WO2021124848A1 - 信号処理装置と信号処理方法およびプログラム - Google Patents

信号処理装置と信号処理方法およびプログラム Download PDF

Info

Publication number
WO2021124848A1
WO2021124848A1 PCT/JP2020/044461 JP2020044461W WO2021124848A1 WO 2021124848 A1 WO2021124848 A1 WO 2021124848A1 JP 2020044461 W JP2020044461 W JP 2020044461W WO 2021124848 A1 WO2021124848 A1 WO 2021124848A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantization
stokes
stokes parameter
range
parameter
Prior art date
Application number
PCT/JP2020/044461
Other languages
English (en)
French (fr)
Inventor
楽公 孫
康孝 平澤
雄飛 近藤
大志 大野
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to US17/756,940 priority Critical patent/US20230003583A1/en
Publication of WO2021124848A1 publication Critical patent/WO2021124848A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • G01J4/04Polarimeters using electric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties

Definitions

  • This technology makes it possible to reduce the amount of polarization information data related to signal processing equipment, signal processing methods and programs.
  • Patent Document 1 a Stokes vector has been acquired as information indicating polarization characteristics.
  • the purpose of this technology is to provide a signal processing device, a signal processing method, and a program that can reduce the amount of polarization information data.
  • the first aspect of this technology is Based on the quantization range set for each Stokes parameter based on the constraint conditions related to the Stokes parameter, and the number of quantization bits calculated for each Stokes parameter according to the set quantization range, the Stokes parameter It is in a signal processing apparatus including a processing unit that performs a quantization process or an inverse quantization process of the Stokes parameter that has been quantized.
  • the quantization range is set by the quantization range setting unit for each Stokes parameter based on the constraint conditions related to the Stokes parameter.
  • the quantization range is set for the Stokes parameter indicating the intensity and then for the other Stokes parameters.
  • the quantization range of other Stokes parameters may be set in order from the Stokes parameter having the largest value.
  • the quantization range of the Stokes parameter indicating the difference in circularly polarized light may be set after the other Stokes parameters.
  • the processing unit calculates the Stokes parameter indicating the intensity as the predetermined number of quantization bits, and the number of quantization bits of the other Stokes parameters based on the predetermined number of quantization bits and the quantization range set for each Stokes parameter. Further, the processing unit performs the quantization processing of the Stokes parameter or the inverse quantization processing of the quantized Stokes parameter based on the quantization range and the number of quantization bits. Further, the processing unit may calculate the resolution improvement rate based on the compression rate indicating the ratio of the number of quantization bits to the predetermined number of quantization bits, and extend the number of quantization bits for each Stokes parameter by the resolution improvement rate. Good.
  • the processing unit When the processing unit performs the quantization processing of the Stokes parameter, the number of quantization bits for each Stokes parameter according to the quantization range set in the quantization range setting unit, or the number of quantization bits expanded by the resolution improvement rate. To generate quantized polarization information. Further, when the processing unit returns the quantization polarization information to the Stokes parameter before the quantization processing, the processing unit quantizes other Stokes parameters based on the Stokes parameter obtained by performing the inverse quantization processing of the quantization polarization information. A range is set, and the inverse quantization processing of other Stokes parameters is performed using the set quantization range. In addition, the resolution improvement rate is calculated from the quantization polarization information, and the inverse quantization processing of the Stokes parameter is performed using the calculated resolution improvement rate.
  • the second aspect of this technology is Based on the quantization range set for each Stokes parameter based on the constraint conditions related to the Stokes parameter, and the number of quantization bits calculated for each Stokes parameter according to the set quantization range, the Stokes parameter
  • the present invention is a signal processing method including performing a quantization process or an inverse quantization process of the Stokes parameter that has been quantized in a processing unit.
  • the third aspect of this technology is A program that allows a computer to perform Stokes parameter quantization or inverse quantization.
  • the program of the present technology provides, for example, a storage medium or communication medium provided in a computer-readable format to a general-purpose computer capable of executing various program codes, for example, a storage medium such as an optical disk, a magnetic disk, or a semiconductor memory. Or, it is a program that can be provided by a communication medium such as a network. By providing such a program in a computer-readable format, processing according to the program can be realized on the computer.
  • FIG. 1 is a diagram for explaining a Stokes vector.
  • the observed brightness I ( ⁇ , ⁇ ) is obtained by observing the light ray LT emitted from the light source via the linear polarizing plate (polarizing angle ⁇ ) PL and the wave plate (phase shift ⁇ ) WP.
  • the observed Stokes vector S is shown in Eq. (1).
  • the Stokes parameter S0 is the sum of the observed luminance of 0 degree polarized light and the observed luminance of 90 degree polarized light, and is a parameter indicating the intensity.
  • Stokes parameter S1 is the difference between the observed brightness of 0 degree polarized light and 90 degree polarized light
  • Stokes parameter S2 is the difference between the observed brightness of 45 degree polarized light and 135 degree polarized light
  • Stokes parameter S3 is the observed brightness of right circularly polarized light. The difference between IR and the observed brightness IL of left-handed circularly polarized light is shown.
  • Each Stokes parameter of the Stokes vector S is not an independent parameter, but has physical and mutual constraints.
  • the degree of polarization ⁇ is defined as shown in the equation (2). Further, the constraint conditions shown in the equations (2) to (3) to (6) are satisfied.
  • the range (quantization range) that the Stokes parameter S0 can take is within the range of "0 to 2". Further, when the quantization range R a of the Stokes parameter S1 is set to the range of " ⁇ a" (in the present technology, "a" and “b” and “c” described later are set as range values), the Stokes parameter S0 becomes.
  • the range value a of the Stokes parameter S1 is the value shown in the equation (14).
  • the range value a becomes the value shown in the equation (15)
  • the range value a is the value shown in the equation (16). It becomes.
  • the function min means to select the minimum value of the element in parentheses.
  • the range value b of the Stokes parameter S2 becomes the value shown in the equation (17).
  • the range value b becomes the value shown in the equation (18)
  • the range value b is the value shown in the equation (19). It becomes.
  • the range value c of the Stokes parameter S3 becomes the value shown in the equation (20). Further, when the Stokes parameters S0 and S1 are known, the range value c becomes the value shown in the equation (21), and when the Stokes parameters S0, S1 and S2 are known, the range value c is the value shown in the equation (22). It becomes.
  • the signal processing device of the present technology uses the above-mentioned constraints to quantize the polarization information indicating the Stokes vector and dequantize the quantized information.
  • FIG. 2 illustrates the configuration of a system using the signal processing device of the present technology.
  • the system 10 includes a Stokes vector calculation unit 20, an encoder 30 that quantizes polarization information indicating the Stokes vector to generate quantization polarization information, and a decoder 40 that extends the quantization polarization information to generate polarization information before quantization. Have. Further, the quantized polarization information is supplied from the encoder 30 to the decoder 40 via the recording medium 50 or the transmission line 60.
  • the Stokes vector calculation unit 20 acquires the observation brightness I0 °, I45 °, I90 °, I135 ° and the observation brightness IR, IL from the polarization imaging unit (not shown), calculates the Stokes vector S, and outputs it to the encoder 30. To do.
  • the polarized light imaging unit is not provided with, for example, a color filter, and uses an image sensor, a linear polarizing plate, and a wave plate to indicate signals indicating observation brightness I0 °, I45 °, I90 °, I135 °, and observation brightness IR, IL. To generate.
  • the encoder 30 has a quantization range setting unit 31 and a quantization unit (also referred to as a processing unit) 32.
  • the quantization range setting unit 31 sets the quantization range of the Stokes parameter S0, the Stokes parameter S1, the Stokes parameter S2, and the Stokes parameter S3 based on the above-mentioned constraint conditions related to the Stokes parameter.
  • the quantization unit 32 performs the quantization processing of the Stokes parameter based on the number of quantization bits calculated for each Stokes parameter according to the quantization range set by the quantization range setting unit based on the constraint condition regarding the Stokes parameter. And generate quantized polarization information. Further, the quantization unit 32 performs either quantization for the purpose of reducing the amount of data or quantization for the purpose of improving the resolution in the generation of the quantization polarization information. Whether to perform quantization for the purpose of reducing the amount of data or quantization for the purpose of improving the resolution may be specified in advance, and which quantization is performed by the quantization selection signal SE from the outside. It may be possible to select.
  • quantization may be automatically selected according to the purpose of use of the polarization information and the equipment to be used.
  • the quantized polarization information generated by the quantization unit 32 is output to the decoder 40 via the recording medium 50 or the transmission line 60.
  • the decoder 40 dequantizes the quantization polarization information acquired via the recording medium 50 or the transmission line 60, corresponding to the quantization of the encoder 30, and generates the polarization information before data compression.
