WO2021128857A1 - 一种地震数据实时采集装置、系统及方法 - Google Patents

一种地震数据实时采集装置、系统及方法 Download PDF

Info

Publication number
WO2021128857A1
WO2021128857A1 PCT/CN2020/106751 CN2020106751W WO2021128857A1 WO 2021128857 A1 WO2021128857 A1 WO 2021128857A1 CN 2020106751 W CN2020106751 W CN 2020106751W WO 2021128857 A1 WO2021128857 A1 WO 2021128857A1
Authority
WO
WIPO (PCT)
Prior art keywords
seismic data
data
seismic
real
processing module
Prior art date
Application number
PCT/CN2020/106751
Other languages
English (en)
French (fr)
Inventor
胡耀星
游庆瑜
郝天珧
张妍
Original Assignee
中国科学院地质与地球物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院地质与地球物理研究所 filed Critical 中国科学院地质与地球物理研究所
Publication of WO2021128857A1 publication Critical patent/WO2021128857A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/22Transmitting seismic signals to recording or processing apparatus
    • G01V1/223Radioseismic systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/24Recording seismic data
    • G01V1/247Digital recording of seismic data, e.g. in acquisition units or nodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/30Analysis
    • G01V1/307Analysis for determining seismic attributes, e.g. amplitude, instantaneous phase or frequency, reflection strength or polarity

