device transmits a second signal through the second transmitting antenna.
  • the second signal reaches the target object and is reflected by the target object to form a reflected signal.
  • the second signal is received through the second virtual sub-array. The corresponding reflected signal.
  • the detection device may perform beamforming on the signal received by the first virtual subarray to generate a first beam, and perform beamforming on the signal received by the second virtual subarray to generate a second beam.
  • the first beam and the second beam are directed to the same target object, that is, the first target in the process shown in FIG. 4.
  • the first virtual sub-array includes 4 virtual array elements, 4 signals can be received through the above-mentioned 4 virtual array elements.
  • the detection device can perform Fourier transform on the above four signals to obtain multiple beams. For example, 128-point Fourier transform is performed on the above 4 signals, and 128 beams can be obtained.
  • the detection device may select the beam with the strongest energy among the above multiple beams as the first beam.
  • the second virtual sub-array includes 4 virtual array elements, and the above-mentioned 4 virtual array elements can receive 4 signals, and the detection device can perform Fourier transform on the above-mentioned 4 signals to obtain multiple beams.
  • the detection device may select the beam with the strongest energy among the above multiple beams as the second beam.
  • the detection device determines the first spatial phase difference between the first beam and the second beam, and the second spatial phase difference between the first transmitting antenna and the second transmitting antenna. According to the first spatial phase difference and the second spatial phase difference, the Doppler phase difference can be determined; and the detection device can determine the speed, angle, distance and other information of the target object according to the Doppler phase difference. How the detection device determines the speed, angle, or distance of the target object according to the Doppler phase difference will be described in detail in the following embodiments. It should be noted here that at least one of the first spatial phase difference, the second spatial phase difference and the Doppler phase difference may also be an intermediate variable or parameter, and there is no need to determine the spatial phase difference and the Doppler separately. For at least one of the phase differences, it is sufficient to finally determine the information of the target object.
  • spatial phase difference and “phase difference” are not distinguished, and “spatial phase difference” can be written as “phase difference, or “phase difference” can also be written as “spatial phase difference” "Wait.
  • the detection device may determine the phase difference between the first beam and the second beam.
  • the phase difference between the first beam and the second beam may be recorded as the first Phase difference; further, the detection device can determine the spatial phase difference between the first transmitting antenna and the second transmitting antenna.
  • the spatial phase difference between the first transmitting antenna and the second transmitting antenna may be recorded as the second phase Difference:
  • the detection device can determine the Doppler phase difference according to the first phase difference and the second phase difference.
  • the Doppler phase difference may specifically be the difference between the first phase difference and the second phase difference. For example, if the first phase difference is 50 degrees and the second phase difference is 30 degrees, the Doppler phase difference can be 20 degrees between the two.
  • At least one first signal may correspond to a first transmitting antenna
  • at least one second signal may correspond to a second transmitting antenna
  • at least one first signal corresponds to a first virtual sub-array
  • at least one second signal corresponds to a second virtual sub-array.
  • the first transmitting antenna corresponds to the first virtual sub-array
  • the second transmitting antenna corresponds to the second virtual sub-array.
  • the transmitting antenna array of the detection device includes a first transmitting antenna and a second transmitting antenna, and the first transmitting antenna and the second transmitting antenna are respectively transmitted during the L-th TDM group and the k-th TDM sub-group.
  • the first transmitting antenna corresponds to the first virtual sub-array
  • the second transmitting antenna corresponds to the second virtual sub-array.
  • the phase difference ⁇ between the first beam and the second beam is calculated; then according to the first beam and the second beam beam pointing angle, estimated space between the first transmit antenna and the second transmit antenna phase ⁇ s; for example, space between the first transmit antenna the second transmit antenna and the phase difference ⁇ s may satisfy the following conditions:
  • ⁇ s represents the spatial phase difference between the first transmitting antenna and the second transmitting antenna
  • Indicates the pointing angle of the first beam and the second beam (for example, if the pointing angles of the first beam and the second beam have a certain deviation in value, any value or average value of the two pointing angles can be taken here)
  • d Tx represents the physical distance between the first transmitting antenna and the second transmitting antenna. For example, in a detection device, if the distance between the first transmitting antenna and the second transmitting antenna is 2 cm, then d Tx is The value is 2 cm.
  • the detection device can determine the Doppler phase difference.
  • the Doppler phase difference can meet the following conditions:
  • ⁇ d represents the Doppler phase difference
  • represents the phase difference between the first beam and the second beam
  • ⁇ s represents the spatial phase difference between the first transmitting antenna and the second transmitting antenna.
  • the first transmitting antenna in the process shown in FIG. 4 is transmitting antenna 1
  • the second transmitting antenna is transmitting antenna 2
  • the first beam is beam 1
  • the second beam is beam 2
  • the first The target is the target 1
  • the virtual sub-array is the receiving sub-array as an example to illustrate the process of the flow in Figure 4 above.
  • the detection device performs beamforming on the signal received by the transmitting antenna 1 corresponding to the receiving sub-array to generate beam 1, which is directed to target 1.
  • the detection device performs beamforming on the signal received by the transmitting antenna 2 corresponding to the receiving sub-array to generate a beam 2, which is directed to the target 1.
  • the foregoing beamforming may be implemented by fast Fourier transform (fast Fourier transform, FFT).
  • the phase difference ⁇ between beam 1 and beam 2 can be the Doppler phase difference ⁇ d caused by the movement of target 1 And the sum of the spatial phase difference ⁇ s caused by the transmitting antenna 1 and the transmitting antenna 2, namely
  • represents the phase difference between the first beam and the second beam
  • ⁇ d represents the Doppler phase difference
  • ⁇ s represents the spatial phase difference between the first transmitting antenna and the second transmitting antenna.
  • the detection device in the process shown in FIG. 4 may include a first transmitting antenna, and the detection device may transmit the first signal and the second signal in a time-sharing manner through the first transmitting antenna.
  • the first signal reaches the target object and is reflected by the target object to form a reflected signal.
  • the reflected signal corresponding to the first signal is received through the first virtual sub-array.
  • beamforming is performed on the signal received by the first virtual sub-array to generate the first beam.
  • the second signal can also reach the target object and be reflected by the target object to form a reflected signal.
  • the reflected signal corresponding to the second signal is received through the first virtual sub-array.
  • the signal received by the first virtual sub-array is Perform beamforming to generate a second beam.
  • the first spatial phase difference between the first beam and the second beam corresponds to the same transmitting antenna (that is, the above-mentioned first transmitting antenna), there is no need to compensate for the spatial phase difference between the two antennas, the first spatial phase difference between the first beam and the second beam, That is the above-mentioned Doppler phase difference.
  • the Doppler phase difference is also 50 degrees.
  • the first spatial phase difference between the first beam and the second beam includes the Doppler phase difference and It can include the spatial phase difference between the two transmitting antennas.
  • the Doppler phase difference is the difference between the two The difference is 20 degrees.
  • the above process can also be described as: the detection device determines the first phase difference between the first beam and the second beam. The detection device determines the Doppler phase difference according to the first phase difference. Furthermore, the detection device can determine the speed, angle or distance of the target object based on the Doppler phase difference. How the detection device determines the speed, angle, or distance of the target object will be described in detail in the following embodiments.
  • At least one of the first phase difference and the Doppler phase difference may also be an intermediate variable or parameter, and there is no need to separately determine at least one of the first phase difference and the Doppler phase difference. , And finally determine the information of the target object.
  • a specific implementation of the above S402 can be: the detection device can determine the first phase difference between the first beam and the second beam; the detection device can determine the first phase difference between the first beam and the second beam Doppler phase difference.
  • at least one first signal may correspond to the first transmitting antenna, at least one second signal may correspond to the first transmitting antenna, or it may be described It is: at least one first signal may correspond to the first virtual sub-array, and at least one second signal may correspond to the first virtual sub-array.
  • the first transmitting antenna corresponds to the first virtual sub-array and so on.
  • the transmitting antenna 1 repeatedly transmits in different TDM groups.
  • the transmitting antenna 1 transmits at the time of the M-th TDM group and the P-th TDM small group.
  • the M-th TDM group and the P-th TDM group may be TDM groups adjacent in time.
  • the M-th TDM group is TDM group 1
  • the P-th TDM group is TDM group 2, and so on.
  • the M-th TDM group is TDM group 1
  • the P-th TDM group is TDM group 2 as an example.
  • beamforming is performed twice on the signals received by the receiving sub-array corresponding to the transmitting antenna 1 to form beam 1 and beam 2. Because beam 1 and beam 2 correspond to the same transmitting antenna, they are not affected by array errors. The beam 1 and the beam 2 are from the same transmitting antenna, and there is no need to compensate for the spatial phase difference ⁇ s caused between the transmitting antenna 1 and the transmitting antenna 2. At this time, the phase difference ⁇ between the first beam and the second beam is the Doppler phase difference.
  • the detection device can determine the Doppler phase difference by the method of the flow shown in FIG. 4. Furthermore, the detection device can resolve velocity ambiguity based on the Doppler phase difference. After the detection device resolves the speed blur, it can determine the speed, angle or distance of the first target. In order to facilitate understanding, the reasons for the speed blur are first explained below.
  • the detection device when the detection device adopts the FMCW waveform, its velocity measurement range is determined by the interval time of the chirp signal between the antennas, and the maximum velocity measurement range is [-v max ,v max ].
  • the speed measurement range of the detection device is [-200, 200] km/h, then the value of -v max is -200 km/h, and the value of v max is 200 km/h.
  • [lambda] represents wavelength of the FMCW signal
  • T r represents the time interval different chirp, or representatives of chirp cycles.
  • the time-sharing transmission between different TDM groups will cause the two chirp delays of the same group to be N times the original, that is, N*Tr.
  • the maximum speed range of TMD FMCW will be reduced to 1/N, and the maximum fuzzy speed is
  • v max maximum detection range represents the detection device
  • T r represents the time interval different chirp signals, or on behalf of the chirp period
  • N represents the number of TDM transmit antenna group detecting means, a signal representing the wavelength [lambda] .
  • T r the Doppler frequency shift representative of, T r represents the time intervals of different chirp signals, or on behalf of the periodic chirp signals, k is sequentially transmitted TDM group.
  • phase difference between adjacent transmitting antennas is The phase difference contains not only spatial angle information, but also velocity information, that is, the problem of angular velocity coupling occurs.
  • represents the angle of the target object
  • represents the spatial phase difference between the first transmitting antenna and the second transmitting antenna
  • d Tx represents the physical distance between the first transmitting antenna and the second transmitting antenna
  • represents the wavelength of the signal
  • f d represent the true Doppler shift
  • T r designates a transmission chirp period (chirp) signals, or on behalf of adjacent chirp time (chirp) signals interval.
  • f d represents the true Doppler frequency shift
  • represents the wavelength of the signal
  • v represents the speed of the target object.
  • the Doppler frequency shift f damb may be ambiguous.
  • the number of phase ambiguities is defined as the velocity ambiguity coefficient ⁇ , namely
  • f d represents the true Doppler frequency shift
  • f damb represents the blurred Doppler frequency shift after 2D-FFT
  • represents the velocity ambiguity coefficient
  • N represents the number of TDM groups of the transmitting antenna in the detection device
  • T r represents the time interval of different chirp signals, or, represents the period of the chirp signal. Since TDM reduces the blurring speed by N times, that is In order to understand the speed/angle coupling, only need to restore the blur speed to the single chirp maximum blur speed Therefore, there are N possible values for the fuzzy system.
  • the maximum blur speed corresponding to a single chirp is usually made to meet certain system requirements.
  • TDM-MIMO resolution speed blur is to find the correct one of the three possible ⁇ .
  • the detection device can determine the velocity ambiguity coefficient according to the Doppler phase difference. For example, when the detection device resolves the TDM velocity ambiguity, the velocity ambiguity coefficient can meet the following conditions:
  • represents the velocity ambiguity coefficient
  • ⁇ d represents the Doppler phase difference
  • f damb represents the Doppler frequency shift after 2D-FFT
  • k represents the TDM group identification corresponding to the first transmitting antenna
  • l represents the second transmitting antenna
  • T r represents the transmission period of a chirp signal, or the time interval of adjacent chirp signals
  • N represents the number of TDM groups of the transmitting antenna in the detection device.
  • the detection device can determine the Doppler frequency shift according to the velocity ambiguity coefficient.
  • the 2D-FFT Doppler frequency shift f damb obtained may be ambiguous, or called inaccurate.
  • the Doppler frequency shift determined by the detection device can satisfy the following conditions:
  • f d represents the true Doppler frequency shift
  • f damb represents the blurred Doppler frequency shift after 2D-FFT
  • represents the velocity ambiguity coefficient
  • N represents the number of TDM groups of the transmitting antenna in the detection device
  • T r Represents the transmission period of a chirp signal, or, represents the time interval of adjacent chirp signals.
  • the detection device can determine the speed of the target object according to the real Doppler frequency shift determined above. For example, the speed of the target object satisfies the following conditions:
  • f d represents the true Doppler frequency shift
  • represents the wavelength of the chirp signal
  • v represents the speed of the target object.
  • the detection device may also determine the angle of the target object according to the real Doppler frequency shift determined above, for example, the angle of the target object satisfies the following conditions:
  • represents the angle of the target object
  • represents the spatial phase difference between the first transmitting antenna and the second transmitting antenna
  • d Tx represents the physical distance between the first transmitting antenna and the second transmitting antenna
  • represents the chirp signal wavelength
  • f d represent the true Doppler shift
  • the chirp transmit the representative period T r (chirp) signals, or on behalf of adjacent chirp time (chirp) signals interval.
