WO2021128869A1 - 中继式无线送能装置 - Google Patents

中继式无线送能装置 Download PDF

Info

Publication number
WO2021128869A1
WO2021128869A1 PCT/CN2020/108872 CN2020108872W WO2021128869A1 WO 2021128869 A1 WO2021128869 A1 WO 2021128869A1 CN 2020108872 W CN2020108872 W CN 2020108872W WO 2021128869 A1 WO2021128869 A1 WO 2021128869A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
coil
relay
receiving
transmission device
Prior art date
Application number
PCT/CN2020/108872
Other languages
English (en)
French (fr)
Inventor
周哲
李芳义
郝一
邓占锋
赵国亮
李卫国
石秋雨
刘海军
徐云飞
乔光尧
康伟
袁婷婷
卜宪德
Original Assignee
全球能源互联网研究院有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全球能源互联网研究院有限公司, 国家电网有限公司 filed Critical 全球能源互联网研究院有限公司
Publication of WO2021128869A1 publication Critical patent/WO2021128869A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices

Definitions

  • This application relates to the field of power electronics technology, for example, to a relay type wireless energy transmission device.
  • the voltage level can be as high as hundreds or even thousands of kilovolts.
  • multiple power semiconductor devices need to be applied in series.
  • each device needs to be equipped with a gate drive circuit to be responsible for the control and protection of the device, because the devices connected in series are all at different potentials, and the corresponding gate drive circuits are also at different potentials. Therefore, the gate drive circuit Isolation of power supply needs to ensure that the drive circuit is reliably isolated for power supply, while achieving high-voltage insulation requirements in a low-cost manner.
  • the related technology uses a transformer with an iron core to realize the isolated power supply and energy transmission of the gate drive circuit.
  • Multiple transformers are connected in cascade mode, with low insulation level, serious partial discharge, and large distribution parameters that affect the potential distribution of the converter valve. , And different loads are not independent of each other.
  • the sudden change of the power of the primary transformer will affect the overall transmission of power and easily lead to power supply failures.
  • This application provides a relay-type wireless energy transmission device, including a sending module, a relay module, and a receiving module; the sending module, the relay module, and the receiving module are arranged in sequence, and the sending module, the relay module, and the
  • the receiving module includes a coil and an inductive reactive power compensation circuit; the sending module, the relay module and the receiving module all realize the wireless transmission of energy through the coil, and the magnetic coupling between the sending module, the relay module and the receiving module is realized through the coil, which improves The insulation level reduces partial discharge.
  • the loads connected by the wireless energy transmission device are independent of each other. Sudden changes in the load at all levels do not affect the power supply of other levels, which improves the carrying capacity and transmission efficiency of the relay mode multi-level wireless energy transmission. , It solves the problems of low insulation level, serious partial discharge and easy to cause power supply failure in other related technologies.
  • the present application provides a relay type wireless energy transmission device, including a sending module, a relay module, and a receiving module;
  • the sending module, the relay module and the receiving module are arranged in sequence, and the sending module, the relay module and the receiving module all include a coil and a compensation circuit for compensating the inductive reactive power of the coil;
  • the sending module, the relay module and the receiving module all realize wireless transmission of energy through coils.
  • Figure 1 is a structural diagram of a relay wireless energy transmission device in an embodiment of the present invention
  • Fig. 2 is a schematic diagram of the relay type wireless energy transmission device supplying power to the gate drive circuit in the embodiment of the present invention.
  • Wireless power transmission technology is more mature, with better volume and efficiency indicators.
  • the breakdown voltage of air is 3kV/mm.
  • the voltage isolation capability of hundreds of kilovolts can be realized.
  • the embodiment of the present invention provides a relay type wireless energy transmission device based on wireless power transmission technology.
  • V 0 is an AC power source
  • Coil 0t is a coil of a transmitting module
  • Coil 1t , Coil 2t, etc. are relays.
  • the first coil of the module is the transmitting coil of the relay module, Coil 1r , Coil 2r, etc.
  • the multi-level load represents the gate drive circuit in the power electronic converter valve equipment.
  • the relay wireless energy transmission device provided by the embodiment of the present invention includes a sending module 10, a relay module 20, and a receiving module 30;
  • the sending module 10, the relay module 20, and the receiving module 30 are arranged in sequence, and the sending module 10, the relay module 20, and the receiving module 30 all include a coil and an inductive reactive power compensation loop of the compensation coil;
  • the sending module 10, the relay module 20 and the receiving module 30 all realize wireless transmission of energy through coils.
  • the inductive reactive power compensation loop can be any inductive reactive power compensation loop.
  • the relay-type wireless energy transmission device includes a sending module, a relay module, and a receiving module; the sending module, the relay module, and the receiving module are arranged in sequence, and each includes a coil and a compensation loop for compensating the inductive and reactive power of the coil; The transmitting module, the relay module and the receiving module all realize the wireless transmission of energy through the coil, which improves the insulation level and reduces the partial discharge.