  • the decoder 40 has an inverse quantization unit (also referred to as a processing unit) 42 and a quantization range setting unit 43. Further, the decoder 40 may be provided with a resolution discriminating unit 41 when performing an inverse quantization process of the quantization polarization information generated by quantization for the purpose of improving the resolution.
  • the resolution determination unit 41 determines that the quantization polarization information is generated by quantization for the purpose of improving the resolution, calculates the resolution improvement rate ⁇ and outputs it to the inverse quantization unit 42.
  • the inverse quantization unit 42 performs inverse quantization of the quantization polarization information using the resolution improvement rate calculated by the resolution determination unit 41 and the quantization range set by the quantization range setting unit 43 described later. Further, when the quantization polarization information is generated by quantization for the purpose of reducing the amount of data, the inverse quantization unit 42 uses the quantization range set by the quantization range setting unit 43 for the quantization polarization. Inverse quantization of information. The inverse quantization unit 42 outputs the obtained Stokes parameter to the quantization range setting unit 43 and the outside.
  • the quantization range setting unit 43 sets the quantization range to be used for the subsequent inverse quantization based on the Stokes parameter output from the inverse quantization unit 42.
  • the quantization range setting unit 43 outputs the set quantization range to the inverse quantization unit 42.
  • FIG. 3 is a flowchart showing the operation of the encoder.
  • the encoder acquires the Stokes vector.
  • the encoder 30 acquires the Stokes vector calculated by the Stokes vector calculation unit 20 and proceeds to step ST2.
  • step ST2 the encoder sets the quantization range.
  • the quantization range setting unit 31 of the encoder 30 sets the quantization range for each Stokes parameter of the Stokes vector for the Stokes parameter indicating the intensity, sets the quantization range of the other Stokes parameters, and proceeds to step ST3. The details of setting the quantization range will be described later.
  • step ST3 the encoder performs quantization processing.
  • the quantization unit 32 of the encoder 30 quantizes each Stokes parameter of the Stokes vector in the quantization range set in step ST2 to generate quantization polarization information.
  • Quantization range setting operation in signal processing equipment In the first setting operation of the quantization range, the quantization range is set in the order of the Stokes parameters S0, S1, S2, S3.
  • FIG. 4 is a flowchart showing the first setting operation of the quantization range.
  • the quantization range setting unit sets the quantization range R 0 of the Stokes parameter S0 to “0 to 2”.
  • the quantization range setting unit 31 sets the quantization range R 0 of the Stokes parameter S0 to “0 to 2” as described above, and proceeds to step ST12.
  • step ST13 the quantization range setting unit sets the quantization range Rb of the Stokes parameter S2. Since the quantization range and range value a of the Stokes parameter S0 are set, the quantization range setting unit 31 calculates the range value b based on the equation (18) and sets the quantization range R b ( ⁇ b). To step ST14.
  • FIG. 5 illustrates the quantization range set in the first setting operation.
  • an equal quantization range (absolute value is “2”) is assigned to the Stokes parameters S 0 , S 1 , S 2 , and S 3 of the Stokes vector.
  • the quantization range is set in order for the Stokes parameters S0, S1, S2, and S3, and the next is based on the other Stokes parameters for which the quantization range has already been set.
  • the quantization range of the Stokes parameter is set. Therefore, the quantization range can be set more efficiently than in the past.
  • the quantization range is set in order from the Stokes parameter having the largest value for the Stokes parameters S1, S2, and S3 following the Stokes parameter S0.
  • FIG. 6 is a flowchart showing a second setting operation of the quantization range.
  • the quantization range setting unit sets the quantization range R 0 of the Stokes parameter S0.
  • the quantization range setting unit 31 sets the quantization range R 0 of the Stokes parameter S0 to “0 to 2” as described above, and proceeds to step ST22.
  • the quantization range setting unit 31 determines the order of the three parameters.
  • the quantization range setting unit 31 sets the Stokes parameter S1, S2, S3 having the largest value as the parameter SL, the Stokes parameter having the smallest value as the parameter SS, and the Stokes parameter having a value smaller than the parameter SL and larger than the parameter SS.
  • the parameter be parameter SM. If there are a plurality of Stokes parameters with the same value, the order is set according to a preset rule.
  • the quantization range setting unit 31 sets the parameters SL, SM, and SS, and proceeds to step ST23.
  • the quantization range setting unit sets the quantization range RL of the parameter SL.
  • the quantization range setting unit 31 replaces the Stokes parameter S1 in the equations (12) and (14) with the parameter SL, calculates the range value a of the parameter SL based on the equation (14), and calculates the quantization range RL ( ⁇ ). Set a) and proceed to step ST24.
  • Quantization range setting unit in step ST24 sets the quantization range R M parameter SM. Since the quantization range of the Stokes parameter S0 and the range value a of the Stokes parameter S1 are calculated in the quantization range setting unit 31, for example, the Stokes parameter S1 in the equation (18) is replaced with the parameter SL, and the range of the parameter SM is replaced. The value b is calculated based on the equation (18), the quantization range RM ( ⁇ b) is set, and the process proceeds to step ST25.
  • step ST26 the quantization range setting unit generates parameter correspondence information.
  • the quantization range setting unit 31 generates parameter correspondence information indicating the correspondence between the Stokes parameters S1, S2, S3 and the parameters SL, SM, SS based on the order determination result in step ST22.
  • FIG. 7 illustrates the quantization range set in the second setting operation.
  • an equal quantization range (absolute value is “2”) is assigned to the Stokes parameters S 0 , S 1 , S 2 , and S 3.
  • the quantization range is set in order from the largest Stokes parameter for the Stokes parameters S1, S2, and S3, and is based on the other Stokes parameters for which the quantization range has already been set.
  • the quantization range of the few Stokes parameters is set. Therefore, the quantization range can be set more efficiently than the conventional and first setting operations. Note that FIG. 7 illustrates a case where S 1 > S 2 > S 3.
  • FIG. 8 is a flowchart showing a third setting operation of the quantization range.
  • the quantization range setting unit sets the quantization range R 0 of the Stokes parameter S0.
  • the quantization range setting unit 31 sets the quantization range R 0 of the Stokes parameter S0 to “0 to 2” and proceeds to step ST32.
  • the quantization range setting unit discriminates the order of two parameters.
  • the quantization range setting unit 31 uses the larger value of the Stokes parameters S1 and S2 as the parameter SL and the smaller value as the parameter SS. If the Stokes parameters S1 and S2 are equal, the order is set according to a preset rule.
  • the quantization range setting unit 31 sets the parameters SL and SS and proceeds to step ST33.
  • the quantization range setting unit sets the quantization range RL of the parameter SL.
  • step ST36 the quantization range setting unit generates parameter correspondence information.
  • the quantization range setting unit 31 generates Stokes parameter correspondence information indicating the correspondence between the Stokes parameters S1 and S2 and the parameters SL and SS based on the determination result of the parameter order determination in step ST32.
  • FIG. 9 illustrates the quantization range set in the third setting operation.
  • an equal quantization range (absolute value is “2”) is assigned to the Stokes parameters S 0 , S 1 , S 2 , and S 3.
  • the quantization range is set in order from the largest Stokes parameter for the Stokes parameters S1 and S2, and then the quantization range of the Stokes parameter S3 is set. Therefore, the quantization range can be assigned with more emphasis on the Stokes parameter related to linearly polarized light than the Stokes parameter related to circularly polarized light. Note that FIG. 9 illustrates a case where S 1 > S 2.
  • Quantization operation in signal processing equipment In the first operation of quantization, quantization is performed with priority given to reduction of the amount of data rather than improvement of resolution. Specifically, the Stokes parameter indicating the intensity is set as the predetermined number of quantization bits, and the number of quantization bits of the other Stokes parameters is calculated based on the predetermined number of quantization bits and the quantization range set for each Stokes parameter. ..
  • FIG. 10 is a flowchart showing the first operation of quantization.
  • the quantization unit acquires the Stokes vector and the quantization range.
  • the quantization unit 32 acquires the Stokes vector from the Stokes vector calculation unit 20 and the quantization range from the quantization range setting unit 31, and proceeds to step ST42.
  • the quantization unit performs a bit number compression process.
  • the quantization unit 32 quantizes the Stokes parameter S0 based on the equation (23) to generate the quantization parameter QS0. Further, the Stokes parameters S1, S2, and S3 are quantized based on the equations (24), (25), and (26) using the range values a, b, and c of the quantization range set by the quantization range setting unit 31. , Quantization parameters QS1, QS2, QS3 are generated.
  • formula (24) in by adding the range value a Stokes parameter S 1, to process so as not the value of the quantization target is a negative value.
  • the formula (27) shows the calculation formula of the compression rate r, the number of assigned bits of the quantization polarization information indicating the Stokes parameter is "N bits”, and the compression rate of the Stokes parameter S1 (the number of bits before quantization).
