WO2021129522A1 - 上行控制信息传输方法、终端设备和网络侧设备 - Google Patents

上行控制信息传输方法、终端设备和网络侧设备 Download PDF

Info

Publication number
WO2021129522A1
WO2021129522A1 PCT/CN2020/137369 CN2020137369W WO2021129522A1 WO 2021129522 A1 WO2021129522 A1 WO 2021129522A1 CN 2020137369 W CN2020137369 W CN 2020137369W WO 2021129522 A1 WO2021129522 A1 WO 2021129522A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
transmission
bit information
transmitted
preset
Prior art date
Application number
PCT/CN2020/137369
Other languages
English (en)
French (fr)
Inventor
顾一
吴凯
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021129522A1 publication Critical patent/WO2021129522A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0052Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present disclosure relates to the field of communications, and in particular to an uplink control information transmission method, terminal equipment and network side equipment.
  • RM codes are used for channel coding for uplink control information with more than 2 bits, and format 2, format 3, and format are used on the 5G NR physical uplink control channel (PUCCH). 4 format for transmission.
  • DMRS Demodulation Reference Signal
  • the receiver performs channel estimation according to the DMRS, and restores the transmitted uplink control information (Uplink Control Information, UCI) information according to the estimated channel.
  • UCI Uplink Control Information
  • the receiving end needs to perform channel estimation according to the DMRS, and restore the UCI information transmitted by the UE according to the estimated channel, and the reception complexity is relatively high.
  • the purpose of the embodiments of the present disclosure is to provide an uplink control information transmission method, terminal equipment and network side equipment to reduce the complexity of receiving UCI information.
  • an uplink control information transmission method is provided, the method is executed by a terminal device, and the method includes: generating a signal sequence carrying the bit information according to bit information of the uplink control information to be transmitted; The signal sequence is mapped to the Orthogonal Frequency Division Multiplexing (OFDM) symbol of the physical uplink control channel resource for transmission.
  • OFDM Orthogonal Frequency Division Multiplexing
  • a method for transmitting uplink control information is provided.
  • the method is executed by a network side device.
  • the method includes: detecting a signal sequence transmitted by a terminal device on an OFDM symbol corresponding to a physical uplink control channel resource; According to the rule of, the bit information carried on each detected signal sequence is obtained; according to the transmission parameters used by the terminal device to transmit uplink control information, the obtained bit information is reorganized to obtain the UCI transmitted by the terminal device .
  • a terminal device including: a generation module, configured to generate a signal sequence carrying the bit information according to bit information of uplink control information to be transmitted; and a transmission module, configured to map the signal sequence It is transmitted on the OFDM symbol of the physical uplink control channel resource.
  • a network-side device including: a detection module, configured to detect a signal sequence transmitted by a terminal device on an OFDM symbol corresponding to a physical uplink control channel resource; an acquisition module, configured to acquire The detected bit information carried on each of the signal sequences; the recombination module is used to recombine the acquired bit information according to the transmission parameters used by the terminal equipment to transmit uplink control information to obtain the data transmitted by the terminal equipment UCI.
  • a terminal device a memory, a processor, and a computer program stored on the memory and capable of being run on the processor.
  • the computer program When the computer program is executed by the processor, the first The steps of the uplink control information transmission method described in the aspect.
  • a network-side device including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor, the computer program being executed when the processor is executed The steps of the uplink control information transmission method as described in the second aspect.
  • a computer-readable storage medium is provided, and a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the uplink control information as described in the first aspect or the second aspect is realized The steps of the transmission method.
  • a corresponding signal sequence is generated according to the UCI to be transmitted, and the signal sequence is mapped to the Orthogonal Frequency Division Multiplexing (OFDM) symbol of the PUCCH resource for transmission, and the receiving end detects
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 1 is a schematic flowchart of an embodiment of an uplink control information transmission method provided in the first aspect of the present disclosure
  • FIG. 2 is a schematic flowchart of another embodiment of an uplink control information transmission method provided in the first aspect of the present disclosure
  • Fig. 3 is a schematic diagram of a transmission sequence in an embodiment of the present disclosure.
  • Fig. 4 is a schematic diagram of another transmission sequence in an embodiment of the present disclosure.
  • Fig. 5 is a schematic diagram of yet another transmission sequence in an embodiment of the present disclosure.
  • Fig. 6 is a schematic diagram of yet another transmission sequence in an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of yet another transmission sequence in an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of yet another transmission sequence in an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of yet another transmission sequence in an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of yet another transmission sequence in an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of yet another transmission sequence in an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of yet another transmission sequence in an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of yet another transmission sequence in an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of yet another transmission sequence in an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of yet another transmission sequence in an embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram of yet another transmission sequence in an embodiment of the present disclosure.
  • FIG. 17 is a schematic flowchart of an embodiment of an uplink control information transmission method provided by the second aspect of the present disclosure.
  • FIG. 18 is a schematic flowchart of an exemplary process for implementing an uplink control information transmission method provided by the first aspect and the second aspect of the present disclosure
  • FIG. 19 is a schematic diagram of an exemplary structure of a terminal device provided by the third aspect of the present disclosure.
  • FIG. 20 is a schematic diagram of an exemplary structure of a network side device provided by the fourth aspect of the present disclosure.
  • 21 is a schematic diagram of an exemplary structure of a mobile terminal provided by the fifth aspect of the present disclosure.
  • FIG. 22 is a schematic diagram of an exemplary structure of a network side device provided in the sixth aspect of the present disclosure.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • GSM Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution advanced
  • NR New Radio
  • terminal equipment may include, but is not limited to, a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a user equipment (User Equipment, MT), and a mobile phone (handset) And portable equipment (portable equipment), vehicles (vehicle), etc.
  • the terminal equipment can communicate with one or more core networks through a radio access network (Radio Access Network, RAN), for example, the terminal equipment can be a mobile phone (or It is called a "cellular" phone), a computer with wireless communication function, etc.
  • the terminal device can also be a portable, pocket-sized, handheld, built-in computer or a mobile device in a vehicle.
  • the base station can be a base station (BTS, Base Transceiver Station) in GSM or CDMA, a base station (NodeB) in WCDMA, or an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE and 5G Base station (gNB), the present disclosure is not limited, but for the convenience of description, the following embodiments take gNB as an example for description.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB or e-NodeB, evolutional Node B evolutional Node B
  • LTE and 5G Base station 5G Base station
  • the method 100 can be executed by a terminal device (UE). In other words, the method can be executed by software or It is executed by hardware. As shown in FIG. 1, the method 100 includes the following steps:
  • S112 Generate a signal sequence carrying bit information according to the bit information of the UCI to be transmitted.
  • the bit information of the UCI to be transmitted is carried by the signal sequence, and the bit information carried by the different cyclic shift or phase selection of the signal sequence can be indicated, for example, the cyclic shift ⁇ 0,3,6 ,9 ⁇ are respectively used to indicate the bit information of ⁇ 00,01,10,11 ⁇ , that is to say, when the cyclic shift is 3, the bit information indicating the transmission is 01.
  • the signal sequence may include, but is not limited to, at least one of the following: M sequence; ZC sequence; GOLD sequence; preset sequences other than M sequence, ZC sequence, and GOLD sequence; M sequence, ZC sequence, A sequence obtained by multiplying at least any two sequences in the GOLD sequence and the preset sequence. That is, in the embodiments of the present disclosure, the signal sequence can adopt any one of the above-mentioned sequences, or partially adopt any one of the above-mentioned sequences, and the remaining parts are determined according to other information that needs to be transmitted in actual applications, so as to achieve multiplexing the goal of.
  • K signal sequences can be generated according to the bit information of the Q bits, and each signal sequence carries M bits of bit information, where Q, K, and M are integers greater than 0 , That is, in this optional implementation manner, K signal sequences are generated according to Q bits of bit information to be transmitted, and each signal sequence carries M bits of bit information to be transmitted. For example, if the bit information to be transmitted is 11100011, and each signal sequence carries 2 bits of bit information to be transmitted, 4 signal sequences are generated.
  • the first signal sequence carries the first 2 bits of the bit information, that is, 11;
  • a signal sequence carries the bit information of the 3rd and 4th bits in the bit information, namely 10;
  • the third signal sequence carries the bit information of the 5th and 6th bits in the bit information, namely 00;
  • the fourth signal sequence carries the bit information The last two bits in, which is 11.
  • the length Q of the transmitted bit information may be limited, that is, Q ⁇ Qmax, where Qmax is a predefined value or a value configured by high-level signaling.
  • the bit information of the Q bits may be obtained according to the UCI to be transmitted. That is, in this optional implementation manner, according to the UCI to be transmitted, the bit information to be transmitted is obtained, and the bit information includes at least the bit information of the UCI to be transmitted.
  • Q may be indicated by the network side, or may be predefined.
  • the receiving end that is, the network side device
  • the network side device can more conveniently determine the part of the detected bit information that belongs to the UCI when recovering the transmitted UCI information.
  • the Q indicated by the network side or the pre-defined Q may be consistent with the length of the bit information of the UCI to be transmitted, or may be inconsistent. Therefore, in an optional implementation manner, when obtaining the bit information of Q bits according to the UCI to be transmitted, if the length L of the bit information of the UCI to be transmitted is equal to Q, then the bit information of the UCI to be transmitted is taken as Q Bit information; if the length L of the bit information of the UCI to be transmitted is less than Q, determine whether it is necessary to add 0 or 1 to the end of the bit information of the UCI to be transmitted according to the pre-set or preset high-level signaling instructions, If yes, add (QL) 0 or 1 at the end of the bit information of the UCI to be transmitted to obtain the bit information of Q bits.
  • bit information of UCI to be transmitted is: 1100100
  • the length Q of the bit information of UCI indicated by the network side is 10 bits.
  • the bit information to be transmitted is: 1100100000 or 1100100111.
  • high-level signaling can indicate whether to complement 1 or 0, and whether to complement 1 or 0 when L is less than Q. Therefore, when L is less than Q,
  • the tail complement (QL) zeros or 1s of the UCI bit information may include: determining according to the indication of the higher layer signaling, the tail complements (QL) zeros or 1s at the end of the UCI bit information to be transmitted.
  • L is greater than Q, it means that the current configuration of the PUCCH resource selected by the UE is not suitable for the current UCI transmission. Therefore, other configured PUCCH resources can be reselected to transmit the current UCI information, for example , Select the PUCCH configuration with Q greater than L configured on the network side.
  • the above method 100 further includes:
  • S114 Map the signal sequence to the OFDM symbol of the PUCCH resource for transmission.
  • K signal sequences can be mapped to N OFDM symbols of the PUCCH resource, where N is greater than 0. Integer.
  • N may be equal to K or greater than K. That is, in this implementation manner, one signal sequence is mapped to one OFDM symbol, and one signal sequence is mapped to N OFDM symbols at least once.
  • the bit information to be transmitted is carried on the signal sequence, and the signal sequence carrying the bit information to be transmitted is transmitted through the OFDM symbol of the PUCCH resource, and the receiving end detects the OFDM of the PUCCH resource.
  • the signal sequence transmitted on the symbol can obtain the UCI sent by the terminal device without using DMRS for channel estimation to obtain the UCI transmitted by the UE, which reduces the complexity of receiving the UCI.
  • N can be limited.
  • a configuration parameter can be set for the PUCCH resource.
  • the configuration parameter is used to indicate the maximum number of OFDM symbols used by the PUCCH resource to transmit UCI information, that is, Nmax.
  • the number N of OFDM symbols required by the K signal sequences currently to be transmitted may be greater than the Nmax of the currently selected PUCCH resource configuration.
  • the terminal device may restart before performing S114. Select a PUCCCH resource whose configured Nmax is greater than or equal to the number N of OFDM symbols required by the K signal sequences currently to be transmitted.
  • the terminal device in order to ensure the reliability of UCI transmission, can repeatedly map each signal sequence to P OFDM symbols for transmission, and each signal sequence is mapped to N OFDM symbols at a time.
  • the symbols are transmitted on one OFDM symbol, where each OFDM symbol occupies S resource blocks RB in the frequency domain, and both P and S are integers greater than zero.
  • N is greater than or equal to P*K.
  • the value range of M and/or S may be limited to facilitate the network side device to detect the transmitted UCI information. Therefore, in an optional implementation manner, M ⁇ Mmax, and/or, S ⁇ Smax, where Mmax is a predefined value or a value configured by higher layer signaling, and Smax is a predefined value or a value configured by higher layer signaling.
  • Mmax 3, indicating the total number of bits that can be transmitted in 1RB.
  • Smax 1, which represents a transmission process in which the sequence length for transmitting UCI occupies 1 RB (the sequence length is 12).
  • frequency hopping transmission when UCI is transmitted, frequency hopping transmission can be performed.
  • N may be determined according to an instruction sent by the network side, or the UE may also determine N according to the bit information to be transmitted, that is, before S114, the method further includes: determining according to an instruction sent by the network side N; or determine N according to K.
  • N when N is determined according to K, N can be the product of P.
  • M can be determined according to the instructions of the network side, or can be configured according to the needs of the UE. Therefore, before S114, the method may further include: determining M according to the instructions of the network side, or according to the terminal equipment Need to configure M. If the terminal device configures M according to its own needs, the terminal device can notify the network side device of the value of M, or the terminal device can also use the default value of M.
  • S can be determined according to the instructions of the network side, or configured according to the needs of the UE. Therefore, before S114, the method may further include: determining S according to the instructions of the network side, or according to the terminal equipment The demand configuration S.
  • the method 200 can be executed by a terminal device. In other words, the method can be implemented by software or hardware installed on the terminal device. Execution, as shown in FIG. 2, the method 200 includes the following steps:
  • S212 Generate K signal sequences carrying bit information according to the bit information of the UCI to be transmitted, where each signal sequence carries M bits of bit information, and K and M are integers greater than 0, Q is the length of the bit information to be transmitted.
  • S212 may adopt various corresponding implementation manners in the foregoing S112. For details, refer to the foregoing description of S112.
  • the above method 200 further includes:
  • P is an integer greater than 0
  • each signal sequence is mapped to one OFDM symbol for transmission at a time, and each signal sequence is repeatedly mapped P times.
  • each OFDM symbol can occupy S resource blocks RB in the frequency domain.
  • N, M, and S are all integers greater than 0, where N, M, and S can be limited, for example, N ⁇ Nmax, and/or, M ⁇ Mmax, and/or, S ⁇ Smax, Nmax is a predefined value or a value configured by higher layer signaling, Mmax is a predefined value or a value configured by higher layer signaling, and Smax is a predefined value Or the value configured by higher layer signaling.
  • P is an integer greater than zero.
  • P can be indicated by the network or configured according to the requirements of the UE.
  • S214 may also adopt various optional implementation manners of S114, which will not be repeated here.
  • S214 may include: repeating each of the K signal sequences on P OFDM symbols according to the first preset mapping manner or the second preset mapping manner. Whether to adopt the first preset mapping mode or the second preset mapping mode may be determined according to a predefined definition, or may be determined according to an instruction from the network side.
  • the first preset mapping method includes: repeatedly mapping the signal sequence carrying the first M bits of UCI to the first P OFDM symbols of the PUCCH resource, and then repeatedly mapping the signal sequence carrying the lower M bits of the UCI to the PUCCH resource On the next P OFDM symbols, until the mapping of K signal sequences is completed.
  • the first signal sequence is first mapped to P OFDM symbols successively, that is, the signal carrying the first M bits of the bit information to be transmitted
  • the signal sequence of the lower M bits of information that carries the bit information to be transmitted is mapped to the next P OFDM symbols until the mapping of all signal sequences in the bit information to be transmitted is completed.
  • the UE transmits 3 bits of bit information for each OFDM symbol, and every 3 bits of bit information is repeatedly mapped to 2 OFDM symbols, and the length of the UE's to be transmitted UCI bit information is 6.
  • Bit the UCI data transmitted is 110110
  • the high-level signaling instructs to add 0 to the bit information of the UCI data to be transmitted to the total number of transmitted bits, then the bit information to be transmitted is 1101100000.
  • the bit information transmitted on 8 OFDM symbols is shown in Figure 4.
  • the UE transmits 3 bits of bit information for each OFDM symbol, and every 3 bits of bit information is repeatedly mapped to 2 OFDM symbols, and the length of the UCI bit information to be transmitted by the UE is 6 bits.
