WO2021125411A1 - 이동 로봇 - Google Patents

이동 로봇 Download PDF

Info

Publication number
WO2021125411A1
WO2021125411A1 PCT/KR2019/018254 KR2019018254W WO2021125411A1 WO 2021125411 A1 WO2021125411 A1 WO 2021125411A1 KR 2019018254 W KR2019018254 W KR 2019018254W WO 2021125411 A1 WO2021125411 A1 WO 2021125411A1
Authority
WO
WIPO (PCT)
Prior art keywords
floor
sensor
value
mobile robot
control unit
Prior art date
Application number
PCT/KR2019/018254
Other languages
English (en)
French (fr)
Inventor
배용환
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP19956353.7A priority Critical patent/EP4079466A4/en
Priority to US17/786,999 priority patent/US20230022860A1/en
Priority to PCT/KR2019/018254 priority patent/WO2021125411A1/ko
Priority to KR1020227019256A priority patent/KR20220104185A/ko
Priority to AU2019479398A priority patent/AU2019479398B2/en
Priority to CN201980103092.7A priority patent/CN114829083B/zh
Priority to TW109144326A priority patent/TWI794700B/zh
Publication of WO2021125411A1 publication Critical patent/WO2021125411A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • A47L11/4038Disk shaped surface treating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4063Driving means; Transmission means therefor
    • A47L11/4066Propulsion of the whole machine
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4063Driving means; Transmission means therefor
    • A47L11/4069Driving or transmission means for the cleaning tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • B25J11/0085Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • B25J13/089Determining the position of the robot with reference to its environment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • G05D1/0066Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements for limitation of acceleration or stress
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0253Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting relative motion information from a plurality of images taken successively, e.g. visual odometry, optical flow
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/06Control of the cleaning action for autonomous devices; Automatic detection of the surface condition before, during or after cleaning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45098Vacuum cleaning robot

