WO2021129221A1 - 磁性螺旋型胶囊内镜、磁性螺旋型胶囊内镜控制系统及其控制方法 - Google Patents

磁性螺旋型胶囊内镜、磁性螺旋型胶囊内镜控制系统及其控制方法 Download PDF

Info

Publication number
WO2021129221A1
WO2021129221A1 PCT/CN2020/128436 CN2020128436W WO2021129221A1 WO 2021129221 A1 WO2021129221 A1 WO 2021129221A1 CN 2020128436 W CN2020128436 W CN 2020128436W WO 2021129221 A1 WO2021129221 A1 WO 2021129221A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
capsule endoscope
permanent magnet
spiral capsule
magnetic spiral
Prior art date
Application number
PCT/CN2020/128436
Other languages
English (en)
French (fr)
Inventor
叶波
钟照权
伍嘉丽
郭琳
李向东
刘胜
Original Assignee
江苏势通生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏势通生物科技有限公司 filed Critical 江苏势通生物科技有限公司
Publication of WO2021129221A1 publication Critical patent/WO2021129221A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/273Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/273Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
    • A61B1/2736Gastroscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • A61B5/073Intestinal transmitters

Definitions

  • the invention relates to the field of medical equipment, in particular to a magnetic spiral capsule endoscope, a magnetic spiral capsule endoscope control system and a control method thereof.
  • digestive system diseases are the most common clinical diseases, of which gastrointestinal diseases account for the largest proportion.
  • the upper gastrointestinal tract and the lower gastrointestinal tract are inspected by mechanical insertion, which will bring discomfort and pain to the patient, reduce the patient's compliance to a certain extent, and sometimes even require anesthesia.
  • Wireless capsule endoscopy has the advantages of non-invasive, painless, and no cross-infection. It overcomes the shortcomings of traditional endoscopes such as gastroscopy. It has been used as a first-line inspection method for small bowel diseases in many parts of the world.
  • Capsule endoscope components usually include the capsule itself, a built-in miniature camera, which can reach a 160-degree viewing angle, and the endurance is generally more than 8 hours, as well as a data recorder and image data analysis software.
  • the capsule endoscopes in many places are passive. They are accompanied by gastrointestinal peristalsis. There are instability and uncertainty. There is no therapeutic function. The lack of active control makes it difficult for the capsule to accurately locate the location of the lesion. It is not suitable for small bowel examinations, but not suitable for gastric examinations with larger and more complicated cavities.
  • the active control method of the capsule endoscope currently under study is divided into internal and external driving methods.
  • Internal drive is a drive method that uses the energy and mechanical structure of the capsule endoscope to move. It mainly includes: shape memory alloy drive, micro-motor drive, magnetostrictive drive, pneumatic drive, peristaltic drive, multi-leg drive, electrostatic drive And bionic drive, etc., most of the processing principle research stage.
  • the internal drive has the following shortcomings: 1. The drive relies on a motor, which may cause insufficient battery power; 2. The structure of the micro capsule endoscope becomes complicated, production is difficult, and the cost is high; 3. The movement structure may cause damage to the digestive tract ; 4. Capsule endoscopic movement cannot be accurately controlled and the speed is slow.
  • External drive is a drive mode that provides power for the movement of the capsule endoscope through an external device.
  • Conventionally available non-contact forces are only gravity (gravitation) and electromagnetic force. Gravity is basically uncontrollable, and electromagnetic force has not yet been developed to better control the movement of the capsule endoscope.
  • the purpose of the present invention is to provide a magnetic spiral capsule endoscope, a magnetic spiral capsule endoscope control system and a control method thereof.
  • the present invention provides a magnetic spiral capsule endoscope, comprising a capsule endoscope body and a magnetic shell layer arranged on the outer periphery of the capsule endoscope body, and the surface of the magnetic shell layer is spirally wound. There are magnetizable materials.
  • the magnetic spiral capsule endoscope has a simple structure and low manufacturing cost, and can be rotated, moved, and maintained in accordance with changes in the direction and intensity of an external magnetic field.
  • the present invention also provides a magnetic spiral capsule endoscope control system, which includes an external permanent magnet, a permanent magnet control mechanism and the above-mentioned magnetic spiral capsule endoscope;
  • the permanent magnet control mechanism controls the reversal of the external permanent magnet, the external permanent magnet generates a magnetic interaction with the magnetic spiral capsule endoscope, and controls and drives the magnetic spiral capsule endoscope to rotate, move, and maintain the posture.
  • the magnetic spiral capsule endoscope control system realizes the rotation control of the magnetic spiral capsule endoscope by controlling the rotation of the external permanent magnet, thereby transforming the rotational motion of the magnetic spiral capsule endoscope into linear motion, and promotes the internal magnetic spiral capsule.
  • the application of the endoscope in the gastrointestinal tract realizes the effective control of the movement and posture maintenance of the magnetic spiral capsule endoscope.
  • the preferred solution of the magnetic spiral capsule endoscope control system also includes at least one magnetic sensor array for collecting external magnetic field parameters, and a data collector connected to the magnetic sensor array in a one-to-one correspondence; the data collector data The output terminal is connected to the PC.
  • the PC can realize the position and posture of the magnetic spiral capsule endoscope in the human gastrointestinal tract according to the data collected by the magnetic sensor array, and realize the fixed-point suspension and precise movement control of the magnetic spiral capsule endoscope through the permanent magnet control mechanism.
  • the permanent magnet control mechanism includes a single-chip microcomputer and a stepping motor.
  • the present invention also provides a control method of a magnetic spiral capsule endoscope control system, which includes the following steps:
  • the same magnetic sensor array is set directly above and directly below the external permanent magnet.