  • the bit information of the transmitted UCI is 110110
  • the total transmission bit length is 10 bits
  • the bit information to be transmitted is 110110.
  • the bit information transmitted on 8 OFDM symbols is shown in Figure 5.
  • the second preset mapping manner may include: respectively mapping K signal sequences to the first K OFDM symbols of the PUCCH resource, and then mapping the K signal sequences to the next K OFDM symbols of the PUCCH resource, until the completion of P Times mapping. That is to say, using this mapping method, starting from the start OFDM symbol of the designated PUCCH resource, each signal sequence is mapped to an OFDM symbol in turn, and the OFDM symbols of each signal sequence are mapped consecutively, and then from the next OFDM symbol At the beginning, each signal sequence is mapped again on different time domain resources for transmission until P times of mapping are completed.
  • the UE transmits 3 bits of bit information in each OFDM symbol, and the transmission of every 3 bits of bit information is repeated twice.
  • the UCI data to be transmitted by the UE is 10 bits long, and the total transmission bits indicated by the network (ie Q) is 10 bits, the transmission data is 1101100111, and the UE transmits on 8 OFDM symbols.
  • the high-level signaling indicates that if the last group of bits of the data to be transmitted is less than 3, it is filled with 0. Then the bit information transmitted on the 8 OFDM symbols is shown in Figure 6.
  • the UE transmits 3 bits of bit information in each OFDM symbol, and the transmission of every 3 bits of bit information is repeated twice.
  • the UCI data to be transmitted by the UE is 6 bits long, and the UCI data is 110110.
  • the network indicates The total transmission bit (ie Q) is 10 bits, and the UE transmits on 8 symbols.
  • the transmission bits are filled with 0 to the total transmission bits. If the last group of bits of the data to be transmitted is less than 3, it is filled with 0s. Then the bit information transmitted on the 8 OFDM symbols is shown in Figure 7.
  • the UE transmits 3 bits of bit information in each OFDM symbol, and the transmission of every 3 bits of bit information is repeated twice.
  • the UCI data to be transmitted by the UE is 6 bits long, and the UCI data is 110110.
  • the network indicates The total transmission bit (ie Q) is 10 bits, and the UE transmits on 8 symbols.
  • Q The total transmission bit
  • the bit information transmitted on the 8 OFDM symbols is shown in Figure 8.
  • the UE transmits 3 bits of bit information in each OFDM symbol, and the transmission of every 3 bits of bit information is repeated twice.
  • the UCI data to be transmitted by the UE is 10 bits long.
  • the total transmission bits indicated by the network (ie Q ) Is 10 bits, the transmission data is 1101100111, and the UE transmits on 8 OFDM symbols. If the high-level signaling indicates that the last set of bits of the data to be transmitted is less than 3, it is filled with zeros, and the high-level signaling indicates that the positions of the OFDM symbols transmitting the same signal sequence in the frequency domain are RB1 and RB2.
  • the UE uses the first The preset mapping method is used for mapping. Then the bit information transmitted on the 8 OFDM symbols is shown in Figure 9.
  • the UE transmits 3 bits of bit information in each OFDM symbol, and the transmission of every 3 bits of bit information is repeated twice.
  • the UCI data to be transmitted by the UE is 10 bits long, and the total transmission bits indicated by the network ( That is, Q) is 10 bits, the transmission data is 1101100111, and the UE transmits on 8 OFDM symbols.
  • the high-level signaling indicates that the last group of bits of the data to be transmitted is less than 3, which is filled with 0, and the high-level signaling indicates that the positions of the OFDM symbols that transmit the same signal sequence in the frequency domain are RB1 and RB2.
  • the UE uses the second The preset mapping method is used for mapping. Then the bit information transmitted on the 8 OFDM symbols is shown in Figure 10.
  • uplink transmission cannot be performed on the j-th OFDM symbol mapped to the i-th signal sequence, including but not limited to:
  • the jth OFDM symbol is a downlink resource semi-statically configured by high-level signaling, or the jth OFDM symbol is a downlink resource or flexible OFDM symbol indicated by Downlink Control Information (DCI); that is, the jth OFDM symbol
  • DCI Downlink Control Information
  • RRM Radio Resource Management
  • uplink signals include, but are not limited to, Physical Random Access Channel (PRACH), PUCCH, or Physical Uplink Shared Channel (PUSCH) in the same cell or neighboring cells.
  • PRACH Physical Random Access Channel
  • PUCCH Physical Uplink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the foregoing first preset processing method includes: prohibiting the i-th signal sequence from being mapped to the j-th OFDM symbol for transmission. That is to say, during the p-th mapping, the i-th signal sequence is not mapped to the j-th OFDM symbol for transmission, and other signal sequences are mapped to its predetermined OFDM symbol for transmission.
  • the UE transmits 3 bits of bit information in each OFDM symbol, and the transmission of every 3 bits of bit information is repeated twice.
  • the UCI data to be transmitted by the UE is 10 bits long, and the total transmission bits indicated by the network (ie Q) is 10 bits, the transmission data is 1101100111, and the UE transmits on 8 OFDM symbols.
  • the high-level signaling indicates that the last set of bits of the data to be transmitted is less than 3, it is filled with zeros, and the high-level signaling indicates that the positions of the OFDM symbols transmitting the same signal sequence in the frequency domain are RB1 and RB2.
  • the UE uses the first The preset mapping method is used for mapping.
  • the third and fourth OFDM symbols are occupied and the currently configured PUCCH cannot be transmitted, that is, the first mapping and the first mapping of the signal sequence carrying the second 3-bit bit information of the bit information to be transmitted
  • the second mapping cannot be mapped to the third and fourth OFDM symbols of the currently configured PUCCH resource for transmission.
  • the first preset processing method described above is used, that is, it is forbidden to map the second 3-bit bit information to the third and fourth OFDM symbols.
  • the bit information transmitted on the 8 OFDM symbols is shown in Figure 11.
  • the UE transmits 3 bits of bit information in each OFDM symbol, and the transmission of every 3 bits of bit information is repeated twice.
  • the UCI data to be transmitted by the UE is 10 bits long, and the total transmission bits indicated by the network ( That is, Q) is 10 bits, the transmission data is 1101100111, and the UE transmits on 8 OFDM symbols.
  • the high-level signaling indicates that the last group of bits of the data to be transmitted is less than 3, which is filled with 0, and the high-level signaling indicates that the positions of the OFDM symbols that transmit the same signal sequence in the frequency domain are RB1 and RB2.
  • the UE uses the second The preset mapping method is used for mapping.
  • the 3rd and 4th OFDM symbols are occupied and the currently configured PUCCH cannot be transmitted, that is, the third 3 bits of bit information and the 4th 3 bits of bit information that carry the bit information to be transmitted
  • the first mapping of the two signal sequences cannot be mapped to the third and fourth OFDM symbols of the currently configured PUCCH resource for transmission.
  • the first preset processing method described above is used, that is, it is forbidden to transfer the third 3-bit bit information
  • the 4th 3 bits of bit information are mapped to the 3rd and 4th OFDM symbols for transmission.
  • the bit information transmitted on the 8 OFDM symbols is shown in Figure 12.
  • the above second preset processing method includes: prohibiting the p-th mapping of K signal sequences; that is, for K signal sequences, the p-th mapping is not performed, and the other sub-maps are mapped according to their predetermined OFDM symbols. .
  • the UE transmits 3 bits of bit information in each OFDM symbol, and the transmission of every 3 bits of bit information is repeated twice.
  • the UCI data to be transmitted by the UE is 10 bits long, and the total transmission bits indicated by the network (ie Q) is 10 bits, the transmission data is 1101100111, and the UE transmits on 8 OFDM symbols.
  • the high-level signaling indicates that the last set of bits of the data to be transmitted is less than 3, it is filled with zeros, and the high-level signaling indicates that the positions of the OFDM symbols transmitting the same signal sequence in the frequency domain are RB1 and RB2.
  • the UE uses the first The preset mapping method is used for mapping.
  • the fourth OFDM symbol is occupied and the currently configured PUCCH cannot be transmitted. That is, the second mapping of the signal sequence carrying the second 3-bit bit information of the bit information to be transmitted cannot be mapped to For transmission on the 4th OFDM symbol of the currently configured PUCCH resource, the above-mentioned second preset processing method is adopted, that is, the second mapping of K signal sequences is prohibited.
  • the bit information transmitted on the 8 OFDM symbols is shown in Figure 13.
  • the UE transmits 3 bits of bit information in each OFDM symbol, and the transmission of every 3 bits of bit information is repeated twice.
  • the UCI data to be transmitted by the UE is 10 bits long, and the total transmission bits indicated by the network ( That is, Q) is 10 bits, the transmission data is 1101100111, and the UE transmits on 8 OFDM symbols.
  • the high-level signaling indicates that the last group of bits of the data to be transmitted is less than 3, which is filled with 0, and the high-level signaling indicates that the positions of the OFDM symbols that transmit the same signal sequence in the frequency domain are RB1 and RB2.
  • the UE uses the second The preset mapping method is used for mapping.
  • the fourth OFDM symbol is occupied and the currently configured PUCCH cannot be transmitted. That is, the first mapping of the signal sequence carrying the fourth 3-bit bit information of the bit information to be transmitted cannot be mapped to For transmission on the fourth OFDM symbol of the currently configured PUCCH resource, the above-mentioned second preset processing method is adopted, that is, the first mapping of K signal sequences is prohibited.
  • the bit information transmitted on the 8 OFDM symbols is shown in Figure 14.
  • the foregoing third preset processing method includes: performing the p-th mapping of K signal sequences on an OFDM symbol that can perform uplink transmission subsequent to the PUCCH resource. That is, the p-th mapping of K signal sequences is postponed to the next available uplink transmission resource for transmission until P transmissions are completed.
  • the UE transmits 3 bits of bit information in each OFDM symbol, and the transmission of every 3 bits of bit information is repeated twice.
  • the UCI data to be transmitted by the UE is 10 bits long, and the total transmission bits indicated by the network (ie Q) is 10 bits, the transmission data is 1101100111, and the UE transmits on 8 OFDM symbols.
  • the high-level signaling indicates that the last set of bits of the data to be transmitted is less than 3, it is filled with zeros, and the high-level signaling indicates that the positions of the OFDM symbols transmitting the same signal sequence in the frequency domain are RB1 and RB2.
  • the UE uses the first The preset mapping method is used for mapping.
  • the fourth OFDM symbol is occupied and the currently configured PUCCH cannot be transmitted. That is, the second mapping of the signal sequence carrying the second 3-bit bit information of the bit information to be transmitted cannot be mapped to For transmission on the fourth OFDM symbol of the currently configured PUCCH resource, the above-mentioned third preset processing method is adopted, that is, the second mapping of K signal sequences is postponed to the next available uplink resource for transmission.
  • the bit information transmitted on the 8 OFDM symbols is shown in Figure 15.
  • the UE transmits 3 bits of bit information in each OFDM symbol, and the transmission of every 3 bits of bit information is repeated twice.
  • the UCI data to be transmitted by the UE is 10 bits long, and the total transmission bits indicated by the network ( That is, Q) is 10 bits, the transmission data is 1101100111, and the UE transmits on 8 OFDM symbols.
  • the high-level signaling indicates that the last group of bits of the data to be transmitted is less than 3, which is filled with 0, and the high-level signaling indicates that the positions of the OFDM symbols that transmit the same signal sequence in the frequency domain are RB1 and RB2.
  • the UE uses the second The preset mapping method is used for mapping.
  • the third and fourth OFDM symbols of the currently configured PUCCH resource are occupied.
  • the currently configured PUCCH cannot be transmitted, that is, the third and fourth 3 bits of the bit information to be transmitted are carried.
  • the two signal sequences of bit information cannot be mapped to the third and fourth OFDM symbols of the currently configured PUCCH resource for transmission.
  • the third preset processing method mentioned above is adopted, that is, the first of the K signal sequences
  • the second and subsequent mappings are postponed to the next available uplink transmission resource for transmission.
  • the bit information transmitted on the 8 OFDM symbols is shown in Figure 16.
  • the network side may instruct the UE to use one of the foregoing first preset processing method, second preset processing method, and third preset processing method to perform processing when an uplink resource conflict occurs. Therefore, before S214, the method 100 or the method 200 may further include: receiving an instruction command sent by the network side indicating that the first preset processing method, the second preset processing method, or the third preset processing method is adopted.
  • FIG. 17 is a schematic flowchart of an embodiment of an uplink control information transmission method provided by the second aspect of the present disclosure.
  • the method is executed by a network-side device.
  • the method 1700 can be implemented by software or hardware installed on the network-side device. carried out.
  • the method 1700 may include the following steps:
  • S1712 Detect the signal sequence transmitted by the UE on the OFDM symbol corresponding to the PUCCH resource.
  • the network-side equipment may be a base station or other network-side equipment.
  • the network side device can detect the signal sequence transmitted by the UE on the OFDM symbol corresponding to the PUCCH resource according to the configuration of the PUCCH resource selected by the UE.
  • the UE may transmit UCI according to various optional implementation manners of the foregoing method 100 or method 200.
  • the UE may transmit UCI according to various optional implementation manners of the foregoing method 100 or method 200.
  • the above method 1700 further includes:
  • S1714 Acquire bit information carried on each detected signal sequence according to a preset rule.
  • the network side device selects the bit information indicated by different cyclic shifts or phases according to preset rules, for example, according to preset signal sequences, for example, cyclic shift ⁇ 0,3,6,9 ⁇ , respectively used to indicate the bit information of ⁇ 00,01,10,11 ⁇ , that is to say, when the cyclic shift is 3, the bit information indicating the transmission is 01, so that the network side device can obtain the detected bit information
  • the bit information uploaded by the UE can be obtained through the time sequence of the OFDM symbols of the transmission signal sequence.
  • the signal sequence may be at least one of the following: M sequence; ZC sequence; GOLD sequence; preset sequences other than M sequence, ZC sequence, and GOLD sequence; M sequence, ZC sequence, GOLD sequence, and preset sequence Let the sequence be obtained by multiplying at least any two sequences in the sequence.
  • the above method 1700 further includes:
  • S1716 Reorganize the acquired bit information according to the transmission parameters used by the UE to transmit UCI to obtain UCI transmitted by the UE.
  • the network side device can recombine the bit information detected from the OFDM symbols in a manner corresponding to the UCI transmitted by the UE according to the transmission parameters used by the UE to transmit UCI to obtain the UCI transmitted by the UE.
  • the transmission parameter may include at least one of the following:
  • the repeated mapping manner may include the above-mentioned first preset mapping manner or the second preset mapping manner.
  • the network side device may, according to the repeated mapping manner of UCI on N OFDM symbols, convert the detected bits in a corresponding manner.
  • Bit information, 3 bits of bit information carried by the 3rd signal sequence, 3 bits of bit information carried by the 5th signal sequence, and 3 bits of bit information carried by the 7th signal sequence are carried out in the order of transmission time Reorganize to obtain the UCI information transmitted by the UE.
  • the transmission parameters include the frequency domain position occupied by the UCI.
  • the network side device can determine which frequency domain positions in the time slot to combine the bit information obtained to recover the UE transmission UCI information.
  • the processing method when there is a conflict includes the first preset processing method, the second preset processing method, or the third preset processing method mentioned above.
  • the network side device can, according to the transmission parameter, pass through the process of reorganizing the UCI information. It is determined whether there is a conflict in the preset UCI transmission resources to determine whether the detected bit information belongs to UCI information, and the bit information transmitted on which resources are used as UCI information, so as to ensure the accuracy of the recovered UCI information.
  • the transmission parameters are not limited to the above-listed parameters, but may also include other corresponding parameters, which specifically correspond to the various implementations of UE transmitting UCI in the above-mentioned method 100 and method 200.
  • it may also include: When the length L of the bit information of UCI is less than Q, whether to add 0 or 1, and it is a parameter to add 0 to 1.
  • the value range of some of the transmission parameters mentioned above may be limited, including but not limited to at least one of the following:
  • N ⁇ Nmax, Nmax is a configuration parameter of the PUCCH resource that transmits bit information, and the value of the configuration parameter is a predefined value or a value configured by higher layer signaling;
  • Q ⁇ Qmax, Qmax is a predefined value or a value configured by higher layer signaling
  • M ⁇ Mmax is a predefined value or a value configured by higher layer signaling
  • P ⁇ Pmax, Pmax is a predefined value or a value configured by higher layer signaling
  • S ⁇ Smax, Smax is a predefined value or a value configured by higher layer signaling.
  • one or more of the foregoing transmission parameters may be configured by the network side device instructing the UE. Therefore, in this optional implementation manner, before S1712, the method may further include: The device sends a configuration instruction to configure one or more of the transmission parameters.
  • the network-side device may send the foregoing configuration instructions according to the high-level signaling instructions, or may determine one or more of the foregoing transmission parameters according to the network-side device's own conditions, and send the corresponding configuration instructions, or One or more of the foregoing transmission parameters may be determined according to the configuration of each PUCCH resource, which is not specifically limited in this embodiment.
  • the above-mentioned transmission parameters can be configured by the network-side device, the UE can also determine and notify the network-side device according to its own situation, or can be uniformly configured by the high-level signaling to the UE and the network-side device. Specifically, there is no limitation in this embodiment.
  • the network-side device can obtain the UCI transmitted by the UE by detecting the signal sequence transmitted by the OFDM symbol of the PUCCH resource, without using a demodulation reference signal (Demodulation Reference Signal, DMRS) for channel estimation and returning the signal transmitted by the UE.