  • represents the spatial phase difference between the first beam and the second beam
  • ⁇ d represents the Doppler phase difference
  • ⁇ s represents the phase difference of the adjacent transmitting antennas
  • f damb represents the fuzzy Doppler after 2D-FFT Frequency shift
  • T r represents the transmission period of the chirp signal, or the time interval between adjacent chirp signals
  • represents the velocity ambiguity coefficient
  • N represents the number of TDM groups of the transmitting antenna in the detection device
  • K represents the TDM group identification of the first transmitting signal when the first transmitting antenna is transmitting in time-sharing
  • l represents the TDM group identification of the second transmitting signal when the first transmitting antenna is transmitting in time-sharing
  • represents the target object Angle
  • d Tx represents the physical distance between the first transmitting antenna and the second transmitting antenna
  • represents the wavelength of the chirp signal.
  • [Phi] represents a first space between the beam and the second beam phase difference
  • ⁇ d representative of the Doppler phase difference
  • f damb is the fuzzy after 2D-FFT Doppler shift
  • T r on behalf of the chirp (Chirp) The transmission period of the signal, or, represents the time interval between adjacent chirp signals
  • represents the velocity ambiguity coefficient
  • N represents the number of TDM groups of the transmitting antenna in the detection device
  • m represents the time-sharing transmission of the first transmitting antenna
  • p represents the TDM group ID of the second transmitting signal when the first transmitting antenna is transmitting in time-sharing.
  • the detection device can determine the velocity ambiguity system based on the Doppler phase difference.
  • the speed fuzzy coefficient can meet the following conditions:
  • represents the velocity ambiguity coefficient
  • represents the spatial phase difference between the first beam and the second beam
  • represents the Doppler frequency phase difference (at this time, the Doppler phase difference is compared with the first beam and the second beam the phase difference between the space are equal)
  • f damb is the fuzzy after 2D-FFT Doppler shift
  • T r designates a transmission chirp period (chirp) signals, or on behalf of adjacent chirp (chirp) signals
  • N represents the number of TDM groups of the transmitting antenna in the detection device
  • m represents the TDM group ID of the first transmitting signal when the first transmitting antenna is transmitting in time-sharing
  • p represents the first transmitting antenna in time-sharing transmission At the time, the TDM team's identification for the second transmission.
  • the detection device can determine the true Doppler frequency shift based on the velocity ambiguity coefficient.
  • the detection device can determine the speed and/or angle of the target object according to the true Doppler frequency shift.
  • the specific process please refer to the above record, which will not be repeated here.
  • this application also provides a signal processing flow: the receiving end of the detection device uses M groups of virtual sub-arrays to receive signals, and each group of virtual sub-arrays includes one or Multiple virtual array elements.
  • the detection device determines M TDM groups of the transmitting antenna, and time-sharing transmission among different TDM groups.
  • the signals emitted by different TDM groups are reflected by the target to form a reflected signal.
  • the receiving end of the detection device may use M groups of virtual sub-arrays to receive the signals corresponding to the above M TDM groups. Then, for the signals received by each group of virtual sub-arrays, a two-dimensional fast fourier transform (2D-FFT) is performed respectively.
  • 2D-FFT two-dimensional fast fourier transform
  • overlapping array elements are not required to solve the TDM-MIMO speed ambiguity, which is less affected by the array error, and can accumulate more signal-to-noise ratio, thereby achieving better defuzzification performance.
  • the mutual interference between different speed ambiguity targets on the same distance and speed unit is filtered, and the probability of successful velocity ambiguity resolution is enhanced.
  • the methods and operations implemented by the detection device can also be implemented by parts of the detection device (for example, a chip or a circuit).
  • the method provided in the embodiment of the present application is introduced from the perspective of a detection device.
  • the detection device may include a hardware structure and/or a software unit, and realize the above functions in the form of a hardware structure, a software unit, or a hardware structure plus a software unit. Whether a certain function of the above-mentioned functions is executed by a hardware structure, a software unit, or a hardware structure plus a software unit depends on the specific application and design constraint conditions of the technical solution.
  • FIG. 10 is a schematic block diagram of an apparatus 1000 provided by an embodiment of the present application, which is used to implement the function of the detection apparatus in the foregoing method.
  • the device may be a software module or a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device 1000 may include a communication unit 1001 and may also include a processing unit 1002.
  • the communication unit 1001 can communicate with the outside.
  • the processing unit 1002 is used for processing.
  • the communication unit 1001 can also be referred to as a communication interface, a transceiver unit, or an input/output interface.
  • the communication unit 1001 may include a sending unit and/or a receiving unit, etc., for performing the sending or receiving steps of the detection device in the flow of FIG. 4 above.
  • the device 1000 can implement steps corresponding to the steps performed by the detection device in the flow shown in FIG. 4, and the device 1000 can be a vehicle-mounted terminal, or a chip or circuit configured in the vehicle-mounted terminal.
  • the device 1000 may be a radar, or a chip or circuit configured in the radar, and the radar may be a millimeter wave radar or the like.
  • the device 1000 may be a vehicle-mounted central processing unit, or a chip or circuit configured in the vehicle central processing unit.
  • the device 1000 may be a cockpit domain controller (CDC), or a chip or circuit configured in the CDC.
  • CDC cockpit domain controller
  • the communication unit 1001 is configured to perform the transceiving-related operations of the detection device in the above method embodiment
  • the processing unit 1002 is configured to perform the processing related operations of the detection device in the above method embodiment.
  • the communication unit 1001 is configured to receive at least one first signal corresponding to the first transmitting antenna.
  • the processing unit 1002 is configured to perform beamforming processing on the at least one first signal to generate a first beam, and determine the information of the first target according to the phase of the first beam and the phase of the second beam.
  • the second beam corresponds to at least one second signal received by the detection device, and there is a first time difference between the first beam and the second beam.
  • the second beam is generated after beamforming processing is performed on at least one second signal.
  • the processing unit 1002 determines the information of the first target according to the phase of the first beam and the phase of the second beam, it is specifically configured to: determine the Doppler according to the phase of the first beam and the phase of the second beam Phase difference: According to the Doppler phase difference, the information of the first target is determined.
  • At least one second signal corresponds to a second transmitting antenna.
  • the processing unit 1002 is specifically configured to: determine the first phase difference according to the phase of the first beam and the phase of the second beam; Determine the second phase difference between the phase of a transmitting antenna and the phase of the second transmitting antenna; and determine the Doppler phase difference according to the first phase difference and the second phase difference.
  • At least one first signal corresponds to a first virtual sub-array
  • at least one second signal corresponds to a second virtual sub-array
  • the at least one second signal corresponds to the first transmitting antenna
  • the processing unit 1002 determines the Doppler phase difference according to the phase of the first beam and the phase of the second beam, it is specifically configured to: The phase and the phase of the second beam determine the first phase difference; according to the first phase difference, the Doppler phase difference is determined.
  • the at least one first signal and the at least one second signal both correspond to the first virtual sub-array.
  • the first pointing angle of the first beam and the second pointing angle of the second beam indicate the first target, and/or the angular difference between the first pointing angle of the first beam and the second pointing angle of the second beam Is less than or equal to the first threshold, and/or the difference between the energy of the first beam and the energy of the second beam is less than or equal to the second threshold.
  • the information of the first target includes at least one of the angle, speed, or distance of the first target.
  • the first time difference is that the first time difference is a time difference between different TDM groups.
  • each functional unit may be integrated in a processor, or may exist alone physically, or two or more units may be integrated in one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the functions of the communication unit in the foregoing embodiments may be implemented by a transceiver, and the functions of the processing unit may be implemented by a processor.
  • the transceiver may include a transmitter and/or a receiver, etc., which are used to implement the functions of the transmitting unit and/or the receiving unit, respectively. The following is an example for description with reference to FIG. 11.
  • FIG. 11 is a schematic block diagram of an apparatus 1100 provided in an embodiment of the present application.
  • the apparatus 1100 shown in FIG. 11 may be a hardware circuit implementation of the apparatus shown in FIG. 10.
  • the device can be applied to the process shown in FIG. 4 to perform the function of the detection device in the foregoing method embodiment.
  • FIG. 11 only shows the main components of the device.
  • the apparatus 1100 shown in FIG. 11 includes at least one processor 1101.
  • the device 1100 may further include at least one memory 1102 for storing program instructions and/or data.
  • the memory 1102 and the processor 1101 are coupled.
  • the coupling in the embodiments of the present application is an interval coupling or a communication connection between devices, units or modules, which can be electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1101 may operate in cooperation with the memory 1102, the processor 1101 may execute program instructions stored in the memory 1102, and at least one of the at least one memory 1102 may be included in the processor 1101.
  • the apparatus 1100 may further include a communication interface 1103 for communicating with other devices through a transmission medium, so that the apparatus 1100 can communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the transceiver when the communication interface is a transceiver, the transceiver may include an independent receiver and an independent transmitter; it may also be a transceiver with integrated transceiver functions, or an interface circuit.
  • the communication interface may be an antenna, and the antenna includes at least one receiving antenna and at least one transmitting antenna.
  • connection medium between the processor 1101, the memory 1102, and the communication interface 1103 is not limited in the embodiment of the present application.
  • the memory 1102, the processor 1101, and the communication interface 1103 in FIG. 11 are connected by a communication bus 1104.
  • the bus is represented by a thick line in FIG. 11, and the connection mode between other components is only a schematic illustration. , Not as a limitation.
  • the bus may include an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 11 to represent it, but it does not mean that there is only one bus or one type of bus.
  • the device 1100 is used to implement the steps performed by the detection device in the flow shown in FIG. 4 above.
  • the communication interface is used to perform the transceiving-related operations of the detection device in the above method embodiment, and the processor is used to perform the processing related operations of the detection device in the above method embodiment.
  • the communication interface 1103 is configured to receive at least one first signal corresponding to the first transmitting antenna.
  • the processor 1101 is configured to perform beamforming processing on at least one first signal to generate a first beam, and determine the information of the first target according to the phase of the first beam and the phase of the second beam; where the second beam corresponds to For at least one second signal received by the detection device, there is a first time difference between the first beam and the second beam.
  • the second beam is generated after beamforming processing is performed on the at least one second signal.
  • the processor 1101 determines the information of the first target according to the phase of the first beam and the phase of the second beam, it is specifically configured to: according to the phase of the first beam and the phase of the second beam Phase, determining the Doppler phase difference; and determining the information of the first target according to the Doppler phase difference.
  • the at least one second signal corresponds to a second transmitting antenna
  • the processor 1101 is specifically configured to determine the Doppler phase difference according to the phase of the first beam and the phase of the second beam.
  • the at least one first signal corresponds to a first virtual sub-array
  • the at least one second signal corresponds to a second virtual sub-array
  • the at least one second signal corresponds to the first transmitting antenna, and when the processor 1101 determines the Doppler phase difference according to the phase of the first beam and the phase of the second beam, specifically And configured to: determine a first phase difference according to the phase of the first beam and the phase of the second beam; and determine the Doppler phase difference according to the first phase difference.
  • the at least one first signal and the at least one second signal both correspond to the first virtual sub-array.
  • the first pointing angle of the first beam and the second pointing angle of the second beam indicate the first target, and/or, the first pointing angle of the first beam and the second pointing angle of the first beam
  • the angle difference between the second pointing angles of the two beams is less than or equal to the first threshold, and/or the difference between the energy of the first beam and the energy of the second beam is less than or equal to the second threshold.
  • the information of the first target includes at least one of an angle, a speed, or a distance of the first target.
  • the first time difference is a time difference between different TDM groups.
  • an apparatus including a unit for implementing the method described in FIG. 4 above.
  • the device includes a processor and an interface circuit, and the processor is configured to communicate with other devices through the interface circuit and execute the method described in FIG. 4 above.
  • the device includes a processor for calling a program stored in the memory to execute the method in FIG. 4 above.
  • a readable storage medium is also provided, including instructions, which when run on a computer, cause the computer to execute the method in FIG. 4 above.
  • a chip system is also provided.
  • the chip system includes processing and may also include a memory for implementing the method in FIG. 4 above.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • a computer program product is also provided, including instructions, which when run on a computer, cause the computer to execute the method designed in FIG. 4 above.
  • An embodiment of the present application also provides a sensor, which includes the device described in FIG. 10 or FIG. 11, and the sensor is a radar, such as a millimeter wave radar.
  • An embodiment of the present application further provides a sensor system, including at least one sensor, and the sensor may include the device described in FIG. 10 or FIG. 11. Further, the at least one sensor includes at least one radar, such as millimeter wave radar.
  • the vehicle includes at least one sensor, and the sensor may include the device described in FIG. 10 or FIG. 11 above.
  • the vehicle includes the device described in FIG. 10 or FIG. 11.
