WO2021129371A1 - 一种基于柔性光电纳米薄膜的非接触式位移传感器 - Google Patents

一种基于柔性光电纳米薄膜的非接触式位移传感器 Download PDF

Info

Publication number
WO2021129371A1
WO2021129371A1 PCT/CN2020/134371 CN2020134371W WO2021129371A1 WO 2021129371 A1 WO2021129371 A1 WO 2021129371A1 CN 2020134371 W CN2020134371 W CN 2020134371W WO 2021129371 A1 WO2021129371 A1 WO 2021129371A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement sensor
bridge
deflection
output current
light source
Prior art date
Application number
PCT/CN2020/134371
Other languages
English (en)
French (fr)
Inventor
张鹤
王莉
周煜辉
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to JP2021572110A priority Critical patent/JP2022535863A/ja
Publication of WO2021129371A1 publication Critical patent/WO2021129371A1/zh
Priority to US17/553,728 priority patent/US20220107172A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors

Definitions

  • the invention relates to a non-contact displacement sensor based on a flexible photoelectric nano film.
  • the beam is an important load-bearing component of the bridge structure, and the deflection of the beam is an important parameter to evaluate its dynamic state, measure the fatigue damage, and ensure the safety of the structure.
  • the commonly used beam deflection measurement methods mainly include dial indicator measurement method, precision level measurement method, total station measurement method, connecting pipe measurement method, differential GPS observation method, etc.
  • the dial indicator measurement method is to amplify the displacement value of the position detected by the gear rotation mechanism, and convert the detected linear reciprocating motion into the rotary rotation of the pointer to indicate the displacement value.
  • the method is simple in equipment and can be used for multi-point measurement.
  • the string dial gauge measurement method can only be used to measure the deflection of bridges on land or on frozen water in the north.
  • the precision level measurement method is a method of measuring the height difference between two points using a level and a leveling ruler. Starting from the leveling origin or any known elevation point, the elevation of each point is measured station by station along the selected leveling route, and the level is read by the leveling ruler. The difference is the relative deflection, but this method can only measure the relative value, not the absolute value.
  • the total station measurement method is a method of triangular elevation measurement. The height difference between two points is obtained by measuring the horizontal distance and vertical angle between two points. This measurement method is simple and is not limited by topographical conditions, but there will be some observations.
  • the connecting pipe measurement method uses the principle of "the pressure of the static liquid in the same horizontal plane in the connecting device is the same" in physics.
  • a connecting pipe is arranged at each measuring point, and water (or other colored liquid) is filled to the ruler position.
  • water or other colored liquid
  • the differential GPS observation method places a GPS mobile station at the required measuring point, and obtains the position of the deformation point relative to the reference point in real time through GPS observation, which can directly reflect the spatial position change of the measuring point to obtain the deflection value of the bridge structure, but its measurement accuracy It is relatively low, generally only reaching the centimeter level, which is not suitable for high-precision deflection detection of small and medium-sized bridges.
  • the present invention proposes a non-contact displacement sensor based on flexible photoelectric nano-film, and without additional energy supply, it can convert the bridge deflection into electric energy of the displacement sensor and output it in the form of electrical signal, and also It has the characteristics of high precision, wide application range, fast response speed, and real-time intelligent perception.
  • a non-contact displacement sensor based on a flexible photoelectric nano film characterized in that the displacement sensor is fixed on the surface of the bridge in the middle of the span, and the laser light source is arranged directly below the displacement sensor. After the bridge is deflected, the displacement sensor is displaced along with the bridge, resulting in a corresponding change in the output current.
  • the distance between the laser light source and the displacement sensor is L 1
  • the output current is I 1
  • the distance between the laser light source and the displacement sensor is L 2
  • the output current is I 2