  • UCI information thereby reducing the complexity of receiving UCI information.
  • FIG. 18 is a schematic diagram of an exemplary flow chart for implementing an uplink control information transmission method 1800 provided by the first and second aspects of the present disclosure.
  • the method 1800 is executed by the terminal device and the network side device. In other words, the method 1800 may be installed on the terminal.
  • the software or hardware on the device and the network side device are executed. As shown in FIG. 18, the method 1800 includes the following steps:
  • S1812 The UE generates a signal sequence carrying bit information according to the bit information of the UCI to be transmitted.
  • S1812 may be the same as S112 or S212.
  • S112 and S212 please refer to the above description of S112 and S212, which will not be repeated here.
  • Method 1800 also includes:
  • S1814 The UE maps the signal sequence to the OFDM symbol of the PUCCH resource for transmission.
  • S1814 may be the same as the above S114 or S214.
  • S114 or S214 please refer to the above description of S114 or S214.
  • Method 1800 also includes:
  • the network side device detects the signal sequence transmitted by the UE on the OFDM symbol corresponding to the PUCCH resource.
  • S1816 is the same as the above S1712.
  • S1712 For details, please refer to the above description of S1712.
  • Method 1800 also includes:
  • the network side device obtains the bit information carried on each detected signal sequence according to a preset rule.
  • S1818 is the same as the above-mentioned S1714.
  • S1714 For details, please refer to the above-mentioned description of 1714.
  • Method 1800 also includes:
  • S1820 The network side device reorganizes the acquired bit information according to the transmission parameters used by the UE to transmit UCI to obtain UCI transmitted by the UE.
  • S1820 is the same as the above S1716.
  • S1716 For details, please refer to the above description of S1716.
  • the UE generates a signal sequence carrying bit information of the UCI according to the UCI to be transmitted, and maps the signal sequence to the OFDM symbol of the PUCCH resource for transmission.
  • the network side device detects the transmission on the OFDM symbol of the PUCCH resource. Signal sequence to obtain the UCI transmitted by the UE. There is no need to use DMRS for channel estimation and return the UCI information transmitted by the UE, thereby reducing the complexity of receiving UCI information.
  • the resistance of the PUCCH can be improved. Interference ability.
  • FIG. 19 is a schematic diagram of an exemplary structure of a terminal device provided in the third aspect of the present disclosure.
  • the network side device 1900 includes at least: a generation module 1910 and a transmission module 1920.
  • the generating module 1910 is used to generate a signal sequence carrying bit information according to the bit information of the uplink control information to be transmitted; the transmission module 1920 is used to map the signal sequence to the orthogonal frequency division multiplexing symbols of the physical uplink control channel resource for transmission.
  • the terminal device 1900 of the embodiment of the present disclosure may refer to the process executed by the terminal device in the method 100, method 200, and method 1800 corresponding to the embodiment of the present disclosure, and each unit/module in the terminal device 1900 and the above-mentioned other operations and/or
  • the functions are used to implement the corresponding processes in the method 100, the method 200, and the method 1800, respectively, and can achieve the same or equivalent technical effects. For the sake of brevity, details are not repeated here.
  • the generating module 1910 generates a signal sequence carrying bit information according to the bit information of the uplink control information to be transmitted: according to the bit information of the Q bits, K signal sequences are generated, where each signal sequence carries M bits of bit information, Q, K, and M are integers greater than 0,
  • the transmission module 1920 maps the signal sequence to the orthogonal frequency division multiplexing symbols of the physical uplink control channel resource for transmission: maps K signal sequences to the N OFDM symbols of the PUCCH resource for transmission, where N is an integer greater than 0.
  • the signal sequence includes at least one of the following: M sequence; ZC sequence; GOLD sequence; preset sequences other than M sequence, ZC sequence, and GOLD sequence; M sequence, ZC sequence, GOLD sequence, and A sequence obtained by multiplying at least any two sequences in the preset sequence.
  • N ⁇ Nmax, Nmax is the configuration parameter of the PUCCH resource for transmitting bit information
  • the value of the configuration parameter is a predefined value or a value configured by higher layer signaling
  • Q ⁇ Qmax, Qmax It is a predefined value or a value configured by high-layer signaling
  • the transmission module 1920 mapping K signal sequences to N OFDM symbols of the PUCCH resource for transmission includes: repeatedly mapping each signal sequence to P OFDM symbols for transmission, where P is greater than 0 Each signal sequence is mapped to one OFDM symbol for transmission at a time, and each OFDM symbol occupies S resource blocks RB in the frequency domain. P and S are integers greater than 0.
  • S ⁇ Smax where Smax is a predefined value or a value configured by high-layer signaling; and/or, P ⁇ Pmax, and Pmax is a predefined value or a value configured by high-level signaling.
  • the transmission module 1920 repeatedly mapping each signal sequence onto P OFDM symbols for transmission includes: mapping each signal sequence of the K signal sequences according to a first preset mapping manner or a second preset mapping manner The mapping mode is repeatedly mapped to P OFDM symbols for transmission; wherein, the first preset mapping mode includes: repetitively mapping the signal sequence of the first M bits carrying bit information to the first P OFDM symbols of the PUCCH resource, and then carrying the bits The signal sequence of the lower M bits of the information is repeatedly mapped to the next P OFDM symbols of the PUCCH resource until the mapping of the K signal sequences is completed; the second preset mapping method includes: respectively mapping the K signal sequences to the front of the PUCCH resource On the K OFDM symbols, then K signal sequences are mapped to the next K OFDM symbols of the PUCCH resource until P times of mapping are completed.
  • the terminal device may further include: a first determining module, used for the transmission module 1920 to repeat each of the K signal sequences according to the first preset mapping mode or the second preset mapping mode Before being mapped to P OFDM symbols for transmission, it is determined to adopt the first preset mapping mode or the second preset mapping mode according to a preset setting or an instruction from the network side.
  • a first determining module used for the transmission module 1920 to repeat each of the K signal sequences according to the first preset mapping mode or the second preset mapping mode Before being mapped to P OFDM symbols for transmission, it is determined to adopt the first preset mapping mode or the second preset mapping mode according to a preset setting or an instruction from the network side.
  • the transmission module 1920 repeatedly maps each signal sequence to P OFDM symbols for transmission, including: when the i-th signal sequence is mapped to one OFDM symbol of the PUCCH resource for transmission for the p-th time, It is determined that uplink transmission cannot be performed on the j-th OFDM symbol mapped to the i-th signal sequence; where 1 ⁇ p ⁇ P, 1 ⁇ j ⁇ N;
  • the p-th mapping of K signal sequences is processed; where the first preset processing method includes: prohibition The i-th signal sequence is mapped to the j-th OFDM symbol for transmission; the second preset processing method includes: prohibiting the p-th mapping of K signal sequences; the third preset processing method includes: the subsequent PUCCH resources can be On the OFDM symbols for uplink transmission, the p-th mapping of K signal sequences is performed.
  • the transmission module 1920 determining that uplink transmission cannot be performed on the j-th OFDM symbol mapped to the i-th signal sequence includes: determining that the j-th OFDM symbol is a semi-statically configured downlink resource for high-level signaling, or The j OFDM symbols are the downlink resources or flexible OFDM symbols indicated by the downlink control information DCI; determine that the jth OFDM symbol conflicts with the time-frequency resources measured by the radio resource management RRM indicated by the network side; determine the jth OFDM symbol and the transmission except the uplink The time-frequency resources of other uplink signals other than the control information conflict.
  • the terminal device 1900 may further include: a receiving module, configured to receive an instruction command sent by the network side indicating that the first preset processing method, the second preset processing method, or the third preset processing method is used .
  • the transmission module 1920 repeatedly maps each signal sequence to P OFDM symbols for transmission, including: according to a preset or network side instruction, when P is greater than 1, the same signal sequence is mapped
  • Each OFDM symbol is set at different frequency domain positions for transmission.
  • the terminal device further includes: a second determining module, configured to determine N according to an instruction sent by the network side; or determine N according to K.
  • the terminal device 1900 may further include: an obtaining module, configured to obtain Q-bit bit information according to the UCI to be transmitted.
  • the obtaining module obtains the bit information of the Q bits according to the UCI to be transmitted includes: if the length L of the bit information of the UCI to be transmitted is equal to Q, then the bit information of the UCI to be transmitted is used as the Q bit If the length L of the bit information of the UCI to be transmitted is less than Q, determine whether it is necessary to add 0 or 1 to the end of the bit information of the UCI to be transmitted according to the pre-set or preset high-level signaling instructions, if If yes, add (QL) 0 or 1 at the end of the UCI bit information to be transmitted to obtain Q-bit bit information.
  • the terminal device further includes: a third determining module, configured to determine M according to an instruction from the network side, or configure M according to the needs of the terminal device.
  • the terminal device 1900 may further include: a fourth determining module, configured to determine S according to an instruction from the network side before repeatedly mapping each signal sequence to P OFDM symbols for transmission, or according to the terminal The device needs to configure S; and/or, P is determined according to the instructions of the network side, or P is configured according to the needs of the terminal device.
  • a fourth determining module configured to determine S according to an instruction from the network side before repeatedly mapping each signal sequence to P OFDM symbols for transmission, or according to the terminal The device needs to configure S; and/or, P is determined according to the instructions of the network side, or P is configured according to the needs of the terminal device.
  • the network side device 2000 includes: a detection module 2010, an acquisition module 2020, and a recombination module 2030.
  • the detection module 2010 is used to detect the signal sequence transmitted by the terminal equipment on the OFDM symbol corresponding to the physical uplink control channel resource; the acquisition module 2020 is used to obtain the bit information carried on each detected signal sequence according to a preset rule; The module 2030 is configured to reorganize the acquired bit information according to the transmission parameters used by the terminal device to transmit the uplink control information to obtain the UCI transmitted by the terminal device.
  • the network-side device 2000 can refer to the processes executed by the network-side device in the embodiments of the method 1700 and the method 1800 in the embodiment of the present disclosure, and each unit/module in the network-side device 2000 and the above-mentioned other
  • the operations and/or functions respectively implement the processes executed by the network side device in the method embodiments of the above method 1700 and method 1800, and can achieve the same or equivalent technical effects. For brevity, details are not repeated here.
  • the signal sequence includes at least one of the following: M sequence; ZC sequence; GOLD sequence; preset sequences other than M sequence, ZC sequence, and GOLD sequence; M sequence, ZC sequence, GOLD sequence, and A sequence obtained by multiplying at least any two sequences in the preset sequence.
  • the transmission parameters include at least one of the following:
  • N The number N of OFDM symbols used for UCI transmission, where N is an integer greater than 0;
  • the total length Q of the transmitted bit information where Q is an integer greater than 0;
  • the processing method when there is a conflict in the time-frequency resources for transmitting OFDM symbols.
  • N ⁇ Nmax, Nmax is the configuration parameter of the PUCCH resource for transmitting UCI
  • the value of the configuration parameter is a predefined value or a value configured by higher layer signaling
  • Q ⁇ Qmax, Qmax is A predefined value or a value configured by higher layer signaling
  • S ⁇ Smax where Smax is a predefined value or a value configured by higher layer signaling.
  • the network side device 2000 may further include: a configuration module, configured to send a configuration instruction to the terminal device before detecting the signal sequence transmitted by the terminal device on the OFDM symbol corresponding to the physical uplink control channel PUCCH resource, Configure one or more of the transmission parameters.
  • a configuration module configured to send a configuration instruction to the terminal device before detecting the signal sequence transmitted by the terminal device on the OFDM symbol corresponding to the physical uplink control channel PUCCH resource, Configure one or more of the transmission parameters.
  • FIG. 21 is a schematic diagram of an exemplary structure of a mobile terminal provided in the fifth aspect of the present disclosure.
  • the mobile terminal 2100 shown in FIG. 21 includes: at least one processor 2101, a memory 2102, at least one network interface 2104, and a user interface 2103.
  • the various components in the mobile terminal 2100 are coupled together through the bus system 2105.
  • the bus system 2105 is used to implement connection and communication between these components.
  • the bus system 2105 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 2105 in FIG. 21.
  • the mobile terminal 2100 as shown in FIG. 21 can be used as the UE in each of the foregoing embodiments, and implements various processes implemented by the UE in each of the foregoing embodiments.
  • the user interface 2103 may include a display, a keyboard, or a pointing device (for example, a mouse, a trackball (trackball), a touch panel, or a touch screen, etc.).
  • a pointing device for example, a mouse, a trackball (trackball), a touch panel, or a touch screen, etc.
  • the memory 2102 in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-OnlyMemory, ROM), programmable read-only memory (ProgrammableROM, PROM), erasable programmable read-only memory (ErasablePROM, EPROM), electrically erasable Programming read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM Double data rate synchronous dynamic random access memory
  • DoubleDataRate SDRAM, DDRSDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • SynchronousDRAM synchronous dynamic random access memory
  • Enhanced SDRAM ESDRAM
  • SynchlinkDRAM synchronous connection dynamic random access memory
  • DirectRambusRAM DirectRambusRAM
  • DRRAM direct memory bus random access memory
  • the memory 2102 of the system and method described in the embodiments of the present disclosure is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 2102 stores the following elements, executable modules or data structures, or a subset of them, or an extended set of them: an operating system 21021 and an application program 21022.
  • the operating system 21021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 21022 includes various application programs, such as a media player (MediaPlayer), a browser (Browser), etc., which are used to implement various application services.
  • the program for implementing the method of the embodiment of the present disclosure may be included in the application program 21022.
  • the mobile terminal 2100 further includes: a computer program stored in the memory 2102 and capable of running on the processor 2107.
  • the mobile terminal may be the UE in each of the foregoing embodiments, and the computer program is executed by the processor 2101.
  • the following steps are realized: according to the bit information of the uplink control information to be transmitted, a signal sequence carrying the bit information is generated; the signal sequence is mapped to the orthogonal frequency division multiplexing symbols of the physical uplink control channel resource for transmission.
  • the methods disclosed in the foregoing embodiments of the present disclosure may be applied to the processor 2101 or implemented by the processor 2101.
  • the processor 2101 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by hardware integrated logic circuits in the processor 2101 or instructions in the form of software.
  • the aforementioned processor 2101 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present disclosure may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a computer-readable storage medium that is mature in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers.
  • the computer-readable storage medium is located in the memory 2102, and the processor 2101 reads the information in the memory 2102, and completes the steps of the foregoing method in combination with its hardware.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 2101, the steps performed by the UE in the method embodiments of the method 100, the method 200, and the method 1800 are implemented.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment (DSP Device, DSPD), programmable Logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and other electronic units used to perform the functions of the present disclosure Or a combination thereof.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology of the embodiments of the present disclosure can be implemented by modules (for example, procedures, functions, etc.) that perform the functions of the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • FIG. 22 is a schematic diagram of an exemplary structure of a network-side device provided by the sixth aspect of the present disclosure, which can implement various details of the implementation of the network-side device in the method embodiments of method 1700 and method 1800, and achieve the same Effect.
  • the network side device 2200 includes: a processor 2201, a transceiver 2202, a memory 2203, a user interface 2204, and a bus interface.
  • the network side device 2200 further includes: a computer program stored in the memory 2203 and capable of running on the processor 2201. The computer program is executed by the processor 2201, and the method 1700 and the method 1800 are implemented. Steps in the network side equipment.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 2201 and various circuits of the memory represented by the memory 2203 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 2202 may be a plurality of elements, that is, include a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 2204 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 2201 is responsible for managing the bus architecture and general processing, and the memory 2203 can store data used by the processor 2201 when performing operations.
  • the embodiments of the present disclosure also provide a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, each process of each method embodiment shown in FIG. 1 to FIG. 18 is realized. , And can achieve the same technical effect, in order to avoid repetition, I will not repeat them here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk, or optical disk, etc.
  • the technical solution of the present disclosure essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods of the various embodiments of the present disclosure.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种上行控制信息传输方法、终端设备和网络侧设备。其中,该方法包括:根据待传输的上行控制信息的比特信息,生成承载所述比特信息的信号序列;将所述信号序列映射到物理上行控制信道资源的正交频分复用符号上传输。

