WO2021125119A1 - Internal combustion engine system and misfire detection method - Google Patents

Internal combustion engine system and misfire detection method Download PDF

Info

Publication number
WO2021125119A1
WO2021125119A1 PCT/JP2020/046448 JP2020046448W WO2021125119A1 WO 2021125119 A1 WO2021125119 A1 WO 2021125119A1 JP 2020046448 W JP2020046448 W JP 2020046448W WO 2021125119 A1 WO2021125119 A1 WO 2021125119A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion engine
internal combustion
rotor
output
misfire
Prior art date
Application number
PCT/JP2020/046448
Other languages
French (fr)
Japanese (ja)
Inventor
孝典 松井
萩村 将巳
勇一 土屋
智也 石川
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Priority to CN202080086588.0A priority Critical patent/CN114829757A/en
Priority to BR112022011571A priority patent/BR112022011571A2/en
Publication of WO2021125119A1 publication Critical patent/WO2021125119A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines

Definitions

  • the present invention relates to an internal combustion engine system and a misfire detection method.
  • a technique for detecting a misfire of an internal combustion engine a technique for detecting a misfire based on a rotational fluctuation of the internal combustion engine is known.
  • a ring gear is installed on a crankshaft, and an uneven pattern on the outer circumference of the ring gear is detected to detect rotational fluctuation.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an internal combustion engine system capable of miniaturizing an internal combustion engine and a misfire detection method.
  • one aspect of the present invention applies a rotational force to the crankshaft via an internal combustion engine having a crankshaft and a rotor directly connected to the crankshaft under the first condition.
  • a rotary electric machine that receives the rotational force of the crankshaft to generate power, and a rotor position that detects the rotational position of the rotor and indicates the rotational position of the rotor.
  • a drive that controls a rotor position detection unit that outputs information and a drive circuit that rotationally drives the rotor of the rotary electric machine based on the rotor position information output by the rotor position detection unit under the first condition.
  • An internal combustion engine including a control unit and a misfire detection unit that detects that a misfire of the internal combustion engine has occurred based on the amount of change in the rotation position of the rotor per unit time based on the rotor position information. It is a system.
  • a stator in which a coil is wound and a plurality of magnets are arranged alternately with magnetic poles along the inner peripheral surface, and a plurality of magnets are arranged around the stator.
  • the rotor position detection unit is a plurality of magnetic sensors built in the rotary electric machine, and is arranged to face the rotor and faces the magnets. It may have a plurality of magnetic sensors that detect and output the polarity of.
  • one aspect of the present invention includes a timer that measures and outputs the time of the interval at which the output pattern output by the magnetic sensor is switched in the internal combustion engine system, and the misfire detection unit outputs the timer.
  • the misfire of the internal combustion engine may be detected based on the change in the time of the switching interval.
  • the misfire detection unit determines that a misfire of the internal combustion engine has occurred when the output value of the timer exceeds a predetermined threshold value. It may be.
  • one aspect of the present invention includes an output storage unit that stores a plurality of output results immediately output by the timer in the internal combustion engine system, and the misfire detection unit is a plurality of output storage units that are stored by the output storage unit. It may be determined that the misfire of the internal combustion engine has occurred when the output result of the above is generated more than a predetermined number of times that exceeds a predetermined threshold value.
  • one aspect of the present invention includes an output storage unit that stores a plurality of output results immediately output by the timer in the internal combustion engine system, and the misfire detection unit is a plurality of output storage units that are stored by the output storage unit.
  • the misfire detection unit is a plurality of output storage units that are stored by the output storage unit.
  • the number of slots which is the number of coils, is 18, the number of magnetic poles, which is the number of magnets, is 12, and the rotary electric machine has. It functions as a three-phase brushless motor, and the plurality of magnetic sensors may detect and output the polarity of the magnet corresponding to the three-phase.
  • a rotational force is applied to the crankshaft via an internal combustion engine having a crankshaft and a rotor directly connected to the crankshaft under the first condition, and the first condition is met.
  • a method for detecting a misfire in an internal combustion engine system including a rotary electric machine that receives a rotational force of a crankshaft to generate power under a second condition different from that of the above, wherein a rotor position detecting unit determines the rotational position of the rotor.
  • a rotor position detection step that detects and outputs rotor position information indicating the rotation position of the rotor, and a drive control unit based on the rotor position information output by the rotor position detection step under the first condition.
  • the drive control step for controlling the drive circuit for rotationally driving the rotor of the rotary electric machine and the misfire detection unit are based on the amount of change in the rotation position of the rotor per unit time based on the rotor position information. It is a misfire detection method including a misfire detection step for detecting that a misfire of an internal combustion engine has occurred.
  • the configuration of the internal combustion engine can be simplified and the internal combustion engine can be miniaturized.
  • FIG. 1 is a block diagram showing an example of the internal combustion engine system 1 according to the first embodiment.
  • the internal combustion engine system 1 includes an internal combustion engine 2, a crankshaft 3, a starting generator 4, a battery 5, a drive circuit 40, and a control unit 50.
  • the internal combustion engine 2 is, for example, an engine that drives a two-wheeled vehicle, an automobile, or the like.
  • the internal combustion engine 2 has a crankshaft 3 as a rotation shaft, and applies a rotational force to the crankshaft 3.
  • the crankshaft 3 is directly connected to a rotor 10 which will be described later.
  • the starting generator 4 (an example of a rotary electric machine) has both functions of a starting motor of an internal combustion engine 2 and an alternating current generator that generates electricity from the rotation of the internal combustion engine 2.
  • the start generator 4 applies a rotational force to the crankshaft 3 via the rotor 10 directly connected to the crankshaft 3 to start the internal combustion engine 2. ..
  • the starting generator 4 receives the rotational force of the crankshaft 3 to generate electricity.
  • the starting generator 4 is, for example, an outer rotor type three-phase brushless motor type. Further, the starting generator 4 includes a rotor 10 and a stator 20.
  • the rotor 10 (an example of a rotor) is directly connected to the crankshaft 3 and is rotatably arranged around the stator 20. Further, the rotor 10 is formed in a bottomed tubular shape, and a plurality of magnets 11 are arranged along the inner peripheral surface with alternating magnetic poles.
  • the stator 20 is arranged inside the rotor 10 and includes a plurality of coils 21 and a plurality of Hall elements 31.
  • a plurality of coils 21 and a plurality of Hall elements 31 are arranged inside the rotor 10 and includes a plurality of Hall elements 31.
  • FIG. 2 is a cross-sectional view showing a configuration example of the starting generator 4 in the present embodiment.
  • the rotation axis direction of the rotor 10 is simply referred to as the axial direction
  • the radial direction of the stator 20 orthogonal to the rotation axis direction is simply referred to as the radial direction
  • the rotation direction of the rotor 10 is simply referred to as the rotation direction or the circumference. Called the direction.
  • a magnet 11 is arranged inside the rotor 10 directly connected to the crankshaft 3. Further, the stator 20 is arranged inside the rotor 10 so that the coil 21 faces the magnet 11.
  • a sensor case 22 formed in an arc shape is arranged on the stator 20, and the Hall element 31 is fixed at a position facing the magnet 11 by the sensor case 22.
  • FIG. 3 is a plan view showing the positional relationship between the magnet 11 and the stator 20 in the present embodiment.
  • the stator 20 includes a stator core 23 formed by laminating electromagnetic steel plates and a coil 21 which is a three-phase winding wound around the stator core 23.
  • the stator core 23 has a main body portion 23a formed in an annular shape, and a plurality of tooth portions 23b protruding radially outward from the outer peripheral surface of the main body portion.
  • Each tooth portion 23b is formed in a substantially T shape in an axial plan view.
  • Each tooth portion 23b is assigned to each of three phases (U phase, V phase, W phase). Further, the coil 21 is wound around each tooth portion 23b. As shown in FIG. 3, the starting generator 4 in the present embodiment has 12 poles and 18 slots, and the number of coils 21 and teeth portions 23b is 18. The 18 coils 21 and the teeth portion 23b are assigned in the order of U phase, V phase, W phase, ... In the circumferential direction.
  • the U-phase coil 21 is referred to as a U-phase coil 21U
  • the V-phase coil 21 is referred to as a V-phase coil 21V
  • the W-phase coil 21 is referred to as a W-phase coil 21W.
  • N-pole magnets (hereinafter referred to as "N-pole magnets”) 11N and S-pole magnets (hereinafter referred to as "S-pole magnets”) 11S are alternately arranged in the circumferential direction. They are installed side by side at regular intervals along.
  • the N-pole magnet 11N the entire surface inside the radial direction is magnetized to the N pole
  • the S-pole magnet 11S the entire surface inside in the radial direction is magnetized to the S pole.
  • the number of magnetic poles which is the number of magnets 11, is 12.
  • FIG. 4 is a diagram showing a positional relationship between the magnet 11 and the Hall element 31 in the present embodiment.
  • the Hall element 31 for the V phase is referred to as the Hall element 31-1
  • the Hall element 31 for the U phase is referred to as the Hall element 31-2
  • the Hall element 31 for the W phase is referred to as the Hall element 31. It is called -3. Further, when an arbitrary Hall element incorporated in the starting generator 4 is shown, it will be described as the Hall element 31.
  • the Hall element 31 detects and outputs the polarity of the opposing magnet 11.
  • the Hall element 31 outputs, for example, the polarity of the magnet 11 as a binary signal.
  • the Hall element 31-1 outputs an output signal for detecting the rotation position of the rotor 10 for the V phase
  • the Hall element 31-2 outputs an output signal for detecting the rotation position of the rotor 10 for the U phase. Is output.
  • the Hall element 31-3 outputs an output signal for detecting the rotation position of the rotor 10 for the W phase. Details of the output signal of each Hall element 31 will be described later with reference to FIG.
  • the battery 5 is, for example, a lead storage battery or a lithium ion battery, and supplies electric power when the starting generator 4 is driven as a three-phase brushless motor (under the first condition). Further, when the starting generator 4 is operated as a generator (second condition), the battery 5 is charged with a part of the generated electric power.
  • the drive circuit 40 is, for example, an inverter circuit, which converts a direct current supplied from the battery 5 into an alternating current and sends a drive signal to each of the coils 21 (U-phase coil 21U, V-phase coil 21V, W-phase coil 21W).
  • the rotor 10 is driven to rotate.
  • the drive circuit 40 outputs a drive signal for each phase based on a control signal output by the drive control unit 51 of the control unit 50, which will be described later.
  • the starting generator 4 is a three-phase brushless motor, and the drive circuit 40 outputs a 120-degree energization drive signal as a U-phase, V-phase, and W-phase drive signal. Further, the drive circuit 40 rectifies the AC power generated by the starting generator 4 and charges the battery 5.
  • the control unit 50 is, for example, a processor including a CPU (Central Processing Unit) and the like, and controls the start generator 4 in an integrated manner.
  • the control unit 50 includes a rotor position determination unit 32, a drive control unit 51, a timer 52, an output storage unit 53, and a misfire determination unit 54.
  • the Hall elements 31 (31-1 to 31-3) and the rotor position determination unit 32 correspond to the rotor position detection unit 30. That is, the rotor position detection unit 30 includes Hall elements 31 (31-1 to 31-3) and a rotor position determination unit 32.
  • the rotor position detection unit 30 detects the rotation position of the rotor 10 and outputs rotor position information indicating the rotation position of the rotor 10.
  • the rotor position detection unit 30 detects the rotation position of the rotor 10 based on the output signals of the plurality of Hall elements 31 (31-1 to 31-3).
  • the output signals of the Hall elements 31 (31-1 to 31-3) will be described with reference to FIG.
  • FIG. 5 is a diagram showing an example of an output signal of the Hall element 31 in the present embodiment.
  • the waveform W1 is a U-phase detection signal and shows the output signal of the Hall element 31-1.
  • the waveform W2 is a V-phase detection signal and shows the output signal of the Hall element 31-2.
  • the waveform W3 is a W phase detection signal and indicates an output signal of the Hall element 31-3.
  • the horizontal axis indicates time.
  • the U-phase detection signal, the V-phase detection signal, and the W-phase detection signal are rectangular wave signals whose phases are 120 degrees (electrical angle 120 degrees), and are control signals of the drive circuit 40 based on the switching timing of each signal. Can be generated. Further, for example, the interval TR1 between the falling edge of the W phase detection signal at time T1 and the rising edge of the V phase detection signal at time T2 indicates the mechanical angle of the rotor 10 of 10 degrees, and the V phase detection signal at time T2. The interval TR2 between the rise of the rotor 10 and the rise of the W phase detection signal at time T3 indicates the mechanical angle of the rotor 10 of 20 degrees. In this way, the rotation speed of the mechanical angle can be measured by detecting the switching interval of the U-phase detection signal, the V-phase detection signal, and the W-phase detection signal.
  • the rotor position determination unit 32 detects the position information of the rotor 10 based on the output signals of the Hall elements 31 (31-1 to 31-3) and indicates the rotation position of the rotor 10. Output rotor position information.
  • the rotor position determination unit 32 When starting the internal combustion engine 2, the rotor position determination unit 32 generates, for example, a timing signal for performing 120-degree energization control as rotor position information based on the output signal of the Hall element 31, and the timing signal. Is output to the drive control unit 51.
  • the rotor position determination unit 32 is for measuring the time of the interval at which the output pattern output by the Hall element 31 is switched based on the output signal of the Hall element 31, for example, when the internal combustion engine 2 is operating. A control signal for the timer 52 is generated, and the control signal is output to the timer 52. As described above, the rotor position determination unit 32 performs the above-described processing depending on whether the internal combustion engine 2 is started (first condition) or the internal combustion engine 2 is operating (second condition). Switch and execute. That is, the rotor position determination unit 32 generates different rotor position information depending on whether the internal combustion engine 2 is started (first condition) and the internal combustion engine 2 is operating (second condition). Then, the drive control unit 51 and the timer 52 switch and output.
  • the drive control unit 51 controls the drive circuit 40 that rotationally drives the rotor 10 of the start generator 4 based on the rotor position information output by the rotor position detection unit 30.
  • the drive control unit 51 uses the timing signal output from the rotor position detection unit 30 as rotor position information, and outputs, for example, a control signal for 120-degree energization control to the drive circuit 40.
  • the timer 52, the output storage unit 53, and the misfire determination unit 54 correspond to the misfire detection unit 60. That is, the misfire detection unit 60 includes a timer 52, an output storage unit 53, and a misfire determination unit 54.
  • the timer 52 measures the time at which the output pattern output by the Hall element 31 switches, and outputs the time to the misfire determination unit 54. That is, the timer 52 uses the control signal of the timer 52 output from the rotor position detection unit 30 as the rotor position information, and measures the time of the interval at which the output pattern is switched as in the interval TR1 of FIG. 5 described above. The timer 52 outputs the measurement result of the interval at which the output pattern is switched to the misfire determination unit 54.
  • the misfire determination unit 54 detects that a misfire of the internal combustion engine 2 has occurred based on the amount of change in the rotation position of the rotor 10 per unit time based on the rotor position information output by the rotor position detection unit 30.
  • the misfire determination unit 54 detects that the internal combustion engine 2 has misfired, for example, based on the change in the switching interval time output by the timer 52.
  • the switching interval time which is the output result of the timer 52, corresponds to the rotation speed of the rotor 10 (that is, the amount of change in the rotation position of the rotor 10 per unit time) or the rotation cycle of the rotor 10.
  • the misfire determination unit 54 determines that a misfire of the internal combustion engine 2 has occurred when the output value (output result) of the timer 52 exceeds a predetermined threshold value.
  • the misfire determination unit 54 sequentially stores the output result of the timer 52 in the output storage unit 53.
  • the misfire determination unit 54 determines that the internal combustion engine 2 has misfired, for example, when a plurality of output results stored by the output storage unit 53 that exceed a predetermined threshold value occur more than a predetermined number of times. To do.
  • the output storage unit 53 stores a plurality of output results immediately output by the timer 52.
  • the misfire determination unit 54 outputs warning information indicating that the misfire of the internal combustion engine 2 has occurred, and turns on, for example, a warning light.
  • FIG. 6 is a flowchart showing an example of the operation of the internal combustion engine system 1 according to the first embodiment.