  • the corresponding relationship between the displacement sensor output current and the bridge deflection is as follows:
  • ⁇ L(t) is the deflection
  • L(t) is the laser transmission distance
  • e is the amount of single electron charge
  • is the dielectric constant of the material
  • I(t) is the output current
  • ⁇ I is the intensity of the emitted light and the background light.
  • the difference between ⁇ and ⁇ is the light absorption coefficient and quantum efficiency of the material
  • k is the attenuation coefficient in air
  • n i is the intrinsic carrier concentration
  • ⁇ n0 and ⁇ p0 are the lifetimes of electrons and holes, respectively.
  • the non-contact displacement sensor based on the flexible photoelectric nano film it is characterized in that the wavelength of the laser light source is 680 nm.
  • the non-contact displacement sensor based on the flexible photoelectric nano film it is characterized in that the laser is irradiated vertically on the displacement sensor.
  • the invention is based on a displacement sensor, which converts the distance information when the bridge is deflected into an electric signal, and can express and output the magnitude of the deflection as an electric signal through an integrated output device.
  • a displacement sensor which converts the distance information when the bridge is deflected into an electric signal, and can express and output the magnitude of the deflection as an electric signal through an integrated output device.
  • due to the flexibility of the sensor itself it has good ductility and deformability, and can be displaced along with the deflection of the bridge.
  • the non-contact displacement sensor based on flexible photoelectric nano-film has The advantages of simple structure, high measurement accuracy, fast response speed, wide application range, real-time automatic measurement and so on.
  • Figure 1 is a schematic diagram of the measurement before and after the deflection of the bridge
  • Figure 2 is a spectral response diagram of the displacement sensor
  • the non-contact displacement sensor based on the flexible photoelectric nano film provided by the present invention fixes the displacement sensor on the surface (position 1) in the middle of the bridge, and the laser light source 3 is set at Right below the displacement sensor, when the bridge is deflected, the displacement sensor will be displaced along with the bridge (position 2), resulting in a corresponding change in the output current.
  • the distance between the laser light source and the displacement sensor is L 1
  • the output current is I 1
  • the distance between the laser light source and the displacement sensor is L 2
  • the output The current is I 2 .
  • the photoelectric sensor takes the PN junction as the basic structure and satisfies the Poisson equation:
  • ⁇ (x, t) represents the potential distribution in the material
  • x and t are position coordinates and time coordinates, respectively
  • e represents the amount of single electron charge
  • p(x, t) and n(x, t) represent the void in the material, respectively Concentration distribution of holes and free electrons
  • is the dielectric constant of the material
  • N is the net doping concentration.
  • ⁇ (d, t) is the potential of the P region
  • d is the thickness of the PN junction.
  • J n and J p are the electron and hole current densities, respectively, G(x, t) represents the generation rate of electron-hole pairs excited by the light field, and the corresponding R(x, t) is the recombination of unbalanced electrons and holes rate.
  • J n and J p satisfy:
  • ⁇ n and ⁇ p are the electron and hole mobility, respectively, k B is Boltzmann's constant, and T is temperature.
  • n i is the intrinsic carrier concentration
  • ⁇ n0 and ⁇ p0 are the lifetimes of electrons and holes, respectively.
  • I t is the light intensity received by the sensor
  • ⁇ and ⁇ are the light absorption coefficient and quantum efficiency of the material, respectively
  • I 0 is the emitted light intensity of the light source
  • I b is the background light intensity.
  • k is the attenuation coefficient in the air
  • L is the laser transmission distance
  • the deflection ⁇ L(t) is the difference between the two transmission distances, namely:
  • the displacement sensor of the present invention reaches a peak in the visible light range when the laser wavelength is 680 nm, which is beneficial to signal output and device layout. Therefore, the laser light source wavelength of the present invention is selected to be 680 nm.

Abstract

一种基于柔性光电纳米薄膜的非接触式位移传感器,将位移传感器固定在桥梁的跨中的表面,激光光源(3)设置在位移传感器的正下方,当桥梁产生挠度后,位移传感器随着桥梁一同发生位移,从而导致输出电流产生相应变化,可根据输出的电流信号反算得到激光传输距离的变化,即等同于桥梁挠度。相比其他传统挠度测量装置来说,基于柔性光电纳米薄膜的非接触式位移传感器具有结构简单、测量精度高、响应速度快、应用范围广、实时自动测量等优点。