Definitions

  • This application belongs to the technical field of seismic data transmission, and particularly relates to a real-time seismic data acquisition device, system and method.
  • seismic exploration is widely used in natural resource exploration such as oil and gas, minerals, and geological disaster forecasting.
  • the acquisition of seismic prospecting has developed from the previous cabled exploration to the current cableless portable seismic acquisition node.
  • Each node can independently perform three-component seismic signal acquisition and Storage, which greatly solves the problem that high-density seismic signal acquisition cannot be carried out due to the influence of terrain.
  • the previous cabled seismograph data transmission is through the wired cable, which can well monitor and record the field data in real time.
  • Patent CN105277972A proposes a micro-seismic data acquisition and transmission method, which collects three-component seismic signals to local storage, and the other way only extracts the Z component and transmits it to the server in a wired or wireless manner for on-site real-time monitoring and processing; this method achieves rapid processing , But the rest of the components cannot be viewed in real time, which cannot meet the needs of more real-time processing.
  • Patent CN107277064A proposes a real-time seismic data transmission system and transmission method based on streaming media technology.
  • the RTMP protocol is used to stream the seismic data from each acquisition node to the main control station for real-time data processing; this method performs real-time data processing on the data.
  • the work of compression and data stream decoding has reduced the time delay and bit error rate to a certain extent.
  • the existing seismic acquisition nodes have already completed the acquisition of seismic signal analog-to-digital conversion. This method can only be used for specific equipment usage environments and cannot be further adapted to the requirements of existing seismic acquisition nodes.
  • the equipment is modified; on the other hand, because the data stream adopts the compression coding method, there are higher requirements for the stability of the data transmission and the data processing capacity of the master control station.
  • This application provides a real-time seismic data acquisition device, system, and method to solve the problem that existing seismic data transmission methods have high requirements for data transmission and master control stations.
  • a real-time seismic data acquisition device includes: a data processing module for acquiring initial seismic data packets from preset seismic acquisition nodes, and decoding and processing the initial seismic data packets according to preset configuration information to obtain seismic data information, and then Save the seismic data information; the wireless transmission module is electrically connected to the data processing module, and is used to build a web server and establish a wireless network based on the HTTP protocol with the user terminal, and then pass the seismic data information processed by the data processing module The wireless network is sent to the user terminal.
  • the technical solution adopted in the embodiment of the application further includes: a power supply module electrically connected to the data processing module for supplying power to the data processing module and the wireless transmission module.
  • the power supply module includes a step-down unit, a charging unit, and a battery unit. When the external power supply is turned on through the preset external power supply interface, the step-down unit converts the voltage of the external power supply into a working voltage suitable for the data processing module and the wireless transmission module, and charges the battery unit through the charging unit.
  • the data processing module includes a data interface unit, a firmware upgrade unit, a main control unit, and a storage unit;
  • the data interface unit is electrically connected to the seismic acquisition node to obtain the initial seismic data package;
  • the control unit is electrically connected to the data interface unit for receiving and processing initial seismic data packets;
  • the storage unit is electrically connected to the main control unit for storing data processed by the main control unit;
  • the firmware upgrade unit is electrically connected to the main control unit Connection for firmware upgrade and debugging.
  • the technical solution adopted in the embodiment of the application also includes: the wireless transmission module includes a WIFI transmission unit and a mobile communication network transmission unit; the WIFI transmission unit is used to construct a WIFI communication network with the user terminal according to preset configuration information, and communicate via WIFI The network performs real-time data transmission; the mobile communication network transmission unit is used to create a VPN channel through a 4G network or a 5G network according to preset configuration information to communicate with the user terminal and perform real-time data transmission.
  • the technical solution adopted by the embodiment of the application further includes: the wireless transmission module is also used to receive the storage instruction sent by the user and forward it to the data processing module, the storage instruction includes a specified time period and a specified storage directory, and the data processing module obtains the specified time period After the seismic data information, the seismic data information of the specified time period is processed and stored in the specified storage directory.
  • the technical solution adopted in the embodiment of the present application further includes: the data processing module is further configured to perform de-instrument response and spectral feature information extraction processing on the seismic data information according to the preset configuration information.
  • a real-time seismic data acquisition system including at least one of the above-mentioned real-time seismic data acquisition device, at least one seismic acquisition node and user terminal; real-time seismic data acquisition device and seismic acquisition
  • the nodes are in one-to-one correspondence and are electrically connected, and are used to obtain initial seismic data packets and process and store them.
  • the user terminal communicates with the seismic data real-time acquisition device and is used to receive real-time seismic data sent by the seismic data real-time acquisition device.
  • a real-time seismic data acquisition method which is applied to one of the above-mentioned real-time seismic data acquisition devices
  • the real-time seismic data acquisition device includes a data processing module and a wireless transmission module
  • the method includes: The data processing module obtains the initial seismic data packet collected by the seismic acquisition node; the data processing module decodes the initial seismic data packet to obtain the seismic data information; the wireless transmission module creates a wireless network according to the preset configuration information; the wireless transmission module is constructed based on the wireless network
  • the web server establishes a Socket connection with the user terminal through the network transmission protocol; when the wireless transmission module receives the request from the user terminal through the web server, the seismic data information is sent to the user terminal through the wireless network according to the network transmission protocol.
  • the technical solution adopted in the embodiment of the application further includes: after the step of sending the seismic data information to the user terminal through the wireless network according to the network transmission protocol, it also includes: when the wireless transmission module receives the storage instruction sent by the user terminal, forwarding the storage instruction To the data processing module, the storage instructions include a designated time period and a designated storage directory; after the data processing module obtains the seismic data information of the designated time period, the seismic data information of the designated time period is processed and stored in the designated storage directory.