  • the magnetic sensor array located directly below is used to detect the intensity of the mixed magnetic field of the magnetic spiral capsule endoscope and the external permanent magnet.
  • the magnetic sensor array located directly above is used for To detect the position and posture of the external permanent magnet, and obtain the magnetic field strength of the external permanent magnet by using the position and posture of the external permanent magnet;
  • the current spatial position information and direction angle information of the magnetic spiral capsule endoscope are compared with the target positioning position, and the external permanent magnet is controlled to drive the movement of the magnetic spiral capsule endoscope according to the positioning coordinates, so that the magnetic spiral capsule endoscope can be positioned from the current position.
  • the position moves to the target positioning position.
  • this method uses a closed-loop active control method to process and calculate the data from the magnetic sensor array to obtain the position of the magnetic spiral capsule endoscope.
  • the closed-loop active control method makes the magnetic spiral capsule The mirror moves stably in a two-dimensional plane.
  • the method has a simple and convenient operation process, is beneficial to control the position and posture of the mobile endoscope capsule, greatly facilitates the use of the capsule endoscope, and is also beneficial to the capsule endoscope to more comprehensively collect information of the digestive tract.
  • Figure 1 is a schematic diagram of the structure of a magnetic spiral capsule endoscope
  • Figure 2 is a schematic diagram of the principle of the magnetic spiral capsule endoscope control system
  • Figure 3 is a schematic diagram of the principle of a magnetic sensor array
  • Figure 4 is a three-dimensional schematic diagram of an external permanent magnet and a permanent magnet control mechanism
  • Fig. 5 is a flow chart of the control method of the magnetic spiral capsule endoscope control system.
  • the present invention provides a magnetic spiral capsule endoscope, which includes a capsule endoscope body 1 and a magnetic shell layer 3 arranged on the outer periphery of the capsule endoscope body 1, and the surface of the magnetic shell layer 3 is spirally wound.
  • Magnetizable material 2 is a magnetic spiral capsule endoscope, which includes a capsule endoscope body 1 and a magnetic shell layer 3 arranged on the outer periphery of the capsule endoscope body 1, and the surface of the magnetic shell layer 3 is spirally wound.
  • the magnetic shell layer 3 is preferably coated on the outer circumference of the capsule endoscope body 1, and the magnetizable material 2 is preferably but not limited to iron wire.
  • the iron wire can be covered with an anti-corrosion and harmless protective layer, and both ends of the iron wire are fixed on the magnetic shell layer. 3 ends, for example, the two ends of the iron wire are fixed to the end of the magnetic shell layer 2 by hot melt glue.
  • the magnetic spiral capsule endoscope is used to be placed in the human digestive tract, especially in the intestine.
  • the synchronous rotation movement of the magnetic spiral capsule endoscope can be controlled by setting a rotatable magnetic field outside the human body to realize the digestion of the magnetic capsule endoscope in the human body. Fixed-point suspension and motion control in the road.
  • the present invention also proposes a magnetic spiral capsule endoscope control system, which includes an external permanent magnet, a permanent magnet control mechanism and the above-mentioned magnetic spiral capsule endoscope.
  • the permanent magnet control mechanism controls the external permanent magnet to flip, the external permanent magnet and the magnetic spiral capsule endoscope produce a magnetic effect, and the magnetic spiral capsule endoscope is controlled and driven to rotate, move and maintain the posture.
  • the magnetic spiral capsule endoscope control system also has a preferred solution: the magnetic spiral capsule endoscope control system further includes at least one magnetic sensor array for collecting external magnetic field parameters, and data connected to the magnetic sensor array in a one-to-one correspondence. Collector; the data output terminal of the data collector is connected to a PC.
  • the magnetic spiral capsule endoscope is used for human gastrointestinal tract detection, the magnetic sensor array is used to detect the spatial magnetic field parameters, the data collector is used to receive the data sent by the magnetic sensor array, and the PC receives the data sent by the data collector and processes the positioning according to the data
  • the algorithm calculates the position and direction angle parameters of the magnetic spiral capsule endoscope, which can be calculated by the existing method.
  • the external permanent magnet and the permanent magnet control mechanism are preferably, but not limited to, placed above the magnetic spiral capsule endoscope to generate and control the magnetic field that drives the magnetic spiral capsule endoscope to rotate.
  • the external permanent magnet can be handheld or through Other mechanical structures are supported, and according to the method of the closed-loop control system (using existing methods), the capsule endoscope is synchronized with the external permanent magnet and the permanent magnet control mechanism to rotate synchronously, so as to realize the magnetic capsule endoscope in the human gastrointestinal tract. Fixed-point suspension and precise motion control.
  • the magnetic sensor array includes a magnetic field sensor module, an analog-to-digital converter, and a serial port communicator.
  • the output end of the magnetic field sensor module is connected to the input end of the analog-to-digital converter, and the output end of the analog-to-digital converter is connected to the serial port for communication.
  • the input terminal of the serial port communicator and the output terminal of the serial communicator are connected to the data collector.
  • the analog-to-digital converter performs analog-to-digital conversion on the spatial magnetic field data measured by the magnetic field sensing module, and the serial port communicator sends the digital signal converted by the analog-to-digital converter to the data collector.
  • the magnetic field sensing module here is preferably, but not limited to, the reason A magnetic positioning array composed of three-axis magnetic sensors (HMC1053).