Description

上行控制信息传输方法、终端设备和网络侧设备 技术领域
本公开涉及通信领域,尤其涉及一种上行控制信息传输方法、终端设备和网络侧设备。
背景技术
在R-15协议中,对于多于2比特的上行控制信息,采用RM码进行信道编码,并在5G NR的物理上行控制信道(Physical Uplink Control Channel,PUCCH)上采用format 2、format 3与format 4的格式进行传输。在这种方式中,为了进行信道估计引入解调参考信号(Demodulation Reference Signal,DMRS),接收端根据DMRS进行信道估计,根据估计的信道还原传输的上行控制信息(Uplink Control Information,UCI)信息。
在相关技术中,接收端需要根据DMRS进行信道估计,根据估计的信道还原UE传输的UCI信息,接收复杂度较高。
发明内容
本公开实施例的目的是提供一种上行控制信息传输方法、终端设备和网络侧设备,用以降低UCI信息的接收复杂度。
第一方面,提供了一种上行控制信息传输方法,所述方法由终端设备执行,所述方法包括:根据待传输的上行控制信息的比特信息,生成承载所述比特信息的信号序列;将所述信号序列映射到物理上行控制信道资源的正交频分复用(Orthogonal frequency division multiplex,OFDM)符号上传输。
第二方面,提供了一种上行控制信息传输方法,所述方法由网络侧设备执行,所述方法包括:检测终端设备在物理上行控制信道资源对应的OFDM符号上传输的信号序列;根据预先设置的规则,获取检测到的每个所述信号序列上承载的比特信息;按照所述终端设备传输上行控制信息使用的传输参数,对获取到的比特信息进行重组,得到所述终端设备传输的UCI。
第三方面,提供了一种终端设备,包括:生成模块,用于根据待传输的上行控制信息的比特信息,生成承载所述比特信息的信号序列;传输模块,用于将所述信号序列映射到物理上行控制信道资源的OFDM符号上传输。
第四方面,提供了一种网络侧设备,包括:检测模块,用于检测终端设备在物理上行控制信道资源对应的OFDM符号上传输的信号序列;获取模块,用于根据预先设置的规则,获取检测到的每个所述信号序列上承载的比特信息;重组模块,用于按照所述终端设备传输上行控制信息使用的传输参数,对获取到的比特信息进行重组,得到所述终端设备传输的UCI。
第五方面,提供了一种终端设备,存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的上行控制信息传输方法的步骤。
第六方面,提供了一种网络侧设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第二方面所述的上行控制信息传输方法的步骤。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第一方面或第二方面所述的上行控制信息传输方法的步骤。
在本公开实施例中,根据待传输的UCI,生成对应的信号序列,将该信号序列映射到PUCCH资源的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号上传输,接收端通过检测PUCCH资源的OFDM符号上传输的信号序列,即可以获取到终端设备发送的UCI,无需接收DMRS进行信道估计,降低了UCI信息的接收复杂度。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开第一方面提供的一种上行控制信息传输方法的一个实施例的流程示意图;
图2是本公开第一方面提供的一种上行控制信息传输方法的另一个实施例的流程示意图;
图3是本公开实施例中的一种传输序列的示意图;
图4是本公开实施例中的另一种传输序列的示意图;
图5是本公开实施例中的又一种传输序列的示意图;
图6是本公开实施例中的又一种传输序列的示意图;
图7是本公开实施例中的又一种传输序列的示意图;
图8是本公开实施例中的又一种传输序列的示意图;
图9是本公开实施例中的又一种传输序列的示意图;
图10是本公开实施例中的又一种传输序列的示意图;
图11是本公开实施例中的又一种传输序列的示意图;
图12是本公开实施例中的又一种传输序列的示意图;
图13是本公开实施例中的又一种传输序列的示意图;
图14是本公开实施例中的又一种传输序列的示意图;
图15是本公开实施例中的又一种传输序列的示意图;
图16是本公开实施例中的又一种传输序列的示意图;
图17是本公开第二方面提供的一种上行控制信息传输方法的一个实施例的流程示意图;
图18是实施本公开第一方面和第二方面提供的一种上行控制信息传输方法的示例性流程示意图;
图19是本公开第三方面提供的一种终端设备的示例性结构示意图;
图20是本公开第四方面提供的一种网络侧设备的示例性结构示意图;
图21是本公开第五方面提供的一种移动终端的示例性结构示意图;
图22是本公开第六方面提供的一种网络侧设备的示例性结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的技术方案,可以应用于各种通信系统,例如:全球移动通讯系统(GSM,Global System of Mobile communication),码分多址(CDMA,Code Division Multiple Access)系统,宽带码分多址(WCDMA,Wideband Code Division Multiple Access),通用分组无线业务(GPRS,General Packet Radio Service),长期演进(LTE,Long Term  Evolution)/增强长期演进(LTE-A,Long Term Evolution advanced),NR(New Radio)等。
在本公开实施例中,终端设备可以包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、用户设备(User Equipment,MT)、手机(handset)及便携设备(portable equipment)、车辆(vehicle)等,该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B)及5G基站(gNB),本公开并不限定,但为描述方便,下述实施例以gNB为例进行说明。
以下结合附图,详细说明本公开各实施例提供的技术方案。
图1是本公开第一方面提供的一种上行控制信息传输方法的一个实施例的流程示意图,该方法100可以由终端设备(UE)执行,换言之,该方法可以由安装在终端设备的软件或硬件来执行,如图1所示,该方法100包括如下步骤:
S112,根据待传输的UCI的比特信息,生成承载比特信息的信号序列。
在本公开实施例中,通过信号序列来承载待传输的UCI的比特信息,可以通过信号序列的不同循环移位或者相位选准指示承载的比特信息,例如,循环移位{0,3,6,9},分别用于指示{00,01,10,11}的比特信息,也就是说,在循环移位为3时,指示传输的比特信息为01。
在本公开实施例中,信号序列可以包括但不限于以下至少之一:M序列;ZC序列;GOLD序列;除M序列、ZC序列和GOLD序列之外的预设序列;M序列、ZC序列、GOLD序列和预设序列中的至少任意两个序列相乘获得的序列。即在本公开实施例中,信号序列可以采用上述序列中的任意一种,也可以是部分采用上述序列中的任意一种,其余部分根据实际应用中需要传输的其它信息确定,从而达到复用的目的。
在一个可选的实现方式中,在S112中,可以根据Q比特的比特信息,生成K个信号序列,每个信号序列承载M比特的比特信息,其中,Q、K和M为大于0的整数,
Figure PCTCN2020137369-appb-000001
即在该可选的实现方式中,根据Q比特的待传输的比特信息,生成K个信号序列,每个信号序列承载M比特的待传输的比特信息。例如,待传输的比特信息为11100011,每个信号序列承载2比特的待传输的比特信息,则生成4个信号序列,第1个信号序列承载比特信息中的前2比特,即11;第2个信号序列承载比特信息中的第3和4比特的比特信息,即10;第3个信号序列承载比特信息中的第5和6比特的比特信息,即00;第4个信号序列承载比特信息中的最后两比特,即11。
在本实施例中,可以对传输的比特信息的长度Q进行限定,即Q≤Qmax,其中,Qmax为预定义值或高层信令配置的值。
在一个可选的实现方式中,根据Q比特的比特信息,生成K个信号序列之前,可以根据待传输的UCI,得到Q比特的比特信息。即在该可选的实现方式中,根据待传输的UCI,得待传输的比特信息,该比特信息中至少包括了待传输的UCI的比特信息。
在本公开实施例中,Q可以是网络侧指示的,也可以是预先定义的。通过限定待传输的比特信息的长度,使得接收端(即网络侧设备)在恢复 传输的UCI信息时,可以更为方便的确定检测到比特信息中属于UCI的部分。
在具体应用中,网络侧指示的Q或者预先定义的Q可能与待传输的UCI的比特信息的长度一致,也可能不一致。因此,在一个可选的实现方式中,根据待传输的UCI,得到Q比特的比特信息时,若待传输的UCI的比特信息的长度L等于Q,则将待传输的UCI的比特信息作为Q比特的比特信息;若待传输的UCI的比特信息的长度L小于Q,根据预先设置或预设的高层信令的指示,确定是否需要在待传输的UCI的比特信息的尾部补0或1,如果是,则在待传输的UCI的比特信息的尾部补(Q-L)个0或1,得到Q比特的比特信息。
例如,假设待传输的UCI的比特信息为:1100100,而网络侧指示的UCI的比特信息的长度Q为10比特,根据预先设置或预设的高层信令的指示,在长度L小于Q时,补0或1,则待传输的比特信息为:1100100000或者1100100111。通过该可选的实现方式,可以在待传输的UCI的比特信息与网络侧指示的或预先定义的长度不一致时,通过补0或补1的方式得到网络侧指示的或预先定义的长度的待传输信息。
在上述可选的实现方式中,在一种可能的实现方式中,可以由高层信令指示在L小于Q的情况下,是否补1或0,以及是补1还是0,因此,在待传输的UCI的比特信息的尾部补(Q-L)个0或1可以包括:根据高层信令的指示确定,在待传输的UCI的比特信息的尾部补(Q-L)个0或1。通过该可能的实现方式,可以按照高层信令的指示确定在L小于Q的情况下是否补1或0以及是补1还是0,从而使得终端设备侧与网络侧可以统一。当然,并不限于此,也可以采用其它的实现方式,例如,在终端设备和网络侧预先配置在L小于Q的情况下的处理方式。
在上述可选的实现方式中,如果L大于Q,则说明当前UE选择的PUCCH资源的配置不适合当前的UCI传输,因此,可以重新选择其它配置的PUCCH资源,以传输当前的UCI信息,例如,选择网络侧配置的Q大于L的PUCCH配置。
上述方法100还包括:
S114,将信号序列映射到PUCCH资源的OFDM符号上传输。
在一个可能的实现方式中,在承载待传输的比特信息为K个信号序列时,在S114中,可以将K个信号序列映射到PUCCH资源的N个OFDM符号上,其中,N为大于0的整数。在该可能的实现方式中,N可以等于K,也可以大于K,即在该实现方式中,一个信号序列映射到一个OFDM符号上,一个信号序列至少在N个OFDM符号上映射一次。
在本实施例中,终端设备在传输UCI时,将待传输的比特信息承载到信号序列上,通过PUCCH资源的OFDM符号传输承载待传输的比特信息的信号序列,接收端通过检测PUCCH资源的OFDM符号上传输的信号序列,即可以获取到终端设备发送的UCI,而无需利用DMRS进行信道估计以获得UE传输的UCI,降低了UCI的接收复杂度。
在本公开实施例中,可以对N进行限定,在配置PUCCH资源时,可以为PUCCH资源设置一个配置参数,该配置参数用于指示PUCCH资源传输UCI信息使用的OFDM符号的最大数量,即Nmax,Nmax的取值可以为预定义值,也可以是高层信令配置的值。在这种情况下,N≤Nmax。例如,Nmax=14,表明不能跨时隙传输。
在本公开实施例中,当前待传输的K个信号序列所需要的OFDM符号的数量N有可能大于当前选择的PUCCH资源配置的Nmax,在这种情况下,在执行S114之前,终端设备可以重新选择配置的Nmax大于或等 于当前待传输的K个信号序列所需要OFDM符号的数量N的PUCCCH资源。
在一个可选的实现方式中,为了确保UCI传输的可靠性,在S114中,终端设备可以将每个信号序列重复映射到P个OFDM符号上传输,每个信号序列每次映射到N个OFDM符号中的一个OFDM符号上传输,其中,每个OFDM符号在频域上占用S个资源块RB,P和S均为大于0的整数。在该实现方式中,N大于等于P*K。
在上述可选的实现方式中,可选地,可以对M和/或S的取值范围进行限定,以方便网络侧设备检测传输的UCI信息。因此,在一个可选的实现方式中,M≤Mmax,和/或,S≤Smax其中,Mmax为预定义值或高层信令配置的值,Smax为预定义值或高层信令配置的值。例如Mmax=3,表明在1RB中可以传输的所有比特数。例如Smax=1,代表传输UCI的序列长度占据1RB(序列长度为12)的传输过程。
在上述实现方式中,在传输UCI时,可以进行跳频传输,在这种情况下,在S114中,可以按照预先设置或网络侧的指示,将映射相同信号序列的不同OFDM符号设置在不同的频域位置上传输;或者,在P=1的情况下,将N个OFDM符号中的前
Figure PCTCN2020137369-appb-000002
个OFDM符号与后
Figure PCTCN2020137369-appb-000003
个OFDM符号分别设置在不同的频域位置上传输,即在不重复映射的情况下,将传输UCI的N个OFDM符号中的前一半OFDM符号与后一半OFDM符号设置在不同的频域上传输。
在一个可选的实现方式中,N可以根据网络侧发送的指示确定,或者UE也可以根据需要待传输的比特信息确定N,即在S114之前,该方法还包括:根据网络侧发送的指示确定N;或者根据K确定N。在该实现方式中,在根据K确定N时,N可以为与P的乘积,P=1时,即K个信号序列只映射一次的情况下,N等于K,而
Figure PCTCN2020137369-appb-000004
在一个可选的实现方式中,M可以根据网络侧的指示确定,也可以根据UE的需要配置,因此,在S114之前,该方法还可以包括:根据网络侧的指示确定M,或按照终端设备的需要配置M。若采用终端设备根据自身需求配置M的情况,则终端设备可以将M的取值通知网络侧设备,或者,终端设备也可以采用默认的M值。
在一个可选的实现方式中,在执行S114的过程中,若x=Q mod M=0,则生成承载Q比特的比特信息的K个信号序列;若x=Q mod M≠0,则在Q比特的比特信息的最后x个比特信息后补(M-x)个0或1,再生成承载补(M-x)个0或1之后的比特信息的K个信号序列。具体地,可以根据高层信令确定是补0还1。例如,假设高层信令指示补0,Q比特的比特信息为10111010,M=3,则最后确定的待传输的比特信息为:10111010,即映射第3个信号序列的OFDM符号上传输的比特信息为:100。
在一个可选的实现方式中,S可以根据网络侧的指示确定,也可以根据UE的需要配置,因此,在S114之前,该方法还可以包括:根据网络侧的指示确定S,或按照终端设备的需求配置S。
图2是本公开第一方面提供的一种上行控制信息传输方法的另一个实施例的流程示意图,该方法200可以由终端设备执行,换言之,该方法可以由安装在终端设备的软件或硬件来执行,如图2所示,该方法200包括如下步骤:
S212,根据待传输的UCI的比特信息,生成承载比特信息的K个信号序列,其中,每个信号序列承载M比特的比特信息,K和M为大于0的整数,
Figure PCTCN2020137369-appb-000005
Q为待传输的比特信息的长度。
S212可以采用上述S112中对应的各个实现方式,具体参见上述对S112的描述。
上述方法200还包括:
S214,将每个信号序列重复映射到PUCCH资源的N个OFDM符号中的P个OFDM符号上传输。
在本公开实施例中,P为大于0的整数,每个信号序列每次映射到一个OFDM符号上传输,每个信号序列重复映射P次。
在本公开实施例中,每个OFDM符号在频域上可以占用S个资源块RB,N、M和S均为大于0的整数,其中,可以对N、M和S进行限定,例如,N≤Nmax,和/或,M≤Mmax,和/或,S≤Smax,Nmax为预定义值或高层信令配置的值,Mmax为预定义值或高层信令配置的值,Smax为预定义值或高层信令配置的值。
其中,P为大于0的整数。P可以通过网络指示,或根据UE的需求进行配置,P≤Pmax,max值为预定义值或者由高层信令配置的值。例如Pmax=1,代表只允许映射一次待传输的比特信息到OFDM符号上传输。
S214也可以采用S114的各个可选的实现方式,在此不再赘述。
在一个可选的实现方式中,S214可以包括:将K个信号序列中的每个信号序列按照第一预设映射方式或第二预设映射方式重复P个OFDM符号上传输。对于是采用第一预设映射方式还是第二预设映射方式可以根据预先定义确定,也可以根据网络侧的指示确定。
其中,第一预设映射方式包括:将承载UCI的前M比特的信号序列重复映射到PUCCH资源的前P个OFDM符号上,再将承载UCI的下M比特的信号序列重复映射到PUCCH资源的下P个OFDM符号上,直到完成K个信号序列的映射。也就是说,根据当前的PUCCH配置,从该PUCCH资源的起始OFDM符号开始,先连续在P个OFDM符号上映射第一个信号序列,即承载待传输的比特信息的前M比特信息的信号序列,完成后,再将承载待传输的比特信息的下M比特信息的信号序列映射到下P 个OFDM符号,直到完成承载待传输的比特信息中的所有信号序列的映射。
例如,假设网络侧配置PUCCH资源的每个OFDM符号(symbol)传输3比特的比特信息(即每个OFDM符号上映射一个信号序列,每个信号序列承载待传输的比特信息中的3比特的比特信息),每3比特的比特信息重复映射到2个OFDM符号上传输(即每个信号序列重复映射2次,每次映射到一个OFDM符号),UE待传输的UCI的比特信息为10比特,网络侧指示的Q(即总计传输比特长度)为10比特,待传输的UCI的比特信息为1101100111,UE在8个OFDM符号(即确定N=8)上进行传输。则8个OFDM符号上传输的比特信息如图3所示。