  • the real-time seismic data acquisition method also includes: the data processing module sets the parameters of the window function used according to the preset configuration information; the data processing module performs the windowed frequency spectrum on the seismic data information Analysis; the data processing module converts the windowed seismic data information from the time domain to the frequency domain; the data processing module performs de-instrumental response to the seismic data information in the frequency domain based on the preset transfer function parameter information; the data processing module obtains the seismic acquisition node Set the data outside the effective frequency band in the seismic data information after the response of the instrument to 0, and then store the processed seismic data information to the designated directory.
  • the beneficial effects produced by the embodiments of the present application are: the web server created by the wireless transmission module in the present application realizes real-time data transmission based on the HTTP protocol with the user terminal, so that the seismic data processed by the data processing module can be transmitted.
  • the data is transmitted to the user terminal in real time for the user to view, which effectively avoids the process of compressing and decompressing a large number of data packets in the data stream transmission process, improves the redundancy of data transmission, and greatly reduces the application environment requirements of the user terminal.
  • the real-time seismic data acquisition device is used with the existing seismic acquisition node equipment.
  • the electrical connection realizes the real-time transmission of seismic data and related data processing functions. There is no need to modify the existing seismic acquisition node equipment, which reduces the cost of equipment transformation, and does not need to wait for the completion of all collected data to obtain data, which satisfies the project The need for timely acquisition of seismic signal acquisition data within a specific period of time during the survey.
  • Fig. 1 is a schematic structural diagram of a real-time seismic data acquisition device according to an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a real-time seismic data acquisition system according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for real-time seismic data acquisition according to the first embodiment of the present application
  • FIG. 4 is a schematic flowchart of a method for real-time seismic data acquisition according to a second embodiment of the present application.
  • Fig. 5 is a schematic flowchart of a method for real-time seismic data acquisition according to a third embodiment of the present application.
  • first”, “second”, and “third” in this application are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of the features.
  • "a plurality of” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indicators (such as up, down, left, right, front, back%) in the embodiments of this application are only used to explain the relative positional relationship between the components in a specific posture (as shown in the drawings) , Movement status, etc., if the specific posture changes, the directional indication will also change accordingly.
  • Fig. 1 is a schematic structural diagram of a real-time seismic data acquisition device according to an embodiment of the present application.
  • the seismic data real-time acquisition device 1 includes a data processing module 10 and a wireless transmission module 11.
  • the data processing module 10 is electrically connected to the seismic acquisition node through a cable, and is used to obtain the initial seismic data packet from the seismic acquisition node, and decode and process the initial seismic data packet according to the preset configuration information to obtain the seismic data information, and then save the seismic data.
  • Data information where the initial seismic data includes three-component seismic data and time information.
  • the seismic acquisition node transmits the data
  • the three-component seismic data and time information are sent to the data processing module 10 in the form of data packets, and the data processing module 10 follows
  • the data encoding rules decode the three-component seismic data and time information into data packets before processing.
  • the wireless transmission module 11 is electrically connected to the data processing module 10, and is used to create a wireless network according to preset configuration information, and then construct a web server based on the wireless network, and use the web server to monitor various ports of the wireless network to detect whether there is a user terminal connected In, when a user terminal accesses, a wireless network based on the HTTP protocol is created with the user terminal, and then the seismic data information processed by the data processing module is sent to the user terminal through the wireless network.
  • the web server created by the wireless transmission module realizes real-time data transmission with the user terminal based on the HTTP protocol, thereby transmitting the seismic data processed by the data processing module to the user terminal in real time for viewing by the user, which effectively avoids
  • the process of compressing and decompressing a large number of data packets improves the redundancy of data transmission and greatly reduces the application environment requirements of the user terminal. It is no longer limited to traditional special equipment for one-to-one real-time viewing.
  • Any terminal device capable of web access can simultaneously perform the real-time viewing function of on-site collected data; in addition, the real-time seismic data acquisition device is electrically connected with the existing seismic acquisition node equipment to realize the real-time transmission of seismic data and related data processing functions , There is no need to modify the existing seismic acquisition node equipment, which reduces the cost of equipment transformation, and does not need to wait for the completion of all collected data to obtain data, which meets the need for timely acquisition of seismic signal acquisition data within a specific time period in engineering surveys .
  • the data processing module 10 includes a data interface unit 100, a firmware upgrade unit 101, a main control unit 102, and a storage unit 103;
  • the data interface unit 100 is electrically connected to a seismic acquisition node, and is used to obtain an initial seismic data packet, and The seismic data packet is decoded;
  • the main control unit 102 is electrically connected to the data interface unit 100 to receive and process the initial seismic data packet;
  • the storage unit 103 is electrically connected to the main control unit 102 to store the processed data The data;
  • the firmware upgrade unit 101 is electrically connected to the main control unit 102 for firmware upgrade and debugging.
  • the seismic data real-time acquisition device 1 further includes a power supply module 12 electrically connected to the data processing module 10 for Power is supplied to the data processing module 10 and the wireless transmission module 11.
  • the power supply module 12 further includes a step-down unit 120, a charging unit 121 and a battery unit 122.
  • the step-down unit 120 converts the voltage of the external power supply into a working voltage suitable for the data processing module 10 and the wireless transmission module 11, and at the same time, sends the charging unit 121 to the battery unit 122 Recharge.
  • power is supplied to the data processing module 10 and the wireless transmission module 11 through the battery unit 122, thereby prolonging the use time of the seismic data real-time acquisition device 1.
  • the wireless transmission module 11 includes a WIFI transmission unit 110 and a mobile communication network transmission unit 111;
  • the WIFI transmission unit 110 is used to construct a WIFI communication network with the user terminal according to preset configuration information, and perform real-time data through the WIFI communication network Transmission;
  • the mobile communication network transmission unit 111 is used to create a VPN channel through a 4G network or a 5G network according to preset configuration information to communicate with the user terminal and perform real-time data transmission.
  • the WIFI transmission unit 110 supports 2.4GHz, 5GHz dual-frequency, IEE802.11.b/g/n/ac wireless connection;
  • the mobile communication network transmission unit 111 can be compatible with three 4G signals of telecommunications, mobile, and China Unicom for wireless data transmission. Further, the working performance of the entire wireless transmission module 11 can be improved by connecting an external antenna of 433 MHz.
  • the wireless transmission module 11 is also used to receive a storage instruction sent by a user and forward it to the data processing module 10.
  • the storage instruction includes a specified time period and a specified storage directory. After the data processing module obtains the seismic data information for the specified time period, The seismic data information of the specified time period is processed and stored in the specified storage directory.