  • the magnetic spiral capsule endoscope is used as the magnetic signal excitation source, and the magnetic signal is detected by the magnetic sensor, so the tracking parameters (position and direction angle) can be calculated from the static magnetic field data generated by the magnetic spiral capsule endoscope currently obtained.
  • the current position coordinates of the type capsule endoscope can be calculated by using existing methods here.
  • the permanent magnet control mechanism includes a single-chip microcomputer and a stepping motor, as shown in FIG. 4, and the external permanent magnet is used to provide a static basic magnetic field.
  • the stepping motor controls its movement by pressing the deceleration button 5, pressing the acceleration button 6 to accelerate, pressing the forward button 7 to move forward, pressing the backward button 8 to move backward, pressing the start stop button 9 to start and stop, and the button 10 is the power button.
  • the forward and backward movement of the magnetic spiral capsule endoscope in the intestine can be controlled by the positive and negative external permanent magnets.
  • the rotation speed of the external permanent magnet By changing the rotation speed of the external permanent magnet, the speed of the magnetic spiral capsule endoscope when moving forward or backward can be changed.
  • the rotation movement of the external permanent magnet 4 is driven by a stepping motor controlled by a single-chip computer 11, and its speed and direction are adjustable.
  • the single-chip microcomputer controls the operation of the stepping motor to drive the magnetic spiral capsule endoscope to rotate forward, reverse, accelerate, and decelerate using existing technologies or methods.
  • the PC and the single-chip microcomputer can be communicatively connected.
  • the PC calculates the position and posture of the current magnetic spiral capsule endoscope
  • the PC gives the motion path or motion plan and sends it to the single-chip computer (here the PC
  • the single-chip microcomputer controls the operation of the stepper motor, thereby controlling the permanent magnet to rotate forward and backward, accelerate and decelerate, so that the magnetic spiral capsule endoscope can reach the designated position or maintain the posture.
  • the operator can refer to the image or data on the PC, and manually input instructions to the single-chip microcomputer (such as buttons, handles).
  • the single-chip microcomputer controls the size and direction of the output current according to the input instructions, thereby controlling the forward and reverse rotation of the stepping motor. Rotation speed, start and stop.
  • the external permanent magnet is preferably kept placed directly above the magnetic spiral capsule endoscope. Under the force of the magnetic field of the external permanent magnet, the magnetic spiral capsule endoscope will make corresponding forward and reverse acceleration and deceleration movements at a speed that is synchronized with the external permanent magnet, so as to realize the movement of the magnetic spiral capsule endoscope in the plane. Active control.
  • the external permanent magnet magnetic field interference in the magnetic positioning.
  • the magnetic sensor array located directly below is used to detect the intensity of the mixed magnetic field between the magnetic spiral capsule endoscope and the external permanent magnet.
  • the magnetic sensor array located directly above is used For detecting the position and posture of the external permanent magnet.
  • the magnetic spiral capsule endoscope is far less magnetic than the external permanent magnet.
  • the magnetic sensor array located directly above is farther away from the external permanent magnet.
  • the magnetic field of the magnetic spiral capsule endoscope can almost ignore the noise caused by the positioning environment of the external permanent magnet. .
  • the position and posture of the external permanent magnet can be used to reverse the magnetic field strength of the external permanent magnet.
  • the magnetic sensor array located directly below detects the mixed magnetic field strength. Use the mixed magnetic field strength to subtract the magnetic field strength of the external permanent magnet to obtain the magnetic spiral
  • the magnetic field strength of the type capsule endoscope is transferred from the data collector to the PC, and calculated by matlab algorithm to obtain the spatial position information and direction angle information of the magnetic spiral type capsule endoscope. The calculation methods involved here use the existing Method.
  • the present invention also provides a control method of a magnetic spiral capsule endoscope control system, which includes the following steps:
  • the magnetic sensor array when the magnetic sensor array is set, the magnetic sensor array is preferably arranged directly above and below the external permanent magnet, and the magnetic sensor array located directly below is used to detect the intensity of the mixed magnetic field of the magnetic spiral capsule endoscope and the external permanent magnet. , And the magnetic spiral capsule endoscope is far less magnetic than the external permanent magnet. The magnetic sensor array located directly above is farther away from the external permanent magnet. The magnetic field of the magnetic spiral capsule endoscope brings almost no noise to the positioning environment of the external permanent magnet. It can be ignored. Therefore, what the magnetic sensor array directly above detects is the position and posture of the external permanent magnet. The position and posture of the external permanent magnet can be used to inversely calculate the magnetic field strength of the external permanent magnet. The magnetic sensor array located directly below detects the mixed magnetic field strength.
  • the mixed magnetic field strength is used to subtract the magnetic field strength of the external permanent magnet to obtain the magnetic field strength of the magnetic spiral capsule endoscope.
  • the matlab algorithm calculates to obtain the spatial position information and direction angle information of the magnetic spiral capsule endoscope. The calculation methods involved here can all adopt existing methods.
  • the current spatial position information and direction angle information of the magnetic spiral capsule endoscope are compared with the target positioning position, and the external permanent magnet is controlled to drive the movement of the magnetic spiral capsule endoscope according to the positioning coordinates, so that the magnetic spiral capsule endoscope can be positioned from the current position.
  • the position moves to the target positioning position.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Endoscopes (AREA)

