WO2021125415A1 - 360도 공간 촬영을 통한 공간 모니터링 로봇 - Google Patents

360도 공간 촬영을 통한 공간 모니터링 로봇 Download PDF

Info

Publication number
WO2021125415A1
WO2021125415A1 PCT/KR2019/018370 KR2019018370W WO2021125415A1 WO 2021125415 A1 WO2021125415 A1 WO 2021125415A1 KR 2019018370 W KR2019018370 W KR 2019018370W WO 2021125415 A1 WO2021125415 A1 WO 2021125415A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
robot
degree
processor
monitoring
Prior art date
Application number
PCT/KR2019/018370
Other languages
English (en)
French (fr)
Inventor
서병조
김경석
Original Assignee
(주)바램시스템
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)바램시스템 filed Critical (주)바램시스템
Publication of WO2021125415A1 publication Critical patent/WO2021125415A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture

Definitions

  • the present disclosure relates to a space monitoring robot through 360-degree space shooting, and more specifically, a mobile robot monitors various spaces such as a home or an office through a processor capable of monitoring 360 degrees at the same time. It may include a processor for caring for the subject of care.
  • the main application markets for monitoring robots include smart home, medical care, business management, retail, facility management and operation, and smart factories. It is a form of fusion of robot and communication, in which the user remotely controls the robot or the robot moves by itself, allowing the user to look around or talk with the other person as if they were actually there.
  • the present disclosure is in accordance with the above-described problems, and the most important part of the present invention is that it can open a new market for spatial monitoring by overcoming the line-of-sight limit of the existing monitoring robot and realizing the price compared to the telepresence robot. developing a robot that has
  • the existing home monitoring robot has a blind spot because it monitors with a fixed field of view, but the robot developed in the present invention can monitor various spaces in real time because it is characterized by being able to monitor 360 degrees.
  • the present invention includes being able to monitor all spaces in real time by processing images input through a plurality of lenses and combining them into one image.
  • the monitoring robot equipped with such a 360-degree omnidirectional camera has the advantage of being able to monitor all the spaces where the robot was located without blind areas because the stored images can be checked with the tie-lime function in the past.
  • the conversation is equipped with a high-performance microphone and high-quality speaker for two-way conversation, and includes a conversation function that can cancel noise, one-way focused conversation function, and remove background noise and distracting voice.
  • a laser distance measuring sensor that can measure the distance between a camera and an object
  • an autonomous driving function that allows the robot to move by itself through camera image recognition.
  • IOT devices By interlocking IOT devices with these autonomous driving functions and voice recognition technology, it is possible to perform intelligent space security and monitoring missions beyond the limits of existing monitoring robots, and includes the ability to actively monitor objects.
  • the most important part of the monitoring robot is the camera function that can monitor the space 360 degrees, and it combines the images from two or more cameras to monitor the space with the 360-degree omnidirectional monitoring camera function, or It includes movement path analysis and subject-following techniques.
  • the monitoring robot since the monitoring robot will be developed in a form capable of autonomous driving unlike the existing robot, it does not function only when a person is connected, but performs monitoring and monitoring tasks at an arbitrary time and space input by the user.
  • autonomous driving obstacle recognition and mapping algorithms are included, and mapping correction algorithms are included through convergence technology of gyro sensor, encoder sensor, and camera sensor.
  • the monitoring robot can perform various services through 360-degree omnidirectional monitoring and autonomous driving function. It includes an auto-charging function that finds a charger and charges it automatically.
  • a shock absorber and shock absorber to prevent the robot from overturning or being damaged It contains a sensing device.
  • it includes a situation-aware speed control algorithm that allows the robot to maintain its own speed stably even if the consumer controls the maximum speed when there are many obstacles by judging the surrounding situation through the distance sensor that can detect the surrounding obstacles. aims to ensure stable driving and quick driving in the absence of obstacles.
  • the representative service development contents through image processing in the monitoring robot include a tracking algorithm for an object, which analyzes the movement path of the object and converts it into data to check the movement amount or abnormal state of the object, and includes an emergency notification service. have.
  • the robot moves to the location by itself, checks the status, and includes a security function to transmit an image.
  • the monitoring robot includes a departure notification technology capable of confirming the departure of the object by sending a notification to the registered terminal when the object moves to the movement prohibited area set by the user based on the location or when it deviates from the field of view of the robot.
  • a space monitoring robot through 360-degree space shooting includes a camera for acquiring a 360-degree image, a sensor unit for detecting an obstacle, a moving means for moving the robot, and an image acquired through the camera It includes a processor that extracts and analyzes information about the space in all directions using the omni-directional space and checks the abnormality of the space and the object.
  • the processor controls the moving means so that the robot moves to a specific area to care for the space and the object.
  • the processor analyzes the movement path of the object through the 360-degree omnidirectional image acquired through the camera.
  • the processor transmits the acquired image to the server, transmits it to the user terminal, and transmits an abnormal state related message to the user terminal and the manager terminal when the abnormal state of the space and the object is confirmed.