Definitions

  • the present invention relates to a mobile robot for mopping.
  • a robot vacuum cleaner is an apparatus for cleaning by sucking foreign substances such as dust from a floor or wiping off foreign substances on the floor. Recently, a vacuum cleaner capable of mopping has been developed. In addition, the robot vacuum cleaner is a device that cleans while driving by itself.
  • a robot cleaner capable of moving by a mop surface is known.
  • the robot cleaner includes a first rotating member and a second rotating member for fixing a pair of mop surfaces arranged in a left-right direction.
  • the first rotating member and the second rotating member are respectively detachably coupled from the robot body.
  • the prior art does not detect the material of the floor and cannot run corresponding to the material of the floor, so that when a cleaner performing mopping climbs on a carpet or the like, there is a problem in that it cannot depart from the carpet.
  • the movement of the mobile robot is controlled by detecting the step difference of the floor through the cliff sensor, but in this case, there is a problem in that there is little difference between the floor and the floor and it is impossible to detect the case where the floor material is different do.
  • the problem to be solved by the present invention is to accurately detect the material of the floor, so that the material of the floor is not able to be cleaned with a wet mop or does not enter an area where it is difficult to get out again when a cleaner running with the rotational force of the wet mop enter To provide a mobile robot.
  • Another problem to be solved by the present invention is to extract the image quality value, the reflectivity of the floor and the frame rate through the downward image information obtained from the optical flow sensor used to detect the amount of movement of the mobile robot, and based on this, the floor It is to identify the material of the vehicle and make the mobile robot avoid the danger area.
  • Another problem to be solved by the present invention is to determine the material of the floor by synthesizing the information of the load information, the acceleration information, and the clip sensor information of the spin map when the floor material cannot be perfectly determined through the floor image information. In other words, the mobile robot avoids the danger area.
  • Another problem to be solved by the present invention is to determine the material of the floor by synthesizing the information of the floor image information, the spin map load information, the acceleration information, and the cliff sensor information, and make the mobile robot avoid the danger area.
  • Another problem to be solved by the present invention is to preemptively determine the dangerous area before the spin mop climbs the dangerous area such as the carpet by arranging the cliff sensor and the optical flow sensor in front of the spin mop, so that the mobile robot It is to preemptively block driving in hazardous areas.
  • the present invention is characterized in that it senses the material of the floor based on the image of the floor, and drives according to the material of the floor.
  • the present invention is characterized in that in the floor image, the material of the floor is sensed by at least one of an image quality value, a frame rate, and a reflectivity of the floor, and the vehicle is driven according to the floor material.
  • the present invention is characterized in that the floor image, acceleration, mop load, and information input from the creep sensor is comprehensively determined, the floor material is sensed, and the vehicle is driven according to the floor material.
  • the present invention the body; a pair of spinmaps rotatably installed on the body; a mop motor that provides a driving force to the pair of spin mops; an optical flow sensor that acquires downward image information using light at a predetermined time period; and a control unit that determines whether the material of the floor is a hazardous material based on the downward image information detected by the optical flow sensor, and controls the mop motor to perform an entry restriction operation when the floor material is determined to be a hazardous material.
  • the optical flow sensor may be disposed in front of the pair of spinmaps.
  • the optical flow sensor may include an image sensor that captures the lower image to obtain the lower image information, and one or more light sources that control the amount of light.
  • the control unit may calculate an image quality value of the lower image from the lower image information, and when the image quality value is smaller than a preset reference image quality value, determine the floor material as a dangerous material.
  • the image quality value may be determined in the form of an image in which light emitted from the light source is formed on the floor.
  • the control unit may calculate a frame rate of the lower image from the lower image information, and when the frame rate is smaller than a preset reference frame rate, determine the floor material as a dangerous material.
  • the control unit may calculate the reflectivity value of the floor from the lower image information, and when the reflectivity value of the floor is smaller than a preset reference reflectivity value, determine the floor material as a dangerous material.
  • the control unit calculates the reflectivity value of the floor, the image quality value of the lower image, and the frame rate of the lower image from the lower image information, and sets the floor material as a dangerous material when at least one of the following conditions 1 to 3 is satisfied. can judge
  • the present invention may further include a camera that acquires upward image information in a predetermined time period, and the control unit may detect a current position based on the upward image information.
  • the control unit may set the current location as a hazardous area when it is determined that the floor material is a hazardous material.
  • the present invention further includes a Mab load information sensor sensing a load value of the Mab motor, wherein the control unit is configured to perform the entry limiting operation when the Mab motor load value is greater than a preset reference load value. You can control the mop motor.
  • the present invention may further include a cliff sensor for detecting a distance from the floor, and the control unit may control the mop motor to perform an entry limiting operation when the distance to the floor is smaller than a reference distance value. have.
  • the clip sensor may be disposed in front of the pair of spinmaps.
  • the cliff sensor may be disposed to overlap at least a portion of the virtual central vertical plane in a vertical direction.
  • the present invention further includes an acceleration sensor installed on the body to detect an acceleration value, wherein the control unit calculates an average acceleration value from the acceleration value, and when the average acceleration value is greater than a reference average acceleration value , the mop motor may be controlled to perform an entry limiting operation.
  • the present invention further includes an acceleration sensor installed on the body to detect an acceleration value, wherein the control unit calculates a scatter of the acceleration value, and when the scatter is large, an entry restriction operation is performed.
  • the mop motor may be controlled.
  • the present invention provides a Mab load information sensor for detecting a load value of the Mab motor; a cliff sensor that detects the distance from the floor; and an acceleration sensor installed on the body to sense an acceleration value, wherein the control unit may control the mop motor to perform an entry restriction operation when at least one of the following conditions 4 to 7 is satisfied. .
  • the present invention also provides a body; a pair of spinmaps rotatably installed on the body; a mop motor that provides a driving force to the pair of spin mops; an optical flow sensor that acquires downward image information using light at a predetermined time period; an acceleration sensor installed on the body to detect an acceleration value; a cliff sensor that detects the distance from the floor; a Mab load information sensor for detecting a load value of the Mab motor; and determining whether the floor material is a hazardous material based on information input from at least one of the optical flow sensor, the acceleration sensor, the cliff sensor, and the Mab load information sensor, and if it is a hazardous material, the entry restriction operation is performed and a control unit for controlling the mop motor to do so.
  • the optical flow sensor is disposed at a position that does not vertically overlap with each spin-mab in front of a line connecting the rotation axes of each spin-mab, and the clip sensor is located at the front end of the pair of spin-mab and the optical flow sensor. It can be located in the front.
  • the pair of spin maps may be provided symmetrically with respect to a virtual central vertical plane, and the optical flow sensor and the clip sensor may be vertically overlapped with the central vertical plane.
  • the present invention determines the danger area based on the floor image, avoids it and runs, and when the mobile robot that provides driving force to the mobile robot by the rotation of the mop climbs the carpet, etc. There are advantages to solving problems that are very difficult to get out of.
  • the present invention estimates the material of the floor through at least one factor among the reflectivity of the floor, the image quality of the floor, the load of the spin map, and the acceleration through several sensors, or by combining these factors to determine the material of the floor. As it is assumed, there is an advantage of being able to determine the correct floor material, avoiding before entering the danger area, or leaving the danger area at the beginning of entering the danger area.
  • the cliff sensor and the optical flow sensor function to detect the movement amount of the cliff and the mobile robot, and at the same time also perform the function of determining the material of the floor, so there is no need to install a separate sensor
  • the manufacturing cost is reduced, and the control configuration is easy.
  • the clip sensor and the optical flow sensor are disposed in front of the mop module, there is an advantage that the mop module can preemptively avoid the carpet before the load is increased by the carpet or the like.
  • the present invention has an advantage in that the sensor for determining the material of the floor is disposed in the center in the left and right directions of the body, so that the maximum detection range can be secured with a minimum sensor.
  • FIG. 1 is a perspective view of a mobile robot according to a first embodiment of the present invention.
  • FIG. 2 is a left side view of FIG. 1 .
  • FIG. 3 is a bottom view of FIG. 1 ;
  • FIG. 4 is a control block diagram of a mobile robot according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a state in which a part of the mobile robot of the present invention climbs a carpet.
  • FIG. 6 is a flowchart illustrating a method for controlling a mobile robot according to the first embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method for controlling a mobile robot according to a second embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a method for controlling a mobile robot according to a third embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating a method for controlling a mobile robot according to a fourth embodiment of the present invention.
  • a direction parallel to an imaginary line connecting the central axis of the left spin-map and the central axis of the right spin-map is defined as a left-right direction, perpendicular to the left-right direction, and parallel to or between the central axis of the spin-map.
  • a direction in which the angle is within 5 degrees is defined as an up-down direction, and a direction perpendicular to the left-right direction and the up-down direction is defined as the front-rear direction.
  • the 'rag' mentioned below may be applied in various ways in terms of materials such as fabric or paper material, and may be used repeatedly or disposable through washing.
  • the cleaner 1 according to embodiments of the present invention will be generally described with reference to FIGS. 1 to 3 .
  • the cleaner 1 performs mopping.
  • the cleaner 1 may be provided to enable autonomous driving.
  • the cleaner 1 according to an embodiment of the present invention includes a body 30 having a control unit.
  • the body 30 includes a case 31 forming an external appearance, and a base 32 disposed below the case 31 .
  • the body 30 forms at least a part of a circle whose outer surface has a reference radius and a radius having an error within the reference error range.
  • having the reference radius and the radius having an error within the reference error range means that the circle is not a perfect circle, and the radius may vary for each central angle or each region within the error range.
  • the body 30 may have a circular shape of 50% or more when viewed in the vertical direction, and the remaining part may be formed close to a circular shape in consideration of coupling with other parts.
  • the circle does not mean a complete circle in the mathematical sense, but a circle in the engineering sense with an error.
  • the mobile robot 1 includes a mop module 40 that is provided to be in contact with the floor (surface to be cleaned) and mop.
  • the Mab module 40 may be disposed below the body 30 and support the body 30 .
  • the body 30 is supported by the mab module 40 .
  • the body 30 forms the exterior.
  • the Mab module 40 is disposed on the lower side of the body 30 .
  • the Mab module 40 provides a driving force for the movement of the mobile robot 1 .
  • the Mab module 40 is preferably disposed on the rear side of the mobile robot 1 .
  • the mop module 40 includes at least one mop unit (not shown) provided to mop the floor while rotating.
  • the Mab module 40 includes at least one spin Mab 41 , and the spin Mab 41 rotates in a clockwise or counterclockwise direction when viewed from above. Spinmab 41 is in contact with the floor.
  • the Mab module 40 may include a pair of spin Mab 41a and 41b.
  • a pair of spin-mab 41a, 41b rotates clockwise or counterclockwise when viewed from the top, and mops the floor through rotation.
  • the spinmap 41 disposed on the left when viewed from the front in the moving direction of the cleaner is referred to as the left spinmab 41a
  • the spinmab 41 disposed on the right is referred to as the right spin. It is defined as a mob (41b).
  • the left spinmap 41a and the right spinmab 41b are rotated about their respective rotation axes.
  • the rotating shaft is arranged in the vertical direction.
  • the left spinmap 41a and the right spinmab 41b may be rotated independently, respectively.
  • the pair of spin maps 41 may be symmetrically provided with respect to the virtual central vertical plane Po.
  • the present invention includes a mop motor (not shown) that provides driving force to the left spinmap 41a and the right spinmab 41b and is installed in the body 30 .
  • the mop motor 61 includes a first mop motor 61a and a second mop motor 61b.
  • the rotation shaft of the mop motor may extend up and down.
  • the first mop motor 61a and the second mop motor 61b are symmetrically provided with respect to the central vertical line Po.
  • the center vertical line (Po) is parallel to the front-rear direction and means a line passing through the geometric center (Tc) of the body.
  • the central vertical line Po may be defined as a line passing through the geometric center Tc of the body while perpendicularly intersecting with an imaginary line connecting the central axis of the left spin map and the central axis of the right spin map.
  • each spinmab 41 is disposed to be inclined downwardly and outwardly.
  • the inclination and motion of the spinmap 41 will be described.
  • a point at which the spin rotation axis Osa of the left spin map 41a and the lower surface of the left spin map 41a intersect is shown, and the spin rotation axis Osb of the right spin map 41b is shown.
  • a point at which the lower side of the right spinmab 41b intersects is shown.
  • a counterclockwise direction among the rotation directions of the right spin map 41b is defined as a second forward direction w2f, and a clockwise direction is defined as a second reverse direction w2r.
  • 'acute angle formed by the inclination direction of the lower surface of the left spinmab 41a with the left-right axis' and 'acute angle formed by the inclination direction of the lower surface of the right spinmab 41b with the left-right axis' is defined as the oblique angles (Ag1a, Ag1b).
  • the inclination angle Ag1a of the left spinmap 41a and the inclination direction angle Ag1b of the right spinmab 41b may be the same.
  • 'angle formed by the lower surface (I) of the left spin map (41a) with respect to the virtual horizontal plane (H)' and 'the angle formed by the lower surface (I) of the left spin map (41a) with respect to the virtual horizontal plane (H)' The angle' formed by the lower surface I is defined as the inclination angles Ag2a, Ag2b.
  • the right end of the left spinmap 41a and the left end of the right spinmab 41b may be in contact with or close to each other. Accordingly, it is possible to reduce the wiping gap occurring between the left spin-mab 41a and the right spin-mab 41b.
  • a point Pla receiving the greatest frictional force from the bottom among the lower surfaces of the left spinmab 41a is disposed on the left side of the rotational center Osa of the left spinmab 41a .
  • a load greater than other points is transmitted to the ground at the point Pla among the lower surfaces of the left spinmap 41a, so that the greatest frictional force is generated at the point Pla.
  • the point Pla is disposed in front of the left front of the rotation center Osa, but in another embodiment, the point Pla is disposed exactly to the left or rear left with respect to the rotation center Osa. .
  • the point Plb receiving the greatest frictional force from the bottom among the lower surfaces of the right spinmab 41b is disposed on the right side of the rotation center Osb of the right spinmab 41b .
  • a load greater than the other points is transmitted to the ground at the point Plb among the lower surfaces of the right spinmab 41b, so that the greatest frictional force is generated at the point Plb.
  • the point Plb is disposed in front of the right side of the rotation center Osb, but in another embodiment, the point Plb may be disposed exactly on the right side with respect to the rotation center Osb or disposed right rearward with respect to the rotation center Osb. .
  • a lower surface of the left spinmab 41a and a lower surface of the right spinmab 41b are respectively inclined.
  • the inclination angles Ag2a of the left spinmab 41a and the inclination angles Ag2a, Ag2b of the right spinmab 41b form an acute angle.
  • the point at which the frictional force is greatest becomes the point Pla and Plb, and the lower overall area of the mop part 411 according to the rotational operation of the left spin-mab 41a and the right spin-mab 41b. It can be set small enough to touch the floor.
  • the lower surface of the left spinmap 41a as a whole forms a downward slope in the left direction.
  • the lower surface of the right spinmab 41b as a whole forms a downward slope in the right direction.
  • the lower side of the left spinmap 41a forms the lowest point Pla on the left side.
  • the lower side of the left spinmab 41a forms the highest point Pha on the right side.
  • the lower side of the right spinmab 41b forms the lowest point Plb at the right side.
  • the lower side of the right spinmab 41b forms the highest point Phb in the left part.
  • the inclination direction angles Ag1a and Ag1b are 0 degrees.
  • the inclination direction of the lower surface of the left spinmap 41a forms an oblique angle Ag1a in a clockwise direction with respect to the left and right axis
  • the right spinmab 41b It is also possible to implement the inclined direction of the lower surface to form an inclined angle Ag1b in a counterclockwise direction with respect to the left and right axis.
  • the inclination direction of the lower surface of the left spinmap 41a forms a counterclockwise inclination angle Ag1a with respect to the left and right axis
  • the right spinmab 41b The oblique direction of the lower side forms an oblique angle Ag1b in a clockwise direction with respect to the left-right axis.
  • the movement of the mobile robot 1 is implemented by frictional force with the ground generated by the Mab module 40 .
  • the Mab module 40 may generate a 'forward movement friction force' to move the body 30 forward or a 'backward movement friction force' to move the body rearward.
  • the Mab module 40 may generate a 'left moment friction force' to rotate the body 30 left or a 'right moment friction force' to rotate the body 30 right.
  • the Mab module 40 may generate a friction force obtained by combining any one of a forward friction force and a backward movement friction force and any one of a leftward moment friction force and a rightward moment friction force.
  • the left spinmab 41a is rotated in the first forward direction w1f at a predetermined rpm (R1) and the right spinmab 41b is rotated in the second forward direction w2f. It can be rotated at rpm (R1).
  • the left spinmab 41a is rotated in the first reverse direction w1r at a predetermined rpm (R2) and the right spinmab 41b is rotated in the second reverse direction w2r. It can be rotated at rpm (R2).
  • the left spinmab 41a is rotated in the first forward direction w1f at a predetermined rpm (R3), and the right spinmab 41b is rotated in the i second reverse direction w2r. ), ii to stop without rotation, or iii to rotate at an rpm (R4) smaller than rpm (R3) in the second forward direction (w2f).
  • the right spinmab 41b is rotated in the second forward direction w2f at a predetermined rpm (R5), and the left spinmab 41a is rotated in the i first reverse direction w1r. ), ii to stop without rotation, or iii to rotate at an rpm (R6) smaller than rpm (R5) in the first forward direction w1f.
  • a relatively heavy, mop motor 61 and a battery are installed in the spin-mab 41 . ) can be placed on top of
  • the first mop motor 61a may be disposed on the left spinmap 41a
  • the second mop motor 61b may be disposed on the right spinmab 41b . That is, at least a portion of the first mop motor 61a may vertically overlap the left spinmap 41a. Preferably, the entirety of the first mop motor 61a may vertically overlap the left spinmab 41a. At least a portion of the second mop motor 61b may vertically overlap the right spinmab 41b. Preferably, the entirety of the second mop motor 61b may vertically overlap the right spinmab 41b.
  • the first mop motor 61a and the second mop motor 61b connect the spin axis Osa of the left spin map 41a to the spin axis Osb of the right spin map 41b. It may be disposed to vertically overlap the central horizontal line CHL.
  • the center of gravity MCa of the first mop motor 61a and the center of gravity MCb of the second mop motor 61b are the spin axis of rotation Osa of the left spinmap 41a and the right spinmab 41b. ) may be vertically overlapped with the virtual central horizontal line CHL connecting the spin rotation axis Osb.
  • the geometric center of the first mop motor 61a and the geometric center of the second mop motor 61b are the spin axis of rotation Osa of the left spinmap 41a and the spin axis of rotation Osb of the right spinmab 41b. It may be disposed to vertically overlap with the connected virtual central horizontal line CHL.
  • the first mop motor 61a and the second mop motor 61b are symmetrically disposed with respect to the central vertical line Po.
  • the spinmab 41 Since the center of gravity MCa of the first mop motor 61a and the center of gravity MCb of the second mop motor 61b do not deviate from the top of each spinmab 41 and are disposed symmetrically to each other, the spinmab 41 ), while improving the frictional force, driving performance and left-right balance can be maintained.
  • the spin axis of rotation Osa of the left spin map 41a is referred to as a left spin axis Osa
  • the spin axis Osb of the right spin map 41b is referred to as a right spin axis Osb.
  • the first mop motor 61a may be biased toward the left from the left spin axis of rotation Osa.
  • the first mop motor 61a may be disposed to be biased toward the left front side from the left spin rotation axis Osa.
  • the geometric center of the first mop motor 61a or the center of gravity MCa of the first mop motor 61a is biased to the left from the left spin axis of rotation Osa, or the first mop motor 61a
  • the geometric center of , or the center of gravity MCa of the first mop motor 61a may be disposed to be biased toward the left front from the left spin axis Osa.
  • the second mop motor 61b may be disposed to be biased toward the right from the right spin rotation axis Osb.
  • the second mop motor 61b may be disposed to be biased toward the right front side from the right spin rotation axis Osb.
  • the geometric center of the second mop motor 61b or the center of gravity MCb of the second mop motor 61b is oriented to the right in the right spin axis of rotation Osb, or the second mop motor 61b
  • the geometric center of , or the center of gravity MCb of the second mop motor 61b may be disposed to be biased toward the right front side from the right spin rotation axis Osb.
  • the first mop motor 61a and the second mop motor 61b apply pressure at a position biased forward and outward from the center of each spin-mab 41 , the pressure is concentrated on the front-outer side of each spin-mab 41 . Therefore, the driving performance is improved by the rotational force of the spinmap 41 .
  • the left spin axis Osa and the right spin axis Osb are disposed behind the center of the body 30 .
  • the central horizontal line CHL is disposed behind the geometric center Tc of the body 30 and the center of gravity WC of the mobile robot.
  • the left spin axis Osa and the right spin axis Osb are spaced apart from the center vertical line Po by the same distance.
  • a single number of batteries is installed. At least a portion of the battery is disposed over the left spinmab 41a and the right spinmab 41b.
  • a relatively heavy battery is disposed on the spin-mab 41 to improve the frictional force of the spin-mab 41 and to reduce the eccentricity caused by the rotation of the mobile robot.
  • a left portion of the battery may be vertically overlapped with the left spinmap 41a
  • a right portion of the battery may be disposed to vertically overlap with the right spinmap 41b
  • the battery may be disposed to vertically overlap with the central horizontal line CHL, and may be disposed to vertically overlap with the central vertical line Po.
  • the center of gravity BC of the battery or the geometric center of the battery may be disposed on the central vertical line Po, and may be disposed on the central horizontal line CHL.
  • the center of gravity (BC) of the battery or the geometric center of the battery is disposed on the central vertical line (Po), disposed in front of the central horizontal line (CHL), and disposed behind the geometric center (Tc) of the body 30 .
  • the center of gravity BC of the battery or the geometric center of the battery may be disposed in front of the water tank 81 or the center of gravity PC of the water tank 81 .
  • the heavy battery is centered upon the rotation of the spinmab 41 . to improve the frictional force on the spin-mab 41 by holding it and putting a weight on the spin-mab 41 .
  • the battery may be disposed at the same height (lower height) or on the same plane as the first mop motor 61a and the second mop motor 61b.
  • the battery may be disposed between the first mop motor 61a and the second mop motor 61b.
  • the battery is disposed in an empty space between the first mop motor 61a and the second mop motor 61b.
  • At least a portion of the water tank 81 is disposed above the left spinmab 41a and the right spinmab 41b.
  • the water tank 81 may be disposed behind the central horizontal line and may be vertically overlapped with the central vertical line Po.
  • the center of gravity PC of the water tank 81 or the geometric center of the water tank 81 may be disposed on the central vertical line Po, and may be located in front of the central horizontal line.
  • the center of gravity PC of the water tank 81 or the geometric center of the water tank 81 may be disposed on the central vertical line Po, and may be disposed behind the central horizontal line.
  • the center of gravity PC of the water tank 81 or the geometric center of the water tank 81 is disposed behind the central horizontal line means that the center of gravity PC of the water tank 81 or the geometric center of the water tank 81 is the central horizontal line. It means that it is vertically overlapped with a region that is biased more rearward.
  • the center of gravity PC of the water tank 81 or the geometric center of the water tank 81 does not deviate from the body 30 and is vertically overlapped with the body 30 .
  • the center of gravity PC of the water tank 81 or the geometric center of the water tank 81 may be disposed behind the center of gravity BC of the battery.
  • the water tank 81 may be disposed at the same height (lower height) or on the same plane as the first mop motor 61a and the second mop motor 61b.
  • the water tank 81 may be disposed to be biased backward in a space between the first mop motor 61a and the second mop motor 61b.
  • each spin-mab 41 vertically overlaps the body 30 , and another part of each spin-mab 41 is exposed to the outside of the body 30 .
  • the ratio of the area in which each spin-mab 41 vertically overlaps with the body 30 is 85% to 95% of each spin-mab 41 .
  • the angle between the line connecting the right end of the body and the right end of the right spinmap 41b and the vertical line connecting the right end of the body in parallel with the central vertical line Po may be 0 degrees to 5 degrees. .
  • the length of the region exposed to the outside of the body of each spin-mab 41 is preferably 1/2 to 1/7 of the radius of each spin-mab 41 .
  • the length of the region exposed to the outside of the body of each spin-mab 41 may mean a distance from one end of the body of each spin-mab 41 exposed to the outside to the rotation axis of each spin-mab 41 .
  • the distance between the geometric centers TC at the ends of the outwardly exposed regions of the body of each spinmap 41 may be greater than the average radius of the body.
  • each spinmab 41 is exposed is between the side and the back of the body 30 . That is, when each quadrant is sequentially positioned in a clockwise direction when viewed from below, the position at which each spinmab 41 is exposed may be a 2/4 quadrant or a 3/4 quadrant of the body 30 .
  • a sensing unit 20 for sensing various types of information related to an operation or state of the mobile robot 1 or an external situation is included.
  • the sensing unit 20 may include an obstacle detection sensor 21 for detecting an external obstacle spaced apart from the mobile robot 1 .
  • a plurality of obstacle detection sensors may be provided.
  • the obstacle detection sensor 21 includes an obstacle detection sensor that detects an obstacle in front.
  • the obstacle detection sensor 21 includes an obstacle detection sensor that detects an obstacle in a left and right direction.
  • the obstacle detection sensor 21 may be disposed on the body 30.
  • the obstacle detection sensor 21 includes an infrared sensor, an ultrasonic sensor, an RF sensor, a geomagnetic sensor, a PSD (Position Sensitive Device) sensor, and the like. can do.
  • the sensing unit 20 may include a position signal sensor 22 for determining a position by receiving an identification signal from the outside.
  • the position signal sensor 22 may be a UWB sensor using an Ultra Wide Band (UWB) signal.
  • the control unit 10 may determine the position of the mobile robot 1 according to the signal received from the position signal sensor 22 .
  • the identification signal from the outside is a signal transmitted by a signal generator such as a beacon disposed outside, and a plurality of signal generators may be provided, and each of the plurality of signal generators may be provided at a distance from each other.
  • the position signal sensor 22 is capable of receiving identification signals transmitted from signal generators disposed in different places.
  • the sensing unit 20 may include a cliff sensor 23a for detecting the presence of a cliff on the floor or detecting a distance from the floor.
  • the cliff sensor 23a may detect the presence or absence of a cliff in front and/or rear of the mobile robot 1 .
  • the cliff sensor 23a detects the distance to the floor, and the control unit 10 determines that the distance to the floor is greater than a preset distance, determines that it is a cliff, and controls the corresponding operation to be performed.
  • the cliff sensor 23a may include an optical sensor, and the optical sensor may include a laser sensor or an infrared sensor.
  • the cliff sensor 23a may include a light emitting unit (not shown) for emitting light toward the floor and a light receiving unit (not shown) for receiving light reflected from the floor.
  • the cliff sensor 23a may measure the distance by the time difference of returning to the light receiving unit.
  • the cliff sensor 23a may detect a reflection amount of light reflected from the floor.
  • the light receiving unit may measure the amount of light, illuminance, and the like of the returned light to obtain a reflectance compared to the light irradiated from the light output unit.
  • the cliff sensor 23a detects the amount of reflection of light reflected from the floor, and provides the control unit 10 with a means for detecting the material of the floor.
  • the clip sensor 23a may be disposed in front of the pair of spin mops 41 . If the clip sensor 23a is disposed in front of the pair of spin mops 41, there is an advantage that the pair of spin mops 41 can preemptively avoid the carpet before the load is increased by the carpet or the like. . In addition, the clip sensor 23a may be disposed in front of the pair of spin mops 41 and/or in front of the optical flow sensor 23b.
  • the sensing unit 20 may include an optical flow sensor 23b (Optical Flow Sensor) that detects the amount of movement of the mobile robot based on the image of the floor.
  • the optical flow sensor 23b may detect a reflection amount of light reflected from the floor.
  • the optical flow sensor 23b may obtain lower image information using light at a predetermined time period and provide the lower image information to the floor material determination unit 12 or the control unit 10 .
  • the optical flow sensor 23b generates image data in a predetermined format by converting a downward image input from an image sensor provided in the sensor.
  • the generated image data may be transmitted to the control unit 10 .