  • the ratio of the number of bits after quantization to to) is "r1"
  • the compression ratio of the Stokes parameter S2 is "r2”
  • the compression ratio of the Stokes parameter S3 is "r3".
  • r1 + r2 + r3 is referred to as compression rate information. It should be noted that the formulas (23) to (27) and the formulas (34), (36), (38), (40), (41), (42), (44), (46), (48) described later ,
  • the key brackets shown in FIGS. 11 and 13 indicate that it is a ceiling function, and indicate the minimum integer value that is equal to or greater than the value in the brackets.
  • FIG. 11 shows the first operation of quantization together with the conventional operation.
  • the conventional quantization for the Stokes parameters S 0 , S1, S2, and S3, the smallest integers of (N / 4) or more are assigned bits, and the quantization polarization information indicating the Stokes vector is "N bits". Is.
  • r 1 bit for the Stokes parameters S 1, r 2 bits for the Stokes parameter S 2, r 3 bits are allocated to the Stokes parameter S 3.
  • the compression rate r is "1" or less as shown in the equation (27), the number of bits of the quantized polarized light information can be compressed more than the conventional one with the same resolution as the conventional one.
  • FIG. 12 is a flowchart showing the second operation of quantization.
  • the quantization unit acquires the Stokes vector and the quantization range.
  • the quantization unit 32 acquires the Stokes vector from the Stokes vector calculation unit 20 and the quantization range from the quantization range setting unit 31, and proceeds to step ST52.
  • the quantization unit performs resolution improvement processing.
  • the quantization unit 32 quantizes the Stokes parameter S0 based on the equation (28) using the resolution improvement rate ⁇ , and generates the quantization parameter QS0. Further, using the resolution improvement rate and the range values a, b, and c of the quantization range set by the quantization range setting unit 31, Stokes parameters S1, S2, S3 based on the equations (29), (30), and (31). Is quantized to generate the quantization parameters QS1, QS2, and QS3.
  • the resolution improvement rate ⁇ is a value calculated based on the equation (32) using the compression rates r1, r2, r3 and the number of allocated bits N for each Stokes parameter.
  • step ST53 the quantization unit performs compression rate information generation processing.
  • the quantization unit 32 generates the above-mentioned compression rate information so that the resolution improvement rate ⁇ can be calculated at the time of decoding the coded information. Further, the quantization unit 32 sets the allocated bit number RJ of the compression rate information to the number of bits shown in the equation (33).
  • FIG. 13 shows the second operation of quantization together with the conventional operation.
  • the conventional quantization for the Stokes parameters S 0 , S1, S2, and S3, the smallest integers of (N / 4) or more are assigned bits, and the quantization polarization information indicating the Stokes vector is "N bits". Is.
  • a minimum integer that is ( ⁇ r 0 ) or more with respect to the Stokes parameter S 0 a minimum integer that is ( ⁇ r 1 ) or more with respect to the Stokes parameter S 1
  • a Stokes parameter S a minimum integer that is ( ⁇ r 1 ) or more with respect to the Stokes parameter S.
  • the minimum integer that is ( ⁇ r 2 ) or more with respect to 2 and the minimum integer that is ( ⁇ r 3 ) or more with respect to the Stokes parameter S 3 are the allocated bits, and the quantized polarization information is N bits. Therefore, the resolution of the quantized polarized light information can be improved as compared with the conventional one with the same number of bits as the conventional one.
  • the quantization polarization information includes the compression rate information of the number of bits RJ. Compressibility information, Stokes parameters S 0, S1, S2, S3 need only be obtained at the time of inverse quantization, for example, may be provided in front of the position than the Stokes parameters S1, S2, S3. Further, for the quantized polarization information, the resolution improvement rate ⁇ may be set so that the number of bits including the compression rate information is N bits.
  • FIG. 14 is a flowchart illustrating the operation of the decoder.
  • the decoder determines the quantization method.
  • the decoder 40 determines whether the quantized polarization information is generated by using a coding method that emphasizes reducing the amount of data or improving the resolution.
  • the resolution discriminating unit 41 determines whether the coding method emphasizes reduction of the amount of data or improvement of the resolution based on the mode flag shown in the header of the stream of the quantized polarization information, for example, and proceeds to step ST62. ..
  • step ST62 the decoder determines whether the amount of data is reduced.
  • the decoder 40 proceeds to step ST63 when the determination result of step ST61 is a quantization method that emphasizes reduction of the amount of data, and proceeds to step ST67 when the determination result of step ST61 is a quantization method that emphasizes improvement of resolution.
  • step ST63 the decoder calculates the Stokes parameter S0.
  • the decoder 40 performs the calculation of the equation (34) using the quantization parameter QS0 indicated by the quantization polarization information, calculates the Stokes parameter S0, and proceeds to step ST64.
  • step ST64 the decoder calculates the Stokes parameter S1.
  • the decoder 40 calculates the range value a based on the equation (35) using the Stokes parameter S0. Further, the decoder 40 performs the calculation of the equation (36) using the quantization parameter QS1 indicated by the range value a and the quantization polarization information, calculates the Stokes parameter S1, and proceeds to step ST65.
  • step ST65 the decoder calculates the Stokes parameter S2.
  • the decoder 40 calculates the range value b based on the equation (37) using the Stokes parameters S0 and S1. Further, the decoder 40 performs the calculation of the equation (38) using the range value b and the quantization parameter QS2 indicated by the quantization polarization information, calculates the Stokes parameter S2, and proceeds to step ST66.
  • step ST66 the decoder calculates the Stokes parameter S3.
  • the decoder 40 calculates the range value c based on the equation (39) using the Stokes parameters S0, S1 and S2. Further, the decoder 40 performs the calculation of the equation (40) using the quantization parameter QS3 indicated by the range value c and the quantization polarization information, and calculates the Stokes parameter S3.
  • the decoder 40 calculates the resolution improvement rate ⁇ based on the equation (41) and proceeds to step ST68.
  • the compression rate addition value is included in the quantized polarization information with the number of bits shown in the equation (33).
  • step ST68 the decoder calculates the Stokes parameter S0.
  • the decoder 40 performs the calculation of the equation (42) using the resolution improvement rate ⁇ calculated in step ST67 and the quantization parameter QS0 indicated by the quantization polarization information, calculates the Stokes parameter S0, and proceeds to step ST69.
  • step ST69 the decoder calculates the Stokes parameter S1.
  • the decoder 40 calculates the range value a based on the equation (43) using the Stokes parameter S0. Further, the decoder 40 performs the calculation of the equation (44) using the range value a, the resolution improvement rate ⁇ , and the quantization parameter QS1 indicated by the quantization polarization information, calculates the Stokes parameter S1, and proceeds to step ST70. ..
  • step ST70 the decoder calculates the Stokes parameter S2.
  • the decoder 40 calculates the range value b based on the equation (45) using the Stokes parameters S0 and S1. Further, the decoder 40 performs the calculation of the equation (46) using the range value b, the resolution improvement rate ⁇ , and the quantization parameter QS2 indicated by the quantization polarization information, calculates the Stokes parameter S2, and proceeds to step ST71. ..
  • the decoder calculates the Stokes parameter S3.
  • the decoder 40 calculates the range value c based on the equation (47) using the Stokes parameters S0, S1 and S2. Further, the decoder 40 calculates the Stokes parameter S3 by performing the calculation of the equation (48) using the range value c, the resolution improvement rate ⁇ , and the quantization parameter QS3 indicated by the quantization polarization information.
  • the quantization polarization information can be decoded to obtain the Stokes parameters S0, S1, S2, and S3 before quantization.
  • the Stokes vector was calculated using the observation brightness obtained by the polarized light imaging unit not provided with the color filter, but the polarized light imaging unit may be provided with the color filter.
  • the signal processing device performs the above-mentioned encoding operation and decoding operation for each color.
  • the quantization polarization information can be efficiently obtained. Can be generated.
  • the specific color for example, when the color arrangement of the color filter is a Bayer arrangement, green having a large number of pixels is set as the specific color.
  • the color having the highest compression rate r may be used as the specific color, and when giving priority to improving the resolution, the color having the highest resolution improvement rate ⁇ may be used as the specific color.
  • the setting of the specific color is not limited to these setting criteria, and may be performed based on other setting criteria.
  • the encoder 30 when the observable characteristics in the polarized light imaging unit are limited to the characteristics related to linearly polarized light, it is not possible to generate information indicating the observed brightness IR of right-handed circularly polarized light and the observed brightness IL of left-handed circularly polarized light.
  • the encoder 30 generates the quantized polarization information based on the Stokes parameters S 0 , S 1 , S 2 , and the decoder 40 decodes the quantized polarization information and the Stokes parameters S 0 , S 1 , and it outputs the S 2.