Description

一种基于柔性光电纳米薄膜的非接触式位移传感器 技术领域
本发明涉及用于一种基于柔性光电纳米薄膜的非接触式位移传感器。
背景技术
梁是桥梁结构的重要承载构件,梁的挠度是评估其动力状态、衡量疲劳损伤、保证结构安全的重要参数。在现今的交通工程中,常采用的梁挠度测量方法主要有百分表测量法、精密水准仪测量法、全站仪测量法、连通管测量法、差分GPS观测法等。百分表测量法是利用齿轮转动机构所检测位置的位移值放大,并将检测的直线往返运动转换成指针的回转转动,以指示其位移数值,该方法设备简单,可进行多点测量,钢弦百分表测量法只能用于测量陆地上或北方冻结水面上的桥梁挠度,在高桥或有水的情况下无法使用,或必须搭建高台。精密水准仪测量法是利用水准仪和水准尺测定两点间高差的方法,由水准原点或任一已知高程点出发,沿选定的水准路线逐站测定各点高程,由其水准尺读数的差值得到其相对挠度,但该方法只能测出相对数值,不能测出绝对数值。全站仪测量法是采用三角高程测量的方法,通过测量两点间的水平距离和竖直角求两点间的高差,这种测量方法简单,不受地形条件限制,但会存在因观测者的观测方式与经验不同带来的观测误差,即使进行静态测量也往往使得数据较为离散,无法做到实时、自动测量。连通管测量法是利用物理学上“连通器中处于同一水平平面上的静止液体的压强相同”的原理,在每个测点位置布置连通管,灌水(或其他有色液体)至标尺位置,当桥梁产生挠度时,水管中的水平液面仍然持平,但每个测点的相对水位会发生变化,通过读取变化值可得到桥梁的挠度,计算简单,且由于全封闭结构,不受桥梁现场高尘、高湿等环境条件影响,但该方法精度较低,只能用于低频或超低频桥梁静挠度检测,且不适用于跨径大、纵坡较大的桥梁。差分GPS观测法在需要的测点安放GPS移动站,通过GPS观测实时获取变形点相对于参考点的位置,可直接反映出测点的空间位置变化从而得到桥梁结构的挠度值,但其测量精度较低,一般只能达到厘米级,对于中小型桥梁的高精度挠度检测不适用。
发明内容
针对现有技术的不足,本发明提出一种基于柔性光电纳米薄膜的非接触式位移传感器,并且无需额外提供能源,能够将桥梁挠度转化为位移传感器的电能并以电信号的形式输出,同时还具备精度高、应用范围广、响应速度快、实时智能感知的特点。
一种基于柔性光电纳米薄膜的非接触式位移传感器,其特征在于,将所述的位移传感器固定在所述的桥梁的跨中的表面,激光光源设置在所述的位移传感器的正下方,当所述的桥梁产生挠度后,所述的位移传感器随着桥梁一同发生位移,从而导致输出电流产生相应变化,设所述的桥梁变形前,所述的激光光源与位移传感器的距离为L 1,输出电流为I 1,所述的桥梁变形后,所述的激光光源与位移传感器的距离为L 2,输出电流为I 2,则位移传感器输出电流与桥梁挠度的对应关系如下:
Figure PCTCN2020134371-appb-000001
其中,ΔL(t)为挠度,L(t)为激光传输距离,e为单电子电荷量,ε是材料的介电常数,I(t)为输出电流,ΔI为出射光强与背景光强的差值,α和β分别为材料的光吸收系数与量子效率,k为空气中的衰减系数,n i为本征载流子浓度,τ n0和τ p0分别为电子和空穴的寿命。
进一步地,根据基于柔性光电纳米薄膜的非接触式位移传感器,其特征在于,所述的激光光源的波长为680nm。
进一步地,根据基于柔性光电纳米薄膜的非接触式位移传感器,其特征在于,激光垂直照射在位移传感器上。
本发明的有益效果是:
本发明基于位移传感器,将桥梁产生挠度时的距离信息转化为电信号,通过集成的输出装置能够将挠度大小用电信号表示并输出。同时由于传感器自身的柔性,具有较好的延展性与变性能力,能够随着桥梁产生挠度而一同发生位移,相比其他传统挠度测量装置来说,基于柔性光电纳米薄膜的非接触式位移传感器具有结构简单、测量精度高、响应速度快、应用范围广、实时自动测量等优点。
附图说明
图1是桥梁产生挠度前后的测量示意图;
图2是位移传感器的光谱响应图;