  • the device may be installed independently, or integrated in at least one sensor included in the vehicle, or integrated in the vehicle. Included in the smart cockpit domain controller (Cockpit Domain Controller, CDC) or in-vehicle central processing unit.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, SSD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种信号处理方法及装置,可应用于自动驾驶或智能驾驶领域,尤其涉及毫米波雷达的目标检测。该方法包括:探测装置接收应于第一发射天线的至少一个第一信号,且对至少一个第一信号执行波束成形处理,产生第一波束;根据第一波束以及至少一个第二信号对应的第二波束的相位,确定第一目标的信息。通过该方案,探测装置,例如单收多发SIMO雷达、多收多发MIMO雷达或者协同式雷达可根据第一波束和第二波束的相位,确定多普勒相位差,进而根据多普勒相位差,可确定第一目标的信息。从而可降低多普勒相位差对探测装置探测目标的影响,提高探测装置探测目标的准确性。

Description

一种信号处理方法及装置
相关申请的交叉引用
本申请要求在2019年12月23日提交中国专利局、申请号为201911342739.X、申请名称为“一种信号处理方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及自动驾驶技术或辅助驾驶技术领域,尤其涉及一种信号处理方法及装置。
背景技术
随着社会的发展,智能汽车正在逐步进入人们的日常生活中。传感器在智能汽车的辅助驾驶和自动驾驶中发挥着十分重要的作用。安装在车上的各式各样的传感器,在汽车行驶过程中随时感知周围的环境、收集数据,进行移动物体的辨识与追踪,以及静止场景如车道线、标示牌的识别,并结合导航仪以及地图数据进行路径规划。传感器可以预先察觉到可能发生的危险并及时帮助驾驶员甚至自主采取必要的规避手段,有效增加了汽车驾驶的安全性和舒适性。
在自动驾驶或辅助驾驶领域中,传感器可包括毫米波雷达、激光雷达、摄像头和超声波雷达等探测装置。在驾驶过程中,安全性是非常重要的因素,这就为道路环境以及目标对象的检测提出了要求。探测装置,尤其对于雷达装置,如何检测目标对象的相关信息,是本申请实施例所要解决的问题。
发明内容
本申请实施例提供一种信号处理方法及装置,以实现探测装置检测目标对象的相关信息。
第一方面,提供一种信号处理方法,该方法应用于探测装置,该探测装置至少包括第一发射天线。探测装置可接收对应于第一发射天线的至少一个第一信号,且对至少一个第一信号执行波束成形处理,产生第一波束。探测装置根据第一波束的相位和第二波束的相位,可确定第一目标的信息。其中,上述第二波束对应于探测装置接收至少一个第二信号,第一波束和第二波束之间存在第一时间差。
其中,所述波束成形可采用傅里叶变换、自适应波束成形或最小方差无失真响应(minimum variance distortionless response,MVDR)等方式实现不作限定。比如,以利用傅里叶变换实现波束成形为例,所述对至少一个第一信号执行波束成形处理,产生第一波束,包括:探测装置可对至少一个第一信号执行傅里叶变换,得到多个波束;在多个波束中,确定第一波束。例如,可在多个波束中,选择能量最强的波束,作为第一波束等。在一种可能的实现中,上述至少一个第一信号可包括至少两个第一信号,上述至少一个第二信号可包括至少两个第二信号。
通过上述方法,探测装置根据第一波束的相位和第二波束的相位,确定第一目标的信息,从而实现对目标对象的检测。进一步的,探测装置可根据第一波束的相位和第二波束的相位,确定多普勒相位差,根据多普勒相位差,可解速度模糊,进一步提高探测装置检测目标的准确性。
所谓速度模糊是指目标对象的运动速度超出探测装置检测速度的范围时,导致探测装置所检测的速度错误的现象。比如,若探测装置检测速度的范围为[-6,6]km/h。若目标对象相对于探测装置的实际运动速度为8km/h,但由于8km/h超出了探测装置的检测范围,此时探测装置所检测的目标对象相对于探测装置的运动速度很可能为2km/h。
为了解决上述速度模糊的问题,在一种解决方案中:在设计探测装置的天线阵列时,使得两组不同发射天线对应的虚拟子阵有重叠阵元。由于重叠虚拟子阵的相位差仅为多普勒相位差引起。因此,测量重叠虚拟子阵的相位差,即可确定多普勒相位差。而根据所述多普勒相位差,即可解速度模糊。但针对上述设计重叠虚拟子阵的方式,存在以下问题:阵列孔径变小,不利于系统设计,且容易受到阵列误差的影响等问题。而在上述第一方面的设计中,探测波置可分别对至少一个第一信号,以及至少一个第二信号进行波束成形,得到第一波束和第二波束。根据上述第一波束和第二波束,两个波束的相位,即可确定多普勒相位差,进而可进行解速度模糊。可见在上述第一方面的设计中,无需将探测装置的虚拟子阵设置为重叠的方式。从而可解决上述由于上述重叠虚拟子阵所引起的阵列孔径变小、不利于系统设计、容易受到阵列误差影响等问题。
在一种可能的设计中,第二波束是对至少一个第二信号执行波束成形处理后产生的。例如,探测装置可对至少一个第二信号执行波束成形,产生第二波束。探测装置除包括上述第一发射天线发,还可包括第二发射天线,至少一个第二信号可为对应于第一发射天线的信号,或者,对应于第二发射天线的信号等,不作限定。
在一种可能的设计中,探测装置根据第一波束的相位以及第二波束的相位,确定第一目标的信息,具体为:探测装置根据第一波束的相位和第二波束的相位,确定多普勒相位差;探测装置根据多普勒相位差,确定第一目标的信息。
例如,探测装置可根据多普勒相位差,确定速度模糊系数。之后,根据速度模糊系数,可确定真实的多普勒频移。进而根据真实的多普勒频移,可确定目标对象的速度、角度和/或距离等,减少速度模糊对探测装置的影响。
在一种可能的设计中,上述至少一个第二信号对应于第二发射天线,探测装置根据第一波束的相位和第二波束的相位,确定多普勒相位差,具体为:探测装置根据第一波束的相位和第二波束的相位,确定第一相位差;探测装置根据第一发射天线的相位和第二发射天线的相位,确定第二相位差;探测装置根据第一相位差和第二相位差,确定多普勒相位差。比如,上述多普勒相位差可具体为第一相位差与第二相位差,两者间的差值。比如,若第一相位差为91度,第二相位差为90度,则上述多普勒相位差可为1度。
通过上述方法,探测装置可包括第一发射天线和第二发射天线,第一发射天线发射信号,经目标对象反射,形成上述至少一个第一信号。探测装置的接收子阵可接收上述至少一个第一信号。对至少一个第一信号执行波束成形处理,产生第一波束。同理,第二发射天线可发射信号,经目标对象反射,形成上述至少一个第二信号。探测装置的接收子阵可接收上述至少一个第二信号。对至少一个第二信号执行波束成形处理,产生第二波束。由于第一发射天线和第二发射天线为不同的天线,存在空间上位差。因此上述第一波束和第 二波束之间的相位差,除包括多普勒相位差外,还包括上述两个发射的空间相位差。即上述两个发射天线间的空间相位差,与多普勒相位差,两者之和,等于上述第一波束与第二波束之间的相位差。因此,探测装置可计算第一波束与第二波束的相位差,以及,第一发射天线与第二发射天线之间的空间相位差,可确定多普勒相位差。比如,若第一波束与第二波束的相位差为90.5度,第一发射天线与第二发射天线间的空间相位差为90度,则可确定多普勒相位差为0.5度。进一步,可消除或降低多普勒相位差,对探测装置的影响。
在一种可能的设计中,至少一个第一信号对应于第一虚拟子阵,至少一个第二信号对应于第二虚拟子阵。
通过上述方法,探测装置中接收上述第一信号的子阵可称为第一虚拟子阵,接收上述第二信号的子阵可称为第二虚拟子阵。还可描述为:第一发射天线对应于第一虚拟子阵,第二发射天线对应于第二虚拟子阵等。
在一种可能的设计中,至少一个第二信号对应于第一发射天线,探测装置根据第一波束的相位和第二波束的相位,确定多普勒相位差,具体为:探测装置根据第一波束的相位和第二波束的相位,确定第一相位差;探测装置根据第一相位差,确定多普勒相位差。
通过上述方法,探测装置中包括第一发射天线,第一发射天线可同时属于不同的TDM小组,比如,第一发射天线同时属于第一TDM小组和第二TDM小组。则第一发射天线可在第一TDM小组对应的时间段发射信号,上述信号经目标对象反射,可形成上述至少一个第一信号。探测装置的虚拟子阵可接收上述至少一个第一信号,对至少一个第一信号进行波束成形,产生第一波束。同时,第一发射天线可在第二TDM小组对应的时间段发射信号,上述信号经目标对象反射,可形成上述至少一个第二信号。探测装置可对上述至少一个第二信号执行波束成形,产生第二波束。由于第一信号和第二信号是同一第一发射天线发射的。因此,上述第一波束与第二波束的相位差,仅包括多普勒相位差,并不包括不同发射天线间的空间相位差。即上述第一波束与第二波束的相位差,即等于多普勒相位差。在该设计中,两个TDM小组采用同一天线发射,可以有效减轻阵列、天线误差等对多普勒相位差测量的影响。
在一种可能的设计中,至少一个第一信号和至少一个第二信号对应于第一虚拟子阵。
在一种可能的设计中,第一波束的第一指向角和第二波束的第二指向角指示第一目标,和/或,第一波束的第一指向角和第二波束的第二指向角的角度差小于或等于第一阈值,和/或,第一波束的能量与第二波束的能量差小于或等于第二阈值。
在一种可能的设计中,第一目标的信息包括第一目标的角度、速度或距离中的至少一个。
在一种可能的设计中,第一时间差为不同时分复用TDM小组之间的时间差。
比如,在一种示例中,探测装置包括N个TDM小组,所述N个TDM小组分时发射。设定N个TDM小组中包括第L个TDM小组和第K个TDM小组,L和K均为大于或等于1,小于或等于N的整数,第L个TDM小组中包括第一发射天线,第K个TDM小组中包括第二发射天线。探测装置中的第一发射天线在第L个TDM小组对应的时间段内发射第一信号。探测装置中的第二发射天线在第K个TDM小组对应的时间段内发射第二信号。上述第一时间差可指第L个TDM小组与第K个TDM小组间的时间差。或者,在另一种示例中,设定探测装置的N个TDM小组中包括第M个TDM小组和第P个TDM小组,所述M与P为大于或等于1,小于或等于N的整数。设定第M个TDM小组中包括 第一发射天线,探测装置的第一发射天线在第M个TDM小组对应的时间段内发射第一信号。第P个TDM小组中也包括第一发射天线,探测装置的第一发射天线在第P个TDM小组对应的时间段内发射第二信号。上述第一时间差可指第M个TDM小组与第P个TDM小组间的时间差。
第二方面,提供一种装置,该装置可以是探测装置,也可是探测装置中的装置,例如,可以是车载终端中的装置,或者可以是雷达中的装置等,该装置可以包括处理单元和通信单元,且处理单元和通信单元可以执行上述第一方面任一种涉及中的相应功能,具体的:
通信单元,用于接收对应于第一发射天线的至少一个第一信号;处理单元,用于对所述至少一个第一信号执行波束成形处理,产生第一波束;所述处理单元,还用于根据所述第一波束的相位以及第二波束的相位,确定第一目标的信息;
其中,所述第二波束对应探测装置接收的至少一个第二信号,所述第一波束和所述第二波束之间存在第一时间差。
在一种可能的设计中,所述第二波束对所述至少一个第二信号执行波束成形处理后产生的。
在一种可能的设计中,所述处理单元在根据所述第一波束的相位以及第二波束的相位,确定第一目标的信息时,具体用于:根据所述第一波束的相位和所述第二波束的相位,确定多普勒相位差;根据所述多普勒相位差,确定所述第一目标的信息。
在一种可能的设计中,所述至少一个第二信号对应于第二发射天线,所述处理单元在根据所述第一波束的相位和所述第二波束的相位,确定多普勒相位差时,具体用于:根据所述第一波束的相位和所述第二波束的相位,确定第一相位差;根据所述第一发射天线的相位和所述第二发射天线的相位,确定第二相位差;根据所述第一相位差和所述第二相位差,确定所述多普勒相位差。
在一种可能的设计中,所述至少一个第一信号对应于第一虚拟子阵,所述至少一个第二信号对应于第二虚拟子阵。
在一种可能的设计中,所述至少一个第二信号对应于所述第一发射天线,所述处理单元在根据所述第一波束的相位和所述第二波束的相位,确定多普勒相位差时,具体用于:根据所述第一波束的相位和所述第二波束的相位,确定第一相位差;根据所述第一相位差,确定所述多普勒相位差。
在一种可能的设计中,所述至少一个第一信号和所述至少一个第二信号对应于第一虚拟子阵。
在一种可能的设计中,所述第一波束的第一指向角和所述第二波束的第二指向角指示所述第一目标,和/或,所述第一波束的第一指向角和所述第二波束的第二指向角的角度差小于或者等于第一阈值,和/或,所述第一波束的能量与所述第二波束的能量的差小于或者等于第二阈值。
在一种可能的设计中,所述第一目标的信息包括所述第一目标的角度、速度或距离中的至少一个。
在一种可能的设计中,所述第一时间差为不同时分复用TDM小组之间的时间差。
第三方面,提供一种装置,所述装置包括处理器,用于实现上述第一方面描述的方法。所述装置还可以包括存储器、用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的程序指令,可以实现上述第一方面描述的方法。所述装置 还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。示例性的,通信接口可以是收发器、电路、总线、天线(尤其适用于雷达装置)或其它类型的通信接口等。在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中的指令,以执行:控制通信接口接收对应于第一发射天线的至少一个第一信号,对至少一个第一信号执行波束成形处理,产生第一波束;根据第一波束的相位以及第二波束的相位,确定第一目标的信息;其中,第二波束对应于探测接收的至少一个第二信号,第一波束和第二波束之间存在第一时间差。
在一种可能的设计中,所述第二波束是对所述至少一个第二信号执行波束成形处理后产生的。
在一种可能的设计中,处理器在根据所述第一波束的相位以及第二波束的相位,确定第一目标的信息时,具体用于:根据所述第一波束的相位和所述第二波束的相位,确定多普勒相位差;根据所述多普勒相位差,确定所述第一目标的信息。