  • the control unit 50 of the internal combustion engine system 1 first determines whether or not to drive the motor (step S101). That is, the rotor position determination unit 32 of the control unit 50 (rotor position detection unit 30) determines whether or not to drive the start generator 4 as a motor. When the rotor position determination unit 32 drives the start generator 4 as a motor (step S101: YES), the rotor position determination unit 32 advances the process to step S107. Further, when the rotor position determination unit 32 does not drive the start generator 4 as a motor (step S101: NO), the rotor position determination unit 32 proceeds to the process in step S102.
  • the starting generator 4 is not driven as a motor corresponds to, for example, the case where the internal combustion engine 2 is operating and the starting generator 4 is used as a generator.
  • step S102 the rotor position determination unit 32 detects the switching of the output pattern of the Hall element 31.
  • the rotor position determination unit 32 measures the time at which the output pattern output by the Hall element 31 is switched based on the output signals of the three-phase Hall elements 31 (31-1 to 31-3) as shown in FIG.
  • the control signal of the timer 52 is generated.
  • the rotor position determination unit 32 switches to the timer 52 to measure the time of the interval (step S103). That is, the rotor position determination unit 32 outputs a control signal of the timer 52 for measuring the time of the interval at which the above-mentioned output pattern is switched to the timer 52.
  • the misfire determination unit 54 of the control unit 50 stores the output result of the timer 52 in the output storage unit 53 (step S104).
  • the misfire determination unit 54 sequentially stores the time of the switching interval, which is the output result output from the timer 52, in the output storage unit 53.
  • the output storage unit 53 stores a plurality of output results most recently output by the timer 52.
  • the misfire determination unit 54 determines whether or not the number of times the latest output result of the timer 52 exceeds the predetermined threshold value is equal to or greater than the predetermined number of times (step S105). That is, the misfire determination unit 54 refers to the output result of the timer 52 stored in the output storage unit 53, and determines whether or not any of the latest output results of the timer 52 exceeds a predetermined threshold value. , Count the number of output results that exceed a predetermined threshold. The misfire determination unit 54 determines whether or not the number of output results that exceeds the predetermined threshold value is equal to or greater than the predetermined number of times.
  • the misfire determination unit 54 advances the process to step S106 when the number of output results exceeding the predetermined threshold value is equal to or greater than the predetermined number of times (step S105: YES). Further, the misfire determination unit 54 returns the process to step S101 when the number of output results that have exceeded the predetermined threshold value is less than the predetermined number of times (step S105: NO).
  • step S106 the misfire determination unit 54 determines that the internal combustion engine 2 has misfired.
  • the misfire determination unit 54 outputs warning information indicating that a misfire of the internal combustion engine 2 has occurred, and turns on, for example, a warning light.
  • the misfire determination unit 54 returns the process to step S101.
  • step S107 when the start generator 4 is driven as a motor, the rotor position determination unit 32 of the rotor position detection unit 30 detects the rotation position of the rotor 10 based on the output of the Hall element 31.
  • the rotor position determination unit 32 generates, for example, a timing signal for performing 120-degree energization control as rotor position information based on the output signals of the three-phase Hall elements 31 (31-1 to 31-3). , The timing signal is output to the drive control unit 51 of the control unit 50.
  • the drive control unit 51 controls the drive circuit 40 based on the rotation position of the rotor 10 (step S108). That is, the drive control unit 51 controls the drive circuit 40 so as to perform 120-degree energization control based on the timing signal output by the rotor position detection unit 30. For example, the drive control unit 51 outputs a control signal for driving the inverter circuit of the drive circuit 40 to the drive circuit 40. As a result, the drive circuit 40 outputs three-phase (U-phase, V-phase, and W-phase) drive signals to the start generator 4, and rotates (drives) the drive signals using the start generator 4 as a motor. After the process of step S108, the drive control unit 51 returns the process to step S101.
  • the internal combustion engine system 1 includes an internal combustion engine 2 having a crankshaft 3, a starting generator 4 (rotary electric machine), a rotor position detection unit 30, a drive control unit 51, and a misfire. It includes a detection unit 60.
  • the starting generator 4 applies a rotational force to the crankshaft 3 via a rotor 10 directly connected to the crankshaft 3. Further, the starting generator 4 receives the rotational force of the crankshaft 3 to generate electricity under a second condition different from the first condition (for example, when the internal combustion engine 2 is operating).
  • the rotor position detection unit 30 detects the rotation position of the rotor 10 and outputs rotor position information indicating the rotation position of the rotor 10.
  • the drive control unit 51 controls the drive circuit 40 that rotationally drives the rotor 10 of the start generator 4 based on the rotor position information output by the rotor position detection unit 30.
  • the misfire detection unit 60 detects that a misfire of the internal combustion engine 2 has occurred based on the amount of change in the rotation position of the rotor 10 per unit time based on the rotor position information.
  • the internal combustion engine system 1 performs drive control when the rotor position information detected by the rotor position detection unit 30 is driven by the starting generator 4 as a motor (under the first condition), and the internal combustion engine. It is used for both misfire detection of the internal combustion engine 2 when 2 is operating (second condition). That is, in the internal combustion engine system 1 according to the present embodiment, the rotor position detection unit 30 already provided is also used for detecting a misfire of the internal combustion engine 2. Therefore, the internal combustion engine system 1 according to the present embodiment does not need to install a ring gear on the crankshaft 3 as in the prior art, and can simplify the configuration of the internal combustion engine 2. Therefore, in the internal combustion engine system 1 according to the present embodiment, the configuration of the internal combustion engine 2 can be simplified, and the internal combustion engine 2 can be miniaturized.
  • a stator 20 around which the coil 21 is wound and a plurality of magnets 11 are arranged so as to alternate magnetic poles along the inner peripheral surface, and the magnets 11 are rotatably arranged around the stator 20. It has a rotor 10 installed.
  • the rotor position detection unit 30 is a plurality of Hall elements 31 (magnetic sensors) built in the start generator 4, which are arranged to face the rotor 10 and detect and output the polarities of the magnets 11 facing each other. Has a Hall element 31 of.
  • the internal combustion engine system 1 needs to be separately provided with a sensor for detecting a misfire of the internal combustion engine 2 by using a plurality of Hall elements 31 (magnetic sensors) built in the starting generator 4.
  • the configuration of the internal combustion engine 2 can be simplified.
  • the internal combustion engine system 1 includes a timer 52 that measures and outputs the time of the interval at which the output pattern output by the Hall element 31 is switched.
  • the misfire detection unit 60 (misfire determination unit 54) detects that a misfire of the internal combustion engine 2 has occurred based on the change in the switching interval time output by the timer 52.
  • the internal combustion engine system 1 according to the present embodiment can appropriately detect a misfire of the internal combustion engine 2 with a simple configuration.
  • the misfire detection unit 60 determines that the internal combustion engine 2 has misfired when the output value of the timer 52 exceeds a predetermined threshold value.
  • the output value of the timer 52 indicates the time at which the output pattern output by the Hall element 31 is switched, if the internal combustion engine 2 misfires, the power from the internal combustion engine 2 cannot be obtained, and the timer It is conceivable that the output value of 52 becomes large. From this, in the present embodiment, the misfire detection unit 60 (misfire determination unit 54) can appropriately detect the misfire of the internal combustion engine 2 by a simple method of determining by a predetermined threshold value.
  • the internal combustion engine system 1 includes an output storage unit 53 that stores a plurality of output results immediately output by the timer 52.
  • the misfire detection unit 60 causes the internal combustion engine 2 to misfire when a plurality of output results stored in the output storage unit 53 that exceed a predetermined threshold value occur more than a predetermined number of times. Judge that it has occurred.
  • the internal combustion engine system 1 when a vehicle equipped with an internal combustion engine 2 travels on a rough road, the output result of the timer 52 may suddenly exceed a predetermined threshold value.
  • the internal combustion engine system 1 according to the present embodiment accurately determines that the internal combustion engine 2 has misfired even when the internal combustion engine system 1 suddenly exceeds a predetermined threshold value. Can be done. That is, the internal combustion engine system 1 according to the present embodiment can reduce erroneous detection of misfire of the internal combustion engine 2.
  • the number of slots which is the number of coils 21, is 18, and the number of magnetic poles, which is the number of magnets 11, is 12.
  • the starting generator 4 functions as a 12-pole 18-slot three-phase brushless motor.
  • the plurality of Hall elements 31 detect and output the polarities of the magnets 11 corresponding to the three phases.
  • the minimum resolution by the rotor position detection unit 30 is a mechanical angle of 10 degrees (see the interval TR1 in FIG. 5), and the misfire detection accuracy of the internal combustion engine 2 can be improved. ..
  • the rotor position detection unit 30 detects the rotation position of the rotor 10 and outputs rotor position information indicating the rotation position of the rotor 10.
  • the drive control unit 51 controls the drive circuit that rotationally drives the rotor 10 of the start generator 4 based on the rotor position information output by the rotor position detection step under the first condition.
  • the misfire detection unit 60 detects that the internal combustion engine 2 has misfired based on the amount of change in the rotation position of the rotor 10 per unit time based on the rotor position information. ..
  • the misfire detection method according to the present embodiment has the same effect as the internal combustion engine system 1 according to the above-described embodiment, the configuration of the internal combustion engine 2 can be simplified, and the internal combustion engine 2 can be miniaturized. Can be done.
  • the basic configuration of the internal combustion engine system 1 according to the present embodiment is the same as that of the first embodiment shown in FIGS. 1 to 4 described above, the description thereof will be omitted here.
  • the misfire determination process of the internal combustion engine 2 by the misfire determination unit 54 is different from that of the first embodiment, and the process of the misfire determination unit 54 in the present embodiment will be described below.
  • the misfire determination unit 54 in the present embodiment determines that the internal combustion engine 2 has misfired when the average value of the plurality of output results stored in the output storage unit 53 is equal to or greater than a predetermined threshold value. For example, the misfire determination unit 54 acquires the latest output result of a predetermined number of times from the output storage unit 53, and calculates the average value of the output results for the predetermined number of times. The misfire determination unit 54 determines that a misfire of the internal combustion engine 2 has occurred when the average value of the calculated output results exceeds a predetermined threshold value.
  • FIG. 7 is a flowchart showing an example of the operation of the internal combustion engine system 1 according to the present embodiment.
  • step S201 to step S204 are the same as the processes from step S101 to step S104 shown in FIG. 6 described above, and thus the description thereof will be omitted here.
  • step S205 the misfire determination unit 54 generates the average value of the most recent predetermined number of times of the output result of the timer. That is, the misfire determination unit 54 acquires the output result of the timer 52 stored in the output storage unit 53 for the most recent predetermined number of times. The misfire determination unit 54 generates an average value of the output results of the timer 52 for the most recently acquired predetermined number of times.
  • the misfire determination unit 54 determines whether or not the average value is equal to or greater than a predetermined threshold value (step S206).
  • the misfire determination unit 54 advances the process to step S207 when the generated average value is equal to or greater than a predetermined threshold value (step S206: YES). Further, when the generated average value is less than a predetermined threshold value (step S206: NO), the misfire determination unit 54 returns the process to step S201.
  • step S207 the misfire determination unit 54 determines that the internal combustion engine 2 has misfired.
  • the misfire determination unit 54 outputs warning information indicating that a misfire of the internal combustion engine 2 has occurred, and turns on, for example, a warning light.
  • the misfire determination unit 54 returns the process to step S201.
  • step S208 and step S209 is the same as the processing of step S107 and step S109 shown in FIG. 6 described above, the description thereof will be omitted here.
  • the drive control unit 51 After the process of step S209, the drive control unit 51 returns the process to step S201.
  • the internal combustion engine system 1 includes an internal combustion engine 2 having a crankshaft 3, a starting generator 4 (rotary electric machine), a rotor position detection unit 30, a drive control unit 51, and a misfire.
  • a determination unit 54, a timer 52, and an output storage unit 53 that stores a plurality of output results immediately output by the timer 52 are provided.
  • the misfire determination unit 54 (misfire detection unit 60) in the present embodiment states that the internal combustion engine 2 has misfired when the average value of the plurality of output results stored in the output storage unit 53 exceeds a predetermined threshold value. judge.
  • the internal combustion engine system 1 according to the present embodiment can obtain an average value even when the vehicle equipped with the internal combustion engine 2 suddenly exceeds a predetermined threshold value, such as when traveling on a rough road. By using it, it is possible to accurately determine that a misfire of the internal combustion engine 2 has occurred. That is, the internal combustion engine system 1 according to the present embodiment can reduce erroneous detection of misfire of the internal combustion engine 2 as in the first embodiment.
  • the present invention is not limited to each of the above embodiments, and can be modified without departing from the spirit of the present invention.
  • a Hall element is used as an example of a magnetic sensor
  • the present invention is not limited to this, and another magnetic sensor may be used.
  • the example in which the internal combustion engine system 1 includes three Hall elements 31 (31-1 to 31-3) of U phase, V phase, and W phase has been described.
  • a Hall element 31 that generates an ignition timing signal for igniting the internal combustion engine 2 may be additionally provided.
  • control unit 50 is not limited to the control of the starting generator 4, and may include, for example, the control of the internal combustion engine 2.
  • the starting generator 4 is a three-phase brushless motor having 12 poles and 18 slots
  • the present invention is not limited to this, and other pole numbers and other slots are used. It may be a number of motors.
  • misfire detection unit 60 (misfire determination unit 54) has described an example in which the average value of a plurality of output results is used, but weighting is considered instead of the simple average value. A weighted average value may be used.
  • Each configuration included in the internal combustion engine system 1 described above has a computer system inside. Then, a program for realizing the functions of each configuration included in the internal combustion engine system 1 described above is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into the computer system and executed. Therefore, the processing in each configuration provided in the internal combustion engine system 1 described above may be performed.
  • "loading and executing a program recorded on a recording medium into a computer system” includes installing the program in the computer system.
  • computer system as used herein includes hardware such as an OS and peripheral devices. Further, the "computer system” may include a plurality of computer devices connected via a network including a communication line such as the Internet, WAN, LAN, and a dedicated line.
  • the "computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, or a storage device such as a hard disk built in a computer system.
  • the recording medium in which the program is stored may be a non-transient recording medium such as a CD-ROM.
  • the recording medium also includes an internal or external recording medium that can be accessed from the distribution server to distribute the program.
  • the program may be divided into a plurality of parts, downloaded at different timings, and then combined with each configuration provided in the internal combustion engine system 1, or the distribution server for distributing each of the divided programs may be different.
  • a "computer-readable recording medium” is a volatile memory (RAM) inside a computer system that serves as a server or client when a program is transmitted via a network, and holds the program for a certain period of time. It shall also include things.
  • the above program may be for realizing a part of the above-mentioned functions.
  • a so-called difference file (difference program) may be used, which can realize the above-mentioned functions in combination with a program already recorded in the computer system.
  • a part or all of the above-mentioned functions may be realized as an integrated circuit such as an LSI (Large Scale Integration).
  • LSI Large Scale Integration
  • Each of the above-mentioned functions may be made into a processor individually, or a part or all of them may be integrated into a processor.
  • the method of making an integrated circuit is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. Further, when an integrated circuit technology that replaces an LSI appears due to advances in semiconductor technology, an integrated circuit based on this technology may be used.