  • the loads connected to the wireless energy transmission device are independent of each other, and it is not easy to cause power supply failure.
  • the transmitting module, the relay module and the receiving module of the embodiment of the present invention realize energy transmission through the non-contact manner of magnetic coupling between the coils, the transmission efficiency is high, and the compactness of the volume and good electromagnetic compatibility are ensured.
  • the power factor of the entire device is improved through the compensation loop, so that the multi-level loads are independent of each other, and the loads do not affect each other, and the power of the multi-level loads is flexible and does not affect the transmission.
  • the overall performance of the energy device is improved through the compensation loop, so that the multi-level loads are independent of each other, and the loads do not affect each other, and the power of the multi-level loads is flexible and does not affect the transmission.
  • the compensation circuit in the embodiment of the present invention is used to compensate the inductive reactive power of the coil, thereby ensuring the overall power factor and energy transmission efficiency of the device.
  • ferrite is placed between the two coils inside the relay module. Ferrite reduces the coupling between the two coils and at the same time reduces the coupling of non-adjacent coils between different relay modules. coefficient.
  • the coils in the relay module 20 include: a first transmitting coil 21 and a first receiving coil 22; both the first transmitting coil 21 and the first receiving coil 22 are connected to the compensation circuit 23 of the relay module The ends.
  • the relay module 20 further includes a first ferrite, and the first ferrite is placed between the first transmitting coil 21 and the first receiving coil 22.
  • the compensation circuit 23 of the relay module and the compensation circuit 33 of the receiving module 30 are respectively connected to the load.
  • the transmitting module 10 also includes an AC power supply and a second ferrite.
  • the coil of the transmitting module includes: a second transmitting coil 11; the second ferrite is arranged in parallel with the second transmitting coil 11, and the compensation circuit 12 of the transmitting module and the second transmitting coil are arranged in parallel.
  • the coils 11 are connected to both ends of the AC power source.
  • the receiving module 30 also includes a third ferrite; the coil in the receiving module 30 includes a second receiving coil 31; the third ferrite is arranged in parallel with the second receiving coil 31, and the second receiving coil 31 and the compensation circuit are connected to the Receive both ends of the load of the module.
  • the coils are bipolar coils, unipolar coils or any form of coils, and all coils have the same shape and size.
  • the third distances between the coils of the module 30 are all equal, and the first distance, the second distance, and the third distance are all determined based on the coil parameters (area, number of turns, inductance, coupling coefficient, etc.).
  • the first distance is determined based on the coil parameter of the sending module and the first coil parameter of the relay module
  • the second distance is determined based on the two coil parameters of the relay module
  • the third distance is determined based on the relay module
  • the second coil is determined with the coil parameters of the receiving module.
  • the number of relay modules 20 is one or more.
  • the direction of the sending coil of the sending module 10 is consistent with the direction of the receiving coil in the relay module 20, and the direction of the receiving coil of the receiving module 30 is the same as the direction of the sending coil in the relay module 20.
  • the receiving coil and the transmitting coil are perpendicular to each other;
  • the direction of the transmitting coil of the transmitting module 10 is the same as the direction of the receiving coil in the first relay module 20, and the direction of the receiving coil of the receiving module 30 is the same as that of the last relay module 20. Consistent
  • the axial offset angle between the transmitting coil of the same relay module 20 and the receiving coil of the same relay module 20 may be a preset angle, for example, it may be 90°.
  • the first distance between the transmitting coil of the transmitting module 10 and the receiving coil of the first relay module 20, the second distance between the transmitting coil of the same relay module 20 and the receiving coil of the same relay module 20, The third distance between the transmitting coil of the last relay module and the receiving coil of the receiving module 30 among the plurality of relay modules can be designed to be equal, and the first distance, the second distance, and the third distance are all equal to each other. Determined based on the parameters of the coil and the compensation loop parameters (such as area, etc.).
  • the compensation circuit includes any one or at least two of the following power electronic devices:
  • the active device is a field effect transistor or a triode.
  • Power electronic devices are connected in series, parallel, or a combination of series and parallel.
  • FIG. 2 The schematic diagram of the relay type wireless energy transmission device provided in the embodiment of the present invention for supplying power to the gate drive circuit in the high-voltage power electronic equipment is shown in Fig. 2.
  • Each stage coil can obtain energy from the upper stage coil to supply its own connection.
  • the gate drive circuit can provide energy to the next coil at the same time.
  • the whole device realizes energy transmission through the relay module while supplying power to the gate drive circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

