WO2021128309A1 - 随机接入的方法和终端设备 - Google Patents

随机接入的方法和终端设备 Download PDF

Info

Publication number
WO2021128309A1
WO2021128309A1 PCT/CN2019/129343 CN2019129343W WO2021128309A1 WO 2021128309 A1 WO2021128309 A1 WO 2021128309A1 CN 2019129343 W CN2019129343 W CN 2019129343W WO 2021128309 A1 WO2021128309 A1 WO 2021128309A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
ssb
random access
information
target
Prior art date
Application number
PCT/CN2019/129343
Other languages
English (en)
French (fr)
Inventor
尤心
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/129343 priority Critical patent/WO2021128309A1/zh
Priority to CN201980103317.9A priority patent/CN114868433A/zh
Priority to EP19957386.6A priority patent/EP4024971A4/en
Publication of WO2021128309A1 publication Critical patent/WO2021128309A1/zh
Priority to US17/849,509 priority patent/US20220330347A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a method and terminal device for random access.
  • the Non-Terrestrial Network (NTN) system uses satellite communication to provide communication services to ground users.
  • the distance between the terminal equipment and the satellite is large, and the signal transmission delay between the terminal equipment and the satellite increases significantly.
  • TA timing advance
  • the length of the receiving window for the network device to receive the preamble needs to be increased . This not only increases the implementation complexity of the network equipment, but also reduces the capacity of the random access channel. Therefore, how to implement effective random access in the NTN system has become an urgent problem to be solved.
  • This application provides a random access method and terminal equipment, which can realize effective random access in the NTN system.
  • a random access method which includes: a terminal device determines a target TA from a plurality of timing advances TA according to first information, wherein the first information is the same as the one received by the terminal device.
  • the SSB is associated and/or associated with the area where the terminal device is located; the terminal device sends the first message in the random access process to the network device according to the target TA.
  • a terminal device in a second aspect, can execute the foregoing first aspect or the method in any optional implementation manner of the first aspect.
  • the terminal device includes a functional module for executing the foregoing first aspect or any possible implementation of the first aspect.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • an apparatus for random access including a processor.
  • the processor is used to call and run a computer program from the memory, so that the device installed with the device executes the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • the device is for example a chip.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • a computer program product including computer program instructions that cause a computer to execute the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • a computer program which when running on a computer, causes the computer to execute the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • the terminal equipment corresponding to different SSB indexes or different areas uses different TAs. Therefore, for each SSB index or terminal equipment corresponding to each area, the distance difference between the nearest and farthest terminal equipment from the network equipment is smaller than the distance between the nearest and farthest terminal equipment from the network equipment in the entire cell. Correspondingly, the maximum delay difference will be significantly reduced. In this way, the length of the receiving window for the network device to receive the preamble can be reduced, which reduces the complexity of the network device's implementation.
  • terminal devices of different SSB indexes or different regions use different TAs to send the preamble. In this way, effective random access in the NTN system is realized without increasing the length of the receiving window.
  • Fig. 1 is a schematic diagram of a possible wireless communication system applied by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a 4-step random access process.
  • Figure 3 is a schematic diagram of a non-contention-based random access process.
  • Figure 4 is a schematic diagram of a 2-step random access process.
  • Fig. 5 is a schematic diagram of a receiving window for receiving a preamble in NTN.
  • Figure 6 is a schematic diagram of the overlap of receiving windows in NTN.
  • FIG. 7 is a schematic flowchart of a random access method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of multiple regions divided according to the SSB index according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of multiple areas configured by a network device in an embodiment of the present application.
  • Fig. 10 is a schematic flowchart of the method shown in Fig. 7 applied in a 4-step random access process.
  • Fig. 11 is a schematic flowchart of the method shown in Fig. 7 applied in a 2-step random access process.
  • FIG. 12 is a schematic block diagram of a random access apparatus according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a random access device according to an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • Time Division Duplex Time Division Duplex
  • TDD Time Division Duplex
  • LTE-A Long Term Evolution
  • NR New Radio
  • NR NR
  • LTE-based access to unlicensed on unlicensed frequency bands spectrum LTE-U
  • NR NR-based access to unlicensed spectrum
  • NR-U Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 includes a network device 110 and at least one terminal device 120 located within the coverage area of the network device 110.
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the terminal device 120 can communicate with the network device 110 through electromagnetic waves.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 110 may be a relay station , Access points, in-vehicle devices, wearable devices, future network side devices, or network devices in the future evolved Public Land Mobile Network (PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in an LTE system
  • CRAN Cloud Radio Access Network
  • PLMN Public Land Mobile Network
  • the terminal device 120 may be mobile or fixed.
  • terminal equipment can refer to an access terminal, user equipment (UE), user unit, user station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user Device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, future terminal devices, or terminal devices in the future evolved PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Fig. 1 exemplarily shows one network device and two terminal devices, but the present application is not limited to this.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminal devices.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity.
  • the embodiments of the application can be applied to a non-terrestrial communication network (Non Terrestrial Network, NTN) system.
  • NTN Non Terrestrial Network
  • the network device 110 in FIG. 1 can communicate with the terminal device through a satellite, or the network device 110 itself is a satellite.
  • the NTN system uses satellite communication to provide communication services to ground users.
  • satellite communication is not restricted by the user area.
  • general terrestrial communication cannot cover the ocean, mountains, deserts and other areas where communication equipment cannot be installed or because of the sparse population. Satellites can cover a larger ground, and satellites can orbit the earth, so theoretically every corner of the earth can be covered by satellite communications.
  • satellite communication has greater social value. Satellite communication can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these areas can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital gap with developed areas and promoting The development of these areas.
  • the satellite communication distance is long, and the communication cost does not increase significantly when the communication distance increases.
  • the stability of satellite communication is high, and it is not restricted by natural disasters.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO Geostationary Earth Orbit
  • HEO Highly elliptical Orbit
  • the main research at this stage is LEO satellite and GEO satellite.
  • the altitude range of LEO satellites is 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes, the signal propagation distance is short, the link loss is small, and the requirement for the transmission power of the user terminal is not high.
  • the orbital height of the GEO satellite is 35786km, and the rotation period around the earth is 24 hours.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites In order to ensure the coverage of satellites and increase the system capacity of the entire satellite communication system, satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. Ground area.
  • the terminal device After the cell search process, the terminal device has achieved downlink synchronization with the cell, so the terminal device can receive downlink data. However, the terminal equipment can only perform uplink transmission if it has achieved uplink synchronization with the cell.
  • the terminal device can establish a connection with the cell and obtain uplink synchronization through a random access (Random Access, RA) process. That is to say, through random access, the terminal device can obtain uplink synchronization, and may also obtain a unique identifier assigned to it by the network device, that is, the Cell Radio Network Temporary Identity (C-RNTI).
  • RA Random Access
  • the random access process may include a 4-step random access process and a 2-step random access process.
  • the 4-step random access process and the 2-step random access process are respectively introduced in conjunction with FIG. 2 and FIG. 3.
  • 4-step random access and 2-step random access can usually be triggered by the following types of trigger events:
  • the terminal device switches from the radio resource control (Radio Resource Control, RRC) idle state (RRC_IDLE state) to the RRC connected state (RRC_CONNECTED state).
  • RRC Radio Resource Control
  • the terminal device needs to establish uplink synchronization with the new cell.
  • Radio Link Failure Radio Link Failure
  • the uplink In the RRC connection state, when uplink data arrives, the uplink is in an "out of synchronization" state or there is no available physical uplink control channel (PUCCH) resource for sending a scheduling request (SR).
  • PUCCH physical uplink control channel
  • the terminal device switches from the RRC inactive state (RRC_INACTIVE state) to the RRC_CONNECTED state.
  • the first message to the fourth message in the 4-step random access process are respectively recorded as messages (Message, Msg)1 (Msg 1), Msg 2, Msg 3, and Msg 4, and add
  • Msg A and Msg B respectively.
  • FIG. 2 is a flow chart of 4-step random access. As shown in Figure 2, the 4-step random access process can include the following four steps:
  • Step 1 The terminal device sends Msg 1 to the network device.
  • the terminal device selects a physical random access channel (Physical Random Access Channel, PRACH) resource, and sends the selected random access preamble (Random Access Preamble, RAP) on the selected PRACH resource, or it is called a preamble or random access.
  • PRACH Physical Random Access Channel
  • RAP Random Access Preamble
  • the PRACH resource and preamble can be specified by the network device.
  • the network device estimates the uplink timing (Timing) and the size of the uplink grant (grant) required for the terminal to transmit Msg 3 based on the preamble.
  • Step 2 The network device sends Msg 2 to the terminal device.
  • a random access response time window (ra-ResponseWindow) is opened.
  • the terminal device monitors the random access radio network temporary identity (Random Access-Radio Network Temporary Identity, RA-RNTI) scrambled PDCCH within this time window.
  • RA-RNTI Random Access-Radio Network Temporary Identity
  • the RA-RNTI is related to the PRACH resource used by the terminal device to send Msg1.
  • the terminal device After successfully receiving the PDCCH scrambled by the RA-RNTI, the terminal device can obtain the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) scheduled by the PDCCH, including a random access response (Random Access Response, RAR) message.
  • Physical Downlink Shared Channel Physical Downlink Shared Channel
  • RAR Random Access Response
  • RAR includes, for example, the following information:
  • Backoff indicator (Backoff Indicator, BI), carried in the subheader (subheader) of RAR, used to indicate the backoff time for retransmission of Msg1;
  • Random access preamble identifier used by the network device in response to receiving the preamble index (preamble index);
  • Timing Advance Group the payload carried on the RAR, used to adjust the uplink timing
  • Uplink grant (UL grant): an uplink resource indication for scheduling Msg 3; and,
  • Temporary Cell Radio Network Temporary Identifier used to scramble the Msg 4 PDCCH during initial access.
  • the terminal device If the terminal receives the PDCCH scrambled by the RAR-RNTI, and the RAR includes the preamble index sent by itself, the terminal device considers that the Msg 2 is successfully received.
  • Step 3 The terminal device sends Msg 3 to the network device.
  • the terminal device transmits Msg 3 on the resources scheduled by the network device, and Msg 3 is used to notify the network device of what event triggered the random access process. For example, if it is an initial access, the terminal device carries the identification (UE ID) and establishment cause of the terminal device in the Msg 3; if it is RRC reestablishment, the terminal device carries the connected UE identification and the establishment cause in the Msg 3 Establishment cause.
  • UE ID identification
  • RRC reestablishment the terminal device carries the connected UE identification and the establishment cause in the Msg 3 Establishment cause.
  • Step 4 The network device sends Msg 4 to the terminal device.
  • Msg 4 has two functions, one is for contention conflict resolution, and the other is for network equipment to transmit RRC configuration messages to terminal equipment. There are two ways to resolve contention conflicts: if the UE carries C-RNTI in Msg 3, Msg 4 is scheduled by PDCCH scrambled by C-RNTI; if the terminal device does not carry C-RNTI in Msg 3, such as initial connection Msg 4 is scheduled through the PDCCH scrambled by the Temporary Cell-Radio Network Temporary Identity (TC-RNTI).
  • TC-RNTI Temporary Cell-Radio Network Temporary Identity
  • the conflict resolution is that the terminal device receives the PDSCH of the Msg 4 and matches the public control in the PDSCH.
  • Channel Common Control Channel, CCCH
  • Service Data Unit Service Data Unit
  • the network device can know the time when the terminal device sends the preamble according to the PRACH resource used by the terminal device to send the preamble, so as to determine the initial TA of the terminal device according to the sending time and receiving time of the preamble, and pass RAR informs the terminal equipment.
  • the method of the embodiment of the present application can be applied to a contention-based random access process (contention-based RACH) and a non-competition-based random access process (contention free RACH).
  • Figure 2 shows the contention-based random access process.
  • the non-contention-based random access process for example, as shown in FIG. 3, after the terminal device successfully receives the Msg 2, the random access process ends.
  • the 4-step random access process has a large delay, so in NR, the terminal device can also initiate a 2-step random access process to adapt to low-latency and high-reliability services and reduce the delay of random access.
  • Msg 1 and Msg 3 in the 4-step random access process can be combined into Msg A in the 2-step random access process.
  • Msg2 and Msg4 are combined into MsgB in the 2-step random access process.
  • step 1 the terminal device sends Msg A to the network device.
  • Msg A includes the preamble carried on the PRACH and the load information carried on the PUSCH.
  • step 2 the network device sends Msg B to the terminal device.
  • the terminal device monitors the response message sent by the network device within the random access response time window, and if it receives an indication that the contention conflict resolution is successful sent by the network device, the terminal device ends the random access process.