  • the technology according to the present disclosure can be applied to various fields.
  • the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may. Further, it may be realized as a device mounted on a device used in a production process in a factory or a device used in a construction field. It can also be applied to fields such as medical fields and public services.
  • the series of processes described in the specification can be executed by hardware, software, or a composite configuration of both.
  • the program that records the processing sequence is installed in the memory in the computer embedded in the dedicated hardware and executed.
  • the program can be installed and executed on a general-purpose computer capable of executing various processes.
  • the program can be recorded in advance on a hard disk as a recording medium, an SSD (Solid State Drive), or a ROM (Read Only Memory).
  • the program is a flexible disc, CD-ROM (Compact Disc Read Only Memory), MO (Magneto optical) disc, DVD (Digital Versatile Disc), BD (Blu-Ray Disc (registered trademark)), magnetic disc, semiconductor memory card. It can be temporarily or permanently stored (recorded) on a removable recording medium such as an optical disc.
  • a removable recording medium can be provided as so-called package software.
  • the program may be transferred from the download site to the computer wirelessly or by wire via a network such as LAN (Local Area Network) or the Internet.
  • the computer can receive the program transferred in this way and install it on a recording medium such as a built-in hard disk.
  • the signal processing device of the present technology can have the following configuration. (1) Based on the quantization range set for each Stokes parameter based on the constraint condition regarding the Stokes parameter and the number of quantization bits calculated for each Stokes parameter according to the set quantization range. A signal processing device including a processing unit that performs quantization processing of Stokes parameters or dequantization processing of the Stokes parameters that have been quantized. (2) The signal processing apparatus according to (1), wherein the quantization range is set for a Stokes parameter indicating an intensity and then for another Stokes parameter. (3) The signal processing apparatus according to (2), wherein the quantization range of the other Stokes parameters is set in order from the Stokes parameter having the largest value.
  • the signal processing apparatus (4) The signal processing apparatus according to (3), wherein the quantization range of the Stokes parameter indicating the difference in circularly polarized light is set after the other Stokes parameters.
  • the Stokes parameter indicating the intensity is the predetermined number of quantization bits, and the number of quantization bits of the other Stokes parameters is calculated based on the predetermined number of quantization bits and the quantization range set for each Stokes parameter.
  • the signal processing apparatus according to any one of (1) to (4).
  • the resolution improvement rate is calculated based on the compression rate indicating the ratio of the number of quantization bits to the predetermined number of quantization bits, and the number of quantization bits for each Stokes parameter is extended by the resolution improvement rate ( The signal processing apparatus according to any one of 1) to (5).
  • a quantization range setting unit for setting the quantization range for each Stokes parameter is provided.
  • the processing unit generates quantization polarization information using the Stokes parameter as the number of quantization bits for each Stokes parameter according to the quantization range set by the quantization range setting unit (1) to (6). ).
  • the signal processing apparatus according to any one of.
  • a quantization range setting unit for setting the quantization range of other Stokes parameters based on the Stokes parameter obtained by performing the inverse quantization processing of the quantization polarization information in the processing unit is provided.
  • the signal processing apparatus according to any one of (1) to (5), wherein the processing unit performs dequantization processing of the other Stokes parameters using the quantization range set by the quantization range setting unit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Optical Communication System (AREA)

Abstract