Abstract

The present invention miniaturizes an internal combustion engine. This internal combustion engine system is provided with: an internal combustion engine that has a crankshaft; a rotary motor that applies a rotational force to the crankshaft via a rotor directly connected to the crankshaft under a first condition and generates electricity by receiving the rotational force of the crankshaft under a second condition different from the first condition; a rotor position detection unit that detects the rotational position of the rotor and that outputs rotor position information indicating the rotational position of the rotor; a driving control unit that controls a driving circuit which rotationally drives the rotor of the rotary motor, on the basis of the rotor position information outputted from the rotor position detection unit under the first condition; and a misfire detection unit that detects the occurrence of a misfire in the internal combustion engine on the basis of the changing amount of the rotor rotational position per unit time based on the rotor position information.

Description

内燃機関システム、及び失火検出方法Internal combustion engine system and misfire detection method
 本発明は、内燃機関システム、及び失火検出方法に関する。 The present invention relates to an internal combustion engine system and a misfire detection method.
 内燃機関の失火を検出する技術として、内燃機関の回転変動に基づいて、失火を検出する技術が知られている。このような内燃機関の失火を検出する技術では、クランクシャフトにリングギアを設置し、リングギアの外周の凹凸パターンを検出して回転変動を検出していた。 As a technique for detecting a misfire of an internal combustion engine, a technique for detecting a misfire based on a rotational fluctuation of the internal combustion engine is known. In such a technique for detecting a misfire of an internal combustion engine, a ring gear is installed on a crankshaft, and an uneven pattern on the outer circumference of the ring gear is detected to detect rotational fluctuation.
特開平4-370344号公報Japanese Unexamined Patent Publication No. 4-370344
 しかしながら、上述したような従来技術では、クランクシャフトにリングギアを設置する必要があるため、内燃機関のサイズが大きくなるという課題があった。 However, in the conventional technology as described above, since it is necessary to install a ring gear on the crankshaft, there is a problem that the size of the internal combustion engine becomes large.
 本発明は、上記問題を解決すべくなされたもので、その目的は、内燃機関を小型化することができる内燃機関システム、及び失火検出方法を提供することにある。 The present invention has been made to solve the above problems, and an object of the present invention is to provide an internal combustion engine system capable of miniaturizing an internal combustion engine and a misfire detection method.
 上記問題を解決するために、本発明の一態様は、クランク軸を有する内燃機関と、第1の条件下において、前記クランク軸に直結されたロータを介して前記クランク軸に回転力を与え、前記第1の条件下とは異なる第2の条件下において、前記クランク軸の回転力を受けて発電を行う回転電機と、前記ロータの回転位置を検出し、前記ロータの回転位置を示すロータ位置情報を出力するロータ位置検出部と、前記第1の条件下において、前記ロータ位置検出部が出力する前記ロータ位置情報に基づいて、前記回転電機の前記ロータを回転駆動させる駆動回路を制御する駆動制御部と、前記ロータ位置情報に基づく前記ロータの回転位置の単位時間当たりの変化量に基づいて、前記内燃機関の失火が発生したことを検出する失火検出部と備えることを特徴とする内燃機関システムである。 In order to solve the above problem, one aspect of the present invention applies a rotational force to the crankshaft via an internal combustion engine having a crankshaft and a rotor directly connected to the crankshaft under the first condition. Under a second condition different from the first condition, a rotary electric machine that receives the rotational force of the crankshaft to generate power, and a rotor position that detects the rotational position of the rotor and indicates the rotational position of the rotor. A drive that controls a rotor position detection unit that outputs information and a drive circuit that rotationally drives the rotor of the rotary electric machine based on the rotor position information output by the rotor position detection unit under the first condition. An internal combustion engine including a control unit and a misfire detection unit that detects that a misfire of the internal combustion engine has occurred based on the amount of change in the rotation position of the rotor per unit time based on the rotor position information. It is a system.
 また、本発明の一態様は、上記の内燃機関システムにおいて、前記回転電機は、コイルが巻装されたステータと、内周面沿いに磁極を交互にしてマグネットが複数配置され、前記ステータの周囲を回転自在に配設された前記ロータとを有し、前記ロータ位置検出部は、前記回転電機に内蔵された複数の磁気センサであって、前記ロータと対向して配置され、対向する前記マグネットの極性を検出して出力する複数の磁気センサを有するようにしてもよい。 Further, in one aspect of the present invention, in the internal combustion engine system, in the rotary electric machine, a stator in which a coil is wound and a plurality of magnets are arranged alternately with magnetic poles along the inner peripheral surface, and a plurality of magnets are arranged around the stator. The rotor position detection unit is a plurality of magnetic sensors built in the rotary electric machine, and is arranged to face the rotor and faces the magnets. It may have a plurality of magnetic sensors that detect and output the polarity of.
 また、本発明の一態様は、上記の内燃機関システムにおいて、前記磁気センサが出力する出力パターンが切り替わる間隔の時間を計測して出力するタイマーを備え、前記失火検出部は、前記タイマーが出力する、前記切り替わる間隔の時間の変化に基づいて、前記内燃機関の失火が発生したことを検出するようにしてもよい。 Further, one aspect of the present invention includes a timer that measures and outputs the time of the interval at which the output pattern output by the magnetic sensor is switched in the internal combustion engine system, and the misfire detection unit outputs the timer. , The misfire of the internal combustion engine may be detected based on the change in the time of the switching interval.
 また、本発明の一態様は、上記の内燃機関システムにおいて、前記失火検出部は、前記タイマーの出力値が所定の閾値以上になった場合に、前記内燃機関の失火が発生したと判定するようにしてもよい。 Further, in one aspect of the present invention, in the internal combustion engine system, the misfire detection unit determines that a misfire of the internal combustion engine has occurred when the output value of the timer exceeds a predetermined threshold value. It may be.
 また、本発明の一態様は、上記の内燃機関システムにおいて、前記タイマーが直近に出力した複数の出力結果を記憶する出力記憶部を備え、前記失火検出部は、前記出力記憶部が記憶する複数の前記出力結果のうち、所定の閾値以上になったものが所定の回数以上発生した場合に、前記内燃機関の失火が発生したと判定するようにしてもよい。 Further, one aspect of the present invention includes an output storage unit that stores a plurality of output results immediately output by the timer in the internal combustion engine system, and the misfire detection unit is a plurality of output storage units that are stored by the output storage unit. It may be determined that the misfire of the internal combustion engine has occurred when the output result of the above is generated more than a predetermined number of times that exceeds a predetermined threshold value.
 また、本発明の一態様は、上記の内燃機関システムにおいて、前記タイマーが直近に出力した複数の出力結果を記憶する出力記憶部を備え、前記失火検出部は、前記出力記憶部が記憶する複数の前記出力結果の平均値が所定の閾値以上になった場合に、前記内燃機関の失火が発生したと判定するようにしてもよい。 Further, one aspect of the present invention includes an output storage unit that stores a plurality of output results immediately output by the timer in the internal combustion engine system, and the misfire detection unit is a plurality of output storage units that are stored by the output storage unit. When the average value of the output results of the above is equal to or more than a predetermined threshold value, it may be determined that the misfire of the internal combustion engine has occurred.
 また、本発明の一態様は、上記の内燃機関システムにおいて、前記コイルの数であるスロット数が、18個であり、前記マグネットの数である磁極数が、12個であり、前記回転電機は、3相ブラシレスモータとして機能し、前記複数の磁気センサは、3相に対応する前記マグネットの極性を検出して出力するようにしてもよい。 Further, in one aspect of the present invention, in the internal combustion engine system, the number of slots, which is the number of coils, is 18, the number of magnetic poles, which is the number of magnets, is 12, and the rotary electric machine has. It functions as a three-phase brushless motor, and the plurality of magnetic sensors may detect and output the polarity of the magnet corresponding to the three-phase.
 また、本発明の一態様は、クランク軸を有する内燃機関と、第1の条件下において、前記クランク軸に直結されたロータを介して前記クランク軸に回転力を与え、前記第1の条件下とは異なる第2の条件下において、前記クランク軸の回転力を受けて発電を行う回転電機とを備える内燃機関システムの失火検出方法であって、ロータ位置検出部が、前記ロータの回転位置を検出し、前記ロータの回転位置を示すロータ位置情報を出力するロータ位置検出ステップと、駆動制御部が、前記第1の条件下において、前記ロータ位置検出ステップによって出力された前記ロータ位置情報に基づいて、前記回転電機の前記ロータを回転駆動させる駆動回路を制御する駆動制御ステップと、失火検出部が、前記ロータ位置情報に基づく前記ロータの回転位置の単位時間当たりの変化量に基づいて、前記内燃機関の失火が発生したことを検出する失火検出ステップと含むことを特徴とする失火検出方法である。 Further, in one aspect of the present invention, a rotational force is applied to the crankshaft via an internal combustion engine having a crankshaft and a rotor directly connected to the crankshaft under the first condition, and the first condition is met. A method for detecting a misfire in an internal combustion engine system including a rotary electric machine that receives a rotational force of a crankshaft to generate power under a second condition different from that of the above, wherein a rotor position detecting unit determines the rotational position of the rotor. A rotor position detection step that detects and outputs rotor position information indicating the rotation position of the rotor, and a drive control unit based on the rotor position information output by the rotor position detection step under the first condition. The drive control step for controlling the drive circuit for rotationally driving the rotor of the rotary electric machine and the misfire detection unit are based on the amount of change in the rotation position of the rotor per unit time based on the rotor position information. It is a misfire detection method including a misfire detection step for detecting that a misfire of an internal combustion engine has occurred.
 本発明によれば、内燃機関の構成を簡略化することができ、内燃機関を小型化することができる。 According to the present invention, the configuration of the internal combustion engine can be simplified and the internal combustion engine can be miniaturized.
第1の実施形態による内燃機関システムの一例を示すブロック図である。It is a block diagram which shows an example of the internal combustion engine system by 1st Embodiment. 第1の実施形態における始動発電機の構成例を示す断面図である。It is sectional drawing which shows the structural example of the start generator in 1st Embodiment. 第1の実施形態におけるマグネットとステータとの位置関係を示す平面図である。It is a top view which shows the positional relationship between a magnet and a stator in 1st Embodiment. 第1の実施形態におけるマグネットとホール素子との位置関係を示す図である。It is a figure which shows the positional relationship between a magnet and a Hall element in 1st Embodiment. 第1の実施形態におけるホール素子の出力信号の一例を示す図である。It is a figure which shows an example of the output signal of the Hall element in 1st Embodiment. 第1の実施形態による内燃機関システムの動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation of the internal combustion engine system by 1st Embodiment. 第2の実施形態による内燃機関システムの動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation of the internal combustion engine system by 2nd Embodiment.
 以下、本発明の一実施形態による内燃機関システム、及び失火検出方法について、図面を参照して説明する。 Hereinafter, the internal combustion engine system according to the embodiment of the present invention and the misfire detection method will be described with reference to the drawings.
 [第1の実施形態]
 図1は、第1の実施形態による内燃機関システム1の一例を示すブロック図である。
 図1に示すように、内燃機関システム1は、内燃機関2と、クランク軸3と、始動発電機4と、バッテリ5と、駆動回路40と、制御部50とを備える。
[First Embodiment]
FIG. 1 is a block diagram showing an example of the internal combustion engine system 1 according to the first embodiment.
As shown in FIG. 1, the internal combustion engine system 1 includes an internal combustion engine 2, a crankshaft 3, a starting generator 4, a battery 5, a drive circuit 40, and a control unit 50.
 内燃機関2は、例えば、二輪車や自動車などを駆動するエンジンである。内燃機関2は、回転軸としてクランク軸3を有し、クランク軸3に回転力を与える。
 クランク軸3は、後述するロータ10に直結されている。
The internal combustion engine 2 is, for example, an engine that drives a two-wheeled vehicle, an automobile, or the like. The internal combustion engine 2 has a crankshaft 3 as a rotation shaft, and applies a rotational force to the crankshaft 3.
The crankshaft 3 is directly connected to a rotor 10 which will be described later.
 始動発電機4(回転電機の一例)は、内燃機関2の始動用モータと、内燃機関2の回転から発電する交流発電機との両方の機能を兼ね備えている。始動発電機4は、内燃機関2を始動する場合(第1の条件下)において、クランク軸3に直結されたロータ10を介してクランク軸3に回転力を与えて、内燃機関2を始動させる。また、始動発電機4は、内燃機関2が動作中である場合(第2の条件下)において、クランク軸3の回転力を受けて発電を行う。始動発電機4は、例えば、アウターロータ型の3相ブラシレスモータ型である。
 また、始動発電機4は、ロータ10と、ステータ20とを備えている。
The starting generator 4 (an example of a rotary electric machine) has both functions of a starting motor of an internal combustion engine 2 and an alternating current generator that generates electricity from the rotation of the internal combustion engine 2. When starting the internal combustion engine 2 (under the first condition), the start generator 4 applies a rotational force to the crankshaft 3 via the rotor 10 directly connected to the crankshaft 3 to start the internal combustion engine 2. .. Further, when the internal combustion engine 2 is operating (the second condition), the starting generator 4 receives the rotational force of the crankshaft 3 to generate electricity. The starting generator 4 is, for example, an outer rotor type three-phase brushless motor type.
Further, the starting generator 4 includes a rotor 10 and a stator 20.
 ロータ10(回転子の一例)は、クランク軸3に直結され、且つ、ステータ20の周囲を回転自在に配設されている。また、ロータ10は、有底筒状に形成されており、内周面沿いに磁極を交互にしてマグネット11が複数配置されている。 The rotor 10 (an example of a rotor) is directly connected to the crankshaft 3 and is rotatably arranged around the stator 20. Further, the rotor 10 is formed in a bottomed tubular shape, and a plurality of magnets 11 are arranged along the inner peripheral surface with alternating magnetic poles.
 ステータ20は、ロータ10の内側に配置され、複数のコイル21と、複数のホール素子31とを備える。
 ここで、図2~図4を参照して、ロータ10及びステータ20の各構成の配置例について説明する。
The stator 20 is arranged inside the rotor 10 and includes a plurality of coils 21 and a plurality of Hall elements 31.
Here, an arrangement example of each configuration of the rotor 10 and the stator 20 will be described with reference to FIGS. 2 to 4.
 図2は、本実施形態における始動発電機4の構成例を示す断面図である。
 なお、以下の説明において、ロータ10の回転軸方向を単に軸方向と称し、回転軸方向に直交するステータ20の径方向を単に径方向と称し、ロータ10の回転方向を単に回転方向、または周方向と称す。
FIG. 2 is a cross-sectional view showing a configuration example of the starting generator 4 in the present embodiment.
In the following description, the rotation axis direction of the rotor 10 is simply referred to as the axial direction, the radial direction of the stator 20 orthogonal to the rotation axis direction is simply referred to as the radial direction, and the rotation direction of the rotor 10 is simply referred to as the rotation direction or the circumference. Called the direction.
 図2に示すように、クランク軸3に直結されたロータ10の内側には、マグネット11が配置されている。また、ロータ10の内側に、コイル21が、マグネット11に対向するように、ステータ20が配置されている。 As shown in FIG. 2, a magnet 11 is arranged inside the rotor 10 directly connected to the crankshaft 3. Further, the stator 20 is arranged inside the rotor 10 so that the coil 21 faces the magnet 11.
 ステータ20には、円弧形状に形成されたセンサケース22が配置されており、センサケース22によって、ホール素子31が、マグネット11に対向する位置に固定されている。 A sensor case 22 formed in an arc shape is arranged on the stator 20, and the Hall element 31 is fixed at a position facing the magnet 11 by the sensor case 22.
 また、図3は、本実施形態におけるマグネット11とステータ20との位置関係を示す平面図である。
 図3に示すように、ステータ20は、電磁鋼板を積層して成るステータ鉄心23と、ステータ鉄心23に巻回される三相巻線であるコイル21と、を備えている。ステータ鉄心23は、円環状に形成された本体部23aと、この本体部の外周面から径方向外側に向かって放射状に突出する複数のティース部23bと、を有している。各ティース部23bは、軸方向平面視で略T字状に形成されている。
Further, FIG. 3 is a plan view showing the positional relationship between the magnet 11 and the stator 20 in the present embodiment.
As shown in FIG. 3, the stator 20 includes a stator core 23 formed by laminating electromagnetic steel plates and a coil 21 which is a three-phase winding wound around the stator core 23. The stator core 23 has a main body portion 23a formed in an annular shape, and a plurality of tooth portions 23b protruding radially outward from the outer peripheral surface of the main body portion. Each tooth portion 23b is formed in a substantially T shape in an axial plan view.
 各ティース部23bは、それぞれ三相(U相、V相、W相)に割り当てられる。また、コイル21は、各ティース部23bに巻回されている。
