WO2021128652A1 - 一种焊接类溅射靶材中气孔的检测方法 - Google Patents
一种焊接类溅射靶材中气孔的检测方法 Download PDFInfo
- Publication number
- WO2021128652A1 WO2021128652A1 PCT/CN2020/084104 CN2020084104W WO2021128652A1 WO 2021128652 A1 WO2021128652 A1 WO 2021128652A1 CN 2020084104 W CN2020084104 W CN 2020084104W WO 2021128652 A1 WO2021128652 A1 WO 2021128652A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- red light
- welding
- target
- pores
- image
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10048—Infrared image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30152—Solder
Definitions
- This application belongs to the technical field of target material processing, and relates to a method for detecting a target material, for example, to a method for detecting pores in a welding-type sputtering target material.
- the target material with composite sputtering target performance is usually welded to the back plate, and then roughing, finishing and other processes are finally processed into a sputtering with a qualified size.
- Shooting target products In the semiconductor industry, for the manufacturing process of sputtering target products, the target material with composite sputtering target performance is usually welded to the back plate, and then roughing, finishing and other processes are finally processed into a sputtering with a qualified size. Shooting target products.
- the porosity in the weld is difficult to control. Because various authorizations are often taken during the smelting stage, the absorbed hydrogen cannot form pores, but exists in the material in the form of H atoms. When welding, the high temperature of the welding seam allows the H atoms to diffuse together to form pores. At the same time, due to the increase in the temperature of the welding seam, the solubility of hydrogen rises sharply, and the H atoms in the heat-affected zone around the welding seam will also want the welding seam. In addition, the hydrogen decomposed by external water and organic matter will also be absorbed by the weld, so the porosity in the weld is extremely difficult to control.
- sputtering targets generally work in very harsh environments. Firstly, its working temperature is as high as 300-400°C. Secondly, one side of the target component is filled with cooling water for forced cooling, and the other side is under a high vacuum of 10 -9 Pa, so a huge pressure is formed on both sides Poor, if there are larger or more pores in the weld, the temperature around the pores will rise sharply due to the heat insulation of the pores, which is significantly higher than the surrounding area, which may cause the weld to crack. In addition, if there are more pores in the weld to form through holes, the water will penetrate to the other side under the action of the pressure difference and damage the sputtering equipment. Therefore, it is necessary to reduce the pores in the weld and deal with the possible pores in the weld. Perform testing.
- CN 101195183 A discloses an ultrasonic-assisted laser brazing method.
- the method utilizes laser brazing of low-melting-point coating metals or laser brazing of dissimilar metals, and simultaneously applying high-frequency whistle waves in the weld area to be solidified, thereby achieving Reduce or avoid the generation of pores and reduce the cost of welding.
- CN 1962153 A discloses a method of vacuum electron beam welding. The method of vacuum electron beam welding is to perform vacuum heat preservation after the first vacuum electron beam welding is performed, so that most of the H atoms in the heat-affected zone are concentrated in Weld and form pores, and then perform a second vacuum electron beam welding to remove pores.
- CN 101629912 A discloses a method for detecting the reliability of titanium welds of titanium-steel composite plate equipment.
- the detection method uses a non-destructive testing method.
- the non-destructive testing method includes conventional appearance inspection, iron contamination experiment, soap bubble inspection, and helium leakage Inspection, penetrant inspection, pressure test and hot gas cycle test, etc., among which appearance inspection, iron contamination test, soap bubble inspection can visually detect larger welding defects; penetrant inspection, helium leak detection can detect tiny penetration Defects such as pores, cracks and lack of fusion; the hot gas cycle test can detect the reliability of the weld at high temperatures; the pressure test can find the leakage of the weld.
- this detection method uses penetrant flaw detection and helium leakage detection pores, which is costly and has low detection efficiency.
- CN 110398537 A discloses a method for determining the types of aluminum alloy weld defects in the ultrasonic inspection process, which includes the following steps: (1) Four aluminum alloy defects such as pores, cracks, incomplete penetration, and slag inclusions are processed for multiple times. Detect, draw a standard diagram of the dynamic change of the waveform during the detection process corresponding to each type of defect, and use it as a reference feature atlas for the ultrasonic detection of aluminum alloy weld defects; (2) Detect the aluminum alloy weld defects to be tested in The position of the aluminum alloy body to be tested is used as the target weld defect to be tested.
- the target weld defect is detected from the left and right directions of the defect to obtain the reflected waveform of the target weld defect; (3) Comparison step (2) Reflection waveform
- the similarity data is obtained from the standard graph of the dynamic change of the waveform in step (1) to determine the defect type.
- ultrasonic testing is not easy to inspect workpieces with complex shapes. It requires a certain degree of smoothness on the inspected surface, and a couplant is required to fill the gap between the probe and the inspected surface to ensure sufficient acoustic coupling. For some coarse-grained castings and welds, it is difficult to apply because of the prone to generate messy reflected waves.
- CN 103234990 A discloses a new method for non-destructive testing of the shape and distribution of pores in welds.