  • the wireless transmission module 11 is also used to receive the acquisition instruction sent by the user terminal and forward it to the data processing module 10 to read the stored seismic data from the data processing module 10. It should be noted that the user terminal can use HTTP, FTP, SFTP and other methods to obtain locally stored data through the wireless network, which provides convenience for field project monitoring.
  • the data within a specified time period is stored according to the storage instruction sent by the user terminal, so that the collected seismic data can be selectively saved.
  • the data processing module 10 is also used to perform de-instrument response and spectral feature information extraction processing on the seismic data information according to the preset configuration information.
  • this embodiment can not only perform de-instrumental response processing on the seismic data received in real time to improve the response of low-frequency signals, but also obtain the spectral characteristic response of a fixed time window to obtain the abnormal characteristics of a specific frequency band. information.
  • FIG. 2 shows a schematic structural diagram of a real-time seismic data acquisition system according to an embodiment of the present application.
  • the seismic data real-time acquisition system 2 includes at least one seismic data real-time acquisition device 20 described in the above-mentioned embodiment, at least one seismic acquisition node 21, and a user terminal 22, wherein the seismic data
  • the real-time data acquisition device 20 and the seismic acquisition node 21 have the same number and are electrically connected one-to-one, and are used to obtain the initial seismic data packet collected by the seismic acquisition node 21 and process and store it.
  • the user terminal 22 is connected to each real-time seismic data acquisition device. 20
  • the communication connection is used to receive the real-time seismic data sent by the real-time seismic data acquisition device 20.
  • the seismic data collected by the seismic acquisition node 21 is sent to the user terminal applying for query through the wireless network, and can be used for simultaneous query by multiple user terminals, and is no longer limited to traditional dedicated equipment for one-to-one
  • the real-time viewing meets the real-time viewing function of any terminal device that can access the web at the same time for on-site data acquisition.
  • Figure 3 shows a schematic flow chart of a method for real-time seismic data acquisition according to the first embodiment of the present application. It should be noted that if there are substantially the same results, the method of the present application is not limited to the sequence of the process shown in FIG. 3. As shown in Fig. 3, the real-time seismic data acquisition method is applied to the seismic data real-time acquisition device described in the above embodiment, and the real-time seismic data acquisition method includes the steps:
  • Step S1 the data processing module obtains the initial seismic data packet collected by the seismic acquisition node.
  • the seismic acquisition node sends the acquired three-component seismic data and time information to the data processing module in the form of an initial seismic data packet.
  • Step S2 The data processing module decodes the initial seismic data packet to obtain seismic data information.
  • Step S3 The wireless transmission module creates a wireless network according to the preset configuration information.
  • the preset configuration information is preset.
  • Step S4 the wireless transmission module constructs a web server based on the wireless network and performs port monitoring.
  • Step S5 When the access request of the user terminal is monitored, a Socket connection is established with the user terminal through the network transmission protocol.
  • Step S6 When the wireless transmission module receives the request of the user terminal through the web server, it sends the seismic data information to the user terminal through the wireless network according to the network transmission protocol.
  • the seismic data information can be output and displayed on the user terminal in the form of a waveform diagram.
  • the web server created by the wireless transmission module realizes real-time data transmission with the user terminal based on the HTTP protocol, thereby transmitting the seismic data processed by the data processing module to the user terminal in real time for viewing by the user, which effectively avoids
  • the process of compressing and decompressing a large number of data packets improves the redundancy of data transmission and greatly reduces the application environment requirements of the user terminal. It is no longer limited to traditional special equipment for one-to-one real-time viewing. Any terminal device capable of web access can also perform real-time viewing of on-site collected data.
  • FIG. 4 is a schematic flow chart of the method for real-time seismic data acquisition according to the second embodiment of this application. After step S6, It includes the following steps:
  • Step S10 When the wireless transmission module receives the storage instruction sent by the user terminal, it forwards the storage instruction to the data processing module.
  • the storage instruction includes a designated time period and a designated storage directory.
  • Step S11 After obtaining the seismic data information of the specified time period, the data processing module processes the seismic data information of the specified time period and stores it in the specified storage directory.
  • the storage instruction sent by the user terminal is received through the wireless transmission module and forwarded to the data processing module.
  • the data processing module stores the seismic data for a specified period of time according to the storage instruction, so that the user can save specific data in time, which is convenient for the user to follow. Observe and analyze seismic data.
  • the embodiment of the present application can also perform de-instrument response and spectral feature information extraction on the seismic data obtained in real time according to the preset configuration information.
  • FIG. 5 and FIG. 5 for the method for real-time seismic data acquisition according to the third embodiment of the present application. Schematic flow chart, the method further includes the following steps:
  • Step S20 The data processing module sets the parameters of the window function used according to the preset configuration information.
  • the window function used is parameterized according to the preset configuration information, for example, by selecting window functions such as rectangular, hann, flattop, etc., to reduce the leakage impact caused by the truncation effect during data analysis.
  • Step S21 the data processing module performs windowed spectrum analysis on the seismic data information.
  • h(n) h d (n) ⁇ w(n), 0 ⁇ n ⁇ N-1;
  • h d (n) is the infinite time acquisition data
  • w(n) is the window function
  • the length of the window is N
  • h(n) is the data acquired after windowing and truncation.
  • step S22 the data processing module converts the windowed seismic data information from the time domain to the frequency domain.
  • Y(s) represents the result from the time domain to the frequency domain after DFT transformation
  • h(n) represents the time series of the collected data after windowing and truncation
  • k and n represent the same number of sampling points.
  • Step S23 The data processing module performs de-instrumental response to the seismic data information in the frequency domain based on the preset transfer function parameter information.
  • Yn(f) represents the result of removing the instrument response in the frequency domain
  • Y(s) represents the result from the time domain to the frequency domain after DFT transformation
  • H(s) is the parameter information of the preset transfer function.
  • step S24 the data processing module obtains the effective frequency band range of the seismic acquisition node, and then sets the data outside the effective frequency band in the seismic data information after the response of the instrument to 0, and then stores the processed seismic data information in a designated directory.
  • this embodiment can not only perform de-instrumental response processing on the seismic data received in real time to improve the response of low-frequency signals, but also obtain the spectral characteristic response of a fixed time window to obtain the abnormal characteristics of a specific frequency band. information.