在一种可能的设计中,所述至少一个第二信号对应于第二发射天线,处理器在根据所述第一波束的相位和所述第二波束的相位,确定多普勒相位差时,具体用于:根据所述第一波束的相位和所述第二波束的相位,确定第一相位差;根据所述第一发射天线的相位和所述第二发射天线的相位,确定第二相位差;根据所述第一相位差和所述第二相位差,确定所述多普勒相位差。
在一种可能的设计中,所述至少一个第一信号对应于第一虚拟子阵,所述至少一个第二信号对应于第二虚拟子阵。
在一种可能的设计中,所述至少一个第二信号对应于所述第一发射天线,处理器在根据所述第一波束的相位和所述第二波束的相位,确定多普勒相位差时,具体用于:根据所述第一波束的相位和所述第二波束的相位,确定第一相位差;根据所述第一相位差,确定所述多普勒相位差。
在一种可能的设计中,所述至少一个第一信号和所述至少一个第二信号对应于第一虚拟子阵。
在一种可能的设计中,所述第一波束的第一指向角和所述第二波束的第二指向角指示所述第一目标,和/或,所述第一波束的第一指向角和所述第二波束的第二指向角的角度差小于或者等于第一阈值,和/或,所述第一波束的能量与所述第二波束的能量的差小于或者等于第二阈值。
在一种可能的设计中,所述第一目标的信息包括所述第一目标的角度、速度或距离中的至少一个。
在一种可能的设计中,所述第一时间差为不同时分复用TDM小组之间的时间差。
第四方面,提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面的方法。
第五方面,提供一种芯片系统,该芯片系统包括至少一个处理器,还可以包括至少一个存储器,所述至少一个处理器执行所述至少一个存储器所存储的程序或者指令,以实现上述第一方面的任一方法。该芯片系统可以由芯片或者集成电路构成,也可以包括芯片或者集成电路和其他分立器件。
第六方面,提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算 机执行上述第一方面的方法。
第七方面,提供一种传感器,包括上述第二方面或第三方面所述的装置。
第八方面,提供一种传感器系统,包含至少一个传感器,该传感器可包括上述第二方面或第三方面所述的装置。
第九方面,提供一种车辆,包含至少一个传感器,该传感器可包括上述第二方面或第三方面所述的装置。
附图说明
图1为本申请实施例提供的虚拟阵的示意图;
图2为本申请实施例提供的TDM波形示意图;
图3为本申请实施例提供的应用场景示意图;
图4为本申请实施例提供的信号处理流程示意图;
图5为本申请实施例提供的不同发射天线发射,接收子阵波束示意图;
图6为本申请实施例提供的同一发射天线重复发射,接收子阵波束形示意图;
图7为本申请实施例提供的TDM波形示意图;
图8为本申请实施例提供的虚拟阵示意图;
图9为本申请实施例提供的信号处理流程;
图10为本申请实施例提供的装置的一结构示意图;
图11为本申请实施例提供的装置的另一结构示意图。
具体实施方式
下面对本申请实施例所使用的一些名词或术语进行解释说明,该名词或术语也作为发明内空的一部分。
一、探测装置
探测装置,是一种用于探测目标对象的装置。例如,可用于探测目标对象的速度、角度或距离等信息中的至少一个,探测装置所探测的目标对象的速度、角度或距离等信息,可以是目标对象的绝对信息,或者,可以是目标对象相对于探测装置的相对信息等,不作限定。探测装置可安装在移动的设备上,例如,探测装置可安装在车辆上作为车载雷达探测装置。或者,探装置可安装在固定的设备上,例如,探测装置可安装在路侧单元(road side unit,RSU)等设备上。
探测装置可包括雷达(radar)等,雷达按照频段划分,可包括毫米波雷达、微波雷达、超视距雷达和激光雷达等;按照天线扫描方式划分,可包括机械扫描雷达和相控阵雷达等;按照雷达采用的技术和信号处理的方式划分,可包括相参积累雷达、非相参积累雷达、动目标显示雷达、动目标检测雷达、脉冲多普勒雷达、合成孔径雷达和边扫描边跟踪雷达;按照目标测量的参数分类,可包括测高雷达、二坐标雷达、三坐标雷达、敌我识对雷达和多端雷达等;按照角跟踪方式划分,可包括单脉冲雷达、圆锥扫描雷达和隐蔽圆锥扫描雷达。按照雷达信号形式划分,可包括脉冲雷达、连续波雷达、脉冲压缩雷达和频率捷变雷达等。
在本申请实施例中,用于实现探测装置功能的装置可以是雷达;也可以是能够支持探 测装置实现该功能的装置,例如芯片系统,该装置可以被安装在雷达中。在其它可能的实现中,该探测装置也可以独立于雷达,例如可以独立设置,或者集成于车载的中央控制器、融合单元,或者其他可能的处理单元中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现探测装置的功能的装置是雷达为例,描述本申请实施例提供的技术方案。
二、波束
波束(beam)可以理解为空间资源,可以指具有能量传输指向性的发送或接收预编码向量。并且,该发送或接收预编码向量能够通过索引信息进行标识。其中,所述能量传输指向性可以指在通过预编码处理将所发送的信号的能量聚集在一定空间位置内,接收经过该预编码向量进行预编码处理后的信号具有较好的接收功率,如满足接收解调信噪比等;所述能量传输指向性也可以指通过该预编码向量接收来自不同空间位置发送的相同信号具有不同的接收功率。可选地,同一通信设备可以有不同的预编码向量,不同的设备也可以有不同的预编码向量,即对应不同的波束。针对通信设备的配置或者能力,一个通信设备在同一时刻可以使用多个不同的预编码向量中的一个或者多个,即同时可以形成一个波束或者多个波束。波束信息可以通过索引信息进行标识,可选地,所述索引信息也可以是通过波束承载的信号或信道显式或隐式承载的索引信息,比如,所述索引信息包括但是不限于通过波束发送的同步信号或者广播信道指示该波束的索引信息。波束对(beam pair)可以包括发送端的发送波束(Tx beam)和接收端的接收波束(Rx beam)。
三、波束成形(beamforming)
波束成形用于定向信号传输或接收。对于接收端的信号处理,可以通过对至少一个接收阵元接收到的信号进行加权合成,形成所需的理想信号。从天线方向图视角来看,这样做相当于形成了规定指向的波束。例如,将原来全方位的接收方向图转换成了零点、有最大指向的波瓣方向图。同样原理也适用于发射端,对天线阵元馈电进行幅度和相位调整,从而可形成所需形状的方向图。可选的实现中,所述波束成形可采用傅里叶变换实现,比如通过4个接收阵元接收4个信号,可对所述4个信号进行傅里叶变换,得到多个波束。比如,若上述傅里叶变换为128点傅里叶变换,则可得到128个波束。若上述傅里叶变换为256点傅里叶变换,则可得到256个波束。从多个波束中,选择能量最强的波束,所述能量最强的波束可指向目标对象的位置等。可选的,所述傅里叶变换可为离散傅里叶变换,所述离散傅里叶变换的一种实现算法可为快速傅里叶变换,比如二维快速傅里叶变换等。或者,所述波束成形可采用最小方差无失真响应(minimum variance distortionless response,MVDR)、自适应波束成形等方式实现,不作限定。
波束成形技术一般应用于多天线系统。例如,多输入多输出(multi input multi output,MIMO)。由于采用了多组天线,从发射端到接收端无线信号对应同一条空间流(spatial streams),是通过多条路径传输的。在接收端采用一定的算法对多个天线(或称为接收阵元)收到的信号进行处理,可以明显改善接收端的信噪比。即使在接收端较远时,也能获得较好的信号质量。
这里需要说明的是,本申请不对波束成形的具体方式做限定,可以参考现有技术或者对现有技术进行合理的变型。
四、虚拟子阵
在MIMO雷达系统中,多个发射天线发射的发射信号,经目标对象反射形成反射信号, 接收天线分离各发射天线对应的反射信号。这些反射信号对应各个发射接收通道组合。由于这些信号是接收天线接收并经过分离的信号,而不是物理天线直接接收的信号,因此这些信号叫作虚拟信号。各个发射接收通道对应的虚拟信号按发射接收天线排布组成虚拟子阵,单个信号为虚拟阵元。可选的,多个发射天线所发射的发射信号之间可以是相互正交的。相应的,接收天线可通过信号正交性分离各发射天线对应的反射信号。
虚拟子阵还可称为接收子阵或天线子阵等,虚拟子阵可以包括一个或多个虚拟阵元,所述虚拟阵元还可称为接收阵元或天线阵元等。在MIMO雷达系统中,发射天线分时发射信号,经目标对象反射形成反射信号,接收天线可接收反射信号。一个发射天线发射的信号,在接收端,多个接收天线接收该信号对应的反射信号,该多个接收天线可形成一个虚拟子阵。
如图1所示,设定探测装置的发射天线阵列,包括发射天线T1、发射天线T2和发射天线T3,上述三个发射天线采用时分复用(time-division multiplexing,TDM)方式发射信号。探测装置的接收天线阵列,包括接收天线R1、接收天线R2、接收天线R3和接收天线R4。
其中,当探测装置的发射天线T1发射信号时,所述信号到达目标对象,经目标对象反射,可形成反射信号。探测装置的接收天线R1、接收天线R2、接收天线R3和接收天线R4均可接收上述反射信号。此时,接收天线R1、接收天线R2、接收天线R3和接收天线R4可形成一个虚拟子阵。参照图1,该虚拟子阵可包括虚拟阵元1、虚拟阵元2、虚拟阵元3和虚拟阵元4。同理,当探测装置的发射天线T2发射信号时,探测装置的接收天线R1、接收天线R2、接收天线R3和接收天线R4可形成另一个虚拟子阵。参照图1,此时虚拟子阵可包括虚拟阵元5、虚拟阵元6、虚拟阵元7和虚拟阵元8。当探测装置的发射天线T3发射信号时,探测装置的接收天线R1、接收天线R2、接收天线R3和接收天线R4可形成另一虚拟子阵。参照图1,此时该虚拟子阵可包括虚拟阵元9、虚拟阵元10、虚拟阵元11和虚拟阵元12。
五、时分复用(time division multiplexing,TDM)小组
在MIMO系统中,探测装置(例如雷达)中包括多个发射天线,可将多个发射天线分为N个TDM小组,不同TDM小组间分时发送信号,所述N为大于或等于1的整数。比如,可将探测装置的多个发射天线,随机划分为N个TDM小组。或者,可按照探测装置中多个发射天线的天线编号,按顺序划分为N个TDM小组等。仍可参照图1所示,探测装置包括发射天线T1、发射天线T2和发射天线T3。可将上述3个发射天线分为三个TDM小组,每个TDM小组中包括一个发射天线。或者,可将上述3个发射天线分为两个TDM小组,TDM小组1和TDM小组2。TDM小组1中可包括发射天线1和发射天线2。TDM小组2中可包括发射天线3。TDM小组1和TDM小组2分时发射,而对于TDM小组1中的发射天线1和发射天线2同时发射信号。其中,不同TDM小组中可包括相同或不同的发射天线,不作限定。比如,两个不同的TDM小组可包括同一发射天线等,即同一发射天线在不同的TDM小组中重复发送信号。这里需要说明的是,上述TDM小组的设置或者划分可以是雷达出厂时设置的(或者说是雷达的初始设计),也可以是在应用中设置的,还可以是根据雷达的类型设置的,这里对具体的设置方式不做限定。
在MIMO系统中,探测装置采用调频连续波(frequency modulated continuous wave,FMCW),探测装置的发射天线所发射的信号称为啁啾(chirp)信号。如图2所示,啁啾 信号的周期为Tr,或者称为,啁啾信号的时间间隔为Tr。探测装置可以为不同TDM小组的发射天线分配不同的啁啾信号,不同的啁啾信号的带宽、频率或周期等中的至少一个相同或不同。比如,TDM小组1中包括发射天线1,TDM小组2中包括发射天线2。TDM小组1和TDM小组2分时发射。TDM小组1在第一时间段内发射,TDM小组2在第二时间段内发射,第一时间段与第二时间段不同。那么,TDM小组1内的发射天线1可在第一时间段,发射第一时间段所对应的啁啾信号1。TDM上组2内的发射天线2可在第二时间段,发射第二时间段所对应的啁啾信号2。进一步说明的是,针对同一个TDM小组包括多个发射天线的情况,该TDM小组中的多个发射天线均发送该TDM小组对应时间段的啁啾信号。比如,仍沿用上述举例,TDM小组2对应啁啾信号2。若TDM小组2中包括发射天线3和发射天线4,则发射天线3和发射天线4均在第二时间段内发送该啁啾信号2。
六、波束的指向角
在不同的场景中,波束的指向角可能有不同的定义,本申请实施例不作具体的限定。比如,波束的指向角一般是指以传感器中轴线的延长线为轴线,由此向外,至能量强度减少一半处的角度。所述波束的指向角还可称为波束的方向角、波束角等。在以下实施例中,以波束的指向角为例进行说明。
七、多普勒相位差
多普勒效应的理论体现为物体辐射的波长因为波源和观测者的相对运动而产生变化。多普勒效应造成的发射和接收的频率之差称为多普勒频移,多普勒频移揭示了波的属性在运动中发生变化的规律。具体的,如果目标运动,雷达的回波信号会产生多普勒频移现象。多普勒相位差一般是由于目标移动,导致多普勒频移引起的相位差。
八、两个发射天线的空间相位差
由于两个发射天线在空间上的位置不同,导致到达两个发射天线发射的信号到达同一个目标的时间不同,从而引起两个发射天线的空间相位差。或者,可描述为:由于两个发射天线的信号到达同一目标的时间不同,将产生一个时间差,所述时间差,将导致两个发射天线的空间相位差。
九、速度模糊
所谓速度模糊是指目标对象的运动速度超出探测装置检测速度的范围时,导致探测装置所检测的速度错误的现象。比如,若探测装置检测速度的范围为[-6,6]km/h。若运动目标相对于探测装置的实际运动速度为8km/h,但由于8km/h超出了探测装置的检测范围,此时探测装置所检测的目标对象相对于探测装置的运动速度很可能为2km/h。
在MIMO雷达系统中,假设包括M个发射天线,M个发射天线可以采用时分复用(time division multiplexing,TDM)的方式发射信号。虽然MIMO雷达可以提高角度分辨率,但MIMO雷达对应的最大测速范围下降到同一发射周期的单输入多输出(single input multiple output,SIMO)雷达的1/M,在计算目标对象的速度时更容易发生速度混叠的情况,从而造成速度模糊。
速度模糊还可以是指当真实速度|v|>v max时,将会使得多普勒相位差|2πf dT r·N|>π,相位出现模糊,从而出现速度模糊的现象。其中,上述v max指探测装置所能探测目标对象的最大速度。比如,若探测装置最大仅能探测20km/h的目标对象,则v max的取值为20km/h。其中,上述f d代表多普勒频移,T r代表啁啾(chirp)信号的发射周期,或者,代表相邻啁啾(chirp)信号的时间间隔,N代表探测装置中的发射天线的TDM小组的数量。