- the method uses a new type of Nano-CT tomography system to detect weldments, and uses X-ray sources to perform 360° scanning of welded structures. X-rays will be attenuated to a certain extent when they penetrate the weldment, and the energy attenuation of the X-rays passing through the pores in the weld will be significantly lower than that of the surrounding rays.
- the flat-panel detectors receive different degrees of attenuation of the projected energy, thereby obtaining multiple groups Scan the tomographic image, and then perform three-dimensional reconstruction of multiple sets of tomographic data to obtain a three-dimensional inspection image of the pore defects in the weld.
- X-ray generation equipment is required for this detection, and the cost is relatively high; moreover, the use of X-rays for flaw detection is not conducive to the personal health of the operators.
- This application provides a method for detecting pores in a welding sputtering target material.
- the detecting method includes the following steps:
- step (2) Record the image of the welding target to be tested under red light and compare it with the reference feature atlas obtained in step (1) to obtain the pore distribution in the weld of the target to be tested.
- Obtaining images of welding targets with pores under the red light irradiation in this application includes obtaining images of welding targets with pores of different sizes. By enriching the reference feature atlas, the detection accuracy and sensitivity of the welding targets to be tested are improved. .
- the red light in step (1) and the red light in step (2) are independently selected such as wavelength, power, etc.
- the wavelength of the red light in step (1) is 622-770nm, for example, it can be 622nm, 630nm, 640nm, 650nm, 660nm, 670nm, 680nm, 690nm, 700nm, 710nm, 720nm, 730nm, 740nm, 750nm, 760nm or 770nm, but not limited to the listed values, other unlisted values within the numerical range are also applicable, and can be selected as 640-700nm.
- the wavelength of the red light in step (2) is 622-770nm, for example, it can be 622nm, 630nm, 640nm, 650nm, 660nm, 670nm, 680nm, 690nm, 700nm, 710nm, 720nm, 730nm, 740nm, 750nm, 760nm or 770nm, but not limited to the listed values, other unlisted values within the numerical range are also applicable, and can be selected as 640-700nm.
- the red light in step (1) has the same wavelength as the red light in step (2).
- the power of the red light can be selected in the range of 10-200W, for example, it can be 10W, 12W, 15W, 18W, 24W, 50W, 60W, 70W, 80W, 100W, 120W, 150W Or 200W, but not limited to the listed values, and other unlisted values within the numerical range are also applicable.
- This application improves the accuracy and sensitivity of the detection by making the wavelength of the red light in the reference feature atlas consistent with the wavelength of the welding target material to be detected.
- obtaining the image of the welding target in step (1) is obtaining the image of the weld seam of the welding target and/or the image of the welding surface of the welding target.
- the recording of the image of the welding target to be detected under the red light irradiation in step (2) is to record the image of the welding seam of the welding target and/or the welding surface of the welding target under the red light irradiation.
- the detection method described in the present application can not only detect the pores in the weld of the welding target, but also detect the pores in the welding surface of the welding target, and the detection method is simple and easy to implement.
- step (2) the recording of the image of the welding target to be detected under the red light irradiation is that the image of the welding target to be detected under the red light irradiation is recorded while the target is rotated 360° around the central axis.
- the rotation speed of the welding target to be tested is 8-12°/s, for example, it can be 8°/s, 9°/s, 10°/s, 11°/s or 12°/s, but not limited to The listed values and other unlisted values within the numerical range are also applicable;
- the frequency of recording the image under red light irradiation is 1-3 times/s, for example, it can be 1 time/s, 2 times/s or 3 times/s.
- the recording of the image of the welding target to be inspected under red light irradiation as described in the present application includes repeated recording of the image at the same inspection position 1-5 times, and the accuracy of the inspection is improved by repeating the recording.
- the recording in step (2) of the present application includes recording detection using a probe for detecting the brightness of light and/or detection using a camera.
- step (2) in the process of recording the image of the weld target to be inspected in step (2), there is a step of using a camera to take a picture of the red light-irradiated area every 8-12° of rotation, and the rotation pauses for at least 1 second.
- the pause time mentioned in this application is at least 1s, for example, it can be 1s, 2s, 3s, 4s, 5s, 6s, or 10s, but it is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
- the camera needs a long shooting time in order to record clear photos of the red light-irradiated area. Shooting during the rotation of the target is not conducive to obtaining clear pictures. Similarly, a shorter pause time is not conducive to obtaining a clear picture; a longer pause time is not conducive to improving detection efficiency.
- the detection method includes the following steps:
- This application uses strong penetrating red light to detect welding target components, with low detection cost, simple and safe operation;
- the detection method provided by this application can not only detect the pores in the weld, but also detect the pores that may exist on the sputtering surface of the target material, and the detection limit of the pores is as low as 0.01 mm.
- FIG. 1 is a schematic diagram of the method for detecting pores in a welding sputtering target provided by this application to detect a welding sputtering target.
- the red light in the embodiments of the application is generated by a red light with a power of 50W.
- This embodiment provides a method for detecting pores in a welding-type sputtering target.