又例如,假设当前网络配置下,UE在每个OFDM symbol传输3比特的比特信息,每3比特的比特信息重复映射到2个OFDM符号上,UE的待传输的UCI的比特信息的长度为6比特,传输的UCI数据为110110,总计传输比特长度为10比特(即Q=10),UE在8个OFDM符号(即确定N=8)上进行传输。高层信令指示将待传输的UCI数据的比特信息进行补0至总传输比特数量,则待传输的比特信息为:1101100000。8个OFDM符号上传输的比特信息如图4所示。
又例如,假设当前网络配置下,UE在每个OFDM symbol传输3比特的比特信息,每3比特的比特信息重复映射到2个OFDM符号上,UE待传输的UCI的比特信息的长度为6比特,传输的UCI的比特信息为110110,总计传输比特长度为10比特,UE在8个OFDM符号(即确定N=8)上进行传输。而根据高层信令,确定不需要进行补0或补1的操作,因此,待传输的比特信息为:110110。8个OFDM符号上传输的比特信息如图5所示。
其中,第二预设映射方式可以包括:将K个信号序列分别映射到PUCCH资源的前K个OFDM符号上,再将K个信号序列映射到PUCCH资源的下K个OFDM符号上,直到完成P次映射。也就是说,采用该映射方式,从指定的PUCCH资源的起始OFDM符号开始,依次将每个信号序列映射到一个OFDM符号,映射各信号序列的OFDM符号连续,然后,再从下一个OFDM符号开始,将各个信号序列再次映射在不同的时域资源上传输,直到完成P次的映射。
例如,假设当前网络配置下,UE在每个OFDM symbol传输3比特的比特信息,每3比特的比特信息传输重复2次,UE待传输的UCI数据长10比特,网络指示的总计传输比特(即Q)为10比特,传输数据为1101100111,UE在8个OFDM符号上进行传输。高层信令指示待传输数据的最后一组比特不足3的,通过补0补齐。则8个OFDM符号上传输的比特信息如图6所示。
又例如,假设当前网络配置下,UE在每个OFDM symbol传输3比特的比特信息,每3比特的比特信息传输重复2次,UE待传输的UCI数据长6比特,UCI数据为110110,网络指示的总计传输比特(即Q)为10比特,UE在8个符号上进行传输。根据高层信令配置,将传输比特进行补0至总计传输比特,待传输数据的最后一组比特不足3的,通过补0补齐。则8个OFDM符号上传输的比特信息如图7所示。
又例如,假设当前网络配置下,UE在每个OFDM symbol传输3比特的比特信息,每3比特的比特信息传输重复2次,UE待传输的UCI数据长6比特,UCI数据为110110,网络指示的总计传输比特(即Q)为10比特,UE在8个符号上进行传输。根据高层信令配置,不需要将传输比特补0至总计传输比特,且待传输数据的最后一组比特不足3的,通过补0补齐。则8个OFDM符号上传输的比特信息如图8所示。
在一个可选的实现方式中,在P大于1的情况下,将映射相同信号序列的不同OFDM符号设置在不同的频域位置上传输,或者,也可以将UCI的比特信息的不同部分映射到不同的频域位置上传输,以实现比特信息在时隙内跳频传输。在该可选的实现方式中,S214可以包括:按照预先设置或网络侧的指示,在P大于1的情况下,将映射相同信号序列的不同OFDM符号设置在不同的频域位置上传输,或者,在P=1的情况下,即不对比特信息进行重复映射的情况下,将N个OFDM符号中的前
Figure PCTCN2020137369-appb-000006
与后
Figure PCTCN2020137369-appb-000007
Figure PCTCN2020137369-appb-000008
个OFDM符号分别设置在不同的频域位置上传输。
例如,当前网络配置下,UE在每个OFDM symbol传输3比特的比特信息,每3比特的比特信息传输重复2次,UE待传输的UCI数据长10比特,网络指示的总计传输比特(即Q)为10比特,传输数据为1101100111,UE在8个OFDM符号上进行传输。高层信令指示待传输数据的最后一组比特不足3的,通过补0补齐,且高层信令指示传输相同信号序列的OFDM符号在频域的位置分别为RB1和RB2,UE采用上述第一预设映射方式进行映射。则8个OFDM符号上传输的比特信息如图9所示。
又例如,假设当前网络配置下,UE在每个OFDM symbol传输3比特的比特信息,每3比特的比特信息传输重复2次,UE待传输的UCI数据长10比特,网络指示的总计传输比特(即Q)为10比特,传输数据为1101100111,UE在8个OFDM符号上进行传输。高层信令指示待传输数据的最后一组比特不足3的,通过补0补齐,且高层信令指示传输相同信号序列的OFDM符号在频域的位置分别为RB1和RB2,UE采用上述第二预设映射方式进行映射。则8个OFDM符号上传输的比特信息如图10所示。
在一个可能的实现方式在,在S214的过程中,在第p次将第i个信号序列映射到PUCCH资源的一个OFDM符号上传输时,确定映射第i个信号序列的第j个OFDM符号上无法进行上行传输;其中,1≤p≤P,
Figure PCTCN2020137369-appb-000009
Figure PCTCN2020137369-appb-000010
1≤j≤N,则可以按照第一预设处理方式、第二预设处理方式或第三预设处理方式,处理K个信号序列的第p次映射。该可能的实现方式中,可以确定在上行资源发生冲突时的解决方案。
可选地,确定映射第i个信号序列的第j个OFDM符号上无法进行上行传输,包括但不限于:
一、确定第j个OFDM符号为高层信令半静态配置的下行资源,或者第j个OFDM符号为下行控制信息(Downlink Control Information,DCI)指示的下行资源或灵活OFDM符号;即第j个OFDM符号与DCI指示下行资源或灵活OFDM符号冲突。
二、确定第j个OFDM符号与网络侧指示的无线资源管理(Radio Resource Management,RRM)测量的时频资源冲突,例如,与同步信号和PBCH块(Synchronization Signal and PBCH Block,SSB),或信道状态信息参考信号(Channel-state information Reference Signals,CSI-RS资源冲突;即第j个OFDM符号为网络侧指示的RRM测量所使用的时频资源。
三、确定第j个OFDM符号与传输除上行控制信息以外的其它上行信号的时频资源冲突。其中,其它上行信号包括但不限于同小区或邻小区的物理随机接入信道(Physical Random Access Channel,PRACH)、PUCCH或物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。
其中,上述第一预设处理方式包括:禁止将第i个信号序列映射到第j个OFDM符号上传输。也就是说,在第p次映射时,不将第i个信号序列 映射到第j个OFDM符号上传输,其它信号序列映射到其预定的OFDM符号上传输。
例如,假设当前网络配置下,UE在每个OFDM symbol传输3比特的比特信息,每3比特的比特信息传输重复2次,UE待传输的UCI数据长10比特,网络指示的总计传输比特(即Q)为10比特,传输数据为1101100111,UE在8个OFDM符号上进行传输。高层信令指示待传输数据的最后一组比特不足3的,通过补0补齐,且高层信令指示传输相同信号序列的OFDM符号在频域的位置分别为RB1和RB2,UE采用上述第一预设映射方式进行映射,第3和4个OFDM符号被占用无法进行当前配置的PUCCH的传输,即承载待传输的比特信息的第2个3比特的比特信息的信号序列的第一次映射和第二次映射无法映射到当前配置的PUCCH资源的第3和第4个OFDM符号上传输,采用上述第一预设处理方式,即禁止将第2个3比特的比特信息映射到第3和第4个OFDM符号上传输。8个OFDM符号上传输的比特信息如图11所示。
又例如,假设当前网络配置下,UE在每个OFDM symbol传输3比特的比特信息,每3比特的比特信息传输重复2次,UE待传输的UCI数据长10比特,网络指示的总计传输比特(即Q)为10比特,传输数据为1101100111,UE在8个OFDM符号上进行传输。高层信令指示待传输数据的最后一组比特不足3的,通过补0补齐,且高层信令指示传输相同信号序列的OFDM符号在频域的位置分别为RB1和RB2,UE采用上述第二预设映射方式进行映射,第3和4个OFDM符号被占用无法进行当前配置的PUCCH的传输,即承载待传输的比特信息的第3个3比特的比特信息和第4个3比特的比特信息的两个信号序列的第一次映射无法映射到当前配置的PUCCH资源的第3和第4个OFDM符号上传输,采用上述第一预设处理方式,即禁止将第3个3比特的比特信息和第4个3比特的比特信 息映射到第3和第4个OFDM符号上传输。8个OFDM符号上传输的比特信息如图12所示。
其中,上述第二预设处理方式包括:禁止K个信号序列的第p次映射;也就是说,对于K个信号序列,不进行第p次映射,其它次映射按照其预定的OFDM符号进行映射。
例如,假设当前网络配置下,UE在每个OFDM symbol传输3比特的比特信息,每3比特的比特信息传输重复2次,UE待传输的UCI数据长10比特,网络指示的总计传输比特(即Q)为10比特,传输数据为1101100111,UE在8个OFDM符号上进行传输。高层信令指示待传输数据的最后一组比特不足3的,通过补0补齐,且高层信令指示传输相同信号序列的OFDM符号在频域的位置分别为RB1和RB2,UE采用上述第一预设映射方式进行映射,第4个OFDM符号被占用无法进行当前配置的PUCCH的传输,即承载待传输的比特信息的第2个3比特的比特信息的信号序列的第二次映射无法映射到当前配置的PUCCH资源的第4个OFDM符号上传输,采用上述第二预设处理方式,即禁止K个信号序列的第2次映射。8个OFDM符号上传输的比特信息如图13所示。
又例如,假设当前网络配置下,UE在每个OFDM symbol传输3比特的比特信息,每3比特的比特信息传输重复2次,UE待传输的UCI数据长10比特,网络指示的总计传输比特(即Q)为10比特,传输数据为1101100111,UE在8个OFDM符号上进行传输。高层信令指示待传输数据的最后一组比特不足3的,通过补0补齐,且高层信令指示传输相同信号序列的OFDM符号在频域的位置分别为RB1和RB2,UE采用上述第二预设映射方式进行映射,第4个OFDM符号被占用无法进行当前配置的PUCCH的传输,即承载待传输的比特信息的第4个3比特的比特信息的信号序列的第一次映射无法映射到当前配置的PUCCH资源的第4个 OFDM符号上传输,采用上述第二预设处理方式,即禁止K个信号序列的第一次映射。8个OFDM符号上传输的比特信息如图14所示。
其中,上述第三预设处理方式包括:在PUCCH资源后续的能够进行上行传输的OFDM符号上,执行K个信号序列的第p次映射。即将K个信号序列的第p次映射推迟到下一个可用的上行传输资源上传输,直到完成P次传输。
例如,假设当前网络配置下,UE在每个OFDM symbol传输3比特的比特信息,每3比特的比特信息传输重复2次,UE待传输的UCI数据长10比特,网络指示的总计传输比特(即Q)为10比特,传输数据为1101100111,UE在8个OFDM符号上进行传输。高层信令指示待传输数据的最后一组比特不足3的,通过补0补齐,且高层信令指示传输相同信号序列的OFDM符号在频域的位置分别为RB1和RB2,UE采用上述第一预设映射方式进行映射,第4个OFDM符号被占用无法进行当前配置的PUCCH的传输,即承载待传输的比特信息的第2个3比特的比特信息的信号序列的第二次映射无法映射到当前配置的PUCCH资源的第4个OFDM符号上传输,采用上述第三预设处理方式,即将K个信号序列的第2次映射推迟到下一个可用的上行资源上传输。8个OFDM符号上传输的比特信息如图15所示。
又例如,假设当前网络配置下,UE在每个OFDM symbol传输3比特的比特信息,每3比特的比特信息传输重复2次,UE待传输的UCI数据长10比特,网络指示的总计传输比特(即Q)为10比特,传输数据为1101100111,UE在8个OFDM符号上进行传输。高层信令指示待传输数据的最后一组比特不足3的,通过补0补齐,且高层信令指示传输相同信号序列的OFDM符号在频域的位置分别为RB1和RB2,UE采用上述第二预设映射方式进行映射,当前配置的PUCCH资源的第3个和第4个 OFDM符号被占用无法进行当前配置的PUCCH的传输,即承载待传输的比特信息的第3个和第4个3比特的比特信息的两个信号序列第一次映射无法映射到当前配置的PUCCH资源的第3个和第4个OFDM符号上传输,采用上述第三预设处理方式,即将K个信号序列的第一次及以后的映射推迟到下一个可用的上行传输资源上传输。8个OFDM符号上传输的比特信息如图16所示。
在一个可选的实现方式中,网络侧可以指示UE在上行资源冲突时,采用上述第一预设处理方式、第二预设处理方式和第三预设处理方式中的一种方式进行处理,因此,在S214之前,方法100或者方法200还可以包括:接收网络侧发送的指示采用第一预设处理方式、第二预设处理方式或第三预设处理方式的指示命令。
图17是本公开第二方面提供的一种上行控制信息传输方法的一个实施例的流程示意图,该方法由网络侧设备执行,换言之,方法1700可以由安装在网络侧设备上的软件或硬件来执行。如图17所示,该方法1700可以包括以下步骤:
S1712,检测UE在PUCCH资源对应的OFDM符号上传输的信号序列。
在本实施例中,网络侧设备可以是基站或其它的网络侧设备。
在S1712中,网络侧设备可以根据UE选择的PUCCH资源的配置,检测UE在PUCCH资源对应的OFDM符号上传输的信号序列。
在本实施例中,UE可以按照上述方法100或方法200的各种可选的实现方式,传输UCI,具体可以参见上述方法100或方法200中的描述,在此不再赘述。
上述方法1700还包括:
S1714,根据预先设置的规则,获取检测到的每个信号序列上承载的比特信息。
在本实施例中,网络侧设备根据预先设置的规则,例如,根据预先设置的信号序列不同循环移位或者相位选准所指示的比特信息,例如,循环移位{0,3,6,9},分别用于指示{00,01,10,11}的比特信息,也就是说,在循环移位为3时,指示传输的比特信息为01,从而使得网络侧设备可以获取到检测到的每个信号序列上承载的比特信息。并且,通过传输信号序列的OFDM符号在时间上顺序,可以得到UE上传的比特信息。
在本实施例中,信号序列可以为以下至少之一:M序列;ZC序列;GOLD序列;除M序列、ZC序列和GOLD序列之外的预设序列;M序列、ZC序列、GOLD序列和预设序列中的至少任意两个序列相乘获得的序列。
上述方法1700还包括:
S1716,根据UE传输UCI使用的传输参数,对获取到的比特信息进行重组,得到UE传输的UCI。
在本实施例中,网络侧设备可以按照UE传输UCI使用的传输参数,采用与UE传输UCI对应的方式,对从OFDM符号中检测到比特信息进行重组,得到UE传输的UCI。
与上述方法100和方法200对应,传输参数可以包括以下至少之一:
(1)其中,上述传输参数包括但不限于:传输UCI使用的OFDM符号的数量N。例如,如果N=6,则网络侧设备检测UE使用的PUCCH资源的一个资源块的前6个OFDM符号,将每个OFDM符号上检测到的信号序列承载的比特信息按照传输的时间顺序进行重组,从而得到UE传输的UCI信息。
(2)传输的比特信息的长度Q,其中,Q为大于0的整数;例如,如果N=6,Q=8,则网络侧设备确定UE传输UCI使用的为PUCCH资源的前6个OFDM符号,将每个OFDM符号上检测到的信号序列承载的比特信息按照传输的时间顺序进行重组,得到一个比特信息,从该比特信息中截取前8个比特信息,从而得到UE传输的UCI信息。
(3)每个OFDM符号上传输的比特数M,其中,M为大于0的整数;根据M和N,网络侧设备可以确定传输的比特信息的总长度,从而确定包含UCI的比特信息,例如,如果N=6,M=3,则网络侧设备确定UE传输UCI使用的为PUCCH资源的前6个OFDM符号,将每个OFDM符号上检测到的信号序列承载的3比特的比特信息按照传输的时间顺序进行重组,得到18比特的比特信息,该18比特的比特信息中包含UCI。
(4)每个OFDM符号在频域上占用的RB数S,其中,S为大于0的整数;根据S,网络侧设备可以确定UE传输UCI使用的资源块数,从而可以进一步定位传输UCI的资源。例如,如果N=6,M=3,S=1,则网络侧设备确定UE传输UCI使用的为PUCCH资源的一个资源块的前6个OFDM符号,将每个OFDM符号上检测到的信号序列承载的3比特的比特信息按照传输的时间顺序进行重组,从而得到UE传输的UCI信息。
(5)UCI在N个OFDM符号上重复映射的次数P,以及UCI在N个OFDM符号上的重复映射方式,其中,P为大于0的整数。
其中,重复映射方式可以包括上述的第一预设映射方式或第二预设映射方式,网络侧设备根据UCI在N个OFDM符号上的重复映射方式,可以按照对应的方式,将检测到的比特信息进行重组,以得到UE传输的UCI信息。例如,如果UE采用上述第一预设映射方式传输UCI,N=8,M=3,S=1,P=2,则网络侧设备将PUCCH资源上检测到的第1个信号序列承载的3比特的比特信息、第3个信号序列承载的3比特的比特信息、 第5个信号序列承载的3比特的比特信息和第7个信号序列承载的3比特的比特信息,按照传输的时间顺序进行重组,得到UE传输的UCI信息。
(6)各个OFDM符号的频域位置。
例如,在上述方法200的实施例中的UE在传输UCI时,将映射相同信号序列的不同OFDM符号设置在不同的频域位置上传输;或者,在P=1的情况下,将N个OFDM符号中的前
Figure PCTCN2020137369-appb-000011
与后
Figure PCTCN2020137369-appb-000012
个OFDM符号分别设置在不同的频域位置上传输。则对应的,传输参数中包括了指示UCI占用的频域位置,根据该参数,网络侧设备可以确定将时隙中哪几个频域位置上获取的比特信息进行组合,以恢复出UE传输的UCI信息。
(7)在传输OFDM符号的时频资源存在冲突时的处理方式。
其中,存在冲突时的处理方式包括上述的第一预设处理方式、第二预设处理方式或第三预设处理方式,网络侧设备根据该传输参数,可以在重组UCI信息的过程中,通过判断预设的传输UCI的资源是否存在冲突来确定检测到的比特信息是否属于UCI信息,以及将哪些资源上传输的比特信息作为UCI信息,以确保恢复得到的UCI信息的准确性。
在具体应用中,传输参数并不限于上述列举出的参数,还可以包括其它对应的参数,具体与上述方法100和方法200中UE传输UCI的各个实现方式对应,例如,还可以包括:指示在UCI的比特信息的长度L小于Q的情况下,是否补0或1,以及是补0还1的参数。