  • Msg A may include part or all of the information carried in Msg 1 and Msg 3, or may also include other information.
  • Msg B may include part or all of the information carried in Msg 2 and Msg 4, or may also include other information.
  • the coverage area of the NR system is relatively small.
  • the signal transmission delay difference between it and the network equipment is not large.
  • the time when the sent preamble arrives at the network device are all within a receiving window .
  • the network device can determine the time when the terminal device sends the preamble, so that the TA adjustment amount of the terminal device can be determined.
  • the signal transmission delay between the terminal equipment and the satellite has increased significantly.
  • the signal transmission delays between them and the satellites may also differ greatly due to their different locations.
  • the maximum difference in signal transmission delay between different terminal equipment and network equipment in an NTN cell is 10.3 ms.
  • Such a large signal transmission delay difference will cause the preambles sent by different terminal devices in the same RO to arrive at the network device at different times.
  • the length of the receiving window of the network equipment should be extended to twice the maximum delay difference.
  • the "2 times" here is because the downlink timing of the terminal equipment is relatively
  • the network equipment has a delay offset.
  • the maximum delay difference the maximum one-way delay-the minimum one-way delay.
  • the one-way delay is the signal transmission delay between the terminal device and the network device.
  • UE1 is the terminal device closest to the network device in the cell
  • UE2 is the terminal device furthest from the network device in the cell.
  • the delay between UE2 and the network device is the maximum one-way delay of the cell
  • the delay between UE1 and the network device is the minimum one-way delay of the cell.
  • RO is used for terminal equipment to send the preamble.
  • the receiving window of the network equipment for receiving the preamble has a corresponding relationship with the RO.
  • the network equipment can determine the position of the RO where the terminal equipment sends the preamble according to the position of the receiving window for receiving the preamble, and Use this to determine the TA adjustment amount for the terminal device.
  • the receiving window of the preamble is referred to as the receiving window for short.
  • UE1 and UE2 send the preamble in the same RO, but since UE1 is the closest to the network device and UE2 is the farthest from the network device, the delays between UE1 and UE2 and the network device are different. Therefore, the network device receives the preambles sent by UE1 and UE2 at locations T1 and T2, respectively.
  • the length of the receiving window should be set to at least 2* (maximum one-way delay-minimum one-way delay) to ensure that the preamble sent by the same RO is received within the same receiving window.
  • the network device after receiving the preamble, the network device needs to know which RO the terminal device sent the preamble on, so as to determine the initial TA of the terminal device. Due to the need to introduce a longer reception window, if the time interval between adjacent ROs in the time domain is less than the length of the reception window, the reception windows corresponding to the ROs at different time positions overlap in the time domain.
  • the receiving window corresponding to RO1 is the position shown in T1
  • the receiving window corresponding to RO2 adjacent to RO1 is the position shown in T2
  • the distance between RO1 and the receiving window T1 is the smallest one-way Delay*2
  • the distance between RO2 and the receiving window T2 is the minimum one-way delay*2
  • the maximum delay difference maximum one-way delay-minimum one-way delay .
  • the network device can ensure that the time interval between adjacent ROs in the time domain is not less than the receiving window when configuring RACH resources, but this method will reduce the RACH capacity and affect the random access performance .
  • the length of the receiving window for the network device to receive the preamble needs to be extended, and the length of the receiving window is directly related to the coverage of the NTN cell.
  • the larger the coverage of the cell the longer the length of the window that needs to be supported.
  • the extension of the length of the receiving window brings great challenges to the implementation of network equipment; on the other hand, if the time interval between adjacent ROs is increased to avoid the problems in Figure 5, it will lead to RACH capacity. The reduction.
  • a random access method is proposed in the embodiment of the present application, which can realize effective random access in the NTN system without increasing the length of the above-mentioned receiving window.
  • the network equipment in the embodiments of the present application may be a satellite; or a ground station, such as a base station.
  • the distance between the terminal device and the network device is the distance between the terminal device and the satellite; when the network device is a ground station, the distance between the terminal device and the network device is the distance between the terminal device and the network device.
  • the satellite can realize the function of the base station, so the network device is the satellite, or in other words, the satellite is used as the network device to communicate with the terminal device.
  • the distance between the terminal equipment and the network equipment is the distance between the terminal equipment and the satellite.
  • the uplink data from the terminal device is sent to the ground station via satellite, and the downlink data from the ground station is sent to the terminal device via satellite, so the network device is the ground station.
  • the distance between the terminal equipment and the network equipment includes the distance between the terminal equipment and the satellite, and the sum of the distance between the satellite and the ground station. After the satellite receives the measurement report reported by the terminal device, it will be forwarded to the ground station.
  • the satellite In the case of LEO, the satellite is moving, and the distance between the satellite and the ground station is also changing; in the case of GEO, the satellite is not moving, and the distance between the satellite and the ground station is fixed.
  • FIG. 7 is a schematic flowchart of a random access method according to an embodiment of the present application.
  • the method shown in FIG. 7 can be executed by a terminal device.
  • the method can be applied to any random access process, for example, it can be applied to a 2-step random access process or a 4-step random access process, and it can be applied to a contention-based random access process and a non-competition random access process.
  • the terminal device may be, for example, the terminal device 120 shown in FIG. 1.
  • the method includes some or all of the following steps.
  • the terminal device determines a target TA among multiple TAs according to the first information.
  • the first information is associated with a synchronization signal block (Synchronizing Signal/PBCH Block, SSB, SS Block, or SS/PBCH Block) received by the terminal device, and/or, the first information is related to the area where the terminal device is located Associated.
  • a synchronization signal block Synchrozing Signal/PBCH Block, SSB, SS Block, or SS/PBCH Block
  • the terminal device sends the first message in the random access process to the network device according to the target TA.
  • the first information is associated with the SSB received by the terminal device.
  • the first information includes the SSB index of the SSB received by the terminal device.
  • the multiple TAs described in 710 respectively correspond to multiple SSB indexes.
  • the terminal device determines the TA corresponding to the SSB index as the target TA according to the SSB index of the received SSB and the correspondence between the multiple TAs and the multiple SSB indexes.
  • the TA is a common TA (common TA). Different SSB indexes correspond to different public TAs.
  • a terminal device that detects an SSB with the same SSB index uses the same public TA to send Msg 1 or Msg A.
  • the terminal device selects a target TA among multiple TAs based on the received SSB, and uses the target TA to send Msg 1 or Msg A to the network device.
  • the network device can broadcast information of the multiple TAs to the terminal device.
  • the multiple TAs respectively correspond to multiple SSB indexes, and there may be a one-to-one correspondence between multiple TAs and multiple SSB indexes, or one TA may correspond to one or more SSB indexes, or one SSB index.
  • the embodiment of the present application does not limit this, and the following description is made by taking a one-to-one correspondence between multiple TAs and multiple SSB indexes as an example.
  • TA1 to TA n correspond to SSB index 1 to SSB index n in a one-to-one correspondence.
  • the SSB index of the SSB received by the terminal device if it is SSB index 1, then the terminal device determines that the target TA is TA1; if it is SSB index 2, then the target TA is TA2; ...; if it is SSB index n, then The target TA is TA n .
  • the SSB includes a physical broadcast channel (Physical Broadcast Channel, PBCH), and the PBCH carries the SSB index of the SSB.
  • PBCH Physical Broadcast Channel
  • the terminal device can obtain its SSB index from the PBCH in the received SSB.
  • the measured value of the SSB received by the terminal device is greater than a preset threshold.
  • a preset threshold For example, the measured value of Reference Signal Receiving Power (RSRP) and/or Reference Signal Receiving Quality (RSRQ) of the SSB is greater than the corresponding preset threshold.
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • the terminal device measures the SSB, and if the RSRP of the SSB is greater than the preset RSRP threshold, and/or the RSRQ of the SSB is greater than the preset RSRQ threshold, the terminal device considers the TA corresponding to the SSB index of the SSB as the target TA.
  • the network device may configure the preset threshold, for example, configure an RSRP threshold and/or an RSRQ threshold. For example, in Table 1, taking RSRP as an example, if the SSB index of the SSB received by the terminal device is SSB index 1, and the RSRP of the SSB is greater than the RSRP threshold, the terminal device determines that the target TA is TA1; if it is If the SSB index is 2, and the RSRP of the SSB is greater than the RSRP threshold, the terminal device determines that the target TA is TA2; ...; if it is the SSB index n, and the RSRP of the SSB is greater than the RSRP threshold, the terminal device determines the target TA Is TA n .
  • Table 1 taking RSRP as an example, if the SSB index of the SSB received by the terminal device is SSB index 1, and the RSRP of the SSB is greater than the RSRP threshold, the terminal device determine
  • the terminal device may detect the SSB of SSB index 1 and the SSB of SSB index 2. At this time, the terminal device selects the measured value to be greater than the preset threshold And select the corresponding TA according to its SSB index.
  • the network device may also be configured with multiple thresholds. For example, as shown in Table 2, taking RSRP as an example, n TAs correspond to n SSB indexes and correspond to n RSRP thresholds. These n RSRP thresholds may be the same in whole or in part, or all of them are different.
  • the terminal device determines that the target TA is TA1; if the SSB index of the SSB is SSB index 2 , And the RSRP of the SSB is greater than the RSRP threshold 2, then the terminal device determines that the target TA is TA2; ...; if the SSB index of the SSB is SSB index n, and the RSRP of the SSB is greater than the RSRP threshold n, then the terminal device determines the The target TA is TA n .
  • SSB index TA RSRP threshold SSB index 1 TA1 RSRP threshold 1 SSB index 2 TA1 RSRP threshold 2 ... ... ... SSB index n TA n RSRP threshold n
  • the correspondence between multiple SSB indexes and multiple TAs may be sent by the network device to the terminal device, or may be pre-configured, for example, agreed upon by a protocol.
  • the terminal device may receive instruction information sent by the network device, where the instruction information is used to indicate the corresponding relationship; or, the terminal device may obtain the pre-stored corresponding relationship.
  • the corresponding relationship may be displayed, for example, as shown in Table 1, which is instructed by the network device to the terminal device or agreed in advance; or, the corresponding relationship may be implicit, and the network device may broadcast the multiple TAs to the terminal device.
  • the device determines the target TA based on the implicit relationship. For example, multiple SSB indexes from small to large or from large to small can be indexed to multiple TAs from small to large or from large to small, corresponding to each other in sequence.
  • implicit indication methods can also be used, which are not limited here.
  • the first information is associated with the area where the terminal device is located.
  • the cell where the terminal device is located includes multiple areas
  • the multiple TAs in 710 respectively correspond to the multiple areas
  • the first information includes information about the target area where the terminal device is located in the multiple areas.
  • the terminal device determines the TA corresponding to the target area as the target TA according to the target area and the correspondence between the multiple TAs and the multiple areas.
  • the terminal device has positioning capabilities.
  • the terminal device may determine its own location based on the positioning capability, and determine which area of the multiple areas it is located in according to the information of the multiple areas.
  • the TA is a common TA (common TA). Different areas in the small area correspond to different public TAs. Terminal devices located in the same area use the same public TA to send Msg 1 or Msg A. Based on the positioning capability, the terminal device determines the target area where it is located in multiple areas, and uses the TA corresponding to the target area to send Msg 1 or Msg A to the network device.
  • the cell is divided into multiple regions.
  • the multiple TAs respectively correspond to the multiple areas, where multiple TAs may correspond to multiple areas one-to-one, or one TA may correspond to one or more areas, or one area may correspond to one or Multiple TAs, the embodiment of the present application does not limit this, and the following descriptions are made by taking multiple TAs corresponding to multiple regions one-to-one as an example.
  • TA1 to the TA n within a cell region 1 as shown in Table III correspond to region n. If the terminal device determines that it is located in area 1, the terminal device determines that the target TA is TA1; if the terminal device determines that it is located in area 2, the terminal device determines that the target TA is TA2; ...; if the terminal device determines that it is located in area n, Then the terminal device determines that the target TA is TA n .
  • the correspondence between multiple areas and multiple TAs may be sent by the network device to the terminal device, or may be a pre-configured protocol agreement, for example.
  • the terminal device may receive instruction information sent by the network device, where the instruction information is used to indicate the corresponding relationship; or, the terminal device may obtain the pre-stored corresponding relationship.
  • the corresponding relationship may be displayed, for example, as shown in Table 1, which is instructed by the network device to the terminal device or agreed in advance; or, the corresponding relationship may be implicit, and the network device may broadcast the multiple TAs to the terminal device.
  • the device determines the target TA based on the implicit relationship. For example, multiple SSB indexes from small to large or from large to small can be indexed to multiple TAs from small to large or from large to small, corresponding to each other in sequence.
  • implicit indication methods can also be used, which are not limited here.
  • the embodiment of the present application does not make any limitation on the method of area division.
  • the multiple areas may be coverage areas of multiple SSBs with different SSB indexes.