  • the robot can take the first response by itself, thereby reducing the burden on the administrator, and also Since all contents of the space can be saved at the time of this occurrence, a situation monitoring service without blind spots can be provided.
  • FIGS. 1 and 2 are diagrams for explaining a space monitoring robot through 360-degree space shooting according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a space monitoring robot through 360-degree space shooting according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a process in which a space monitoring robot is driven through 360-degree space photography.
  • FIGS. 1 and 2 are diagrams for explaining a space monitoring robot through 360-degree space shooting according to an embodiment of the present invention.
  • the moving means may be a means for moving the body of the robot.
  • the moving means may include a wheel-like component.
  • the camera may acquire images for 360 degrees.
  • the camera may acquire a 360-degree image while rotating through the driving unit, or may acquire a 360-degree image by merging images obtained from two or more cameras in real time.
  • the controller may control components included in the mobile space monitoring robot.
  • the controller may extract and analyze information about the omnidirectional space by using the image acquired through the camera.
  • the space in monitoring while moving in space through a monitoring robot that can move by itself in space, the space can be monitored at once through an omnidirectional camera, unlike the existing monitoring robot.
  • the camera continuously collects images of space in all directions and transmits these images to the server, so the user can access at any time and check the images of space again in all directions or in real time.
  • the present invention continuously checks the movement path of the object.
  • the robot must be continuously driven, but in the present invention, the object can be continuously monitored without driving the robot.
  • FIG. 3 is a block diagram illustrating a space monitoring robot through 360-degree space shooting according to an embodiment of the present invention.
  • the space monitoring robot 100 through 360-degree space shooting may include a communication unit 110 , a processor 120 , a position detection sensor 130 , a camera 140 , and a moving means 150 . have.
  • the communication unit 110 may perform communication with various types of external devices according to various wired and wireless communication methods under the control of the processor 120 .
  • the communication unit 110 may communicate with various servers through a network such as the Internet.
  • the position detection sensor 130 may detect an obstacle and detect the position of the robot.
  • the environment sensor 130 may include various sensors such as an infrared sensor, an ultraviolet sensor, a GPS sensor, and the like.
  • the camera 140 captures a 360 degree external image under the control of the processor 120 .
  • the camera 140 may capture a 360-degree surrounding image while the space monitoring robot 100 is moving through 360-degree space shooting. In this way, the captured image data may be provided to the processor 120 .
  • the moving means 150 may move the space monitoring robot 100 through 360-degree space shooting.
  • the moving unit 150 may include a rotating unit such as a wheel.
  • the processor 120 controls the overall operation of the space monitoring robot through 360-degree space shooting.
  • the processor 120 builds a spatial map and maps the location of the charging unit.
  • the processor 120 acquires a 360-degree omnidirectional image.
  • the processor 120 performs autonomous driving of the robot and senses an obstacle or an object.
  • the processor 120 moves to a specific area to care for the space and the object.
  • the processor 120 analyzes the movement path of the object through the 360-degree omnidirectional image.
  • the processor 120 transmits the acquired image to the server and transmits it to the user terminal.
  • the processor 120 checks the abnormal state of the space and the object.
  • the processor 120 When the abnormal state is confirmed, the processor 120 notifies the abnormal state to the user terminal and the manager terminal.
  • the storage unit (not shown) stores service space map data and stores various programs and data for the operation of the space monitoring robot 100 through 360-degree space shooting.
  • the charging unit (not shown) is provided separately to be interlocked with the robot so that the robot can dock itself, and can charge the robot.
  • the home robot 100 may move to an abnormal state occurrence region of the object based on data transmitted from the wearable sensor, photograph and transmit the state of the object.
  • FIG. 4 is a flowchart illustrating a process in which a space monitoring robot is driven through 360-degree space photography.
  • the space monitoring robot through 360-degree space shooting builds a space map and maps the location of the charging unit ( 300 ).
  • the space monitoring robot through 360-degree space photography acquires a 360-degree omnidirectional image ( 310 ).
  • the space monitoring robot through 360-degree space shooting performs autonomous robot driving and senses an obstacle or an object ( 320 ).
  • the space monitoring robot through 360-degree spatial photography moves to a specific area to care for the space and the object ( 330 ).
  • the space monitoring robot through 360-degree spatial imaging analyzes the movement path of the object through the 360-degree omnidirectional image ( 340 ).
  • the space monitoring robot through 360-degree space shooting transmits the acquired image to the server and transmits it to the user terminal (350).
  • the space monitoring robot through 360-degree space photography checks the abnormal state of the space and the object (360).
  • an abnormal state message is transmitted ('notified') to the user terminal and the manager terminal ( 370 ). Accordingly, the manager under the guardian can grasp the situation in real time.
  • the described embodiments may be configured by selectively combining all or part of each of the embodiments so that various modifications can be made.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Evolutionary Computation (AREA)
  • Human Computer Interaction (AREA)
  • Alarm Systems (AREA)