  • optical flow sensor 23b includes an image sensor (not shown) that captures a downward image to obtain downward image information, and one or more light sources (not shown) emitting plane light toward the floor. is composed
  • One or more light sources irradiate light to a predetermined area of the floor surface photographed by the image sensor. That is, when the mobile robot moves in a specific area along the floor surface, a constant distance is maintained between the image sensor and the floor surface if the floor surface is flat.
  • the mobile robot moves on the floor surface of the non-uniform surface, it is moved away from it by a certain distance or more due to the irregularities and obstacles (CA) of the floor surface.
  • one or more light sources may be controlled by the control unit 10 to adjust the amount of light irradiated.
  • the light source may be a light emitting device capable of controlling the amount of light, for example, a Light Emitting Diode (LED).
  • LED Light Emitting Diode
  • the control unit 10 may detect the position of the mobile robot regardless of the sliding of the mobile robot.
  • the control unit 10 may calculate a moving distance and a moving direction by comparing and analyzing the image data captured by the optical flow sensor 23b over time, and may calculate the position of the mobile robot based on this.
  • the control unit 10 can make a strong correction against slippage with respect to the position of the mobile robot calculated by other means.
  • the optical flow sensor 23b provides a means for detecting the material of the floor to the control unit 10 by detecting the amount of light reflected from the floor or analyzing the image of the floor.
  • the optical flow sensor 23b may be disposed to overlap at least a portion of the central vertical plane in the vertical direction. Specifically, the optical flow sensor 23b is positioned in front of the line connecting the central axes of the pair of spinmaps 41 on the central vertical plane. As another example, the optical flow sensor 23b may be positioned in front of the pair of spin mops 41 .
  • the optical flow sensor 23b is disposed in front of the mop module, there is an advantage that the mop module can preemptively avoid the carpet before the load is increased by the carpet or the like.
  • the cliff sensor 23a and the optical flow sensor 23b function to detect the amount of movement of the existing cliff and the mobile robot, and at the same time, there is an advantage that can perform a function of determining the material of the floor.
  • the sensing unit 20 may include a camera 24 that detects an external image.
  • the camera 24 may be disposed on the body 30 .
  • the camera 24 may acquire upward image information at a predetermined time period.
  • the sensing unit 20 may include a 3D sensor 25 that detects 3D position information of the external environment.
  • the 3D sensor 25 acquires upward image information at a predetermined time period.
  • the 3D sensor 25 may include a light irradiator (not shown) for irradiating infrared rays and a 3D depth camera (not shown) for detecting infrared rays reflected from an external object.
  • the light irradiation unit may irradiate infrared rays having a predetermined pattern.
  • the 3D camera may be an IR camera or an RGB-Depth camera.
  • the 3D sensor 25 may be implemented in a time of flight (TOF) method.
  • TOF time of flight
  • the 3D sensor 25 may include two or more cameras, and may be implemented as a stereo vision method for generating three-dimensional coordinate information by combining two or more images obtained from two or more cameras.
  • the sensing unit 20 may include a tilt information obtaining unit (not shown) that obtains tilt information on the floor H of the body 30 .
  • the tilt information obtaining unit may include the gyro sensor 26 .
  • the tilt information obtaining unit may include a processing module (not shown) that converts the detection signal of the gyro sensor 26 into tilt information.
  • the processing module is a part of the control unit 10 and may be implemented as an algorithm or a program.
  • the inclination information obtaining unit may include the magnetic field sensor 27 to obtain the inclination information based on sensing information about the earth's magnetic field.
  • the floor H refers to a horizontal plane, and refers to a plane perpendicular to the direction of gravity.
  • the gyro sensor 26 may acquire information on the rotational angular velocity of the body 30 with respect to the horizontal plane.
  • the gyro sensor 26 may detect rotational angular velocities about the X and Y axes parallel to the horizontal plane and perpendicular to each other.
  • the rotation angular velocity with respect to the horizontal plane may be calculated by synthesizing the rotation angular velocity with respect to the X-axis (roll) and the rotation angular velocity with respect to the Y-axis (pitch).
  • the inclination value may be calculated by integrating the rotational angular velocity through the processing module.
  • the gyro sensor 26 may detect a predetermined reference direction.
  • the tilt information obtaining unit may obtain tilt information based on the reference direction.
  • the gyro sensor 26 may have a gyro sensing function for three axes of a spatial coordinate system orthogonal to each other.
  • the information collected by the gyro sensor 26 may be roll, pitch, and yaw information.
  • the processing module can calculate the direction angle of the mobile robot 1 by integrating the rolling, pitching, and yaw angular velocities.
  • the gyro sensor 26 is preferably disposed on the body 30 . Accordingly, the gyro sensor 26 is disposed on the remaining part Q, which will be described later, belonging to the body 30 . In addition, the tilt information obtaining unit is disposed in the remaining part (Q).
  • the gyro sensor 26 may be implemented as a separate sensor, or may be implemented as a part of an IMU sensor to be described later.
  • the sensing unit 20 may include a magnetic field sensor 27 for sensing a magnetic field.
  • the magnetic field sensor 27 may have a magnetic field sensing function for three axes of a spatial coordinate system orthogonal to each other.
  • the magnetic field sensor 27 may measure a direction angle (azimuth).
  • the magnetic field sensor 27 may be implemented as a separate sensor, or may be implemented as some function of an IMU sensor to be described later.
  • the sensing unit 20 may include an acceleration sensor 28 installed on the body 30 to sense the acceleration of the mobile robot 1 .
  • the acceleration sensor 28 may have an acceleration sensing function for three axes of a spatial coordinate system orthogonal to each other.
  • the acceleration sensor 28 may be implemented as a separate sensor, or may be implemented as a part of an IMU sensor to be described later.
  • the mobile robot 1 may include an inertial sensor unit (IMU) (not shown). Based on the information of the inertial sensor unit, the mobile robot 1 can stabilize the driving motion.
  • the inertial sensor unit IMU may have a function of a gyro sensor 26 , a function of a magnetic field sensor 27 , and a function of an acceleration sensor 28 .
  • the sensing unit 20 may include a Mab load information sensor 29 that acquires load information of the Mab motor 61 .
  • the Mab load information sensor 29 may sense the load of the Mab motor 61 by detecting a motor load current value or a motor load voltage value of the Mab motor 61 .
  • the Mab load information sensor 29 may be implemented by a current detection unit provided in the Mab motor 61 control unit 10 .
  • the Mab load information sensor 29 may be provided by using an encoder that detects the rotation speed or number of rotations of the spin Mab. Specifically, the greater the load applied to the mop 411, the slower the rotation speed may be compared to the rotation signal (current value or voltage value, etc.) applied to the mop motor 61. As the encoder detects information about the rotation speed, the load information can be obtained.
  • the sensing unit 20 may include an impact detection sensor (not shown) that detects contact with an external obstacle.
  • An impact sensor may be implemented by a bumper (not shown) that is pressed by an external object.
  • the sensing unit 20 may include an encoder (not shown) for recognizing an actual moving path of the mobile robot 1 .
  • the function of the encoder may be performed by the auxiliary wheel 58 .
  • the mobile robot 1 includes an input unit 16 capable of inputting various instructions from a user.
  • the input unit 16 may include a button, a dial, a touch-type display, and the like.
  • the input unit 16 may include a microphone (not shown) for voice recognition.
  • the input unit 16 may include a power switch 16a for inputting ON/OFF of power supply.
  • the mobile robot 1 includes an output unit 17 that outputs various information to a user.
  • the output unit 17 may include a display (not shown) for outputting visual information.
  • the output unit 17 may include a speaker (not shown) for outputting auditory information.
  • the mobile robot 1 includes a storage unit 18 for storing various types of information.
  • the storage unit 18 may include a volatile or non-volatile recording medium. Algorithms for controlling various error response operations of the mobile robot 1 may be stored in the storage unit 18 .
  • the storage unit 18 may store a map for the driving zone.
  • the map may be input by an external terminal capable of exchanging information through the communication unit 19 or may be generated by the mobile robot 1 learning itself.
  • the external terminal include a remote controller, a PDA, a laptop, a smart phone, and a tablet equipped with an application for setting a map.
  • the mobile robot 1 may include a communication unit 19 connectable to a predetermined network.
  • the communication unit 19 may be implemented using a wireless communication technology such as IEEE 802.11 WLAN, IEEE 802.15 WPAN, UWB, Wi-Fi, Zigbee, Z-wave, Blue-Tooth, and the like.
  • the mobile robot 1 includes a control unit 10 that controls autonomous driving.
  • the control unit 10 may be implemented by a main PCB (Co) disposed inside the body 30 .
  • the control unit 10 may process a signal of the input unit 16 or a signal input through the communication unit 19 .
  • the control unit 10 may receive the sensing signal of the sensing unit 20 to control the running of the cleaner.
  • the control unit 10 may receive the sensing signal of the sensing unit 20 to control the mop motor 61 .
  • the control unit 10 may control a water supply module (not shown).
  • the control unit 10 may control a pump (not shown) to adjust the amount of supplied water. Through the control of a pump (not shown), the amount of water supplied to the Mab module 40 per hour may be changed.
  • the control unit 10 may control a valve to be described later to change whether water is supplied or not.
  • the control unit 10 may learn the driving zone through the image (upward image information) detected by the camera 24 or the 3D sensor and control the current location to be recognized (detected).
  • the control unit 10 may be provided to map the driving area through an image.
  • the control unit 10 may be provided so that the current location can be recognized on the mapped map through the image.
  • the image captured by the camera 24 may be used to generate a map of the driving area and to detect a current position in the driving area.
  • control unit 10 may generate a map of the driving area by using the boundary between the ceiling and the side of the image taken by the camera 24 in the upward direction. Also, the control unit 10 may detect the current position in the driving zone based on the feature points of the image.
  • the control unit 10 may control the mobile robot 1 to return to the charging station after driving.
  • the mobile robot 1 may be provided so as to be able to return to the charging station by sensing an infrared (IR: InfraRed) signal transmitted from the charging station.
  • the control unit 10 may control the mobile robot 1 to return to the charging station based on the detected signal transmitted from the charging station.
  • the charging station may include a signal transmitting unit (not shown) for transmitting a predetermined return signal.
  • control unit 10 may control the mobile robot 1 to return to the charging station by recognizing the current location on the map. It is possible to recognize the location and the current location corresponding to the charging station on the map, and through this, the mobile robot 1 can return to the charging station.
  • the control unit 10 may control the mobile robot 1 based on information input through a user's terminal (eg, a smart phone or a computer).
  • the mobile robot 1 may receive input information through the communication unit 19 .
  • the control unit 10 may control a traveling pattern (eg, traveling in a zigzag manner or traveling to intensively clean a certain area) of the mobile robot 1 based on the inputted information.
  • the control unit 10 may control whether a specific function of the mobile robot 1 (eg, a function for finding lost items or a function for repelling insects, etc.) is activated based on the input information.
  • the control unit 10 may set the cleaning driving start time of the mobile robot 1 as a specific time based on the input information. (scheduled cleaning function)
  • the control unit 10 includes a mop motor 61 control unit 10 that controls driving of the mop motor 61 .
  • the control unit 10 may include a first Mab motor 61 control unit 10 that controls the driving of the first Mab motor 61a.
  • the control unit 10 may include a second Mab motor 61 control unit 10 that controls driving of the second Mab motor 61b.
  • the present invention preemptively determines whether the material of the floor is a hazardous material using various sensors.
  • the control unit 10 recognizes that the floor material is a hazardous material based on information input from at least one of the optical flow sensor 23b, the acceleration sensor 28, the cliff sensor 23a, and the mop load information sensor 29. It is determined, and if it is a hazardous material, it is possible to control the mop motor to perform an entry restriction operation.
  • the control unit 10 recognizes that the floor material is a hazardous material by independently or collectively considering the information input from the optical flow sensor 23b, the acceleration sensor 28, the cliff sensor 23a, and the mop load information sensor 29 can judge
  • the control unit 10 may further include a floor material determination unit 12 for determining the material of the floor.
  • the control unit 10 determines the material of the floor based on the downward image information obtained through the optical flow sensor 23b, and when the material of the floor is a hazardous material, the mop motor so that the mobile robot 1 performs an entry restriction operation. (61) can be controlled. In addition, when it is determined that the floor material is a hazardous material, the control unit 10 may set the current location (or the current location and the surrounding area) as the hazardous area.
  • the case where the material of the floor is a hazardous material may be defined as satisfying the entry restriction condition.
  • the entry-restriction response operation controls the mop motor 61 to avoid driving in an area satisfying the entry-restriction condition.
  • avoiding the area satisfying the entry restriction condition means that the control unit 10 controls the mop motor 61 to allow the mobile robot to satisfy the entry restriction condition (area of a certain radius from the current position identified through the camera). ) means driving or cleaning the cleaning area except for
  • the operation for responding to the entry restriction may include executing an evasion error operation when evasive driving is attempted in an area that satisfies the entry restriction condition and evasion driving does not occur.
  • the avoiding error operation may include an operation of outputting visual information such as a message or a picture/sign.
  • the error response operation may include an operation of outputting a predetermined sound.
  • the avoidance error operation may include an operation of stopping driving until the error is resolved.
  • One avoidance error operation may be configured by a combination of these at least one operation.
  • the mobile robot may preferentially try to avoid driving while driving at a slow speed.
  • Normal driving generally means performing a preset operation, not an entry restriction response operation.
  • the floor material determination unit 12 calculates at least one of the reflectivity value of the floor, the image quality value of the lower image, and the frame rate of the lower image from the lower image information, and satisfies at least one of conditions 1 to 3 , the floor material can be judged as a hazardous material.
  • the image quality value is less than the preset reference image quality value
  • Frame rate is less than the preset reference frame rate
  • the reflectivity value of the floor is less than the preset reference reflectivity value
  • the floor material determination unit 12 calculates the image quality value of the lower image from the lower image information, and determines that the floor material is a dangerous material when the image quality value is smaller than a preset reference image quality value.
  • the floor material determination unit 12 may calculate the frame rate of the lower image from the lower image information, and when the frame rate is smaller than a preset reference frame rate, determine the floor material as a dangerous material.
  • the floor material determination unit 12 may calculate the reflectivity value of the floor from the lower image information, and when the reflectivity value of the floor is smaller than a preset reference reflectivity value, the floor material may be determined as a dangerous material.
  • the image quality value is defined as a value obtained by digitizing the state of the downward image photographed through the optical flow sensor 23b.
  • the image quality value may be determined in the form of an image formed on the floor in which light emitted from the light source is formed. That is, the light source emits flat light of a certain shape to the floor, and in a downward image captured by the light source, a degree similar to the shape of the flat light emitted from the light source may be defined as an image quality value.
  • the image quality measurement process may be a process of measuring whether a contrast ratio is appropriate after a smoothing process through a histogram.
  • the image quality measurement process may be a process of measuring whether a contrast ratio is appropriate after a smoothing process through a histogram.
  • the image quality measurement process may include a binarization process and a contrast ratio suitability confirmation process.
  • the smoothing process may be a process for improving the recognition rate of the lower image using histogram analysis.
  • the acquired downward image may be composed of a plurality of pixels.
  • the histogram represents the distribution of the contrast values for a plurality of pixels included in the lower image. That is, the histogram shows the distribution of the bright part and the dark part distributed in the lower image. Specifically, the range of the contrast value in the 256 Gray Level image has 0 to 255.
  • a histogram is a bar graph showing the frequency count of the intensity value for each pixel.
  • the smoothing process is a process of equalizing the distribution of the light and dark values when the distribution of the light and dark values distributed on the histogram is skewed to one side or is not uniform.
  • the smoothing process is a process to spread the light and dark values concentrated in one place to have a uniform ring distribution. Due to the smoothing process, the dark part of the lower image becomes bright and the bright image becomes dark, so that each pixel may have an appropriate contrast value.
  • the binarization process may be a process of dividing each pixel constituting the lower image into black or white after the smoothing process. Since the lower image after the smoothing process may have complex shading, each pixel may be binarized into black or white through the binarization process.
  • a threshold value for distinguishing between black and white is required.
  • the threshold value may be a value set to distinguish black and white pixels. If the contrast value of the pixel is greater than the threshold value, it may be classified as 0 (black), and when the contrast value of the pixel is less than the threshold value, it may be classified as 1 (white).
  • the process of confirming the suitability of the contrast ratio may be a process of confirming whether the contrast ratio of the plurality of binarized pixels satisfies a preset ratio.
  • the image quality value becomes small, and when the image quality value is small, the roughness of the floor is high or it may be a carpet. Accordingly, in the present invention, when the image quality value is smaller than the reference image quality value, the floor material is determined as a dangerous material.
  • the reflectivity of the floor may be a value obtained by dividing a white pixel by a black pixel.
  • the reflectivity of the floor may be defined as a value of the amount of light emitted from the light source reflected on the floor and incident on the light receiving unit (not shown).
  • the image quality value of the lower image is high, the reflectivity of the floor is high, and the frame rate is high.
  • the floor is made of a material with low reflectivity or the floor has a high roughness, the image quality value of the lower image becomes low, the reflectivity of the floor becomes low, and the frame rate becomes low.
  • the floor material is determined based on the difference in a plurality of parameters of the lower image of the optical flow sensor 23b according to the material of the floor, it is possible to avoid the mobile robot before entering the dangerous area.
  • multiple parameters are cross-checked and independently verified with one sensor, it is possible to accurately determine the floor material.
  • the mobile robot may determine that it is a carpet area and avoid it and run. Accordingly, when the mobile robot, which provides driving force to the mobile robot by the rotation of the mop, climbs the carpet, it is possible to solve the problem that it is very difficult to get off the carpet.
  • control unit 10 may determine the material of the floor based on the distance to the floor obtained from the cliff sensor 23a and the downward image information obtained through the optical flow sensor 23b.
  • control unit 10 may control the mop motor to perform the entry limiting operation when the distance value to the floor obtained from the cliff sensor 23a is smaller than the reference distance value.
  • control unit 10 may determine the floor material based on the downward image information obtained through the optical flow sensor 23b.
  • the control unit 10 may control the mop motor so that the mobile robot runs normally when the distance value to the floor obtained from the cliff sensor 23a is larger than the reference distance value and smaller than the maximum value.
  • the clip sensor 23a is disposed at the front end of the body, and detects a step difference between the floor (reference floor) contacted by the spin mop and the floor below the front end of the body.
  • the cliff may be detected through the value detected by the cliff sensor 23a, and a floor higher than the reference floor may be detected. If it is higher than the reference floor, it is determined that a carpet is on the floor, and the mobile robot avoids it.
  • the mobile robot may determine that the current location is the danger area while a part of the spin map enters the danger area.
  • the control unit 10 may control the mobile robot 1 based on the Mab load value detected by the Mab load information sensor 29 . Specifically, the control unit 10 may control the Mab motor 61 to perform the entry limiting operation when the Mab load value detected by the Mab load information sensor 29 is greater than a preset reference load value.
  • control unit 10 may control the Mab motor 61 to perform a normal driving operation when the Mab load value detected by the Mab load information sensor 29 is less than a preset reference load value.
  • control unit 10 may calculate an average acceleration value from the acceleration values and, when the average acceleration value is greater than the reference average acceleration value, control the mop motor to perform the entry limiting operation. Also, the control unit 10 may control the mop motor to calculate the dispersion of the acceleration values and to perform the entry limiting operation when the dispersion is large in the reference dispersion.
  • control unit 10 may control the mop motor to perform a normal driving operation. Also, the control unit 10 may control the mop motor to perform an orthodox driving operation when the acidity distribution is small in the reference distribution.
  • a factor of a plurality or a single number such as the load of the spin map, information from the acceleration sensor 28, etc. Through this, it is possible to determine whether there is a danger zone at the initial stage of entering the danger zone.
  • control unit 10 may control the mop motor to perform an entry limiting operation.
  • the load value of the mop motor is greater than the preset reference load value
  • Distance from floor value is less than reference distance value
  • the average acceleration value is greater than the reference average acceleration value
  • control unit 10 may control the mop motor to perform an entry limiting operation. Therefore, the present invention can determine whether the floor is a hazardous material comprehensively and accurately based on various factors.
  • FIG. 5 a case in which a part of the mobile robot (the clip sensor 23a and/or the optical flow sensor 23b) climbs the carpet M is illustrated.
  • the present invention makes it possible for a part of a mobile robot to avoid a carpet if it has climbed it, or if it is in close proximity to the carpet. In this case, since the spin mop is still in contact with the floor H, the carpet can be avoided.
  • the control method may be performed by the control unit 10 .
  • the present invention may be a control method of the mobile robot 1, and may be a mobile robot 1 including a control unit 10 for performing the control method.
  • the present invention may be a computer program including each step of the control method, or a recording medium in which a program for implementing the control method in a computer is recorded.
  • 'Recording medium' means a computer-readable recording medium.
  • the present invention may be a cleaner control system including both hardware and software.
  • Each step of the flowchart drawings of the control method and combinations of the flowchart drawings may be performed by computer program instructions.
  • the instructions may be mounted on a general purpose computer or special purpose computer, etc., and the instructions will create a means for performing the functions described in the flowchart step(s).
  • the control method according to the first embodiment is a macroscopic mobile robot control method.
  • the control method of the present invention includes the steps (S100) of the mobile robot 1 acquiring floor information through various means, and the steps of determining the material of the floor based on the floor information collected through various means (S200); It may include a step (S300) of controlling the running of the mobile robot based on the material of the floor.
  • the control method according to the second embodiment includes a step (S100) in which the mobile robot 1 acquires floor information, and determining the material of the floor based on the floor information collected through various means. It may include a step (S200) and a step (S300) of controlling the movement of the mobile robot based on the material of the floor.
  • the step of obtaining the floor information ( S100 ) may include a step ( S110 ) of the mobile robot taking a downward image, and a step ( S112 ) of the mobile robot acquiring the downward image information from the downward image.
  • the step (S100) of obtaining the floor information is made by the optical flow sensor (23b).
  • Determining the material of the floor based on the floor information (S200) includes determining that the material of the floor is a dangerous material based on the lower image information (S210).
  • the mobile robot and/or the control unit 10 determines the material of the floor based on the downward image information obtained through the optical flow sensor 23b. Specifically, the control unit 10 calculates at least one of the reflectivity value of the floor, the image quality value of the lower image, and the frame rate of the lower image from the lower image information, and when at least one of conditions 1 to 3 is satisfied, the floor The material can be judged as a hazardous material.
  • a detailed method of determining is the same as described above.
  • the step of controlling the movement of the mobile robot (S300) includes a step (S310) of controlling the mobile robot to perform an entry restriction operation when the material is dangerous.
  • the control unit 10 may switch the direction of the mobile robot to either left or right, or reverse the direction and then execute step S100 again.
  • the step of controlling the movement of the mobile robot (S300) may include a step (S312) of controlling the mobile robot to travel normally when the material is not dangerous.
  • the control unit 10 may determine whether the floor material is a hazardous material, and if the material is a hazardous material, control the mop motor to perform an entry limiting operation.
  • the control method includes a step ( S100 ) of the mobile robot 1 acquiring floor information, and determining the material of the floor based on the floor information collected through various means. It may include a step (S200) and a step (S300) of controlling the movement of the mobile robot based on the material of the floor.
  • the step of obtaining the floor information is a step in which the optical flow sensor 23b acquires the downward image information from the downward image of the mobile robot (S112), and the acceleration sensor 28 acquires the acceleration value of the mobile robot.
  • Determining the material of the floor (S200) includes a step (S220) of determining that the material is dangerous when the control unit 10 satisfies at least one of the conditions 1 to 7.
  • the control unit 10 may calculate an average acceleration value from the acceleration values and calculate the dispersion of the acceleration values. A detailed method of determining is the same as described above.
  • the step of controlling the movement of the mobile robot (S300) includes a step (S310) of controlling the mobile robot to perform an entry restriction operation when the material is dangerous.
  • the step of controlling the movement of the mobile robot (S300) may include a step (S312) of controlling the mobile robot to travel normally when the material is not dangerous.
  • the control unit 10 may determine whether the floor material is a hazardous material, and if the material is a hazardous material, control the mop motor to perform an entry limiting operation.
  • the mobile robot may register the current location or/and an area around the current location as a dangerous area on the map ( S320 ).
  • the control method includes a step (S100) of the mobile robot 1 acquiring floor information, and determining the material of the floor based on the floor information collected through various means. It may include a step (S200) and a step (S300) of controlling the movement of the mobile robot based on the material of the floor.
  • the step of obtaining the floor information (S100) is a step in which the optical flow sensor 23b acquires the downward image information from the downward image of the mobile robot (S112), and the acceleration sensor 28 acquires the acceleration value of the mobile robot.
  • Step S113, the step of obtaining the Mab motor load value by the mop load information sensor 29 (S116), and the step of obtaining the distance value between the floor and the mobile robot by the cliff sensor 23a (S117) can The steps of obtaining downward image information (S112), obtaining an acceleration value (S113), obtaining a mop motor load value (S116), and obtaining a distance value between the floor and the mobile robot (S117) are They may be executed individually, independently, concurrently, concurrently, in parallel or sequentially.
  • the step (S200) of determining the material of the floor includes a step (S221) of determining that the material is a hazardous material when the control unit 10 satisfies at least one of conditions 1 to 3.
  • the control unit 10 may calculate an average acceleration value from the acceleration values and calculate the dispersion of the acceleration values.
  • a detailed method of determining is the same as described above.
  • the control unit 10 controls the mop motor to perform an entry restriction operation when it is determined that the floor material is a hazardous material (S310), and determines that the floor material is not a hazardous material In this case, it is determined whether the floor material is a hazardous material based on the distance from the floor (S222).
  • step S222 the control unit 10 determines that the material is dangerous when the distance value from the floor obtained from the cliff sensor 23a is smaller than the reference distance value.
  • the control unit 10 may control the mop motor to perform the entry restriction operation (S310).
  • step S222 when the control unit 10 determines that the floor material is not a hazardous material, it is determined whether the floor material is a hazardous material based on the Mab motor load value (S223).
  • step S223 the control unit 10 determines that the Mab load value detected by the Mab load information sensor 29 is greater than a preset reference load value as a hazardous material.
  • the control unit 10 may control the mop motor to perform the entry limiting operation (S310).
  • step S223 when the control unit 10 determines that the floor material is not a hazardous material, it is determined whether the floor material is a hazardous material based on the acceleration scattering diagram (S224).
  • step S224 when the average acceleration value is greater than the reference average acceleration value, the control unit 10 determines that the material is dangerous.
  • the control unit 10 may control the mop motor to perform the entry limiting operation (S310).
  • step S224 when the control unit 10 determines that the floor material is not a hazardous material, it controls the mobile robot to run normally (S312).
  • the mobile robot may register the current location or/and an area around the current location as a dangerous area on the map ( S320 ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