  • the area covered by the SSB can be understood as the area covered by the beam corresponding to the SSB, and different beams cover different areas. Therefore, the cell can be divided into multiple areas according to the deployment of the SSB.
  • the physical cell identifiers (Physical Cell Identifier, PCI) of cell 1, cell 2, and cell 3 are PCI 1, PCI 2, and PCI 3, respectively.
  • PCI Physical Cell Identifier
  • area 1 is the area covered by SSB of SSB index 1
  • area 2 is the area covered by SSB of SSB index 2
  • area 2 corresponds to TA2
  • area 3 is covered by SSB of SSB index 3
  • Area 3 corresponds to TA3
  • Area 4 is the area covered by the SSB of SSB index L, and area 4 corresponds to TA4.
  • the terminal device receives the SSB.
  • the terminal device uses TA1 to send Msg 1 or Msg A; if the PBCH carries SSB index 2, the terminal device uses TA2 to send Msg 1 or Msg A; if the PBCH carries SSB Index 3, the terminal device uses TA3 to send Msg 1 or Msg A; if the PBCH carries SSB index L, the terminal device uses TA4 to send Msg 1 or Msg A.
  • the cell can be divided into multiple regions according to the measured value of the reference signal.
  • the multiple areas respectively correspond to multiple value ranges
  • the target area where the terminal device is located is: an area corresponding to the value range where the measured value of the SSB is located.
  • the measurement value is, for example, a measurement value of RSRP and/or RSRQ.
  • N-1 thresholds can be set, which are threshold 1 to threshold N-1.
  • the area where SSB measurement value ⁇ threshold value 1 is area 1
  • the area where threshold value 1 ⁇ SSB measurement value ⁇ threshold value 2 is area 2,...
  • the area where threshold i-1 ⁇ SSB measurement value ⁇ threshold i is area i, where 1 ⁇ i ⁇ N-1,..., the area where the SSB measurement value ⁇ the threshold value N-1 is the area N.
  • the multiple areas in the cell may be configured by a network device.
  • the multiple areas in the network device configuration cell include area 1 to area 9, and area 1 to area 9 correspond to TA1 to TA9, respectively.
  • the terminal device determines the current area based on its positioning capability, and uses the TA corresponding to the area to send Msg 1 or Msg A. For example, if the terminal device is currently in area 2, it uses TA2 corresponding to area 2 to send Msg 1 or Msg A.
  • the terminal device may obtain the information of the multiple regions from a satellite ephemeris or a network device, for example.
  • terminal devices since terminal devices are divided according to the SSB index or the area where they are located, terminal devices corresponding to different SSB indexes or different areas use different TAs. Therefore, for each SSB index or terminal equipment corresponding to each area, the distance difference between the nearest and farthest terminal equipment from the network equipment is smaller than the distance between the nearest and farthest terminal equipment from the network equipment in the entire cell. Correspondingly, the maximum delay difference will be significantly reduced. In this way, the length of the receiving window for the network device to receive the preamble can be reduced, reducing the complexity of the network device's implementation, and avoiding the aforementioned problem shown in FIG. 6. In addition, terminal devices of different SSB indexes or different regions use different TAs to send the preamble. In this way, effective random access in the NTN system is realized without increasing the length of the receiving window.
  • the terminal device selects the PRACH resource, namely RO, based on the configuration of the network device, and determines the target TA according to the aforementioned method, and then uses the target TA to adjust its own uplink timing, and then sends Msg 1 or Msg A.
  • the PRACH resource namely RO
  • the network device For each RO, the network device starts a receiving window for receiving the preamble at the time domain position corresponding to the RO.
  • the network device receives the preamble in the receiving window corresponding to the RO, and determines the TA adjustment amount for the terminal device based on the time difference between the sending time and the receiving time of the preamble.
  • the TA adjustment amount is caused by the deviation between the position of the terminal device and the position of the reference point of the public TA, and the distance between the position of the terminal device and the satellite.
  • the TA adjustment amount exclusive to the terminal device can be sent to the terminal device through the RAR.
  • the terminal device can receive the Msg 2 in the 4-step random access process sent by the network device, where the Msg 2 includes the TA adjustment amount.
  • the terminal device determines its initial TA according to the TA adjustment amount and the common TA corresponding to the target area.
  • the terminal device may send the third message in the 4-step random access process, namely Msg 3, to the network device according to the TA corresponding to the target area and the TA adjustment amount.
  • Msg 3 includes TA information
  • the TA information includes the TA corresponding to the target area, or includes the sum of the TA corresponding to the target area and the TA adjustment amount.
  • the TA information may be TA value, TA index, or other representation methods.
  • the terminal device determines the target TA.
  • the terminal device uses the target TA to send Msg1.
  • the network device determines the TA adjustment amount for the terminal device according to Msg 1.
  • the network device sends the TA adjustment value to the terminal device through Msg2.
  • the terminal device adjusts the target TA based on the TA adjustment amount.
  • the terminal device carries the target TA in the Msg 3, or carries the adjusted TA, that is, the initial TA.
  • the network device learns the TA of the terminal device.
  • the terminal device can receive Msg B in the 2-step random access process sent by the network device, where Msg B includes the TA adjustment amount.
  • Msg A may include TA information, and the TA information is the TA corresponding to the target area.
  • the TA information may be TA value, TA index, or other representation methods.
  • the terminal device determines the target TA.
  • the terminal device uses the target TA to send Msg A.
  • the network device learns the target TA, and determines the TA adjustment amount for the terminal device according to Msg A.
  • the terminal device adjusts the target TA based on the TA adjustment amount.
  • the size of the sequence number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not correspond to the implementation process of the embodiments of the present application. Constitute any limitation.
  • the device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the device may be divided into functional units according to the foregoing method. For example, it may be divided into units according to each function, or two or more functions may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in this application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 12 is a schematic block diagram of an apparatus 1200 for random access according to an embodiment of the present application. As shown in FIG. 12, the apparatus 1200 includes a processing unit 1210 and a transceiver unit 1220.
  • the processing unit 1210 is configured to: determine a target TA among multiple timing advances TA according to the first information, where the first information is associated with the synchronization signal block SSB received by the terminal device, and/or is associated with the synchronization signal block SSB received by the terminal device. Related to the area where the terminal equipment is located;
  • the transceiver unit 1220 is configured to send the first message in the random access process to the network device according to the target TA.
  • the terminal equipment corresponding to different SSB indexes or different areas uses different TAs. Therefore, for each SSB index or terminal equipment corresponding to each area, the distance difference between the nearest and farthest terminal equipment from the network equipment is smaller than the distance between the nearest and farthest terminal equipment from the network equipment in the entire cell. Correspondingly, the maximum delay difference will be significantly reduced. In this way, the length of the receiving window for the network device to receive the preamble can be reduced, reducing the complexity of the network device's implementation, and avoiding the aforementioned problem shown in FIG. 6. In addition, terminal devices of different SSB indexes or different regions use different TAs to send the preamble. In this way, effective random access in the NTN system is realized without increasing the length of the receiving window. .
  • the first information includes the SSB index of the SSB, and the multiple TAs respectively correspond to multiple SSB indexes, wherein the processing unit 1210 is specifically configured to: according to the SSB index, and the multiple The corresponding relationship between the TA and the multiple SSB indexes, and the TA corresponding to the SSB index is determined as the target TA.
  • the SSB includes a PBCH, and the SSB index is carried in the PBCH.
  • the measured value of the SSB is greater than a preset threshold.
  • the measured value of the SSB includes the measured value of RSRP and/or RSRQ of the SSB.
  • the transceiving unit 1220 is further configured to: receive instruction information sent by the network device, where the instruction information is used to indicate the correspondence relationship; or, the processing unit 1210 is further configured to obtain the pre-stored correspondence relationship.
  • the cell where the terminal device is located includes multiple areas, the multiple TAs respectively correspond to the multiple areas, and the first information includes where the terminal device is located in the multiple areas.
  • the terminal device is a terminal device with positioning capability.
  • the processing unit 1210 is specifically configured to: determine the TA corresponding to the target area as the target TA according to the target area and the corresponding relationship between the multiple TAs and the multiple areas.
  • the multiple areas are respectively the coverage areas of multiple SSBs with different SSB indexes.
  • the processing unit 1210 is further configured to: obtain information of the multiple regions from a satellite ephemeris or a network device.
  • the transceiving unit 1220 is further configured to: receive instruction information sent by the network device, where the instruction information is used to indicate the correspondence relationship; or, the processing unit 1210 is further configured to obtain the pre-stored correspondence relationship.
  • the transceiver unit 1220 is further configured to: receive a second message in the random access process sent by the network device, where the second message includes a TA adjustment amount.
  • the random access process is a 4-step random access process
  • the transceiver unit 1220 is further configured to: send the 4-step random access to the network device according to the target TA and the TA adjustment amount.
  • the third message in the process wherein the third message includes TA information, and the TA information includes the target TA or the sum of the target TA and the TA adjustment amount.
  • the TA information is TA value or TA index.
  • the random access process is a 2-step random access process
  • the first message includes TA information
  • the TA information includes the target TA.
  • the TA information is TA value or TA index.
  • FIG. 13 shows a schematic structural diagram of a random access device provided in this application.
  • the dotted line in Figure 13 indicates that the unit or the module is optional.
  • the device 1300 may be used to implement the methods described in the foregoing method embodiments.
  • the device 1300 may be a terminal device or a network device or a chip.
  • the device 1300 includes one or more processors 1301, and the one or more processors 1301 can support the device 1300 to implement the methods in the method embodiments corresponding to FIGS. 2 to 8.
  • the processor 1301 may be a general-purpose processor or a special-purpose processor.
  • the processor 1301 may be a central processing unit (CPU).
  • the CPU can be used to control the device 1300, execute a software program, and process data of the software program.
  • the device 1300 may further include a communication unit 1305 to implement signal input (reception) and output (transmission).
  • the device 1300 may be a chip, and the communication unit 1305 may be an input and/or output circuit of the chip, or the communication unit 1305 may be a communication interface of the chip, and the chip may be used as a terminal device or a network device or other wireless communication device made of.
  • the device 1300 may be a terminal device or a network device
  • the communication unit 1305 may be a transceiver of the terminal device or the network device
  • the communication unit 1305 may be a transceiver circuit of the terminal device or the network device.
  • the device 1300 may include one or more memories 1302 with a program 1304 stored thereon, and the program 1304 may be run by the processor 1301 to generate instructions 1303 so that the processor 1301 executes the methods described in the foregoing method embodiments according to the instructions 1303.
  • the memory 1302 may also store data.
  • the processor 1301 may also read data stored in the memory 1302. The data may be stored at the same storage address as the program 1304, or the data may be stored at a different storage address from the program 1304.
  • the processor 1301 and the memory 1302 may be provided separately or integrated together, for example, integrated on a system-on-chip (SOC) of a terminal device.
  • SOC system-on-chip
  • the device 1300 may also include an antenna 1306.
  • the communication unit 1305 is configured to implement the transceiver function of the device 1300 through the antenna 1306.
  • each step of the foregoing method embodiment may be completed by a logic circuit in the form of hardware or instructions in the form of software in the processor 1301.
  • the processor 1301 may be a CPU, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices , Such as discrete gates, transistor logic devices, or discrete hardware components.
  • This application also provides a computer program product, which, when executed by the processor 1301, implements the method described in any method embodiment in this application.
  • the computer program product may be stored in the memory 1302, for example, a program 1304.
  • the program 1304 is finally converted into an executable object file that can be executed by the processor 1301 through processing processes such as preprocessing, compilation, assembly, and linking.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a computer, the method described in any method embodiment in the present application is implemented.
  • the computer program can be a high-level language program or an executable target program.
  • the computer-readable storage medium is, for example, the memory 1302.
  • the memory 1302 may be a volatile memory or a non-volatile memory, or the memory 1302 may include both a volatile memory and a non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the disclosed system, device, and method may be implemented in other ways. For example, some features of the method embodiments described above may be ignored or not implemented.
  • the device embodiments described above are merely illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods, and multiple units or components may be combined or integrated into another system.
  • the coupling between the units or the coupling between the components may be direct coupling or indirect coupling, and the foregoing coupling includes electrical, mechanical, or other forms of connection.
  • system and "network” in the embodiments of the present application are often used interchangeably.
  • the term “and/or” is only an association relationship that describes the associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B alone exists. This situation.
  • the character “/” generally means that the associated objects before and after are in an “or” relationship.
  • B corresponding (corresponding) to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种随机接入的方法和终端设备,能够在NTN系统中实现有效的随机接入。所述方法包括:终端设备根据第一信息,在多个时间提前量TA中确定目标TA,其中,所述第一信息与所述终端设备接收到的SSB相关联,和/或与所述终端设备所处的区域相关联;所述终端设备根据所述目标TA,向网络设备发送随机接入过程中的第一条消息。