图中标号:未产生挠度前的传感器位置1、产生挠度后的传感器位置2、激光光源3;L 1为传感器与光源的初始距离;L 2为产生挠度后传感器与光源的距离。
具体实施方式
下面根据附图和优选实施例详细描述本发明,本发明的目的和效果将变得更加明白。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明所提供的基于柔性光电纳米薄膜的非接触式位移传感器,将所述的位移传感器固定在所述的桥梁的跨中的表面(位置1),激光光源3设置在所述的位移传感器的正下方,当所述的桥梁产生挠度后,所述的位移传感器随着桥梁一同发生位移(位置2),从而导致输出电流产生相应变化。设所述的桥梁变形前,所述的激光光源与位移传感器的距离为L 1,输出电流为I 1,所述的桥梁变形后,所述的激光光源与位移传感器的距离为L 2,输出电流为I 2
本发明的位移传感器实现挠度测量的原理如下:
光电传感器以PN结为基本结构,满足Poisson方程:
Figure PCTCN2020134371-appb-000002
其中φ(x,t)表示材料内的电势分布,x和t分别是位置坐标和时间坐标;e代表单电子电荷量,p(x,t)和n(x,t)分别代表材料内空穴和自由电子浓度分布;ε是材料的介电常数,N是净掺杂浓度。
t时刻的输出电流I(t)满足:
Figure PCTCN2020134371-appb-000003
其中φ(d,t)为P区电势,d为PN结厚度。
同时满足电子连续性方程(3)与空穴连续性方程(4):
Figure PCTCN2020134371-appb-000004
Figure PCTCN2020134371-appb-000005
其中J n和J p分别是电子和空穴电流密度,G(x,t)代表光场激发的电子-空穴对的产生率,相应的R(x,t)是非平衡电子空穴的复合率。其中J n和J p满足:
Figure PCTCN2020134371-appb-000006
Figure PCTCN2020134371-appb-000007
其中μ n和μ p分别是电子和空穴迁移率,k B为玻尔兹曼常数,T为温度。
R(x,t)满足方程:
Figure PCTCN2020134371-appb-000008
其中n i为本征载流子浓度,τ n0和τ p0分别为电子和空穴的寿命。
G(x,t)满足方程:
G(x,t)=(I 0-I b)αβe -αx      (8)
其中I t为传感器接收到的光照强度,α和β分别为材料的光吸收系数与量子效率,I 0为光源的出射光强,I b为背景光强。
特别地,不同于传统的光电传感器应用,在本发明所述的工程情况中,由于挠度的产生,需要考虑到随着激光传输距离的变化,激光的光照强度会在空气中有一定衰减,故需要引入衰减项,对方程(8)作修正如下:
G(x,t)=(I 0-I b)αβe -(kL+αx)       (9)
其中k为空气中的衰减系数,L为激光传输距离。
将(3)-(9)式代入(2)式,可得到:
Figure PCTCN2020134371-appb-000009
由此可建立激光传输距离与输出电流的映射关系I(t)→L(t):
Figure PCTCN2020134371-appb-000010
而挠度ΔL(t)即为两次传输距离的差值,即:
Figure PCTCN2020134371-appb-000011
此外,如图2所示,本发明所述的位移传感器,在激光波长为680nm时达到可见光范围内的峰值,有利于信号输出以及装置布设,故本发明所述的激光光源波长选择为680nm。
本领域普通技术人员可以理解,以上所述仅为发明的优选实例而已,并不用于限制发明,尽管参照前述实例对发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在发明的精神和原则之内,所做的修改、等同替换等均应包含在发明的保护范围之内。