进一步,需要说明的是,在本申请实施例的描述中,“第一”、“第二”等词汇(例如,“第一信号”、“第二信号”、“第一波束”、“第二波束”等),仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B,其中,A,B可以是单个或多个。a、b、c中的至少一项(个),可以表示,a;b;a和b;a和c;b和c;a、b和c。其中,a、b、c可以是单个或多个。“至少一个(项)”可以表示一个(项)或多个(项)。
如图3所示,为本申请实施例提供的一种可能的应用场景示意图。上述应用场景可以为无人驾驶、自动驾驶、辅助驾驶、智能驾驶、网联驾驶等。本申请实施例中的探测装置可以安装在机动车辆(例如无人车、智能车、电动车、数字汽车等)、无人机、轨道机、自行车、信号灯、测速装置或网络设备(如各种系统中的基站、终端设备)等等。另外,上述装置除可安装探测装置外,还可安装处理装置和通信装置等。本申请实施例中,适用于车与车之间的探测装置,也适用于车与无人机等其他装置的探测装置,或其他装置之间的探测装置。另外,探测装置、处理装置和通信装置可以安装在移动设备上,例如,探测装置安装在车辆上作为车载雷达,或者,探测装置、处理装置和通信装置可以安装在固定的设备上,例如安装在路侧单元(road side unit,RSU)等设备上。
可以理解的是,上述应用场景仅为示意性说明,并不作为对本申请实施例的限定。比如,本申请实施例所提供的方法及装置,除上述应用场景外,还可应用于其它应用场景等,不作限定。
图3所示的探测装置中可包括毫米波雷达,以下以毫米波雷达为例介绍探测装置的工作原理,以及在当前方案中探测装置存在的问题。
毫米波雷达有全天候、全天时、低成本等特点,成为汽车安全驾驶领域中重要的传感器之一。如图2所示,毫米波雷达通常采用FMCW波形,FMCW波形可以实现大带宽,长相干累积时间,因此具有很高的测距、测速精度和分辨能力。毫米波雷达同时采用多输入多输出(multiple-input multiple-output,MIMO)技术,实现角度的高测量精度和高分辨力。上述技术使得毫米波雷达具有高分辨成像、高精度定位的能力,降低与昂贵的激光探测器之间的性能差距。
针对MIMO毫米波雷达,虽然可提高角度分辨率。但MIMO雷达对应的最大测速范围将下降到同一发射周期的SIMO雷达的1/M(所述M为MIMO中发射天线的数量,上述M个发射天线可采用TDM的方式发射信号),从而可能会造成速度模糊的现象。
所谓速度模糊是指目标对象的运动速度超出探测装置检测速度的范围时,导致探测装置所检测的速度错误的现象。比如,若探测装置检测速度的范围为[-6,6]km/h。若运动目标相对于探测装置的实际运动速度为8km/h,但由于8km/h超出了探测装置的检测范围,此时探测装置所检测的目标对象相对于探测装置的运动速度很可能为2km/h。
为了解决上述速度模糊的问题,在一种解决方案中:在设计探测装置的天线阵列时,使得两组不同发射天线对应的虚拟子阵有重叠阵元。由于重叠虚拟子阵的相位差仅为多普勒相位差引起。因此,测量重叠虚拟子阵的相位差,即可确定多普勒相位差。而根据所述多普勒相位差,即可解速度模糊。但针对上述设计重叠虚拟子阵的方式,存在以下问题:阵列孔径变小,不利于系统设计,且容易受到阵列误差影响等。
而在本申请的设计中,探测波置可分别对至少一个第一信号,以及至少一个第二信号 进行波束成形,得到第一波束和第二波束。根据上述第一波束和第二波束,两个波束的相位,即可确定多普勒相位差,进而可进行解速度模糊。可见在上述的设计中,无需将探测装置的虚拟子阵设置为重叠的方式。从而可解决上述由于上述重叠虚拟子阵所引起的阵列孔径变小、不利于系统设计、容易受到阵列误差影响等问题。
为了解决上述问题,提出了一种信号处理方法及装置,该方法的原理为:探测装置可分别对至少一个第一信号,以及至少一个第二信号进行波束成形,得到第一波束和第二波束。根据上述第一波束和第二波束,两个波束的相位,即可确定多普勒相位差,进而可进行解速度模糊。可见,在上述信号处理方法中,无需将探测装置的虚拟子阵设置为重叠的方式。从而可解决上述由于重叠虚拟子阵所引起的阵列孔径变小、不利于系统设计、容易受到阵列误差影响等问题。
如图4所示,提供一种信号处理方法的流程,该流程的执行主体为探测装置,所述探测装置可应用于图3所示的场景。所述探测装置可以为雷达(或,称为雷达装置),或者,探测装置可以是安装在探测设备中的芯片,所述探测设备可以为雷达(或,称为雷达装置),或其它设备等。该流程包括:
S400:探测装置接收对应于第一发射天线的至少一个第一信号。可选的,所述至少一个第一信号可包括至少两个第一信号。
S401:探测装置对至少一个第一信号执行波束成形处理,产生第一波束。
一种可选的设计中,所述探测装置对至少一个第一信号执行波束成形处理,产生第一波束,包含:所述探测装置对所述至少一个信号进行傅里叶变换,得到多个波束。所述第一波束属于所述多个波束。可选的,所述第一波束为所述多个波束中能量最强的波束。
例如,若上述傅里叶变换为128点傅里叶变换,则可得到128个波束。若上述傅里叶变换为256点傅里叶变换,则可得到256个波束。可选的,所述探测装置可在多个波束中,确定所述第一波束。比如,探测装置可在多个波束中,选择能量最强的波束,作为第一波束等。其中,所述第一波束指向第一目标的位置。或者,所述波束成形还可采用最小方差无失真响应(minimum variance distortionless response,MVDR)、自适应波束成形等方式实现,不作限定。示例的,探测装置可通过第一发射天线发射信号,所述信号到达第一目标对象,经第一目标对象反射,可形成反射信号。第一发射天线可对应于第一虚拟子阵,第一虚拟子阵中包括一个或多个虚拟阵元。关于发射天线与第一虚拟子阵的对应关系,可参见上述“虚拟子阵”中的说明。探测装置的第一虚拟子阵所对应的虚拟阵元可分别接收上述反射信号。对上述反射信号执行波束成形,产生第一波束。其中,第一波束可指向所述第一目标对象的位置。在上述S400和S401中的“至少一个第一信号”可具体为经第一目标对象反射的信号,所述“至少一个第一信号”的数量为一个或多个,具体数量多少与第一虚拟子阵中虚拟阵元的数量相关。比如,第一虚拟子阵中包括4个虚拟阵元,则上述虚拟阵元可分别接收4个信号,则上述“至少一个第一信号”可包括4个信号。同理,在上述S401中可对上述4个信号执行波束成形处理,产生第一波束,而第一波束的指向为所述第一目标对象的位置。
可选的,波束成形可采用傅里叶变换方式实现。比如,第一发射天线对应于第一虚拟子阵,第一虚拟子阵中包括4个虚拟阵元,则探测装置可通过上述4个虚拟阵元接收4个信号。探测装置可对上述4个信号进行傅里叶变换,得到多个波束。比如,对上述4个信号进行128点的傅里叶变换,可得到128个波束。探测装置可在上述多个波束中,选择能 量满足条件的波束(例如,能量最强的波束),作为第一波束。
S402:探测装置根据第一波束的相位以及第二波束的相位,确定第一目标的信息。
例如,探测装置可根据第一波束的相位以及第二波束的相位,确定多普勒相位差;探测装置根据多普勒相位差,确定第一目标的信息,所述第一目标的信息可包括第一目标的速度、角度或距离等信息中的至少一个。例如,在一种可能的实现方式中,探测装置可根据多普勒相位差,确定速度模糊系数;根据速度模糊系数,可确定第一目标的信息。关于如何根据多普勒相位差,确定速度模糊系数,以及如何根据速度模糊系统,确定第一目标的信息,将在以下实施例中详细介绍。这里需要说明的是,多普勒相位差也可以是一个中间的变量或者参数,无需单独的确定所述多普勒相位差,最终确定所述第一目标的信息即可。
可选的,在上述图4所示的流程中,第二波束可对应所述探测装置接收的至少一个第二信号,第一波束和第二波束之间可存在第一时间差,所述第一时间差可为不同TDM小组间的时间差。比如,在以下示例1中,探测装置包括N个TDM小组,所述N个TDM小组分时发射。设定N个TDM小组中包括第L个TDM小组和第K个TDM小组,L和K均为大于或等于1,小于或等于N的整数,第L个TDM小组中包括第一发射天线,第K个TDM小组中包括第二发射天线。探测装置中的第一发射天线在第L个TDM小组对应的时间段内发射第一信号。探测装置中的第二发射天线在第K个TDM小组对应的时间段内发射第二信号。上述第一时间差可指第L个TDM小组与第K个TDM小组间的时间差。或者,在以下示例2中,设定探测装置的N个TDM小组中包括第M个TDM小组和第P个TDM小组,所述M与P为大于或等于1,小于或等于N的整数。设定第M个TDM小组中包括第一发射天线,探测装置的第一发射天线在第M个TDM小组对应的时间段内发射第一信号。第P个TDM小组中也包括第一发射天线,探测装置的第一发射天线在第P个TDM小组对应的时间段内发射第二信号。上述第一时间差可指第M个TDM小组与第P个TDM小组间的时间差。
可选的,上述第二波束是对所述至少一个第二信号执行波束成形处理后产生的。其中,第一波束和第二波束可指向同一目标的位置,比如,所述同一目标可为第一目标。在本申请实施例中,可采用但不限定以下方式中的任一种实现:
1、第一波束的第一指向角与第二波束的第二指向角指向第一目标的位置。比如,第一波束的第一指向角为90度,第二波束的第二指向角也为90度,而第一目标在相对于探测装置偏移90度的位置。
2、第一波束的第一指向角与第二波束的第二指向角的角度差小于或等于第一阈值。所述第一阈值的取值可以是预先定义或者预先配置的,也可以是本领域的经验值。在该种方式下,当两个波束的指向角不同,但两者的角度差比较小的时候,也可认为两个波束指向同一同标的位置。比如,设定上述第一阈值为5度,第一波束的指向角为90度,第二波束的指向角为91度,则两者之间的角度差为1度,小于第一阈值,可认为第一波束与第二波束同样指向同一目标的位置。
3、第一波束的第一指向角与第二波束的第二指向角的角度差小于或等于第一阈值,且第一波束的能量与第二波束的能量的差小于或等于第二阈值等。在该方式下,不但约束两个波束间的角度差,还约束了两个波束间的能量差。当上述两个条件同时满足时,则才可认为两个波束指向同一目标。
由上可见,在本申请实施例中,探测装置可根据第一波束的相位和第二波束的相位,确定多普勒相位差,根据多普勒相位差,确定第一目标的消息。进而可降低多普勒频移对第一目标探测的影响,使得探测装置所探测的第一目标的速度、距离或角度等信息更准确。
示例1,上述图4所示流程中的探测装置可包括第一发射天线,探测装置通过第一发射天线发射第一信号,第一信号到达目标对象,经目标对象反射,形成反射信号,通过第一虚拟子阵接收第一信号所对应的反射信号。同理,探测装置还包括第二发射天线,探测装置通过第二发射天线发射第二信号,第二信号到达目标对象,经目标对象反射,形成反射信号,通过第二虚拟子阵接收第二信号所对应的反射信号。
探测装置可对上述第一虚拟子阵所接收的信号进行波束成形,产生第一波束,对第二虚拟子阵所接收的信号进行波束成形,产生第二波束。且上述第一波束和第二波束指向同一目标对象,即上述图4所示流程中的第一目标。比如,第一虚拟子阵中包括4个虚拟阵元,则通过上述4个虚拟阵元可接收4个信号。探测装置可对上述4个信号进行傅里叶变换,得到多个波束。比如,对上述4个信号进行128点的傅里叶变换,可得到128个波束。探测装置可在上述多个波束中,选择能量最强的波束,作为第一波束。同理,第二虚拟子阵中包括4个虚拟阵元,则上述4个虚拟阵元可接收4个信号,探测装置可对上述4个信号进行傅里叶变换,得到多个波束。探测装置可在上述多个波束中,选择能量最强的波束,作为第二波束。
探测装置确定第一波束与第二波束之间的第一空间相位差,以及第一发射天线与第二发射天线之间的第二空间相位差。根据第一空间相位差和第二空间相位差,可确定多普勒相位差;进而探测装置可根据多普勒相位差,确定目标对象的速度、角度、距离等信息。关于探测装置如何根据多普勒相位差,确定目标对象的速度、角度或距离等信息,将在以下实施例中详细介绍。这里需要说明的是,上述第一空间相位差和第二空间相位差以及多普勒相位差中的至少一个也可以是中间的变量或者参数,无需单独的确定所述空间相位差和多普勒相位差中的至少一个,最终确定所述目标对象的信息即可。
需要说明的是,在以下描述中,“空间相位差”与“相位差”,不作区分,“空间相位差”可记作“相位差,或者,“相位差”也可记作“空间相位差”等。
上述S402的一种具体实现可为:探测装置可确定第一波束和第二波束之间的相位差,为了便于说明,可将第一波束与第二波束之间的相位差,记为第一相位差;进一步,探测装置可确定第一发射天线与第二发射天线的空间相位差,为了便于说明,可将第一发射天线与第二发射天线之间的空间相位差,记为第二相位差;探测装置可根据第一相位差和第二相位差,确定多普勒相位差。比如,多普勒相位差可具体为第一相位差与第二相位差两者之差。例如,上述第一相位差为50度,第二相位差为30度,则多普勒相位差则可为两者之差20度等。
可选的,在上述图4所示的流程中,还可采用以下描述:至少一个第一信号可对应于第一发射天线,至少一个第二信号可对应于第二发射天线,或者,可描述为,至少一个第一信号对应于第一虚拟子阵,至少一个第二信号对应于第二虚拟子阵。其中,第一发射天线对应于第一虚拟子阵,第二发射天线对应于第二虚拟子阵。
例如,设定探测装置的发送天线阵列包括第一发射天线和第二发射天线,第一发射天线和第二发射天线分别在第L个TDM小组和第k个TDM小组分时发射。其中,第一发射天线对应于第一虚拟子阵,第二发射天线对应于第二虚拟子阵。对第一虚拟子阵接收的 信号进行波束成形,产生第一波束;对第二虚拟子阵接收的信号进行波束成形,产生第二波束。当第一波束和第二波束指向同一目标,即上述图4所示实施例中的第一目标时,计算第一波束与第二波束之间的相位差φ;然后根据第一波束与第二波束的指向角,估算第一发射天线与第二发射天线之间的空间相位差φ s;比如,第一发射天线与第二发射天线之间的空间相位差φ s可满足以下条件:
Figure PCTCN2020138132-appb-000001
其中,φ s表示第一发射天线与第二发射天线之间的空间相位差,
Figure PCTCN2020138132-appb-000002
表示第一波束与第二波束的指向角(比如,若第一波束和第二波束的指向角在数值上存在一定偏差,这里可以取两个指向角的任一值或者平均值等),λ表示波长,d Tx表示第一发射天线与第二发射天线之间的物理间距,例如,在探测装置中,若第一发射天线与第二发射天线之间的间距为2厘米,则d Tx的取值为2厘米。
最后,探测装置可确定多普勒相位差。比如,多普勒相位差可满足以下条件:
φ d=φ-φ s
其中,φ d表示多普勒相位差,φ表示第一波束与第二波束的相位差,φ s表示第一发射天线与第二发射天线间的空间相位差。