Description

随机接入的方法和终端设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及随机接入的方法和终端设备。
背景技术
非地面通信网络(Non Terrestrial Network,NTN)系统采用卫星通信的方式向地面用户提供通信服务,终端设备与卫星之间的距离较大,终端设备与卫星之间的信号传输时延大幅增加。在随机接入过程中,为了使网络设备能够接收到终端的发送的前导码,并为终端设备确定时间提前量(Timing Advance,TA)调整量,需要增加网络设备接收前导码的接收窗口的长度。这不仅增加了网络设备的实现复杂度,还降低了随机接入信道的容量。因此,如何在NTN系统中实现有效的随机接入,成为亟待解决的问题。
发明内容
本申请提供一种随机接入的方法和终端设备,能够实现在NTN系统中实现有效的随机接入。
第一方面,提供了一种随机接入的方法,包括:终端设备根据第一信息,在多个时间提前量TA中确定目标TA,其中,所述第一信息与所述终端设备接收到的SSB相关联,和/或与所述终端设备所处的区域相关联;所述终端设备根据所述目标TA,向网络设备发送随机接入过程中的第一条消息。
第二方面,提供了一种终端设备,所述终端设备可以执行上述第一方面或第一方面的任意可选的实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的功能模块。
第三方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第四方面,提供了一种用于随机接入的装置,包括处理器。该处理器用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行上述第一方面或第一方面的任意可能的实现方式中的方法。该装置例如芯片。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
基于上述技术方案,由于针对SSB索引或者所在区域对终端设备进行了划分,不同SSB索引或不同区域对应的终端设备使用不同的TA。因此,针对每个SSB索引或者每个区域对应的终端设备而言,距离网络设备最近和最远的终端设备之间的距离差,小于整个小区内距离网络设备最近和最远的终端设备之间的距离差,相应的,最大时延差也会明显减小。这样,用于网络设备接收前导码的接收窗口的长度就可以减小,降低了网络设备的实现复杂度。并且,不同SSB索引或不同区域的终端设备使用不同的TA发送前导码。这样就在不增加接收窗口长度的情况下,实现了NTN系统中有效的随机接入。
附图说明
图1是本申请实施例应用的一种可能的无线通信系统的示意图。
图2是4步随机接入过程的示意图。
图3是基于非竞争的随机接入过程的示意图。
图4是2步随机接入过程的示意图。
图5是NTN中接收前导码的接收窗口的示意图。
图6是NTN中接收窗口发生重叠的示意图。
图7是本申请实施例的随机接入的方法的示意性流程图。
图8是本申请实施例的按照SSB索引划分的多个区域的示意图。
图9是本申请实施例的网络设备配置的多个区域的示意图。
图10是图7所示的方法应用在4步随机接入过程中的示意性流程图。
图11是图7所示的方法应用在2步随机接入过程中的示意性流程图。
图12是本申请实施例的随机接入的装置的示意性框图。
图13是本申请实施例的随机接入的设备的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、未来的5G系统或其他通信系统等。
通常,传统的通信系统支持的连接数有限,也易于实现。然而,随着通信技术的发展,移动通信系统不仅支持传统的通信,还将支持设备到设备(Device to Device,D2D)通信、机器到机器(Machine to Machine,M2M)通信、机器类型通信(Machine Type Communication,MTC)以及车辆间(Vehicle to  Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
示例性的,本申请实施例应用的通信系统100如图1所示。通信系统100包括网络设备110、以及位于网络设备110覆盖范围内的至少一个终端设备120。网络设备110可以为特定地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。终端设备120可以通过电磁波与网络设备110之间进行通信。
网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者网络设备110可以为中继站、接入点、车载设备、可穿戴设备、未来网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备120可以是移动的或固定的。例如,终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来终端设备或者未来演进的PLMN中的终端设备等。
图1示例性地示出了一个网络设备和两个终端设备,但本申请并不限于此。通信系统100可以包括多个网络设备,并且每个网络设备的覆盖范围内可以包括其它数量的终端设备。此外,通信系统100还可以包括网络控制器、移动性管理实体等其他网络实体。
本申请实施例可以应用于非地面通信网络(Non Terrestrial Network,NTN)系统。这时,图1中的网络设备110可以通过卫星与终端设备之间进行通信,或者网络设备110本身为卫星。
NTN系统中采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,其具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大时通讯成本没有明显增加。最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit, HEO)卫星等。目前阶段主要研究的是LEO卫星和GEO卫星。其中,LEO卫星的高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间为20分钟,信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。GEO卫星的轨道高度为35786km,围绕地球旋转周期为24小时,用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
在小区搜索过程之后,终端设备已经与小区取得了下行同步,因此终端设备能够接收下行数据。但终端设备只有与小区取得上行同步,才能进行上行传输。终端设备可以通过随机接入(Random Access,RA)过程与小区建立连接并取得上行同步。也就是说,通过随机接入,终端设备可以获得上行同步,并且还可能获得网络设备为其分配的唯一的标识,即小区无线网络临时标识(Cell Radio Network Temporary Identity,C-RNTI)。
随机接入过程可以包括4步随机接入过程和2步随机接入过程。以下,结合图2和图3分别介绍4步随机接入过程和2步随机接入过程。
4步随机接入和2步随机接入通常可以由以下几类触发事件触发:
(1)初始接入(initial access)。
终端设备从无线资源控制(Radio Resource Control,RRC)空闲态(RRC_IDLE态)转换为RRC连接态(RRC_CONNECTED态)。
(2)切换(handover)。
此时,终端设备需要与新的小区建立上行同步。
(3)RRC连接重建(RRC Connection Re-establishment procedure)。
终端设备发生无线链路失败(Radio Link Failure,RLF)后,重新建立无线连接。
(4)RRC连接态下,下行数据到达,上行处于“失步”状态。
(5)RRC连接态下,上行数据到达,上行处于“失步”状态或者没有可用的物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源用于发送调度请求(Scheduling Request,SR)。
(6)SR失败。
(7)接收到来自RRC的同步重配置请求。
(8)终端设备从RRC非激活态(RRC_INACTIVE态)转换为RRC_CONNECTED态。
(9)在辅小区(Secondary cell,SCell)添加过程中建立时间校准。
(10)请求其他系统信息(System Information,SI)。
(11)波束失败恢复。
本申请实施例中,将4步随机接入过程中的第一条消息至第四条消息分别记作消息(Message,Msg)1(Msg 1)、Msg 2、Msg 3和Msg 4,并将2步 随机接入过程中的第一条消息和第二条消息分别记作Msg A和Msg B。
图2是4步随机接入的流程交互图。如图2所示,4步随机接入的流程可以包括以下四个步骤:
步骤1,终端设备向网络设备发送Msg 1。
终端设备选择物理随机接入信道(Physical Random Access Channel,PRACH)资源,并在选择的PRACH资源上发送所选择的随机接入前导码(Random Access Preamble,RAP),或称为前导码、随机接入前导码序列、前导码序列等。
对于基于非竞争的随机接入,PRACH资源和前导码可以由网络设备指定。网络设备基于前导码估计上行定时(Timing)以及终端传输Msg 3所需要的上行授权(grant)的大小。
步骤2,网络设备向终端设备发送Msg 2。
终端设备发送Msg 1后,开启随机接入响应时间窗(ra-ResponseWindow)。终端设备在该时间窗内监测随机接入无线网络临时标识(Random Access-Radio Network Temporary Identity,RA-RNTI)加扰的PDCCH。其中,RA-RNTI与终端设备发送Msg 1所使用的PRACH资源相关。
终端设备成功接收到RA-RNTI加扰的PDCCH之后,能够获得该PDCCH调度的物理下行共享信道(Physical Downlink Shared Channel,PDSCH),其中包括随机接入响应(Random Access Response,RAR)消息。
RAR例如包括以下信息:
回退指示(Backoff Indicator,BI),承载于RAR的子包头(subheader),用于指示重传Msg1的回退时间;
随机接入前导码标识(RAP Identify,RAPID),用于网络设备响应接收到前导码索引(preamble index);
定时提前组(Timing Advance Group,TAG),承载于RAR的负载(payload),用于调整上行定时;
上行授权(UL grant):用于调度Msg 3的上行资源指示;以及,
临时小区无线网络临时标识(Temporary C-RNTI):在初始接入时,用于加扰Msg 4的PDCCH。
如果终端接收到RAR-RNTI加扰的PDCCH,并且RAR中包括自己发送的前导码索引,则终端设备认为成功接收Msg 2。
对于基于非竞争的随机接入,终端设备成功接收Msg 2后,随机接入过程结束。对于基于竞争的随机接入,终端成功接收Msg 2后,还需要继续传输Msg 3并接收Msg 4。
步骤3,终端设备向网络设备发送Msg 3。
终端设备在网络设备调度的资源上传输Msg 3,Msg 3用于通知网络设备随机接入过程是由什么事件触发的。例如,如果是初始接入,则终端设备在Msg 3中携带终端设备的标识(UE ID)和建立原因(establishment cause);如果是RRC重建,则终端设备在Msg 3中携带连接态UE标识和建立原因 (establishment cause)。
步骤4,网络设备向终端设备发送Msg 4。
Msg 4有两个作用,一是用于竞争冲突解决,二是用于网络设备向终端设备传输RRC配置消息。竞争冲突解决有以下两种方式:如果UE在Msg 3中携带了C-RNTI,则Msg 4通过C-RNTI加扰的PDCCH调度;如果终端设备在Msg 3中没有携带C-RNTI,例如初始接入,则Msg 4通过临时小区无线网络临时标识(Temporary Cell-Radio Network Temporary Identity,TC-RNTI)加扰的PDCCH调度,冲突的解决是终端设备接收Msg 4的PDSCH,通过匹配PDSCH中的公共控制信道(Common Control Channel,CCCH)服务数据单元(Service Data Unit,SDU)。
可以看出,随机接入的主要目的是终端设备与小区取得上行同步。在随机接入过程中,网络设备根据终端设备发送前导码所使用的PRACH资源,可以知道终端设备发送前导码的时刻,从而根据前导码的发送时刻和接收时刻确定终端设备的初始TA,并通过RAR告知终端设备。
本申请实施例的方法可以应用于基于竞争的随机接入过程(contention based RACH)和基于非竞争的随机接入过程(contention free RACH)。图2所示为基于竞争的随机接入过程。对于基于非竞争的随机接入过程,例如图3所示,终端设备成功接收Msg 2后,随机接入过程结束。
4步随机接入过程存在较大时延,因此在NR中,终端设备还可以发起2步随机接入过程,以适应低延时高可靠性的业务,降低随机接入的时延。