- a schematic diagram of the detection using the detection method is shown in FIG. 1, and includes the following steps:
- the images of the welding target with pores and the welding target without pores are obtained under 680nm wavelength red light irradiation, which are used as a reference feature atlas for detecting the pore distribution of the welding target with red light; among them, the welding with pores is obtained
- the image of the target material includes the image of the welding target material with pores of different sizes, the minimum diameter of the pores of different sizes is 0.01mm;
- the detection method can detect pores with a diameter ⁇ 0.01 mm.
- This embodiment provides a method for detecting pores in a welding-type sputtering target, which includes the following steps:
- the images of the welding target with pores and the welding target without pores are obtained under the irradiation of red light with a wavelength of 640 nm, which are used as a reference feature atlas for detecting the pore distribution of the welding target with red light; among them, the welding with pores is obtained
- the image of the target material includes the image of the welding target material with pores of different sizes, the minimum diameter of the pores of different sizes is 0.01mm;
- the detection method can detect pores with a diameter ⁇ 0.01 mm.
- This embodiment provides a method for detecting pores in a welding-type sputtering target, which includes the following steps:
- the images of the welding target with pores and the welding target without pores are obtained under the irradiation of red light with a wavelength of 700nm, which are used as a reference feature atlas for detecting the pore distribution of the welding target with red light; among them, the welding with pores is obtained
- the image of the target material includes the image of the welding target material with pores of different sizes, the minimum diameter of the pores of different sizes is 0.01mm;
- the detection method can detect pores with a diameter ⁇ 0.01 mm.
- This embodiment provides a method for detecting pores in a welding-type sputtering target, which includes the following steps:
- the detection method can detect pores with a diameter ⁇ 0.03 mm.
- This embodiment provides a method for detecting pores in a welding-type sputtering target, which includes the following steps:
- the images of the welding target with pores and the welding target without pores are obtained under the irradiation of red light with a wavelength of 770nm, which are used as a reference feature atlas for detecting the pore distribution of the welding target with red light; among them, the welding with pores is obtained
- the image of the target material includes the image of the welding target material with pores of different sizes, the minimum diameter of the pores of different sizes is 0.01mm;
- the detection method can detect pores with a diameter ⁇ 0.02mm.
- This embodiment provides a method for detecting pores in a welding-type sputtering target, which includes the following steps:
- the images of the welding target with pores and the welding target without pores are obtained under 680nm wavelength red light irradiation, which are used as a reference feature atlas for detecting the pore distribution of the welding target with red light; among them, the welding with pores is obtained
- the image of the target material includes the image of the welding target material with pores of different sizes, the minimum diameter of the pores of different sizes is 0.01mm;
- the detection method can detect pores with a diameter ⁇ 0.05 mm.
- This embodiment provides a method for detecting pores in a welding-type sputtering target, which includes the following steps:
- the images of the welding target with pores and the welding target without pores are obtained under the irradiation of red light with a wavelength of 700nm, which are used as a reference feature atlas for detecting the pore distribution of the welding target with red light; among them, the welding with pores is obtained
- the image of the target material includes the image of the welding target material with pores of different sizes, the minimum diameter of the pores of different sizes is 0.01mm;
- the detection method can detect pores with a diameter ⁇ 0.05 mm.
- This comparative example provides a method for detecting pores in welding-type sputtering targets, which includes the following steps: except that the light used is yellow light, the rest are the same as in Example 1.
- This comparative example provides a method for detecting pores in welding-type sputtering target materials, which includes the following steps: except that the light used is green light, the rest are the same as in Example 1.
- the present application uses the penetrating red light to detect the pores in the sputtering target, and the pores with a diameter as low as 0.01 mm can be distinguished by image comparison.
- the detection process is simple, and the cost is low. Lower cost and higher efficiency ensure the detection effect of pores in the sputtering target.