Abstract

一种地震数据实时采集装置、系统及方法,其中该装置包括:数据处理模块(10),用于从预先设置的地震采集节点获取初始地震数据包,并根据预设配置信息对初始地震数据包进行解码和处理得到地震数据信息,再保存地震数据信息;无线传输模块(11),与数据处理模块(10)电性连接,通过构建web服务器与用户终端之间创建基于HTTP协议的无线网络,再将数据处理模块(10)处理得到的地震数据信息通过无线网络发送至用户终端。该装置能够在不改变原有地震仪硬件设施的基础上通过无线网络实时将地震数据传送至用户终端,且不需要等待所有采集数据结束才能获取数据,满足了工程勘察中及时获取特定时间段内的地震信号采集数据的需求。

Description

一种地震数据实时采集装置、系统及方法 技术领域
本申请属于地震数据传输技术领域,特别涉及一种地震数据实时采集装置、系统及方法。
背景技术
地震勘探作为地球物理勘探的一种重要方法,广泛应用于油气、矿产等自然资源勘查和地质灾害预报等领域。地震勘探的采集随着高密度、高采样率、大深部探测方向发展,从之前的有缆勘探也发展为现在无缆便携式地震采集节点,每个节点可以独立地进行三分量的地震信号采集和存储,极大地解决因地形影响无法进行高密度地震信号采集的问题。之前的有缆地震仪数据传输由于通过有线线缆进行传输,能够很好地对现场数据进行实时的监测和记录,随着近几年WIFI通信技术的发展,其通信频段也从早先的2.4GHz发展到现在的5GHz,其通讯速度得到显著提升,使得无缆地震仪采集也从原来先采集后处理到现在实时监测的方向发展。
专利CN105277972A提出一种微地震数据采集与传输方法,将三分量地震信号采集到本地存储器,另一路只提取Z分量通过有线或无线方式传输至服务器作为现场实时监测处理;该方式虽实现了快速处理,但不能将其余分量实时进行查看无法满足更多实时处理的需求。
专利CN107277064A提出了一种基于流媒体技术的实时地震数据传输系统及传输方法,利用RTMP协议将地震数据以流的形式从各采集节点实时传输 到主控站进行实时数据处理;该方式对数据进行了压缩和数据流的解码工作,在一定程度上降低了时延和误码率。但一方面目前现有的地震采集节点早已完成了对地震信号模数转化的采集工作,该方法只能针对特定设备使用环境,无法进一步适配现有的地震采集节点需求,需要对现有的设备进行改造;另一方面由于数据流采用了压缩编码的方式,因此对于数据传输中的稳定性和主控站的数据处理能力都有较高的要求。
综上所述,现有技术中虽然在地震数据传输领域已得到应用,但是无论采用UDP传输协议还是RTMP数据流的实时消息传输协议,对于数据传输和主控站都需要较高的要求,无法简单高效地满足野外现场地震数据的实时监测处理需求。
发明内容
本申请提供了一种地震数据实时采集装置、系统及方法,以解决现有的地震数据传输方式对数据传输和主控站要求较高的问题。
为了解决上述问题,本申请提供了如下技术方案:
一种地震数据实时采集装置,包括:数据处理模块,用于从预先设置的地震采集节点获取初始地震数据包,并根据预设配置信息对初始地震数据包进行解码和处理得到地震数据信息,再保存地震数据信息;无线传输模块,与数据处理模块电性连接,用于通过构建web服务器,并与用户终端之间创建基于HTTP协议的无线网络,再将数据处理模块处理得到的地震数据信息通过无线网络发送至用户终端。
本申请实施例采取的技术方案还包括:还包括电源模块,与数据处理模块电性连接,用于为数据处理模块和无线传输模块供电,电源模块包括降压单元、 充电单元和电池单元,当通过预设的外接电源接口接通外部电源时,降压单元将外部电源的电压转换为适合数据处理模块和无线传输模块使用的工作电压,并通过充电单元向电池单元充电。
本申请实施例采取的技术方案还包括:数据处理模块包括数据接口单元、固件升级单元、主控单元、存储单元;数据接口单元与地震采集节点电性连接,用于获取初始地震数据包;主控单元与数据接口单元电性连接,用于接收并处理初始地震数据包;存储单元与主控单元电性连接,用于存储主控单元处理后的数据;固件升级单元与主控单元电性连接,用于实现固件升级和调试。
本申请实施例采取的技术方案还包括:无线传输模块包括WIFI传输单元和移动通信网络传输单元;WIFI传输单元用于根据预设配置信息构建与用户终端之间的WIFI通讯网络,并通过WIFI通讯网络进行实时数据传输;移动通信网络传输单元用于根据预设配置信息通过4G网络或5G网络创建VPN通道以与用户终端通讯连接,并进行实时数据传输。
本申请实施例采取的技术方案还包括:无线传输模块还用于接收用户发送的存储指令并转发至数据处理模块,存储指令包括指定时间段和指定存储目录,数据处理模块在获取到指定时间段的地震数据信息后,将指定时间段的地震数据信息处理后存储至指定存储目录。
本申请实施例采取的技术方案还包括:数据处理模块还用于根据预设配置信息对地震数据信息进行去仪器响应和频谱特征信息提取处理。
本申请实施例采取的又一技术方案为:一种地震数据实时采集系统,包括至少一个上述之一的地震数据实时采集装置、至少一个地震采集节点和用户终端;地震数据实时采集装置与地震采集节点一一对应且电性连接,用于获取初始地震数据包并进行处理和存储,用户终端与地震数据实时采集装置通讯连 接,用于接收地震数据实时采集装置发送的实时地震数据。
本申请实施例采取的又一技术方案为:一种地震数据实时采集方法,其应用于上述之一的地震数据实时采集装置,地震数据实时采集装置包括数据处理模块和无线传输模块;方法包括:数据处理模块获取地震采集节点采集的初始地震数据包;数据处理模块将初始地震数据包进行解码处理,得到地震数据信息;无线传输模块根据预设配置信息创建无线网络;无线传输模块基于无线网络构建web服务器,并通过网络传输协议与用户终端构建Socket连接;无线传输模块通过web服务器接收到用户终端的请求时,将地震数据信息按照网络传输协议通过无线网络发送至用户终端。
本申请实施例采取的技术方案还包括:将地震数据信息按照网络传输协议通过无线网络发送至用户终端的步骤之后,还包括:无线传输模块接收到用户终端发送的存储指令时,将存储指令转发至数据处理模块,存储指令包括指定时间段和指定存储目录;数据处理模块在获取到指定时间段的地震数据信息后,将指定时间段的地震数据信息处理后存储至指定存储目录。
本申请实施例采取的技术方案还包括:地震数据实时采集方法还包括:数据处理模块根据预设配置信息对使用的窗函数进行参数设定;数据处理模块对地震数据信息进行加窗后的频谱分析;数据处理模块将加窗后的地震数据信息由时间域转变为频率域;数据处理模块基于预设传递函数参数信息对频率域的地震数据信息进行去仪器响应;数据处理模块获取地震采集节点的有效频带范围,再将去仪器响应后的地震数据信息中处于有效频带范围外的数据置0,再将处理好的地震数据信息存储至指定目录。
相对于现有技术,本申请实施例产生的有益效果在于:本申请通过无线传输模块创建的web服务器实现了与用户终端之间基于HTTP协议的实时数据 传输,从而将数据处理模块处理好的地震数据实时传送至用户终端以供用户查看,其有效避免了数据流传输过程中大量的压缩解压数据包的流程,提高了数据传输的冗余度,又大大降低了用户终端的应用环境要求,不再局限于传统专用设备进行一对一的实时查看,满足任何能够进行web访问的终端设备同时进行现场采集数据的实时查看功能;此外,该地震数据实时采集装置与现有的地震采集节点设备进行电性连接,实现地震数据的实时传输和相关数据处理功能,不需要对现有的地震采集节点设备进行改造,降低了设备改造成本,并且不需要等待所有采集数据结束才能获取数据,满足了工程勘察中及时获取特定时间段内的地震信号采集数据的需求。
附图说明
图1是本申请实施例的地震数据实时采集装置的结构示意图;