一种中继式无线送能装置,包括发送模块(10)、中继模块(20)和接收模块(30);发送模块(10)、中继模块(20)和接收模块(30)依次排列,且发送模块(10)、中继模块(20)和接收模块(30)均包括线圈和补偿回路(12,23,33);发送模块(10)、中继模块(20)和接收模块(30)均通过线圈实现能量的无线传输。

Description

中继式无线送能装置
本申请要求在2019年12月25日提交中国专利局、申请号为201911353688.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力电子技术领域,例如涉及一种中继式无线送能装置。
背景技术
面向电网应用的高压电力电子换流阀中,电压等级可以高达数百甚至数千千伏。为了提升电力电子装置电压等级,需要多个功率半导体器件采用串联方式应用。器件串联应用中,每个器件均需要配置一个门极驱动电路负责器件的控制和保护,因为串联的器件均处于不同电位,相应的门极驱动电路也在不同电位,因此,门极驱动电路的隔离供电需要保证驱动电路可靠隔离供电的同时,以低成本的方式达到高压绝缘要求。
相关技术采用带铁芯的变压器实现门极驱动电路的隔离供电和能量传输,多个变压器之间通过级联方式连接,绝缘水平低,局部放电情况严重,分布参数较大影响换流阀电位分布,且不同负载之间不相互独立,一级变压器功率突然变化会影响功率的整体传输,容易导致供电故障。
发明内容
本申请提供一种中继式无线送能装置,包括发送模块、中继模块和接收模块;发送模块、中继模块和接收模块依次排列,且所述发送模块、所述中继模块和所述接收模块均包括线圈和感性无功的补偿回路;发送模块、中继模块和接收模块均通过线圈实现能量的无线传输,发送模块、中继模块和接收模块之间通过线圈实现磁耦合,提高了绝缘水平,减少了局部放电的情况,无线送能装置连接的负载之间相互独立,各级负载突变不影响其它各级供电,提升了中继方式多级无线送能的带载能力、传输效率,解决了其它相关技术中绝缘水平低、局部放电情况严重和容易导致供电故障的问题。
本申请提供一种中继式无线送能装置,包括发送模块、中继模块和接收模块;
发送模块、中继模块和接收模块依次排列,且发送模块、中继模块和接收模块均包括线圈和补偿所述线圈的感性无功的补偿回路;
所述发送模块、中继模块和接收模块均通过线圈实现能量的无线传输。
附图说明
图1是本发明实施例中中继式无线送能装置的结构图;
图2是本发明实施例中中继式无线送能装置为门极驱动电路供电的示意图。
具体实施方式
下面结合附图对本发明实施例进行说明。
无线输电技术更加成熟,体积和效率指标较好。在磁感应式无线输电系统中,空气的击穿电压为3kV/mm,当传输距离达到几百毫米时,可以实现数百千伏的电压隔离能力。本发明实施例提供了一种基于无线输电技术的中继式无线送能装置,如图1所示,V 0为交流电源,Coil 0t为发送模块的线圈,Coil 1t、Coil 2t等为中继模块的第一个线圈,即中继模块的发送线圈,Coil 1r、Coil 2r等为中继模块的第二个线圈,即中继模块的接收线圈,Coil Nr为接收模块的线圈,M N为上一级发射线圈和下一级接收线圈之间的互感大小,k N为上一级发射线圈和下一级接收线圈之间的耦合系数,能量从发射模块开始,依次向右传递给第一中继模块、第二中继模块、……、以及接收模块。多个模块中均需要配置补偿回路,用以补偿线圈的感性无功,从而保证装置整体的功率因数和效率足够高,多级负载代表电力电子换流阀设备中的门极驱动电路。
本发明实施例提供的中继式无线送能装置包括发送模块10、中继模块20和接收模块30;
发送模块10、中继模块20和接收模块30依次排列,且发送模块10、中继模块20和接收模块30均包括线圈和补偿线圈的感性无功的补偿回路;
发送模块10、中继模块20和接收模块30均通过线圈实现能量的无线传输。
在一实施例中,感性无功的补偿回路可以为任意的感性无功的补偿回路。