Abstract

본 발명에 따른 360도 공간 촬영을 통한 공간 모니터링 로봇은 360도 이미지를 획득하는 카메라와, 장애물을 감지하기 위한 센서부와, 로봇을 이동시키는 이동 수단 및 상기 카메라를 통해 획득된 이미지를 이용하여 전 방향의 공간에 대한 정보를 추출하고 분석하고, 공간 및 대상체의 이상을 확인하는 프로세서를 포함한다.

Description

360도 공간 촬영을 통한 공간 모니터링 로봇
본 개시는 360도 공간 촬영을 통한 공간 모니터링 로봇에 관한 것으로, 보다 상세하게는, 가정이나 사무실 등 다양한 공간을 이동 로봇이 모니터링 360도를 동시에 모니터링할 수 있는 프로세서를 통해서 공간을 인지하여 감시하거나, 케어 대상체를 케어하는 프로세서를 포함할 수 있다.
[과제고유번호] P006400120
[부처명] 산업통상자원부
[연구관리 전문기관] 한국산업기술진흥원
[연구사업명] 사업화연계기술개발사업(TOP, 도움당기플랫폼)
[연구과제명] Webrtc 적용한 IOT 서비스 확장이 용이한 공간 모니터링 로
봇 사업화 개발
[기여율] 1/1
[주관기관] (주)바램시스템
[연구기간] 20180401 ~ 20191231
최근 다양한 모니터링 로봇이 개발되고 있는데, 대표적인 제품인 텦레프레즌스 로봇 시장은 빠르게 발전하고 있으며, 모바일 모니터링 로봇의 이동성이 덧붙여져 가정, 기업, 교육, 헬스케어, 보안 등 컨슈머 시장 분야에서의 커뮤니케이션과 협업의 역할로 점차 시장이 확대될 전망이다.
대표적인 모니터링 로봇의 응용 시장은 스마트 홈, 의료, 비즈니스 관리, 소매, 시설 관리 및 운영, 스마트 공장 등이 주요 모니터링 로봇 시장으로 부상하고 있는데, 모니터링 로봇은 초고속 인터넷망과 4세대 LTE 이동통신망이 발전하면서 로봇과 통신이 융합된 형태로 이용자가 로봇을 원격조종하거나 로봇이 스스로 움직이면서 사용자가 실제로 그곳에 있는 것처럼 주위를 살펴보거나 상대방과 대화를 나눌 수 있는 로봇 형태이다.
2017년에는 미국 실리콘밸리 옴니랩스가 비디오 채팅을 할 수 있는 가정용 텔레프레즌스 로봇 옴니를 공식 발표하였는데, 옴니 로봇은 인디고고 크라우드 펀딩을 통해서 약 15만불의 사전 투자를 받았다.
이처럼 최근 4차 산업 혁명의 시대가 시작되면서 사물인터넷, 스마트 로봇, 가상 현실, 인공 지능이 이슈가 되고 있는 상황에서 떨어진 공간을 실시간으로 모니터링할 수 있는 로봇을 통해서 공간의 한계를 극복하는 기술은 폭발적으로 성장할 것으로 예상된다.
본 발명은 본 개시는 상술한 문제점에 따른 것으로 본 발명에서 가장 중요하게 생각하는 부분은 기존 모니터링 로봇의 시선 한계를 극복하면서, 텔레프렌즌스 로봇에 비해서 가격도 현실화하여 공간 모니터링의 새로운 시장을 열 수 있는 로봇을 개발하는 것이다.
기존의 홈 모니터링 로봇은 고정된 시야로 모니터링을 하기 때문에 사각 지역이 존재하였지만, 본 발명에서 개발하는 로봇은 360도를 모니터링 할 수 있는 것을 특징으로 하기 때문에 다양한 공간을 실시간으로 모니터링 가능하다.
기존의 로봇이 사각 지역없이 모든 방향을 모니터링 하기 위해서는 pat/tilt 구조를 가지고 가양하는데, 시선이 높은 모니터링 로봇에서는 이러한 pat/tilt 구조가 구동 안정성을 저해하고, 구조도 복잡하게 만드는 요소이다.
따라서 본 발명에서는 다수의 렌즈를 통해서 입력된 영상을 처리하여 하나의 영상으로 합쳐서 실시간으로 모든 공간을 모니터링 할 수 있는 것을 포함한다. 이러한 360도 전방향 카메라를 장착한 모니터링 로봇은 저장된 영상을 과거 타이라임 기능으로 확인할 수 있기 때문에 로봇이 위치했던 모든 공간을 사각 지역없이 모니터링 가능한 장점이 존재한다.