再如,参照图5,以上述图4所示流程中的第一发射天线为发射天线1,第二发射天线为发射天线2,第一波束为波束1,第二波束为波束2,第一目标为目标1,虚拟子阵为接收子阵为例,说明上述图4流程的过程。
如图5所示,探测装置对发射天线1对应接收子阵接收的信号进行波束成形,产生波束1,波束1指向目标1。探测装置对发射天线2对应接收子阵接收的信号进行波束成形,产生波束2,波束2指向目标1。可选的,上述波束成形可由快速傅里叶变换(fast foutier transform,FFT)实现。
进一步,在发射天线1与发射天线2对应接收子阵接收的信号分别波束成形后,在目标1处,波束1与波束2的相位差φ可为目标1移动引起的多普勒相位差φ d和发射天线1与发射天线2引起的空间相位差φ s之和,即
φ=φ ds
其中,φ表示第一波束与第二波束的相位差,φ d表示多普勒相位差,φ s表示第一发射天线与第二发射天线间的空间相位差。
而发射天线1与发射天线2的空间相位差φ s可以由波束1与波束2的指向角进行估算,即
Figure PCTCN2020138132-appb-000003
从而可计算获得由目标1移动引起的多普勒相位差φ d=φ-φ s
示例2,上述图4所示流程中的探测装置可包括第一发射天线,探测装置可通过第一发射天线分时发射第一信号和第二信号。第一信号到达目标对象,经目标对象反射,形成反射信号。通过第一虚拟子阵接收第一信号所对应的反射信号,此时,对第一虚拟子阵所接收的信号进行波束成形,产生第一波束。同理,第二信号也可到达目标对象,经目标对象反射,形成反射信号,通过第一虚拟子阵接收第二信号所对应的反射信号,此时,对第一虚拟子阵所接收的信号进行波束成形,产生第二波束。
由于第一波束和第二波束对应于同一发射天线(即上述第一发射天线),因此不需要补偿两天线间的空间相位差,第一波束与第二波束之间的第一空间相位差,即为上述多普 勒相位差。比如,若测得第一波束与第二波束之间的第一空间相位差为50度,则所述多普勒相位差也为50度。而在上述示例1中,由于第一波束与第二波束对应于不同的发射天线,因此,第一波束与第二波束之间的第一空间相位差中除包括多普勒相位差外,还可包括两个发射天线间的空间相位差。仍沿用上述举例,若测得第一波束与第二波束之间的第一空间相位差为50度,两个发射天线间的空间相位差为30度,则多普勒相位差为两者之差,即为20度。或者,上述过程还可描述为:探测装置确定第一波束与第二波束之间的第一相位差。探测装置根据所述第一相位差,确定所述多普勒相位差。进而探测装置可根据多普勒相位差,确定目标对象的速度、角度或距离等信息。关于探测装置如何确定目标对象的速度、角度或距离等信息,将在以下实施例中详细介绍。这里需要说明的是,上述第一相位差以及多普勒相位差中的至少一个也可以是中间的变量或者参数,无需单独的确定所述第一相位差和多普勒相位差中的至少一个,最终确定所述目标对象的信息即可。
上述S402的一种具体实现可为:探测装置可确定第一波束和第二波束之间的第一相位差;探测装置根据所述第一波束和第二波束之间的第一相位差,确定多普勒相位差。可选的,在上述图4所示的流程中,还可采用以下描述:至少一个第一信号可对应于第一发射天线,至少一个第二信号可对应于第一发射天线,或者,可描述为:至少一个第一信号可对应于第一虚拟子阵,至少一个第二信号可对应于第一虚拟子阵。其中,第一发射天线对应于第一虚拟子阵等。
如图6所示,以上述图4所示流程中的第一发射天线为发射天线1,第一波束为波束1,第二波束为波束2,虚拟子阵为接收子阵为例,说明上述图4流程的过程。
考虑发射天线1与发射天线2之间可能存在的阵列误差(例如图5的方式),可以考虑发射天线1在不同TDM小组重复发射。在图6中,发射天线1在第M个TDM小组与第P个TDM小组分时发射。可选的,第M个TDM小组和第P个TDM小组可为时间上相邻的TDM小组。比如,第M个TDM小组为TDM小组1,第P个TDM小组为TDM小组2等。在图6中,以第M个TDM小组为TDM小组1,第P个TDM小组为TDM小组2为例进行说明。
针对两组接收数据,对发射天线1所对应的接收子阵分别接收的信号,进行两次波束成形,形成波束1和波束2。由于波束1和波束2对应同一发射天线,因此不受阵列误差影响。波束1与波束2来自同一发射天线,不需要补偿发射天线1与发射天线2之间引起的空间相位差φ s。此时,第一波束与第二波束之间的相位差φ即为多普勒相位差。
通过上述记载可知,通过图4所示流程的方法,探测装置可确定多普勒相位差。进一步,探测装置可根据多普勒相位差,解速度模糊。探测装置在解速度模糊后,即可确定第一目标的速度、角度或距离等信息。为了便于理解,以下首先解释下产生速度模糊的原因。
参照图2所示,当探测装置采用FMCW波形时,其测速范围由天线间啁啾(chirp)信号的间隔时间所决定,最大测速范围为[-v max,v max]。比如,根据探测装置的探测需求,所述探测装置的测速范围为[-200,200]km/h,则-v max的取值为-200km/h,v max的取值为200km/h。
其中,
Figure PCTCN2020138132-appb-000004
其中,λ代表FMCW信号的波长,T r代表不同啁啾信号的时间间隔,或者,代表啁啾信号的周期等。
参照图7所示,在将发射天线分成N个TDM小组,不同TDM小组之间分时发射,将导致同一小组的两个chirp时延变为原来的N倍,即N*Tr。此时,TMD FMCW的最大测速范围将减到1/N,最大模糊速度为
Figure PCTCN2020138132-appb-000005
其中,v max代表探测装置的最大探测范围,T r代表不同啁啾信号的时间间隔,或者,代表啁啾信号的周期,N代表探测装置中的发射天线的TDM小组的数量,λ代表信号波长。
此外,如图8所示,目标移动和分时发射将会导致第k个TDM小组对应的发射天线相对于第一个TDM小组的发射天线产生多普勒相位差2πf dT r(k-1),k=1,…,N。
其中,f d代表多普勒频移,T r代表不同啁啾信号的时间间隔,或者,代表啁啾信号的周期,k为TDM小组发射的顺序。
而在图8中,相邻发射天线间的相位差为
Figure PCTCN2020138132-appb-000006
该相位差既包含空间角度信息,又包括速度信息,即产生角度速度耦合的问题。
其中,θ代表目标对象的角度,φ代表第一发射天线与第二发射天线间的空间相位差,d Tx代表第一发射天线与第二发射天线的物理间距,λ代表信号的波长,f d代表真实的多普勒频移,T r代表啁啾(chirp)信号的发射周期,或者,代表相邻啁啾(chirp)信号的时间间隔。
为了解决TDM-MIMO速度与角度耦合的问题,即消除多普勒频移对角度估计的影响,需要估算真实的多普勒频移
Figure PCTCN2020138132-appb-000007
其中,f d代表真实的多普勒频移,λ代表信号的波长,v代表目标对象的速度。
而2D-FFT后,得到多普勒频移f damb可能是模糊的。相位模糊次数定义为速度模糊系数ξ,即
Figure PCTCN2020138132-appb-000008
其中,f d代表真实的多普勒频移,f damb代表2D-FFT后,模糊的多普勒频移,ξ代表速度模糊系数,N代表探测装置中的发射天线的TDM小组的数量,T r代表不同啁啾信号的时间间隔,或者,代表啁啾信号的周期。由于TDM降低了模糊速度N倍,即
Figure PCTCN2020138132-appb-000009
为了解速度/角度耦合,只需将模糊速度恢复到单chirp最大模糊速度
Figure PCTCN2020138132-appb-000010
因此模糊系统的取值有N种可能。在本申请实施中,设定N=3,ξ有3种可能的取值ξ=[-1 0 1],即单啁啾(chirp)对应的速度范围为v∈[-3v max,3v max]。设计时,通常使得单啁啾(chirp)对应的最大模糊速度满足一定系统需求,TDM-MIMO解速度模糊即是找到这3种可能的ξ中正确的一个。
在以下实施例中,将具体介绍,针对上述示例一和示例二,如何进行解速度模糊,以及在解速度模糊后,探测装置如何确定目标对象的速度、角度或距离等信息。
针对上述示例一,探测装置在确定多普勒相位差之后,探测装置可根据多普勒相位差, 确定速度模糊系数。比如,探测装置在解TDM速度模糊时,速度模糊系数可满足以下条件:
Figure PCTCN2020138132-appb-000011
其中,ξ代表速度模糊系数,φ d代表多普勒相位差,f damb代表2D-FFT后的多普勒频移,k代表第一发射天线所对应的TDM小组标识,l代表第二发射天线所对应的TDM小组标识,T r代表啁啾(chirp)信号的发射周期,或者,代表相邻啁啾(chirp)信号的时间间隔,N代表探测装置中的发射天线的TDM小组的数量。
之后,探测装置可根据速度模糊系数,确定多普勒频移。此时,多普勒频移是真实的,与上述2D-FFT后获得的多普勒频移f damb不同,2D-FFT后获得的多普勒频移f damb可能是模糊的,或称为不准确的。例如,探测装置所确定的多普勒频移,可满足以下条件:
Figure PCTCN2020138132-appb-000012
其中,f d代表真实的多普勒频移,f damb代表2D-FFT后模糊的多普勒频移,ξ代表速度模糊系数,N代表探测装置中的发射天线的TDM小组的数量,T r代表啁啾(chirp)信号的发射周期,或者,代表相邻啁啾(chirp)信号的时间间隔。
之后,探测装置可根据上述确定的真实的多普勒频移,确定目标对象的速度。比如,目标对象的速度满足以下条件:
Figure PCTCN2020138132-appb-000013
其中,f d代表真实的多普勒频移,λ代表啁啾(chirp)信号的波长,v代表目标对象的速度。
和/或,探测装置还可根据上述确定的真实的多普勒频移,确定目标对象的角度,比如,目标对象的角度满足以下条件:
Figure PCTCN2020138132-appb-000014
其中,θ代表目标对象的角度,φ代表第一发射天线与第二发射天线间的空间相位差,d Tx代表第一发射天线与第二发射天线的物理间距,λ代表啁啾(chirp)信号的波长,f d代表真实的多普勒频移,T r代表啁啾(chirp)信号的发射周期,或者,代表相邻啁啾(chirp)信号的时间间隔。
在上述示例一中,由于两个TDM小组对应的发射天线在空间中有相位差
Figure PCTCN2020138132-appb-000015
因此多普勒相位差
Figure PCTCN2020138132-appb-000016
其中,φ代表第一波束与第二波束之间的空间相位差,φ d代表多普勒相位差,φ s代表相邻发射天线的相位差,f damb代表2D-FFT后的模糊多普勒频移,T r代表啁啾(chirp)信号的发射周期,或者,代表相邻啁啾(chirp)信号的时间间隔,ξ代表速度模糊系数,N代表探测装置中的发射天线的TDM小组的数量,k代表第一发射天线在分时发射时,第一次发射信号的TDM小组标识,l代表第一发射天线在分时发射时,第二次发射信号的TDM小组标识;θ代表目标对象的角度,d Tx代表第一发射天线与第二发射天线的物理间距,λ代表啁啾(chirp)信号的波长。
而在上述示例二中,第M个TDM小组和第P个TDM小组是同一天线发出,两次发 射的虚拟子阵在空间中为同一位置(等效于虚拟出了多个重叠阵元,虚拟子阵1与虚拟子阵2重叠)。所以,此时波束1与波束2的相位差φ仅包含多普勒相位差φ d,而没有包含空间相位差,即φ=φ d。因此,在示例二中,第一波束与第二波束的相位差为:
Figure PCTCN2020138132-appb-000017
其中,φ代表第一波束与第二波束之间的空间相位差,φ d代表多普勒相位差,f damb代表2D-FFT后的模糊多普勒频移,T r代表啁啾(chirp)信号的发射周期,或者,代表相邻啁啾(chirp)信号的时间间隔,ξ代表速度模糊系数,N代表探测装置中的发射天线的TDM小组的数量,m代表第一发射天线在分时发射时,第一次发射信号的TDM小组标识,p代表第一发射天线在分时发射时,第二次发射信号的TDM小组标识。
在上述示例二中,探测装置根据多普勒相位差,可确定速度模糊系统。比如,速度模糊系数可满足以下条件:
Figure PCTCN2020138132-appb-000018
其中,ξ代表速度模糊系数,φ代表第一波束与第二波束之间的空间相位差,或者,代表多普频相位差(此时,多普勒相位差,与第一波束和第二波束之间的空间相位差是相等的),f damb代表2D-FFT后的模糊多普勒频移,T r代表啁啾(chirp)信号的发射周期,或者,代表相邻啁啾(chirp)信号的时间间隔,N代表探测装置中的发射天线的TDM小组的数量,m代表第一发射天线在分时发射时,第一次发射信号的TDM小组标识,p代表第一发射天线在分时发射时,第二次发射信号的TDM小组标识。
之后,探测装置根据速度模糊系数,可确定真实的多普勒频移。探测装置根据真实的多普勒频移,可确定目标对象的速度和/或角度。具体的过程,可参见上述记载,在此不再赘述。
在示例二中,两个TDM小组采用同一天线发射,可以有效减轻阵列、天线等误差对解TDM-MIMO速度模糊性能的影响。
示例的,针对图4所示的流程,如图9所示,本申请还提供一种信号处理流程:探测装置的接收端利用M组虚拟子阵接收信号,每组虚拟子阵中包括一个或多个虚拟阵元。可选的,探测装置确定发射天线的M个TDM小组,不同TDM小组间分时发射。不同TDM小组发射的信号,经目标反射,形成反射信号。所述探测装置的接收端可利用M组虚拟子阵接收上述M个TDM小组对应的信号。然后,针对每组虚拟子阵接收的信号,分别进行二维快速傅里叶变换(2 dimensional fast fourier transform,2D-FFT)。将各组虚拟子阵的2D-FFT后的数据进行非相干积累和恒虚警率(constant false alarm rate,CFAR)检测,得到多个被检测目标。得到可能的目标位置和速度信息。在检测到的目标位置处,对每组虚拟子阵所接收的信号进行波束成形,找到目标角度的估计位置,补偿两波束由空间角度引出的相位差,计算多普勒引起的相位差,利用多普勒引出的相位差计算速度模糊系数,从而解速度模糊。
在本申请实施例中,解TDM-MIMO速度模糊不需要重叠阵元,受阵列误差影响较小,可以累积更多的信噪比,从而更好的解模糊性能。同时,通过波束成形,滤除同一距离速度单元上,不同速度模糊目标间的相互干扰,加强解速度模糊成功概率。