 図3に示すように、本実施形態における始動発電機4は、12極18スロットであり、コイル21及びティース部23bの数は、18個ある。18個のコイル21及びティース部23bは、周方向にU相、V相、W相、・・・の順に割り当てられている。なお、以下の説明において、U相のコイル21をU相コイル21Uと称し、V相のコイル21をV相コイル21Vと称し、W相のコイル21をW相コイル21Wと称する。
Each tooth portion 23b is assigned to each of three phases (U phase, V phase, W phase). Further, the coil 21 is wound around each tooth portion 23b.
As shown in FIG. 3, the starting generator 4 in the present embodiment has 12 poles and 18 slots, and the number of coils 21 and teeth portions 23b is 18. The 18 coils 21 and the teeth portion 23b are assigned in the order of U phase, V phase, W phase, ... In the circumferential direction. In the following description, the U-phase coil 21 is referred to as a U-phase coil 21U, the V-phase coil 21 is referred to as a V-phase coil 21V, and the W-phase coil 21 is referred to as a W-phase coil 21W.
 ロータ10の内周面には、N極及びS極を交互に着磁された複数のマグネット11が周方向に等間隔で配置されている。すなわち、ロータ10の内周面には、N極のマグネット(以下、「N極マグネット」という。)11NとS極のマグネット(以下、「S極マグネット」という。)11Sが交互に周方向に沿って等間隔に並んで取り付けられている。 On the inner peripheral surface of the rotor 10, a plurality of magnets 11 in which N poles and S poles are alternately magnetized are arranged at equal intervals in the circumferential direction. That is, on the inner peripheral surface of the rotor 10, N-pole magnets (hereinafter referred to as "N-pole magnets") 11N and S-pole magnets (hereinafter referred to as "S-pole magnets") 11S are alternately arranged in the circumferential direction. They are installed side by side at regular intervals along.
 ここで、N極マグネット11Nは、径方向内側の全体の面がN極に着磁されていると共に、S極マグネット11Sは、径方向内側の全体の面がS極に着磁されている。
 なお、本実施形態において、マグネット11の数である磁極数が、12個である。
Here, in the N-pole magnet 11N, the entire surface inside the radial direction is magnetized to the N pole, and in the S-pole magnet 11S, the entire surface inside in the radial direction is magnetized to the S pole.
In this embodiment, the number of magnetic poles, which is the number of magnets 11, is 12.
 また、3個のホール素子31が、センサケース22によって、図4に示すように、ロータ10のマグネット11と対向して配置されている。3個のホール素子31は、電気角120度の間隔で配置されている。
 図4は、本実施形態におけるマグネット11とホール素子31との位置関係を示す図である。
Further, the three Hall elements 31 are arranged by the sensor case 22 so as to face the magnet 11 of the rotor 10 as shown in FIG. The three Hall elements 31 are arranged at intervals of 120 degrees of electrical angle.
FIG. 4 is a diagram showing a positional relationship between the magnet 11 and the Hall element 31 in the present embodiment.
 なお、本実施形態において、V相用のホール素子31をホール素子31-1と称し、U相用のホール素子31をホール素子31-2と称し、W相用のホール素子31をホール素子31-3と称する。また、始動発電機4が内蔵する任意のホール素子を示す場合には、ホール素子31として説明する。 In the present embodiment, the Hall element 31 for the V phase is referred to as the Hall element 31-1, the Hall element 31 for the U phase is referred to as the Hall element 31-2, and the Hall element 31 for the W phase is referred to as the Hall element 31. It is called -3. Further, when an arbitrary Hall element incorporated in the starting generator 4 is shown, it will be described as the Hall element 31.
 ホール素子31(磁気センサの一例)は、対向するマグネット11の極性を検出して出力する。ホール素子31は、例えば、マグネット11の極性を、2値信号として出力する。ホール素子31-1は、V相用のロータ10の回転位置を検出するための出力信号を出力し、ホール素子31-2は、U相用のロータ10の回転位置を検出するための出力信号を出力する。また、ホール素子31-3は、W相用のロータ10の回転位置を検出するための出力信号を出力する。各ホール素子31の出力信号の詳細については、図5を参照して後述する。 The Hall element 31 (an example of a magnetic sensor) detects and outputs the polarity of the opposing magnet 11. The Hall element 31 outputs, for example, the polarity of the magnet 11 as a binary signal. The Hall element 31-1 outputs an output signal for detecting the rotation position of the rotor 10 for the V phase, and the Hall element 31-2 outputs an output signal for detecting the rotation position of the rotor 10 for the U phase. Is output. Further, the Hall element 31-3 outputs an output signal for detecting the rotation position of the rotor 10 for the W phase. Details of the output signal of each Hall element 31 will be described later with reference to FIG.
 図1の説明に戻り、バッテリ5は、例えば、鉛蓄電池やリチウムイオン電池であり、始動発電機4を3相ブラシレスモータとして駆動させる場合(第1の条件下)に、電力を供給する。また、バッテリ5は、始動発電機4を発電機として動作させる場合(第2の条件下)に、発電された電力の一部が充電される。 Returning to the description of FIG. 1, the battery 5 is, for example, a lead storage battery or a lithium ion battery, and supplies electric power when the starting generator 4 is driven as a three-phase brushless motor (under the first condition). Further, when the starting generator 4 is operated as a generator (second condition), the battery 5 is charged with a part of the generated electric power.
 駆動回路40は、例えば、インバータ回路であり、バッテリ5から供給される直流電流を交流電流に変換してコイル21(U相コイル21U、V相コイル21V、W相コイル21W)のそれぞれに駆動信号として供給して、ロータ10を回転駆動させる。駆動回路40は、後述する制御部50の駆動制御部51が出力する制御信号に基づいて、各相の駆動信号を出力する。なお、本実施形態において、始動発電機4は、3相ブラシレスモータであり、駆動回路40は、U相、V相及びW相の駆動信号として、120度通電駆動信号を出力する。
 また、駆動回路40は、始動発電機4が発電した交流電力を整流して、バッテリ5を充電する。
The drive circuit 40 is, for example, an inverter circuit, which converts a direct current supplied from the battery 5 into an alternating current and sends a drive signal to each of the coils 21 (U-phase coil 21U, V-phase coil 21V, W-phase coil 21W). The rotor 10 is driven to rotate. The drive circuit 40 outputs a drive signal for each phase based on a control signal output by the drive control unit 51 of the control unit 50, which will be described later. In the present embodiment, the starting generator 4 is a three-phase brushless motor, and the drive circuit 40 outputs a 120-degree energization drive signal as a U-phase, V-phase, and W-phase drive signal.
Further, the drive circuit 40 rectifies the AC power generated by the starting generator 4 and charges the battery 5.
 制御部50は、例えば、CPU(Central Processing Unit)などを含むプロセッサであり、始動発電機4を統括的に制御する。制御部50は、ロータ位置判定部32と、駆動制御部51と、タイマー52と、出力記憶部53と、失火判定部54とを備える。
 なお、本実施形態において、ホール素子31(31-1~31-3)と、ロータ位置判定部32とは、ロータ位置検出部30に対応する。すなわち、ロータ位置検出部30は、ホール素子31(31-1~31-3)と、ロータ位置判定部32を備える。
The control unit 50 is, for example, a processor including a CPU (Central Processing Unit) and the like, and controls the start generator 4 in an integrated manner. The control unit 50 includes a rotor position determination unit 32, a drive control unit 51, a timer 52, an output storage unit 53, and a misfire determination unit 54.
In the present embodiment, the Hall elements 31 (31-1 to 31-3) and the rotor position determination unit 32 correspond to the rotor position detection unit 30. That is, the rotor position detection unit 30 includes Hall elements 31 (31-1 to 31-3) and a rotor position determination unit 32.
 ロータ位置検出部30は、ロータ10の回転位置を検出し、ロータ10の回転位置を示すロータ位置情報を出力する。ロータ位置検出部30は、複数のホール素子31(31-1~31-3)の出力信号に基づいて、ロータ10の回転位置を検出する。ここで、図5を参照して、ホール素子31(31-1~31-3)の出力信号について説明する。 The rotor position detection unit 30 detects the rotation position of the rotor 10 and outputs rotor position information indicating the rotation position of the rotor 10. The rotor position detection unit 30 detects the rotation position of the rotor 10 based on the output signals of the plurality of Hall elements 31 (31-1 to 31-3). Here, the output signals of the Hall elements 31 (31-1 to 31-3) will be described with reference to FIG.
 図5は、本実施形態におけるホール素子31の出力信号の一例を示す図である。
 図5において、波形W1は、U相検出信号であり、ホール素子31-1の出力信号を示し、波形W2は、V相検出信号であり、ホール素子31-2の出力信号を示している。また、波形W3は、W相検出信号であり、ホール素子31-3の出力信号を示している。また、横軸は、時間を示している。
FIG. 5 is a diagram showing an example of an output signal of the Hall element 31 in the present embodiment.
In FIG. 5, the waveform W1 is a U-phase detection signal and shows the output signal of the Hall element 31-1. The waveform W2 is a V-phase detection signal and shows the output signal of the Hall element 31-2. Further, the waveform W3 is a W phase detection signal and indicates an output signal of the Hall element 31-3. The horizontal axis indicates time.
 U相検出信号、V相検出信号、及びW相検出信号は、位相が120度(電気角120度)づれた矩形波信号であり、各信号の切り替わりタイミングに基づいて、駆動回路40の制御信号を生成可能になっている。
 また、例えば、時刻T1のW相検出信号の立下りと、時刻T2のV相検出信号の立上りとの間隔TR1が、ロータ10の機械角10度を示しており、時刻T2のV相検出信号の立上りと、時刻T3のW相検出信号の立上りとの間隔TR2が、ロータ10の機械角20度を示している。このように、U相検出信号、V相検出信号、及びW相検出信号の切り替わりの間隔を検出することで、機械角の回転速度を計測可能である。
The U-phase detection signal, the V-phase detection signal, and the W-phase detection signal are rectangular wave signals whose phases are 120 degrees (electrical angle 120 degrees), and are control signals of the drive circuit 40 based on the switching timing of each signal. Can be generated.
Further, for example, the interval TR1 between the falling edge of the W phase detection signal at time T1 and the rising edge of the V phase detection signal at time T2 indicates the mechanical angle of the rotor 10 of 10 degrees, and the V phase detection signal at time T2. The interval TR2 between the rise of the rotor 10 and the rise of the W phase detection signal at time T3 indicates the mechanical angle of the rotor 10 of 20 degrees. In this way, the rotation speed of the mechanical angle can be measured by detecting the switching interval of the U-phase detection signal, the V-phase detection signal, and the W-phase detection signal.
 再び図1の説明に戻り、ロータ位置判定部32は、ホール素子31(31-1~31-3)の出力信号に基づいて、ロータ10の位置情報を検出し、ロータ10の回転位置を示すロータ位置情報を出力する。ロータ位置判定部32は、内燃機関2を始動する場合に、ホール素子31の出力信号に基づいて、例えば、120度通電制御を行うためのタイミング信号を、ロータ位置情報として生成し、当該タイミング信号を駆動制御部51に出力する。 Returning to the description of FIG. 1 again, the rotor position determination unit 32 detects the position information of the rotor 10 based on the output signals of the Hall elements 31 (31-1 to 31-3) and indicates the rotation position of the rotor 10. Output rotor position information. When starting the internal combustion engine 2, the rotor position determination unit 32 generates, for example, a timing signal for performing 120-degree energization control as rotor position information based on the output signal of the Hall element 31, and the timing signal. Is output to the drive control unit 51.
 また、ロータ位置判定部32は、内燃機関2が動作中である場合に、例えば、ホール素子31の出力信号に基づいて、ホール素子31が出力する出力パターンが切り替わる間隔の時間を計測するためのタイマー52の制御信号を生成し、当該制御信号をタイマー52に出力する。
 このように、ロータ位置判定部32は、内燃機関2を始動する場合(第1の条件下)と、内燃機関2が動作中である場合(第2の条件下)とで、上述した処理を切り替えて実行する。すなわち、ロータ位置判定部32は、内燃機関2を始動する場合(第1の条件下)と、内燃機関2が動作中である場合(第2の条件下)とで、異なるロータ位置情報を生成し、駆動制御部51とタイマー52とで切り替えて出力する。
Further, the rotor position determination unit 32 is for measuring the time of the interval at which the output pattern output by the Hall element 31 is switched based on the output signal of the Hall element 31, for example, when the internal combustion engine 2 is operating. A control signal for the timer 52 is generated, and the control signal is output to the timer 52.
As described above, the rotor position determination unit 32 performs the above-described processing depending on whether the internal combustion engine 2 is started (first condition) or the internal combustion engine 2 is operating (second condition). Switch and execute. That is, the rotor position determination unit 32 generates different rotor position information depending on whether the internal combustion engine 2 is started (first condition) and the internal combustion engine 2 is operating (second condition). Then, the drive control unit 51 and the timer 52 switch and output.
 駆動制御部51は、ロータ位置検出部30が出力するロータ位置情報に基づいて、始動発電機4のロータ10を回転駆動させる駆動回路40を制御する。駆動制御部51は、ロータ位置検出部30から出力されたタイミング信号をロータ位置情報として、例えば、120度通電制御の制御信号を駆動回路40に出力する。 The drive control unit 51 controls the drive circuit 40 that rotationally drives the rotor 10 of the start generator 4 based on the rotor position information output by the rotor position detection unit 30. The drive control unit 51 uses the timing signal output from the rotor position detection unit 30 as rotor position information, and outputs, for example, a control signal for 120-degree energization control to the drive circuit 40.
 なお、本実施形態において、タイマー52、出力記憶部53、及び失火判定部54は、失火検出部60に対応する。すなわち、失火検出部60は、タイマー52、出力記憶部53、及び失火判定部54を備える。 In the present embodiment, the timer 52, the output storage unit 53, and the misfire determination unit 54 correspond to the misfire detection unit 60. That is, the misfire detection unit 60 includes a timer 52, an output storage unit 53, and a misfire determination unit 54.
 タイマー52は、ホール素子31が出力する出力パターンが切り替わる間隔の時間を計測して、失火判定部54に出力する。すなわち、タイマー52は、ロータ位置検出部30から出力されたタイマー52の制御信号をロータ位置情報として、上述した図5の間隔TR1のような出力パターンが切り替わる間隔の時間を計測する。タイマー52は、出力パターンが切り替わる間隔の計測結果を失火判定部54に出力する。 The timer 52 measures the time at which the output pattern output by the Hall element 31 switches, and outputs the time to the misfire determination unit 54. That is, the timer 52 uses the control signal of the timer 52 output from the rotor position detection unit 30 as the rotor position information, and measures the time of the interval at which the output pattern is switched as in the interval TR1 of FIG. 5 described above. The timer 52 outputs the measurement result of the interval at which the output pattern is switched to the misfire determination unit 54.
 失火判定部54は、ロータ位置検出部30が出力するロータ位置情報に基づくロータ10の回転位置の単位時間当たりの変化量に基づいて、内燃機関2の失火が発生したことを検出する。失火判定部54は、例えば、タイマー52が出力する、切り替わる間隔の時間の変化に基づいて、内燃機関2の失火が発生したことを検出する。ここで、タイマー52の出力結果である切り替わる間隔の時間は、ロータ10の回転速度(すなわち、ロータ10の回転位置の単位時間当たりの変化量)又はロータ10の回転周期に対応する。失火判定部54は、タイマー52の出力値(出力結果)が所定の閾値以上になった場合に、内燃機関2の失火が発生したと判定する。 The misfire determination unit 54 detects that a misfire of the internal combustion engine 2 has occurred based on the amount of change in the rotation position of the rotor 10 per unit time based on the rotor position information output by the rotor position detection unit 30. The misfire determination unit 54 detects that the internal combustion engine 2 has misfired, for example, based on the change in the switching interval time output by the timer 52. Here, the switching interval time, which is the output result of the timer 52, corresponds to the rotation speed of the rotor 10 (that is, the amount of change in the rotation position of the rotor 10 per unit time) or the rotation cycle of the rotor 10. The misfire determination unit 54 determines that a misfire of the internal combustion engine 2 has occurred when the output value (output result) of the timer 52 exceeds a predetermined threshold value.
 また、失火判定部54は、タイマー52の出力結果を、順次、出力記憶部53に記憶させる。失火判定部54は、例えば、出力記憶部53が記憶する複数の出力結果のうち、所定の閾値以上になったものが所定の回数以上発生した場合に、内燃機関2の失火が発生したと判定する。 Further, the misfire determination unit 54 sequentially stores the output result of the timer 52 in the output storage unit 53. The misfire determination unit 54 determines that the internal combustion engine 2 has misfired, for example, when a plurality of output results stored by the output storage unit 53 that exceed a predetermined threshold value occur more than a predetermined number of times. To do.
 出力記憶部53は、上述したように、タイマー52が直近に出力した複数の出力結果を記憶する。
 なお、失火判定部54は、内燃機関2の失火が発生したと判定した場合に、内燃機関2の失火が発生したことを示す警告情報を出力し、例えば、警告灯などを点灯させる。
As described above, the output storage unit 53 stores a plurality of output results immediately output by the timer 52.
When it is determined that the misfire of the internal combustion engine 2 has occurred, the misfire determination unit 54 outputs warning information indicating that the misfire of the internal combustion engine 2 has occurred, and turns on, for example, a warning light.
 次に、図面を参照して、本実施形態による内燃機関システム1の動作について説明する。
 図6は、第1の実施形態による内燃機関システム1の動作の一例を示すフローチャートである。
Next, the operation of the internal combustion engine system 1 according to the present embodiment will be described with reference to the drawings.
FIG. 6 is a flowchart showing an example of the operation of the internal combustion engine system 1 according to the first embodiment.