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Physical Vapour Deposition (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
一种焊接类溅射靶材中气孔的检测方法,所述检测方法包括如下步骤:红光照射下分别得到存在气孔的焊接靶材与不存在气孔的焊接靶材的图像,作为红光检测焊接靶材气孔分布的参考特征图集;记录待检测焊接靶材在红光照射下的图像,并与步骤所得参考特征图集进行对比,从而得到待检测靶材焊缝中的气孔分布情况。利用穿透性强的红光对溅射靶材中的气孔进行检测,利用图像对比即可分辨直径低至0.01mm的气孔,检测过程简便,且成本低,能够以较低的成本与较高的效率保证溅射靶材中气孔的检测效果。
Description
本申请属于靶材加工技术领域,涉及一种靶材的检测方法,例如涉及一种焊接类溅射靶材中气孔的检测方法。
在半导体工业领域,对于溅射靶材产品的制造工艺,通常将复合溅射靶材性能的靶材与背板焊接成型,然后再经过粗加工、精加工等工艺,最后加工成尺寸合格的溅射靶材产品。
对于金属与金属之间的焊接存在着焊缝中气孔率难以控制的问题,由于在熔炼阶段往往采取了各种授权使得吸收的氢不能形成气孔,而以H原子的形式存在于材料中。当焊接时,焊缝额高温给H原子足够的能量扩散到一起形成气孔,同时由于焊缝处的温度升高,氢的溶解度急剧上升,焊缝周围热影响区内H原子也会想焊缝中扩散,此外,外界的水、有机物等分解出的氢也会被焊缝吸收,因此焊缝内的气孔率极难控制。
同时,溅射靶材一般都是在非常恶劣的环境之下工作。首先,其工作温度高达300-400℃,其次,靶材组件的一侧充以冷却水强冷,另一侧则处在10
-9Pa高真空下,因此在两侧形成了一个巨大的压力差,如果焊缝存在较大或者较多的气孔,则由于气孔的隔热作用使得气孔周围温度急剧上升,明显高于周边区域,有可能导致焊缝开裂。此外,如果焊缝中气孔较多形成通孔,则水会在压力差作用下渗透到另一侧,损害溅射设备,因此需要减少焊缝中的气孔,并对焊缝中可能存在的气孔进行检测。
CN 101195183 A公开了一种超声波辅助激光钎焊的方法,该方法利用激光 钎焊低熔点镀层金属或激光钎焊异种金属,同时在即将凝固的焊缝区域内施加高频率的哨声波,从而实现减少或避免气孔的产生、降低了焊接的成本。CN 1962153 A公开了一种真空电子束焊接的方法,所述真空电子束焊接的方法在于在施行完第一次真空电子束焊接后进行真空保温,促使热影响区的H原子大部分富集于焊缝并形成气孔,再施行第二次真空电子束焊接去除气孔,同时,对焊接完毕的靶材组件进行急冷淬火防止少量剩余的H原子扩散形成气孔。但焊接完成后还需要对焊缝进行检测,否则难以排除存在气孔带来的风险。
CN 101629912 A公开了一种钛钢复合板设备钛焊缝可靠性检测方法,该检测方法利用无损检测方法,所述无损检测方法包括常规的外观检验、铁污染实验、肥皂泡检验、氦渗漏检验、渗透探伤、耐压试验以及热气循环试验等7中,其中外观检验、铁污染实验、肥皂泡检验可以目视检测较大的焊接缺陷;渗透探伤、氦渗漏检测可以检测微小的贯穿性气孔、裂纹及未熔合等缺陷;热气循环试验可以检测焊缝在高温下的可靠性;耐压试验可以发现焊缝的泄露。但该检测方法中使用渗透探伤以及氦渗漏检测气孔,成本较高,且检测效率较低。
CN 110398537 A公开了一种超声波检测过程中铝合金焊缝缺陷类型的判定方法,包括如下步骤:(1)对气孔、裂纹、未焊透、夹渣等四种铝合金缺陷,分别经过多次检测,绘制出每一种缺陷类型对应的检测过程中波形的动态变化标准图,作为超声波检测铝合金焊缝缺陷波形变化规律的参考特征图集;(2)检测待测铝合金焊缝缺陷位于待测铝合金本体的位置,作为待测目标焊缝缺陷,从缺陷的左右两个方向对目标焊缝缺陷进行探测,得到目标焊缝缺陷的反射波形;(3)对比步骤(2)反射波形与步骤(1)中的波形动态变化标准图,得到相似度数据,从而判断缺陷类型。但超声波检测不易检查形状复杂的工件,要 求被检查表面有一定的光洁度,并需有耦合剂充填满探头和被检查表面之间的空隙,以保证充分的声耦合。对有些粗晶粒的铸件和焊缝,因易产生杂乱反射波而较难应用。
CN 103234990 A公开了一种焊缝中气孔形态及分布的无损检测新方法,该方法采用新型的Nano-CT断层成像系统对焊件进行检测,采用X射线源对焊接构建进行360°扫描,当X射线穿透焊件时会有一定程度的衰减,而穿过焊缝中气孔的X射线能量衰减会明显低于周围射线,用平板探测器接收到不同程度衰减的投射能量,从而得到多组断层扫描图像,然后对多组断层数据进行三维重构,得到焊缝中气孔缺陷的三维检测图像。但该检测需要X射线发生设备,成本较高;而且,使用X射线进行探伤,不利于操作人员的人身健康。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于提供一种焊接类溅射靶材中气孔的检测方法,所述检测方法操作简单、成本低廉,利用图像对比即可分辨直径低至0.01mm的气孔,检测过程简便,且成本低,能够以较低的成本与较高的效率保证溅射靶材中气孔的检测效果。
为达到此目的,本申请采用以下技术方案:
本申请提供了一种焊接类溅射靶材中气孔的检测方法,所述检测方法包括如下步骤:
(1)红光照射下分别得到存在气孔的焊接靶材与不存在气孔的焊接靶材的图像,作为红光检测焊接靶材气孔分布的参考特征图集;
(2)记录待检测焊接靶材在红光照射下的图像,并与步骤(1)所得参考特征图集进行对比,从而得到待检测靶材焊缝中的气孔分布情况。