可以理解的是,上述各个方法实施例中,由探测装置实现的方法和操作,也可以由探 测装置的部分(例如芯片或者电路)实现。上述方法实施例中,从探测装置的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,探测装置可以包括硬件结构和/或软件单元,以硬件结构、软件单元,或硬件结构加软件单元的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件单元,还是硬件结构加软件单元的方式来执行,取决于技术方案的特定应用和设计约束条件。
以上,结合图1至图9详细说明了本申请实施例提供的方法。以下结合图10和图11详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应。因此,未详细描述的内容可以参见上文方法实施例中的描述。
图10是本申请实施例提供的装置1000的示意性框图,用于实现上述方法中探测装置的功能。例如,该装置可以为软件模块或芯片系统。所述芯片系统可以由芯片构成,也可包括芯片和其他分立器件。该装置1000可以包括通信单元1001,还可包括处理单元1002。通信单元1001,可以与外部进行通信。处理单元1002,用于进行处理。通信单元1001,还可称为通信接口、收发单元或者输入\输出接口等。例如,通信单元1001可以包括发送单元和/或接收单元等,用于执行上文图4流程中探测装置的发送或接收步骤。
在一种示例中,装置1000可实现对应于上述图4所示流程中探测装置执行的步骤,装置1000可以是车载终端,或者配置于车载终端中的芯片或电路。或者,装置1000可以是雷达,或者配置于雷达中的芯片或电路等,所述雷达可以为毫米波雷达等。或者,装置1000可以是车载中央处理器,或者配置于车辆中央处理器中的芯片或电路等。或者,装置1000可以是智能座舱域控制器(cockpit domain controller,CDC),或者,配置于CDC中的芯片或电路等。
通信单元1001,用于执行上文方法实施例中探测装置的收发相关操作,处理单元1002用于执行上文方法实施例中探测装置的处理相关操作。
比如,通信单元1001,用于接收对应于第一发射天线的至少一个第一信号。处理单元1002,用于对所述至少一个第一信号执行波束成形处理,产生第一波束,以及,根据第一波束的相位以及第二波束的相位,确定第一目标的信息。其中,第二波束对应于所述探测装置接收的至少一个第二信号,所述第一波束和所述第二波束之间存在第一时间差。
可选的,第二波束是对至少一个第二信号执行波束成形处理后产生的。
可选的,处理单元1002在根据第一波束的相位以及第二波束的相位,确定第一目标的信息时,具体用于:根据第一波束的相位和第二波束的相位,确定多普勒相位差;根据多普勒相位差,确定第一目标的信息。
可选的,至少一个第二信号对应于第二发射天线。处理单元1002在根据第一波束的相位和第二波束的相位,确定多普勒相位差时,具体用于:根据第一波束的相位和第二波束的相位,确定第一相位差;根据第一发射天线的相位和第二发射天线的相位,确定第二相位差;根据第一相位差和第二相位差,确定多普勒相位差。
可选的,至少一个第一信号对应于第一虚拟子阵,至少一个第二信号对应于第二虚拟子阵。
可选的,至少一个第二信号对应于第一发射天线,处理单元1002在根据第一波束的相位和第二波束的相位,确定多普勒相位差时,具体用于:根据第一波束的相位和第二波束的相位,确定第一相位差;根据第一相位差,确定多普勒相位差。
可选的,至少一个第一信号和至少一个第二信号均对应于第一虚拟子阵。
可选的,第一波束的第一指向角和第二波束的第二指向角指示第一目标,和/或,第一波束的第一指向角和第二波束的第二指向角的角度差小于或等于第一阈值,和/或,第一波束的能量与第二波束的能量的差小于或等于第二阈值。
可选的,第一目标的信息包括第一目标的角度、速度或距离中的至少一个。
可选的,第一时间差为所述第一时间差为不同TDM小组之间的时间差。
本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请实施例中各功能单元可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
可以理解的是,上述实施例中通信单元的功能可以由收发器实现,处理单元的功能可以由处理器实现。收发器可以包括发射器和/或接收器等,分别用于实现发送单元和/或接收单元的功能。以下结合图11举例进行说明。
图11是本申请实施例提供的装置1100的示意性框图,图11所示的装置1100可以为图10所示的装置的一种硬件电路的实现方式。该装置可适用上述图4所示的流程中,执行上述方法实施例中探测装置的功能。为了便于说明,图11仅示出该装置的主要部件。
图11所示的装置1100包括至少一个处理器1101。装置1100还可包括至少一个存储器1102,用于存储程序指令和/或数据。存储器1102和处理器1101耦合。本申请实施例中的耦合是装置、单元或模块之间的间隔耦合或通信连接,可以是电性、机械性或其它的形式,用于装置、单元或模块之间的信息交互。处理器1101可以和存储器1102协同操作,处理器1101可以执行存储器1102中存储的程序指令,所述至少一个存储器1102中的至少一个可以包括于处理器1101中。
装置1100还可以包括通信接口1103,用于通过传输介质和其它设备进行通信,从而用于装置1100可以和其它设备进行通信。本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。本申请实施例中,通信接口为收发器时,收发器可以包括独立的接收器、独立的发射器;也可以集成收发功能的收发器,或者是接口电路。可选的,所述通信接口可以为天线,所述天线包含至少一个接收天线以及至少一个发射天线。
应理解,本申请实施例中不限定上述处理器1101、存储器1102以及通信接口1103之间的连接介质。本申请实施例在图11中以存储器1102、处理器1101以及通信接口1103之间通过通信总线1104连接,总线在图11中以粗线表示,其它部件之间的连接方式,仅是示意性说明,并不作为限定。所述总线可以包括地址总线、数据总线、控制总线等。为了便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线等。
在一种示例中,装置1100用于实现上文图4所示流程中探测装置执行的步骤。通信接口用于执行上文方法实施例中探测装置的收发相关操作,处理器用于执行上文方法实施例中探测装置的处理相关操作。
通信接口1103,用于接收对应于第一发射天线的至少一个第一信号。处理器1101,用于对至少一个第一信号执行波束成形处理,产生第一波束,以及,根据第一波束的相位以及第二波束的相位,确定第一目标的信息;其中,第二波束对应所述探测装置接收的至少一个第二信号,第一波束和第二波束之间存在第一时间差。
可选的,所述第二波束是对所述至少一个第二信号执行波束成形处理后产生的。
可选的,处理器1101在根据所述第一波束的相位以及第二波束的相位,确定第一目标的信息时,具体用于:根据所述第一波束的相位和所述第二波束的相位,确定多普勒相位差;根据所述多普勒相位差,确定所述第一目标的信息。
可选的,所述至少一个第二信号对应于第二发射天线,处理器1101在根据所述第一波束的相位和所述第二波束的相位,确定多普勒相位差时,具体用于:
根据所述第一波束的相位和所述第二波束的相位,确定第一相位差;根据所述第一发射天线的相位和所述第二发射天线的相位,确定第二相位差;根据所述第一相位差和所述第二相位差,确定所述多普勒相位差。
可选的,所述至少一个第一信号对应于第一虚拟子阵,所述至少一个第二信号对应于第二虚拟子阵。
可选的,所述至少一个第二信号对应于所述第一发射天线,处理器1101在根据所述第一波束的相位和所述第二波束的相位,确定多普勒相位差时,具体用于:根据所述第一波束的相位和所述第二波束的相位,确定第一相位差;根据所述第一相位差,确定所述多普勒相位差。
可选的,所述至少一个第一信号和所述至少一个第二信号均对应于第一虚拟子阵。
可选的,所述第一波束的第一指向角和所述第二波束的第二指向角指示所述第一目标,和/或,所述第一波束的第一指向角和所述第二波束的第二指向角的角度差小于或者等于第一阈值,和/或,所述第一波束的能量与所述第二波束的能量的差小于或者等于第二阈值。
可选的,所述第一目标的信息包括所述第一目标的角度、速度或距离中的至少一个。
可选的,所述第一时间差为不同TDM小组之间的时间差。
进一步,在本申请实施例中,还提供一种装置,包括用于实现上述图4中所述方法的单元。或者,所述装置包括处理器和接口电路,所述处理器用于通过所述接口电路与其它装置通信,并执行上述图4中所述的方法。或者,所述装置包括处理器,用于调用存储器中存储的程序,以执行上述图4中的方法。还提供一种可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述图4中的方法。还提供一种芯片系统,该芯片系统包括处理,还可以包括存储器,用于实现上述图4中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行上述图4设计的方法。
本申请实施例还提供一种传感器,该传感器包括上述图10或图11所述的装置,所述传感器为雷达,例如毫米波雷达等。
本申请实施例还提供一种传感器系统,包括至少一个传感器,该传感器可包括上述图10或图11所述的装置。进一步,所述至少一个传感器包含至少一个雷达,例如毫米波雷达。
本申请实施例还提供一种车辆。一种设计中,该车辆包括至少一个传感器,所述传感器可包括上述图10或图11所述的装置。关于图10或图11所述装置的具体实现过程,可参见上述图10或图11中的记载,在此不再说明。又一种设计中,所述车辆包括上述图10或图11所述的装置,所述装置可以是独立设置的,也可以集成在所述车辆包括的至少一个传感器中,或者集成在所述车辆包括的智能座舱域控制器(cockpit domain controller,CDC)或者车载中央处理器中。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种信号处理方法,其特征在于,包括:
    探测装置接收对应于第一发射天线的至少一个第一信号;
    所述探测装置对所述至少一个第一信号执行波束成形处理,产生第一波束;
    所述探测装置根据所述第一波束的相位以及第二波束的相位,确定第一目标的信息;
    其中,所述第二波束对应所述探测装置接收的至少一个第二信号,所述第一波束和所述第二波束之间存在第一时间差。
  2. 如权利要求1所述的方法,其特征在于,所述第二波束是对所述至少一个第二信号执行波束成形处理后产生的。
  3. 如权利要求1或2所述的方法,其特征在于,所述探测装置根据所述第一波束的相位以及第二波束的相位,确定第一目标的信息,包括:
    所述探测装置根据所述第一波束的相位和所述第二波束的相位,确定多普勒相位差;
    所述探测装置根据所述多普勒相位差,确定所述第一目标的信息。
  4. 如权利要求3所述的方法,其特征在于,所述至少一个第二信号对应于第二发射天线,所述探测装置根据所述第一波束的相位和所述第二波束的相位,确定多普勒相位差,包括:
    所述探测装置根据所述第一波束的相位和所述第二波束的相位,确定第一相位差;
    所述探测装置根据所述第一发射天线的相位和所述第二发射天线的相位,确定第二相位差;
    所述探测装置根据所述第一相位差和所述第二相位差,确定所述多普勒相位差。
  5. 如权利要求4所述的方法,其特征在于,所述至少一个第一信号对应于第一虚拟子阵,所述至少一个第二信号对应于第二虚拟子阵。
  6. 如权利要求3所述的方法,其特征在于,所述至少一个第二信号对应于所述第一发射天线,所述探测装置根据所述第一波束的相位和所述第二波束的相位,确定多普勒相位差,包括:
    所述探测装置根据所述第一波束的相位和所述第二波束的相位,确定第一相位差;
    所述探测装置根据所述第一相位差,确定所述多普勒相位差。
  7. 如权利要求6所述的方法,其特征在于,所述至少一个第一信号和所述至少一个第二信号对应于第一虚拟子阵。
  8. 如权利要求1至7任一项所述的方法,其特征在于:
    所述第一波束的第一指向角和所述第二波束的第二指向角指示所述第一目标,和/或,
    所述第一波束的第一指向角和所述第二波束的第二指向角的角度差小于或者等于第一阈值,和/或,所述第一波束的能量与所述第二波束的能量的差小于或者等于第二阈值。
  9. 如权利要求1至8任一项所述的方法,其特征在于,所述第一目标的信息包括所述第一目标的角度、速度或距离中的至少一个。
  10. 如权利要求1至9任一项所述的方法,其特征在于,所述第一时间差为不同时分复用TDM小组之间的时间差。
  11. 一种装置,其特征在于,包括:
    通信单元,用于接收对应于第一发射天线的至少一个第一信号;
    处理单元,用于对所述至少一个第一信号执行波束成形处理,产生第一波束;
    所述处理单元,还用于根据所述第一波束的相位以及第二波束的相位,确定第一目标的信息;
    其中,所述第二波束对应探测装置接收的至少一个第二信号,所述第一波束和所述第二波束之间存在第一时间差。
  12. 如权利要求11所述的装置,其特征在于,所述第二波束对所述至少一个第二信号执行波束成形处理后产生的。
  13. 如权利要求11或12所述的装置,其特征在于,所述处理单元在根据所述第一波束的相位以及第二波束的相位,确定第一目标的信息时,具体用于:
    根据所述第一波束的相位和所述第二波束的相位,确定多普勒相位差;
    根据所述多普勒相位差,确定所述第一目标的信息。
  14. 如权利要求13所述的装置,其特征在于,所述至少一个第二信号对应于第二发射天线,所述处理单元在根据所述第一波束的相位和所述第二波束的相位,确定多普勒相位差时,具体用于:
    根据所述第一波束的相位和所述第二波束的相位,确定第一相位差;
    根据所述第一发射天线的相位和所述第二发射天线的相位,确定第二相位差;
    根据所述第一相位差和所述第二相位差,确定所述多普勒相位差。
  15. 如权利要求14所述的装置,其特征在于,所述至少一个第一信号对应于第一虚拟子阵,所述至少一个第二信号对应于第二虚拟子阵。
  16. 如权利要求13所述的装置,其特征在于,所述至少一个第二信号对应于所述第一发射天线,所述处理单元在根据所述第一波束的相位和所述第二波束的相位,确定多普勒相位差时,具体用于:
    根据所述第一波束的相位和所述第二波束的相位,确定第一相位差;
    根据所述第一相位差,确定所述多普勒相位差。