图2是本申请实施例的地震数据实时采集系统的结构示意图;
图3是本申请第一实施例地震数据实时采集方法的流程示意图;
图4是本申请第二实施例地震数据实时采集方法的流程示意图;
图5是本申请第三实施例地震数据实时采集方法的流程示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定 有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
图1是本申请实施例的地震数据实时采集装置的结构示意图。如图1所示,在本实施例中,该地震数据实时采集装置1包括数据处理模块10和无线传输模块11。
数据处理模块10通过线缆与地震采集节点电性连接,用于从地震采集节点获取初始地震数据包,并根据预设配置信息对初始地震数据包进行解码和处理得到地震数据信息,再保存地震数据信息,其中,初始地震数据包括三分量地震数据和时间信息,地震采集节点在传输数据时,将三分量地震数据和时间信息以数据包的形式发送给数据处理模块10,数据处理模块10按照数据编码规则将三分量地震数据和时间信息进行数据包解码,再进行处理。
无线传输模块11与数据处理模块10电性连接,用于根据预设配置信息创建一个无线网络,再根据该无线网络构建web服务器,利用web服务器监听无线网络的各个端口,检测是否有用户终端接入,在有用户终端接入时,与用户终端之间创建基于HTTP协议的无线网络,再将数据处理模块处理得到的地震数据信息通过无线网络发送至用户终端。
本实施例通过无线传输模块创建的web服务器实现了与用户终端之间基于HTTP协议的实时数据传输,从而将数据处理模块处理好的地震数据实时传送至用户终端以供用户查看,其有效避免了数据流传输过程中大量的压缩解压数据包的流程,提高了数据传输的冗余度,又大大降低了用户终端的应用环境要求,不再局限于传统专用设备进行一对一的实时查看,满足任何能够进行web访问的终端设备同时进行现场采集数据的实时查看功能;此外,该地震数据实时采集装置与现有的地震采集节点设备进行电性连接,实现地震数据的实时传输和相关数据处理功能,不需要对现有的地震采集节点设备进行改造,降低了设备改造成本,并且不需要等待所有采集数据结束才能获取数据,满足了工程勘察中及时获取特定时间段内的地震信号采集数据的需求。
进一步的,数据处理模块10包括数据接口单元100、固件升级单元101、主控单元102、存储单元103;数据接口单元100与地震采集节点电性连接,用于获取初始地震数据包,并对初始地震数据包进行解码;主控单元102与数据接口单元100电性连接,用于接收并处理初始地震数据包;存储单元103与主控单元102电性连接,用于存储主控单元102处理后的数据;固件升级单元101与主控单元102电性连接,用于实现固件升级和调试。
为了保证地震数据实时采集装置1的能够长期稳定工作,上述实施例的基础上,其他实施例中,该地震数据实时采集装置1还包括电源模块12,与数 据处理模块10电性连接,用于为数据处理模块10和无线传输模块11供电。
进一步的,为了延长地震数据实时采集装置1的使用时间,电源模块12还包括降压单元120、充电单元121和电池单元122。当通过预设的外接电源接口接通外部电源时,降压单元120将外部电源的电压转换为适合数据处理模块10和无线传输模块11使用的工作电压,同时,通过充电单元121向电池单元122充电。在无外接电源时,通过电池单元122向数据处理模块10和无线传输模块11供电,从而延长地震数据实时采集装置1的使用时间。
进一步的,无线传输模块11包括WIFI传输单元110和移动通信网络传输单元111;WIFI传输单元110用于根据预设配置信息构建与用户终端之间的WIFI通讯网络,并通过WIFI通讯网络进行实时数据传输;移动通信网络传输单元111用于根据预设配置信息通过4G网络或5G网络创建VPN通道以与用户终端通讯连接,并进行实时数据传输。
其中,WIFI传输单元110支持2.4GHz、5GHz双频,IEE802.11.b/g/n/ac无线连接;移动通信网络传输单元111可以兼容电信、移动、联通三种4G信号进行无线数据传输,进一步的,还可以通过连接433MHz外置的天线提高了整个无线传输模块11的工作性能。
进一步的,无线传输模块11还用于接收用户发送的存储指令并转发至数据处理模块10,存储指令包括指定时间段和指定存储目录,数据处理模块在获取到指定时间段的地震数据信息后,将指定时间段的地震数据信息处理后存储至指定存储目录。
此外,无线传输模块11还用于接收用户终端发送的获取指令并转发至数据处理模块10,以从数据处理模块10中读取存储的地震数据。需要说明的是,用户终端可以通过无线网络利用HTTP、FTP、SFTP等多种方式获取本地存储 数据,为野外工程监测提供便利。
本实施例通过根据用户终端发送的存储指令,对指定时间段内的数据进行存储,从而可以选择性的保存采集的地震数据。
进一步的,数据处理模块10还用于根据预设配置信息对地震数据信息进行去仪器响应和频谱特征信息提取处理。
本实施例通过根据预设配置信息不仅可以对实时接收到的地震数据进行去仪器响应处理来提高低频信号的反应,而且还可以得到固定时窗的频谱特征响应,以获取特定频段的异常特征提供信息。
图2展示了本申请实施例地震数据实时采集系统的结构示意图。如图2所示,在本实施例中,该地震数据实时采集系统2包括至少一个上述实施例中所述的地震数据实时采集装置20、至少一个地震采集节点21和用户终端22,其中,地震数据实时采集装置20与地震采集节点21数量相同且一对一电性连接,用于获取地震采集节点21采集初始地震数据包并进行处理和存储,用户终端22分别与每一个地震数据实时采集装置20通讯连接,用于接收地震数据实时采集装置20发送的实时地震数据。
本实施例通过地震数据实时采集装置20将地震采集节点21采集地震数据通过无线网络发送给申请查询的用户终端,且可以供多个用户终端同时查询,不再局限于传统专用设备进行一对一的实时查看,满足任何能够进行web访问的终端设备同时进行现场采集数据的实时查看功能。
图3展示了本申请第一实施例地震数据实时采集方法的流程示意图。需注意的是,若有实质上相同的结果,本申请的方法并不以图3所示的流程顺序为限。如图3所示,该地震数据实时采集方法应用于上述实施例中所述的地震数据实时采集装置,该地震数据实时采集方法包括步骤:
步骤S1,数据处理模块获取地震采集节点采集的初始地震数据包。
具体地,地震采集节点将采集到的三分量地震数据和时间信息通过初始地震数据包形式发送给数据处理模块。
步骤S2,数据处理模块将初始地震数据包进行解码处理,得到地震数据信息。
步骤S3,无线传输模块根据预设配置信息创建无线网络。
具体地,该预设配置信息预先设置。
步骤S4,无线传输模块基于无线网络构建web服务器,并进行端口监听。
步骤S5,监听到用户终端的访问请求时,通过网络传输协议与用户终端构建Socket连接。
步骤S6,无线传输模块通过web服务器接收到用户终端的请求时,将地震数据信息按照网络传输协议通过无线网络发送至用户终端。
进一步的,可以将地震数据信息以波形图的方式在用户终端上输出显示。
本实施例通过无线传输模块创建的web服务器实现了与用户终端之间基于HTTP协议的实时数据传输,从而将数据处理模块处理好的地震数据实时传送至用户终端以供用户查看,其有效避免了数据流传输过程中大量的压缩解压数据包的流程,提高了数据传输的冗余度,又大大降低了用户终端的应用环境要求,不再局限于传统专用设备进行一对一的实时查看,满足任何能够进行web访问的终端设备同时进行现场采集数据的实时查看功能。
为了方便保存用指定的数据信息,上述实施例的基础上,其他实时两种,如图4所示,图4为本申请第二实施例地震数据实时采集方法的流程示意图,步骤S6之后,还包括以下步骤:
步骤S10,无线传输模块接收到用户终端发送的存储指令时,将存储指令 转发至数据处理模块,存储指令包括指定时间段和指定存储目录。
步骤S11,数据处理模块在获取到指定时间段的地震数据信息后,将指定时间段的地震数据信息处理后存储至指定存储目录。
本实施例通过无线传输模块接收用户终端发送的存储指令并转发给数据处理模块,数据处理模块根据存储指令将指定时间段的地震数据进行存储,从而使得用户可以及时保存特定的数据,方便用户后续对地震数据进行观察分析。
进一步的,本申请实施例还可根据预设配置信息对实时获取到的地震数据进行去仪器响应和频谱特征信息提取,具体参阅图5,图5本申请第三实施例地震数据实时采集方法的流程示意图,所述方法还包括以下步骤:
步骤S20,数据处理模块根据预设配置信息对使用的窗函数进行参数设定。
具体地,根据预设配置信息对使用的窗函数进行参数设定,如通过选择rectangular、hann、flattop等窗函数来减少数据分析时截断效应带来的泄漏影响。
步骤S21,数据处理模块对地震数据信息进行加窗后的频谱分析。
具体地,计算公式为:
h(n)=h d(n)·w(n),0≤n≤N-1;
其中,h d(n)为无限时长采集数据,w(n)为窗函数,窗的长度为N,h(n)为加窗截断后采集数据。
步骤S22,数据处理模块将加窗后的地震数据信息由时间域转变为频率域。
具体地,计算公式为:
Figure PCTCN2020106751-appb-000001
其中,Y(s)表示DFT变换后从时间域到频率域的结果,h(n)表示加窗截断后采集数据的时间序列,k、n表示相同的采样点数。
步骤S23,数据处理模块基于预设传递函数参数信息对频率域的地震数据信息进行去仪器响应。
具体地,计算公式为:
Yn(f)=Y(s)/H(s);
其中,Yn(f)表示频率域去除仪器响应结果,Y(s)表示DFT变换后从时间域到频率域的结果,H(s)为预设传递函数参数信息。
步骤S24,数据处理模块获取地震采集节点的有效频带范围,再将去仪器响应后的地震数据信息中处于有效频带范围外的数据置0,再将处理好的地震数据信息存储至指定目录。
本实施例通过根据预设配置信息不仅可以对实时接收到的地震数据进行去仪器响应处理来提高低频信号的反应,而且还可以得到固定时窗的频谱特征响应,以获取特定频段的异常特征提供信息。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种地震数据实时采集装置,其特征在于,包括:
    数据处理模块,用于从预先设置的地震采集节点获取初始地震数据包,并根据预设配置信息对所述初始地震数据包进行解码和处理得到地震数据信息,再保存所述地震数据信息;
    无线传输模块,与所述数据处理模块电性连接,用于通过构建web服务器,并与用户终端之间创建基于HTTP协议的无线网络,再将所述数据处理模块处理得到的地震数据信息通过所述无线网络发送至用户终端。
  2. 根据权利要求1所述的地震数据实时采集装置,其特征在于,还包括电源模块,与所述数据处理模块电性连接,用于为所述数据处理模块和所述无线传输模块供电,所述电源模块包括降压单元、充电单元和电池单元,当通过预设的外接电源接口接通外部电源时,所述降压单元将所述外部电源的电压转换为适合所述数据处理模块和所述无线传输模块使用的工作电压,并通过充电单元向所述电池单元充电。
  3. 根据权利要求1所述的地震数据实时采集装置,其特征在于,所述数据处理模块包括数据接口单元、固件升级单元、主控单元、存储单元;所述数据接口单元与所述地震采集节点电性连接,用于获取所述初始地震数据包;所述主控单元与所述数据接口单元电性连接,用于接收并处理所述初始地震数据包;所述存储单元与所述主控单元电性连接,用于存储所述主控单元处理后的数据;所述固件升级单元与所述主控单元电性连接,用于实现固件升级和调试。
  4. 根据权利要求1所述的地震数据实时采集装置,其特征在于,所述无线传输模块包括WIFI传输单元和移动通信网络传输单元;所述WIFI传输单元用于根据所述预设配置信息构建与所述用户终端之间的WIFI通讯网络,并通过所 述WIFI通讯网络进行实时数据传输;所述移动通信网络传输单元用于根据预设配置信息通过4G网络或5G网络创建VPN通道以与所述用户终端通讯连接,并进行实时数据传输。
  5. 根据权利要求1所述的地震数据实时采集装置,其特征在于,所述无线传输模块还用于接收用户发送的存储指令并转发至所述数据处理模块,所述存储指令包括指定时间段和指定存储目录,所述数据处理模块在获取到所述指定时间段的地震数据信息后,将所述指定时间段的地震数据信息处理后存储至所述指定存储目录。
  6. 根据权利要求1所述的地震数据实时采集装置,其特征在于,所述数据处理模块还用于根据所述预设配置信息对所述地震数据信息进行去仪器响应和频谱特征信息提取处理。
  7. 一种地震数据实时采集系统,其特征在于,包括至少一个权利要求1-6之一所述的地震数据实时采集装置、至少一个地震采集节点和用户终端;所述地震数据实时采集装置与所述地震采集节点一一对应且电性连接,用于获取初始地震数据包并进行处理和存储,所述用户终端与所述地震数据实时采集装置通讯连接,用于接收所述地震数据实时采集装置发送的实时地震数据。
  8. 一种地震数据实时采集方法,其特征在于,其应用于权利要求1-6之一所述的地震数据实时采集装置,所述地震数据实时采集装置包括数据处理模块和无线传输模块;所述方法包括:
    所述数据处理模块获取地震采集节点采集的初始地震数据包;
    所述数据处理模块将所述初始地震数据包进行解码处理,得到地震数据信息;
    所述无线传输模块根据预设配置信息创建无线网络;
    所述无线传输模块基于所述无线网络构建web服务器,并进行端口监听;
    监听到用户终端的访问请求时,通过网络传输协议与所述用户终端构建Socket连接;
    所述无线传输模块通过所述web服务器接收到所述用户终端的请求时,将所述地震数据信息按照所述网络传输协议通过所述无线网络发送至所述用户终端。
  9. 根据权利要求8所述的地震数据实时采集方法,其特征在于,所述将所述地震数据信息按照所述网络传输协议通过所述无线网络发送至所述用户终端的步骤之后,还包括:
    所述无线传输模块接收到所述用户终端发送的存储指令时,将所述存储指令转发至所述数据处理模块,所述存储指令包括指定时间段和指定存储目录;
    所述数据处理模块在获取到所述指定时间段的地震数据信息后,将所述指定时间段的地震数据信息处理后存储至所述指定存储目录。
  10. 根据权利要求8所述的地震数据实时采集方法,其特征在于,所述方法还包括:
    所述数据处理模块根据所述预设配置信息对使用的窗函数进行参数设定;
    所述数据处理模块对所述地震数据信息进行加窗后的频谱分析;
    所述数据处理模块将加窗后的地震数据信息由时间域转变为频率域;
    所述数据处理模块基于预设传递函数参数信息对频率域的地震数据信息进行去仪器响应;
    所述数据处理模块获取所述地震采集节点的有效频带范围,再将去仪器响应后的地震数据信息中处于所述有效频带范围外的数据置0,再将处理好的地震数据信息存储至指定目录。
PCT/CN2020/106751 2019-12-24 2020-08-04 一种地震数据实时采集装置、系统及方法 WO2021128857A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911347057.8 2019-12-24
CN201911347057.8A CN111123353A (zh) 2019-12-24 2019-12-24 一种地震数据实时采集装置、系统及方法