红光具有较长的波长,具有良好的穿透性。使用红光对焊接靶材进行照射,焊接靶材存在气孔与不存在气孔处的图像存在不同的明暗情况。通过建立参考特征图集,将待检测焊接靶材在红光照射下的检测图像与参考特征图集进行对比,从而快速地得到待检测靶材中气孔的分布情况。
本申请所述红光照射下得到存在气孔的焊接靶材的图像包括得到存在不同尺寸气孔的焊接靶材的图像,通过丰富参考特征图集,提高了待检测焊接靶材的检测准确度与灵敏度。
本申请中,步骤(1)所述红光和步骤(2)所述红光各自独立地选择例如波长、功率等。
可选地,步骤(1)所述红光的波长为622-770nm,例如可以是622nm、630nm、640nm、650nm、660nm、670nm、680nm、690nm、700nm、710nm、720nm、730nm、740nm、750nm、760nm或770nm,但不限于所列举的数值,数值范围内其它未列举的数值同样适用,可选为640-700nm。
可选地,步骤(2)所述红光的波长为622-770nm,例如可以是622nm、630nm、640nm、650nm、660nm、670nm、680nm、690nm、700nm、710nm、720nm、730nm、740nm、750nm、760nm或770nm,但不限于所列举的数值,数值范围内其它未列举的数值同样适用,可选为640-700nm。
可选地,步骤(1)所述红光与步骤(2)所述红光的波长相同。
本申请对所述红光的功率不做过多限定,红光功率越高,光强越大,图像的分辨率意见检测的准确性越高,但成本增加。综合考虑准确性与检测成本, 所述红光的功率可在10-200W范围内进行选择,例如可以是10W、12W、15W、18W、24W、50W、60W、70W、80W、100W、120W、150W或200W,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
本申请通过使得到参考特征图集的红光波长与检测待检测焊接靶材的波长一致,提高了检测的准确性与灵敏度。
可选地,步骤(1)所述得到焊接靶材的图像为得到焊接靶材的焊缝图像和/或焊接靶材的焊接面图像。
可选地,步骤(2)所述记录待检测焊接靶材在红光照射下的图像为记录焊接靶材焊缝和/或焊接靶材焊接面在红光照射下的图像。
本申请所述检测方法不仅能够对焊接靶材的焊缝中气孔进行检测,还能够对焊接靶材的焊接面中的气孔进行检测,检测方法简单易行。
可选地步骤(2)所述记录待检测焊接靶材在红光照射下的图像为待检测靶材绕中心轴旋转360°过程中,边旋转边记录红光照射下的图像。
可选地,待检测焊接靶材的旋转速度8-12°/s,例如可以是8°/s、9°/s、10°/s、11°/s或12°/s,但不限于所列举的数值,数值范围内其他未列举的数值同样适用;记录红光照射下图像的频率为1-3次/s,例如可以是1次/s、2次/s或3次/s。
可选地,本申请所述记录待检测焊接靶材在红光照射下的图像,包括对同一处检测位置的图像重复记录1-5次,通过重复记录,提高了检测的准确性。
本申请步骤(2)所述记录包括使用用于检测光线明暗程度的探头进行记录检测和/或使用相机进行检测。
可选地,步骤(2)所述记录待检测焊缝靶材图像过程中还存在每旋转8-12°,旋转停顿至少1s,以使用相机对红光照射区域进行拍照的步骤。
本申请所述停顿的时间至少为1s,例如可以是1s、2s、3s、4s、5s、6s或10s,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。相机为了记录较为清晰的红光照射区域照片需要较长的拍摄时间,靶材旋转过程中进行拍摄不利于得到清晰图片。同样的,停顿时间较短不利于得到清晰照片;停顿时间较长不利于提高检测效率。
作为本申请所述检测方法的可选技术方案,所述检测方法包括如下步骤:
(1)622-770nm波长红光照射下分别得到存在气孔的焊接靶材与不存在气孔的焊接靶材的图像,作为红光检测焊接靶材气孔分布的参考特征图集;
(2)待检测靶材绕中心轴旋转360°过程中,边旋转边记录622-770nm波长红光照射下的图像,旋转速度8-12°/s,记录红光照射下图像的频率为1-3次/s,同时每旋转8-12°,旋转停顿至少1s,以使用相机对红光照射区域进行拍照,从而得到待检测靶材焊缝中的气孔分布情况。
相对于现有技术,本申请具有以下有益效果:
(1)本申请利用穿透性强的红光对焊接靶材组件进行检测,检测成本低,且操作简单、安全;
(2)本申请提供的检测方法不仅能够对焊缝内的气孔进行检测,还能够对靶材溅射面可能存在的气孔进行检测,气孔检测限低至0.01mm。
在阅读并理解了详细描述和附图后,可以明白其他方面。
图1为本申请提供的焊接类溅射靶材中气孔的检测方法对焊接类溅射靶材进行检测的示意图。
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制,为了检测一致性,本申请实施例中红光由功率为50W的红光灯产生。
实施例1
本实施例提供了一种焊接类溅射靶材中气孔的检测方法,利用所述检测方法进行检测的示意图如图1所示,包括如下步骤:
(1)680nm波长红光照射下分别得到存在气孔的焊接靶材与不存在气孔的焊接靶材的图像,作为红光检测焊接靶材气孔分布的参考特征图集;其中,得到存在气孔的焊接靶材的图像包括得到存在不同尺寸气孔的焊接靶材的图像,不同尺寸气孔的直径最小为0.01mm;
(2)待检测靶材绕中心轴旋转360°过程中,边旋转边记录680nm波长红光照射下的图像,旋转速度10°/s,记录红光照射下图像的频率为2次/s,同时每旋转10°,旋转停顿2s,以使用相机对红光照射区域进行拍照,通过将记录图像与拍照图像与步骤(1)所得参考特征图集进行对比,得到待检测靶材焊缝中的气孔分布情况。