본 발명은, 바디; 상기 바디에 회전 가능하게 설치되는 한 쌍의 스핀맙; 상기 한 쌍의 스핀맙에 구동력을 제공하는 맙 모터; 일정 시간주기로 빛을 이용하여 하방 영상 정보를 획득하는 옵티컬 플로우 센서; 및 상기 옵티컬 플로우 센서에서 감지된 상기 하방 영상 정보를 바탕으로 바닥의 재질이 위험 재질인지 판단하고,; 바닥 재질이 위험 재질로 판단되는 경우, 진입 제한 동작을 수행하도록 상기 맙 모터를 제어하는 제어유닛을 포함하는 것을 특징으로 한다.

Description

이동 로봇
본 발명은 걸레질을 하는 이동 로봇에 관한 것이다.
로봇 청소기는, 바닥으로부터 먼지 등의 이물질을 흡입하거나 바닥의 이물질을 닦아냄으로써 청소하는 기기이다. 최근에는, 걸레질을 수행할 수 있는 청소기가 개발되고 있다. 또한, 로봇 청소기는 스스로 주행하면서 청소하는 기기이다.
종래 기술(한국 등록특허공보 10-1654014)로서 걸레면에 의해 이동을 할 수 있는 로봇 청소기가 알려져 있다. 상기 종래 기술에서, 로봇 청소기는, 좌우 방향으로 배치된 한 쌍의 걸레면을 고정하는 제 1회전 부재 및 제 2회전 부재를 포함한다. 상기 종래 기술에 따른 로봇 청소기에서, 상기 제 1회전 부재는 및 상기 제 2회전 부재는 각각 로봇 몸체로부터 분리 가능하게 결합된다.
종래 기술은 바닥의 재질을 감지하지 못하고, 바닥 재질에 대응되는 주행을 하지 못하여서, 걸레질을 수행하는 청소기가 카펫 등에 등반하는 경우, 카펫에서 이탈하지 못하는 문제점이 존재한다.
또한, 종래 기술은 카펫 등을 감지하지 못하므로, 카펫이 걸레에 끼어서 걸레의 고장의 원인이 되면, 주행할 수 없는 카펫을 등반하게 되어서 청소 시간이 길어지는 단점이 존재한다.
또한, 다른 선행기술의 경우, 클리프 센서를 통해 바닥의 단차를 감지하여서, 이동 로봇의 주행을 제어하나, 이 경우, 바닥과 단차가 거의 없이 바닥의 재질이 다른 경우를 감지하지 못하게 되는 문제점이 존재한다.
[선행기술문헌]
[특허문헌]
한국 등록특허공보 10-1654014 (등록일자 2016년 8월 30일)
본 발명이 해결하고자 하는 과제는, 바닥의 재질을 정확하게 감지하여서, 바닥의 재질이 물걸레 청소가 불가능 하거나, 물걸레의 회전력으로 주행하는 청소기가 진입할 시에 다시 빠져 나오지 어려운 영역을 사전에 진입하지 않는 이동 로봇을 제공하기 위함이다.
본 발명이 해결하고자 하는 다른 과제는, 이동 로봇의 이동 량을 감지하기 위해 사용하던 옵티컬 플로우 센서에서 회득한 하방 영상 정보를 통해, 이미지 퀄리티 값, 바닥의 반사도 및 프레임 레이트를 추출하고 이를 바탕으로 바닥의 재질을 규명하고, 이동 로봇이 위험지역을 회피하게 하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는, 바닥 영상 정보를 통해 바닥재질을 완벽하게 판단할 수 없는 경우, 스핀 맙의 부하 정보, 가속도 정보, 클리프 센서 정보의 정보를 종합하여 바닥의 재질을 판단하고, 이동 로봇이 위험 지역을 회피하게 하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는, 바닥 영상 정보, 스핀 맙의 부하 정보, 가속도 정보, 클리프 센서 정보의 정보를 종합하여 바닥의 재질을 판단하고, 이동 로봇이 위험 지역을 회피하게 하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는, 클리프 센서 및 옵티컬 플로우 센서를 스핀 맙 보다 전방에 배치하여서, 스핀 맙이 카펫 등의 위험지역을 등반하기 전에 선제적으로 위험지역을 판단하여서, 이동 로봇이 위험 지역을 주행하는 것을 선제적으로 차단하는 것이다.
상기 과제를 해결하기 위해서, 본 발명은 바닥의 영상을 바탕으로 바닥의 재질을 감지하고, 바닥 재질에 따라 주행하는 것을 특징으로 한다.
또한, 본 발명은 바닥 영상에서, 이미지 퀄리티 값, 프레임 레이트, 바닥의 반사도 중 적어도 하나로 바닥의 재질을 감지하고, 바닥 재질에 따라 주행하는 것을 특징으로 한다.
또한, 본 발명은 바닥 영상, 가속도, 맙 부하 및 클리프 센서에서 입력된 정보를 종합적으로 판단하여서, 바닥의 재질을 감지하고, 바닥 재질에 따라 주행하는 것을 특징으로 한다.
구체적으로, 본 발명은, 바디; 상기 바디에 회전 가능하게 설치되는 한 쌍의 스핀맙; 상기 한 쌍의 스핀맙에 구동력을 제공하는 맙 모터; 일정 시간주기로 빛을 이용하여 하방 영상 정보를 획득하는 옵티컬 플로우 센서; 및 상기 옵티컬 플로우 센서에서 감지된 상기 하방 영상 정보를 바탕으로 바닥의 재질이 위험 재질인지 판단하고, 바닥 재질이 위험 재질로 판단되는 경우, 진입 제한 동작을 수행하도록 상기 맙 모터를 제어하는 제어유닛을 포함한다.
상기 옵티컬 플로우 센서는 상기 한 쌍의 스핀맙 보다 전방에 배치될 수 있다.
상기 옵티컬 플로우 센서는, 상기 하방 영상을 촬영하여 상기 하방 영상 정보를 획득하는 이미지센서 및 상기 빛의 양을 조절하는 하나 이상의 광원을 포함할 수 있다.
상기 제어유닛은, 상기 하방 영상 정보에서 하방 영상의 이미지 퀄리티 값을 산정하고, 상기 이미지 퀄리티 값이 기 설정된 기준 이미지 퀄리티 값 보다 작은 경우, 바닥 재질을 위험 재질로 판단할 수 있다.
상기 이미지 퀄리티 값은, 상기 광원에서 방출된 빛이 바닥에 형성된 상의 형태로 판단할 수 있다.
상기 제어유닛은, 상기 하방 영상 정보에서 하방 영상의 프레임 레이트를 산정하고, 상기 프레임 레이트가 기 설정된 기준 프레임 레이트 보다 작은 경우, 바닥 재질을 위험 재질로 판단할 수 있다.
상기 제어유닛은, 상기 하방 영상 정보에서 바닥의 반사도 값을 산정하고, 바닥의 반사도 값이 기 설정된 기준 반사도 값 보다 작은 경우, 바닥 재질을 위험 재질로 판단할 수 있다.
상기 제어유닛은, 상기 하방 영상 정보에서 바닥의 반사도 값, 하방 영상의 이미지 퀄리티 값 및 하방 영상의 프레임 레이트를 산정하고, 하기 조건 1 내지 3 중 적어도 하나를 만족하는 경우, 바닥 재질을 위험 재질로 판단할 수 있다.
또한, 본 발명은 일정 시간주기로 상방 영상 정보를 획득하는 카메라를 더 포함하고, 상기 제어유닛은 상기 상방 영상 정보를 바탕으로 현재 위치를 검출할 수 있다.
상기 제어유닛은, 바닥 재질이 위험 재질로 판단되는 경우, 현재 위치를 위험 지역으로 설정할 수 있다.
또한, 본 발명은 상기 맙 모터의 부하 값을 감지하는 맙 부하정보 센서를 더 포함하고, 상기 제어 유닛은, 상기 맙 모터의 부하 값이 기 설정된 기준 부하 값 보다 큰 경우 진입 제한 동작을 수행하도록 상기 맙 모터를 제어할 수 있다.
또한, 본 발명은 바닥과의 거리를 감지하는 클리프 센서를 더 포함하고, 상기 제어 유닛은, 상기 바닥 과의 거리 값이 기준 거리 값 보다 작은 경우 진입 제한 동작을 수행하도록 상기 맙 모터를 제어할 수 있다.
상기 클리프 센서는, 상기 한 쌍의 스핀맙 보다 전방에 배치될 수 있다.
상기 클리프 센서는 가상의 중심 수직면과 적어도 일부가 수직적 방향에서 중첩되게 배치될 수 있다.
또한, 본 발명은 상기 바디에 설치되어 가속도 값을 감지하는 가속도 센서를 더 포함하고, 상기 제어 유닛은, 상기 가속도 값에서 평균 가속도 값을 산정하고, 상기 평균 가속도 값이 기준 평균 가속도 값 보다 큰 경우, 진입 제한 동작을 수행하도록 상기 맙 모터를 제어할 수 있다.
또한, 본 발명은 상기 바디에 설치되어 가속도 값을 감지하는 가속도 센서를 더 포함하고, 상기 제어 유닛은, 상기 가속도 값의 산포도를 산정하고 상기 산도포가 기준 산포도 큰 경우, 진입 제한 동작을 수행하도록 상기 맙 모터를 제어할 수 있다.
또한, 본 발명은 상기 맙 모터의 부하 값을 감지하는 맙 부하정보 센서; 바닥과의 거리를 감지하는 클리프 센서; 및 상기 바디에 설치되어 가속도 값을 감지하는 가속도 센서를 더 포함하고, 상기 제어유닛은, 하기 조건 4 내지 7 중 적어도 하나를 만족하는 경우, 진입 제한 동작을 수행하도록 상기 맙 모터를 제어할 수 있다.
또한 본 발명은 바디; 상기 바디에 회전 가능하게 설치되는 한 쌍의 스핀맙; 상기 한 쌍의 스핀맙에 구동력을 제공하는 맙 모터; 일정 시간주기로 빛을 이용하여 하방 영상 정보를 획득하는 옵티컬 플로우 센서; 상기 바디에 설치되어 가속도 값을 감지하는 가속도 센서; 바닥과의 거리를 감지하는 클리프 센서; 상기 맙 모터의 부하 값을 감지하는 맙 부하정보 센서; 및 상기 옵티컬 플로우 센서, 상기 가속도 센서, 상기 클리프 센서 및 상기 맙 부하정보 센서 중 적어도 하나의 센서에서 입력된 정보를 바탕으로 바닥 재질이 위험 재질 인지 판단하고, 위험 재질 인 경우, 진입 제한 동작을 수행하도록 상기 맙 모터를 제어하는 제어유닛을 포함한다.
상기 옵티컬 플로우 센서는 상기 각 스핀맙의 회전축을 연결한 선 보다 전방에서 상기 각 스핀맙과 수직적으로 중첩되지 않는 위치에 배치되고, 상기 클리프 센서는 한 쌍의 스핀맙의 전단 및 상기 옵티컬 플로우 센서 보다 전방에 위치될 수 있다.
상기 한 쌍의 스핀맙은 가상의 중심 수직면을 기준으로 좌우 대칭되게 구비되고, 상기 옵티컬 플로우 센서 및 상기 클리프 센서는 상기 중심 수직면과 수직적으로 중첩되게 배치될 수 있다.
상기 해결 수단을 통해서, 본 발명은 바닥 영상을 바탕으로 위험 영역을 판단하고, 이를 회피하여 주행하여서, 걸레의 회전에 의해 이동 로봇에 주행력을 제공하는 이동 로봇이 카펫 등을 등반하는 경우, 카펫에서 벗어나기가 매우 힘든 문제를 해결할 수 있는 장점이 존재한다.
또한, 본 발명은 여러 개의 센서를 통해 바닥의 반사도와, 바닥이 이미지 퀄리티, 스핀 맙의 부하, 가속도 중 적어도 하나의 인자를 통해 바닥의 재질을 추측하거나, 이들의 인자를 조합하여서 바닥의 재질을 추측하므로, 정확한 바닥 재질을 판단할 수 있고, 위험 지역에 진입하기 전에 회피하거나, 위험 지역에 진입하는 초기에 위험지역에서 이탈할 수 있는 이점이 존재한다.
또한, 본 발명은, 클리프 센서와, 옵티컬 플로우 센서가 기존에 낭떠러지와 이동 로봇의 이동 량을 감지하는 기능을 하면서, 동시에 바닥의 재질을 판단하는 기능도 수행함으로써, 별도의 센서를 장착할 필요가 없고, 제조 비용이 감소되며, 제어 구성이 용이한 장점이 존재한다.
또한, 본 발명은 클리프 센서 및 옵티컬 플로우 센서가 맙 모듈 보다 전방에 배치되기 때문에, 맙 모듈이 카펫 등에 의해 부하가 증가하지 전에 선제적으로 카펫을 회피할 수 있는 이점이 존재한다.
또한, 본 발명은 바닥의 재질을 판단하기 위한 센서를 바디의 좌우방향에서 중앙에 배치하여서, 최소한의 센서로 최대한의 감지 범위를 확보할 수 있는 이점이 존재한다.
도 1은 본 발명의 제 1 실시예에 따른 이동 로봇의 사시도이다.
도 2는 도 1의 좌측면도이다.
도 3는 도 1의 저면도이다.
도 4는, 본 발명의 일 실시예에 따른 이동 로봇의 제어 블록도이다.
도 5은, 본 발명의 이동 로봇의 일부가 카펫을 등반하는 모습을 도시한 도면이다.
도 6은, 본 발명의 제1 실시예에 따른 이동 로봇의 제어방법을 도시한 순서도이다.
도 7은, 본 발명의 제2 실시예에 따른 이동 로봇의 제어방법을 도시한 순서도이다.
도 8은, 본 발명의 제3 실시예에 따른 이동 로봇의 제어방법을 도시한 순서도이다.
도 9는, 본 발명의 제4 실시예에 따른 이동 로봇의 제어방법을 도시한 순서도이다.
이하에서 언급되는 “전(F)/후(R)/좌(Le)/우(Ri)/상(U)/하(D)” 등의 방향을 지칭하는 표현은 도면에 표시된 바에 따라 정의하나, 이는 어디까지나 본 발명이 명확하게 이해될 수 있도록 설명하기 위한 것이며, 기준을 어디에 두느냐에 따라 각 방향들을 다르게 정의할 수도 있음은 물론이다.
예를 들면, 좌측 스핀 맙의 중심축과 우측 스핀 맙의 중심축을 연결한 가상의 선과 나란한 방향이 좌우 방향으로 정의되고, 상기 좌우 방향과 수직적으로 교차되고, 상기 스핀 맙들의 중심축과 나란하거나 사이각이 5도 이내인 방향이 상하 방향으로 정의되고, 좌우 방향 및 상하 방향과 수직적으로 교차되는 방향은 전후 방향으로 정의된다.
이하에서 언급되는 구성요소 앞에 ‘제 1, 제 2, 제 3' 등의 표현이 붙는 용어 사용은, 지칭하는 구성요소의 혼동을 피하기 위한 것일 뿐, 구성요소 들 사이의 순서, 중요도 또는 주종관계 등과는 무관하다. 예를 들면, 제 1 구성요소 없이 제 2구성요소 만을 포함하는 발명도 구현 가능하다.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
이하에서 언급되는 '걸레'는, 직물이나 종이 재질 등 재질면에서 다양하게 적용될 수 있고, 세척을 통한 반복 사용용 또는 일회용일 수 있다.
이하, 도 1 내지 도 3를 참고하여, 본 발명의 실시 예들에 따른 청소기(1)를 전반적으로 설명한다.
본 발명의 실시예 들에 따른 청소기(1)는 걸레질을 수행한다. 청소기(1)는 자율 주행이 가능하게 구비될 수 있다. 본 발명의 일 실시예에 따른 청소기(1)는 제어유닛을 구비하는 바디(30)를 포함한다.
바디(30)는, 외관을 형성하는 케이스(31)와, 케이스(31)의 하측에 배치되는 베이스(32)를 포함한다. 바디(30)는 외면이 기준 반지름과 기준 오차 범위 내의 오차를 가지는 반지름을 가지는 원형의 적어도 일부를 형성한다. 여기서, 기준 반지름과 기준 오차 범위 내의 오차를 가지는 반지름을 가진다는 것은, 원형이 완벽한 원형이 아니고, 각 중심각 마다 또는 각 영역 마다 반지름이 오차 범위 내에서 변할 수 있다는 의미이다.
구체적으로, 바디(30)는 수직방향에서 보아, 50% 이상 원 형상이고, 나머지 부분이 다른 부품과 결합을 고려하여 원 형상에 가깝게 형성될 수 있다. 물론, 여기서, 원은 수학적 의미의 완전한 원을 의미하는 것은 아니고 오차를 가지는 공학적 의미의 원을 의미한다.
이동 로봇(1)은 바닥(피청소면)과 접촉하여 걸레질하게 구비되는 맙 모듈(40)을 포함한다.
맙 모듈(40)은 바디(30)의 하측에 배치되고, 바디(30)를 지지할 수 있다. 본 실시예에서 바디(30)는 맙 모듈(40) 의해 지지된다. 바디(30)는 외관을 형성한다.
맙 모듈(40)은 바디(30)의 하측에 배치된다. 맙 모듈(40)은 이동 로봇(1)의 이동을 위한 추진력을 제공한다. 이동 로봇(1)을 이동시키기 위해 맙 모듈(40)은 이동 로봇(1)의 후방 측에 배치되는 것이 바람직하다.
맙 모듈(40)은 회전하면서 바닥을 걸레질하게 구비되는 적어도 하나의 걸레부(미도시)를 포함한다. 맙 모듈(40)은 적어도 하나의 스핀맙(41)을 구비하고, 스핀맙(41)은 상측에서 바라볼 때 시계 방향 또는 반시계 방향으로 회전한다. 스핀맙(41)은 바닥에 접촉된다.
본 실시예에서 맙 모듈(40)은 한 쌍의 스핀맙(41a, 41b)를 포함할 수 있다. 한 쌍의 스핀맙(41a, 41b)은 상측에서 바라볼 때 시계 방향 또는 반시계 방향으로 회전하고, 회전을 통해 바닥을 걸레질한다. 한 쌍의 스핀맙(41a, 41b) 중 청소기의 진행방향 정면에서 볼 때 좌측에 배치된 스핀맙(41)을 좌측 스핀맙(41a)이라 하고, 우측에 배치된 스핀맙(41)을 우측 스핀맙(41b)이라 정의한다.
좌측 스핀맙(41a) 및 우측 스핀맙(41b)은 각각의 회전축을 중심으로 회전된다. 회전축은 상하 방향으로 배치된다. 좌측 스핀맙(41a) 및 우측 스핀맙(41b)은 각각 독립적으로 회전될 수 있다. 한 쌍의 스핀맙(41)은 가상의 중심 수직면(Po)을 기준으로 좌우 대칭되게 구비될 수 있다.
본 발명은 좌측 스핀맙(41a) 및 우측 스핀맙(41b)에 구동력을 제공하고, 바디(30)에 설치되는 맙 모터(미도시)를 포함한다. 맙 모터(61)는 제1 맙 모터(61a) 제2 맙 모터(61b)를 포함한다. 맙 모터의 회전축은 상하로 연장될 수 있다. 제1 맙 모터(61a)와 제2 맙 모터(61b)는 중심 수직선(Po)을 기준으로 좌우 대칭되게 구비된다.
중심 수직선(Po)은 전후방향과 나란하고, 바디의 기하학적 중심(Tc)를 지나는 선을 의미한다. 물론, 중심 수직선(Po)는 좌측 스핀 맙의 중심축과 우측 스핀 맙의 중심축을 연결한 가상의 선과 수직으로 교차하면서, 바디의 기하학적 중심(Tc)을 지나가는 선으로 정의할 수 있다.
중심 수직선(Po)을 기준으로 좌우 대칭되게 구비된 한 쌍의 스핀맙(41a, 41b)의 바닥이 수평면과 수평하게 배치되면, 로봇 청소기가 안정적으로 주행하지 못하고, 주행 제어가 어렵게 된다. 따라서, 본 발명은, 각 스핀맙(41)이 외측 전방으로 하향 경사지게 배치한다. 이하, 스핀맙(41)의 경사와 운동에 대해 설명한다.
다시, 도 3을 참조하면, 좌측 스핀맙(41a)의 스핀 회전축(Osa)과 좌측 스핀맙(41a)의 하측면이 교차하는 지점이 도시되고, 우측 스핀맙(41b)의 스핀 회전축(Osb)과 우측 스핀맙(41b)의 하측면이 교차하는 지점이 도시된다. 하측에서 바라볼 때, 좌측 스핀맙(41a)의 회전 방향 중 시계 방향을 제 1정방향(w1f)으로 정의하고 반시계 방향을 제 1역방향(w1r)으로 정의한다. 하측에서 바라볼 때, 우측 스핀맙(41b)의 회전 방향 중 반시계 방향을 제 2정방향(w2f)으로 정의하고 시계 방향을 제 2역방향(w2r)으로 정의한다. 또한, 하측에서 바라볼 때 '좌측 스핀맙(41a)의 하측면의 경사 방향이 좌우 방향 축과 이루는 예각' 및 '우측 스핀맙(41b)의 하측면의 경사 방향이 좌우 방향 축과 이루는 예각'을 경사 방향 각(Ag1a, Ag1b)으로 정의한다. 좌측 스핀맙(41a)의 경사 방향 각(Ag1a) 및 우측 스핀맙(41b)의 경사 방향 각(Ag1b)은 동일할 수 있다. 또한, 도 3을 참고하여, '가상의 수평면(H)에 대해 좌측 스핀맙(41a)의 하측면(I)이 이루는 각도' 및 '가상의 수평면(H)에 대해 좌측 스핀맙(41a)의 하측면(I)이 이루는 각도'를 경사각(Ag2a, Ag2b)로 정의한다.