简单地说,在2步随机接入过程中,可以将4步随机接入过程中的Msg 1和Msg 3合并为2步随机接入过程中的Msg A,将4步随机接入过程中的Msg2和Msg 4合并为2步随机接入过程中的Msg B。
例如图4所示,在步骤1中,终端设备向网络设备发送Msg A。其中,Msg A包括承载于PRACH的前导码以及承载于PUSCH的负载信息。在步骤2中,网络设备向终端设备发送Msg B。其中,在Msg A之后,终端设备在随机接入响应时间窗内监听网络设备发送的响应消息,如果接收到网络设备发送的竞争冲突解决成功的指示,则终端设备结束随机接入过程。
应理解,图2至图4仅仅为示例。其中,Msg A可以包括Msg 1和Msg 3中携带的部分或全部信息,或者还可能包括其他信息。Msg B可以包括Msg 2和Msg 4中携带的部分或全部信息,或者还可能包括其他信息。
由于2步随机接入过程还未进入标准化阶段,因此这里仅以图4为例进行介绍,对于其中涉及的各个随机接入消息的定义还存在其他可能性,而不限定对2步随机接入过程中的各个随机接入消息的其他定义。本申请实施例所述的方法适用于其他所有的2步随机接入过程。
目前,NR系统的覆盖范围较小,对于同一个小区内不同位置的终端设备,其与网络设备之间的信号传输时延差异不大。在随机接入过程中,终端设备发送前导码时,使用相同的RACH资源即相同RACH机会(RACH Occasion,RO)的不同终端设备,其发送的前导码到达网络设备的时间都在一个接收窗 内。这样,网络设备在接收到前导码后,就可以确定终端设备发送前导码的时间,从而可以确定终端设备的TA调整量。
而在NTN中,终端设备与卫星之间的信号传输时延大幅增加。此外,由于卫星的覆盖范围很大,对于同一个卫星覆盖范围内的不同终端设备,由于其所处的位置不同,与卫星之间的信号传输时延也可能存在较大差异。一个NTN小区内的不同终端设备与网络设备之间的信号传输时延的最大差值为10.3ms。如此大的信号传输时延差异将会导致不同终端设备在相同RO发送的前导码在不同时间到达网络设备。为了保证网络设备能够接收到小区内不同终端设备发送的前导码,网络设备的接收窗的长度应该扩展为最大时延差的2倍,此处的“2倍”是因为终端设备的下行定时相对于网络设备具有一个时延的偏移。其中,最大时延差=最大单向时延-最小单向时延。该单向时延为终端设备与网络设备之间的信号传输时延。
例如图5所示,UE1为小区内距离网络设备最近的终端设备,UE2为该小区内距离网络设备最远的终端设备。UE2与网络设备之间的时延为该小区的最大单向时延,UE1与网络设备之间的时延为该小区的最小单向时延。RO用于终端设备发送前导码,网络设备用于接收前导码的接收窗口与RO具有对应关系,网络设备可以根据接收前导码的接收窗口的位置,确定终端设备发送前导码的RO的位置,并以此为终端设备确定TA调整量。本申请实施例中,将前导码的接收窗口简称为接收窗口。UE1和UE2在同一RO内发送前导码,但是由于UE1距离网络设备最近,UE2距离网络设备最远,UE1与UE2各自与网络设备之间的时延不同。因此,网络设备分别在位置T1和位置T2处接收到UE1和UE2发送的前导码。这时,该接收窗口的长度至少应该设置为2*(最大单向时延-最小单向时延),才能保证相同RO发送的前导码在同一个接收窗口内被接收到。
但是,将接收窗口设置的较长,又可能导致其他问题。例如图6所示,网络设备在接收到前导码后,需要知道终端设备是在哪个RO上发送的该前导码,从而确定终端设备的初始TA。由于需要引入较长的接收窗,如果时域上相邻的RO之间的时间间隔小于该接收窗的长度,那么不同时间位置上的RO对应的接收窗在时域上重叠。如图6所示,RO1对应的接收窗口为T1所示的位置,与RO1相邻的RO2对应的接收窗口为T2所示的位置,其中,RO1与接收窗口T1之间的距离为最小单向时延*2,RO2与接收窗口T2之间的距离为最小单向时延*2,T1=T2=最大时延差*2,最大时延差=最大单向时延-最小单向时延。如果RO1和RO2之间的间隔较小,那么T1和T2会产生重叠区域T3。如果网络设备在重叠区域T3接收到终端设备发送的前导码,则无法判断终端设备是在RO1还是RO2上发送的该前导码,也就不能为终端设备确定初始TA了。
为了避免图6所示的问题,网络设备可以在配置RACH资源时,保证时域上相邻RO之间的时间间隔不小于接收窗长,但是这种方法会降低RACH容量,影响随机接入性能。
可见,NTN中需要扩展网络设备接收前导码的接收窗口的长度,并且接收窗的长度与NTN小区覆盖范围直接相关,小区覆盖范围越大,需要支持的收窗的长度就越长。对于GEO场景,更是需要支持长达20.6ms的preamble接收窗。接收窗的长度的扩展,一方面对网络设备的实现带来很大的挑战;另一方面,如果采用增加相邻RO之间的时间间隔的方式避免图5产生的问题,则会导致RACH容量的降低。
为此,本申请实施例中提出了一种随机接入的方法,能够实现在NTN系统中实现有效的随机接入,并且不增加上述接收窗口的长度。
本申请实施例中的网络设备可以是卫星;或者是地面站,例如基站等。
其中,网络设备为卫星时,终端设备与该网络设备之间的距离为终端设备与该卫星之间的距离;网络设备为地面站时,终端设备与该网络设备之间的距离为终端设备与卫星之间的距离,以及卫星与该地面站之间的距离之和。
例如,对于透明(transparent)GEO/LEO的情况,卫星可以实现基站的功能,因此网络设备即为卫星,或者说,该卫星作为网络设备与终端设备进行通信。这时,终端设备与网络设备之间的即为终端设备与卫星之间的距离。又例如,对于再生(regenerative)GEO/LEO的情况,来自终端设备的上行数据通过卫星发送给地面站,而来自地面站的下行数据通过卫星发送给终端设备,因此网络设备即为地面站。这时,终端设备与网络设备之间的距离包括终端设备与卫星之间的距离,以及卫星与地面站之间的距离之和。卫星接收到终端设备上报的测量报告后,会转发给地面站。
对于LEO的情况,卫星是在移动的,卫星与地面站之间的距离也在变化;而对于GEO的情况,卫星是不动的,卫星与地面站之间的距离是固定的。
图7是本申请实施例的随机接入的方法的示意性流程图。图7所示的方法可以由终端设备执行。该方法可以应用于任何随机接入过程,例如可以应用于2步随机接入过程或者4步随机接入过程,可以应用于基于竞争的随机接入过程和非竞争的随机接入过程。所述终端设备例如可以是图1中所示的终端设备120。如图7所示,该方法包括以下步骤中的部分或全部。
在710中,终端设备根据第一信息,在多个TA中确定目标TA。
其中,该第一信息与终端设备接收到的同步信号块(Synchronizing Signal/PBCH Block,SSB、SS Block或SS/PBCH Block)相关联,和/或,该第一信息与终端设备所处的区域相关联。
在720中,终端设备根据该目标TA,向网络设备发送随机接入过程中的第一条消息。
在一种实现方式中,该第一信息与终端设备接收到的SSB相关联。
例如,该第一信息包括终端设备接收到的该SSB的SSB索引。
这时,710中所述的多个TA分别对应于多个SSB索引。终端设备根据其接收到的SSB的SSB索引,以及所述多个TA与所述多个SSB索引之间的对应关系,确定与该SSB索引对应的TA为目标TA。
该实施例中,所述TA为公共TA(common TA)。不同SSB索引对应不 同的公共TA。检测到具有相同SSB索引的SSB的终端设备使用相同的公共TA发送Msg 1或Msg A。终端设备基于接收到的SSB,在多个TA中选择目标TA,并使用该目标TA,向网络设备发送Msg 1或Msg A。网络设备可以向终端设备广播该多个TA的信息。
应理解,所述多个TA分别对应于多个SSB索引,可以是多个TA与多个SSB索引一一对应,也可以是一个TA可以对应一个或多个SSB索引,还可以是一个SSB索引对应一个或多个TA,本申请实施例对此不做限定,以下均以多个TA与多个SSB索引一一对应为例进行描述。
例如表一所示,TA1至TA n与SSB索引1至SSB索引n一一对应。终端设备接收到的SSB的SSB索引,如果为SSB索引1,那么终端设备确定该目标TA为TA1;如果为SSB索引2,那么该目标TA为TA2;……;如果为SSB索引n,那么该目标TA为TA n
表一
SSB索引 TA
SSB索引1 TA1
SSB索引2 TA1
…… ……
SSB索引n TA n
SSB中包括物理广播信道(Physical Broadcast Channel,PBCH),该PBCH中承载该SSB的SSB索引。终端设备可以从接收到的SSB中的PBCH中,获取其SSB索引。
可选地,终端设备接收到的该SSB的测量值大于预设门限。例如,该SSB的参考信号接收功率(Reference Signal Receiving Power,RSRP)和/或参考信号接收质量(Reference Signal Receiving Quality,RSRQ)的测量值大于相应的预设门限。
终端设备对该SSB进行测量,如果该SSB的RSRP大于预设的RSRP门限,和/或该SSB的RSRQ大于预设的RSRQ门限,则终端设备认为该SSB的SSB索引对应的TA为所述目标TA。
网络设备在配置多个TA时,可以配置该预设门限,例如配置一个RSRP门限和/或一个RSRQ门限。例如,在表一中,以RSRP为例,终端设备接收到的SSB的SSB索引,如果为SSB索引1,并且该SSB的RSRP大于该RSRP门限,则终端设备确定该目标TA为TA1;如果为SSB索引2,并且该SSB的RSRP大于该RSRP门限,则终端设备确定该目标TA为TA2;……;如果为SSB索引n,并且该SSB的RSRP大于该RSRP门限,则终端设备确定该目标TA为TA n
假设终端设备位于SSB索引1对应的区域和索引2对应的区域交界处,终端设备可能会检测到SSB索引1的SSB和SSB索引2的SSB,这时,终端设备选择测量值大于该预设门限的SSB,并根据其SSB索引选择对应的TA。
可选地,网络设备也可以配置多个门限,例如表二所示,以RSRP为例, n个TA与n个SSB索引对应,并且与n个RSRP门限对应。这n个RSRP门限可以全部或部分相同,或者全都不同。根据表二,终端设备接收到的SSB的SSB索引,如果为SSB索引1,且该SSB的RSRP大于RSRP门限1,那么终端设备确定该目标TA为TA1;如果该SSB的SSB索引为SSB索引2,且该SSB的RSRP大于RSRP门限2,那么终端设备确定该目标TA为TA2;……;如果该SSB的SSB索引为SSB索引n,且该SSB的RSRP大于RSRP门限n,那么终端设备确定该目标TA为TA n
表二
SSB索引 TA RSRP门限
SSB索引1 TA1 RSRP门限1
SSB索引2 TA1 RSRP门限2
…… …… ……
SSB索引n TA n RSRP门限n
多个SSB索引与多个TA之间的的对应关系,可以是网络设备发送给终端设备的,或者是预配置的例如协议约定的。终端设备可以接收网络设备发送的指示信息,该指示信息用于指示该对应关系;或者,终端设备获取预存的该对应关系。
该对应关系可以是显示的,例如表一所示,其由网络设备指示给终端设备或预先约定;或者,该对应关系可以是隐式的,网络设备可以向终端设备广播该多个TA,终端设备基于隐式关系确定目标TA。例如,可以将小至大或由大至小的多个SSB索引,与由小至大或由大至小的多个TA,按顺序依次对应。此外还可以采用其他隐式指示的方式,这里不做限定。
在另一种实现方式中,该第一信息与终端设备所处的区域相关联。
例如,终端设备所在的小区包括多个区域,710中的该多个TA分别对应于该多个区域,该第一信息包括终端设备在该多个区域中所处的目标区域的信息。终端设备根据该目标区域,以及所述多个TA与所述多个区域之间的对应关系,确定与该目标区域对应的TA为所述目标TA。
该实施例中,终端设备具备定位能力。终端设备可以基于该定位能力确定自己的位置,并根据该多个区域的信息,确定自己位于该多个区域中的哪个区域。所述TA为公共TA(common TA)。小区内的不同区域对应不同的公共TA。位于同一区域内的终端设备使用相同的公共TA发送Msg 1或Msg A。终端设备基于定位能力,确定其在多个区域中所处的目标区域,并使用与该目标区域对应的TA,向网络设备发送Msg 1或Msg A。
应理解,小区被划分为多个区域。所述多个TA分别对应于所述多个区域,其中,可以是多个TA与多个区域一一对应,也可以是一个TA可以对应一个或多个区域,还可以是一个区域对应一个或多个TA,本申请实施例对此不做限定,以下均以多个TA与多个区域一一对应为例进行描述。
例如表三所示,TA1至TA n与小区内的区域1至区域n一一对应。如果终端设备确定其位于区域1,那么终端设备确定该目标TA为TA1;如果终端 设备确定其位于区域2,那么终端设备确定该目标TA为TA2;……;如果终端设备确定其位于区域n,那么终端设备确定该目标TA为TA n
表三
区域 TA
区域1 TA1
区域2 TA2
…… ……
区域n TA n
多个区域与多个TA之间的对应关系,可以是网络设备发送给终端设备的,或者是预配置的例如协议约定。终端设备可以接收网络设备发送的指示信息,该指示信息用于指示该对应关系;或者,终端设备获取预存的该对应关系。
该对应关系可以是显示的,例如表一所示,其由网络设备指示给终端设备或预先约定;或者,该对应关系可以是隐式的,网络设备可以向终端设备广播该多个TA,终端设备基于隐式关系确定目标TA。例如,可以将小至大或由大至小的多个SSB索引,与由小至大或由大至小的多个TA,按顺序依次对应。此外还可以采用其他隐式指示的方式,这里不做限定。