所述检测方法能够检出直径≥0.01mm的气孔。
实施例2
本实施例提供了一种焊接类溅射靶材中气孔的检测方法,包括如下步骤:
(1)640nm波长红光照射下分别得到存在气孔的焊接靶材与不存在气孔的焊接靶材的图像,作为红光检测焊接靶材气孔分布的参考特征图集;其中,得到存在气孔的焊接靶材的图像包括得到存在不同尺寸气孔的焊接靶材的图像,不同尺寸气孔的直径最小为0.01mm;
(2)待检测靶材绕中心轴旋转360°过程中,边旋转边记录640nm波长红光照射下的图像,旋转速度8°/s,记录红光照射下图像的频率为1次/s,同时每旋转8°,旋转停顿2s,以使用相机对红光照射区域进行拍照,通过将记录图像与拍照图像与步骤(1)所得参考特征图集进行对比,得到待检测靶材焊缝中的气孔分布情况。
所述检测方法能够检出直径≥0.01mm的气孔。
实施例3
本实施例提供了一种焊接类溅射靶材中气孔的检测方法,包括如下步骤:
(1)700nm波长红光照射下分别得到存在气孔的焊接靶材与不存在气孔的焊接靶材的图像,作为红光检测焊接靶材气孔分布的参考特征图集;其中,得到存在气孔的焊接靶材的图像包括得到存在不同尺寸气孔的焊接靶材的图像,不同尺寸气孔的直径最小为0.01mm;
(2)待检测靶材绕中心轴旋转360°过程中,边旋转边记录700nm波长红光照射下的图像,旋转速度12°/s,记录红光照射下图像的频率为3次/s,同时每旋转12°,旋转停顿2s,以使用相机对红光照射区域进行拍照,通过将记录图像与拍照图像与步骤(1)所得参考特征图集进行对比,得到待检测靶材焊缝中的气孔分布情况。
所述检测方法能够检出直径≥0.01mm的气孔。
实施例4
本实施例提供了一种焊接类溅射靶材中气孔的检测方法,包括如下步骤:
(1)622nm波长红光照射下分别得到存在气孔的焊接靶材与不存在气孔的焊接靶材的图像,作为红光检测焊接靶材气孔分布的参考特征图集;其中,得 到存在气孔的焊接靶材的图像包括得到存在不同尺寸气孔的焊接靶材的图像,不同尺寸气孔的直径最小为0.01mm;
(2)待检测靶材绕中心轴旋转360°过程中,边旋转边记录622nm波长红光照射下的图像,旋转速度10°/s,记录红光照射下图像的频率为2次/s,同时每旋转10°,旋转停顿2s,以使用相机对红光照射区域进行拍照,通过将记录图像与拍照图像与步骤(1)所得参考特征图集进行对比,得到待检测靶材焊缝中的气孔分布情况。
所述检测方法能够检出直径≥0.03mm的气孔。
实施例5
本实施例提供了一种焊接类溅射靶材中气孔的检测方法,包括如下步骤:
(1)770nm波长红光照射下分别得到存在气孔的焊接靶材与不存在气孔的焊接靶材的图像,作为红光检测焊接靶材气孔分布的参考特征图集;其中,得到存在气孔的焊接靶材的图像包括得到存在不同尺寸气孔的焊接靶材的图像,不同尺寸气孔的直径最小为0.01mm;
(2)待检测靶材绕中心轴旋转360°过程中,边旋转边记录770nm波长红光照射下的图像,旋转速度10°/s,记录红光照射下图像的频率为2次/s,同时每旋转10°,旋转停顿2s,以使用相机对红光照射区域进行拍照,通过将记录图像与拍照图像与步骤(1)所得参考特征图集进行对比,得到待检测靶材焊缝中的气孔分布情况。
所述检测方法能够检出直径≥0.02mm的气孔。
实施例6
本实施例提供了一种焊接类溅射靶材中气孔的检测方法,包括如下步骤:
(1)680nm波长红光照射下分别得到存在气孔的焊接靶材与不存在气孔的焊接靶材的图像,作为红光检测焊接靶材气孔分布的参考特征图集;其中,得到存在气孔的焊接靶材的图像包括得到存在不同尺寸气孔的焊接靶材的图像,不同尺寸气孔的直径最小为0.01mm;
(2)待检测靶材绕中心轴旋转360°过程中,边旋转边记录770nm波长红光照射下的图像,旋转速度10°/s,记录红光照射下图像的频率为2次/s,同时每旋转10°,旋转停顿2s,以使用相机对红光照射区域进行拍照,通过将记录图像与拍照图像与步骤(1)所得参考特征图集进行对比,得到待检测靶材焊缝中的气孔分布情况。
所述检测方法能够检出直径≥0.05mm的气孔。
实施例6
本实施例提供了一种焊接类溅射靶材中气孔的检测方法,包括如下步骤:
(1)700nm波长红光照射下分别得到存在气孔的焊接靶材与不存在气孔的焊接靶材的图像,作为红光检测焊接靶材气孔分布的参考特征图集;其中,得到存在气孔的焊接靶材的图像包括得到存在不同尺寸气孔的焊接靶材的图像,不同尺寸气孔的直径最小为0.01mm;
(2)待检测靶材绕中心轴旋转360°过程中,边旋转边记录640nm波长红光照射下的图像,旋转速度10°/s,记录红光照射下图像的频率为2次/s,同时每旋转10°,旋转停顿2s,以使用相机对红光照射区域进行拍照,通过将记录图像与拍照图像与步骤(1)所得参考特征图集进行对比,得到待检测靶材焊缝中的气孔分布情况。
所述检测方法能够检出直径≥0.05mm的气孔。
对比例1
本对比例提供了一种焊接类溅射靶材中气孔的检测方法,包括如下步骤:除所用光为黄光外,其余均与实施例1相同。
使用黄光替代红光,无法对焊接类溅射靶材中的气孔进行检测。
对比例2
本对比例提供了一种焊接类溅射靶材中气孔的检测方法,包括如下步骤:除所用光为绿光外,其余均与实施例1相同。
使用绿光替代红光,无法对焊接类溅射靶材中的气孔进行检测。
综上所述,本申请利用穿透性强的红光对溅射靶材中的气孔进行检测,利用图像对比即可分辨直径低至0.01mm的气孔,检测过程简便,且成本低,能够以较低的成本与较高的效率保证溅射靶材中气孔的检测效果。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此。
Claims (10)