물론, 좌측 스핀맙(41a)의 우측단과, 우측 스핀맙(41b)의 좌측단은 서로 접촉하거나, 근접할 수 있다. 따라서, 좌측 스핀맙(41a)과 우측 스핀맙(41b)의 사이에서 발생하는 걸레질을 공백을 줄일 수 있다.
좌측 스핀맙(41a)이 회전할 때, 좌측 스핀맙(41a)의 하측면 중 바닥으로부터 가장 큰 마찰력을 받는 지점(Pla)은 좌측 스핀맙(41a)의 회전 중심(Osa)에서 좌측에 배치된다. 좌측 스핀맙(41a)의 하측면 중 지점(Pla)에 다른 지점보다 큰 하중이 지면에 전달되게 하여, 지점(Pla)에 가장 큰 마찰력이 발생되게 할 수 있다. 본 실시예에서 지점(Pla)은 회전 중심(Osa)의 좌측 전방에 배치되나, 다른 실시예에서 지점(Pla)는 회전 중심(Osa)을 기준으로 정확히 좌측에 배치되거나 좌측 후방에 배치될 수도 있다.
우측 스핀맙(41b)이 회전할 때, 우측 스핀맙(41b)의 하측면 중 바닥으로부터 가장 큰 마찰력을 받는 지점(Plb)은 우측 스핀맙(41b)의 회전 중심(Osb)에서 우측에 배치된다. 우측 스핀맙(41b)의 하측면 중 지점(Plb)에 다른 지점보다 큰 하중이 지면에 전달되게 하여, 지점(Plb)에 가장 큰 마찰력이 발생되게 할 수 있다. 본 실시예에서 지점(Plb)은 회전 중심(Osb)의 우측 전방에 배치되나, 다른 실시예에서 지점(Plb)는 회전 중심(Osb)을 기준으로 정확히 우측에 배치되거나 우측 후방에 배치될 수도 있다.
좌측 스핀맙(41a)의 하측면 및 우측 스핀맙(41b)의 하측면은 각각 경사지게 배치된다. 좌측 스핀맙(41a)의 경사각(Ag2a) 및 우측 스핀맙(41b)의 경사각(Ag2a, Ag2b)은 예각을 형성한다. 경사각(Ag2a, Ag2b)은, 가장 마찰력이 커지는 지점이 지점(Pla, Plb)이 되되, 좌측 스핀맙(41a) 및 우측 스핀맙(41b)의 회전 동작에 따라 걸레부(411)의 하측 전면적이 바닥에 닿을 수 있는 정도로 작게 설정될 수 있다.
좌측 스핀맙(41a)의 하측면은 전체적으로 좌측 방향으로 하향 경사를 형성한다. 우측 스핀맙(41b)의 하측면은 전체적으로 우측 방향으로 하향 경사를 형성한다. 도 6을 참고하여, 좌측 스핀맙(41a)의 하측면은 좌측부에 최저점(Pla)을 형성한다. 좌측 스핀맙(41a)의 하측면은 우측부에 최고점(Pha)을 형성한다. 우측 스핀맙(41b)의 하측면은 우측부에 최저점(Plb)을 형성한다. 우측 스핀맙(41b)의 하측면은 좌측부에 최고점(Phb)을 형성한다.
실시예에 따라, 경사 방향 각(Ag1a, Ag1b)이 0도인 것도 가능하다. 또한, 실시예에 따라, 하측에서 바라볼 때, 좌측 스핀맙(41a)의 하측면의 경사 방향은 좌우 방향 축에 대해 시계 방향으로 경사 방향 각(Ag1a)을 형성하고, 우측 스핀맙(41b)의 하측면의 경사 방향은 좌우 방향 축에 대해 반시계 방향으로 경사 방향 각(Ag1b)을 형성하게 구현하는 것도 가능하다. 본 실시예에서는, 하측에서 바라볼 때, 좌측 스핀맙(41a)의 하측면의 경사 방향은 좌우 방향 축에 대해 반시계 방향으로 경사 방향 각(Ag1a)을 형성하고, 우측 스핀맙(41b)의 하측면의 경사 방향은 좌우 방향 축에 대해 시계 방향으로 경사 방향 각(Ag1b)을 형성한다.
이동 로봇(1)의 이동은 맙 모듈(40)이 발생시키는 지면과의 마찰력에 의해 구현된다.
맙 모듈(40)은, 바디(30)를 전방으로 이동시키려는 '전방 이동 마찰력', 또는 바디를 후방으로 이동시키려는 '후방 이동 마찰력'을 발생시킬 수 있다. 맙 모듈(40)은, 바디(30)를 좌회전시키려는 '좌향 모멘트 마찰력', 또는 바디(30)를 우회전시키려는 '우향 모멘트 마찰력'을 발생시킬 수 있다. 맙 모듈(40)은, 전방 이동 마찰력 및 후방 이동 마찰력 중 어느 하나와, 좌향 모멘트 마찰력 및 우향 모멘트 마찰력 중 어느 하나를 조합한 마찰력을 발생시킬 수 있다.
맙 모듈(40)이 전방 이동 마찰력을 발생시키기 위해서, 좌측 스핀맙(41a)을 제 1정방향(w1f)으로 소정 rpm(R1)으로 회전시키고 우측 스핀맙(41b)을 제 2정방향(w2f)으로 rpm(R1)으로 회전시킬 수 있다.
맙 모듈(40)이 후방 이동 마찰력을 발생시키기 위해서, 좌측 스핀맙(41a)을 제 1역방향(w1r)으로 소정 rpm(R2)으로 회전시키고 우측 스핀맙(41b)을 제 2역방향(w2r)으로 rpm(R2)으로 회전시킬 수 있다.
맙 모듈(40)이 우향 모멘트 마찰력을 발생시키기 위해서, 좌측 스핀맙(41a)을 제 1정방향(w1f)으로 소정 rpm(R3)으로 회전시키고, 우측 스핀맙(41b)을 i제 2역방향(w2r)으로 회전시키거나 ii회전없이 정지시키거나 iii제 2정방향(w2f)으로 rpm(R3)보다 작은 rpm(R4)로 회전시킬 수 있다.
맙 모듈(40)이 좌향 모멘트 마찰력을 발생시키기 위해서, 우측 스핀맙(41b)을 제 2정방향(w2f)으로 소정 rpm(R5)으로 회전시키고, 좌측 스핀맙(41a)을 i제 1역방향(w1r)으로 회전시키거나 ii회전없이 정지시키거나 iii제 1정방향(w1f)으로 rpm(R5)보다 작은 rpm(R6)로 회전시킬 수 있다.
이하, 좌우측으로 배치된 스핀맙(41)의 마찰력을 향상시키면서, 좌우 방향과 전후 방향으로의 안정성을 향상시키며, 수조(81) 내의 수위에 상관없이 안정적인 주행을 위한 각 구성의 배치를 설명한다.
도 3을 참고하면, 스핀맙(41)의 마찰력을 확대하고, 이동 로봇의 회전 시에 일방으로 편심이 발생하는 것을 제한하기 위해, 상대적으로 무거운, 맙 모터(61)와 배터리를 스핀맙(41)의 상부에 배치할 수 있다.
구체적으로, 제1 맙 모터(61a)는 좌측 스핀맙(41a) 위에 배치되며, 제2 맙 모터(61b)는 우측 스핀맙(41b) 위에 배치될 수 있다. 즉, 제1 맙 모터(61a)의 적어도 일부는 좌측 스핀맙(41a)과 수직적으로 중첩될 수 있다. 바람직하게는, 제1 맙 모터(61a)의 전체는 좌측 스핀맙(41a)과 수직적으로 중첩될 수 있다. 제2 맙 모터(61b)의 적어도 일부는 우측 스핀맙(41b)과 수직적으로 중첩될 수 있다. 바람직하게는, 제2 맙 모터(61b)의 전체는 우측 스핀맙(41b)과 수직적으로 중첩될 수 있다.
더욱 구체적으로, 제1 맙 모터(61a)와 제2 맙 모터(61b)는 좌측 스핀맙(41a)의 스핀 회전축(Osa)과 우측 스핀맙(41b)의 스핀 회전축(Osb)을 연결한 가상의 중심 수평선(CHL)과 수직적으로 중첩되게 배치될 수 있다. 바람직하게는, 제1 맙 모터(61a)의 무게중심(MCa)와 제2 맙 모터(61b)의 무게중심(MCb)는 좌측 스핀맙(41a)의 스핀 회전축(Osa)과 우측 스핀맙(41b)의 스핀 회전축(Osb)을 연결한 가상의 중심 수평선(CHL)과 수직적으로 중첩되게 배치될 수 있다. 또는, 제1 맙 모터(61a)의 기하학적 중심과 제2 맙 모터(61b)의 기하학적 중심은 좌측 스핀맙(41a)의 스핀 회전축(Osa)과 우측 스핀맙(41b)의 스핀 회전축(Osb)을 연결한 가상의 중심 수평선(CHL)과 수직적으로 중첩되게 배치될 수 있다. 물론, 제1 맙 모터(61a)와 제2 맙 모터(61b)는 중심 수직선(Po)을 기준으로 대칭되게 배치된다.
제1 맙 모터(61a)의 무게중심(MCa)와 제2 맙 모터(61b)의 무게중심(MCb)이 각 스핀맙(41)의 위에서 벗어나지 않고, 서로 좌우 대칭되게 배치되므로, 스핀맙(41)의 마찰력을 향상시키면서, 주행 성능 및 좌우 균형을 유지할 수 있다.
이하, 좌측 스핀맙(41a)의 스핀 회전축(Osa)을 좌측 스핀 회전축(Osa)으로 명명하고, 우측 스핀맙(41b)의 스핀 회전축(Osb)을 우측 스핀 회전축(Osb)로 명명한다.
수조(81)가 중심 수평선(CHL) 보다 후방에 배치되고, 수조(81) 내의 물의 량은 가변적이므로, 수조(81)의 수위에 상관없이 안정적인 전후 균형을 유지하기 위해, 제1 맙 모터(61a)는 좌측 스핀 회전축(Osa)에서 좌측방향으로 치우치게 배치될 수 있다. 제1 맙 모터(61a)는 좌측 스핀 회전축(Osa)에서 좌측 전방 방향으로 치우치게 배치될 수 있다. 바람직하게는, 제1 맙 모터(61a)의 기하학적 중심 또는 제1 맙 모터(61a)의 무게중심(MCa)은 좌측 스핀 회전축(Osa)에서 좌측방향으로 치우치게 배치되거나, 제1 맙 모터(61a)의 기하학적 중심 또는 제1 맙 모터(61a)의 무게중심(MCa)은 좌측 스핀 회전축(Osa)에서 좌측 전방 방향으로 치우치게 배치될 수 있다.
제2 맙 모터(61b)는 우측 스핀 회전축(Osb)에서 우측방향으로 치우치게 배치될 수 있다. 제2 맙 모터(61b)는 우측 스핀 회전축(Osb)에서 우측 전방 방향으로 치우치게 배치될 수 있다. 바람직하게는, 제2 맙 모터(61b)의 기하학적 중심 또는 제2 맙 모터(61b)의 무게중심(MCb)은 우측 스핀 회전축(Osb)에서 우측방향으로 치우치게 배치되거나, 제2 맙 모터(61b)의 기하학적 중심 또는 제2 맙 모터(61b)의 무게중심(MCb)은 우측 스핀 회전축(Osb)에서 우측 전방 방향으로 치우치게 배치될 수 있다.
제1 맙 모터(61a)와 제2 맙 모터(61b)가 각 스핀맙(41)의 중심에서 전방외측으로 치우친 위치에서 압력을 가해주므로, 각 스핀맙(41)의 전방 외측에 압력이 집중되게 되므로, 스핀맙(41)의 회전력에 의해 주행 성능이 향상되게 된다.
좌측 스핀 회전축(Osa)과 우측 스핀 회전축(Osb)은 바디(30)의 중심보다 후방에 배치된다. 중심 수평선(CHL)은 바디(30)의 기하학적 중심(Tc) 및 이동로봇의 무게중심(WC) 보다 후방에 배치된다. 좌측 스핀 회전축(Osa)과 우측 스핀 회전축(Osb)은 중심 수직선(Po)에서 동일한 거리로 이격하여 배치된다.
본 실시예에서 배터리는 단수개가 설치된다. 배터리의 적어도 일부는 좌측 스핀맙(41a) 및 우측 스핀맙(41b) 위에 배치된다. 상대적으로 무거운 배터리가 스핀맙(41) 상에 배치되어서 스핀맙(41)의 마찰력을 향상시키고, 이동 로봇의 회전으로 발생하는 편심을 줄일 수 있다.
구체적으로, 배터리의 좌측 일부는 좌측 스핀맙(41a)과 수직적으로 중첩되고, 배터리의 우측 일부는 우측 스핀맙(41b)과 수직적으로 중첩되게 배치될 수 있다. 배터리는 중심 수평선(CHL)과 수직적으로 중첩되게 배치되고, 중심 수직선(Po)과 수직적으로 중첩되게 배치될 수 있다.
더욱 구체적으로, 배터리의 무게 중심(BC) 또는 배터리의 기하학적 중심은 중심 수직선(Po) 상에 배치되고, 중심 수평선(CHL) 상에 배치될 수 있다. 물론, 배터리의 무게 중심(BC) 또는 배터리의 기하학적 중심은 중심 수직선(Po) 상에 배치되고, 중심 수평선(CHL) 보다 전방에 배치되고, 바디(30)의 기하학적 중심(Tc) 보다 후방에 배치될 수 있다.
배터리의 무게 중심(BC) 또는 배터리의 기하학적 중심은 수조(81) 또는 수조(81)의 무게중심(PC) 보다 전방에 배치될 수 있다.
하나의 배터리가 좌측 스핀맙(41a)과 우측 스핀맙(41b) 사이의 중간에 배치되고, 중심 수평선 및 중심 수직선(Po) 상에 배치되므로, 무거운 배터리가 스핀맙(41)들의 회전 시에 중심을 잡아주고, 스핀맙(41)에 무게를 실어줘서 스핀맙(41)에 마찰력을 향상시키게 된다.
배터리는 제1 맙 모터(61a) 및 제2 맙 모터(61b)와 동일 높이(하단의 높이) 또는 동일 평면상에 배치될 수 있다. 배터리는 제1 맙 모터(61a)와 제2 맙 모터(61b)의 사이에 배치될 수 있다. 배터리는 제1 맙 모터(61a)와 제2 맙 모터(61b)의 사이의 빈 공간에 배치된다.
수조(81)의 적어도 일부는 좌측 스핀맙(41a) 및 우측 스핀맙(41b) 위에 배치된다. 수조(81)는 중심 수평선 보다 후방에 배치되고, 중심 수직선(Po)과 수직적으로 중첩되게 배치될 수 있다.
더욱 구체적으로, 수조(81)의 무게 중심(PC) 또는 수조(81)의 기하학적 중심은 중심 수직선(Po) 상에 배치되고, 중심 수평선 보다 전방에 위치될 수 있다. 물론, 수조(81)의 무게 중심(PC) 또는 수조(81)의 기하학적 중심은 중심 수직선(Po) 상에 배치되고, 중심 수평선 보다 후방에 배치될 수 있다. 여기서, 수조(81)의 무게 중심(PC) 또는 수조(81)의 기하학적 중심이 중심 수평선 보다 후방에 배치된다는 것은 수조(81)의 무게 중심(PC) 또는 수조(81)의 기하학적 중심이 중심 수평선 보다 후방에 치우친 일 영역과 수직적으로 중첩되게 위치되는 것을 의미한다. 물론, 수조(81)의 무게 중심(PC) 또는 수조(81)의 기하학적 중심은 바디(30)를 벗어나지 않고, 바디(30)와 수직적으로 중첩되게 위치된다.
수조(81)의 무게 중심(PC) 또는 수조(81)의 기하학적 중심은 배터리의 무게 중심(BC) 보다 후방에 배치될 수 있다.
수조(81)는 제1 맙 모터(61a) 및 제2 맙 모터(61b)와 동일 높이(하단의 높이) 또는 동일 평면상에 배치될 수 있다. 수조(81)는 제1 맙 모터(61a)와 제2 맙 모터(61b)의 사이공간에서 후방으로 치우치게 배치될 수 있다.
각 스핀맙(41)의 일부는 바디(30) 와 수직적으로 중첩되고, 각 스핀맙(41)의 다른 일부는 바디(30)의 외부로 노출된다. 각 스핀맙(41)이 바디(30) 와 수직적으로 중첩되는 영역의 비율은 각 스핀맙(41)의 85% 내지 95%인 것이 바람직하다.
구체적으로, 바디의 우측단과, 우측 스핀맙(41b)의 우측 단을 연결한 선과 바디의 우측단에서 중심 수직선(Po)과 평행하게 연결한 수직선 사이의 사이각은 0 도 내지 5 도 일 수 있다.
각 스핀맙(41)의 바디의 외측으로 노출된 영역의 길이는 각 스핀맙(41)의 반지름의 1/2 내지 1/7 인 것이 바람직하다. 각 스핀맙(41)의 바디의 외측으로 노출된 영역의 길이는 각 스핀맙(41)서 바디의 외측으로 노출된 일단에서 각 스핀맙(41)의 회전축까지의 거리를 의미할 수 있다.
각 스핀맙(41)의 바디의 외측으로 노출된 영역의 단에서 기하학적 중심(TC) 사이의 거리는 바디의 평균 반지름 보다 클 수 있다.
각 스핀맙(41)이 노출되는 위치는 바디(30)의 측방과 후방 사이이다. 즉, 바디를 아래서 보아 시계방향으로 순차적으로 각 분면이 위치될 때, 각 스핀맙(41)이 노출되는 위치는 바디(30)의 2/4 분면 또는 3/4 분면 일 수 있다.
도 4를 참고하면, 이동 로봇(1)의 동작이나 상태 또는 외부의 상황과 관련된 각종 정보를 감지하는 센싱부(20)를 포함한다.
센싱부(20)는 이동 로봇(1)로부터 이격된 외부의 장애물을 감지하는 장애물 감지센서(21)를 포함할 수 있다. 복수의 장애물 감지센서(가 구비될 수 있다. 장애물 감지센서(21)는 전방의 장애물을 감지하는 장애물 감지센서를 포함한다. 장애물 감지센서(21)는 좌우 방향의 장애물을 감지하는 장애물 감지센서를 포함한다. 장애물 감지센서(21)는 바디(30)에 배치될 수 있다. 장애물 감지센서(21)는, 적외선 센서, 초음파 센서, RF 센서, 지자기 센서, PSD(Position Sensitive Device) 센서 등을 포함할 수 있다.
센싱부(20)는 외부로부터의 식별 신호를 수신하여 위치를 판별하는 위치 신호 센서(22)를 포함할 수 있다. 예를 들어, 위치 신호 센서(22)는, 초광대역통신(Ultra Wide Band: UWB) 신호를 이용하는 UWB 센서일 수 있다. 제어유닛(10)은 위치 신호 센서(22)에서 수신된 신호에 따라 이동 로봇(1)의 위치를 파악할 수 있다.
외부로부터의 식별 신호는 외부에 배치된 비컨(beacon) 등 신호 발생기가 송신하는 신호로, 신호 발생기는 복수 개가 구비되고, 복수 개의 서로 떨어진 장소에 각각이 구비될 수 있다. 위치 신호 센서(22)는 서로 다른 장소에 배치된 신호 발생기에서 송신된 식별 신호를 수신하는 것이 가능하다.
센싱부(20)는 바닥에 낭떠러지의 존재 여부를 감지하거나 바닥과의 거리를 감지하는 클리프 센서(23a)를 포함할 수 있다. 클리프 센서(23a)는 이동 로봇(1)의 전방 및/또는 후방의 낭떠러지 유무를 감지할 수 있다. 클리프 센서(23a)는 바닥과의 거리를 감지하고, 제어유닛(10)은 바닥과의 거리가 기 설정된 거리 보다 큰 경우 낭떠러지라고 판단하고 이에 대응되는 동작을 수행하게 제어할 수 있다.
일 예로, 클리프 센서(23a)는 광 센서를 포함할 수 있고, 광센서는 레이저 센서 또는 적외선 센서를 포함할 수 있다. 클리프 센서(23a)는 바닥을 향해 광을 방출하는 출광부(미도시)와 바닥에서 반사된 빛을 수광하는 수광부(미도시)를 포함할 수 있다. 클리프 센서(23a)는 수광부에 되돌아 오는 시간차에 의해 거리를 측정할 수 있다.
또한, 클리프 센서(23a)는 바닥에서 반사되는 광의 반사량을 감지할 수 있다. 구체적으로, 수광부는 되돌아 오는 광의 광량, 조도 등을 측정하여서, 출광부에서 조사된 광 대비 반사율을 구할 수 있다. 클리프 센서(23a)는 바닥에서 반사되는 광의 반사량을 감지하여서, 제어유닛(10)에 바닥의 재질을 검출할 수 있는 수단을 제공한다.
클리프 센서(23a)는 한 쌍의 스핀 맙(41) 보다 전방에 배치될 수 있다. 클리프 센서(23a)가 한 쌍의 스핀 맙(41) 보다 전방에 배치되면, 한 쌍의 스핀 맙(41)이 카펫 등에 의해 부하가 증가하지 전에 선제적으로 카펫을 회피할 수 있는 이점이 존재한다. 또한, 클리프 센서(23a)는 한 쌍의 스핀 맙(41)의 전단 또는/및 옵티컬 플로우 센서(23b) 보다 전방에 배치될 수 있다.
센싱부(20)는 바닥의 이미지를 바탕으로 이동 로봇의 이동 량을 검출하는 옵티컬 플로우 센서(23b)(Optical Flow Sensor)를 포함할 수 있다. 옵티컬 플로우 센서(23b)는 바닥에서 반사되는 광의 반사량을 감지할 수 있다. 또는 옵티컬 플로우 센서(23b)는 일정 시간주기로 빛을 이용하여 하방 영상 정보를 획득하고, 하방 영상 정보를 바닥 재질 판단 유닛(12) 또는 제어유닛(10)에 제공할 수 있다.