本申请实施例对区域划分的方式不做任何限定。
一种实现方式中,所述多个区域可以分别为具有不同SSB索引的多个SSB的覆盖区域。SSB覆盖的区域可以理解为是该SSB对应的波束覆盖的区域,不同波束覆盖不同区域。因此,可以根据SSB的部署,将小区划分为多个区域。
例如图8所示,小区1、小区2和小区3的物理小区标识(Physical Cell Identifier,PCI)分别为PCI 1、PCI 2和PCI 3。以小区1为例,包括区域1至区域4。其中,区域1为SSB索引1的SSB所覆盖的区域,区域1对应于TA1;区域2为SSB索引2的SSB所覆盖的区域,区域2对应于TA2;区域3为SSB索引3的SSB所覆盖的区域,区域3对应于TA3;区域4为SSB索引L的SSB所覆盖的区域,区域4对应于TA4。终端设备接收SSB,如果PBCH中携带SSB索引1,则终端设备使用TA1发送Msg 1或Msg A;如果PBCH中携带SSB索引2,则终端设备使用TA2发送Msg 1或Msg A;如果PBCH中携带SSB索引3,则终端设备使用TA3发送Msg 1或Msg A;如果PBCH中携带SSB索引L,则终端设备使用TA4发送Msg 1或Msg A。
另一种实现方式中,可以根据参考信号的测量值的大小,将小区划分为多个区域。其中,所述多个区域分别对应于多个取值范围,所述终端设备所处的目标区域为:与该SSB的测量值所在的取值范围对应的区域。该测量值例如是RSRP和/或RSRQ等的测量值。
对于N个区域,可以设置N-1个阈值,分别为阈值1至阈值N-1。其中,SSB测量值≤阈值1的区域为区域1、阈值1≤SSB测量值≤阈值2的区域为区域2、……、阈值i-1≤SSB测量值≤阈值i的区域为区域i,其中1<i≤N-1、……、SSB测量值≥阈值N-1的区域为区域N。
再一种实现方式中,可以由网络设备配置小区内的所述多个区域。
例如图9所示,网络设备配置小区内的所述多个区域包括区域1至区域9,区域1至区域9分别对应TA1至TA9。终端设备基于其定位能力,确定当前所处的区域,并使用该区域对应的TA发送Msg 1或Msg A。比如,终端设备当前处于区域2,则使用区域2对应的TA2发送Msg 1或Msg A。
此外,还可以采用其他方式将小区划分为多个区域。
终端设备例如可以从卫星星历或者网络设备,获取所述多个区域的信息。
本申请实施例中,由于针对SSB索引或者所在区域对终端设备进行了划分,不同SSB索引或不同区域对应的终端设备使用不同的TA。因此,针对每个SSB索引或者每个区域对应的终端设备而言,距离网络设备最近和最远的终端设备之间的距离差,小于整个小区内距离网络设备最近和最远的终端设备之间的距离差,相应的,最大时延差也会明显减小。这样,用于网络设备接收前导码的接收窗口的长度就可以减小,降低了网络设备的实现复杂度,而且避免了前述图6所示的问题。并且,不同SSB索引或不同区域的终端设备使用不同的TA发送前导码。这样就在不增加接收窗口长度的情况下,实现了NTN系统中有效的随机接入。
在随机接入过程中,终端设备基于网络设备的配置选择PRACH资源即RO,并根据前述方法确定目标TA,从而使用该目标TA,对自己的上行定时进行调整,然后发送Msg 1或Msg A。
对于每个RO,网络设备在该RO对应的时域位置启动用于接收前导码的接收窗口。网络设备在该RO对应的接收窗口内接收前导码,并基于前导码的发送时间和接收时间之间的时间差,为终端设备确定TA调整量。该TA调整量是由于终端设备所处位置与公共TA的参考点位置的偏差、以及终端设备所处位置与卫星之间的距离导致的。网络设备确定TA调整量后,可以通过RAR将终端设备专属的TA调整量发送给终端设备。
对于4步随机接入,终端设备可以接收网络设备发送的4步随机接入过程中的Msg 2,其中,Msg 2中包括TA调整量。终端设备根据该TA调整量以及与目标区域对应的公共TA,确定其初始TA。
进一步地,终端设备可以根据该目标区域对应的TA和该TA调整量,向网络设备发送4步随机接入过程中的第三条消息即Msg 3。其中,Msg 3中包括TA信息,该TA信息包括该目标区域对应的TA,或者包括该目标区域对应的TA与该TA调整量之和。其中,该TA信息可以为TA值、TA索引、或者其他表示方式。
例如图10所示的4步随机接入过程,其中:
在1001中,终端设备确定目标TA。
终端设备使用该目标TA发送Msg 1。
在1002中,网络设备根据Msg 1,为终端设备确定TA调整量。
其中,网络设备通过Msg 2将该TA调整量发送给终端设备。
在1003中,终端设备基于该TA调整量对该目标TA进行调整。
终端设备在Msg 3中携带该目标TA,或者携带调整后的TA即初始TA。
在1004中,网络设备获知终端设备的TA。
对于2步随机接入,终端设备可以接收网络设备发送的2步随机接入过程中的Msg B,其中,Msg B中包括TA调整量。而Msg A中可以包括TA信息,该TA信息为该目标区域对应的TA。其中,该TA信息可以为TA值、TA索引、或者其他表示方式。网络设备接收到Msg A后,就可以知道终端设备使用的TA。
例如图11所示的2步随机接入过程,其中:
在1101中,终端设备确定与目标TA。
终端设备使用该目标TA发送Msg A。
在1102中,网络设备获知该目标TA,并根据Msg A为终端设备确定TA调整量。
在1103中,终端设备基于该TA调整量对该目标TA进行调整。
这样,网络设备和终端设备对TA的理解就一致了。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的随机接入的方法,下面将结合图9,描述根据本申请实施例的用于随机接入的装置,方法实施例所描述的技术特征适用于以下装置实施例。
应理解,该装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法对该装置进行功能单元的划分,例如,可以按照各个功能将其划分为各个单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图12是根据本申请实施例的用于随机接入的装置1200的示意性框图。如图12所示,装置1200包括处理单元1210和收发单元1220。
处理单元1210用于:根据第一信息,在多个时间提前量TA中确定目标TA,其中,所述第一信息与所述终端设备接收到的同步信号块SSB相关联, 和/或与所述终端设备所处的区域相关联;
收发单元1220用于:根据所述目标TA,向网络设备发送随机接入过程中的第一条消息。
由于针对SSB索引或者所在区域对终端设备进行了划分,不同SSB索引或不同区域对应的终端设备使用不同的TA。因此,针对每个SSB索引或者每个区域对应的终端设备而言,距离网络设备最近和最远的终端设备之间的距离差,小于整个小区内距离网络设备最近和最远的终端设备之间的距离差,相应的,最大时延差也会明显减小。这样,用于网络设备接收前导码的接收窗口的长度就可以减小,降低了网络设备的实现复杂度,而且避免了前述图6所示的问题。并且,不同SSB索引或不同区域的终端设备使用不同的TA发送前导码。这样就在不增加接收窗口长度的情况下,实现了NTN系统中有效的随机接入。。
可选地,所述第一信息包括所述SSB的SSB索引,所述多个TA分别对应于多个SSB索引,其中,处理单元1210具体用于:根据所述SSB索引,以及所述多个TA与所述多个SSB索引之间的对应关系,确定与所述SSB索引对应的TA为所述目标TA。
可选地,所述SSB包括PBCH,所述PBCH中承载所述SSB索引。
可选地,所述SSB的测量值大于预设门限。
可选地,所述SSB的测量值包括SSB的RSRP和/或RSRQ的测量值。
可选地,收发单元1220还用于:接收所述网络设备发送的指示信息,所述指示信息用于指示所述对应关系;或者,处理单元1210还用于:获取预存的所述对应关系。
可选地,所述终端设备所在的小区包括多个区域,所述多个TA分别对应于所述多个区域,所述第一信息包括所述终端设备在所述多个区域中所处的目标区域,所述终端设备为具备定位能力的终端设备。其中,处理单元1210具体用于:根据所述目标区域,以及所述多个TA与所述多个区域之间的对应关系,确定与所述目标区域对应的TA为所述目标TA。
可选地,所述多个区域分别为具有不同SSB索引的多个SSB的覆盖区域。
可选地,处理单元1210还用于:从卫星星历或者网络设备,获取所述多个区域的信息。
可选地,收发单元1220还用于:接收所述网络设备发送的指示信息,所述指示信息用于指示所述对应关系;或者,处理单元1210还用于:获取预存的所述对应关系。
可选地,收发单元1220还用于:接收所述网络设备发送的所述随机接入过程中的第二条消息,其中,所述第二条消息中包括TA调整量。
可选地,所述随机接入过程为4步随机接入过程,收发单元1220还用于:根据所述目标TA和所述TA调整量,向所述网络设备发送所述4步随机接入过程中的第三条消息,其中,所述第三条消息中包括TA信息,所述TA信息包括所述目标TA或者包括所述目标TA与所述TA调整量之和。
可选地,所述TA信息为TA值或TA索引。
可选地,所述随机接入过程为2步随机接入过程,所述第一条消息中包括TA信息,所述TA信息包括所述目标TA。
可选地,所述TA信息为TA值或TA索引。
应理解,装置1200执行随机接入的具体方式以及产生的有益效果可以参见方法实施例中的相关描述。
图13示出了本申请提供的一种随机接入的设备的结构示意图。图13中的虚线表示该单元或该模块为可选的。设备1300可用于实现上述方法实施例中描述的方法。设备1300可以是终端设备或网络设备或芯片。
设备1300包括一个或多个处理器1301,该一个或多个处理器1301可支持设备1300实现图2至图8所对应方法实施例中的方法。处理器1301可以是通用处理器或者专用处理器。例如,处理器1301可以是中央处理器(Central Processing Unit,CPU)。CPU可以用于对设备1300进行控制,执行软件程序,处理软件程序的数据。设备1300还可以包括通信单元1305,用以实现信号的输入(接收)和输出(发送)。
例如,设备1300可以是芯片,通信单元1305可以是该芯片的输入和/或输出电路,或者,通信单元1305可以是该芯片的通信接口,该芯片可以作为终端设备或网络设备或其它无线通信设备的组成部分。
又例如,设备1300可以是终端设备或网络设备,通信单元1305可以是该终端设备或该网络设备的收发器,或者,通信单元1305可以是该终端设备或该网络设备的收发电路。
设备1300中可以包括一个或多个存储器1302,其上存储有程序1304,程序1304可被处理器1301运行,生成指令1303,使得处理器1301根据指令1303执行上述方法实施例中描述的方法。可选地,存储器1302中还可以存储有数据。可选地,处理器1301还可以读取存储器1302中存储的数据,该数据可以与程序1304存储在相同的存储地址,该数据也可以与程序1304存储在不同的存储地址。
处理器1301和存储器1302可以单独设置,也可以集成在一起,例如集成在终端设备的系统级芯片(System On Chip,SOC)上。
设备1300还可以包括天线1306。通信单元1305用于通过天线1306实现设备1300的收发功能。
处理器1301执行通信方法的具体方式可以参见方法实施例中的相关描述。
应理解,上述方法实施例的各步骤可以通过处理器1301中的硬件形式的逻辑电路或者软件形式的指令完成。处理器1301可以是CPU、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件,例如分立门、晶体管逻辑器件或分立硬件组件。
本申请还提供了一种计算机程序产品,该计算机程序产品被处理器1301执行时实现本申请中任一方法实施例所述的方法。
该计算机程序产品可以存储在存储器1302中,例如是程序1304,程序1304经过预处理、编译、汇编和链接等处理过程最终被转换为能够被处理器1301执行的可执行目标文件。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现本申请中任一方法实施例所述的方法。该计算机程序可以是高级语言程序,也可以是可执行目标程序。
该计算机可读存储介质例如是存储器1302。存储器1302可以是易失性存储器或非易失性存储器,或者,存储器1302可以同时包括易失性存储器和非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和设备的具体工作过程以及产生的技术效果,可以参考前述方法实施例中对应的过程和技术效果,在此不再赘述。
在本申请实施例中,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的方法实施例的一些特征可以忽略,或不执行。以上所描述的装置实施例仅仅是示意性的,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,多个单元或组件可以结合或者可以集成到另一个系统。另外,各单元之间的耦合或各个组件之间的耦合可以是直接耦合,也可以是间接耦合,上述耦合包括电的、机械的或其它形式的连接。
另外,本申请实施例中的术语“系统”和“网络”在常被可互换使用。术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请实施例中,“与A相应(对应)的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (35)