- 一种焊接类溅射靶材中气孔的检测方法,其中,所述检测方法包括如下步骤:(1)红光照射下分别得到存在气孔的焊接靶材与不存在气孔的焊接靶材的图像,作为红光检测焊接靶材气孔分布的参考特征图集;(2)记录待检测焊接靶材在红光照射下的图像,并与步骤(1)所得参考特征图集进行对比,从而得到待检测靶材焊缝中的气孔分布情况。
- 根据权利要求1所述的检测方法,其中,步骤(1)所述红光的波长为622-770nm。
- 根据权利要求2所述的检测方法,其中,步骤(2)所述红光的波长为622-770nm。
- 根据权利要求3所述的检测方法,其中,步骤(1)所述红光与步骤(2)所述红光的波长相同。
- 根据权利要求1-4任一项所述的检测方法,其中,步骤(1)所述得到焊接靶材的图像为得到焊接靶材的焊缝图像和/或焊接靶材的焊接面图像。
- 根据权利要求1-5任一项所述的检测方法,其中,步骤(2)所述记录待检测焊接靶材在红光照射下的图像为记录焊接靶材焊缝和/或焊接靶材焊接面在红光照射下的图像。
- 根据权利要求1-6任一项所述的检测方法,其中,步骤(2)所述记录待检测焊接靶材在红光照射下的图像为待检测靶材绕中心轴旋转360°过程中,边旋转边记录红光照射下的图像。
- 根据权利要求7所述的检测方法,其中,待检测焊接靶材的旋转速度为8-12°/s,记录红光照射下图像的频率为1-3次/s。
- 根据权利要求8所述的检测方法,其中,步骤(2)所述记录待检测焊缝靶材图像过程中还存在每旋转8-12°,旋转停顿至少1s,以使用相机对红光照射区域进行拍照的步骤。
- 根据权利要求1-9任一项所述的检测方法,其中,所述检测方法包括如下步骤:(1)622-770nm波长红光照射下分别得到存在气孔的焊接靶材与不存在气孔的焊接靶材的图像,作为红光检测焊接靶材气孔分布的参考特征图集;(2)待检测靶材绕中心轴旋转360°过程中,边旋转边记录622-770nm波长红光照射下的图像,旋转速度8-12°/s,记录红光照射下图像的频率为1-3次/s,同时每旋转8-12°,旋转停顿至少1s,以使用相机对红光照射区域进行拍照,从而得到待检测靶材焊缝中的气孔分布情况。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG11202007553QA SG11202007553QA (en) | 2019-12-25 | 2020-04-10 | Detection method for air holes in welding sputtering target material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911357693.9A CN110992362A (zh) | 2019-12-25 | 2019-12-25 | 一种焊接类溅射靶材中气孔的检测方法 |
CN201911357693.9 | 2019-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021128652A1 true WO2021128652A1 (zh) | 2021-07-01 |
Family
ID=70075440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/084104 WO2021128652A1 (zh) | 2019-12-25 | 2020-04-10 | 一种焊接类溅射靶材中气孔的检测方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN110992362A (zh) |
SG (1) | SG11202007553QA (zh) |
WO (1) | WO2021128652A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111551565A (zh) * | 2020-06-19 | 2020-08-18 | 湖南恒岳重钢钢结构工程有限公司 | 一种基于机器视觉的风电塔筒焊缝缺陷检测装置及方法 |
CN111812202A (zh) * | 2020-08-10 | 2020-10-23 | 宁波江丰电子材料股份有限公司 | 一种利用超声波检测焊接型钼靶焊缝的方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000028548A (ja) * | 1998-07-13 | 2000-01-28 | Denshi Jiki Kogyo Kk | 蛍光探傷法およびその装置 |
CN104977305A (zh) * | 2015-06-29 | 2015-10-14 | 华中科技大学 | 一种基于红外视觉的焊接质量分析装置及分析方法 |
CN106442543A (zh) * | 2016-10-14 | 2017-02-22 | 龚新林 | 一种在线识别金属工件连续激光焊缝表面质量的检测方法 |
CN107081503A (zh) * | 2017-05-31 | 2017-08-22 | 温州大学 | 一种弧焊质量的红外无损检测装置及其红外无损检测方法 |
-
2019
- 2019-12-25 CN CN201911357693.9A patent/CN110992362A/zh active Pending
-
2020
- 2020-04-10 SG SG11202007553QA patent/SG11202007553QA/en unknown