本发明实施例提供的中继式无线送能装置包括发送模块、中继模块和接收模块;发送模块、中继模块和接收模块依次排列,且均包括线圈和补偿线圈感性无功的补偿回路;发送模块、中继模块和接收模块均通过线圈实现能量的无线传输,提高了绝缘水平,减少了局部放电的情况,无线送能装置连接的负载之间相互独立,不容易导致供电故障。
本发明实施例的发送模块、中继模块和接收模块之间通过线圈之间磁耦合的非接触方式实现能量传输,传输效率高,且保证了体积的紧凑性和良好的电磁兼容性。
本发明实施例多个中继模块之间的能量传递过程中通过补偿回路提高整个装置的功率因数,实现多级负载互相独立,负载之间互不影响,保证多级负载功率灵活而不影响送能装置的整体性能。
本发明实施例在给电力电子设备中的门极驱动电路提供可靠供电的同时,利用空气绝缘的方式实现低成本的高压绝缘。
本发明实施例中的补偿回路用于补偿线圈的感性无功,从而保证装置整体的功率因数和能量传输效率。
本发明实施例中中继模块内部的两个线圈之间放置铁氧体,铁氧体减小了两个线圈之间的耦合,同时减小了不同中继模块之间非相邻线圈的耦合系数。
在一实施例中,中继模块20中的线圈包括:第一发送线圈21和第一接收线圈22;第一发送线圈21和第一接收线圈22均连接到所述中继模块的补偿回路23的两端。
在一实施例中,中继模块20还包括第一铁氧体,该第一铁氧体置于第一发送线圈21和第一接收线圈22之间。
中继模块的补偿回路23和接收模块30的补偿回路33分别与负载连接。
发送模块10还包括交流电源和第二铁氧体,发送模块的线圈包括:第二发送线圈11;第二铁氧体与第二发送线圈11平行设置,发送模块的补偿回路12和第二发送线圈11均连接到交流电源的两端。
接收模块30还包括第三铁氧体;接收模块30中的线圈包括第二接收线圈31;第三铁氧体与第二接收线圈31平行设置,第二接收线圈31和补偿回路连接到所述接收模块的负载的两端。
线圈为双极性线圈、单极性线圈或任何形式线圈,所有线圈的形状和大小均相等。
发送模块10的线圈与中继模块20的第一个线圈之间的第一距离、同一个中继模块20的两个线圈之间的第二距离、中继模块20的第二个线圈与接收模块30的线圈之间的第三距离均相等,所述第一距离、所述第二距离和所述第三距离均基于线圈参数(面积、匝数、电感、耦合系数等)确定。其中,所述第一距离基于发送模块的线圈参数与中继模块的第一个线圈参数确定,所述第二距离基于中继模块的两个线圈参数确定,所述第三距离基于中继模块的第二个 线圈与接收模块的线圈参数确定。
中继模块20的数量为一个或多个。
中继模块20为一个时,发送模块10的发送线圈方向与中继模块20中的接收线圈方向一致,接收模块30的接收线圈方向与中继模块20中的发送线圈方向一致,中继模块20的接收线圈和发送线圈相互垂直;
中继模块20为多个时,发送模块10的发送线圈方向与第一个中继模块20中的接收线圈方向一致,接收模块30的接收线圈方向与最后一个中继模块20中的发送线圈方向一致;
同一个中继模块20的发送线圈和同一个中继模块20的接收线圈之间的轴向偏移角可为预设角度,例如可以为90°。
发送模块10的发送线圈与第一个中继模块20的接收线圈之间的第一距离、同一个中继模块20的发送线圈和同一个中继模块20的接收线圈之间的第二距离、多个中继模块中最后一个中继模块的发送线圈与接收模块30的接收线圈之间的第三距离可设计为相等,所述第一距离、所述第二距离和所述第三距离均基于线圈的参数和补偿回路参数(例如面积等)确定。
补偿回路包括以下任一一种或至少两种电力电子器件:
电容、电阻、电感、二极管和有源器件;
有源器件为场效应晶体管或三极管。
电力电子器件通过串联、并联或串并联结合的方式连接。
本发明实施例提供的中继式无线送能装置为高压电力电子设备中的门极驱动电路供电的示意图如图2所示,每一级线圈可以从上一级线圈获取能量以供给自身连接的门极驱动电路,同时可以向下一级线圈提供能量,整个装置在为门极驱动电路供电的同时,通过中继模块实现了能量的传输。