  1. 一种随机接入的方法,其特征在于,所述方法包括:
    终端设备根据第一信息,在多个时间提前量TA中确定目标TA,其中,所述第一信息与所述终端设备接收到的同步信号块SSB相关联,和/或与所述终端设备所处的区域相关联;
    所述终端设备根据所述目标TA,向网络设备发送随机接入过程中的第一条消息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息包括所述SSB的SSB索引,所述多个TA分别对应于多个SSB索引,
    其中,所述终端设备根据第一信息,在多个TA中确定目标TA,包括:
    所述终端设备根据所述SSB索引,以及所述多个TA与所述多个SSB索引之间的对应关系,确定与所述SSB索引对应的TA为所述目标TA。
  3. 根据权利要求2所述的方法,其特征在于,所述SSB包括物理广播信道PBCH,所述PBCH中承载所述SSB索引。
  4. 根据权利要求2或3所述的方法,其特征在于,所述SSB的测量值大于预设门限。
  5. 根据权利要求4所述的方法,其特征在于,所述SSB的测量值包括:所述SSB的参考信号接收功率RSRP和/或参考信号接收质量RSRQ的测量值。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的指示信息,所述指示信息用于指示所述对应关系;或者,
    所述终端设备获取预存的所述对应关系。
  7. 根据权利要求1所述的方法,其特征在于,所述终端设备所在的小区包括多个区域,所述多个TA分别对应于所述多个区域,所述第一信息包括所述终端设备在所述多个区域中所处的目标区域,所述终端设备为具备定位能力的终端设备,
    其中,所述终端设备根据第一信息,在多个TA中确定目标TA,包括:
    所述终端设备根据所述目标区域,以及所述多个TA与所述多个区域之间的对应关系,确定与所述目标区域对应的TA为所述目标TA。
  8. 根据权利要求7所述的方法,其特征在于,所述多个区域分别为具有不同SSB索引的多个SSB的覆盖区域。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述终端设备从卫星星历或者网络设备,获取所述多个区域的信息。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的指示信息,所述指示信息用于指示所述对应关系;或者,
    所述终端设备获取预存的所述对应关系。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的所述随机接入过程中的第二条消息,其中,所述第二条消息中包括TA调整量。
  12. 根据权利要求11所述的方法,其特征在于,所述随机接入过程为4步随机接入过程,所述方法还包括:
    所述终端设备根据所述目标TA和所述TA调整量,向所述网络设备发送所述4步随机接入过程中的第三条消息,其中,所述第三条消息中包括TA信息,所述TA信息包括所述目标TA或者包括所述目标TA与所述TA调整量之和。
  13. 根据权利要求12所述的方法,其特征在于,所述TA信息为TA值或TA索引。
  14. 根据权利要求11所述的方法,其特征在于,所述随机接入过程为2步随机接入过程,所述第一条消息中包括TA信息,所述TA信息包括所述目标TA。
  15. 根据权利要求14所述的方法,其特征在于,所述TA信息为TA值或TA索引。
  16. 一种随机接入的装置,其特征在于,包括:
    处理单元,用于根据第一信息,在多个时间提前量TA中确定目标TA,其中,所述第一信息与所述终端设备接收到的同步信号块SSB相关联,和/或与所述终端设备所处的区域相关联;
    收发单元,用于根据所述目标TA,向网络设备发送随机接入过程中的第一条消息。
  17. 根据权利要求16所述的装置,其特征在于,所述第一信息包括所述SSB的SSB索引,所述多个TA分别对应于多个SSB索引,
    其中,所述处理单元具体用于:
    根据所述SSB索引,以及所述多个TA与所述多个SSB索引之间的对应关系,确定与所述SSB索引对应的TA为所述目标TA。
  18. 根据权利要求17所述的装置,其特征在于,所述SSB包括物理广播信道PBCH,所述PBCH中承载所述SSB索引。
  19. 根据权利要求17或18所述的装置,其特征在于,所述SSB的测量值大于预设门限。
  20. 根据权利要求19所述的装置,其特征在于,所述SSB的测量值包括:所述SSB的参考信号接收功率RSRP和/或参考信号接收质量RSRQ的测量值。
  21. 根据权利要求17至20中任一项所述的装置,其特征在于,
    所述收发单元还用于:接收所述网络设备发送的指示信息,所述指示信息用于指示所述对应关系;或者,
    所述处理单元还用于:获取预存的所述对应关系。
  22. 根据权利要求21所述的装置,其特征在于,所述终端设备所在的小区包括多个区域,所述多个TA分别对应于所述多个区域,所述第一信息包括所述终端设备在所述多个区域中所处的目标区域,所述终端设备为具备定位能力的终端设备,
    其中,所述处理单元具体用于:
    根据所述目标区域,以及所述多个TA与所述多个区域之间的对应关系,确定与所述目标区域对应的TA为所述目标TA。
  23. 根据权利要求22所述的装置,其特征在于,所述多个区域分别为具有不同SSB索引的多个SSB的覆盖区域。
  24. 根据权利要求22或23所述的装置,其特征在于,所述处理单元还用于:
    从卫星星历或者网络设备,获取所述多个区域的信息。
  25. 根据权利要求22至24中任一项所述的装置,其特征在于,
    所述收发单元还用于:接收所述网络设备发送的指示信息,所述指示信息用于指示所述对应关系;或者,
    所述处理单元还用于:获取预存的所述对应关系。
  26. 根据权利要求16至25中任一项所述的装置,其特征在于,所述收发单元还用于:
    接收所述网络设备发送的所述随机接入过程中的第二条消息,其中,所述第二条消息中包括TA调整量。
  27. 根据权利要求26所述的装置,其特征在于,所述随机接入过程为4步随机接入过程,所述收发单元还用于:
    根据所述目标TA和所述TA调整量,向所述网络设备发送所述4步随机接入过程中的第三条消息,其中,所述第三条消息中包括TA信息,所述TA信息包括所述目标TA或者包括所述目标TA与所述TA调整量之和。
  28. 根据权利要求27所述的装置,其特征在于,所述TA信息为TA值或TA索引。
  29. 根据权利要求26所述的装置,其特征在于,所述随机接入过程为2步随机接入过程,所述第一条消息中包括TA信息,所述TA信息包括所述目标TA。
  30. 根据权利要求29所述的装置,其特征在于,所述TA信息为TA值或TA索引。
  31. 一种终端设备,其特征在于,所述终端设备包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至15中任一项所述的方法。
  32. 一种芯片,其特征在于,所述芯片包括处理器,所述处理器用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行权利要求1至15中任一项所述的方法。
  33. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行权利要求1至15中任一项所述的方法。
  34. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行权利要求1至15中任一项所述的方法。
  35. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行权利要求1至15中任一项所述的方法。
PCT/CN2019/129343 2019-12-27 2019-12-27 随机接入的方法和终端设备 WO2021128309A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/129343 WO2021128309A1 (zh) 2019-12-27 2019-12-27 随机接入的方法和终端设备
CN201980103317.9A CN114868433A (zh) 2019-12-27 2019-12-27 随机接入的方法和终端设备
EP19957386.6A EP4024971A4 (en) 2019-12-27 2019-12-27 RANDOM ACCESS METHOD AND TERMINAL DEVICE
US17/849,509 US20220330347A1 (en) 2019-12-27 2022-06-24 Random access method and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/129343 WO2021128309A1 (zh) 2019-12-27 2019-12-27 随机接入的方法和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/849,509 Continuation US20220330347A1 (en) 2019-12-27 2022-06-24 Random access method and terminal device