또한 양방향 대화를 위한 고성능 마이크 및 고음질 스피커를 탑재하고 노이즈 제거 및 단방향 집중 대화 기능, 배경 소음 및 산만한 음성 제거가 가능한 대화 기능을 포함한다.
그리고 장애물 인식과 자율 주행을 위하여 카메라와 물체 사이의 거리를 측정할 수 있는 레이저 거리 측정 센서와 카메라 영상 인식을 통해서 로봇이 스스로 이동할 수 있는 자율 주행 기능을 포함한다.
이러한 자율 주행 기능과 음성 인식 기술에 IOT 장치들까지 연동되면서 기존 모니터링 로봇의 한계를 벗어난 지능적인 공간 보안 및 모니터링 임무 수행이 가능하고 대상체를 능동적으로 모니터링할 수 있는 기능을 포함한다.
상기 모니터링 로봇에 있어서 가장 중요한 부분은 공간을 360도 모니터링 할 수 있는 카메라 기능으로 두 개 또는 그 이상의 카메라로부터 취합된 영상을 합쳐서 360도 전방향 모니터링 카메라 기능으로 공간을 모니터링하거나, 케어 및 감시 대상체의 이동 경로 분석과 대상체 팔로윙 기술을 포함한다.
상기의 모니터링 로봇에서 모니터링 로봇은 기존 로봇과 달리 자율 주행이 가능한 형태로 개발될 것이기 때문에 사람이 접속한 상태에서만 기능을 하는 것이 아니라, 사용자가 입력한 임의의 시간과 공간에서 모니터링과 감시 임무를 수행할 수 있는데, 이러한 자율 주행을 위해서 장애물 인식 및 맵핑 알고리즘을 포함하고 있으며, 자이로 센서, 엔코더 센서, 카메라 센서의 융복합 기술을 통한 맵핑 보정 알고리즘을 포함하고 있다.
상기의 모니터링 로봇은 360도 전방향 모니터링과 자율 주행 기능을 통해서 다양한 서비스를 수행할 수 있는데, 서비스 수행 과정에서 배터리가 부족하면 사용자에게 알리는 기능을 포함하고 있으며, 특정 레벨 이하로 배터리가 떨어지게 되면 스스로 충전기를 찾아서 자동으로 충전하는 자동 충전 기능을 포함하고 있다.
상기의 모니터링 로봇은 케어 대상체와 같은 공간에서 구동이 되기 때문에 주행에 있어서 안정성 확보가 매우 중요하기 때문에 로봇이 장애물을 넘거나 장애물에 부딪혔을 때 로봇이 전복되거나 파손되는 것을 방지하기 위한 충격 흡수 장치 및 충격 감지 장치를 포함하고 있다.
또한 주변 장애물을 감지할 수 있는 거리 센서를 통하여 주변의 상황을 판단하여 장애물이 많은 경우에는 소비자가 최고 속도 제어하더라도 로봇이 스스로의 속도를 안정적으로 유지하는 상황 인지 속도 제어 알고리즘을 포함하기 때문에 복잡한 공간에서는 안정적인 주행을 장애물이 없는 상황에서는 신속한 구동이 가능하는 것을 목표로 한다.
상기의 모니터링 로봇에서 영상 처리를 통한 대표적인 서비스 개발 내용으로는 대상체에 대한 추적 알고리즘 포함하고 있는데 대상체의 이동 경로를 분석하고, 이를 데이터화하여 대상체의 이동량이나 이상 상태를 확인하고 긴급 상황 알림 서비스를 포함하고 있다.
또한 상기의 모니터링 로봇과 연동이 되는 별도의 침입자 감지 센서에서 모니터링 공간에 침입자가 감지될 경우 로봇이 그 위치로 스스로 이동하여 상태를 확인하고 영상을 전송하는 시큐리티 기능을 포함하고 있다.
또한 상기 모니터링 로봇은 위치 기반으로 사용자가 설정해놓은 이동 금지 영역으로 대상체가 이동했거나, 로봇의 시야에서 벗어나게 되면 등록된 단말기에게 알림을 보내 대상체 이탈을 확인할 수 있는 이탈 알림 기술을 포함한다.
발명의 일실시예에 따른 360도 공간 촬영을 통한 공간 모니터링 로봇은 360도 이미지를 획득하는 카메라와, 장애물을 감지하기 위한 센서부와, 로봇을 이동시키는 이동 수단 및 상기 카메라를 통해 획득된 이미지를 이용하여 전 방향의 공간에 대한 정보를 추출하고 분석하고, 공간 및 대상체의 이상을 확인하는 프로세서를 포함한다.