옵티컬 플로우 센서(23b)는, 센서 내에 구비된 이미지 센서로부터 입력되는 하방 영상을 변환하여 소정 형식의 영상 데이터를 생성한다. 생성된 영상 데이터는 제어유닛(10)에 전달될 수 있다.
또한, 옵티컬 플로우 센서(23b)(OFS)는, 하방 영상을 촬영하여 하방 영상 정보를 획득하는 이미지센서(미도시)와, 바닥을 향해 평면광을 방출하는 하나 이상의 광원(미도시)을 포함하여 구성된다.
하나 이상의 광원은, 이미지 센서에 의해 촬영되는 바닥면의 소정 영역에 빛을 조사한다. 즉, 이동 로봇이 바닥면을 따라 특정 영역을 이동하는 경우에, 바닥면이 평탄하면 이미지 센서와 바닥면 사이에는 일정한 거리가 유지된다.
반면, 이동 로봇이 불 균일한 표면의 바닥면을 이동하는 경우에는 바닥면의 요철 및 장애물(CA)에 의해 일정 거리 이상 멀어지게 된다. 이때 하나 이상의 광원은 조사되는 빛의 양을 조절하도록 제어유닛(10)에 의해 제어될 수 있다. 광원은 광량 조절이 가능한 발광 소자, 예를 들어 LED(Light Emitting Diode) 등일 수 있다.
옵티컬 플로우 센서(23b)를 이용하여, 제어유닛(10)은 이동 로봇의 미끄러짐과 무관하게 이동 로봇의 위치를 검출할 수 있다. 제어유닛(10)은 옵티컬 플로우 센서(23b)에 의해 촬영된 영상 데이터를 시간에 따라 비교 분석하여 이동 거리 및 이동 방향을 산출하고, 이를 근거로 이동 로봇의 위치를 산출할 수 있다. 옵티컬 플로우 센서(23b)를 이용하여 이동 로봇의 하방에 대한 이미지 정보를 이용함으로써, 제어유닛(10)은 다른 수단에 의해 산출한 이동 로봇의 위치에 대하여 미끄러짐에 강인한 보정을 할 수 있다.
옵티컬 플로우 센서(23b)는 바닥에서 반사되는 광의 반사량을 감지하거나, 바닥의 이미지를 분석하여서, 제어유닛(10)에 바닥의 재질을 검출할 수 있는 수단을 제공한다.
옵티컬 플로우 센서(23b)는 중심 수직면과 적어도 일부가 수직적 방향에서 중첩되게 배치될 수 있다. 구체적으로, 옵티컬 플로우 센서(23b)는 중심 수직면 상에서, 한 쌍의 스핀맙(41)들의 중심축을 연결한 선 보다 전방에 위치된다. 다른 예로, 옵티컬 플로우 센서(23b)는 한 쌍의 스핀 맙(41) 보다 전방에 위치될 수 있다.
옵티컬 플로우 센서(23b)가 맙 모듈 보다 전방에 배치되면, 맙 모듈이 카펫 등에 의해 부하가 증가하기 전에 선제적으로 카펫을 회피할 수 있는 이점이 존재한다.
따라서, 옵티컬 플로우 센서(23b)가 복수개가 사용되지 않고, 하나만 사용되더라도, 바디의 중앙에서 전방으로 치우친 위치에 배치되므로, 한 쌍의 스핀 맙의 전방 바닥의 재질을 검출할 수 있다.
또한, 클리프 센서(23a)와, 옵티컬 플로우 센서(23b)가 기존에 낭떠러지와 이동 로봇의 이동 량을 감지하는 기능을 하면서, 동시에 바닥의 재질을 판단하는 기능도 수행할 수 있는 장점이 존재한다.
센싱부(20)는, 외부의 영상을 감지하는 카메라(24)를 포함할 수 있다. 카메라(24)는 바디(30)에 배치될 수 있다. 카메라(24)는 일정 시간 주기로 상방 영상 정보를 획득할 수 있다.
센싱부(20)는 외부 환경의 3차원 위치 정보를 감지하는 3D 센서(25)를 포함할 수 있다. 3D 센서(25)는 일정 시간주기로 상방 영상 정보를 획득한다.
일 예로, 3D 센서(25)는, 적외선을 조사하는 광 조사부(미도시)와, 외부의 물체에 반사된 적외선을 감지하는 3D 카메라(3D Depth Camera)(미도시)를 포함할 수 있다. 광 조사부는, 소정의 패턴을 가진 적외선을 조사할 수도 있다. 3D 카메라는, IR 카메라 또는 RGB-Depth 카메라 등일 수 있다. 이러한 3D 센서(25)는 TOF(Time of Flight) 방식으로 구현될 수 있다.
다른 예로, 3D 센서(25)는 2개 이상의 카메라를 구비하여, 2개 이상의 카메라에서 획득되는 2개 이상의 영상을 조합함으로써, 3차원 좌표 정보를 생성하는 스테레오 비전 방식으로 구현될 수 있다.
센싱부(20)는 바디(30)의 바닥(H)에 대한 기울기 정보를 획득하는 기울기 정보 획득부(미도시)를 포함할 수 있다. 예를 들어, 기울기 정보 획득부는 자이로 센서(26)를 포함할 수 있다. 기울기 정보 획득부는 자이로 센서(26)의 감지 신호를 기울기 정보로 변환하는 처리 모듈(미도시)를 포함할 수 있다. 처리 모듈은 제어유닛(10)의 일부로서, 알고리즘이나 프로그램으로 구현될 수 있다. 다른 예로, 기울기 정보 획득부는 자기장 센서(27)를 포함하여, 지구의 자기장에 대한 감지 정보를 근거로 하여 기울기 정보를 획득할 수도 잇다.
여기서, 바닥(H)은 수평면을 의미하는 것으로서, 중력 방향에 수직한 평면을 의미한다. 자이로 센서(26)는 바디(30)의 수평면에 대한 회전 각속도에 대한 정보를 획득할 수 있다. 구체적으로 자이로 센서(26)는 수평면에 평행하고 서로 직교하는 X축 및 Y축을 중심으로 한 회전 각속도를 감지할 수 있다. 처리 모듈을 통해 X축에 대한 회전 각속도(롤)와 Y축에 대한 회전 각속도(피치)를 합성하여, 수평면에 대한 회전 각속도를 산출할 수 있다. 처리 모듈을 통해 회전 각속도를 적분하여, 기울기 값을 산출할 수 있다.
자이로 센서(26)는 정해진 기준 방향을 감지할 수 있다. 기울기 정보 획득부는 기준 방향을 근거로 하여 기울기 정보를 획득할 수 있다.
자이로 센서(26)는 서로 직교하는 공간 좌표계의 3개의 축에 대한 자이로(Gyro) 센싱 기능을 구비할 수 있다. 자이로 센서(26)에서 수집된 정보는 롤(Roll), 피치(Pitch) 및 요(Yaw) 정보일 수 있다. 처리 모듈은, 롤링(roll), 피칭(pitch), 요(yaw) 각속도를 적분하여 이동 로봇(1)의 방향각의 산출이 가능하다.
자이로 센서(26)는 바디(30)에 배치되는 것이 바람직하다. 이에 따라, 자이로 센서(26)는, 바디(30)를 속하는 후술할 나머지 파트(Q)에 배치된다. 또한, 기울기 정보 획득부는 나머지 파트(Q)에 배치된다.
자이로 센서(26)는, 별도의 센서로 구현될 수도 있고, 후술할 IMU 센서의 일부 기능으로서 구현될 수도 있다.
센싱부(20)는 자기장을 감지하는 자기장 센서(27)를 포함할 있다. 자기장 센서(27)는 서로 직교하는 공간 좌표계의 3개의 축에 대한 자기장 센싱 기능을 구비할 수 있다. 자기장 센서(27)는 방향각(방위각)을 측정할 수 있다. 자기장 센서(27)는, 별도의 센서로 구현될 수도 있고, 후술할 IMU 센서의 일부 기능으로서 구현될 수도 있다.
센싱부(20)는 바디(30)에 설치되어 이동 로봇(1)의 가속도를 감지하는 가속도 센서(28)를 포함할 수 있다. 가속도 센서(28)는 서로 직교하는 공간 좌표계의 3개의 축에 대한 가속도 센싱 기능을 구비할 수 있다. 가속도 센서(28)는, 별도의 센서로 구현될 수도 있고, 후술할 IMU 센서의 일부 기능으로서 구현될 수도 있다.
이동 로봇(1)는 관성 센서 유닛(IMU)(미도시)을 포함할 수 있다. 관성 센서 유닛의 정보를 기반으로, 이동 로봇(1)는 주행 모션을 안정화시킬 수 있다. 관성 센서 유닛(IMU)은, 자이로 센서(26)의 기능, 자기장 센서(27)의 기능 및 가속도 센서(28)의 기능을 가질 수 있다.
센싱부(20)는 맙 모터(61)의 부하 정보를 획득하는 맙 부하정보 센서(29)를 포함할 수 있다.
일 예로, 맙 부하정보 센서(29)는 맙 모터(61)의 모터 부하 전류 값이나 모터 부하 전압 값 등을 감지하여, 맙 모터(61)의 부하를 감지할 수 있다. 구체적으로, 맙 부하정보 센서(29)는, 맙 모터(61) 제어유닛(10)에 구비되는 전류 검출부에 의해 구현될 수도 있다.
다른 예로, 맙 부하정보 센서(29)는 스핀 맙의 회전 속도나 회전수를 감지하는 엔코더(encoder)를 이용하여, 구비될 수 있다. 구체적으로, 걸레(411)에 걸리는 부하가 클수록 맙 모터(61)에 가해지는 회전 신호(전류 값이나 전압 값 등) 대비, 회전 속도가 느려질 수 있는데, 회전 속도에 대한 정보를 엔코더가 감지함으로써 부하 정보를 획득할 수 있다.
센싱부(20)는, 외부의 장애물과 접촉을 감지하는 충격 감지 센서(미도시)를 포함할 수 있다. 외부의 물체에 의해 눌려지는 범퍼(미도시)에 의해, 충격 감지 센서가 구현될 수 있다.
센싱부(20)은, 이동 로봇(1)의 실제 움직인 경로를 인식하는 엔코더(미도시)를 포함할 수 있다. 엔코더의 기능은 보조 바퀴(58)가 수행할 수도 있다.
이동 로봇(1)는 사용자의 각종 지시를 입력할 수 있는 입력부(16)를 포함한다. 입력부(16)는 버튼, 다이얼, 터치형 디스플레이 등을 포함할 수 있다. 입력부(16)는 음성 인식을 위한 마이크(미도시)를 포함할 수 있다. 입력부(16)는 전원 공급의 ON/OFF를 입력하기 위한 전원 스위치(16a)를 포함할 수 있다.
이동 로봇(1)는 사용자에게 각종 정보를 출력해주는 출력부(17)를 포함한다. 출력부(17)는 시각적 정보를 출력하는 디스플레이(미도시)를 포함할 수 있다. 출력부(17)는 청각적 정보를 출력하는 스피커(미도시)를 포함할 수 있다.
이동 로봇(1)은 각종 정보를 저장하는 저장부(18)를 포함한다. 저장부(18)는 휘발성 또는 비휘발성 기록 매체를 포함할 수 있다. 저장부(18)에는 이동 로봇(1)의 각종 오류 대응 동작을 제어하기 위한 알고리즘이 저장될 수 있다.
저장부(18)에는 주행구역에 대한 맵이 저장될 수 있다. 맵은 통신부(19)를 통해 정보를 교환할 수 있는 외부 단말기에 의해 입력된 것일 수도 있고, 이동 로봇(1)이 스스로 학습을 하여 생성한 것일 수도 있다. 전자의 경우, 외부 단말기로는 맵 설정을 위한 어플리케이션(application)이 탑재된 리모콘, PDA, 랩탑(laptop), 스마트 폰, 태블릿 등을 예로 들 수 있다.
이동 로봇(1)는 소정의 네트워크와 접속 가능한 통신부(19)을 포함할 수 있다. 통신 규약에 따라, 통신부(19)은 IEEE 802.11 WLAN, IEEE 802.15 WPAN, UWB, Wi-Fi, Zigbee, Z-wave, Blue-Tooth 등과 같은 무선 통신 기술을 이용하여 구현될 수 있다.
이동 로봇(1)는 자율 주행을 제어하는 제어유닛(10)을 포함한다. 제어유닛(10)은 바디(30)의 내부에 배치된 메인 PCB(Co)에 의해 구현될 수 있다.
제어유닛(10)은 입력부(16)의 신호 또는 통신부(19)을 통해 입력되는 신호를 처리할 수 있다.
제어유닛(10)은 센싱부(20)의 감지 신호를 입력 받아 청소기의 주행을 제어할 수 있다. 제어유닛(10)은 센싱부(20)의 감지 신호를 입력 받아 맙 모터(61)를 제어할 수 있다.
제어유닛(10)은 급수 모듈(미도시)을 제어할 수 있다. 제어유닛(10)은 공급되는 물의 양을 조절하도록 펌프(미도시)를 제어할 수 있다. 펌프(미도시)의 제어를 통해, 시간당 맙 모듈(40)에 공급되는 물의 양이 변경될 수 있다. 다른 예로, 제어유닛(10)은 물의 공급 여부가 변경되도록 후술할 밸브를 제어할 수 있다.
제어유닛(10)은 카메라(24) 또는 3D센서가 감지한 영상(상방 영상 정보)을 통해 주행 구역을 학습하고 현재 위치를 인식 가능(검출)하게 제어할 수 있다. 제어유닛(10)은, 영상을 통해 주행 구역을 맵핑하게 구비될 수 있다. 제어유닛(10)은, 영상을 통해 현재 위치를 맵핑된 맵 상에서 인식 가능하게 구비될 수 있다. 카메라(24)에 의해 촬영된 영상은 주행 구역의 맵을 생성하고, 주행 영역 내의 현 위치를 감지하는 데에 이용될 수 있다.
예를 들어, 제어유닛(10)은 카메라(24)에 의해 촬영된 상측 방향의 영상 중 천장과 측면과의 경계를 이용하여 주행 구역의 지도를 생성할 수 있다. 또한, 제어유닛(10)은, 영상의 특징점들을 기준으로 주행 구역 내의 현 위치를 감지할 수 있다.
제어유닛(10)은, 이동 로봇(1)이 주행 후 충전대로 복귀 가능하도록 제어할 수 있다. 예를 들어, 이동 로봇(1)는 충전대에서 송출된 적외선(IR: InfraRed)신호 등을 감지하여, 충전대로 복귀 가능하게 구비될 수 있다. 제어유닛(10)은 충전대에서 송출되어 감지된 신호를 근거로 하여 이동 로봇(1)이 충전대로 복귀되게 제어할 수 있다. 충전대는 소정의 복귀 신호를 송출하는 신호 송출부(미도시)를 포함할 수 있다.
다른 예를 들어, 제어유닛(10)은 현재 위치를 맵 상에서 인식하여 이동 로봇(1)이 충전대로 복귀하게 제어할 수 있다. 맵 상에서 충전대에 대응되는 위치와 현재 위치를 인식할 수 있고, 이를 통해 이동 로봇(1)는 충전대로 복귀할 수 있다.
제어유닛(10)은, 사용자의 단말기(예를 들어, 스마트폰이나 컴퓨터 등)를 통해 입력된 정보를 근거로 하여, 이동 로봇(1)를 제어할 수 있다. 이동 로봇(1)는 입력된 정보를 통신부(19)를 통해 수신할 수 있다. 제어유닛(10)은 입력된 정보를 근거로 하여, 이동 로봇(1)의 주행 패턴(예를 들어, 지그재그 방식으로 이동하는 주행 또는 일정 영역을 집중적으로 청소하는 주행)을 제어할 수 있다. 제어유닛(10)은 입력된 정보를 근거로 하여, 이동 로봇(1)의 특정 기능(예를 들어, 분실 물건 찾기 기능 또는 벌레 퇴치 기능 등)의 활성 여부를 제어할 수 있다. 제어유닛(10)은 입력된 정보를 근거로 하여, 이동 로봇(1)의 청소 주행 시작 시점을 특정 시점으로 설정할 수 있다. (예약 청소 기능)
제어유닛(10)은 맙 모터(61)의 구동을 제어하는 맙 모터(61) 제어유닛(10)을 포함한다. 제어유닛(10)은 제1 맙 모터(61a)의 구동을 제어하는 제 1맙 모터(61) 제어유닛(10)을 포함할 수 있다. 제어유닛(10)은 제 2맙 모터(61b)의 구동을 제어하는 제 2맙 모터(61) 제어유닛(10)을 포함할 수 있다.
스핀 맙과 바닥의 마찰력으로 주행하는 이동 로봇의 경우, 카펫 등의 재질의 경우 스핀 맙이 카펫 등에 등반되는 경우 카펫에 구속되게 된다. 이를 해결하기 위해 본 발명은 다양한 센서를 이용하여 선제적으로 바닥의 재질이 위험 재질인지 판단한다.
제어유닛(10)은 옵티컬 플로우 센서(23b), 가속도 센서(28), 클리프 센서(23a) 및 맙 부하정보 센서(29) 중 적어도 하나의 센서에서 입력된 정보를 바탕으로 바닥 재질이 위험 재질 인지 판단하고, 위험 재질 인 경우, 진입 제한 동작을 수행하도록 맙 모터를 제어할 수 있다.
제어유닛(10)은 옵티컬 플로우 센서(23b), 가속도 센서(28), 클리프 센서(23a) 및 맙 부하정보 센서(29)에서 입력된 정보들을 독립적으로 또는 종합적으로 고려하여 바닥 재질이 위험 재질 인지 판단할 수 있다.
제어유닛(10)은 바닥의 재질을 판단하는 바닥 재질 판단 유닛(12)을 더 포함할 수 있다.
제어유닛(10)은 옵티컬 플로우 센서(23b)를 통해 획득된 하방 영상 정보를 근거로 바닥의 재질을 판단하고 바닥의 재질이 위험 재질인 경우 이동 로봇(1)이 진입 제한 동작을 수행하도록 맙 모터(61)를 제어할 수 있다. 또한, 제어유닛(10)은 바닥 재질이 위험 재질로 판단되는 경우, 현재 위치(또는 현재 위치와 그 주변 지역)를 위험 지역으로 설정할 수 있다.
이하, 바닥의 재질이 위험 재질인 경우를 진입 제한 조건을 만족한다고 만족한다고 정의할 수 있다.
예를 들면, 진입 제한 대응 동작은 진입 제한 조건을 만족하는 영역을 회피 주행하도록 맙 모터(61)를 제어한다. 여기서, 진입 제한 조건을 만족하는 영역을 회피한다는 것은 제어유닛(10)이 맙 모터(61)를 제어하여서, 이동 로봇이 진입 제한 조건을 만족하는 영역(카메라를 통해 파악한 현재 위치에서 일정 반경의 영역)을 제외한 청소 영역을 주행 또는 청소하는 것을 의미한다.
다른 예로, 진입 제한 대응 동작은 진입 제한 조건을 만족하는 영역을 회피 주행을 시도하고 회피 주행이 되지 않는 경우, 회피 오류 동작을 실행하는 것을 포함할 수 있다. 회피 오류 동작은, 메시지나 그림/기호 등 시각적 정보를 출력하는 동작을 포함할 수 있다. 오류 대응 동작은, 소정의 소리를 출력하는 동작을 포함할 수 있다. 회피 오류 동작은, 오류가 해소될 때까지 주행을 중지하는 동작을 포함할 수 있다. 이러한 적어도 하나의 동작들의 조합으로 하나의 회피 오류 동작이 구성될 수 있다.
또 다른 예로, 진입 제한 대응 동작은 진입 제한 조건을 만족하는 경우, 우선적으로 이동로봇은 서행으로 운행하면서, 회피 주행을 시도할 수 있다.
제어유닛(10)은 진입 제한 조건이 불 만족되는 경우(바닥의 재질이 비 위험 재질인 경우), 정상 주행을 실행할 수 있다. 정상 주행은, 진입 제한 대응 동작이 아닌 일반적으로 기 설정된 동작을 수행하는 것을 의미한다.
구체적으로, 바닥 재질 판단 유닛(12)은 하방 영상 정보에서 바닥의 반사도 값, 하방 영상의 이미지 퀄리티 값 및 하방 영상의 프레임 레이트 중 적어도 하나를 산정하고, 조건 1 내지 3 중 적어도 하나를 만족하는 경우, 바닥 재질을 위험 재질로 판단할 수 있다.
<조건 1>
이미지 퀄리티 값이 기 설정된 기준 이미지 퀄리티 값 보다 작음
<조건 2>
프레임 레이트가 기 설정된 기준 프레임 레이트 보다 작음
<조건 3>
바닥의 반사도 값이 기 설정된 기준 반사도 값 보다 작음
다른 예를 들면, 바닥 재질 판단 유닛(12)은, 하방 영상 정보에서 하방 영상의 이미지 퀄리티 값을 산정하고, 이미지 퀄리티 값이 기 설정된 기준 이미지 퀄리티 값 보다 작은 경우, 바닥 재질을 위험 재질로 판단할 수 있다.
다른 예로, 바닥 재질 판단 유닛(12)은, 하방 영상 정보에서 하방 영상의 프레임 레이트를 산정하고, 프레임 레이트가 기 설정된 기준 프레임 레이트 보다 작은 경우, 바닥 재질을 위험 재질로 판단할 수 있다.
또 다른 예로, 바닥 재질 판단 유닛(12)은 하방 영상 정보에서 바닥의 반사도 값을 산정하고, 바닥의 반사도 값이 기 설정된 기준 반사도 값 보다 작은 경우, 바닥 재질을 위험 재질로 판단할 수 있다.