Claims (1)

  1. 一种基于柔性光电纳米薄膜的非接触式位移传感器,其特征在于,将所述的位移传感器固定在桥梁的跨中的表面,激光光源设置在所述的位移传感器的正下方,所述的激光光源的波长为680nm,激光垂直照射在位移传感器上,当所述的桥梁产生挠度后,所述的位移传感器随着桥梁一同发生位移,从而导致输出电流产生相应变化,设所述的桥梁变形前,所述的激光光源与位移传感器的距离为L1,输出电流为I 1,所述的桥梁变形后,所述的激光光源与位移传感器的距离为L2,输出电流为I 2,则位移传感器输出电流与桥梁挠度的对应关系如下:
    Figure PCTCN2020134371-appb-100001
    其中,ΔL(t)为挠度,L(t)为激光传输距离,e为单电子电荷量,ε是材料的介电常数,I(t)为输出电流,ΔI为出射光强与背景光强的差值,α和β分别为材料的光吸收系数与量子效率,k为空气中的衰减系数,n i为本征载流子浓度,τ n0和τ p0分别为电子和空穴的寿命。
PCT/CN2020/134371 2019-12-28 2020-12-08 一种基于柔性光电纳米薄膜的非接触式位移传感器 WO2021129371A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021572110A JP2022535863A (ja) 2019-12-28 2020-12-08 可撓性光電ナノ薄膜に基づく非接触式の変位センサ
US17/553,728 US20220107172A1 (en) 2019-12-28 2021-12-16 Contactless displacement sensor employing flexible photoelectric nanofilm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911384616.2A CN111156903B (zh) 2019-12-28 2019-12-28 一种基于柔性光电纳米薄膜的非接触式位移传感器
CN201911384616.2 2019-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/553,728 Continuation US20220107172A1 (en) 2019-12-28 2021-12-16 Contactless displacement sensor employing flexible photoelectric nanofilm

Publications (1)

Publication Number Publication Date
WO2021129371A1 true WO2021129371A1 (zh) 2021-07-01

Family

ID=70558763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134371 WO2021129371A1 (zh) 2019-12-28 2020-12-08 一种基于柔性光电纳米薄膜的非接触式位移传感器

Country Status (4)

Country Link
US (1) US20220107172A1 (zh)
JP (1) JP2022535863A (zh)
CN (1) CN111156903B (zh)
WO (1) WO2021129371A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115507757A (zh) * 2022-11-23 2022-12-23 四川省亚通工程咨询有限公司 一种桥梁状态监测装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111156903B (zh) * 2019-12-28 2020-09-01 浙江大学 一种基于柔性光电纳米薄膜的非接触式位移传感器
CN114136264B (zh) * 2021-11-24 2024-03-12 中国铁道科学研究院集团有限公司铁道建筑研究所 一种铁路桥梁梁端相对转角测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278300A (zh) * 2013-05-23 2013-09-04 长安大学 一种非接触式桥梁挠度传感器
CN106449669A (zh) * 2015-08-07 2017-02-22 佳能株式会社 光电转换器件、测距装置和信息处理系统
CN106610272A (zh) * 2015-10-22 2017-05-03 长沙理工大学 一种基于激光信号的桥梁挠度实时监测装置
KR20170136130A (ko) * 2016-05-31 2017-12-11 (주)카이센 교량 처짐 계측 시스템
CN110487197A (zh) * 2019-09-03 2019-11-22 厦门大学嘉庚学院 一种基于ccd图像传感器及激光应用的桥梁动态扰度实时监测系统
CN111156903A (zh) * 2019-12-28 2020-05-15 浙江大学 一种基于柔性光电纳米薄膜的非接触式位移传感器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187077A (ja) * 1989-01-13 1990-07-23 Nitto Denko Corp 可撓性光電変換素子
CN1030417C (zh) * 1992-11-13 1995-11-29 中国科学院北京真空物理实验室 激光脉冲检测用光电发射薄膜
JPH07270120A (ja) * 1994-03-29 1995-10-20 Olympus Optical Co Ltd 変位センサー
US5684298A (en) * 1994-07-06 1997-11-04 California Institute Of Technology Photonic-based sensing apparatus using displacement tracking of an optical beam in a semiconductor
CN201438141U (zh) * 2009-05-18 2010-04-14 北京中土赛科科技开发有限公司 一种桥梁动挠度测试装置
US8833173B2 (en) * 2009-07-17 2014-09-16 Aktiebolaget Skf Strain sensor
JP5984607B2 (ja) * 2012-10-05 2016-09-06 株式会社ソーキ 橋梁の非接触型変位計測方法
CN103940561B (zh) * 2014-04-21 2017-03-15 广西交通科学研究院 精确测量吊索(杆)拱桥主拱肋挠度的方法及其装置
CN105355700B (zh) * 2014-08-18 2018-06-12 北京大学 一种光电探测器
CN104993056A (zh) * 2015-06-11 2015-10-21 上海电力学院 一种宽频谱柔性光电探测器及其制作方法
WO2017031064A1 (en) * 2015-08-14 2017-02-23 Intelligent Structures, Inc. Apparatus and methods for monitoring movement of physical structures by laser deflection
CN106404321A (zh) * 2016-08-30 2017-02-15 孟玲 一种用于桥梁变形监测的挠度传感器及其实现方法
CN109916582B (zh) * 2019-03-28 2020-02-18 华南理工大学 一种挠度自动测量装置及测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278300A (zh) * 2013-05-23 2013-09-04 长安大学 一种非接触式桥梁挠度传感器
CN106449669A (zh) * 2015-08-07 2017-02-22 佳能株式会社 光电转换器件、测距装置和信息处理系统
CN106610272A (zh) * 2015-10-22 2017-05-03 长沙理工大学 一种基于激光信号的桥梁挠度实时监测装置
KR20170136130A (ko) * 2016-05-31 2017-12-11 (주)카이센 교량 처짐 계측 시스템
CN110487197A (zh) * 2019-09-03 2019-11-22 厦门大学嘉庚学院 一种基于ccd图像传感器及激光应用的桥梁动态扰度实时监测系统
CN111156903A (zh) * 2019-12-28 2020-05-15 浙江大学 一种基于柔性光电纳米薄膜的非接触式位移传感器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115507757A (zh) * 2022-11-23 2022-12-23 四川省亚通工程咨询有限公司 一种桥梁状态监测装置
CN115507757B (zh) * 2022-11-23 2023-03-24 四川省亚通工程咨询有限公司 一种桥梁状态监测装置