 図6に示すように、内燃機関システム1の制御部50は、まず、モータを駆動するか否かを判定する(ステップS101)。すなわち、制御部50(ロータ位置検出部30)のロータ位置判定部32は、始動発電機4をモータとして駆動させるか否かを判定する。ロータ位置判定部32は、始動発電機4をモータとして駆動させる場合(ステップS101:YES)に、処理をステップS107に進める。また、ロータ位置判定部32は、始動発電機4をモータとして駆動させない場合(ステップS101:NO)に、処理をステップS102に進める。 As shown in FIG. 6, the control unit 50 of the internal combustion engine system 1 first determines whether or not to drive the motor (step S101). That is, the rotor position determination unit 32 of the control unit 50 (rotor position detection unit 30) determines whether or not to drive the start generator 4 as a motor. When the rotor position determination unit 32 drives the start generator 4 as a motor (step S101: YES), the rotor position determination unit 32 advances the process to step S107. Further, when the rotor position determination unit 32 does not drive the start generator 4 as a motor (step S101: NO), the rotor position determination unit 32 proceeds to the process in step S102.
 なお、始動発電機4をモータとして駆動させない場合とは、例えば、内燃機関2が動作しており、始動発電機4を発電機として使用する場合に相当する。 Note that the case where the starting generator 4 is not driven as a motor corresponds to, for example, the case where the internal combustion engine 2 is operating and the starting generator 4 is used as a generator.
 ステップS102において、ロータ位置判定部32は、ホール素子31の出力パターンの切り替わりを検出する。ロータ位置判定部32は、図5に示すような3相のホール素子31(31-1~31-3)の出力信号に基づいて、ホール素子31が出力する出力パターンが切り替わる間隔の時間を計測するためのタイマー52の制御信号を生成する。 In step S102, the rotor position determination unit 32 detects the switching of the output pattern of the Hall element 31. The rotor position determination unit 32 measures the time at which the output pattern output by the Hall element 31 is switched based on the output signals of the three-phase Hall elements 31 (31-1 to 31-3) as shown in FIG. The control signal of the timer 52 is generated.
 次に、ロータ位置判定部32は、タイマー52に切り替わり間隔の時間を計測させる(ステップS103)。すなわち、ロータ位置判定部32は、上述した出力パターンが切り替わる間隔の時間を計測するためのタイマー52の制御信号をタイマー52に出力する。 Next, the rotor position determination unit 32 switches to the timer 52 to measure the time of the interval (step S103). That is, the rotor position determination unit 32 outputs a control signal of the timer 52 for measuring the time of the interval at which the above-mentioned output pattern is switched to the timer 52.
 次に、制御部50の失火判定部54は、タイマー52の出力結果を出力記憶部53に記憶させる(ステップS104)。失火判定部54は、タイマー52から出力された出力結果である切り替わり間隔の時間を、順次、出力記憶部53に記憶させる。これにより、出力記憶部53には、タイマー52が直近に出力した複数の出力結果が記憶される。 Next, the misfire determination unit 54 of the control unit 50 stores the output result of the timer 52 in the output storage unit 53 (step S104). The misfire determination unit 54 sequentially stores the time of the switching interval, which is the output result output from the timer 52, in the output storage unit 53. As a result, the output storage unit 53 stores a plurality of output results most recently output by the timer 52.
 次に、失火判定部54は、直近のタイマー52の出力結果のうちの所定の閾値以上になった回数が所定の回数以上であるか否かを判定する(ステップS105)。すなわち、失火判定部54は、出力記憶部53が記憶するタイマー52の出力結果を参照し、直近のタイマー52の出力結果のうちの所定の閾値以上になるものがあるか否かを判定するとともに、所定の閾値以上になった出力結果の回数をカウントする。失火判定部54は、当該所定の閾値以上になった出力結果の回数が、所定の回数以上であるか否かを判定する。 Next, the misfire determination unit 54 determines whether or not the number of times the latest output result of the timer 52 exceeds the predetermined threshold value is equal to or greater than the predetermined number of times (step S105). That is, the misfire determination unit 54 refers to the output result of the timer 52 stored in the output storage unit 53, and determines whether or not any of the latest output results of the timer 52 exceeds a predetermined threshold value. , Count the number of output results that exceed a predetermined threshold. The misfire determination unit 54 determines whether or not the number of output results that exceeds the predetermined threshold value is equal to or greater than the predetermined number of times.
 失火判定部54は、所定の閾値以上になった出力結果の回数が、所定の回数以上である場合(ステップS105:YES)に、処理をステップS106に進める。また、失火判定部54は、所定の閾値以上になった出力結果の回数が、所定の回数未満である場合(ステップS105:NO)に、処理をステップS101に戻す。 The misfire determination unit 54 advances the process to step S106 when the number of output results exceeding the predetermined threshold value is equal to or greater than the predetermined number of times (step S105: YES). Further, the misfire determination unit 54 returns the process to step S101 when the number of output results that have exceeded the predetermined threshold value is less than the predetermined number of times (step S105: NO).
 ステップS106において、失火判定部54は、内燃機関2が失火したと判定する。失火判定部54は、内燃機関2の失火が発生したことを示す警告情報を出力し、例えば、警告灯などを点灯させる。ステップS106の処理後に、失火判定部54は、処理をステップS101に戻す。 In step S106, the misfire determination unit 54 determines that the internal combustion engine 2 has misfired. The misfire determination unit 54 outputs warning information indicating that a misfire of the internal combustion engine 2 has occurred, and turns on, for example, a warning light. After the process of step S106, the misfire determination unit 54 returns the process to step S101.
 また、ステップS107(始動発電機4をモータとして駆動させる場合)において、ロータ位置検出部30のロータ位置判定部32は、ホール素子31の出力に基づいて、ロータ10の回転位置を検出する。ロータ位置判定部32は、3相のホール素子31(31-1~31-3)の出力信号に基づいて、例えば、120度通電制御を行うためのタイミング信号を、ロータ位置情報として生成して、当該タイミング信号を制御部50の駆動制御部51に出力する。 Further, in step S107 (when the start generator 4 is driven as a motor), the rotor position determination unit 32 of the rotor position detection unit 30 detects the rotation position of the rotor 10 based on the output of the Hall element 31. The rotor position determination unit 32 generates, for example, a timing signal for performing 120-degree energization control as rotor position information based on the output signals of the three-phase Hall elements 31 (31-1 to 31-3). , The timing signal is output to the drive control unit 51 of the control unit 50.
 次に、駆動制御部51は、ロータ10の回転位置に基づいて、駆動回路40を制御する(ステップS108)。すなわち、駆動制御部51は、ロータ位置検出部30が出力したタイミング信号に基づいて、120度通電制御を行うように、駆動回路40を制御する。例えば、駆動制御部51は、駆動回路40のインバータ回路を駆動する制御信号を駆動回路40に出力する。これにより、駆動回路40は、3相(U相、V相、及びW相)の駆動信号を始動発電機4に出力して、駆動信号を始動発電機4をモータとして回転(駆動)させる。ステップS108の処理後に、駆動制御部51は、処理をステップS101に戻す。 Next, the drive control unit 51 controls the drive circuit 40 based on the rotation position of the rotor 10 (step S108). That is, the drive control unit 51 controls the drive circuit 40 so as to perform 120-degree energization control based on the timing signal output by the rotor position detection unit 30. For example, the drive control unit 51 outputs a control signal for driving the inverter circuit of the drive circuit 40 to the drive circuit 40. As a result, the drive circuit 40 outputs three-phase (U-phase, V-phase, and W-phase) drive signals to the start generator 4, and rotates (drives) the drive signals using the start generator 4 as a motor. After the process of step S108, the drive control unit 51 returns the process to step S101.
 以上説明したように、本実施形態による内燃機関システム1は、クランク軸3を有する内燃機関2と、始動発電機4(回転電機)と、ロータ位置検出部30と、駆動制御部51と、失火検出部60とを備える。始動発電機4は、第1の条件下(例えば、内燃機関2を始動する場合)において、クランク軸3に直結されたロータ10を介してクランク軸3に回転力を与える。また、始動発電機4は、第1の条件下とは異なる第2の条件下(例えば、内燃機関2が動作している場合)において、クランク軸3の回転力を受けて発電を行う。ロータ位置検出部30は、ロータ10の回転位置を検出し、ロータ10の回転位置を示すロータ位置情報を出力する。駆動制御部51は、第1の条件下において、ロータ位置検出部30が出力するロータ位置情報に基づいて、始動発電機4のロータ10を回転駆動させる駆動回路40を制御する。失火検出部60は、ロータ位置情報に基づくロータ10の回転位置の単位時間当たりの変化量に基づいて、内燃機関2の失火が発生したことを検出する。 As described above, the internal combustion engine system 1 according to the present embodiment includes an internal combustion engine 2 having a crankshaft 3, a starting generator 4 (rotary electric machine), a rotor position detection unit 30, a drive control unit 51, and a misfire. It includes a detection unit 60. Under the first condition (for example, when starting the internal combustion engine 2), the starting generator 4 applies a rotational force to the crankshaft 3 via a rotor 10 directly connected to the crankshaft 3. Further, the starting generator 4 receives the rotational force of the crankshaft 3 to generate electricity under a second condition different from the first condition (for example, when the internal combustion engine 2 is operating). The rotor position detection unit 30 detects the rotation position of the rotor 10 and outputs rotor position information indicating the rotation position of the rotor 10. Under the first condition, the drive control unit 51 controls the drive circuit 40 that rotationally drives the rotor 10 of the start generator 4 based on the rotor position information output by the rotor position detection unit 30. The misfire detection unit 60 detects that a misfire of the internal combustion engine 2 has occurred based on the amount of change in the rotation position of the rotor 10 per unit time based on the rotor position information.
 これにより、本実施形態による内燃機関システム1は、ロータ位置検出部30が検出したロータ位置情報を、始動発電機4をモータとして駆動する場合(第1の条件下)における駆動制御と、内燃機関2が動作している場合(第2の条件下)における内燃機関2の失火検出との両方に使用する。すなわち、本実施形態による内燃機関システム1では、既に備えているロータ位置検出部30を、内燃機関2の失火検出にも利用する。そのため、本実施形態による内燃機関システム1は、例えば、従来技術のように、クランク軸3にリングギアを設置する必要がなく、内燃機関2の構成を簡略化することができる。よって、本実施形態による内燃機関システム1は、内燃機関2の構成を簡略化することができ、内燃機関2を小型化することができる。 As a result, the internal combustion engine system 1 according to the present embodiment performs drive control when the rotor position information detected by the rotor position detection unit 30 is driven by the starting generator 4 as a motor (under the first condition), and the internal combustion engine. It is used for both misfire detection of the internal combustion engine 2 when 2 is operating (second condition). That is, in the internal combustion engine system 1 according to the present embodiment, the rotor position detection unit 30 already provided is also used for detecting a misfire of the internal combustion engine 2. Therefore, the internal combustion engine system 1 according to the present embodiment does not need to install a ring gear on the crankshaft 3 as in the prior art, and can simplify the configuration of the internal combustion engine 2. Therefore, in the internal combustion engine system 1 according to the present embodiment, the configuration of the internal combustion engine 2 can be simplified, and the internal combustion engine 2 can be miniaturized.
 また、本実施形態では、始動発電機4は、コイル21が巻装されたステータ20と、内周面沿いに磁極を交互にしてマグネット11が複数配置され、ステータ20の周囲を回転自在に配設されたロータ10とを有する。ロータ位置検出部30は、始動発電機4に内蔵された複数のホール素子31(磁気センサ)であって、ロータ10と対向して配置され、対向するマグネット11の極性を検出して出力する複数のホール素子31を有する。 Further, in the present embodiment, in the starting generator 4, a stator 20 around which the coil 21 is wound and a plurality of magnets 11 are arranged so as to alternate magnetic poles along the inner peripheral surface, and the magnets 11 are rotatably arranged around the stator 20. It has a rotor 10 installed. The rotor position detection unit 30 is a plurality of Hall elements 31 (magnetic sensors) built in the start generator 4, which are arranged to face the rotor 10 and detect and output the polarities of the magnets 11 facing each other. Has a Hall element 31 of.
 これにより、本実施形態による内燃機関システム1は、始動発電機4に内蔵された複数のホール素子31(磁気センサ)を利用することで、別途、内燃機関2の失火検出用のセンサを備える必要がなく、内燃機関2の構成を簡略化することができる。 As a result, the internal combustion engine system 1 according to the present embodiment needs to be separately provided with a sensor for detecting a misfire of the internal combustion engine 2 by using a plurality of Hall elements 31 (magnetic sensors) built in the starting generator 4. The configuration of the internal combustion engine 2 can be simplified.
 また、本実施形態による内燃機関システム1は、ホール素子31が出力する出力パターンが切り替わる間隔の時間を計測して出力するタイマー52を備える。失火検出部60(失火判定部54)は、タイマー52が出力する、切り替わる間隔の時間の変化に基づいて、内燃機関2の失火が発生したことを検出する。
 これにより、本実施形態による内燃機関システム1は、簡易な構成により、内燃機関2の失火を適切に検出することができる。
Further, the internal combustion engine system 1 according to the present embodiment includes a timer 52 that measures and outputs the time of the interval at which the output pattern output by the Hall element 31 is switched. The misfire detection unit 60 (misfire determination unit 54) detects that a misfire of the internal combustion engine 2 has occurred based on the change in the switching interval time output by the timer 52.
As a result, the internal combustion engine system 1 according to the present embodiment can appropriately detect a misfire of the internal combustion engine 2 with a simple configuration.
 また、本実施形態では、失火検出部60(失火判定部54)は、タイマー52の出力値が所定の閾値以上になった場合に、内燃機関2の失火が発生したと判定する。
 ここで、タイマー52の出力値は、ホール素子31が出力する出力パターンが切り替わる間隔の時間を示しているため、内燃機関2の失火した場合には、内燃機関2による動力が得られなくなり、タイマー52の出力値が大きくなることが考えられる。このことから、本実施形態では、失火検出部60(失火判定部54)は、所定の閾値により判定するという簡易な手法により、内燃機関2の失火を適切に検出することができる。
Further, in the present embodiment, the misfire detection unit 60 (misfire determination unit 54) determines that the internal combustion engine 2 has misfired when the output value of the timer 52 exceeds a predetermined threshold value.
Here, since the output value of the timer 52 indicates the time at which the output pattern output by the Hall element 31 is switched, if the internal combustion engine 2 misfires, the power from the internal combustion engine 2 cannot be obtained, and the timer It is conceivable that the output value of 52 becomes large. From this, in the present embodiment, the misfire detection unit 60 (misfire determination unit 54) can appropriately detect the misfire of the internal combustion engine 2 by a simple method of determining by a predetermined threshold value.
 また、本実施形態による内燃機関システム1は、タイマー52が直近に出力した複数の出力結果を記憶する出力記憶部53を備える。失火検出部60(失火判定部54)は、出力記憶部53が記憶する複数の出力結果のうち、所定の閾値以上になったものが所定の回数以上発生した場合に、内燃機関2の失火が発生したと判定する。 Further, the internal combustion engine system 1 according to the present embodiment includes an output storage unit 53 that stores a plurality of output results immediately output by the timer 52. The misfire detection unit 60 (misfire determination unit 54) causes the internal combustion engine 2 to misfire when a plurality of output results stored in the output storage unit 53 that exceed a predetermined threshold value occur more than a predetermined number of times. Judge that it has occurred.
 例えば、内燃機関2を搭載した車両が悪路を走行する際など、タイマー52の出力結果が突発的に所定の閾値以上になる場合が考えられる。上述の構成によれば、本実施形態による内燃機関システム1は、このように突発的に所定の閾値以上になる場合であっても、正確に内燃機関2の失火が発生したことを判定することができる。すなわち、本実施形態による内燃機関システム1は、内燃機関2の失火の誤検出を低減することができる。 For example, when a vehicle equipped with an internal combustion engine 2 travels on a rough road, the output result of the timer 52 may suddenly exceed a predetermined threshold value. According to the above configuration, the internal combustion engine system 1 according to the present embodiment accurately determines that the internal combustion engine 2 has misfired even when the internal combustion engine system 1 suddenly exceeds a predetermined threshold value. Can be done. That is, the internal combustion engine system 1 according to the present embodiment can reduce erroneous detection of misfire of the internal combustion engine 2.
 また、本実施形態では、コイル21の数であるスロット数が、18個であり、マグネット11の数である磁極数が、12個である。始動発電機4は、12極18スロットの3相ブラシレスモータとして機能する。複数のホール素子31は、3相に対応するマグネット11の極性を検出して出力する。 Further, in the present embodiment, the number of slots, which is the number of coils 21, is 18, and the number of magnetic poles, which is the number of magnets 11, is 12. The starting generator 4 functions as a 12-pole 18-slot three-phase brushless motor. The plurality of Hall elements 31 detect and output the polarities of the magnets 11 corresponding to the three phases.
 これにより、本実施形態による内燃機関システム1は、ロータ位置検出部30による最小分解能が機械角10度(図5の間隔TR1参照)であり、内燃機関2の失火の検出精度を高めることができる。 As a result, in the internal combustion engine system 1 according to the present embodiment, the minimum resolution by the rotor position detection unit 30 is a mechanical angle of 10 degrees (see the interval TR1 in FIG. 5), and the misfire detection accuracy of the internal combustion engine 2 can be improved. ..