Publications (1)

Publication Number Publication Date
WO2021128309A1 true WO2021128309A1 (zh) 2021-07-01

Family

ID=76573537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129343 WO2021128309A1 (zh) 2019-12-27 2019-12-27 随机接入的方法和终端设备

Country Status (4)

Country Link
US (1) US20220330347A1 (zh)
EP (1) EP4024971A4 (zh)
CN (1) CN114868433A (zh)
WO (1) WO2021128309A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024092513A1 (zh) * 2022-11-01 2024-05-10 深圳传音控股股份有限公司 控制方法、通信设备及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230068504A1 (en) * 2021-09-02 2023-03-02 Qualcomm Incorporated Data collection reporting for non-terrestrial network cells
WO2024036428A1 (en) * 2022-08-15 2024-02-22 Qualcomm Incorporated Resolving abnormal timing advance commands
WO2024103310A1 (zh) * 2022-11-16 2024-05-23 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018133645A1 (zh) * 2017-01-19 2018-07-26 中兴通讯股份有限公司 定时提前维护方法、装置及系统
CN109495961A (zh) * 2017-09-11 2019-03-19 电信科学技术研究院 一种时间提前量指示方法、基站、终端及装置
CN109788548A (zh) * 2019-02-19 2019-05-21 上海交通大学 时间提前补偿的卫星移动通信随机接入方法、系统及介质
CN109842932A (zh) * 2017-11-24 2019-06-04 华为技术有限公司 获取时间提前量的方法与装置
WO2019195457A1 (en) * 2018-04-03 2019-10-10 Idac Holdings, Inc. Timing advance for non-terrestrial network communication
CN111093261A (zh) * 2019-12-16 2020-05-01 中兴通讯股份有限公司 定时提前量的确定方法、装置、设备及介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11553527B2 (en) * 2018-06-01 2023-01-10 Samsung Electronics Co., Ltd. Method and system for handling random access procedure in non-terrestrial communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018133645A1 (zh) * 2017-01-19 2018-07-26 中兴通讯股份有限公司 定时提前维护方法、装置及系统
CN109495961A (zh) * 2017-09-11 2019-03-19 电信科学技术研究院 一种时间提前量指示方法、基站、终端及装置
CN109842932A (zh) * 2017-11-24 2019-06-04 华为技术有限公司 获取时间提前量的方法与装置
WO2019195457A1 (en) * 2018-04-03 2019-10-10 Idac Holdings, Inc. Timing advance for non-terrestrial network communication
CN109788548A (zh) * 2019-02-19 2019-05-21 上海交通大学 时间提前补偿的卫星移动通信随机接入方法、系统及介质
CN111093261A (zh) * 2019-12-16 2020-05-01 中兴通讯股份有限公司 定时提前量的确定方法、装置、设备及介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ETRI: "Considerations on uplink timing advance and RACH procedure for NTN", 3GPP DRAFT; R1-1907039 CONSIDERATIONS ON UPLINK TIMING ADVANCE AND RACH PROCEDURE FOR NTN - FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051728487 *
ETRI: "Discussion on timing advance for NTN", 3GPP DRAFT; R1-1912640, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051820142 *
See also references of EP4024971A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024092513A1 (zh) * 2022-11-01 2024-05-10 深圳传音控股股份有限公司 控制方法、通信设备及存储介质

Also Published As

Publication number Publication date
US20220330347A1 (en) 2022-10-13
EP4024971A1 (en) 2022-07-06
CN114868433A (zh) 2022-08-05
EP4024971A4 (en) 2022-09-07

Similar Documents

Publication Publication Date Title
WO2021128309A1 (zh) 随机接入的方法和终端设备
US20220159732A1 (en) Random access method and device
US20230239774A1 (en) Network slicing information processing method, terminal device, and network device
US11546945B2 (en) Data transmission method and apparatus, and terminal
WO2021016773A1 (zh) 监听随机接入响应的方法、终端设备、网络设备及存储介质
US20210153247A1 (en) Random access method and terminal device
US20230337289A1 (en) Wireless communication method and terminal device
US20220124824A1 (en) Method for random access and communication device
WO2020210963A1 (zh) 消息传输的方法和设备
WO2021146828A1 (zh) 随机接入的方法及装置
US20230042104A1 (en) Wireless communication method, terminal device, and network device
WO2021128291A1 (zh) 随机接入的方法和终端设备
CN115623581A (zh) 时间同步方法、终端设备和网络设备
WO2021184335A1 (zh) 一种小区切换方法、终端设备及存储介质
WO2022116093A1 (zh) 无线通信方法和设备
WO2022120842A1 (zh) Ntn网络中定时提前的预补偿方法、终端设备和网络设备
EP3836475B1 (en) Method for controlling power ramp counter, and terminal device
WO2023077456A1 (zh) 随机接入的方法、终端设备和网络设备
WO2023015406A1 (zh) 通信方法及装置
WO2021120192A1 (zh) 用于随机接入过程的处理方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957386

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019957386

Country of ref document: EP

Effective date: 20220331

NENP Non-entry into the national phase

Ref country code: DE