Abstract

一种磁性螺旋型胶囊内镜、磁性螺旋型胶囊内镜控制系统及控制方法。磁性螺旋型胶囊内镜,包括胶囊内镜本体(1)及设于胶囊内镜本体(1)外周的磁壳层(3),磁壳层(3)表面螺旋绕设有可磁化材料(2)。磁性螺旋型胶囊内镜控制系统,包括外部永磁体、永磁体控制机构和磁性螺旋型胶囊内镜;永磁体控制机构控制外部永磁体翻转,外部永磁体与磁性螺旋型胶囊内镜产生磁作用,控制驱动磁性螺旋型胶囊内镜旋转、移动、姿态保持。磁性螺旋型胶囊内镜控制系统实现了对磁性螺旋型胶囊内镜运动、姿态保持的有效控制。

Description

磁性螺旋型胶囊内镜、磁性螺旋型胶囊内镜控制系统及其控制方法 技术领域
本发明涉及医疗器械领域,具体涉及一种磁性螺旋型胶囊内镜、磁性螺旋型胶囊内镜控制系统及其控制方法。
背景技术
目前,消化系统疾病是临床上最常见的疾病,其中胃肠疾病占最大比例。传统上,上消化道和下消化道都是通过机械插入来检查的,这会给患者带来不适和疼痛,在一定程度上降低患者的依从性,有时甚至需要麻醉。无线胶囊内窥镜检查具有无创、无痛、无交叉感染等优点,克服传统内镜如胃镜的缺点,在世界上很多地区已作为小肠疾病的一线检查手段。
胶囊式内窥镜组件通常包括胶囊本身,内置微型摄像机,可达到160度的视角,续航能力一般在8小时以上,以及数据记录仪、图像数据分析软件。目前很多地方的胶囊内窥镜大多是被动式的,是伴随着胃肠道蠕动前进,存在不稳定性和不确定性,没有治疗功能,主动控制的缺失使胶囊很难准确定位病变位置,主要用于小肠检查,对于腔体较大较复杂的胃部检查不适用。
目前正在研究中的胶囊内窥镜的主动控制方法分为内部和外部驱动方式。内部驱动就是利用胶囊内镜自身的能源和机械结构进行运动的一种驱动方式,主要包括:形状记忆合金驱动、微型电机驱动、磁致伸缩驱动、气动驱动、蠕动驱动、多足驱动、静电驱动和仿生驱动等,大部分处理原理研究阶段。内部 驱动有以下几个缺点:1、驱动是依靠电机,可能造成电池电量不够;2、微型胶囊内镜的结构变得复杂,生产困难,成本偏高;3、运动结构可能对消化道产生损伤;4、胶囊内镜运动无法准确控制以及速度不快。
外部驱动是通过外部设备为胶囊内镜运动提供动力的驱动方式。常规可用的非接触力只有重力(万有引力)和电磁力,重力基本不可控,而电磁力目前仍没有研究出能较好的控制胶囊内镜移动的方案。
发明内容
为了克服上述现有技术中存在的缺陷,本发明的目的是提供一种磁性螺旋型胶囊内镜、磁性螺旋型胶囊内镜控制系统及其控制方法。
为了实现本发明的上述目的,本发明提供了一种磁性螺旋型胶囊内镜,包括胶囊内镜本体及设于所述胶囊内镜本体外周的磁壳层,所述磁壳层表面螺旋绕设有可磁化材料。
该磁性螺旋型胶囊内镜结构简单,制作成本低,可根据外部磁场方向、强度等的变化进行旋转、移动、姿态保持。
本发明还提供了一种磁性螺旋型胶囊内镜控制系统,包括外部永磁体、永磁体控制机构和上述的磁性螺旋型胶囊内镜;
所述永磁体控制机构控制所述外部永磁体翻转,所述外部永磁体与所述磁性螺旋型胶囊内镜产生磁作用,控制驱动所述磁性螺旋型胶囊内镜旋转、移动、姿态保持。
该磁性螺旋型胶囊内镜控制系统通过控制外部永磁体旋转,实现对磁性螺旋型胶囊内镜的旋转控制,从而将磁性螺旋型胶囊内镜旋转运动转化为直线运动,促进了磁性螺旋型胶囊内镜在胃肠道内的应用,实现了对磁性螺旋型胶囊 内镜运动、姿态保持的有效控制。
该磁性螺旋型胶囊内镜控制系统的优选方案:其还包括至少一个用于采集外部磁场参数的磁传感器阵列、与所述磁传感器阵列一一对应连接的数据采集器;所述数据采集器数据输出端连接至PC机。
PC机可根据磁传感器阵列所采集的数据实现对磁性螺旋型胶囊内镜在人体胃肠道内位置和姿态,并通过永磁体控制机构实现对磁性螺旋型胶囊内镜的定点悬浮和精确运动控制。
该磁性螺旋型胶囊内镜控制系统的优选方案:所述永磁体控制机构包括单片机和步进电机。
本发明还提供了一种磁性螺旋型胶囊内镜控制系统控制方法,包括以下步骤:
在外部永磁体正上方和正下方分别设置相同的磁传感器阵列,位于正下方的磁传感器阵列用于检测磁性螺旋型胶囊内窥镜与外部永磁体的混合磁场强度,位于正上方的磁传感器阵列用于检测外部永磁体的位置和姿态,利用外部永磁体的位置和姿态得到外部永磁体的磁场强度;
使用混合磁场强度减去外部永磁体的磁场强度,得到磁性螺旋型胶囊内窥镜的磁场强度;
根据磁性螺旋型胶囊内镜的磁场强度计算得到磁性螺旋型胶囊内镜当前的空间位置信息和方向角信息;
将磁性螺旋型胶囊内镜当前的空间位置信息和方向角信息与目标定位位置进行比较,根据定位坐标控制外部永磁体驱动磁性螺旋型胶囊内镜的运动,使磁性螺旋型胶囊内镜从当前定位位置向目标定位位置移动。
与现有技术相比,该方法采用闭环主动控制手段,通过对磁传感器阵列传 来的数据进行处理和运算,得到磁性螺旋型胶囊内镜的位置,通过闭环主动控制方法使磁性螺旋型胶囊内镜在二维平面内稳定运动。该方法操作过程简单便利,利于控制移动内窥镜胶囊的位置和姿态,极大的方便了胶囊内镜的使用,也有利于胶囊内镜更全面的采集消化道的信息。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是磁性螺旋型胶囊内镜的结构示意图;
图2是磁性螺旋型胶囊内镜控制系统原理示意图;
图3是磁传感器阵列原理示意图;
图4是外部永磁体及永磁体控制机构立体示意图;
图5是磁性螺旋型胶囊内镜控制系统控制方法流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是 两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
如图1所示,本发明提供了一种磁性螺旋型胶囊内镜,其包括胶囊内镜本体1及设于胶囊内镜本体1外周的磁壳层3,磁壳层3表面螺旋绕设有可磁化材料2。
这里磁壳层3优选包覆于所述胶囊内镜本体1外周,可磁化材料2优选但不限于为铁丝,铁丝外可包覆防腐蚀且无害保护层,铁丝两端固定在磁壳层3端部,比如将铁丝两端通过热熔胶固定在磁壳层2端部。
磁性螺旋型胶囊内镜用于置于人体消化道内,特别是肠道内,可通过在人体外部设置可旋转磁场来控制磁性螺旋型胶囊内镜的同步旋转运动,以实现磁性胶囊内镜在人体消化道内的定点悬浮和运动控制。
如图2所示,本发明还提出了一种磁性螺旋型胶囊内镜控制系统,包括外部永磁体、永磁体控制机构和上述磁性螺旋型胶囊内镜。
永磁体控制机构控制外部永磁体翻转,外部永磁体与磁性螺旋型胶囊内镜产生磁作用,控制驱动所述磁性螺旋型胶囊内镜旋转、移动、姿态保持。
该磁性螺旋型胶囊内镜控制系统还有优选方案:该磁性螺旋型胶囊内镜控制系统还包括至少一个用于采集外部磁场参数的磁传感器阵列、与所述磁传感器阵列一一对应连接的数据采集器;所述数据采集器数据输出端连接至PC机。
磁性螺旋型胶囊内镜用于人体胃肠道检测,磁传感器阵列用于检测空间磁场参数,数据采集器用于接收磁传感器阵列发送的数据,PC机接收数据采集器发送的数据并根据数据处理定位算法计算出磁性螺旋型胶囊内窥镜的位置和方向角参数,这里采用现有方法计算即可。
外部永磁体及永磁体控制机构优选但不限于置于磁性螺旋型胶囊内镜上 方,用于产生和控制驱动磁性螺旋型胶囊内镜旋转的磁场,外部永磁体可以是手持式的,也可以通过其它机械结构进行支撑,并根据闭环控制系统的方法(采用现有方法),使胶囊内窥镜随外部永磁体及永磁体控制机构同步旋转运动,以实现磁性胶囊内镜在人体胃肠道内的定点悬浮和精确运动控制。
如图3所示,本实施例中,磁传感器阵列包括磁场感应模块、模数转换器和串口通信器,磁场感应模块输出端连接模数转换器输入端,模数转换器输出端连接串口通信器输入端,串口通信器输出端连接数据采集器。模数转换器将磁场感应模块测量的空间磁场数据进行模数转换,串口通信器将模数转换器转换得到的数字信号发送至所述数据采集器,这里的磁场感应模块优选但不限于为由三轴磁传感器(HMC1053)组成的磁定位阵列。
磁性螺旋型胶囊内窥镜作为磁信号激励源,通过磁传感器来检测磁信号,于是跟踪参数(位置和方向角)可以通过当前获得的磁性螺旋型胶囊内窥镜产生的静磁场数据计算磁性螺旋型胶囊内窥镜的当前位置坐标,这里采用现有方法可计算得到。