 また、本実施形態による失火検出方法は、クランク軸3を有する内燃機関2と、第1の条件下において、クランク軸3に直結されたロータ10を介してクランク軸3に回転力を与え、且つ、第1の条件下とは異なる第2の条件下において、クランク軸3の回転力を受けて発電を行う始動発電機4とを備える内燃機関システム1の失火検出方法であって、ロータ位置検出ステップと、駆動制御ステップと、失火検出ステップとを含む。ロータ位置検出ステップにおいて、ロータ位置検出部30が、ロータ10の回転位置を検出し、ロータ10の回転位置を示すロータ位置情報を出力する。駆動制御ステップにおいて、駆動制御部51が、第1の条件下において、ロータ位置検出ステップによって出力されたロータ位置情報に基づいて、始動発電機4のロータ10を回転駆動させる駆動回路を制御する。失火検出ステップにおいて、失火検出部60(失火判定部54)が、ロータ位置情報に基づくロータ10の回転位置の単位時間当たりの変化量に基づいて、内燃機関2の失火が発生したことを検出する。 Further, in the misfire detection method according to the present embodiment, a rotational force is applied to the crankshaft 3 via the internal combustion engine 2 having the crankshaft 3 and the rotor 10 directly connected to the crankshaft 3 under the first condition. , A method for detecting a misfire of an internal combustion engine system 1 including a starting generator 4 that generates power by receiving a rotational force of a crankshaft 3 under a second condition different from the first condition, wherein the rotor position is detected. It includes a step, a drive control step, and a misfire detection step. In the rotor position detection step, the rotor position detection unit 30 detects the rotation position of the rotor 10 and outputs rotor position information indicating the rotation position of the rotor 10. In the drive control step, the drive control unit 51 controls the drive circuit that rotationally drives the rotor 10 of the start generator 4 based on the rotor position information output by the rotor position detection step under the first condition. In the misfire detection step, the misfire detection unit 60 (misfire determination unit 54) detects that the internal combustion engine 2 has misfired based on the amount of change in the rotation position of the rotor 10 per unit time based on the rotor position information. ..
 これにより、本実施形態による失火検出方法は、上述した本実施形態による内燃機関システム1と同様の効果を奏し、内燃機関2の構成を簡略化することができ、内燃機関2を小型化することができる。 As a result, the misfire detection method according to the present embodiment has the same effect as the internal combustion engine system 1 according to the above-described embodiment, the configuration of the internal combustion engine 2 can be simplified, and the internal combustion engine 2 can be miniaturized. Can be done.
 [第2の実施形態]
 次に、図面を参照して第2の実施形態による内燃機関システム1について説明する。
 本実施形態では、失火検出部60(失火判定部54)による内燃機関2の失火の検出における変形例について説明する。
[Second Embodiment]
Next, the internal combustion engine system 1 according to the second embodiment will be described with reference to the drawings.
In the present embodiment, a modified example in the detection of the misfire of the internal combustion engine 2 by the misfire detection unit 60 (misfire determination unit 54) will be described.
 なお、本実施形態による内燃機関システム1の基本的な構成は、上述した図1~図4に示す第1の実施形態と同様であるため、ここではその説明を省略する。
 本実施形態では、失火判定部54による内燃機関2の失火の判定処理が、第1の実施形態と異なり、以下、本実施形態における失火判定部54の処理について説明する。
Since the basic configuration of the internal combustion engine system 1 according to the present embodiment is the same as that of the first embodiment shown in FIGS. 1 to 4 described above, the description thereof will be omitted here.
In the present embodiment, the misfire determination process of the internal combustion engine 2 by the misfire determination unit 54 is different from that of the first embodiment, and the process of the misfire determination unit 54 in the present embodiment will be described below.
 本実施形態における失火判定部54は、出力記憶部53が記憶する複数の出力結果の平均値が所定の閾値以上になった場合に、内燃機関2の失火が発生したと判定する。例えば、失火判定部54は、出力記憶部53から直近の所定の回数の出力結果を取得し、所定の回数分の出力結果の平均値を算出する。失火判定部54は、算出した出力結果の平均値が、所定の閾値以上になった場合に、内燃機関2の失火が発生したと判定する。 The misfire determination unit 54 in the present embodiment determines that the internal combustion engine 2 has misfired when the average value of the plurality of output results stored in the output storage unit 53 is equal to or greater than a predetermined threshold value. For example, the misfire determination unit 54 acquires the latest output result of a predetermined number of times from the output storage unit 53, and calculates the average value of the output results for the predetermined number of times. The misfire determination unit 54 determines that a misfire of the internal combustion engine 2 has occurred when the average value of the calculated output results exceeds a predetermined threshold value.
 次に、図7を参照して、本実施形態による内燃機関システム1の動作について説明する。
 図7は、本実施形態による内燃機関システム1の動作の一例を示すフローチャートである。
Next, the operation of the internal combustion engine system 1 according to the present embodiment will be described with reference to FIG. 7.
FIG. 7 is a flowchart showing an example of the operation of the internal combustion engine system 1 according to the present embodiment.
 図7において、ステップS201からステップS204までの処理は、上述した図6に示すステップS101からステップS104までの処理と同様であるため、ここではその説明を省略する。 In FIG. 7, the processes from step S201 to step S204 are the same as the processes from step S101 to step S104 shown in FIG. 6 described above, and thus the description thereof will be omitted here.
 ステップS205において、失火判定部54は、タイマーの出力結果の直近の所定回数の平均値を生成する。すなわち、失火判定部54は、出力記憶部53が記憶するタイマー52の出力結果を、直近の所定の回数分を取得する。失火判定部54は、取得した直近の所定の回数分におけるタイマー52の出力結果の平均値を生成する。 In step S205, the misfire determination unit 54 generates the average value of the most recent predetermined number of times of the output result of the timer. That is, the misfire determination unit 54 acquires the output result of the timer 52 stored in the output storage unit 53 for the most recent predetermined number of times. The misfire determination unit 54 generates an average value of the output results of the timer 52 for the most recently acquired predetermined number of times.
 次に、失火判定部54は、平均値が所定の閾値以上であるか否かを判定する(ステップS206)。失火判定部54は、生成した平均値が所定の閾値以上である場合(ステップS206:YES)に、処理をステップS207に進める。また、失火判定部54は、生成した平均値が所定の閾値未満である場合(ステップS206:NO)に、処理をステップS201に戻す。 Next, the misfire determination unit 54 determines whether or not the average value is equal to or greater than a predetermined threshold value (step S206). The misfire determination unit 54 advances the process to step S207 when the generated average value is equal to or greater than a predetermined threshold value (step S206: YES). Further, when the generated average value is less than a predetermined threshold value (step S206: NO), the misfire determination unit 54 returns the process to step S201.
 ステップS207において、失火判定部54は、内燃機関2が失火したと判定する。失火判定部54は、内燃機関2の失火が発生したことを示す警告情報を出力し、例えば、警告灯などを点灯させる。ステップS207の処理後に、失火判定部54は、処理をステップS201に戻す。 In step S207, the misfire determination unit 54 determines that the internal combustion engine 2 has misfired. The misfire determination unit 54 outputs warning information indicating that a misfire of the internal combustion engine 2 has occurred, and turns on, for example, a warning light. After the process of step S207, the misfire determination unit 54 returns the process to step S201.
 また、ステップS208及びステップS209の処理は、上述した図6に示すステップS107及びステップS109の処理と同様であるため、ここではその説明を省略する。ステップS209の処理後に、駆動制御部51は、処理をステップS201に戻す。 Further, since the processing of step S208 and step S209 is the same as the processing of step S107 and step S109 shown in FIG. 6 described above, the description thereof will be omitted here. After the process of step S209, the drive control unit 51 returns the process to step S201.
 以上説明したように、本実施形態による内燃機関システム1は、クランク軸3を有する内燃機関2と、始動発電機4(回転電機)と、ロータ位置検出部30と、駆動制御部51と、失火判定部54と、タイマー52と、タイマー52が直近に出力した複数の出力結果を記憶する出力記憶部53とを備える。本実施形態における失火判定部54(失火検出部60)は、出力記憶部53が記憶する複数の出力結果の平均値が所定の閾値以上になった場合に、内燃機関2の失火が発生したと判定する。 As described above, the internal combustion engine system 1 according to the present embodiment includes an internal combustion engine 2 having a crankshaft 3, a starting generator 4 (rotary electric machine), a rotor position detection unit 30, a drive control unit 51, and a misfire. A determination unit 54, a timer 52, and an output storage unit 53 that stores a plurality of output results immediately output by the timer 52 are provided. The misfire determination unit 54 (misfire detection unit 60) in the present embodiment states that the internal combustion engine 2 has misfired when the average value of the plurality of output results stored in the output storage unit 53 exceeds a predetermined threshold value. judge.
 これにより、本実施形態による内燃機関システム1は、内燃機関2を搭載した車両が悪路を走行する際などのように、突発的に所定の閾値以上になる場合であっても、平均値をもちいることで、正確に内燃機関2の失火が発生したことを判定することができる。すなわち、本実施形態による内燃機関システム1は、第1の実施形態と同様に、内燃機関2の失火の誤検出を低減することができる。 As a result, the internal combustion engine system 1 according to the present embodiment can obtain an average value even when the vehicle equipped with the internal combustion engine 2 suddenly exceeds a predetermined threshold value, such as when traveling on a rough road. By using it, it is possible to accurately determine that a misfire of the internal combustion engine 2 has occurred. That is, the internal combustion engine system 1 according to the present embodiment can reduce erroneous detection of misfire of the internal combustion engine 2 as in the first embodiment.
 なお、本発明は、上記の各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で変更可能である。
 例えば、上記の各実施形態において、磁気センサの一例としてホール素子を用いる例を説明したが、これに限定されるものではなく、他の磁気センサをもちるようにしてもよい。
The present invention is not limited to each of the above embodiments, and can be modified without departing from the spirit of the present invention.
For example, in each of the above embodiments, an example in which a Hall element is used as an example of a magnetic sensor has been described, but the present invention is not limited to this, and another magnetic sensor may be used.
 また、上記の各実施形態において、内燃機関システム1は、U相、V相、及びW相の3個のホール素子31(31-1~31-3)を備える例を説明したが、さらに、内燃機関2を点火する点火タイミング信号を生成するホール素子31を追加で備えてもよい。 Further, in each of the above embodiments, the example in which the internal combustion engine system 1 includes three Hall elements 31 (31-1 to 31-3) of U phase, V phase, and W phase has been described. A Hall element 31 that generates an ignition timing signal for igniting the internal combustion engine 2 may be additionally provided.
 また、上記の各実施形態において、ロータ位置判定部32が、制御部50に含まれる例を説明したが、これに限定されるものではなく、ロータ位置判定部32が、制御部50の外部に備えるようにしてもよい。また、制御部50は、始動発電機4の制御に限定されるものではなく、例えば、内燃機関2の制御を含んでもよい。 Further, in each of the above embodiments, the example in which the rotor position determination unit 32 is included in the control unit 50 has been described, but the present invention is not limited to this, and the rotor position determination unit 32 is located outside the control unit 50. You may be prepared. Further, the control unit 50 is not limited to the control of the starting generator 4, and may include, for example, the control of the internal combustion engine 2.
 また、上記の各実施形態において、始動発電機4は、12極18スロットの3相ブラシレスモータである例を説明したが、これに限定されるものではなく、他の極数、及び他のスロット数のモータであってもよい。 Further, in each of the above embodiments, the example in which the starting generator 4 is a three-phase brushless motor having 12 poles and 18 slots has been described, but the present invention is not limited to this, and other pole numbers and other slots are used. It may be a number of motors.
 また、上記の第2の実施形態において、失火検出部60(失火判定部54)は、複数の出力結果の平均値を用いる例を説明したが、単純な平均値の代わりに、重み付けを考慮した加重平均値を用いるようにしてもよい。 Further, in the second embodiment described above, the misfire detection unit 60 (misfire determination unit 54) has described an example in which the average value of a plurality of output results is used, but weighting is considered instead of the simple average value. A weighted average value may be used.
 なお、上述した内燃機関システム1が備える各構成は、内部に、コンピュータシステムを有している。そして、上述した内燃機関システム1が備える各構成の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより上述した内燃機関システム1が備える各構成における処理を行ってもよい。ここで、「記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行する」とは、コンピュータシステムにプログラムをインストールすることを含む。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータシステム」は、インターネットやWAN、LAN、専用回線等の通信回線を含むネットワークを介して接続された複数のコンピュータ装置を含んでもよい。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。このように、プログラムを記憶した記録媒体は、CD-ROM等の非一過性の記録媒体であってもよい。
Each configuration included in the internal combustion engine system 1 described above has a computer system inside. Then, a program for realizing the functions of each configuration included in the internal combustion engine system 1 described above is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into the computer system and executed. Therefore, the processing in each configuration provided in the internal combustion engine system 1 described above may be performed. Here, "loading and executing a program recorded on a recording medium into a computer system" includes installing the program in the computer system. The term "computer system" as used herein includes hardware such as an OS and peripheral devices.
Further, the "computer system" may include a plurality of computer devices connected via a network including a communication line such as the Internet, WAN, LAN, and a dedicated line. Further, the "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, or a storage device such as a hard disk built in a computer system. As described above, the recording medium in which the program is stored may be a non-transient recording medium such as a CD-ROM.
 また、記録媒体には、当該プログラムを配信するために配信サーバからアクセス可能な内部又は外部に設けられた記録媒体も含まれる。なお、プログラムを複数に分割し、それぞれ異なるタイミングでダウンロードした後に内燃機関システム1が備える各構成で合体される構成や、分割されたプログラムのそれぞれを配信する配信サーバが異なっていてもよい。さらに「コンピュータ読み取り可能な記録媒体」とは、ネットワークを介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、上述した機能の一部を実現するためのものであってもよい。さらに、上述した機能をコンピュータシステムに既に記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。 The recording medium also includes an internal or external recording medium that can be accessed from the distribution server to distribute the program. The program may be divided into a plurality of parts, downloaded at different timings, and then combined with each configuration provided in the internal combustion engine system 1, or the distribution server for distributing each of the divided programs may be different. Furthermore, a "computer-readable recording medium" is a volatile memory (RAM) inside a computer system that serves as a server or client when a program is transmitted via a network, and holds the program for a certain period of time. It shall also include things. Further, the above program may be for realizing a part of the above-mentioned functions. Further, a so-called difference file (difference program) may be used, which can realize the above-mentioned functions in combination with a program already recorded in the computer system.
 また、上述した機能の一部又は全部を、LSI(Large Scale Integration)等の集積回路として実現してもよい。上述した各機能は個別にプロセッサ化してもよいし、一部、又は全部を集積してプロセッサ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いてもよい。 Further, a part or all of the above-mentioned functions may be realized as an integrated circuit such as an LSI (Large Scale Integration). Each of the above-mentioned functions may be made into a processor individually, or a part or all of them may be integrated into a processor. Further, the method of making an integrated circuit is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. Further, when an integrated circuit technology that replaces an LSI appears due to advances in semiconductor technology, an integrated circuit based on this technology may be used.
 1 内燃機関システム
 2 内燃機関
 3 クランク軸
 4 始動発電機
 5 バッテリ
 10 ロータ
 11 マグネット
11N N極マグネット
11S S極マグネット
 20 ステータ
 21 コイル
21U U相コイル
21V V相コイル
21W W相コイル
 22 センサケース
 30 ロータ位置検出部
 31、31-1、31-2、31-3 ホール素子
 32 ロータ位置判定部
 40 駆動回路
 50 制御部
 51 駆動制御部
 52 タイマー
 53 出力記憶部
 54 失火判定部
 60 失火検出部
1 Internal combustion engine system 2 Internal combustion engine 3 Crank shaft 4 Starting generator 5 Battery 10 Rotor 11 Magnet 11N N-pole magnet 11S S-pole magnet 20 Stator 21 Coil 21U U-phase coil 21V V-phase coil 21W W-phase coil 22 Sensor case 30 Rotor position Detection unit 31, 31-1, 31-2, 31-3 Hall element 32 Rotor position determination unit 40 Drive circuit 50 Control unit 51 Drive control unit 52 Timer 53 Output storage unit 54 Misfire detection unit 60 Misfire detection unit