프로세서는 공간 및 대상체를 케어하기 위해 로봇이 특정 지역으로 이동하도록 상기 이동 수단을 제어한다.
프로세서는 상기 카메라를 통해 획득된 360도 전방위 영상을 통해 대상체 이동 경로를 분석한다.
프로세서는 획득한 영상을 서버로 전송하고, 사용자 단말기로 전송하고, 공간 및 대상체의 이상 상태가 확인되면 사용자 단말기 및 관리자 단말기로 이상 상태 관련 메시지를 전송한다.
개시된 발명에 따르면, 360도 공간을 모니터링하는 기능을 통해서 모니터링 공간의 대상체 케어, 침입자 감시가 가능하며 상황이 발생했을 때 로봇이 스스로 1차 대응이 가능하기 때문에 관리자의 부담을 줄일 수 있고, 또한 상황이 발생한 시점에 공간의 모든 내용을 저장할 수 있기 때문에 사각 지역없는 상황 모니터링 서비스를 제공받을 수 있다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 360도 공간 촬영을 통한 공간 모니터링 로봇을 설명하기 위한 도면이다.
도 3은 본 발명의 일 실시예에 따른 360도 공간 촬영을 통한 공간 모니터링 로봇을 설명하기 위한 블록도이다.
도 4는 360도 공간 촬영을 통한 공간 모니터링 로봇이 구동되는 과정을 설명하기 위한 흐름도이다.
이하, 첨부된 도면을 참조하여 발명을 실시하기 위한 구체적인 내용에 대하여 상세하게 설명한다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 360도 공간 촬영을 통한 공간 모니터링 로봇을 설명하기 위한 도면이다.
도 1 및 도 2를 참조하면, 이동 수단은 로봇의 본체를 이동시키는 수단일 수 있다. 예를 들면, 이동 수단은 바퀴와 같은 구성을 포함할 수 있다.
카메라는 360도에 대해 이미지를 획득할 수 있다. 예를 들면, 카메라는 구동부를 통해 회전하면서 360도에 대한 이미지를 획득할 수도 있고, 2대 이상의 카메라로부터 획득된 이미지를 실시간으로 병합하여 360도에 대한 이미지를 획득할 수도 있다.
제어부는 이동형 공간 모니터링 로봇에 포함된 구성들을 제어할 수 있다.
제어부는 카메라를 통해 획득된 이미지를 이용하여 전 방향의 공간에 대한 정보를 추출하고 분석할 수 있다.
본 발명은 공간내에서 스스로 이동할 수 있는 모니터링 로봇을 통해서 공간을 이동하면서 모니터링하는 것에 있어서, 기존 모니터링 로봇과 달리 전방위 카메라를 통해서 공간을 한번에 모니터링할 수 있다.
이때 로봇은 공간으로 이동만 하면 카메라에서 공간의 영상을 전방위로 계속 취합하고 이 영상을 서버로 전송하기 때문에 사용자는 언제라도 접속하여 공간의 영상을 전방위로 다시 확인하거나 실시간으로 확인가능한다.
또한, 본 발명은 대상체의 이동 경로를 지속적으로 체크하는 것으로 기존에 이 기능을 위해서는 로봇이 지속적으로 구동을 해야하지 만 본 발명에서는 로봇의 구동 없이 대상체를 지속적으로 모니터링할 수 있다.
도 3은 본 발명의 일 실시예에 따른 360도 공간 촬영을 통한 공간 모니터링 로봇을 설명하기 위한 블록도이다.
도 3을 참조하면, 360도 공간 촬영을 통한 공간 모니터링 로봇(100)은 통신부(110), 프로세서(120), 위치 감지 센서(130), 카메라(140) 및 이동 수단(150)을 포함할 수 있다.
통신부(110)는 프로세서(120)의 제어를 받아 각종 유, 무선 통신 방식에 따라 다양한 유형의 외부 기기와 통신을 수행할 수 있다. 예를 들어, 통신부(110)는 인터넷 등의 네트워크를 통해 각종 서버와 통신을 수행할 수 있다.
위치 감지 센서(130)는 장애물을 감지하고 로봇의 위치를 감지할 수 있다. 예를 들면, 환경 감지 센서(130)는 적외선 센서, 자외선 센서, GPS 센서 등과 같은 다양한 센서를 포함할 수 있다.