여기서 이미지 퀄리티 값이란 옵티컬 플로우 센서(23b)를 통해 촬영한 하방 이미지의 상태를 수치화 한 값으로 정의한다.
이미지 퀄리티 값은, 광원에서 방출된 빛이 바닥에 형성된 상의 형태로 판단할 수 있다. 즉, 광원에서 일정한 모양의 평면광을 바닥에 방출하고, 이를 촬영한 하방 영상에서, 광원에서 방출한 평면광의 모양과 유사한 정도를 이미지 퀄리티 값으로 정의할 수 있다.
다른 예로, 이미지 퀄리티 측정 과정은 히스토그램을 통한 평활화 처리 과정 후, 명암 비율이 적합한지를 측정하는 과정일 수 있다. 이미지 퀄리티 측정 과정은 히스토그램을 통한 평활화 처리 과정 후, 명암 비율이 적합한지를 측정하는 과정일 수 있다. 이미지 퀄리티 측정 과정은 이진화 과정 및 명암 비율 적합성 확인 과정을 포함할 수 있다.
평활화 처리 과정은 히스토그램(histogram) 분석을 이용하여 하방 이미지의 인식률을 향상시키기 위한 과정일 수 있다. 획득된 하방 이미지는 복수의 픽셀들로 구성될 수 있다. 히스토그램은 하방 이미지에 포함된 복수의 픽셀들에 대한 명암 값의 분포를 나타낸 것이다. 즉, 히스토그램은 하방 이미지에서 분포된 밝은 부분과 어두운 부분에 대한 분포를 나타낸 것이다. 구체적으로, 256 Gray Level의 영상에서 명암 값의 범위는 0 내지 255를 가 진다. 히스토그램은 각 픽셀에 대한 명암 값의 빈도 수를 막대 그래프로 나타낸 것이다. 평활화 처리 과정은 히스토그램 상에 분포된 명암 값의 분포가 한쪽으로 치우치거나 균일하지 못한 경우, 명암 값의 분포를 균일화하는 과정이다. 즉, 평활화 처리 과정은 한 곳에 집중되어 있는 명암 값을 펼쳐서 균일환 분포를 갖도록 하는 과정이다. 평활화 처리 과정으로 인해 하방 이미지의 어두운 부분은 밝아지고, 밝은 영상은 어두워져 각 픽셀은 적당한 명암 값을 가질 수 있다.
이진화 과정은 평활화 처리 후 하방 이미지를 구성하는 각 픽셀을 흑 또는 백으로 구분하는 과정일 수 있다. 평활화 처리 후의 하방 이미지는 복잡한 음영을 가질 수 있으므로, 이진화 과정을 통해 각 픽셀은 흑 또는 백으로 이진화 처리될 수 있다. 이진화 과정을 위해 흑과 백으로 구분하기 위한 임계 값이 요구된다. 임계 값은 픽셀을 흑과 백으로 구분하기 위해 설정된 값일 수 있다. 픽셀의 명암 값이 임계 값보다 크면, 0(흑)으로, 픽셀의 명암 값이 임계 값보다 작으면, 1(백)으로 구분될 수 있다.
명암 비율 적합성 확인 과정은 이진화된 복수의 픽셀들의 명암 비율이 기 설정된 비율을 만족하는지 확인하는 과정일 수 있다.
명암 중 흑 비율이 상대적으로 높은 경우, 이미지 퀄리티 값이 작게 되고, 이미지 퀄리티 값이 작은 경우, 바닥의 거칠기가 높거나, 카펫일 수 있다. 따라서, 본 발명은 이미지 퀄리티 값이 기준 이미지 퀄리티 값 보다 작은 경우, 바닥 재질을 위험 재질로 판단한다.
또한, 바닥의 반사도는 백색 픽셀을 흑색 픽셀로 나눈 값일 수 있다. 다른 예로, 바닥의 반사도는 광원에서 발출된 광이 바닥에 반사되어 수광부(미도시)에 입사된 광량 값으로 정의할 수 있다.
바닥의 마루, 대리석 및 장판과 같이 반사도가 좋고 플랫한 재질인 경우, 하방 영상의 이미지 퀄리티 값이 높게 되고, 바닥의 반사도가 높게 되며, 프레임 레이트가 높게 된다. 그러나, 바닥이 반사도가 낮은 재질이거나, 바닥의 거칠기가 높은 경우, 하방 영상의 이미지 퀄리티 값이 낮게 되고, 바닥의 반사도가 낮게 되며, 프레임 레이트가 낮게 된다.
따라서, 본 발명은 이러한 바닥의 재질에 따른 옵티컬 플로우 센서(23b)의 하방 영상의 복수의 파라미터의 차이를 기준으로 바닥 재질을 판단하므로, 이동 로봇이 위험지역에 진입 전에 회피가 가능하게 된다. 특히, 하나의 센서로 다수의 파라미터를 교차 및 독립적으로 검증하므로, 정확한 바닥재질의 판단이 가능하다.
따라서, 이동 로봇은 바닥의 반사도가 낮은 영역의 경우 카펫 영역으로 판단하고, 이를 회피하여 주행할 수 있다. 따라서, 걸레의 회전에 의해 이동 로봇에 주행력을 제공하는 이동 로봇이 카펫을 등반하는 경우, 카펫에서 벗어나기가 매우 힘든 문제를 해결할 수 있다.
다른 예로, 제어유닛(10)은 클리프 센서(23a)에서 획득한 바닥과의 거리 및 옵티컬 플로우 센서(23b)를 통해 획득된 하방 영상 정보를 근거로, 바닥의 재질을 판단할 수 있다.
구체적으로, 제어유닛(10)은 클리프 센서(23a)에서 획득한 바닥 과의 거리 값이 기준 거리 값 보다 작은 경우 진입 제한 동작을 수행하도록 맙 모터를 제어할 수 있다. 이 때, 제어유닛(10)은 옵티컬 플로우 센서(23b)를 통해 획득된 하방 영상 정보를 근거로 바닥 재질을 판단할 수도 있다.
제어유닛(10)은 클리프 센서(23a)에서 획득한 바닥 과의 거리 값이 기준 거리 값 보다 크고 최대 값 보다 작은 경우 이동 로봇이 정상 주행하도록 맙 모터를 제어할 수 있다.
클리프 센서(23a)는 바디의 전방 단에 배치되어서, 스핀 맙이 접촉한 바닥(기준 바닥)과 바디의 전당 단 하방의 바닥 사이의 단차를 검출한다. 클리프 센서(23a)가 검출한 값을 통해 낭떠러지를 감지할 수 있고, 기준 바닥 보다 높은 바닥을 검출할 수 있다. 기준 바닥 보다 높은 경우, 바닥에 카펫 등이 깔려 있다고 판단하고, 이동 로봇은 이를 회피하게 된다.
클리프 센서(23a)와 옵티컬 플로우 센서(23b)의 복수의 측정 수단을 사용하여서, 바닥 재질에 대한 판단의 오류를 줄일 수 있게 된다.
또 다른 예로, 이동 로봇은 스핀 맙의 일부가 위험 지역에 진입한 상태에서 현재 위치가 위험 지역인 것을 판단할 수도 있다.
제어유닛(10)은 맙 부하정보 센서(29)에서 감지된 맙 부하 값을 근거로 이동 로봇(1)를 제어할 수 있다. 구체적으로, 제어유닛(10)은 맙 부하정보 센서(29)에서 감지된 맙 부하 값을 기 설정된 기준 부하 값 보다 큰 경우 진입 제한 동작을 수행하도록 맙 모터(61)를 제어할 수 있다.
또한, 제어유닛(10)은 맙 부하정보 센서(29)에서 감지된 맙 부하 값을 기 설정된 기준 부하 값 보다 작은 경우 정상 주행 동작을 수행하도록 맙 모터(61)를 제어할 수 있다.
또 다른 예로, 제어유닛(10)은, 가속도 값에서 평균 가속도 값을 산정하고, 평균 가속도 값이 기준 평균 가속도 값 보다 큰 경우, 진입 제한 동작을 수행하도록 맙 모터를 제어할 수 있다. 또한, 제어유닛(10)은, 가속도 값의 산포도를 산정하고 산도포가 기준 산포도 큰 경우, 진입 제한 동작을 수행하도록 맙 모터를 제어할 수 있다.
물론 제어유닛(10)은 평균 가속도 값이 기준 평균 가속도 값 보다 큰 경우, 정상 주행 동작을 수행하도록 맙 모터를 제어할 수 있다. 또한, 제어유닛(10)은, 산도포가 기준 산포도 작은 경우, 정사 주행 동작을 수행하도록 맙 모터를 제어할 수 있다.
따라서, 본 발명은 클리프 센서(23a) 및 옵티컬 플로우 센서(23b)에 의해 선제적으로 위험 지역을 판별하지 못한 경우라 하더라도, 스핀 맙의 부하, 가속도 센서(28)의 정보 등 복수 또는 단수의 인자를 통해 위험 지역 진입 초기에 위험 지역 여부를 판단할 수 있다.
또한, 이동 로봇의 회전 동작, 전진 동작 등 다양한 동작에서 이동 로봇의 어느 일부분에 카펫 등이 걸리는 경우를 신속하게 판단할 수 있고, 이를 신속하게 회피할 수 있게 된다.
또 다른 예로, 제어유닛(10)은 하기 조건 4 내지 7 중 적어도 하나를 만족하는 경우, 진입 제한 동작을 수행하도록 맙 모터를 제어할 수 있다.
<조건>
맙 모터의 부하 값이 기 설정된 기준 부하 값 보다 큼
<조건 5>
바닥 과의 거리 값이 기준 거리 값 보다 작음
<조건 6>
평균 가속도 값이 기준 평균 가속도 값 보다 큼
<조건 7>
가속도 산포도가 기준 산포도 보다 큼
또 다른 예로, 제어유닛(10)은 조건 1 내지 7 중 적어도 하나를 만족하는 경우, 진입 제한 동작을 수행하도록 맙 모터를 제어할 수 있다. 따라서, 본 발명은 다양한 인자를 바탕으로 종합적이고 정확하게 바닥이 위험 재질인지 판단할 수 있다.
도 5을 참조하면, 이동 로봇의 일부(클리프 센서(23a) 또는/및 옵티컬 플로우 센서(23b))가 카펫(M)을 등반한 경우를 도시하고 있다. 본 발명은 이동 로봇의 일부가 카펫을 등반한 경우, 또는 카펫과 매운 근접한 경우, 카펫을 회피할 수 있게 한다. 이때는 스핀 맙이 아직 바닥(H)에 접촉되어 있으므로, 카펫을 회피할 수 있다.
이하, 제 1 내지 4 실시예에 따른 이동 로봇(1)의 제어방법을 설명한다. 각 순서도들에서 서로 중복되는 내용은 동일한 도면 부호로 표기하고, 중복되는 설명은 생략한다.
제어방법은 제어유닛(10)에 의해 수행될 수 있다. 본 발명은, 이동 로봇(1)의 제어방법이 될 수 있고, 제어방법을 수행하는 제어유닛(10)을 포함하는 이동 로봇(1)이 될 수도 있다. 본 발명은, 제어방법의 각 단계를 포함하는 컴퓨터 프로그램이 될 수도 있고, 제어방법을 컴퓨터로 구현하기 위한 프로그램이 기록된 기록매체가 될 수도 있다. '기록매체'는 컴퓨터로 판독 가능한 기록매체를 의미한다. 본 발명은, 하드웨어와 소프트웨어를 모두 포함하는 청소기 제어 시스템이 될 수도 있다.
제어방법의 순서도 도면들의 각 단계와 순서도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션(instruction)들에 의해 수행될 수 있다. 인스트럭션들은 범용 컴퓨터 또는 특수용 컴퓨터 등에 탑재될 수 있고, 인스트럭션들이 순서도 단계(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다.
또한, 몇 가지 실시예들에서는 단계들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능하다. 예컨대, 잇달아 도시되어 있는 두 개의 단계들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 단계들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
도 6를 참고하면, 제1 실시예에 따른 제어방법은 거시적인 이동 로봇의 제어방법이다. 본 발명의 제어방법은 이동 로봇(1)이 다양한 수단을 통해 바닥 정보를 획득하는 단계(S100)와, 다양한 수단을 통해 수집한 바닥 정보를 바탕으로 바닥의 재질을 판단하는 단계(S200)와, 바닥의 재질을 기준으로 이동 로봇의 주행을 제어하는 단계(S300)를 포함할 수 있다.
이하, 도 7 내지 도 9에서 제1 실시예의 구체적은 제어방법에 대해 서술하도록 한다.
도 7를 참고하면, 제2 실시예에 따른 제어방법은, 이동 로봇(1)이 바닥 정보를 획득하는 단계(S100)와, 다양한 수단을 통해 수집한 바닥 정보를 바탕으로 바닥의 재질을 판단하는 단계(S200)와, 바닥의 재질을 기준으로 이동 로봇의 주행을 제어하는 단계(S300)를 포함할 수 있다.
여기서, 바닥 정보를 획득하는 단계(S100)는 이동 로봇이 하방 영상을 촬영하는 단계(S110)와, 이동 로봇이 하방 영상에서 하방 영상 정보를 획득하는 단계(S112)를 포함할 수 있다. 구체적으로, 바닥 정보를 획득하는 단계(S100)는 옵티컬 플로우 센서(23b)에 의해 이루어 진다.
바닥 정보를 바탕으로 바닥의 재질을 판단하는 단계(S200)는 하방 영상 정보를 기준으로 바닥의 재질이 위험 재질이라고 판단하는 단계(S210)를 포함한다. 단계(S210)에서, 이동 로봇 또는/및 제어유닛(10)은 옵티컬 플로우 센서(23b)를 통해 획득된 하방 영상 정보를 근거로 바닥의 재질을 판단한다. 구체적으로, 제어유닛(10)은 하방 영상 정보에서 바닥의 반사도 값, 하방 영상의 이미지 퀄리티 값 및 하방 영상의 프레임 레이트 중 적어도 하나를 산정하고, 조건 1 내지 3 중 적어도 하나를 만족하는 경우, 바닥 재질을 위험 재질로 판단할 수 있다. 판단하는 자세한 방법은 상술한 바와 같다.
이동 로봇의 주행을 제어하는 단계(S300)는 위험 재질 인 경우, 이동 로봇이 진입 제한 동작을 수행하도록 제어하는 단계(S310)를 포함한다. 단계(S310)에서, 제어유닛(10)은 이동 로봇의 방향을 좌우 어느 한쪽으로 전환하거나, 뒤로 후진 한뒤 방향 전환을 한후, 다시 단계(S100)을 실행할 수 있다.
또한, 이동 로봇의 주행을 제어하는 단계(S300)는 위험 재질이 아닌 경우, 이동 로봇이 정상 주행하도록 제어하는 단계(S312)를 포함할 수 있다. 구체적으로, 제어유닛(10)은 바닥 재질이 위험 재질 인지 판단하고, 위험 재질 인 경우, 진입 제한 동작을 수행하도록 맙 모터를 제어할 수 있다.
도 8을 참고하면, 제3 실시예에 따른 제어방법은, 이동 로봇(1)이 바닥 정보를 획득하는 단계(S100)와, 다양한 수단을 통해 수집한 바닥 정보를 바탕으로 바닥의 재질을 판단하는 단계(S200)와, 바닥의 재질을 기준으로 이동 로봇의 주행을 제어하는 단계(S300)를 포함할 수 있다.
여기서, 바닥 정보를 획득하는 단계(S100)는 이동 로봇이 하방 영상에서 옵티컬 플로우 센서(23b)가 하방 영상 정보를 획득하는 단계(S112), 가속도 센서(28)가 이동 로봇의 가속도 값을 획득하는 단계(S113), 맙 부하정보 센서(29)가 맙 모터 부하 값을 획득하는 단계(S116)과, 클리프 센서(23a)가 바닥과 이동 로봇과의 거리 값을 획득하는 단계(S117)를 포함할 수 있다.
바닥의 재질을 판단하는 단계(S200)는 제어유닛(10)이 조건 1 내지 7 중 적어도 하나를 만족하는 경우, 위험 재질로 판단하는 단계(S220)를 포함한다. 물론, 제어유닛(10)은 위험 재질 판단 전에, 가속도 값에서 평균 가속도 값을 산정하고, 가속도 값의 산포도를 산정할 수 있다. 판단하는 자세한 방법은 상술한 바와 같다.
이동 로봇의 주행을 제어하는 단계(S300)는 위험 재질 인 경우, 이동 로봇이 진입 제한 동작을 수행하도록 제어하는 단계(S310)를 포함한다. 또한, 이동 로봇의 주행을 제어하는 단계(S300)는 위험 재질이 아닌 경우, 이동 로봇이 정상 주행하도록 제어하는 단계(S312)를 포함할 수 있다. 구체적으로, 제어유닛(10)은 바닥 재질이 위험 재질 인지 판단하고, 위험 재질 인 경우, 진입 제한 동작을 수행하도록 맙 모터를 제어할 수 있다.
또한, 이동 로봇의 주행을 제어하는 단계(S300)는 위험 재질이라고 판단된 경우, 이동 로봇이 현재 위치 또는/및 현재 위치 주변 영역을 위험 지역으로 맵 상에 등록할 수 있다(S320).
도 9를 참고하면, 제4 실시예에 따른 제어방법은, 이동 로봇(1)이 바닥 정보를 획득하는 단계(S100)와, 다양한 수단을 통해 수집한 바닥 정보를 바탕으로 바닥의 재질을 판단하는 단계(S200)와, 바닥의 재질을 기준으로 이동 로봇의 주행을 제어하는 단계(S300)를 포함할 수 있다.
여기서, 바닥 정보를 획득하는 단계(S100)는 이동 로봇이 하방 영상에서 옵티컬 플로우 센서(23b)가 하방 영상 정보를 획득하는 단계(S112), 가속도 센서(28)가 이동 로봇의 가속도 값을 획득하는 단계(S113), 맙 부하정보 센서(29)가 맙 모터 부하 값을 획득하는 단계(S116)과, 클리프 센서(23a)가 바닥과 이동 로봇과의 거리 값을 획득하는 단계(S117)를 포함할 수 있다. 하방 영상 정보를 획득하는 단계(S112), 가속도 값을 획득하는 단계(S113), 맙 모터 부하 값을 획득하는 단계(S116)과, 바닥과 이동 로봇과의 거리 값을 획득하는 단계(S117)는 개별적, 독립적, 동시, 이시, 병렬 또는 순차적에 실행될 수도 있다.
바닥의 재질을 판단하는 단계(S200)는 먼저, 제어유닛(10)이 조건 1 내지 3 중 적어도 하나를 만족하는 경우, 위험 재질로 판단하는 단계(S221)를 포함한다. 물론, 제어유닛(10)은 위험 재질 판단 전에, 가속도 값에서 평균 가속도 값을 산정하고, 가속도 값의 산포도를 산정할 수 있다. 판단하는 자세한 방법은 상술한 바와 같다. 위험 재질로 판단하는 단계(S221)에서, 제어유닛(10)은 바닥 재질이 위험 재질로 판단된 경우, 진입 제한 동작을 수행하도록 맙 모터를 제어하고(S310), 바닥 재질이 위험 재질이 아니라고 판단되는 경우, 바닥과의 거리를 기준으로 바닥 재질이 위험재질인지 판단한다(S222).
단계(S222)에서, 제어유닛(10)은 클리프 센서(23a)에서 획득한 바닥 과의 거리 값이 기준 거리 값 보다 작은 경우 위험 재질로 판단한다. 제어유닛(10)은 바닥 재질을 워험 재질로 판단한 경우, 진입 제한 동작을 수행하도록 맙 모터를 제어할 수 있다(S310). 단계(S222)에서, 제어유닛(10)이 바닥 재질이 위험 재질이 아니라고 판단하는 경우, 맙 모터 부하 값을 기준으로 바닥 재질이 위험재질인지 판단한다(S223).
단계(S223)에서, 제어유닛(10)은 맙 부하정보 센서(29)에서 감지된 맙 부하 값을 기 설정된 기준 부하 값 보다 큰 경우 위험 재질로 판단한다. 제어유닛(10)은 바닥 재질을 워험 재질로 판단한 경우, 진입 제한 동작을 수행하도록 맙 모터를 제어할 수 있다(S310). 단계(S223)에서, 제어유닛(10)이 바닥 재질이 위험 재질이 아니라고 판단하는 경우, 가속도 산포도를 기준으로 바닥 재질이 위험재질인지 판단한다(S224).
단계(S224)에서, 제어유닛(10)은 평균 가속도 값이 기준 평균 가속도 값 보다 큰 경우, 위험 재질로 판단한다. 제어유닛(10)은 바닥 재질을 워험 재질로 판단한 경우, 진입 제한 동작을 수행하도록 맙 모터를 제어할 수 있다(S310). 단계(S224)에서, 제어유닛(10)이 바닥 재질이 위험 재질이 아니라고 판단하는 경우, 이동 로봇이 정상주행 하도록 제어한다(S312).
또한, 이동 로봇의 주행을 제어하는 단계(S300)는 위험 재질이라고 판단된 경우, 이동 로봇이 현재 위치 또는/및 현재 위치 주변 영역을 위험 지역으로 맵 상에 등록할 수 있다(S320).