エンコーダ30の量子化レンジ設定部31は、ストークスベクトル算出部20から取得したストークスベクトルのストークスパラメータ毎に量子化レンジを設定する。量子化レンジは、強度を示すストークスパラメータについて設定したのち他のストークスパラメータについて設定する。量子化部32は、強度を示すストークスパラメータは所定量子化ビット数として、他のストークスパラメータの量子化ビット数は、所定量子化ビット数とストークスパラメータ毎に設定された量子化レンジに基づいて算出する。量子化部32は、量子化レンジと量子化ビット数に基づいて、ストークスパラメータの量子化処理を行い量子化偏光情報を生成する。デコーダ40は、量子化偏光情報に対してエンコーダ30に対応した逆量子化を行い、量子化前のストークスベクトルを生成する。偏光情報のデータ量を削減できる。

Description

信号処理装置と信号処理方法およびプログラム
 この技術は、信号処理装置と信号処理方法およびプログラムに関し、偏光情報のデータ量を削減できるようにする。
 従来、光の偏光状態を利用する分野では、特許文献1に示すように偏光特性を示す情報として、ストークスベクトルを取得することが行われている。
特開2018-194455号公報
 ところで、取得した偏光情報を記録あるいは伝送するためには、データ量が少ないことが望ましい。
 そこで、この技術では、偏光情報のデータ量を削減できる信号処理装置と信号処理方法およびプログラムを提供することを目的とする。
 この技術の第1の側面は、
 ストークスパラメータに関する制約条件に基づいて前記ストークスパラメータ毎に設定された量子化レンジと、前記設定された量子化レンジに応じて前記ストークスパラメータ毎に算出した量子化ビット数に基づいて、前記ストークスパラメータの量子化処理、または量子化されている前記ストークスパラメータの逆量子化処理を行う処理部
を備える信号処理装置にある。
 この技術においては、ストークスパラメータに関する制約条件に基づいて前記ストークスパラメータ毎に量子化レンジが量子化レンジ設定部で設定される。量子化レンジは、強度を示すストークスパラメータについて設定したのち他のストークスパラメータについて設定する。また、他のストークスパラメータの量子化レンジは、値が大きいストークスパラメータから順に設定してもよい。また、円偏光の差を示すストークスパラメータの量子化レンジは、他のストークスパラメータの後に設定してもよい。
 処理部は、強度を示すストークスパラメータは所定量子化ビット数として、他のストークスパラメータの量子化ビット数は、所定量子化ビット数とストークスパラメータ毎に設定された量子化レンジに基づいて算出する。また、処理部は、量子化レンジと量子化ビット数に基づいて、ストークスパラメータの量子化処理、または量子化されているストークスパラメータの逆量子化処理を行う。さらに、処理部は、所定量子化ビット数に対する量子化ビット数の割合を示す圧縮率に基づいて分解能向上率を算出して、ストークスパラメータ毎の量子化ビット数を分解能向上率で拡張してもよい。
 処理部は、ストークスパラメータの量子化処理を行う場合、量子化レンジ設定部で設定された量子化レンジに応じたストークスパラメータ毎の量子化ビット数、あるいは分解能向上率で拡張された量子化ビット数として、量子化偏光情報を生成する。また、処理部は、量子化偏光情報を量子化処理前のストークスパラメータに戻す場合、量子化偏光情報の逆量子化処理を行うことにより得られたストークスパラメータに基づき、他のストークスパラメータの量子化レンジを設定して、設定された量子化レンジを用いて他のストークスパラメータの逆量子化処理を行う。また、量子化偏光情報から分解能向上率を算出して、算出された分解能向上率を用いてストークスパラメータの逆量子化処理を行う。
 この技術の第2の側面は、
 ストークスパラメータに関する制約条件に基づいて前記ストークスパラメータ毎に設定された量子化レンジと、前記設定された量子化レンジに応じて前記ストークスパラメータ毎に算出した量子化ビット数に基づいて、前記ストークスパラメータの量子化処理、または前記量子化されている前記ストークスパラメータの逆量子化処理を処理部で行うこと
を含む信号処理方法にある。
 この技術の第3の側面は、
 ストークスパラメータの量子化処理または逆量子化処理をコンピュータで実行させるプログラムであって、
 ストークスパラメータに関する制約条件に基づいて前記ストークスパラメータ毎に量子化レンジを設定する手順と、
 前記設定された量子化レンジに応じて前記ストークスパラメータ毎に量子化ビット数を算出する手順と、
 前記量子化レンジと前記量子化ビット数に基づいて、前記ストークスパラメータの量子化処理、または量子化されている前記ストークスパラメータの逆量子化処理を行う手順と
を前記コンピュータで実行させるプログラムにある。
 なお、本技術のプログラムは、例えば、様々なプログラムコードを実行可能な汎用コンピュータに対して、コンピュータ可読な形式で提供する記憶媒体、通信媒体、例えば、光ディスクや磁気ディスク、半導体メモリなどの記憶媒体、あるいは、ネットワークなどの通信媒体によって提供可能なプログラムである。このようなプログラムをコンピュータ可読な形式で提供することにより、コンピュータ上でプログラムに応じた処理が実現される。
ストークスベクトルを説明するための図である。 システムの構成を例示した図である。 エンコーダの動作を示すフローチャートである。 量子化レンジの第1の設定動作を示すフローチャートである。 第1の設定動作で設定された量子化レンジを例示した図である。 量子化レンジの第2の設定動作を示すフローチャートである。 第2の設定動作で設定された量子化レンジを例示した図である。 量子化レンジの第3の設定動作を示すフローチャートである。 第3の設定動作で設定された量子化レンジを例示した図である。 量子化の第1の動作を示すフローチャートである。 量子化の第1の動作を従来の動作と共に示した図である。 量子化の第2の動作を示すフローチャートである。 量子化の第2の動作を従来の動作と共に示した図である。 デコーダの動作を例示したフローチャートである。
 以下、本技術を実施するための形態について説明する。なお、説明は以下の順序で行う。
 1.ストークスベクトルとその制約条件
 2.信号処理装置について
  2-1.信号処理装置の構成
  2-2.エンコーダの動作
  2-3.信号処理装置における量子化レンジの設定動作
  2-4.信号処理装置における量子化動作
  2-5.デコーダの動作
  2-6.他の構成と動作
 3.応用例
 <1.ストークスベクトルとその制約条件>
 図1は、ストークスベクトルを説明するための図である。光源から出射された光線LTを直線偏光板(偏光角θ)PLと波長板(位相シフトφ)WPを介して観測して観測輝度I(θ,φ)を求める。ここで、0°偏光(θ=0°,φ=0°)の観測輝度を「I0°」とする。また、45°偏光(θ=45°,φ=0°)の観測輝度を「I45°」、90°偏光(θ=90°,φ=0°)の観測輝度を「I90°」、135°偏光(θ=135°,φ=0°)の観測輝度を「I135°」とする。さらに、右円偏光(θ=45°,φ=-90°)の観測輝度を「IR」、左円偏光(θ=45°,φ=90°)の観測輝度を「IL」とする。この場合、観測されたストークスベクトルSは式(1)に示すようになる。ストークスパラメータS0は、0度偏光の観測輝度と90度偏光の観測輝度の和であり、強度を示すパラメータである。ストークスパラメータS1は0度偏光の観測輝度と90度偏光の観測輝度の差、ストークスパラメータS2は45度偏光の観測輝度と135度偏光の観測輝度の差、ストークスパラメータS3は右円偏光の観測輝度IRと左円偏光の観測輝度ILとの差を示している。
Figure JPOXMLDOC01-appb-M000001
 ストークスベクトルSの各ストークスパラメータは、独立したパラメータではなく、物理的かつ相互的な制約が存在する。例えば、偏光度ρは、式(2)に示すように定義される。また、式(2)から式(3)乃至式(6)に示す制約条件が成立する。
Figure JPOXMLDOC01-appb-M000002
 また、偏光度ρは式(7)のように定義されることが知られており、最大観測輝度Imaxと最小観測輝度IminとストークスパラメータS0の関係は、式(8)と式(9)である。
Figure JPOXMLDOC01-appb-M000003
 すなわち、偏光度ρは、式(10)に示す関係であることから、ストークスパラメータS1の絶対値は、式(11)に示すように制約される。さらに、光線LTの輝度を「1」とすると最大観測輝度は「0≦Imax≦1」であるから、式(11)は式(12)として示すことができる。
Figure JPOXMLDOC01-appb-M000004
 また、ストークスパラメータS2,S3についても同様であり、ストークスパラメータS1,S2,S3の絶対値は式(13)に示すように制約される。
Figure JPOXMLDOC01-appb-M000005
 以上の制約からストークスパラメータS0が取り得る範囲(量子化レンジ)は「0~2」の範囲内となる。また、ストークスパラメータS1の量子化レンジRを「±a」(なお、本技術では「a」および後述する「b」「c」をレンジ値とする)の範囲とした場合、ストークスパラメータS0が既知であるとき、ストークスパラメータS1のレンジ値aは、式(14)に示す値となる。また、ストークスパラメータS0,S2が既知であるとき、レンジ値aは式(15)に示す値となり、ストークスパラメータS0,S2,S3が既知であるとき、レンジ値aは式(16)に示す値となる。なお、レンジ値の算出式において関数minは、括弧内の要素の最小値を選択することを意味している。
Figure JPOXMLDOC01-appb-M000006
 同様に、ストークスパラメータS2の量子化レンジRを「±b」の範囲した場合、ストークスパラメータS0が既知であるとき、ストークスパラメータS2のレンジ値bは式(17)に示す値となる。また、ストークスパラメータS0,S1が既知であるとき、レンジ値bは式(18)に示す値となり、ストークスパラメータS0,S1,S3が既知であるとき、レンジ値bは式(19)に示す値となる。
Figure JPOXMLDOC01-appb-M000007
 さらに、ストークスパラメータS3の量子化レンジRを「±c」の範囲した場合、ストークスパラメータS0が既知であるとき、ストークスパラメータS3のレンジ値cは式(20)に示す値となる。また、ストークスパラメータS0,S1が既知であるとき、レンジ値cは式(21)に示す値となり、ストークスパラメータS0,S1,S2が既知であるとき、レンジ値cは式(22)に示す値となる。
Figure JPOXMLDOC01-appb-M000008
 <2.信号処理装置について>