所述永磁体控制机构包括单片机和步进电机,如图4所示,所述外部永磁体用于提供静态基础磁场。所述步进电机按键控制其运动,按减速按钮5减速,按加速按钮6加速,按前进按钮7前进,按后退按钮8后退,按启动停止按钮9启停,按钮10为电源按钮。在控制过程中,可以通过正反转外部永磁体来控制磁性螺旋型胶囊内窥镜在肠道中的前进和后退运动。通过改变外部永磁体的旋转速度可以改变磁性螺旋型胶囊内窥镜前进或后退运动时的速度。外部永磁4的旋转运动是由一个由单片机11控制的步进电机驱动的,其转速和方向是可调的。这里单片机控制步进电机工作从而驱动磁性螺旋型胶囊内镜正转、反转、加速、减速采用的是现有技术或方法。
本实施例中,PC机与单片机可通信连接,在PC机计算出当前磁性螺旋型胶囊内镜的位置和姿态后,由PC机给出运动路径或是运动方案并发送至单片机(这里PC机采用现有技术给出运动路径或运动方案),单片机控制步进电机工作,从而控制永磁体正反转动,加速、减速,使得磁性螺旋型胶囊内窥镜到达指定位置或姿态保持,当然这里也可以由操作者参考PC机上的图像或数据,通过手动的方式(如按钮、手柄)来向单片机输入指令,单片机根据输入的指令控制输出的电流大小及方向,从而控制步进电机正反转、转动速度、启停。
外部永磁体优选保持放置在磁性螺旋型胶囊内窥镜正上方。在外部永磁体的磁场作用力下,磁性螺旋型胶囊内镜会以与外部永磁体保持同步的转速做出相应的正反转加减速运动,从而实现对磁性螺旋型胶囊内镜在平面运动的主动控制。
另外,为了保证控制效果,达到精确定位的目的,需要过滤磁定位中的外部永磁体磁场干扰。在外部永磁体正上方与正下方放置相同的磁传感器阵列,位于正下方的磁传感器阵列用于检测磁性螺旋型胶囊内窥镜与外部永磁体的混合磁场强度,位于正上方的磁传感器阵列用于检测外部永磁体的位置和姿态。磁性螺旋型胶囊内窥镜磁性远小于外部永磁体,位于正上方的磁传感器阵列距离外部永磁体越远,磁性螺旋型胶囊内窥镜磁场对于外部永磁体的定位环境带来的噪声几乎可以忽略。利用外部永磁体的位置和姿态可以反解出外部永磁体的磁场强度,位于正下方的磁传感器阵列检测到的是混合磁场强度,使用混合磁场强度减去外部永磁体的磁场强度,得到磁性螺旋型胶囊内窥镜的磁场强度,由数据采集器传入PC机,通过matlab算法进行计算,得到磁性螺旋型胶囊内窥镜空间位置信息和方向角信息,这里所涉及的计算方法均采用现有方法即可。
如图5所示,本发明还提供了一种磁性螺旋型胶囊内镜控制系统控制方法,包括以下步骤:
根据磁传感器阵列所采集的磁场强度计算外部磁体的位置和姿态;再根据外部永磁体的姿态和位置计算得到外部永磁体的磁场强度。
具体的,在设置磁传感器阵列时,该磁传感器阵列优选设置于外部永磁体正上方和正下方,位于正下方的磁传感器阵列用于检测磁性螺旋型胶囊内窥镜与外部永磁体的混合磁场强度,而磁性螺旋型胶囊内窥镜磁性远小于外部永磁体,位于正上方的磁传感器阵列距离外部永磁体越远,磁性螺旋型胶囊内窥镜磁场对于外部永磁体的定位环境带来的噪声几乎可以忽略,因此此时位于正上方的磁传感器阵列检测到的即是外部永磁体的位置和姿态,利用外部永磁体的位置和姿态可以反解出外部永磁体的磁场强度。位于正下方的磁传感器阵列检测到的是混合磁场强度,使用混合磁场强度减去外部永磁体的磁场强度,得到磁性螺旋型胶囊内窥镜的磁场强度,由数据采集器传入PC机,通过matlab算法进行计算,得到磁性螺旋型胶囊内窥镜空间位置信息和方向角信息,这里所涉及的计算方法均采用现有方法即可。
将磁性螺旋型胶囊内镜当前的空间位置信息和方向角信息与目标定位位置进行比较,根据定位坐标控制外部永磁体驱动磁性螺旋型胶囊内镜的运动,使磁性螺旋型胶囊内镜从当前定位位置向目标定位位置移动。与现有技术相比,能够在胶囊内镜的使用过程中,使得操作便利,利于控制内窥镜胶囊的位置,极大的方便了胶囊内镜的使用。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说 明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (8)