Also Published As

Publication number Publication date
US20220107172A1 (en) 2022-04-07
JP2022535863A (ja) 2022-08-10
CN111156903A (zh) 2020-05-15
CN111156903B (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2021129371A1 (zh) 一种基于柔性光电纳米薄膜的非接触式位移传感器
CN102564323B (zh) 基于四象限位置探测器测试桥梁挠度/纵向位移变化的方法
Iungo et al. Field measurements of wind turbine wakes with lidars
Fuertes et al. 3D turbulence measurements using three synchronous wind lidars: Validation against sonic anemometry
CN203744915U (zh) 大坝坝体监测系统
CN102681030B (zh) 一种风沙流或沙尘暴环境下大气边界层湍流监测系统
De Bruin et al. Displaced-beam small aperture scintillometer test. Part I: The WINTEX data-set
CN107815935A (zh) 高速铁路轨道几何状态实时监测方法及系统
CN106291590A (zh) 基于激光雷达测量数据计算整层大气气溶胶光学厚度的方法
CN106595574A (zh) 基于测量机器人露天矿边坡监测高程数据的处理方法
Marković et al. Application of fiber-optic curvature sensor in deformation measurement process
WO2021135843A1 (zh) 基于柔性光电传感阵列的非接触式桥梁位移感知方法
CN103063382B (zh) 一种挠度自动测量装置及其测量方法
CN206095356U (zh) 一种差压水位测量仪
CN209132429U (zh) 一种地基沉降监测设备
CN205448987U (zh) 一种利用激光传感的结构变形测量和采集装置
CN113189660B (zh) 一种阵列式陆地时变重力和梯度场的观测方法和系统
CN105068157A (zh) 对边界层风廓线雷达探测风速风向数据精度的验证方法
CN107504947B (zh) 一种测量相对变形的装置
Dobosy et al. Mass and momentum balance in the Brush Creek drainage flow determined from single-profile data
CN220288938U (zh) 基于光电成像传感器的大跨桥梁静动挠度测量系统
CN113899344B (zh) 一种考虑温度效应的长大隧道高精度沉降监测系统及方法
Grgić et al. Preliminary results of combined geodetic methods in monitoring
Nosov et al. Astroclimate parameters of the surface layer in the Sayan solar observatory
CN104807568B (zh) 基于残缺谱拼接的布里渊谱寻峰方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021572110

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906178

Country of ref document: EP

Kind code of ref document: A1