与上述方法100和方法200对应,在一个可选的实现方式中,可以对上述涉及的部分传输参数的取值范围进行限定,包括但不限于以下至少之一:
N≤Nmax,Nmax为传输比特信息的PUCCH资源的一个配置参数,该配置参数的取值预定义值或高层信令配置的值;
Q≤Qmax,Qmax为预定义值或高层信令配置的值;
M≤Mmax,Mmax为预定义值或高层信令配置的值;
P≤Pmax,Pmax为预定义值或者由高层信令配置的值;
S≤Smax,Smax为预定义值或高层信令配置的值。
在一个可选的实现方式中,上述传输参数的一个或多个可以是网络侧设备指示UE配置的,因此,在该可选的实现方式中,在S1712之前,该方法还可以包括:向终端设备发送配置指示,配置传输参数中的一个或多个参数。
在上述实现方式中,网络侧设备可以根据高层信令指示发送上述配置指示,也可以根据网络侧设备自身的情况,确定上述传输参数中的一个或多个,并发送对应的配置指示,或者也可以根据各个PUCCH资源的配置,确定上述传输参数中的一个或多个,具体本实施例中不作限定。
在本实施例中,上述传输参数除了可以由网络侧设备配置,也可以是UE根据自身情况确定并通知网络侧设备的,还可以是高层信令统一向UE和网络侧设备配置的。具体本实施例中不作限定。
通过上述的UCI传输方法,网络侧设备可以通过检测PUCCH资源的OFDM符号传输的信号序列,获取UE传输的UCI,不需要利用解调参考信号(Demodulation Reference Signal,DMRS)进行信道估计还UE传输的UCI信息,从而降低了UCI信息的接收复杂度。
图18是实施本公开第一方面和第二方面提供的一种上行控制信息传输方法1800的示例性流程示意图,该方法1800由终端设备和网络侧设备执行,换言之,方法1800可以由安装在终端设备和网络侧设备上的软件或硬件来执行。如图18所示,方法1800包括以下步骤:
S1812,UE根据待传输的UCI的比特信息,生成承载比特信息的信号序列。
其中,S1812可以与S112或S212相同,具体可以参见上述对S112和S212的描述,在此不再赘述。
方法1800还包括:
S1814,UE将信号序列映射到PUCCH资源的OFDM符号上传输。
其中,S1814可以与上述S114或S214相同,具体可以参见上述对S114或S214的描述。
方法1800还包括:
S1816,网络侧设备检测UE在PUCCH资源对应的OFDM符号上传输的信号序列。
其中,S1816与上述S1712相同,具体可以参见上述对S1712的描述。
方法1800还包括:
S1818,网络侧设备根据预先设置的规则,获取检测到的每个信号序列上承载的比特信息。
其中,S1818与上述S1714相同,具体可以参见上述对1714的描述。
方法1800还包括:
S1820,网络侧设备根据UE传输UCI使用的传输参数,对获取到的比特信息进行重组,得到UE传输的UCI。
其中,S1820与上述S1716相同,具体可以参见上述对S1716的描述。
在本公开实施例中,UE根据待传输的UCI,生成承载UCI的比特信息的信号序列,将信号序列映射到PUCCH资源的OFDM符号上传输,网络侧设备通过检测PUCCH资源的OFDM符号上传输的信号序列,获取UE传输的UCI,不需要利用DMRS进行信道估计还UE传输的UCI信 息,从而降低了UCI信息的接收复杂度,另外,通过在PUCCH上传输信号序列的方式,可以提高PUCCH的抗干扰能力。
图19是本公开第三方面提供的一种终端设备的示例性结构示意图,如图19所示,网络侧设备1900至少包括:生成模块1910和传输模块1920。
生成模块1910用于根据待传输的上行控制信息的比特信息,生成承载比特信息的信号序列;传输模块1920用于将信号序列映射到物理上行控制信道资源的正交频分复用符号上传输。
本公开实施例的终端设备1900可以参照对应本公开实施例的方法100、方法200和方法1800中终端设备执行的流程,并且,该终端设备1900中的各个单元/模块和上述其他操作和/或功能分别为了实现方法100、方法200和方法1800中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
在一个可能的实现方式中,生成模块1910根据待传输的上行控制信息的比特信息,生成承载比特信息的信号序列:根据Q比特的比特信息,生成K个信号序列,其中,每个信号序列承载M比特的比特信息,Q、K和M为大于0的整数,
Figure PCTCN2020137369-appb-000013
传输模块1920将信号序列映射到物理上行控制信道资源的正交频分复用符号上传输:将K个信号序列映射到PUCCH资源的N个OFDM符号上传输,其中,N为大于0的整数。
在一个可能的实现方式中,信号序列包括以下至少之一:M序列;ZC序列;GOLD序列;除M序列、ZC序列和GOLD序列之外的预设序列;M序列、ZC序列、GOLD序列和预设序列中的至少任意两个序列相乘获得的序列。
在一个可能的实现方式中,N≤Nmax,Nmax为传输比特信息的PUCCH资源的配置参数,该配置参数的取值预定义值或高层信令配置的 值;和/或,Q≤Qmax,Qmax为预定义值或高层信令配置的值;和/或,M≤Mmax,Mmax为预定义值或高层信令配置的值。
在一个可能的实现方式中,传输模块1920将K个信号序列映射到PUCCH资源的N个OFDM符号上传输包括:将每个信号序列重复映射到P个OFDM符号上传输,其中,P为大于0的整数,每个信号序列每次映射到一个OFDM符号上传输,每个OFDM符号在频域上占用S个资源块RB,P和S为大于0的整数。
在一个可能的实现方式中,S≤Smax,Smax为预定义值或高层信令配置的值;和/或,P≤Pmax,Pmax为预定义值或者由高层信令配置的值。
在一个可能的实现方式中,传输模块1920将每个信号序列重复映射到P个OFDM符号上传输包括:将K个信号序列中的每个信号序列按照第一预设映射方式或第二预设映射方式重复映射到P个OFDM符号上传输;其中,第一预设映射方式包括:将承载比特信息的前M比特的信号序列重复映射到PUCCH资源的前P个OFDM符号上,再将承载比特信息的下M比特的信号序列重复映射到PUCCH资源的下P个OFDM符号上,直到完成K个信号序列的映射;第二预设映射方式包括:将K个信号序列分别映射到PUCCH资源的前K个OFDM符号上,再将K个信号序列映射到PUCCH资源的下K个OFDM符号上,直到完成P次映射。
在一个可能的实现方式中,终端设备还可以包括:第一确定模块,用于传输模块1920将K个信号序列中的每个信号序列按照第一预设映射方式或第二预设映射方式重复映射到P个OFDM符号上传输之前,根据预先设置或网络侧的指示确定采用第一预设映射方式或第二预设映射方式。
在一个可能的实现方式中,传输模块1920将每个信号序列重复映射到P个OFDM符号上传输,包括:在第p次将第i个信号序列映射到PUCCH资源的一个OFDM符号上传输时,确定映射第i个信号序列的第j 个OFDM符号上无法进行上行传输;其中,1≤p≤P,
Figure PCTCN2020137369-appb-000014
1≤j≤N;按照第一预设处理方式、第二预设处理方式或第三预设处理方式,处理K个信号序列的第p次映射;其中,第一预设处理方式包括:禁止将第i个信号序列映射到第j个OFDM符号上传输;第二预设处理方式包括:禁止K个信号序列的第p次映射;第三预设处理方式包括:在PUCCH资源后续的能够进行上行传输的OFDM符号上,执行K个信号序列的第p次映射。
在一个可能的实现方式中,传输模块1920确定映射第i个信号序列的第j个OFDM符号上无法进行上行传输包括:确定第j个OFDM符号为高层信令半静态配置的下行资源,或者第j个OFDM符号为下行控制信息DCI指示的下行资源或灵活OFDM符号;确定第j个OFDM符号与网络侧指示的无线资源管理RRM测量的时频资源冲突;确定第j个OFDM符号与传输除上行控制信息以外的其它上行信号的时频资源冲突。
在一个可能的实现方式中,终端设备1900还可以包括:接收模块,用于接收网络侧发送的指示采用第一预设处理方式、第二预设处理方式或第三预设处理方式的指示命令。
在一个可能的实现方式中,传输模块1920将每个信号序列重复映射到P个OFDM符号上传输,包括:按照预先设置或网络侧的指示,在P大于1的情况下,将映射相同信号序列的不同OFDM符号设置在不同的频域位置上传输;或者,在P=1的情况下,将N个OFDM符号中的前
Figure PCTCN2020137369-appb-000015
个OFDM符号与后
Figure PCTCN2020137369-appb-000016
个OFDM符号分别设置在不同的频域位置上传输。
在一个可能的实现方式中,终端设备还包括:第二确定模块,用于根据网络侧发送的指示确定N;或者根据K确定N。
在一个可能的实现方式中,终端设备1900还可以包括:获取模块,用于根据待传输的UCI,得到Q比特的比特信息。
在一个可能的实现方式中,获取模块根据待传输的UCI,得到Q比特的比特信息包括:若待传输的UCI的比特信息的长度L等于Q,则将待传输的UCI的比特信息作为Q比特的比特信息;若待传输的UCI的比特信息的长度L小于Q,根据预先设置或预设的高层信令的指示,确定是否需要在待传输的UCI的比特信息的尾部补0或1,如果是,则在待传输的UCI的比特信息的尾部补(Q-L)个0或1,得到Q比特的比特信息。
在一个可能的实现方式中,终端设备还包括:第三确定模块,用于根据网络侧的指示确定M,或按照终端设备的需要配置M。
在一个可能的实现方式中,生成模块1910生成K个信号序列,包括:若x=Q mod M=0,则生成承载Q比特的比特信息的K个信号序列;若x=Q mod M≠0,则在Q比特的比特信息的最后x个比特信息后补(M-x)个0或1,再生成承载补(M-x)个0或1之后的比特信息的K个信号序列。
在一个可能的实现方式中,终端设备1900还可以包括:第四确定模块,用于在将每个信号序列重复映射到P个OFDM符号上传输之前,根据网络侧的指示确定S,或按照终端设备的需求配置S;和/或,根据网络侧的指示确定P,或者,按照终端设备的需求配置P。
图20是本公开第四方面提供的一种网络侧设备的示例性结构示意图。如图20所示,网络侧设备2000包括:检测模块2010、获取模块2020和重组模块2030。
检测模块2010用于检测终端设备在物理上行控制信道资源对应的OFDM符号上传输的信号序列;获取模块2020用于根据预先设置的规则,获取检测到的每个信号序列上承载的比特信息;重组模块2030用于 按照终端设备传输上行控制信息使用的传输参数,对获取到的比特信息进行重组,得到终端设备传输的UCI。
根据本公开实施例的网络侧设备2000可以参照对应本公开实施例中方法1700和方法1800实施例中的网络侧设备执行的流程,并且,该网络侧设备2000中的各个单元/模块和上述其他操作和/或功能分别实现上述方法1700和方法1800的方法实施例中的网络侧设备执行的流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
在一个可能的实现方式中,信号序列包括以下至少之一:M序列;ZC序列;GOLD序列;除M序列、ZC序列和GOLD序列之外的预设序列;M序列、ZC序列、GOLD序列和预设序列中的至少任意两个序列相乘获得的序列。
在一个可能的实现方式中,传输参数包括以下至少之一:
每个信号序列中承载的比特信息的长度M,其中,M为大于0的整数;
传输UCI使用的OFDM符号的数量N,其中,N为大于0的整数;
传输的比特信息的总长度Q,其中,Q为大于0的整数;
每个OFDM符号在频域上占用的RB数S,其中,S为大于0的整数;
信号序列在OFDM符号上重复映射的次数P,以及UCI在OFDM符号上的重复映射方式,其中,P为大于0的整数;
各个OFDM符号的频域位置;
在传输OFDM符号的时频资源存在冲突时的处理方式。
在一个可能的实现方式中,N≤Nmax,Nmax为传输UCI的PUCCH资源的配置参数,该配置参数的取值预定义值或高层信令配置的值;和/或,Q≤Qmax,Qmax为预定义值或高层信令配置的值;和/或, M≤Mmax,Mmax为预定义值或高层信令配置的值;和/或,P≤Pmax,Pmax为预定义值或者由高层信令配置的值;和/或,S≤Smax,Smax为预定义值或高层信令配置的值。
在一个可能的实现方式中,网络侧设备2000还可以包括:配置模块,用于在检测终端设备在物理上行控制信道PUCCH资源对应的OFDM符号上传输的信号序列之前,向终端设备发送配置指示,配置传输参数中的一个或多个参数。
图21是本公开第五方面提供的一种移动终端的示例性结构示意图。图21所示的移动终端2100包括:至少一个处理器2101、存储器2102、至少一个网络接口2104和用户接口2103。移动终端2100中的各个组件通过总线系统2105耦合在一起。可理解,总线系统2105用于实现这些组件之间的连接通信。总线系统2105除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图21中将各种总线都标为总线系统2105。
如图21所示的移动终端2100可以作为上述各个实施例中的UE,并实现上述各个实施例UE所实现的各个过程。
其中,用户接口2103可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器2102可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-OnlyMemory,ROM)、可编程只读存储器(ProgrammableROM,PROM)、可擦除可编程只读存储器(ErasablePROM,EPROM)、电可擦除可编程只读存储器(ElectricallyEPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(RandomAccessMemory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式 的RAM可用,例如静态随机存取存储器(StaticRAM,SRAM)、动态随机存取存储器(DynamicRAM,DRAM)、同步动态随机存取存储器(SynchronousDRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(DoubleDataRate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(SynchlinkDRAM,SLDRAM)和直接内存总线随机存取存储器(DirectRambusRAM,DRRAM)。本公开实施例描述的系统和方法的存储器2102旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器2102存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统21021和应用程序21022。
其中,操作系统21021包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序21022,包含各种应用程序,例如媒体播放器(MediaPlayer)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序21022中。
在本公开实施例中,移动终端2100还包括:存储在存储器2102上并可在处理器2107上运行的计算机程序,该移动终端可以为上述各个实施例中的UE,计算机程序被处理器2101执行时实现如下步骤:根据待传输的上行控制信息的比特信息,生成承载比特信息的信号序列;将信号序列映射到物理上行控制信道资源的正交频分复用符号上传输。
上述本公开实施例揭示的方法可以应用于处理器2101中,或者由处理器2101实现。处理器2101可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器2101中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器2101可以是通用 处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器2102,处理器2101读取存储器2102中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器2101执行时实现如上述方法100、方法200和方法1800的方法实施例中的UE执行的各步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例功能的模块(例如过程、函数等)来实现本公开实施例的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
请参阅图22,图22是本公开第六方面提供的一种网络侧设备的示例性结构示意图,能够实现方法1700和方法1800的方法实施例中的网络侧设备实现的各个细节,并达到相同的效果。如图22所示,网络侧设备2200包括:处理器2201、收发机2202、存储器2203、用户接口2204和总线接口。
在本公开实施例中,网络侧设备2200还包括:存储在存储器上2203并可在处理器2201上运行的计算机程序,计算机程序被处理器2201、执行时实现方法1700和方法1800的方法实施例中网络侧设备的步骤。
在图22中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2201代表的一个或多个处理器和存储器2203代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2202可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口2204还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器2201负责管理总线架构和通常的处理,存储器2203可以存储处理器2201在执行操作时所使用的数据。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述图1至图18所示的各个方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (49)