  1. 一种磁性螺旋型胶囊内镜,其特征在于:包括胶囊内镜本体及设于所述胶囊内镜本体外周的磁壳层,所述磁壳层表面螺旋绕设有可磁化材料。
  2. 根据权利要求1所述的磁性螺旋型胶囊内镜,其特征在于:所述磁壳层包覆于所述胶囊内镜本体外周。
  3. 一种磁性螺旋型胶囊内镜控制系统,其特征在于:包括外部永磁体、永磁体控制机构和权利要求1或2所述的磁性螺旋型胶囊内镜;
    所述永磁体控制机构控制所述外部永磁体翻转,所述外部永磁体与所述磁性螺旋型胶囊内镜产生磁作用,控制驱动所述磁性螺旋型胶囊内镜旋转、移动、姿态保持。
  4. 根据权利要求3所述的磁性螺旋型胶囊内镜控制系统,其特征在于:还包括至少一个用于采集外部磁场参数的磁传感器阵列、与所述磁传感器阵列一一对应连接的数据采集器;所述数据采集器数据输出端连接至PC机。
  5. 根据权利要求4所述的磁性螺旋型胶囊内镜控制系统,其特征在于:在外部永磁体正上方与正下方分别设置相同的磁传感器阵列。
  6. 根据权利要求4所述的磁性螺旋型胶囊内镜控制系统,其特征在于:所述磁传感器阵列包括磁场感应模块、模数转换器和串口通信器,所述模数转换器将所述磁场感应模块测量的空间磁场数据进行模数转换,所述串口通信器将模数转换器转换得到的数字信号发送至所述数据采集器。
  7. 根据权利要求3所述的磁性螺旋型胶囊内镜控制系统,其特征在于:所述永磁体控制机构包括单片机和步进电机,所述单片机控制步进电机工作,驱动磁性螺旋型胶囊内镜正转、反转、加速、减速。
  8. 一种磁性螺旋型胶囊内镜控制系统控制方法,其特征在于:包括以下步骤:
    在外部永磁体正上方和正下方分别设置相同的磁传感器阵列,位于正下方的磁传感器阵列用于检测磁性螺旋型胶囊内窥镜与外部永磁体的混合磁场强度,位于正上方的磁传感器阵列用于检测外部永磁体的位置和姿态,利用外部永磁体的位置和姿态得到外部永磁体的磁场强度;
    使用混合磁场强度减去外部永磁体的磁场强度,得到磁性螺旋型胶囊内窥镜的磁场强度;
    根据磁性螺旋型胶囊内镜的磁场强度计算得到磁性螺旋型胶囊内镜当前的空间位置信息和方向角信息;
    将磁性螺旋型胶囊内镜当前的空间位置信息和方向角信息与目标定位位置进行比较,根据定位坐标控制外部永磁体驱动磁性螺旋型胶囊内镜的运动,使磁性螺旋型胶囊内镜从当前定位位置向目标定位位置移动。
PCT/CN2020/128436 2019-12-25 2020-11-12 磁性螺旋型胶囊内镜、磁性螺旋型胶囊内镜控制系统及其控制方法 WO2021129221A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911356475.3A CN113017542A (zh) 2019-12-25 2019-12-25 磁性螺旋型胶囊内镜、磁性螺旋型胶囊内镜控制系统及其控制方法
CN201911356475.3 2019-12-25