Publications (1)

Publication Number Publication Date
WO2021128857A1 true WO2021128857A1 (zh) 2021-07-01

Family

ID=70501914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106751 WO2021128857A1 (zh) 2019-12-24 2020-08-04 一种地震数据实时采集装置、系统及方法

Country Status (2)

Country Link
CN (1) CN111123353A (zh)
WO (1) WO2021128857A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111123353A (zh) * 2019-12-24 2020-05-08 中国科学院地质与地球物理研究所 一种地震数据实时采集装置、系统及方法
WO2021226777A1 (zh) * 2020-05-11 2021-11-18 中国科学院地质与地球物理研究所 一种基于地震数据流的嵌入式文件网络服务器
CN114463962A (zh) * 2020-10-21 2022-05-10 中国石油化工股份有限公司 智能节点数据采集方法、电子设备及储存介质
CN113138408A (zh) * 2021-04-01 2021-07-20 中国煤炭地质总局勘查研究总院 一种分体式地震数据采集设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991386A (ja) * 1982-11-17 1984-05-26 Meisei Electric Co Ltd 地震デ−タ収集方式
CN204613683U (zh) * 2015-06-01 2015-09-02 宋强 一种惯性感测控制系统
CN105277972A (zh) * 2015-09-16 2016-01-27 山东天元信息技术股份有限公司 一种微地震数据采集与传输方法
CN105403912A (zh) * 2014-08-25 2016-03-16 中国石油化工股份有限公司 一种用于采集地震数据的装置及系统
CN106814406A (zh) * 2016-12-05 2017-06-09 中山市拓维电子科技有限公司 一种地质勘探控制平台
CN107277064A (zh) * 2017-08-10 2017-10-20 吉林大学 一种基于流媒体技术的实时地震数据传输系统及传输方法
CN108614290A (zh) * 2018-05-14 2018-10-02 中国地质大学(武汉) 一种基于LoRa技术的无线分布式三分量地震数据采集系统
CN108717205A (zh) * 2018-07-04 2018-10-30 北京市京核鑫隆科技有限责任公司 海洋固定平台高精度地磁场监测系统
CN108761526A (zh) * 2018-07-20 2018-11-06 中石化石油工程技术服务有限公司 一种基于Labview无缆地震仪器及其测试方法
CN110376641A (zh) * 2019-06-28 2019-10-25 吉林大学 一种无线地震仪的5g与4g联用通讯方法及系统
CN111123353A (zh) * 2019-12-24 2020-05-08 中国科学院地质与地球物理研究所 一种地震数据实时采集装置、系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20162721A1 (it) * 2016-04-19 2017-10-19 Univ Degli Studi Di Napoli Parthenope Sistema di monitoraggio ambientale per applicazioni costiere
CN106802429B (zh) * 2017-03-14 2018-09-14 朱培民 一种基于超宽带无线模块的准实时无缆网络地震仪系统
CN107015269A (zh) * 2017-06-07 2017-08-04 吉林大学 一种基于无线网络的微地震压裂实时监测系统及监测方法
CN207022038U (zh) * 2017-08-10 2018-02-16 吉林大学 一种基于流媒体技术的实时地震数据传输系统
CN109655911A (zh) * 2017-10-11 2019-04-19 中国石油化工股份有限公司 基于WebService的地震数据可视化系统及方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991386A (ja) * 1982-11-17 1984-05-26 Meisei Electric Co Ltd 地震デ−タ収集方式
CN105403912A (zh) * 2014-08-25 2016-03-16 中国石油化工股份有限公司 一种用于采集地震数据的装置及系统
CN204613683U (zh) * 2015-06-01 2015-09-02 宋强 一种惯性感测控制系统
CN105277972A (zh) * 2015-09-16 2016-01-27 山东天元信息技术股份有限公司 一种微地震数据采集与传输方法
CN106814406A (zh) * 2016-12-05 2017-06-09 中山市拓维电子科技有限公司 一种地质勘探控制平台
CN107277064A (zh) * 2017-08-10 2017-10-20 吉林大学 一种基于流媒体技术的实时地震数据传输系统及传输方法
CN108614290A (zh) * 2018-05-14 2018-10-02 中国地质大学(武汉) 一种基于LoRa技术的无线分布式三分量地震数据采集系统
CN108717205A (zh) * 2018-07-04 2018-10-30 北京市京核鑫隆科技有限责任公司 海洋固定平台高精度地磁场监测系统
CN108761526A (zh) * 2018-07-20 2018-11-06 中石化石油工程技术服务有限公司 一种基于Labview无缆地震仪器及其测试方法
CN110376641A (zh) * 2019-06-28 2019-10-25 吉林大学 一种无线地震仪的5g与4g联用通讯方法及系统
CN111123353A (zh) * 2019-12-24 2020-05-08 中国科学院地质与地球物理研究所 一种地震数据实时采集装置、系统及方法

Also Published As

Publication number Publication date
CN111123353A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2021128857A1 (zh) 一种地震数据实时采集装置、系统及方法
CN107015269A (zh) 一种基于无线网络的微地震压裂实时监测系统及监测方法
CN102230972A (zh) 无缆数字存储式地震仪工作状态的无线监测方法
CN107888456B (zh) 用于监测端口数据量的方法及装置
CN105429970A (zh) 用于数字检波器的数据传输及控制方法、装置
CN212543820U (zh) 物联网远程智能终端
Zhao et al. NSSN: A network monitoring and packet sniffing tool for wireless sensor networks
CN112987083A (zh) 一种基于lora的节点仪器状态数据回收系统
CN110749372A (zh) 一种电机振动移动智能诊断系统及其使用方法
KR20150004220A (ko) Ami 시스템의 통신 장치
CN106324448A (zh) 一种适用于高压开关柜局部放电在线监测的信号变送器
US11281611B2 (en) General purpose interface bus (GPIB) sniffer system and method
CN102082627A (zh) 健康数据传输方法及系统
Guo et al. Distributed electromagnetic spectrum detection system based on self-organizing network
NL2031347B1 (en) Seismic data real-time collecting device, system and method
CN214372656U (zh) 一种基于物联网的室内环境评估系统
CN106405628A (zh) 地壳震动采集系统
CN207909329U (zh) 基于无线通讯的测深仪及测深仪数据传输系统
CN207249898U (zh) 在线低功耗无线ph值传感器
CN207650581U (zh) 无人车通讯控制系统
CN206894637U (zh) 蓝牙和Wifi通信中继装置
CN116633959A (zh) 一种用于地球物理勘探设备的无线控制系统及方法
CN105472780B (zh) 一种广域物联网基站的数据传输方法及广域物联网基站
CN204836184U (zh) 移动通信网络语音mos测试装置
CN217770339U (zh) 蓝牙音频播放控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906229

Country of ref document: EP

Kind code of ref document: A1