카메라(140)는 프로세서(120)의 제어를 받아 360도 외부 영상을 촬영한다. 특히, 카메라(140)는 360도 공간 촬영을 통한 공간 모니터링 로봇(100)은 이동하는 동안 360도 주변 영상을 촬영할 수 있다. 이와 같이, 촬영된 영상 데이터는 프로세서(120)로 제공될 수 있다.
이동 수단(150)은 360도 공간 촬영을 통한 공간 모니터링 로봇(100)을 이동시킬 수 있다. 예를 들면, 이동 수단(150)은 바퀴 등과 같이 회전할 수 있는 수단을 포함할 수 있다.
프로세서(120)는 360도 공간 촬영을 통한 공간 모니터링 로봇의 전반적인 동작을 제어한다.
프로세서(120)는 공간 맵을 구축하고, 충전부의 위치를 매핑한다.
프로세서(120)는 360도 전방위 영상을 획득한다.
프로세서(120)는 로봇 자율 주행을 실시하고, 장애물 또는 대상체를 센싱한다.
프로세서(120)는 공간 및 대상체를 케어하기 위해 특정 지역으로 이동한다.
프로세서(120)는 360도 전방위 영상을 통해 대상체 이동 경로를 분석한다.
프로세서(120)는 획득한 영상을 서버로 전송하고, 사용자 단말기로 전송한다.
프로세서(120)는 공간 및 대상체의 이상 상태를 확인한다.
프로세서(120)는 이상 상태가 확인되면 사용자 단말기 및 관리자 단말기 등으로 이상 상태를 알린다.
저장부(미도시)는 서비스 공간 맵 데이터가 저장 및 360도 공간 촬영을 통한 공간 모니터링 로봇(100)의 동작을 위한 각종 프로그램 및 데이터를 저장한다.
충전부(미도시)는 로봇이 스스로 도킹할 수 있도록 로봇과 연동되는 별도로 구비되며, 로봇을 충전할 수 있다.
케어 대상체(사람, 동물 등)에 착용하는 IoT 기반의 웨어러블 센서를 더 포함하고, 웨어러블 센서는 케어 대상체의 이상 상태를 인지하고 홈 로봇(100)으로 전송할 수 있다. 홈 로봇(100)은 웨어러블 센서로부터 전송된 데이터를 기반으로 대상체의 이상 상태 발생 지역으로 이동하여 대상체의 상태를 촬영하고 전송할 수 있다.
도 4는 360도 공간 촬영을 통한 공간 모니터링 로봇이 구동되는 과정을 설명하기 위한 흐름도이다.
도 4를 참조하면, 360도 공간 촬영을 통한 공간 모니터링 로봇은 공간 맵을 구축하고, 충전부의 위치를 매핑한다(300).
360도 공간 촬영을 통한 공간 모니터링 로봇은 360도 전방위 영상을 획득한다(310).
360도 공간 촬영을 통한 공간 모니터링 로봇은 로봇 자율 주행을 실시하고, 장애물 또는 대상체를 센싱한다(320).
360도 공간 촬영을 통한 공간 모니터링 로봇은 공간 및 대상체를 케어하기 위해 특정 지역으로 이동한다(330).
360도 공간 촬영을 통한 공간 모니터링 로봇은 360도 전방위 영상을 통해 대상체 이동 경로를 분석한다(340).
360도 공간 촬영을 통한 공간 모니터링 로봇은 획득한 영상을 서버로 전송하고, 사용자 단말기로 전송한다(350).
360도 공간 촬영을 통한 공간 모니터링 로봇은 공간 및 대상체의 이상 상태를 확인한다(360).
360도 공간 촬영을 통한 공간 모니터링 로봇은 이상 상태가 확인되면 사용자 단말기 및 관리자 단말기 등으로 이상 상태 메시지를 전송('알림')한다(370). 이에 따라, 보호자 밑 관리자가 실시간으로 상황을 파악할 수 있다.
설명된 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
또한, 실시예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술분야의 통상의 전문가라면 본 발명의 기술사상의 범위에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.