Claims (10)

  1. 一种中继式无线送能装置,包括发送模块、中继模块和接收模块;
    所述发送模块、所述中继模块和所述接收模块依次排列,且所述发送模块、所述中继模块和所述接收模块均包括线圈和补偿所述线圈的感性无功的补偿回路;
    所述发送模块、所述中继模块和所述接收模块均通过线圈实现能量的无线传输。
  2. 根据权利要求1所述的中继式无线送能装置,其中,所述中继模块中的线圈包括:第一发送线圈和第一接收线圈;所述第一发送线圈和所述第一接收线圈均连接到所述中继模块的补偿回路的两端。
  3. 根据权利要求2所述的中继式无线送能装置,其中,所述中继模块还包括第一铁氧体;
    所述第一铁氧体置于所述第一发送线圈和所述第一接收线圈之间。
  4. 根据权利要求1至3中任一项所述的中继式无线送能装置,其中,所述中继模块的数量为至少一个。
  5. 根据权利要求1所述的中继式无线送能装置,其中,所述发送模块还包括交流电源和第二铁氧体,所述发送模块的线圈包括:第二发送线圈;
    所述第二铁氧体与所述第二发送线圈平行设置,所述发送模块的补偿回路和所述第二发送线圈连接到所述交流电源的两端。
  6. 根据权利要求1所述的中继式无线送能装置,其中,所述接收模块还包括第三铁氧体;所述接收模块中的线圈包括第二接收线圈;
    所述第三铁氧体与所述第二接收线圈平行设置,所述第二接收线圈和补偿回路连接到所述接收模块的负载的两端。
  7. 根据权利要求4所述的中继式无线送能装置,其中,在所述中继模块的数量为多个的情况下,所述发送模块的发送线圈方向与第一个中继模块中的接收线圈方向一致,所述接收模块的接收线圈方向与多个中继模块中最后一个中继模块中的发送线圈方向一致;
    同一个中继模块的发送线圈和同一个中继模块的接收线圈之间的轴向偏移角为90°。
  8. 根据权利要求4所述的中继式无线送能装置,其中,所述发送模块的发送线圈与第一个中继模块的接收线圈之间的第一距离、同一个中继模块的发送线圈和同一个中继模块的接收线圈之间的第二距离、多个中继模块中最后一个中继模块的发送线圈与所述接收模块的接收线圈之间的第三距离均相等,所述 第一距离、所述第二距离和所述第三距离均基于线圈的面积确定。
  9. 根据权利要求1所述的中继式无线送能装置,其中,所述线圈为双极性线圈;且所有线圈的形状和大小均相等。
  10. 根据权利要求1所述的中继式无线送能装置,其中,所述补偿回路包括以下任一一种或至少两种电力电子器件:
    电容、电阻和有源器件;
    其中,所述有源器件为场效应晶体管或三极管;
    所述电力电子器件通过串联、并联或串并联结合的方式连接。
PCT/CN2020/108872 2019-12-25 2020-08-13 中继式无线送能装置 WO2021128869A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911353688.0 2019-12-25
CN201911353688.0A CN111030310A (zh) 2019-12-25 2019-12-25 一种中继式无线送能装置

Publications (1)

Publication Number Publication Date
WO2021128869A1 true WO2021128869A1 (zh) 2021-07-01

Family

ID=70214536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108872 WO2021128869A1 (zh) 2019-12-25 2020-08-13 中继式无线送能装置

Country Status (2)