Claims (8)

  1.  クランク軸を有する内燃機関と、
     第1の条件下において、前記クランク軸に直結されたロータを介して前記クランク軸に回転力を与え、前記第1の条件下とは異なる第2の条件下において、前記クランク軸の回転力を受けて発電を行う回転電機と、
     前記ロータの回転位置を検出し、前記ロータの回転位置を示すロータ位置情報を出力するロータ位置検出部と、
     前記第1の条件下において、前記ロータ位置検出部が出力する前記ロータ位置情報に基づいて、前記回転電機の前記ロータを回転駆動させる駆動回路を制御する駆動制御部と、
     前記ロータ位置情報に基づく前記ロータの回転位置の単位時間当たりの変化量に基づいて、前記内燃機関の失火が発生したことを検出する失火検出部とを
     備えることを特徴とする内燃機関システム。
    An internal combustion engine with a crankshaft and
    Under the first condition, a rotational force is applied to the crankshaft via a rotor directly connected to the crankshaft, and under a second condition different from the first condition, the rotational force of the crankshaft is applied. A rotating electric machine that receives and generates power,
    A rotor position detection unit that detects the rotation position of the rotor and outputs rotor position information indicating the rotation position of the rotor.
    Under the first condition, a drive control unit that controls a drive circuit that rotationally drives the rotor of the rotary electric machine based on the rotor position information output by the rotor position detection unit.
    An internal combustion engine system including a misfire detection unit that detects that a misfire of the internal combustion engine has occurred based on the amount of change in the rotation position of the rotor per unit time based on the rotor position information.
  2.  前記回転電機は、コイルが巻装されたステータと、内周面沿いに磁極を交互にしてマグネットが複数配置され、前記ステータの周囲を回転自在に配設された前記ロータとを有し、
     前記ロータ位置検出部は、前記回転電機に内蔵された複数の磁気センサであって、前記ロータと対向して配置され、対向する前記マグネットの極性を検出して出力する複数の磁気センサを有する
     ことを特徴とする請求項1に記載の内燃機関システム。
    The rotary electric machine has a stator in which a coil is wound, and a rotor in which a plurality of magnets are arranged alternately along an inner peripheral surface and rotatably arranged around the stator.
    The rotor position detection unit is a plurality of magnetic sensors built in the rotary electric machine, and has a plurality of magnetic sensors arranged to face the rotor and detect and output the polarity of the magnets facing each other. The internal combustion engine system according to claim 1.
  3.  前記磁気センサが出力する出力パターンが切り替わる間隔の時間を計測して出力するタイマーを備え、
     前記失火検出部は、前記タイマーが出力する、前記切り替わる間隔の時間の変化に基づいて、前記内燃機関の失火が発生したことを検出する
     ことを特徴とする請求項2に記載の内燃機関システム。
    It is equipped with a timer that measures and outputs the time at which the output pattern output by the magnetic sensor is switched.
    The internal combustion engine system according to claim 2, wherein the misfire detection unit detects that a misfire of the internal combustion engine has occurred based on a change in the switching interval time output by the timer.
  4.  前記失火検出部は、前記タイマーの出力値が所定の閾値以上になった場合に、前記内燃機関の失火が発生したと判定する
     ことを特徴とする請求項3に記載の内燃機関システム。
    The internal combustion engine system according to claim 3, wherein the misfire detection unit determines that a misfire of the internal combustion engine has occurred when the output value of the timer exceeds a predetermined threshold value.
  5.  前記タイマーが直近に出力した複数の出力結果を記憶する出力記憶部を備え、
     前記失火検出部は、前記出力記憶部が記憶する複数の前記出力結果のうち、所定の閾値以上になったものが所定の回数以上発生した場合に、前記内燃機関の失火が発生したと判定する
     ことを特徴とする請求項3に記載の内燃機関システム。
    It is provided with an output storage unit that stores a plurality of output results immediately output by the timer.
    The misfire detection unit determines that a misfire of the internal combustion engine has occurred when, among the plurality of output results stored in the output storage unit, those having a predetermined threshold value or more occur more than a predetermined number of times. The internal combustion engine system according to claim 3.
  6.  前記タイマーが直近に出力した複数の出力結果を記憶する出力記憶部を備え、
     前記失火検出部は、前記出力記憶部が記憶する複数の前記出力結果の平均値が所定の閾値以上になった場合に、前記内燃機関の失火が発生したと判定する
     ことを特徴とする請求項3に記載の内燃機関システム。
    It is provided with an output storage unit that stores a plurality of output results immediately output by the timer.
    The claim is characterized in that the misfire detection unit determines that a misfire of the internal combustion engine has occurred when the average value of a plurality of the output results stored in the output storage unit exceeds a predetermined threshold value. 3. The internal combustion engine system according to 3.
  7.  前記コイルの数であるスロット数が、18個であり、
     前記マグネットの数である磁極数が、12個であり、
     前記回転電機は、3相ブラシレスモータとして機能し、
     前記複数の磁気センサは、3相に対応する前記マグネットの極性を検出して出力する
     ことを特徴とする請求項2から請求項6のいずれか一項に記載の内燃機関システム。
    The number of slots, which is the number of the coils, is 18.
    The number of magnetic poles, which is the number of magnets, is 12.
    The rotary electric machine functions as a three-phase brushless motor and functions as a three-phase brushless motor.
    The internal combustion engine system according to any one of claims 2 to 6, wherein the plurality of magnetic sensors detect and output the polarities of the magnets corresponding to the three phases.
  8.  クランク軸を有する内燃機関と、第1の条件下において、前記クランク軸に直結されたロータを介して前記クランク軸に回転力を与え、前記第1の条件下とは異なる第2の条件下において、前記クランク軸の回転力を受けて発電を行う回転電機とを備える内燃機関システムの失火検出方法であって、
     ロータ位置検出部が、前記ロータの回転位置を検出し、前記ロータの回転位置を示すロータ位置情報を出力するロータ位置検出ステップと、
     駆動制御部が、前記第1の条件下において、前記ロータ位置検出ステップによって出力された前記ロータ位置情報に基づいて、前記回転電機の前記ロータを回転駆動させる駆動回路を制御する駆動制御ステップと、
     失火検出部が、前記ロータ位置情報に基づく前記ロータの回転位置の単位時間当たりの変化量に基づいて、前記内燃機関の失火が発生したことを検出する失火検出ステップとを
     含むことを特徴とする失火検出方法。
    An internal combustion engine having a crankshaft and, under the first condition, apply a rotational force to the crankshaft via a rotor directly connected to the crankshaft, and under a second condition different from the first condition. A method for detecting a misfire in an internal combustion engine system including a rotating electric machine that generates power by receiving the rotational force of the crankshaft.
    A rotor position detection step in which the rotor position detection unit detects the rotation position of the rotor and outputs rotor position information indicating the rotation position of the rotor.
    A drive control step in which the drive control unit controls a drive circuit for rotationally driving the rotor of the rotary electric machine based on the rotor position information output by the rotor position detection step under the first condition.
    The misfire detection unit includes a misfire detection step of detecting that a misfire of the internal combustion engine has occurred based on the amount of change in the rotation position of the rotor per unit time based on the rotor position information. Misfire detection method.
PCT/JP2020/046448 2019-12-16 2020-12-14 Internal combustion engine system and misfire detection method WO2021125119A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080086588.0A CN114829757A (en) 2019-12-16 2020-12-14 Internal combustion engine system and misfire detection method
BR112022011571A BR112022011571A2 (en) 2019-12-16 2020-12-14 INTERNAL COMBUSTION ENGINE SYSTEM AND IGNITION FAILURE DETECTION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019226512A JP7413000B2 (en) 2019-12-16 2019-12-16 Internal combustion engine system and misfire detection method
JP2019-226512 2019-12-16