 本技術の信号処理装置は、上述の制約条件を利用してストークスベクトルを示す偏光情報の量子化および量子化された情報の逆量子化を行う。
 <2-1.信号処理装置の構成>
 図2は、本技術の信号処理装置を用いたシステムの構成を例示している。システム10は、ストークスベクトル算出部20、ストークスベクトルを示す偏光情報を量子化して量子化偏光情報を生成するエンコーダ30、量子化偏光情報を伸長して量子化前の偏光情報を生成するデコーダ40を有している。また、量子化偏光情報は記録媒体50あるいは伝送路60を介して、エンコーダ30からデコーダ40へ供給される。
 ストークスベクトル算出部20は、偏光撮像部(図示せず)から観測輝度I0°,I45°,I90°,I135°および観測輝度IR,ILを取得してストークスベクトルSを算出してエンコーダ30へ出力する。偏光撮像部は、例えばカラーフィルタが設けられておらず、撮像素子と直線偏光板および波長板を用いて、観測輝度I0°,I45°,I90°,I135°および観測輝度IR,ILを示す信号を生成する。
 エンコーダ30は、量子化レンジ設定部31と量子化部(処理部ともいう)32を有している。量子化レンジ設定部31は、上述のストークスパラメータに関する制約条件に基づいてストークスパラメータS0,ストークスパラメータS1,ストークスパラメータS2,ストークスパラメータS3の量子化レンジを設定する。
 量子化部32は、ストークスパラメータに関する制約条件に基づいて量子化レンジ設定部で設定された量子化レンジに応じてストークスパラメータ毎に算出した量子化ビット数に基づいて、ストークスパラメータの量子化処理を行い、量子化偏光情報を生成する。また、量子化部32は、量子化偏光情報の生成において、例えばデータ量の削減を目的とした量子化と、分解能の向上を目的とした量子化のいずれかを行う。データ量の削減を目的とした量子化と分解能の向上を目的とした量子化のいずれかを行うかは、予め指定されてもよく、外部から量子化選択信号SEによっていずれの量子化を行うか選択できるようにしてもよい。さらに、偏光情報の利用目的や利用機器に応じて、いずれの量子化を用いるか自動的に選択するようにしてもよい。量子化部32で生成された量子化偏光情報は、記録媒体50あるいは伝送路60を介してデコーダ40へ出力される。
 デコーダ40は、記録媒体50あるいは伝送路60を介して取得した量子化偏光情報を、エンコーダ30の量子化に対応する逆量子化を行い、データ圧縮前の偏光情報を生成する。デコーダ40は、逆量子化部(処理部ともいう)42と量子化レンジ設定部43を有している。また、デコーダ40は、分解能の向上を目的とした量子化によって生成された量子化偏光情報の逆量子化処理を行う場合、分解能判別部41を設けてもよい。
 分解能判別部41は、量子化偏光情報が分解能の向上を目的とした量子化によって生成されていると判別した場合、分解能向上率βを算出して逆量子化部42へ出力する。
 逆量子化部42は、分解能判別部41で算出された分解能向上率や後述する量子化レンジ設定部43で設定された量子化レンジを用いて量子化偏光情報の逆量子化を行う。また、逆量子化部42は、量子化偏光情報がデータ量の削減を目的とした量子化によって生成されている場合、量子化レンジ設定部43で設定された量子化レンジを用いて量子化偏光情報の逆量子化を行う。逆量子化部42は、得られたストークスパラメータを量子化レンジ設定部43と外部に出力する。
 量子化レンジ設定部43は、逆量子化部42から出力されたストークスパラメータに基づき、その後の逆量子化に用いる量子化レンジを設定する。量子化レンジ設定部43は設定した量子化レンジを逆量子化部42へ出力する。
 <2-2.エンコーダの動作>
 図3は、エンコーダの動作を示すフローチャートである。ステップST1でエンコーダはストークスベクトルを取得する。エンコーダ30は、ストークスベクトル算出部20で算出されたストークスベクトルを取得してステップST2に進む。
 ステップST2でエンコーダは量子化レンジを設定する。エンコーダ30の量子化レンジ設定部31は、ストークスベクトルの各ストークスパラメータについて、強度を示すストークスパラメータについて量子化レンジを設定したのち他のストークスパラメータの量子化レンジを設定してステップST3に進む。なお、量子化レンジの設定の詳細については後述する。
 ステップST3でエンコーダは量子化処理を行う。エンコーダ30の量子化部32は、ステップST2で設定した量子化レンジでストークスベクトルの各ストークスパラメータを量子化して量子化偏光情報を生成する。
 <2-3.信号処理装置における量子化レンジの設定動作>
 量子化レンジの第1の設定動作では、ストークスパラメータS0,S1,S2,S3の順に量子化レンジを設定する。
 図4は、量子化レンジの第1の設定動作を示すフローチャートである。ステップST11で量子化レンジ設定部はストークスパラメータS0の量子化レンジRを「0~2」に設定する。量子化レンジ設定部31は、ストークスパラメータS0の量子化レンジRを上述のように「0~2」に設定してステップST12に進む。
 ステップST12で量子化レンジ設定部はストークスパラメータS1の量子化レンジRを設定する。量子化レンジ設定部31は、式(3)(12)の制約があることから式(14)に基づきレンジ値aを算出して量子化レンジR(=±a)の設定を行いステップST13に進む。
 ステップST13で量子化レンジ設定部はストークスパラメータS2の量子化レンジRbを設定する。量子化レンジ設定部31は、ストークスパラメータS0の量子化レンジとレンジ値aが設定されていることから式(18)に基づきレンジ値bを算出して量子化レンジR(±b)の設定を行いステップST14に進む。
 ステップST14で量子化レンジ設定部はストークスパラメータS3の量子化レンジRを設定する。量子化レンジ設定部31は、ストークスパラメータS0の量子化レンジとストークスパラメータS1のレンジ値aとストークスパラメータS2のレンジ値bが設定されていることから式(22)に基づきレンジ値cを算出して量子化レンジR(=±c)の設定を行う。
 図5は、第1の設定動作で設定された量子化レンジを例示している。従来の量子化レンジの設定動作では、ストークスベクトルのストークスパラメータS,S,S、Sに対して等しい量子化レンジ(絶対値が「2」)が割り当てられている。しかし、量子化レンジの第1の設定動作によれば、ストークスパラメータS0,S1,S2,S3について順に量子化レンジが設定されて、既に量子化レンジが設定された他のストークスパラメータに基づいて次のストークスパラメータの量子化レンジが設定される。したがって、従来に比べて効率よく量子化レンジを設定できるようになる。
 量子化レンジの第2の設定動作では、ストークスパラメータS0に続きストークスパラメータS1,S2,S3について値が大きいストークスパラメータから順に量子化レンジを設定する。
 図6は、量子化レンジの第2の設定動作を示すフローチャートである。ステップST21で量子化レンジ設定部はストークスパラメータS0の量子化レンジRを設定する。量子化レンジ設定部31は、上述のようにストークスパラメータS0の量子化レンジRを「0~2」に設定してステップST22に進む。
 ステップST22で量子化レンジ設定部は三パラメータ順序判別を行う。量子化レンジ設定部31は、ストークスパラメータS1,S2,S3から最も値が大きいストークスパラメータをパラメータSL、最も値が小さいストークスパラメータをパラメータSS、値がパラメータSLよりも小さく、パラメータSSよりも大きいストークスパラメータをパラメータSMとする。なお、値が等しいストークスパラメータが複数である場合は、予め設定されたルールに従い順序を設定する。量子化レンジ設定部31は、パラメータSL,SM,SSを設定してステップST23に進む。
 ステップST23で量子化レンジ設定部はパラメータSLの量子化レンジRを設定する。量子化レンジ設定部31は、例えば式(12)(14)におけるストークスパラメータS1をパラメータSLに置き換えて、式(14)に基づきパラメータSLのレンジ値aを算出して量子化レンジR(±a)の設定を行いステップST24に進む。
 ステップST24で量子化レンジ設定部はパラメータSMの量子化レンジRを設定する。量子化レンジ設定部31は、ストークスパラメータS0の量子化レンジとストークスパラメータS1のレンジ値aが算出されていることから例えば式(18)におけるストークスパラメータS1をパラメータSLに置き換えて、パラメータSMのレンジ値bを式(18)に基づき算出して量子化レンジR(±b)の設定を行いステップST25に進む。
 ステップST25で量子化レンジ設定部はパラメータSSの量子化レンジRを設定する。量子化レンジ設定部31は、ストークスパラメータS0の量子化レンジとストークスパラメータS1のレンジ値aとストークスパラメータS2のレンジ値bが算出されていることから、例えば式(22)におけるストークスパラメータS2をパラメータSMに置き換えて、パラメータSSのレンジ値cを式(22)に基づき算出して量子化レンジR(=±c)の設定を行う。
 ステップST26で量子化レンジ設定部はパラメータ対応情報を生成する。量子化レンジ設定部31は、ステップST22の順序判別結果に基づき、ストークスパラメータS1,S2,S3とパラメータSL,SM,SSとの対応関係を示すパラメータ対応情報を生成する。
 図7は、第2の設定動作で設定された量子化レンジを例示している。従来の量子化レンジの設定動作では、ストークスパラメータS,S,S,Sに対して等しい量子化レンジ(絶対値が「2」)が割り当てられている。しかし、量子化レンジの第2の設定動作によれば、ストークスパラメータS1,S2,S3について大きいストークスパラメータから順に量子化レンジが設定されて、既に量子化レンジが設定された他のストークスパラメータに基づいて少ないストークスパラメータの量子化レンジが設定される。したがって、従来および第1の設定動作に比べて効率よく量子化レンジを設定できるようになる。なお、図7は、S>S>Sである場合を例示している。
 量子化レンジの第3の設定動作では、円偏光の差を示すストークスパラメータS3の量子化レンジを、他のストークスパラメータの後に設定する。図8は、量子化レンジの第3の設定動作を示すフローチャートである。ステップST31で量子化レンジ設定部はストークスパラメータS0の量子化レンジRを設定する。量子化レンジ設定部31は、ストークスパラメータS0の量子化レンジRを「0~2」に設定してステップST32に進む。