Country Link
CN (1) CN111030310A (zh)
WO (1) WO2021128869A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111030310A (zh) * 2019-12-25 2020-04-17 全球能源互联网研究院有限公司 一种中继式无线送能装置
CN112821581A (zh) * 2021-02-25 2021-05-18 国网河北省电力有限公司 一种恒流送能装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3454452A1 (en) * 2017-09-08 2019-03-13 TE Connectivity Nederland B.V. Inductive coupled power transfer (icpt) in multiple gap applications
CN110040013A (zh) * 2019-05-13 2019-07-23 无锡市沃乐思科技有限公司 具有电动汽车充电的垂直循环式立体车库无线供电系统
CN110212654A (zh) * 2019-05-09 2019-09-06 江苏理工学院 基于无源lc谐振线圈的磁耦合谐振式无线电能传输结构
CN110350636A (zh) * 2019-08-12 2019-10-18 广东工业大学 一种无线充电系统及方法
CN110535250A (zh) * 2019-06-06 2019-12-03 全球能源互联网研究院有限公司 一种无线能量传输系统和能量传输方法
CN111030310A (zh) * 2019-12-25 2020-04-17 全球能源互联网研究院有限公司 一种中继式无线送能装置
CN211790963U (zh) * 2019-12-25 2020-10-27 全球能源互联网研究院有限公司 一种中继式无线送能装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3454452A1 (en) * 2017-09-08 2019-03-13 TE Connectivity Nederland B.V. Inductive coupled power transfer (icpt) in multiple gap applications
CN110212654A (zh) * 2019-05-09 2019-09-06 江苏理工学院 基于无源lc谐振线圈的磁耦合谐振式无线电能传输结构
CN110040013A (zh) * 2019-05-13 2019-07-23 无锡市沃乐思科技有限公司 具有电动汽车充电的垂直循环式立体车库无线供电系统
CN110535250A (zh) * 2019-06-06 2019-12-03 全球能源互联网研究院有限公司 一种无线能量传输系统和能量传输方法
CN110350636A (zh) * 2019-08-12 2019-10-18 广东工业大学 一种无线充电系统及方法
CN111030310A (zh) * 2019-12-25 2020-04-17 全球能源互联网研究院有限公司 一种中继式无线送能装置
CN211790963U (zh) * 2019-12-25 2020-10-27 全球能源互联网研究院有限公司 一种中继式无线送能装置

Also Published As

Publication number Publication date
CN111030310A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2021128869A1 (zh) 中继式无线送能装置
US11587726B2 (en) Coupled inductor structure
US7432699B2 (en) Transformer with protection against direct current magnetization caused by zero sequence current
US9548664B2 (en) Gate-power-supply device and semiconductor circuit breaker using same
US10991641B2 (en) Cantilevered leadframe support structure for magnetic wireless transfer between integrated circuit dies
CN110971011A (zh) 一种无线能量传输装置
CN111030311A (zh) 一种串行无线能量传输装置
TW201517455A (zh) 用於無線充電線路的裝置
CN102474101A (zh) 具有星形中性点电抗器的用于转换电气参数的装置
US11908616B2 (en) Coil unit for inductively charging a vehicle
CN104769452A (zh) 具有改进的射频隔离的发送/接收开关电路
CN110098663A (zh) 一种高压在线监测设备的无线电能传输系统及配置方法
KR20190063084A (ko) 철도차량용 반도체 변압기용 무선 급집전 코일 및 모듈
CN109599258A (zh) 一种高压隔离变压器
ES2325875B1 (es) Sistema de transferencia de potencia con acoplamiento inductivo en alta frecuencia y procedimiento asociado.
CN211790963U (zh) 一种中继式无线送能装置
CN211670681U (zh) 一种串行无线能量传输装置
US20190131055A1 (en) Isolation transformer, a switch driving circuit and a pulse power system
KR101953571B1 (ko) 무선 전력 전송 코일을 구비한 차량용 반도체 변압기 및 그 무선 전력 전송 코일
US20190096863A1 (en) Semiconductor integrated circuit
CN211670682U (zh) 一种无线能量传输装置
Javid et al. CMOS integrated galvanically isolated RF chip-to-chip communication utilizing lateral resonant coupling
CN114208007B (zh) 电路体和制冷循环装置
US10826379B2 (en) Converter arrangement comprising a star point reactor
CN205920866U (zh) 电压可调的电力变压器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907620

Country of ref document: EP

Kind code of ref document: A1