Publications (1)

Publication Number Publication Date
WO2021129221A1 true WO2021129221A1 (zh) 2021-07-01

Family

ID=76458163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128436 WO2021129221A1 (zh) 2019-12-25 2020-11-12 磁性螺旋型胶囊内镜、磁性螺旋型胶囊内镜控制系统及其控制方法

Country Status (2)

Country Link
CN (1) CN113017542A (zh)
WO (1) WO2021129221A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203510A1 (en) * 2022-04-20 2023-10-26 Multi-Scale Medical Robotics Center Limited Magnetic anchored and actuated system and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101361660A (zh) * 2008-05-16 2009-02-11 深圳先进技术研究院 一种多磁性目标的定位方法及定位系统
CN104720805A (zh) * 2015-03-24 2015-06-24 上海交通大学 基于永磁体的动力胶囊实时定位方法
US20180014738A1 (en) * 2016-07-13 2018-01-18 Advantest Corporation Magnetic field measurement apparatus and method for noise environment
CN208492032U (zh) * 2017-12-04 2019-02-15 湖北大学 一种基于磁主动控制法的胶囊内窥镜装置
CN109444773A (zh) * 2018-10-12 2019-03-08 北京理工大学 一种固连外部磁体和磁传感器阵列的磁源检测装置
CN211749482U (zh) * 2019-12-25 2020-10-27 江苏势通生物科技有限公司 磁性螺旋型胶囊内镜及该胶囊内镜的控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101361660A (zh) * 2008-05-16 2009-02-11 深圳先进技术研究院 一种多磁性目标的定位方法及定位系统
CN104720805A (zh) * 2015-03-24 2015-06-24 上海交通大学 基于永磁体的动力胶囊实时定位方法
US20180014738A1 (en) * 2016-07-13 2018-01-18 Advantest Corporation Magnetic field measurement apparatus and method for noise environment
CN208492032U (zh) * 2017-12-04 2019-02-15 湖北大学 一种基于磁主动控制法的胶囊内窥镜装置
CN109444773A (zh) * 2018-10-12 2019-03-08 北京理工大学 一种固连外部磁体和磁传感器阵列的磁源检测装置
CN211749482U (zh) * 2019-12-25 2020-10-27 江苏势通生物科技有限公司 磁性螺旋型胶囊内镜及该胶囊内镜的控制系统

Also Published As

Publication number Publication date
CN113017542A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
Lien et al. Magnetic control system targeted for capsule endoscopic operations in the stomach—design, fabrication, and in vitro and ex vivo evaluations
CN211749482U (zh) 磁性螺旋型胶囊内镜及该胶囊内镜的控制系统
CN203244366U (zh) 基于灵巧机器人的磁控主动式胶囊内窥镜运动控制系统
CN2603657Y (zh) 医用胶囊式无线电内窥摄像装置
CN107773205A (zh) 一种胶囊式内窥镜磁控系统
CN101011234A (zh) 胶囊内镜移动的调控技术
CN204618172U (zh) 基于磁主动控制法的手持式胶囊内窥镜控制装置
CN109998457A (zh) 一种可无线传输图像的主被动双半球高集成胶囊机器人
Chen et al. Magnetically actuated capsule robots: A review
WO2021129221A1 (zh) 磁性螺旋型胶囊内镜、磁性螺旋型胶囊内镜控制系统及其控制方法
CN103356150A (zh) 方位跟踪引导下的胶囊内窥镜磁场驱动系统
CN102139137B (zh) 基于数字图像导航的体外磁控制药物释放胶囊系统
CN216963281U (zh) 一种胃肠道靶向施药自重构胶囊机器人
CN202489952U (zh) 胶囊内窥镜的驱动装置
CN102085084B (zh) 基于无线供能体外磁控制取样胶囊系统
CN103040425B (zh) 一种胶囊内窥镜运行轨迹的控制系统和控制方法
Kim et al. Magnetic navigation system composed of dual permanent magnets for accurate position and posture control of a capsule endoscope
CN105286762A (zh) 一种用于体内微小型设备定位、转向及位移的外用控制器
Ye et al. Research on coaxial control of magnetic spiral-type capsule endoscope
CN103181748A (zh) 一种胶囊内窥镜运行姿态的控制系统和控制方法
Mousa et al. Self-driving 3-legged crawling prototype capsule robot with orientation controlled by external magnetic field
WO2023236492A1 (zh) 一种不倒翁胶囊机器人
WO2024050882A1 (zh) 全方位观察欠驱动胶囊机器人及其轴线翻转磁控操作方法
JP2008206987A (ja) 医療用カプセル装置
CN211243274U (zh) 一种胶囊机器人磁驱动和测量系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906636

Country of ref document: EP

Kind code of ref document: A1