Claims (4)

  1. 360도 이미지를 획득하는 카메라;
    장애물을 감지하기 위한 센서부;
    로봇을 이동시키는 이동 수단; 및
    상기 카메라를 통해 획득된 이미지를 이용하여 전 방향의 공간에 대한 정보를 추출하고 분석하고, 공간 및 대상체의 이상을 확인하는 프로세서를 포함하는, 360도 공간 촬영을 통한 공간 모니터링 로봇.
  2. 제 1 항에 있어서,
    상기 프로세서는,
    공간 및 대상체를 케어하기 위해 로봇이 특정 지역으로 이동하도록 상기 이동 수단을 제어하는, 360도 공간 촬영을 통한 공간 모니터링 로봇.
  3. 제 1 항에 있어서,
    상기 프로세서는,
    상기 카메라를 통해 획득된 360도 전방위 영상을 통해 대상체 이동 경로를 분석하는, 360도 공간 촬영을 통한 공간 모니터링 로봇.
  4. 제 1 항에 있어서,
    상기 프로세서는,
    획득한 영상을 서버로 전송하고, 사용자 단말기로 전송하고, 공간 및 대상체의 이상 상태가 확인되면 사용자 단말기 및 관리자 단말기로 이상 상태 관련 메시지를 전송하는, 360도 공간 촬영을 통한 공간 모니터링 로봇.
PCT/KR2019/018370 2019-12-20 2019-12-24 360도 공간 촬영을 통한 공간 모니터링 로봇 WO2021125415A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190171730 2019-12-20
KR10-2019-0171730 2019-12-20

Publications (1)

Publication Number Publication Date
WO2021125415A1 true WO2021125415A1 (ko) 2021-06-24

Family

ID=76437169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/018370 WO2021125415A1 (ko) 2019-12-20 2019-12-24 360도 공간 촬영을 통한 공간 모니터링 로봇

Country Status (2)