  1. 一种上行控制信息传输方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    根据待传输的上行控制信息的比特信息,生成承载所述比特信息的信号序列;
    将所述信号序列映射到物理上行控制信道资源的正交频分复用符号上传输。
  2. 如权利要求1所述的方法,其中,
    根据待传输的上行控制信息的比特信息,生成承载所述比特信息的信号序列,包括:
    根据Q比特的所述比特信息,生成K个信号序列,其中,每个所述信号序列承载M比特的所述比特信息,Q、K和M为大于0的整数,
    Figure PCTCN2020137369-appb-100001
    将所述信号序列映射到物理上行控制信道资源的正交频分复用符号上传输,包括:将K个所述信号序列映射到所述PUCCH资源的N个所述OFDM符号上传输,其中,N为大于0的整数。
  3. 如权利要求1或2所述的方法,其中,所述信号序列包括以下至少之一:
    M序列;
    ZC序列;
    GOLD序列;
    除M序列、ZC序列和GOLD序列之外的预设序列;
    所述M序列、所述ZC序列、所述GOLD序列和所述预设序列中的至少任意两个序列相乘获得的序列。
  4. 如权利要求2所述的方法,其中,N≤Nmax,Nmax为传输所述信号序列的PUCCH资源的配置参数,该配置参数的取值为预定义值或高层信令配置的值;和/或,Q≤Qmax,Qmax为预定义值或高层信令配置的值;和/或,M≤Mmax,Mmax为预定义值或高层信令配置的值。
  5. 如权利要求2所述的方法,其中,将K个所述信号序列映射到所述PUCCH资源的N个所述OFDM符号上传输,包括:
    将每个所述信号序列重复映射到P个所述OFDM符号上传输,其中,P为大于0的整数,每个所述信号序列每次映射到一个所述OFDM符号上传输,每个所述OFDM符号在频域上占用S个资源块RB,P和S为大于0的整数。
  6. 如权利要求5所述的方法,其中,S≤Smax,Smax为预定义值或高层信令配置的值;和/或,P≤Pmax,Pmax为预定义值或者由高层信令配置的值。
  7. 如权利要求5所述的方法,其中,将每个所述信号序列重复映射到P个所述OFDM符号上传输包括:
    将K个所述信号序列中的每个所述信号序列按照第一预设映射方式或第二预设映射方式重复映射到P个所述OFDM符号上传输;其中,
    所述第一预设映射方式包括:将承载所述比特信息的前M比特的所述信号序列重复映射到所述PUCCH资源的前P个OFDM符号上,再将承载所述比特信息的下M比特的所述信号序列重复映射到所述PUCCH资源的下P个所述OFDM符号上,直到完成K个所述信号序列的映射;
    所述第二预设映射方式包括:将K个所述信号序列分别映射到所述PUCCH资源的前K个所述OFDM符号上,再将K个所述信号序列映射到所述PUCCH资源的下K个所述OFDM符号上,直到完成P次映射。
  8. 如权利要求7所述的方法,其中,将K个所述信号序列中的每个信号序列按照第一预设映射方式或第二预设映射方式重复映射到P个所述OFDM符号上传输之前,所述方法还包括:
    根据预先设置或网络侧的指示确定采用所述第一预设映射方式或所述第二预设映射方式。
  9. 如权利要求7所述的方法,其中,将每个所述信号序列重复映射到P个所述OFDM符号上传输,包括:
    在第p次将第i个所述信号序列映射到所述PUCCH资源的一个OFDM符号上传输时,确定映射第i个所述信号序列的第j个OFDM符号上无法进行上行传输;其中,1≤p≤P,
    Figure PCTCN2020137369-appb-100002
    1≤j≤N;
    按照第一预设处理方式、第二预设处理方式或第三预设处理方式,处理K个所述信号序列的第p次映射;其中,所述第一预设处理方式包括:禁止将所述第i个信号序列映射到所述第j个OFDM符号上传输;所述第二预设处理方式包括:禁止K个所述信号序列的第p次映射;所述第三预设处理方式包括:在所述PUCCH资源后续的能够进行上行传输的OFDM符号上,执行K个所述信号序列的第p次映射。
  10. 如权利要求9所述的方法,其中,确定映射第i个所述信号序列的第j个OFDM符号上无法进行上行传输,包括以下之一:
    确定所述第j个OFDM符号为高层信令半静态配置的下行资源,或者所述第j个OFDM符号为下行控制信息DCI指示的下行资源或灵活OFDM符号;
    确定所述第j个OFDM符号与网络侧指示的无线资源管理RRM测量的时频资源冲突;
    确定所述第j个OFDM符号与传输除所述上行控制信息以外的其它上行信号的时频资源冲突。
  11. 如权利要求9或10所述的方法,其中,在将每个所述信号序列重复映射到P个所述OFDM符号上传输之前,所述方法还包括:
    接收网络侧发送的指示采用所述第一预设处理方式、所述第二预设处理方式或第三预设处理方式的指示命令。
  12. 如权利要求5至10任一项所述的方法,其中,将每个所述信号序列重复映射到P个所述OFDM符号上传输,包括:
    按照预先设置或网络侧的指示,在P大于1的情况下,将映射相同所述信号序列的不同OFDM符号设置在不同的频域位置上传输;或者,在P=1的情况下,将所述N个OFDM符号中的前
    Figure PCTCN2020137369-appb-100003
    个OFDM符号与后
    Figure PCTCN2020137369-appb-100004
    Figure PCTCN2020137369-appb-100005
    个OFDM符号分别设置在不同的频域位置上传输。
  13. 如权利要求2、4至11任一项所述的方法,其中,在将K个所述信号序列映射到所述PUCCH资源的N个所述OFDM符号上传输之前,所述方法还包括:
    根据网络侧发送的指示确定所述N;或者
    根据所述K确定所述N。
  14. 如权利要求2、4至10任一项所述的方法,其中,在根据Q比特的所述比特信息,生成K个信号序列之前,所述方法还包括:
    根据待传输的UCI,得到Q比特的所述比特信息。
  15. 如权利要求14所述的方法,其中,根据待传输的UCI,得到Q比特的所述比特信息,包括:
    若所述待传输的UCI的比特信息的长度L等于Q,则将所述待传输的UCI的比特信息作为Q比特的所述比特信息;
    若所述待传输的UCI的比特信息的长度L小于Q,根据预先设置或预设的高层信令的指示,确定是否需要在所述待传输的UCI的比特信息的尾 部补0或1,如果是,则在所述待传输的UCI的比特信息的尾部补(Q-L)个0或1,得到Q比特的所述比特信息。
  16. 如权利要求2、4至10任一项所述的方法,其中,在生成K个信号序列之前,所述方法还包括:
    根据网络侧的指示确定所述M,或按照所述终端设备的需要配置所述M。
  17. 如权利要求16所述的方法,其中,生成K个信号序列,包括:
    若x=Q mod M=0,则生成承载所述Q比特的比特信息的K个所述信号序列;
    若x=Q mod M≠0,则在所述Q比特的比特信息的最后x个比特信息后补(M-x)个0或1,再生成承载补(M-x)个0或1之后的所述比特信息的K个所述信号序列。
  18. 如权利要求5至10任一项所述的方法,其中,在将每个所述信号序列重复映射到P个所述OFDM符号上传输之前,所述方法还包括:
    根据网络侧的指示确定所述S,或按照所述终端设备的需求配置所述S;
    根据网络侧的指示确定所述P,或者,按照所述终端设备的需求配置所述P。
  19. 一种上行控制信息传输方法,其特征在于,所述方法由网络侧设备执行,所述方法包括:
    检测终端设备在物理上行控制信道资源对应的OFDM符号上传输的信号序列;
    根据预先设置的规则,获取检测到的每个所述信号序列上承载的比特信息;
    按照所述终端设备传输上行控制信息使用的传输参数,对获取到的比特信息进行重组,得到所述终端设备传输的UCI。
  20. 如权利要求19所述的方法,其中,所述信号序列包括以下至少之一:
    M序列;
    ZC序列;
    GOLD序列;
    除M序列、ZC序列和GOLD序列之外的预设序列;
    所述M序列、所述ZC序列、所述GOLD序列和所述预设序列中的至少任意两个序列相乘获得的序列。
  21. 如权利要求19所述的方法,其中,所述传输参数包括以下至少之一:
    每个所述信号序列中承载的比特信息的长度M,其中,M为大于0的整数;
    传输UCI使用的OFDM符号的数量N,其中,N为大于0的整数;
    传输的比特信息的总长度Q,其中,Q为大于0的整数;
    每个所述OFDM符号在频域上占用的RB数S,其中,S为大于0的整数;
    所述信号序列在所述OFDM符号上重复映射的次数P,以及所述UCI在所述OFDM符号上的重复映射方式,其中,P为大于0的整数;
    各个所述OFDM符号的频域位置;
    在传输所述OFDM符号的时频资源存在冲突时的处理方式。
  22. 如权利要求21所述的方法,其中,
    N≤Nmax,Nmax为传输所述UCI的PUCCH资源的配置参数,该配置参数的取值预定义值或高层信令配置的值;和/或,
    Q≤Qmax,Qmax为预定义值或高层信令配置的值;和/或,
    M≤Mmax,Mmax为预定义值或高层信令配置的值;和/或,
    P≤Pmax,Pmax为预定义值或者由高层信令配置的值;和/或
    S≤Smax,Smax为预定义值或高层信令配置的值。
  23. 如权利要求19至22任一项所述的方法,其中,在检测终端设备在物理上行控制信道资源对应的OFDM符号上传输的信号序列之前,所述方法还包括:
    向所述终端设备发送配置指示,配置所述传输参数中的一个或多个参数。
  24. 一种终端设备,其特征在于,包括:
    生成模块,用于根据待传输的上行控制信息的比特信息,生成承载所述比特信息的信号序列;
    传输模块,用于将所述信号序列映射到物理上行控制信道资源的正交频分复用符号上传输。
  25. 如权利要求24所述的终端设备,其中,
    所述生成模块用于根据Q比特的所述比特信息,生成K个信号序列,其中,每个所述信号序列承载M比特的所述比特信息,Q、K和M为大于0的整数,
    Figure PCTCN2020137369-appb-100006
    所述传输模块用于将K个所述信号序列映射到所述PUCCH资源的N个所述OFDM符号上传输,其中,N为大于0的整数。
  26. 如权利要求24或25所述的终端设备,其中,所述信号序列包括以下至少之一:
    M序列;
    ZC序列;
    GOLD序列;
    除M序列、ZC序列和GOLD序列之外的预设序列;
    所述M序列、所述ZC序列、所述GOLD序列和所述预设序列中的至少任意两个序列相乘获得的序列。
  27. 如权利要求25所述的终端设备,其中,N≤Nmax,Nmax为传输所述信号序列的PUCCH资源的配置参数,该配置参数的取值为预定义值或高层信令配置的值;和/或,Q≤Qmax,Qmax为预定义值或高层信令配置的值;和/或,M≤Mmax,Mmax为预定义值或高层信令配置的值。
  28. 如权利要求25所述的终端设备,其中,所述传输模块用于将每个所述信号序列重复映射到P个所述OFDM符号上传输,其中,P为大于0的整数,每个所述信号序列每次映射到一个所述OFDM符号上传输,每个所述OFDM符号在频域上占用S个资源块RB,P和S为大于0的整数。
  29. 如权利要求28所述的终端设备,其中,S≤Smax,Smax为预定义值或高层信令配置的值;和/或,P≤Pmax,Pmax为预定义值或者由高层信令配置的值。
  30. 如权利要求28所述的终端设备,其中,所述传输模块用于将K个所述信号序列中的每个所述信号序列按照第一预设映射方式或第二预设映射方式重复映射到P个所述OFDM符号上传输;其中,
    所述第一预设映射方式包括:将承载所述比特信息的前M比特的所述信号序列重复映射到所述PUCCH资源的前P个OFDM符号上,再将承载所述比特信息的下M比特的所述信号序列重复映射到所述PUCCH资源的下P个所述OFDM符号上,直到完成K个所述信号序列的映射;
    所述第二预设映射方式包括:将K个所述信号序列分别映射到所述PUCCH资源的前K个所述OFDM符号上,再将K个所述信号序列映射到所述PUCCH资源的下K个所述OFDM符号上,直到完成P次映射。
  31. 如权利要求30所述的终端设备,其中,所述终端设备还包括:
    第一确定模块,用于根据预先设置或网络侧的指示确定采用所述第一预设映射方式或所述第二预设映射方式。
  32. 如权利要求30所述的终端设备,其中,所述传输模块用于:
    在第p次将第i个所述信号序列映射到所述PUCCH资源的一个OFDM符号上传输时,确定映射第i个所述信号序列的第j个OFDM符号上无法进行上行传输;其中,1≤p≤P,
    Figure PCTCN2020137369-appb-100007
    1≤j≤N;
    按照第一预设处理方式、第二预设处理方式或第三预设处理方式,处理K个所述信号序列的第p次映射;
    其中,所述第一预设处理方式包括:禁止将所述第i个信号序列映射到所述第j个OFDM符号上传输;所述第二预设处理方式包括:禁止K个所述信号序列的第p次映射;所述第三预设处理方式包括:在所述PUCCH资源后续的能够进行上行传输的OFDM符号上,执行K个所述信号序列的第p次映射。
  33. 如权利要求32所述的终端设备,其中,所述传输模块用于以下之一:
    确定所述第j个OFDM符号为高层信令半静态配置的下行资源,或者所述第j个OFDM符号为下行控制信息DCI指示的下行资源或灵活OFDM符号;
    确定所述第j个OFDM符号与网络侧指示的无线资源管理RRM测量的时频资源冲突;
    确定所述第j个OFDM符号与传输除所述上行控制信息以外的其它上行信号的时频资源冲突。
  34. 如权利要求32或33所述的终端设备,其中,所述终端设备还包括:
    接收模块,用于接收网络侧发送的指示采用所述第一预设处理方式、所述第二预设处理方式或第三预设处理方式的指示命令。
  35. 如权利要求28至33任一项所述的终端设备,其中,所述传输模块用于:
    按照预先设置或网络侧的指示,在P大于1的情况下,将映射相同所述信号序列的不同OFDM符号设置在不同的频域位置上传输;或者,在P=1的情况下,将所述N个OFDM符号中的前
    Figure PCTCN2020137369-appb-100008
    个OFDM符号与后
    Figure PCTCN2020137369-appb-100009
    Figure PCTCN2020137369-appb-100010
    个OFDM符号分别设置在不同的频域位置上传输。
  36. 如权利要求25、27至34任一项所述的终端设备,其中,所述终端设备还包括:
    第二确定模块,用于根据网络侧发送的指示确定所述N;或者根据所述K确定所述N。
  37. 如权利要求25、27至33任一项所述的终端设备,其中,所述终端设备还包括:
    获取模块,用于根据待传输的UCI,得到Q比特的所述比特信息。
  38. 如权利要求37所述的终端设备,其中,所述获取模块用于:
    若所述待传输的UCI的比特信息的长度L等于Q,则将所述待传输的UCI的比特信息作为Q比特的所述比特信息;
    若所述待传输的UCI的比特信息的长度L小于Q,根据预先设置或预设的高层信令的指示,确定是否需要在所述待传输的UCI的比特信息的尾部补0或1,如果是,则在所述待传输的UCI的比特信息的尾部补(Q-L)个0或1,得到Q比特的所述比特信息。
  39. 如权利要求25、27至33任一项所述的终端设备,所述终端设备还包括:
    第三确定模块,用于根据网络侧的指示确定所述M,或按照所述终端设备的需要配置所述M。
  40. 如权利要求39所述的终端设备,其中,所述生成模块包括:
    若x=Q mod M=0,则生成承载所述Q比特的比特信息的K个所述信号序列;
    若x=Q mod M≠0,则在所述Q比特的比特信息的最后x个比特信息后补(M-x)个0或1,再生成承载补(M-x)个0或1之后的所述比特信息的K个所述信号序列。
  41. 如权利要求28至33任一项所述的终端设备,其中,所述终端设备还包括第四确定模块,所述第四确定模块用于:
    根据网络侧的指示确定所述S,或按照所述终端设备的需求配置所述S;
    和/或,
    根据网络侧的指示确定所述P,或者,按照所述终端设备的需求配置所述P。
  42. 一种网络侧设备,其特征在于,包括:
    检测模块,用于检测终端设备在物理上行控制信道资源对应的OFDM符号上传输的信号序列;
    获取模块,用于根据预先设置的规则,获取检测到的每个所述信号序列上承载的比特信息;
    重组模块,用于按照所述终端设备传输上行控制信息使用的传输参数,对获取到的比特信息进行重组,得到所述终端设备传输的UCI。
  43. 如权利要求42所述的网络侧设备,其中,所述信号序列包括以下至少之一:
    M序列;
    ZC序列;
    GOLD序列;
    除M序列、ZC序列和GOLD序列之外的预设序列;
    所述M序列、所述ZC序列、所述GOLD序列和所述预设序列中的至少任意两个序列相乘获得的序列。
  44. 如权利要求42所述的网络侧设备,其中,所述传输参数包括以下至少之一:
    每个所述信号序列中承载的比特信息的长度M,其中,M为大于0的整数;
    传输UCI使用的OFDM符号的数量N,其中,N为大于0的整数;
    传输的比特信息的总长度Q,其中,Q为大于0的整数;
    每个所述OFDM符号在频域上占用的RB数S,其中,S为大于0的整数;
    所述信号序列在所述OFDM符号上重复映射的次数P,以及所述UCI在所述OFDM符号上的重复映射方式,其中,P为大于0的整数;
    各个所述OFDM符号的频域位置;
    在传输所述OFDM符号的时频资源存在冲突时的处理方式。
  45. 如权利要求44所述的网络侧设备,其中,
    N≤Nmax,Nmax为传输所述UCI的PUCCH资源的配置参数,该配置参数的取值预定义值或高层信令配置的值;和/或,
    Q≤Qmax,Qmax为预定义值或高层信令配置的值;和/或,
    M≤Mmax,Mmax为预定义值或高层信令配置的值;和/或,
    P≤Pmax,Pmax为预定义值或者由高层信令配置的值;和/或
    S≤Smax,Smax为预定义值或高层信令配置的值。
  46. 如权利要求42至45任一项所述的网络侧设备,其中,所述网络侧设备还包括:
    配置模块,用于向所述终端设备发送配置指示,配置所述传输参数中的一个或多个参数。
  47. 一种终端设备,其特征在于,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至18中任一项所述的上行控制信息传输方法的步骤。
  48. 一种网络侧设备,其特征在于,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求19至23中任一项所述的上行控制信息传输方法的步骤。
  49. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现:
    如权利要求1至18中任一项所述的上行控制信息传输方法的步骤;或者
    如权利要求19至23中任一项所述的上行控制信息传输方法的步骤。
PCT/CN2020/137369 2019-12-24 2020-12-17 上行控制信息传输方法、终端设备和网络侧设备 WO2021129522A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911349687.9A CN113037429B (zh) 2019-12-24 2019-12-24 上行控制信息传输方法、终端设备和网络侧设备
CN201911349687.9 2019-12-24