 ステップST32で量子化レンジ設定部は二パラメータ順序判別を行う。量子化レンジ設定部31は、ストークスパラメータS1,S2におけるいずれか値が大きい方をパラメータSL、値が小さい方をパラメータSSとする。なお、ストークスパラメータS1,S2が等しい場合は、予め設定されたルールに従い順序を設定する。量子化レンジ設定部31は、パラメータSL,SSを設定してステップST33に進む。
 ステップST33で量子化レンジ設定部はパラメータSLの量子化レンジRを設定する。量子化レンジ設定部31は、例えば式(12)(14)におけるストークスパラメータS1をパラメータSLに置き換えて、式(14)に基づきパラメータSLのレンジ値aを算出して量子化レンジR(=±a)の設定を行いステップST34に進む。
 ステップST34で量子化レンジ設定部はパラメータSSの量子化レンジRを設定する。量子化レンジ設定部31は、ストークスパラメータS0の量子化レンジとストークスパラメータS1のレンジ値aが算出されていることから例えば式(18)におけるストークスパラメータS1をパラメータSLに置き換えて、パラメータSSのレンジ値bを式(18)に基づき算出して量子化レンジR(=±b)の設定を行いステップST35に進む。
 ステップST35で量子化レンジ設定部はストークスパラメータS3の量子化レンジRを設定する。量子化レンジ設定部31は、ストークスパラメータS0の量子化レンジとパラメータSLのレンジ値a、パラメータSSのレンジ値bが算出されていることから、式(22)に基づきレンジ値cを算出して量子化レンジR(=±c)の設定を行いステップST36に進む。
 ステップST36で量子化レンジ設定部はパラメータ対応情報を生成する。量子化レンジ設定部31は、ステップST32におけるパラメータ順序判別の判別結果に基づき、ストークスパラメータS1,S2とパラメータSL,SSとの対応関係を示すストークスパラメータ対応情報を生成する。
 図9は、第3の設定動作で設定された量子化レンジを例示している。従来の量子化レンジの設定動作では、ストークスパラメータS,S,S、Sに対して等しい量子化レンジ(絶対値が「2」)が割り当てられている。しかし、量子化レンジの第2の設定動作によれば、ストークスパラメータS1,S2について大きいストークスパラメータから順に量子化レンジが設定されて、その後にストークスパラメータS3の量子化レンジが設定される。したがって、円偏光に関するストークスパラメータよりも直線偏光に関するストークスパラメータを重視して量子化レンジの割当てを行うことができるようになる。なお、図9は、S>Sである場合を例示している。
 <2-4.信号処理装置における量子化動作>
 量子化の第1の動作では、分解能の向上よりもデータ量の削減を優先して量子化を行う。具体的には、強度を示すストークスパラメータを所定量子化ビット数として、他のストークスパラメータの量子化ビット数は、所定量子化ビット数とストークスパラメータ毎に設定された量子化レンジに基づいて算出する。
 図10は、量子化の第1の動作を示すフローチャートである。ステップST41で量子化部はストークスベクトルと量子化レンジを取得する。量子化部32は、ストークスベクトル算出部20からストークスベクトル、量子化レンジ設定部31から量子化レンジを取得してステップST42に進む。
 ステップST42で量子化部はビット数圧縮処理を行う。量子化部32は、式(23)に基づきストークスパラメータS0を量子化して、量子化パラメータQS0を生成する。また、量子化レンジ設定部31で設定された量子化レンジのレンジ値a,b,cを用いて、式(24)(25)(26)に基づきストークスパラメータS1,S2,S3を量子化して、量子化パラメータQS1,QS2,QS3を生成する。なお、式(24)ではストークスパラメータSにレンジ値aを加算して、量子化対象の値が負の値とならないように処理する。同様に、式(25)ではストークスパラメータSにレンジ値bを加算して、式(26)ではストークスパラメータSにレンジ値cを加算して、量子化対象の値が負の値とならないように処理する。なお、式(27)は、圧縮率rの算出式を示しており、ストークスパラメータを示す量子化偏光情報の割当てビット数が「Nビット」、ストークスパラメータS1の圧縮率(量子化前のビット数に対する量子化後のビット数の割合)が「r1」、ストークスパラメータS2の圧縮率が「r2」、ストークスパラメータS3の圧縮率が「r3」の場合である。本技術では「r1+r2+r3」を圧縮率情報という。なお、式(23)~式(27)および後述する式(34),(36),(38),(40),(41),(42),(44),(46),(48)、図11,13で示す鍵カッコは、天井関数であることを示しており、カッコ内の値以上である最小の整数値を示している。
Figure JPOXMLDOC01-appb-M000009
 図11は、量子化の第1の動作を従来の動作と共に示している。従来の量子化では、ストークスパラメータS,S1,S2,S3について、それぞれ(N/4)以上である最小整数が割り当てビットとされており、ストークスベクトルを示す量子化偏光情報は「Nビット」である。しかし、量子化の第1の動作によれば、ストークスパラメータSに対してrビット、ストークスパラメータSに対してrビット、ストークスパラメータSに対してrビットが割り当てられる。また、圧縮率rは式(27)に示すように「1」以下であることから、量子化偏光情報は、従来と等しい分解能で従来よりもビット数を圧縮できる。
 量子化の第2の動作では、データ量の削減よりも分解能の向上を優先して量子化を行う。具体的には、所定量子化ビット数に対して算出された量子化ビット数の割合を示す圧縮率に基づいて分解能向上率を算出して、ストークスパラメータ毎の量子化ビット数を分解能向上率で拡張して量子化を行う。図12は、量子化の第2の動作を示すフローチャートである。ステップST51で量子化部はストークスベクトルと量子化レンジを取得する。量子化部32は、ストークスベクトル算出部20からストークスベクトル、量子化レンジ設定部31から量子化レンジを取得してステップST52に進む。
 ステップST52で量子化部は分解能向上処理を行う。量子化部32は、分解能向上率βを用いて式(28)に基づきストークスパラメータS0を量子化して、量子化パラメータQS0を生成する。また、分解能向上率と量子化レンジ設定部31で設定された量子化レンジのレンジ値a,b,cを用いて、式(29)(30)(31)に基づきストークスパラメータS1,S2,S3を量子化して、量子化パラメータQS1,QS2,QS3を生成する。なお、分解能向上率βは、圧縮率r1,r2,r3とストークスパラメータ毎の割当てビット数Nを用いて、式(32)に基づいて算出される値である。
Figure JPOXMLDOC01-appb-M000010
 ステップST53で量子化部は圧縮率情報生成処理を行う。量子化部32は、符号化情報の復号時に分解能向上率βを算出できるように、上述の圧縮率情報を生成する。また、量子化部32は圧縮率情報の割当てビット数RJを式(33)に示すビット数とする。
Figure JPOXMLDOC01-appb-M000011
 図13は、量子化の第2の動作を従来の動作と共に示している。従来の量子化では、ストークスパラメータS,S1,S2,S3について、それぞれ(N/4)以上である最小整数が割り当てビットとされており、ストークスベクトルを示す量子化偏光情報は「Nビット」である。しかし、量子化の第2の動作によれば、ストークスパラメータSに対して(βr)以上である最小整数、ストークスパラメータSに対して(βr)以上である最小整数、ストークスパラメータSに対して(βr)以上である最小整数、ストークスパラメータSに対して(βr)以上である最小整数が割り当てビット数とされて、量子化偏光情報がNビットとされる。したがって、量子化偏光情報は、従来と等しいビット数で従来よりも分解能を向上させることができる。また、分解能を向上させる場合、量子化偏光情報には、ビット数RJの圧縮率情報を含める。圧縮率情報は、ストークスパラメータS,S1,S2,S3の逆量子化時に得られていればよく、例えばストークスパラメータS1,S2,S3よりも前の位置に設けてもよい。また、量子化偏光情報は、圧縮率情報を含めたビット数がNビットとなるように分解能向上率βを設定してもよい。
 <2-5.デコーダの動作>
 次にデコーダの動作について説明する。なお、以下の説明では、量子化偏光情報の生成において、データ量の削減と分解能の向上のいずれかを選択可能とされている場合について説明する。
 図14はデコーダの動作を例示したフローチャートである。ステップST61でデコーダは量子化方法を判別する。デコーダ40は、量子化偏光情報がデータ量の削減または分解能の向上のいずれを重視した符号化方法を用いて生成されているか判別する。分解能判別部41は、例えば量子化偏光情報のストリームのヘッダ等に示されたモードフラグに基づきデータ量の削減または分解能の向上のいずれを重視した符号化方法であるは判別してステップST62に進む。
 ステップST62でデコーダはデータ量の削減であるか判別する。デコーダ40はステップST61の判別結果がデータ量の削減を重視した量子化方法である場合にステップST63に進み、分解能の向上を重視した量子化方法である場合にステップST67に進む。
 ステップST63でデコーダはストークスパラメータS0を算出する。デコーダ40は、量子化偏光情報で示された量子化パラメータQS0を用いて式(34)の演算を行い、ストークスパラメータS0を算出してステップST64に進む。
Figure JPOXMLDOC01-appb-M000012
 ステップST64でデコーダはストークスパラメータS1を算出する。デコーダ40は、ストークスパラメータS0を用いて式(35)に基づきレンジ値aを算出する。さらに、デコーダ40は、レンジ値aと量子化偏光情報で示された量子化パラメータQS1を用いて式(36)の演算を行い、ストークスパラメータS1を算出してステップST65に進む。
Figure JPOXMLDOC01-appb-M000013
 ステップST65でデコーダはストークスパラメータS2を算出する。デコーダ40は、ストークスパラメータS0,S1を用いて式(37)に基づきレンジ値bを算出する。さらに、デコーダ40は、レンジ値bと量子化偏光情報で示された量子化パラメータQS2を用いて式(38)の演算を行い、ストークスパラメータS2を算出してステップST66に進む。
Figure JPOXMLDOC01-appb-M000014
 ステップST66でデコーダはストークスパラメータS3を算出する。デコーダ40は、ストークスパラメータS0,S1,S2を用いて式(39)に基づきレンジ値cを算出する。さらに、デコーダ40は、レンジ値cと量子化偏光情報で示された量子化パラメータQS3を用いて式(40)の演算を行い、ストークスパラメータS3を算出する。