  17. 如权利要求16所述的装置,其特征在于,所述至少一个第一信号和所述至少一个第二信号对应于第一虚拟子阵。
  18. 如权利要求11至17任一项所述的装置,其特征在于:
    所述第一波束的第一指向角和所述第二波束的第二指向角指示所述第一目标,和/或,
    所述第一波束的第一指向角和所述第二波束的第二指向角的角度差小于或者等于第一阈值,和/或,所述第一波束的能量与所述第二波束的能量的差小于或者等于第二阈值。
  19. 如权利要求11至18任一项所述的装置,其特征在于,所述第一目标的信息包括所述第一目标的角度、速度或距离中的至少一个。
  20. 如权利要求11至19任一项所述的装置,其特征在于,所述第一时间差为不同时分复用TDM小组之间的时间差。
  21. 一种装置,其特征在于,包括至少一个处理器和至少一个存储器,所述至少一个存储器中存储有指令,所述至少一个处理器执行所述指令时,使得所述装置执行如权利要求1至10任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行权利要求1至10任一项所述的方法。
PCT/CN2020/138132 2019-12-23 2020-12-21 一种信号处理方法及装置 WO2021129581A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20908258.5A EP4071501A4 (en) 2019-12-23 2020-12-21 SIGNAL PROCESSING METHOD AND APPARATUS
US17/846,906 US20220326376A1 (en) 2019-12-23 2022-06-22 Signal processing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911342739.X 2019-12-23
CN201911342739.XA CN113093131A (zh) 2019-12-23 2019-12-23 一种信号处理方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/846,906 Continuation US20220326376A1 (en) 2019-12-23 2022-06-22 Signal processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2021129581A1 true WO2021129581A1 (zh) 2021-07-01

Family

ID=76575170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138132 WO2021129581A1 (zh) 2019-12-23 2020-12-21 一种信号处理方法及装置

Country Status (4)

Country Link
US (1) US20220326376A1 (zh)
EP (1) EP4071501A4 (zh)
CN (1) CN113093131A (zh)
WO (1) WO2021129581A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137508A (zh) * 2022-01-29 2022-03-04 南京隼眼电子科技有限公司 运动目标速度解模糊方法、装置、电子设备及存储介质
CN114442080A (zh) * 2022-01-29 2022-05-06 南京隼眼电子科技有限公司 运动目标速度解模糊方法、装置、电子设备及存储介质
CN114814817A (zh) * 2022-04-25 2022-07-29 南京隼眼电子科技有限公司 运动目标速度解模糊方法、装置、电子设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115184926B (zh) * 2022-09-13 2022-11-15 中国电子科技集团公司信息科学研究院 利用相参mimo雷达的分布式协同探测系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7205933B1 (en) * 2004-09-10 2007-04-17 Rockwell Collins, Inc. Hostile platform position location utilizing networked communications
US7345621B2 (en) * 2005-04-22 2008-03-18 Bbn Technologies Corp. Real-time multistatic radar signal processing system and method
CN103675784A (zh) * 2012-09-05 2014-03-26 古野电气株式会社 信号处理装置、雷达装置以及物标探知方法
CN103998951A (zh) * 2011-11-21 2014-08-20 大陆-特韦斯贸易合伙股份公司及两合公司 借助通信信号实现对象位置确定的方法和装置、以及该装置的使用
CN106796282A (zh) * 2014-05-12 2017-05-31 奥托立夫Asp公司 使用连续波和chirp信号来确定物体的距离、相对速度和方位的雷达系统和方法
CN108594233A (zh) * 2018-04-24 2018-09-28 森思泰克河北科技有限公司 一种基于mimo汽车雷达的速度解模糊方法
CN110441774A (zh) * 2018-05-04 2019-11-12 通用汽车环球科技运作有限责任公司 基于差分相位的检测器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8169362B2 (en) * 2009-08-03 2012-05-01 Raytheon Company Mobile sense through the wall radar system
DE102014212280A1 (de) * 2014-06-26 2015-12-31 Robert Bosch Gmbh Radarmessverfahren
CN115336430B (zh) * 2013-12-11 2016-11-30 上海无线电设备研究所 Ka波段底视合成孔径cm级测高装置及测高方法
DE102014212284A1 (de) * 2014-06-26 2015-12-31 Robert Bosch Gmbh MIMO-Radarmessverfahren
CN105277932B (zh) * 2014-07-21 2017-12-12 中国科学院声学研究所 一种基于下变频波束形成中的多普勒频移校正方法
DE102018203333A1 (de) * 2018-03-06 2019-09-12 Autocruise S.A.S Verfahren zur eindeutigen Bestimmung der Geschwindigkeit eines Objekts an einem RADAR Messsystem
CN109669166A (zh) * 2019-01-08 2019-04-23 长沙莫之比智能科技有限公司 高精度宽波束中短距小型mimo雷达传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7205933B1 (en) * 2004-09-10 2007-04-17 Rockwell Collins, Inc. Hostile platform position location utilizing networked communications
US7345621B2 (en) * 2005-04-22 2008-03-18 Bbn Technologies Corp. Real-time multistatic radar signal processing system and method
CN103998951A (zh) * 2011-11-21 2014-08-20 大陆-特韦斯贸易合伙股份公司及两合公司 借助通信信号实现对象位置确定的方法和装置、以及该装置的使用
CN103675784A (zh) * 2012-09-05 2014-03-26 古野电气株式会社 信号处理装置、雷达装置以及物标探知方法
CN106796282A (zh) * 2014-05-12 2017-05-31 奥托立夫Asp公司 使用连续波和chirp信号来确定物体的距离、相对速度和方位的雷达系统和方法
CN108594233A (zh) * 2018-04-24 2018-09-28 森思泰克河北科技有限公司 一种基于mimo汽车雷达的速度解模糊方法
CN110441774A (zh) * 2018-05-04 2019-11-12 通用汽车环球科技运作有限责任公司 基于差分相位的检测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4071501A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137508A (zh) * 2022-01-29 2022-03-04 南京隼眼电子科技有限公司 运动目标速度解模糊方法、装置、电子设备及存储介质
CN114442080A (zh) * 2022-01-29 2022-05-06 南京隼眼电子科技有限公司 运动目标速度解模糊方法、装置、电子设备及存储介质
CN114442080B (zh) * 2022-01-29 2023-10-20 南京隼眼电子科技有限公司 运动目标速度解模糊方法、装置、电子设备及存储介质
CN114814817A (zh) * 2022-04-25 2022-07-29 南京隼眼电子科技有限公司 运动目标速度解模糊方法、装置、电子设备及存储介质
CN114814817B (zh) * 2022-04-25 2023-10-20 南京隼眼电子科技有限公司 运动目标速度解模糊方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
EP4071501A4 (en) 2023-03-01
EP4071501A1 (en) 2022-10-12
CN113093131A (zh) 2021-07-09
US20220326376A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
WO2021129581A1 (zh) 一种信号处理方法及装置
CN107076832B (zh) 用于解耦地确定对象的俯仰角和方位角的mimo雷达设备和用于运行mimo雷达设备的方法
US10989799B2 (en) Radar and antenna built in radar
KR20230021183A (ko) 3d 프린트된 루네부르크 렌즈를 사용하는 새로운 차량 레이더
CN108333588B (zh) 用来获得角度模糊度解析的迭代方法
US11092686B2 (en) Method, apparatus and device for doppler compensation in a time switched MIMO radar system
JP7027579B2 (ja) 自動車用のmimoレーダセンサ
US11327170B2 (en) Azimuth and elevation radar imaging with single-dimension antenna arrays of radar system
JP7437439B2 (ja) 情報測定方法および情報測定装置
KR102288673B1 (ko) 수평 간격 및 수직 간격으로 배치되는 복수의 안테나를 포함하는 레이더 장치
CN109991596A (zh) 用于检测目标的设备和方法
JP7154494B2 (ja) 到来方向推定装置及び到来方向推定方法
US20240019568A1 (en) System and method for radar-based localization and/or mapping
CN117647797A (zh) 雷达的近距离速度纠正方法、装置、雷达及存储介质
KR102496065B1 (ko) 레이더 장치 및 레이더 장치에 이용되는 안테나 장치
CN112689773B (zh) 雷达信号处理方法和雷达信号处理装置
Bogdan et al. Simulation of Automotive MIMO Radar
EP4339647A1 (en) Multiple-target, simultaneous beamforming for four-dimensional radar systems
CN114879138B (zh) 一种毫米波雷达二维角度计算方法、装置及相关设备
CN113406615B (zh) 二进制相位调制阵列雷达的目标跟踪方法及装置
WO2022022137A1 (zh) 成像方法、装置、雷达系统、电子设备和存储介质
US11309942B1 (en) Radar having antennas arranged at horizontal and vertical intervals
CN112204422B (zh) 速度测量方法、多输入多输出雷达和可移动平台
US20240019565A1 (en) Motion compensation for fast target detection in automotive radar
WO2020097903A1 (zh) 测角方法以及雷达设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908258

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020908258

Country of ref document: EP

Effective date: 20220704

NENP Non-entry into the national phase

Ref country code: DE