Country Link
US (1) US20210187744A1 (ko)
WO (1) WO2021125415A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118269113A (zh) * 2022-12-29 2024-07-02 Oppo广东移动通信有限公司 陪护方法、装置、系统、机器人以及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090012542A (ko) * 2007-07-30 2009-02-04 주식회사 마이크로로봇 로봇을 이용한 홈 모니터링 시스템
KR20170107341A (ko) * 2016-03-15 2017-09-25 엘지전자 주식회사 이동로봇 및 그 이동로봇의 제어 방법
US10029370B2 (en) * 2012-12-21 2018-07-24 Crosswing Inc. Control system for mobile robot
KR20180098891A (ko) * 2017-02-27 2018-09-05 엘지전자 주식회사 이동 로봇 및 그 제어방법
KR20190134554A (ko) * 2019-11-15 2019-12-04 엘지전자 주식회사 동적 장애물을 식별하는 방법 및 이를 구현한 로봇

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4455417B2 (ja) * 2005-06-13 2010-04-21 株式会社東芝 移動ロボット、プログラム及びロボット制御方法
US9014848B2 (en) * 2010-05-20 2015-04-21 Irobot Corporation Mobile robot system
US9530058B2 (en) * 2014-12-11 2016-12-27 Toyota Motor Engineering & Manufacturing North America, Inc. Visual-assist robots

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090012542A (ko) * 2007-07-30 2009-02-04 주식회사 마이크로로봇 로봇을 이용한 홈 모니터링 시스템
US10029370B2 (en) * 2012-12-21 2018-07-24 Crosswing Inc. Control system for mobile robot
KR20170107341A (ko) * 2016-03-15 2017-09-25 엘지전자 주식회사 이동로봇 및 그 이동로봇의 제어 방법
KR20180098891A (ko) * 2017-02-27 2018-09-05 엘지전자 주식회사 이동 로봇 및 그 제어방법
KR20190134554A (ko) * 2019-11-15 2019-12-04 엘지전자 주식회사 동적 장애물을 식별하는 방법 및 이를 구현한 로봇

Also Published As

Publication number Publication date
US20210187744A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
US10102730B2 (en) Monitoring apparatus for monitoring a targets exposure to danger
US9679458B2 (en) Information processing system, information processing apparatus, information processing method, information processing program, portable communication terminal, and control method and control program of portable communication terminal
WO2017018744A1 (ko) 무인 스마트카를 이용한 공익서비스 시스템 및 방법
WO2020095379A1 (ja) 画像処理装置、画像処理方法、及びコンピュータ可読媒体
WO2021112283A1 (ko) 홈 로봇 및 홈 디바이스 연동을 통한 스마트 홈 안전 모니터링 시스템
KR102335994B1 (ko) 드론 감시를 위한 촬영 감시 장치들의 통합 제어 장치
WO2019221416A1 (ko) 실시간 현장 동영상 중계를 이용한 시각장애인 안내 서비스 제공 방법
WO2021125415A1 (ko) 360도 공간 촬영을 통한 공간 모니터링 로봇
CN107195167A (zh) 受控设备及应用该受控设备的通信系统和方法
WO2013157801A1 (ko) 네트워크를 통한 현장 모니터링 방법, 및 이에 사용되는 관리 서버
WO2024136078A1 (ko) 폐쇄망 cctv용 정보 전송 시스템
WO2023113394A1 (ko) 범죄 예방을 위한 스마트 드론의 운용 방법
WO2023096394A1 (ko) 자세유형 판별을 위한 서버 및 그 동작방법
KR20150103859A (ko) 복합센서모듈을 이용한 센서 네트워크 시스템
WO2022097805A1 (ko) 이상 이벤트 탐지 방법, 장치 및 시스템
Kogut et al. Using video sensor networks to command and control unmanned ground vehicles
WO2017204598A1 (ko) 촬영된 영상에 관한 데이터 프로토콜을 설정하는 단말기 및 방법
WO2022145594A1 (ko) 딥러닝 객체 추적을 통한 무인주차 관제 시스템 및 방법
WO2014035053A1 (ko) 초광각 카메라를 이용한 카메라 시스템
KR20070061081A (ko) 보안 로봇 및 로봇을 이용한 보안 방법
WO2023128015A1 (ko) 비전카메라를 이용한 크레인 안전관리 시스템
CN108259831B (zh) 一种摄像头及摄像头基站
Seljanko Low-cost electronic equipment architecture proposal for urban search and rescue robot
CN106200485A (zh) 基于Android系统的公共管廊监控机器人
WO2015182967A1 (ko) 매칭시스템 및 매칭방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956611

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19956611

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/12/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19956611

Country of ref document: EP

Kind code of ref document: A1