Publications (1)

Publication Number Publication Date
WO2021125119A1 true WO2021125119A1 (en) 2021-06-24

Family

ID=76431976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046448 WO2021125119A1 (en) 2019-12-16 2020-12-14 Internal combustion engine system and misfire detection method

Country Status (4)

Country Link
JP (1) JP7413000B2 (en)
CN (1) CN114829757A (en)
BR (1) BR112022011571A2 (en)
WO (1) WO2021125119A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104859A (en) * 2002-09-05 2004-04-02 Honda Motor Co Ltd Rotation detector
JP2004124879A (en) * 2002-10-04 2004-04-22 Honda Motor Co Ltd Device for determining stroke of engine
JP2004124878A (en) * 2002-10-04 2004-04-22 Honda Motor Co Ltd Engine start control device
JP2007189841A (en) * 2006-01-13 2007-07-26 Ichinomiya Denki:Kk Brushless motor
JP2015015872A (en) * 2013-07-08 2015-01-22 ヤマハ発動機株式会社 Electric rotating machine and saddle-riding type vehicle
JP2015074296A (en) * 2013-10-07 2015-04-20 株式会社デンソー Vehicle drive system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6169214B1 (en) * 2016-04-06 2017-07-26 三菱電機株式会社 Control device and control method for internal combustion engine
JP6407396B1 (en) * 2017-12-07 2018-10-17 三菱電機株式会社 Control device and control method for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104859A (en) * 2002-09-05 2004-04-02 Honda Motor Co Ltd Rotation detector
JP2004124879A (en) * 2002-10-04 2004-04-22 Honda Motor Co Ltd Device for determining stroke of engine
JP2004124878A (en) * 2002-10-04 2004-04-22 Honda Motor Co Ltd Engine start control device
JP2007189841A (en) * 2006-01-13 2007-07-26 Ichinomiya Denki:Kk Brushless motor
JP2015015872A (en) * 2013-07-08 2015-01-22 ヤマハ発動機株式会社 Electric rotating machine and saddle-riding type vehicle
JP2015074296A (en) * 2013-10-07 2015-04-20 株式会社デンソー Vehicle drive system

Also Published As

Publication number Publication date
JP7413000B2 (en) 2024-01-15
BR112022011571A2 (en) 2022-08-30
CN114829757A (en) 2022-07-29
JP2021095855A (en) 2021-06-24

Similar Documents

Publication Publication Date Title
JP6490528B2 (en) Motor, rotation period detection method thereof, motor rotation period detection sensor assembly, and generator
JP2008504799A (en) Device for determining the position of a rotor of a rotating electrical device
JP3945696B2 (en) Rotation detector
US10505475B1 (en) Driving method for single-phase DC brushless motor using sensor only in start-up
JP6332056B2 (en) Motor control device
WO2021125119A1 (en) Internal combustion engine system and misfire detection method
JP6577145B1 (en) Drive control system, motor, and control method of drive control system
JP4055991B2 (en) Engine stroke discrimination device
KR20180136451A (en) Brushless DC motor and method of providing angle signal
EP3823155B1 (en) Drive device for three-phase rotating electric machine and three-phase rotating electric machine unit
WO2020217900A1 (en) Internal combustion engine rotating electric machine and rotor of same
JP6265824B2 (en) Motor generator
WO2017122677A1 (en) Rotating electrical machine
WO2021095353A1 (en) Dynamo-electric machine and dynamo-electric machine system
WO2017122670A1 (en) Rotating electric machine
JP2004104859A (en) Rotation detector
JP2004023800A (en) Brushless motor
JP2004023801A (en) Rotary electric machine
CN114175471A (en) Generator motor for internal combustion engine
JP4232177B2 (en) Engine ignition control device
JP2002165485A (en) Starter generator for internal combustion engine
KR100529938B1 (en) Switched Reluctance Motor
JP4471181B2 (en) Engine rotation direction detection device
JP2007097323A (en) Magnet field system rotation type rotary electric machine
JP2004177391A (en) Rotary encoder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901332

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022011571

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022011571

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220613

122 Ep: pct application non-entry in european phase

Ref document number: 20901332

Country of ref document: EP

Kind code of ref document: A1