Claims (20)

  1. 바디;
    상기 바디에 회전 가능하게 설치되는 한 쌍의 스핀맙;
    상기 한 쌍의 스핀맙에 구동력을 제공하는 맙 모터;
    일정 시간주기로 빛을 이용하여 하방 영상 정보를 획득하는 옵티컬 플로우 센서; 및
    상기 옵티컬 플로우 센서에서 감지된 상기 하방 영상 정보를 바탕으로 바닥의 재질이 위험 재질인지 판단하고, 바닥 재질이 위험 재질로 판단되는 경우, 진입 제한 동작을 수행하도록 상기 맙 모터를 제어하는 제어유닛을 포함하는 이동 로봇.
  2. 제1항에 있어서,
    상기 옵티컬 플로우 센서는 상기 한 쌍의 스핀맙 보다 전방에 배치되는 이동 로봇.
  3. 제1항에 있어서,
    상기 옵티컬 플로우 센서는,
    상기 하방 영상을 촬영하여 상기 하방 영상 정보를 획득하는 이미지센서; 및
    상기 빛의 양을 조절하는 하나 이상의 광원을 포함하는 이동 로봇.
  4. 제1항에 있어서,
    상기 제어유닛은,
    상기 하방 영상 정보에서 하방 영상의 이미지 퀄리티 값을 산정하고,
    상기 이미지 퀄리티 값이 기 설정된 기준 이미지 퀄리티 값 보다 작은 경우, 바닥 재질을 위험 재질로 판단하는 이동 로봇.
  5. 제4항에 있어서,
    상기 이미지 퀄리티 값은, 상기 광원에서 방출된 빛이 바닥에 형성된 상의 형태로 판단하는 이동 로봇.
  6. 제1항에 있어서,
    상기 제어 유닛은,
    상기 하방 영상 정보에서 하방 영상의 프레임 레이트를 산정하고,
    상기 프레임 레이트가 기 설정된 기준 프레임 레이트 보다 작은 경우, 바닥 재질을 위험 재질로 판단하는 이동 로봇.
  7. 제1항에 있어서,
    상기 제어 유닛은,
    상기 하방 영상 정보에서 바닥의 반사도 값을 산정하고,
    바닥의 반사도 값이 기 설정된 기준 반사도 값 보다 작은 경우, 바닥 재질을 위험 재질로 판단하는 이동 로봇.
  8. 제1항에 있어서,
    상기 제어 유닛은,
    상기 하방 영상 정보에서 바닥의 반사도 값, 하방 영상의 이미지 퀄리티 값 및 하방 영상의 프레임 레이트를 산정하고,
    하기 조건 1 내지 3 중 적어도 하나를 만족하는 경우, 바닥 재질을 위험 재질로 판단하는 이동 로봇.
    <조건 1>
    상기 이미지 퀄리티 값이 기 설정된 기준 이미지 퀄리티 값 보다 작음
    <조건 2>
    상기 프레임 레이트가 기 설정된 기준 프레임 레이트 보다 작음
    <조건 3>
    바닥의 반사도 값이 기 설정된 기준 반사도 값 보다 작음
  9. 제1항에 있어서,
    일정 시간주기로 상방 영상 정보를 획득하는 카메라 또는 3D 센서를 더 포함하고,
    상기 제어유닛은 상기 상방 영상 정보를 바탕으로 현재 위치를 검출하는 이동 로봇.
  10. 제9항에 있어서,
    상기 제어유닛은,
    바닥 재질이 위험 재질로 판단되는 경우, 현재 위치를 위험 지역으로 설정하는 이동 로봇.
  11. 제1항에 있어서,
    상기 맙 모터의 부하 값을 감지하는 맙 부하정보 센서를 더 포함하고,
    상기 제어 유닛은, 상기 맙 모터의 부하 값이 기 설정된 기준 부하 값 보다 큰 경우 진입 제한 동작을 수행하도록 상기 맙 모터를 제어하는 이동 로봇.
  12. 제1항 또는 제11항에 있어서,
    바닥과의 거리를 감지하는 클리프 센서를 더 포함하고,
    상기 제어 유닛은, 상기 바닥 과의 거리 값이 기준 거리 값 보다 작은 경우 진입 제한 동작을 수행하도록 상기 맙 모터를 제어하는 이동 로봇.
  13. 제12항에 있어서,
    상기 클리프 센서는,
    상기 한 쌍의 스핀맙 보다 전방에 배치되는 이동 로봇.
  14. 제12항에 있어서,
    상기 클리프 센서는 가상의 중심 수직면과 적어도 일부가 수직적 방향에서 중첩되게 배치되는 이동 로봇.
  15. 제1항, 제11항 및 제12항 중 어느 한 항에 있어서,
    상기 바디에 설치되어 가속도 값을 감지하는 가속도 센서를 더 포함하고,
    상기 제어 유닛은, 상기 가속도 값에서 평균 가속도 값을 산정하고, 상기 평균 가속도 값이 기준 평균 가속도 값 보다 큰 경우, 진입 제한 동작을 수행하도록 상기 맙 모터를 제어하는 이동 로봇.
  16. 제1항, 제11항 및 제12항 중 어느 한 항에 있어서,
    상기 바디에 설치되어 가속도 값을 감지하는 가속도 센서를 더 포함하고,
    상기 제어 유닛은, 상기 가속도 값의 산포도를 산정하고 상기 산도포가 기준 산포도 큰 경우, 진입 제한 동작을 수행하도록 상기 맙 모터를 제어하는 이동 로봇.
  17. 제1항에 있어서,
    상기 맙 모터의 부하 값을 감지하는 맙 부하정보 센서;
    바닥과의 거리를 감지하는 클리프 센서; 및
    상기 바디에 설치되어 가속도 값을 감지하는 가속도 센서를 더 포함하고,
    상기 제어유닛은,
    하기 조건 4 내지 7 중 적어도 하나를 만족하는 경우, 진입 제한 동작을 수행하도록 상기 맙 모터를 제어하는 이동 로봇.
    <조건 4>
    상기 맙 모터의 부하 값이 기 설정된 기준 부하 값 보다 큼
    <조건 5>
    상기 바닥 과의 거리 값이 기준 거리 값 보다 작음
    <조건 6>
    평균 가속도 값이 기준 평균 가속도 값 보다 큼
    <조건 7>
    가속도 산포도가 기준 산포도 보다 큼
  18. 바디;
    상기 바디에 회전 가능하게 설치되는 한 쌍의 스핀맙;
    상기 한 쌍의 스핀맙에 구동력을 제공하는 맙 모터;
    일정 시간주기로 빛을 이용하여 하방 영상 정보를 획득하는 옵티컬 플로우 센서;
    상기 바디에 설치되어 가속도 값을 감지하는 가속도 센서;
    바닥과의 거리를 감지하는 클리프 센서;
    상기 맙 모터의 부하 값을 감지하는 맙 부하정보 센서; 및
    상기 옵티컬 플로우 센서, 상기 가속도 센서, 상기 클리프 센서 및 상기 맙 부하정보 센서 중 적어도 하나의 센서에서 입력된 정보를 바탕으로 바닥 재질이 위험 재질 인지 판단하고, 위험 재질 인 경우, 진입 제한 동작을 수행하도록 상기 맙 모터를 제어하는 제어유닛을 포함하는 이동 로봇.
  19. 제18항에 있어서,
    상기 옵티컬 플로우 센서는 상기 각 스핀맙의 회전축을 연결한 선 보다 전방에서 상기 각 스핀맙과 수직적으로 중첩되지 않는 위치에 배치되고,
    상기 클리프 센서는 한 쌍의 스핀맙의 전단 및 상기 옵티컬 플로우 센서 보다 전방에 위치되는 이동 로봇.
  20. 제18항에 있어서,
    상기 한 쌍의 스핀맙은 가상의 중심 수직면을 기준으로 좌우 대칭되게 구비되고,
    상기 옵티컬 플로우 센서 및 상기 클리프 센서는 상기 중심 수직면과 수직적으로 중첩되게 배치되는 이동 로봇.
PCT/KR2019/018254 2019-12-20 2019-12-20 이동 로봇 WO2021125411A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP19956353.7A EP4079466A4 (en) 2019-12-20 2019-12-20 MOBILE ROBOT
US17/786,999 US20230022860A1 (en) 2019-12-20 2019-12-20 Mobile robot
PCT/KR2019/018254 WO2021125411A1 (ko) 2019-12-20 2019-12-20 이동 로봇
KR1020227019256A KR20220104185A (ko) 2019-12-20 2019-12-20 이동 로봇
AU2019479398A AU2019479398B2 (en) 2019-12-20 2019-12-20 Mobile robot
CN201980103092.7A CN114829083B (zh) 2019-12-20 2019-12-20 移动机器人
TW109144326A TWI794700B (zh) 2019-12-20 2020-12-15 移動式機器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/018254 WO2021125411A1 (ko) 2019-12-20 2019-12-20 이동 로봇

Publications (1)

Publication Number Publication Date
WO2021125411A1 true WO2021125411A1 (ko) 2021-06-24

Family

ID=76476848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/018254 WO2021125411A1 (ko) 2019-12-20 2019-12-20 이동 로봇

Country Status (7)

Country Link
US (1) US20230022860A1 (ko)
EP (1) EP4079466A4 (ko)
KR (1) KR20220104185A (ko)
CN (1) CN114829083B (ko)
AU (1) AU2019479398B2 (ko)
TW (1) TWI794700B (ko)
WO (1) WO2021125411A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120055891A (ko) * 2010-11-24 2012-06-01 삼성전자주식회사 로봇청소기 및 그 제어방법
KR20140011216A (ko) * 2012-07-18 2014-01-28 엘지전자 주식회사 로봇 청소기 및 이의 제어 방법
KR101654014B1 (ko) 2016-06-21 2016-09-06 주식회사 파인로보틱스 걸레 로봇 청소기
US20180213992A1 (en) * 2017-02-01 2018-08-02 Vorwerk & Co. Interholding Gmbh Self-propelled floor treatment device
KR20190015930A (ko) * 2017-08-07 2019-02-15 엘지전자 주식회사 로봇청소기 및 그 제어방법
KR20190108358A (ko) * 2018-03-14 2019-09-24 엘지전자 주식회사 싸이클론 집진 장치 및 이를 포함하는 청소기

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120321759A1 (en) * 2007-01-05 2012-12-20 Myskin, Inc. Characterization of food materials by optomagnetic fingerprinting
KR101995424B1 (ko) * 2012-06-13 2019-07-02 엘지전자 주식회사 로봇 청소기 및 그 제어방법
US9798328B2 (en) * 2014-10-10 2017-10-24 Irobot Corporation Mobile robot area cleaning
US9993129B2 (en) * 2015-02-13 2018-06-12 Irobot Corporation Mobile floor-cleaning robot with floor-type detection
DE102015108464A1 (de) * 2015-05-28 2016-12-01 Vorwerk & Co. Interholding Gmbh Verfahren zum Betrieb eines elektromotorisch angetriebenen Gerätes
DE102015112174A1 (de) * 2015-07-27 2017-02-02 Vorwerk & Co. Interholding Gmbh Gerät zur Bearbeitung einer Oberfläche
US10788836B2 (en) * 2016-02-29 2020-09-29 AI Incorporated Obstacle recognition method for autonomous robots
KR101979760B1 (ko) * 2016-07-14 2019-05-17 엘지전자 주식회사 이동로봇
CN106264357B (zh) * 2016-08-30 2019-10-18 宁波菜鸟智能科技有限公司 扫地机器人的地毯判定方法及系统
EP3542695B1 (en) * 2016-12-16 2024-05-01 Yunjing Intelligence Innovation (Shenzhen) Co., Ltd. Base station and cleaning robot system
KR20180121244A (ko) * 2017-04-28 2018-11-07 엘지전자 주식회사 이동 로봇 및 그 제어방법
JP7174505B2 (ja) * 2017-05-23 2022-11-17 東芝ライフスタイル株式会社 電気掃除機
KR102021826B1 (ko) * 2018-02-05 2019-09-17 엘지전자 주식회사 청소기
WO2019233493A1 (zh) * 2018-06-08 2019-12-12 苏州宝时得电动工具有限公司 清洁机器人及其控制方法、清洁机器人系统
US20200000302A1 (en) * 2018-06-28 2020-01-02 Irobot Corporation Mobile cleaning robots systems and methods
CN109846427A (zh) * 2019-01-16 2019-06-07 深圳乐动机器人有限公司 一种清洁机器人的控制方法及清洁机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120055891A (ko) * 2010-11-24 2012-06-01 삼성전자주식회사 로봇청소기 및 그 제어방법
KR20140011216A (ko) * 2012-07-18 2014-01-28 엘지전자 주식회사 로봇 청소기 및 이의 제어 방법
KR101654014B1 (ko) 2016-06-21 2016-09-06 주식회사 파인로보틱스 걸레 로봇 청소기
US20180213992A1 (en) * 2017-02-01 2018-08-02 Vorwerk & Co. Interholding Gmbh Self-propelled floor treatment device
KR20190015930A (ko) * 2017-08-07 2019-02-15 엘지전자 주식회사 로봇청소기 및 그 제어방법
KR20190108358A (ko) * 2018-03-14 2019-09-24 엘지전자 주식회사 싸이클론 집진 장치 및 이를 포함하는 청소기

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4079466A4

Also Published As

Publication number Publication date
CN114829083B (zh) 2024-04-09
AU2019479398A1 (en) 2022-08-11
TW202131853A (zh) 2021-09-01
AU2019479398B2 (en) 2023-12-21
EP4079466A4 (en) 2023-08-30
EP4079466A1 (en) 2022-10-26
CN114829083A (zh) 2022-07-29
US20230022860A1 (en) 2023-01-26
TWI794700B (zh) 2023-03-01
KR20220104185A (ko) 2022-07-26

Similar Documents

Publication Publication Date Title
WO2018026124A1 (ko) 이동 로봇 및 그 제어방법
WO2016129950A1 (ko) 청소 로봇 및 그 제어방법
WO2017191928A1 (ko) 청소로봇 및 그 제어 방법
AU2020209330B2 (en) Mobile robot and method of controlling plurality of mobile robots
WO2017200304A2 (ko) 이동 로봇 및 그 제어방법
WO2019221524A1 (ko) 청소기 및 그 제어방법
WO2015183005A1 (en) Mobile device, robot cleaner, and method for controlling the same
WO2021006677A2 (en) Mobile robot using artificial intelligence and controlling method thereof
WO2019017521A1 (ko) 청소기 및 그 제어방법
WO2018079985A1 (ko) 청소기 및 그 제어방법
WO2020213955A1 (ko) 모바일 로봇의 초기화 진단 방법 및 시스템
WO2019221523A1 (ko) 청소기 및 그 제어방법
WO2019117576A1 (ko) 이동 로봇 및 이동 로봇의 제어방법
WO2020004824A1 (en) Plurality of autonomous cleaner and controlling method for the same
AU2020231781B2 (en) Moving robot and controlling method for the moving robot
WO2019088695A1 (ko) 초음파 센서 및 그를 구비하는 로봇 청소기
WO2021172932A1 (en) Moving robots and method for controlling the same
WO2021172936A1 (en) Moving robot and control method thereof
AU2020362530B2 (en) Robot cleaner and method for controlling the same
WO2020139029A1 (en) Mobile robot
WO2018117616A1 (ko) 이동 로봇
WO2020256370A1 (en) Moving robot and method of controlling the same
WO2020017943A1 (ko) 복수의 로봇 청소기 및 그 제어방법
WO2022035150A1 (ko) 청소 로봇 및 그 제어 방법
WO2021020911A1 (en) Mobile robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227019256

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019956353

Country of ref document: EP

Effective date: 20220720

ENP Entry into the national phase

Ref document number: 2019479398

Country of ref document: AU

Date of ref document: 20191220

Kind code of ref document: A