- 2020-04-10 WO PCT/CN2020/084104 patent/WO2021128652A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000028548A (ja) * | 1998-07-13 | 2000-01-28 | Denshi Jiki Kogyo Kk | 蛍光探傷法およびその装置 |
CN104977305A (zh) * | 2015-06-29 | 2015-10-14 | 华中科技大学 | 一种基于红外视觉的焊接质量分析装置及分析方法 |
CN106442543A (zh) * | 2016-10-14 | 2017-02-22 | 龚新林 | 一种在线识别金属工件连续激光焊缝表面质量的检测方法 |
CN107081503A (zh) * | 2017-05-31 | 2017-08-22 | 温州大学 | 一种弧焊质量的红外无损检测装置及其红外无损检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110992362A (zh) | 2020-04-10 |
SG11202007553QA (en) | 2021-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021128652A1 (zh) | 一种焊接类溅射靶材中气孔的检测方法 | |
CN106814135B (zh) | 电弧塞焊接头的相控阵超声自动检测方法 | |
CN109374627A (zh) | 一种材料内部缺陷的激光超声透射时延检测方法 | |
CN105436688A (zh) | 一种变厚度zl114a铝合金的真空电子束焊接方法 | |
US20160144452A1 (en) | System and method for detecting a defect in a workpiece undergoing material processing by an energy point source | |
CN111307946B (zh) | 奥氏体不锈钢对接焊接接头的超声检测方法 | |
Saravanan et al. | Non-destructive evaluation of friction stir welded joints by X-ray radiography and infrared thermography | |
CN108445076A (zh) | 一种基于t形角焊缝横向裂纹超声波检测方法 | |
CN104198505A (zh) | 聚乙烯管道热熔焊接质量的微焦点三维ct成像检测方法 | |
CN113281363A (zh) | 一种铝合金激光焊接结构复合评估装备与方法 | |
Murthy et al. | Application of image processing and acoustic emission technique in monitoring of friction stir welding process | |
CN111299832A (zh) | 一种高端装备制造机械臂 | |
CN105717197A (zh) | 一种厚壁管环焊缝表层缺陷衍射时差超声检测方法 | |
CN105065140A (zh) | 一种固体火箭发动机i界面检测系统及其方法 | |
Tang et al. | Nondestructive testing method for welding quality in key parts of ocean-going ships | |
CN103217476A (zh) | 一种锅炉集箱管排对接焊缝表面缺陷超声表面波检测方法 | |
Li et al. | Crack imaging by scanning laser line thermography | |
JP3314849B2 (ja) | 非破壊検査用標準試験体およびその製造方法 | |
CN105911142A (zh) | 一种铝合金中空型材搅拌摩擦焊相控阵检测装置及方法 | |
Kumar | Weld quality analysis of TIG, laser and electron beam welded SS 304 and 316 materials with NDT techniques | |
RU2165616C2 (ru) | Способ контроля сварных швов | |
JPH01223342A (ja) | 非破壊検査用標準試験体の製造方法 | |
Casalegno et al. | Non-destructive characterization of carbon fiber composite/Cu joints for nuclear fusion applications | |
Yikun et al. | Application of Industrial CT in Gas Turbine Blade Inspection | |
JPS62118994A (ja) | レ−ザ−突合わせ溶接品質検査装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20907981 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20907981 Country of ref document: EP Kind code of ref document: A1 |