Publications (1)

Publication Number Publication Date
WO2021129522A1 true WO2021129522A1 (zh) 2021-07-01

Family

ID=76452331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137369 WO2021129522A1 (zh) 2019-12-24 2020-12-17 上行控制信息传输方法、终端设备和网络侧设备

Country Status (2)

Country Link
CN (1) CN113037429B (zh)
WO (1) WO2021129522A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114467278A (zh) * 2021-12-29 2022-05-10 北京小米移动软件有限公司 物理下行控制信道发送、接收方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017045103A1 (zh) * 2015-09-14 2017-03-23 华为技术有限公司 上行控制信息的传输方法、终端设备、基站和通信系统
CN106789827A (zh) * 2016-08-12 2017-05-31 展讯通信(上海)有限公司 基于单个符号的上行控制信息的传输方法及装置、终端
CN107295665A (zh) * 2016-03-31 2017-10-24 中兴通讯股份有限公司 一种上行控制信号传输方法及装置、用户终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101782645B1 (ko) * 2010-01-17 2017-09-28 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
KR101802518B1 (ko) * 2010-03-03 2017-11-29 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
CN107872304B (zh) * 2016-09-28 2020-04-28 华为技术有限公司 一种上行控制信号的传输方法、网络侧设备及终端设备
EP3605933B1 (en) * 2017-05-03 2022-03-09 LG Electronics Inc. Method by which terminal and base station transmit/receive signal in wireless communication system, and device for supporting same
CN113890677B (zh) * 2017-11-17 2023-06-02 华为技术有限公司 信息传输方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017045103A1 (zh) * 2015-09-14 2017-03-23 华为技术有限公司 上行控制信息的传输方法、终端设备、基站和通信系统
CN107295665A (zh) * 2016-03-31 2017-10-24 中兴通讯股份有限公司 一种上行控制信号传输方法及装置、用户终端
CN106789827A (zh) * 2016-08-12 2017-05-31 展讯通信(上海)有限公司 基于单个符号的上行控制信息的传输方法及装置、终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Design of short NR-PUCCH for up to 2 UCI bits", 3GPP DRAFT; R1-1713174, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech Republic; 20170821 - 20170825, 20 August 2017 (2017-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051315983 *
LG ELECTRONICS: "Design of short PUCCH for UCI of more than 2 bits for NR", 3GPP DRAFT; R1-1715877, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nagoya, Japan; 20170918 - 20170921, 17 September 2017 (2017-09-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051339337 *

Also Published As

Publication number Publication date
CN113037429A (zh) 2021-06-25
CN113037429B (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
KR102221648B1 (ko) 물리 하향링크 제어 채널을 송신 또는 수신하는 방법 및 디바이스
CA3050339C (en) Method for transmitting downlink control information, terminal device and network device
CN109391359B (zh) 用于数据传输的方法、网络设备和终端设备
US11632207B2 (en) Method and apparatus for transmitting uplink signal
TWI733934B (zh) 通訊方法、終端和網路設備
EP3866530B1 (en) Uplink signal transmission method and device
CN112188594B (zh) 传输信号的方法、网络设备和终端设备
WO2021052113A1 (en) Method and apparatus for uplink information transmission and user equipment
CN111479282B (zh) 无线通信方法和设备
WO2018126414A1 (zh) 传输数据的方法和通信设备
JP6847260B2 (ja) 無線通信方法及びデバイス
CN108809586A (zh) 信息的发送方法、接收方法、网络侧设备及终端设备
WO2018195861A1 (zh) 无线通信的方法、终端设备和传输与接收节点
WO2019014923A1 (zh) 传输数据的方法、终端设备和网络设备
JP2021503210A (ja) リソース構成方法、端末装置及びネットワーク装置
JP2021535660A (ja) 測定方法、設定方法および装置
WO2021129522A1 (zh) 上行控制信息传输方法、终端设备和网络侧设备
US20220256515A1 (en) Wireless communication method, network device, and terminal device
WO2018082173A1 (zh) 传输上行控制信号的方法和装置
CA3060623A1 (en) Wireless communication method, terminal device, and network device
TW202013922A (zh) 資料傳輸方法和設備
WO2021228139A1 (zh) Pucch重复传输的方法及设备
CN113207161B (zh) 一种信号传输方法及装置、终端、网络设备
EP3614703B1 (en) Method for transmitting reference signal, terminal and network device
WO2020063378A1 (zh) 数据传输方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904914

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20904914

Country of ref document: EP

Kind code of ref document: A1