Figure JPOXMLDOC01-appb-M000015
 ステップST62からステップST67に進むと、デコーダ40は式(41)に基づき分解能向上率βを算出してステップST68に進む。なお、式(41)において、圧縮率加算値は、式(33)に示すビット数で量子化偏光情報に含まれている。
Figure JPOXMLDOC01-appb-M000016
 ステップST68でデコーダはストークスパラメータS0を算出する。デコーダ40は、ステップST67で算出した分解能向上率βと量子化偏光情報で示された量子化パラメータQS0を用いて式(42)の演算を行い、ストークスパラメータS0を算出してステップST69に進む。
Figure JPOXMLDOC01-appb-M000017
 ステップST69でデコーダはストークスパラメータS1を算出する。デコーダ40は、ストークスパラメータS0を用いて式(43)に基づきレンジ値aを算出する。さらに、デコーダ40は、レンジ値aと分解能向上率βと量子化偏光情報で示された量子化パラメータQS1を用いて式(44)の演算を行い、ストークスパラメータS1を算出してステップST70に進む。
Figure JPOXMLDOC01-appb-M000018
 ステップST70でデコーダはストークスパラメータS2を算出する。デコーダ40は、ストークスパラメータS0,S1を用いて式(45)に基づきレンジ値bを算出する。さらに、デコーダ40は、レンジ値bと分解能向上率βと量子化偏光情報で示された量子化パラメータQS2を用いて式(46)の演算を行い、ストークスパラメータS2を算出してステップST71に進む。
Figure JPOXMLDOC01-appb-M000019
 ステップST71でデコーダはストークスパラメータS3を算出する。デコーダ40は、ストークスパラメータS0,S1,S2を用いて式(47)に基づきレンジ値cを算出する。さらに、デコーダ40は、レンジ値cと分解能向上率βと量子化偏光情報で示された量子化パラメータQS3を用いて式(48)の演算を行い、ストークスパラメータS3を算出する。
Figure JPOXMLDOC01-appb-M000020
 このような処理を行えば、量子化偏光情報をデコードして、量子化前のストークスパラメータS0,S1,S2、S3を得ることができるようになる。
 <2-6.他の構成と動作>
 上述の構成と動作では、カラーフィルタが設けられていない偏光撮像部で得られた観測輝度を用いてストークスベクトルを算出したが、偏光撮像部はカラーフィルタが設けられてもよい。この場合、信号処理装置は、色毎に上述のエンコード動作やデコード動作を行う。
 また、特定色について量子化レンジとビット数を設定して、他の色については、特定色で設定された量子化レンジとビット数を用いてエンコード動作を行えば、効率よく量子化偏光情報を生成できる。特定色としては、例えばカラーフィルタの色配列がベイヤ配列である場合、画素数が多い緑色を特定色とする。また、データ量の削減を優先する場合、圧縮率rが最も高い色を特定色としてもよく、分解能の向上を優先する場合、分解能向上率βが最も高い色を特定色としてもよい。さらに、特定色の設定は、これらの設定基準に限らず他の設定基準に基づいて行ってもよい。
 ところで、偏光撮像部において観測可能な特性が直線偏光に関する特性に限られる場合、右円偏光の観測輝度IRと左円偏光の観測輝度ILを示す情報を生成できない。このような場合、エンコーダ30は、ストークスパラメータS,S,Sに基づいて量子化偏光情報の生成を行い、デコーダ40は量子化偏光情報をデコードしてストークスパラメータS,S,Sを出力する。
 <3.応用例>
 本開示に係る技術は、様々な分野へ適用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。また、工場における生産工程で用いられる機器や建設分野で用いられる機器に搭載される装置として実現されてもよい。また、医療分野やパブリックサービス等の分野にも適用できる。
 このような分野に適用すれば、偏光情報を利用して法線情報の生成や反射成分の分離等を行う場合に、偏光情報を取得する偏光撮像部と偏光情報に基づき各種処理や制御等を行う偏光情報利用部が離れていても、従来に比べて短時間あるいは高分解能で偏光情報を伝送することが可能となる。また、オフラインで偏光情報に基づき各種処理等を行う場合にも、従来に比べて少ないデータ量あるいは高分解能で偏光情報を記録媒体等に記録できるようになる。
 明細書中において説明した一連の処理はハードウェア、またはソフトウェア、あるいは両者の複合構成によって実行することが可能である。ソフトウェアによる処理を実行する場合は、処理シーケンスを記録したプログラムを、専用のハードウェアに組み込まれたコンピュータ内のメモリにインストールして実行させる。または、各種処理が実行可能な汎用コンピュータにプログラムをインストールして実行させることが可能である。
 例えば、プログラムは記録媒体としてのハードディスクやSSD(Solid State Drive)、ROM(Read Only Memory)に予め記録しておくことができる。あるいは、プログラムはフレキシブルディスク、CD-ROM(Compact Disc Read Only Memory),MO(Magneto optical)ディスク,DVD(Digital Versatile Disc)、BD(Blu-Ray Disc(登録商標))、磁気ディスク、半導体メモリカード等のリムーバブル記録媒体に、一時的または永続的に格納(記録)しておくことができる。このようなリムーバブル記録媒体は、いわゆるパッケージソフトウェアとして提供することができる。
 また、プログラムは、リムーバブル記録媒体からコンピュータにインストールする他、ダウンロードサイトからLAN(Local Area Network)やインターネット等のネットワークを介して、コンピュータに無線または有線で転送してもよい。コンピュータでは、そのようにして転送されてくるプログラムを受信し、内蔵するハードディスク等の記録媒体にインストールすることができる。
 なお、本明細書に記載した効果はあくまで例示であって限定されるものではなく、記載されていない付加的な効果があってもよい。また、本技術は、上述した技術の実施の形態に限定して解釈されるべきではない。この技術の実施の形態は、例示という形態で本技術を開示しており、本技術の要旨を逸脱しない範囲で当業者が実施の形態の修正や代用をなし得ることは自明である。すなわち、本技術の要旨を判断するためには、請求の範囲を参酌すべきである。
 また、本技術の信号処理装置は以下のような構成も取ることができる。
 (1) ストークスパラメータに関する制約条件に基づいて前記ストークスパラメータ毎に設定された量子化レンジと、前記設定された量子化レンジに応じて前記ストークスパラメータ毎に算出した量子化ビット数に基づいて、前記ストークスパラメータの量子化処理、または量子化されている前記ストークスパラメータの逆量子化処理を行う処理部
を備える信号処理装置。
 (2) 前記量子化レンジは、強度を示すストークスパラメータについて設定したのち他のストークスパラメータについて設定する(1)に記載の信号処理装置。
 (3) 前記他のストークスパラメータの量子化レンジは、値が大きいストークスパラメータから順に設定する(2)に記載の信号処理装置。
 (4) 円偏光の差を示すストークスパラメータの量子化レンジは、他のストークスパラメータの後に設定する(3)に記載の信号処理装置。
 (5) 前記強度を示すストークスパラメータは所定量子化ビット数として、他のストークスパラメータの量子化ビット数は、前記所定量子化ビット数とストークスパラメータ毎に設定された前記量子化レンジに基づいて算出する(1)乃至(4)のいずれかに記載の信号処理装置。
 (6) 前記所定量子化ビット数に対する前記量子化ビット数の割合を示す圧縮率に基づいて分解能向上率を算出して、前記ストークスパラメータ毎の量子化ビット数を前記分解能向上率で拡張する(1)乃至(5)のいずれかに記載の信号処理装置。
 (7) 前記ストークスパラメータ毎に前記量子化レンジを設定する量子化レンジ設定部を備え、
 前記処理部は、前記ストークスパラメータを、前記量子化レンジ設定部で設定された量子化レンジに応じた前記ストークスパラメータ毎の量子化ビット数として、量子化偏光情報を生成する(1)乃至(6)のいずれかに記載の信号処理装置。
 (8) 前記処理部で前記量子化偏光情報の逆量子化処理を行うことにより得られたストークスパラメータに基づき、他のストークスパラメータの前記量子化レンジを設定する量子化レンジ設定部を備え、
 前記処理部は、前記量子化レンジ設定部で設定された量子化レンジを用いて前記他のストークスパラメータの逆量子化処理を行う(1)乃至(5)のいずれかに記載の信号処理装置。
 (9) 量子化偏光情報から分解能向上率を算出する分解能判別部をさらに備え、
 前記処理部は、前記分解能判別部で算出された分解能向上率を用いて前記ストークスパラメータの逆量子化処理を行う(8)に記載の信号処理装置。
 10・・・システム
 20・・・ストークスベクトル算出部
 30・・・エンコーダ
 31,43・・・量子化レンジ設定部
 32・・・量子化部
 40・・・デコーダ
 41・・・分解能判別部
 42・・・逆量子化部
 50・・・記録媒体
 60・・・伝送路

Claims (11)

  1.  ストークスパラメータに関する制約条件に基づいて前記ストークスパラメータ毎に設定された量子化レンジと、前記設定された量子化レンジに応じて前記ストークスパラメータ毎に算出した量子化ビット数に基づいて、前記ストークスパラメータの量子化処理、または量子化されている前記ストークスパラメータの逆量子化処理を行う処理部
    を備える信号処理装置。
  2.  前記量子化レンジは、強度を示すストークスパラメータについて設定したのち他のストークスパラメータについて設定する
    請求項1に記載の信号処理装置。
  3.  前記他のストークスパラメータの量子化レンジは、値が大きいストークスパラメータから順に設定する
    請求項2に記載の信号処理装置。
  4.  円偏光の差を示すストークスパラメータの量子化レンジは、他のストークスパラメータの後に設定する
    請求項3に記載の信号処理装置。
  5.  前記強度を示すストークスパラメータは所定量子化ビット数として、他のストークスパラメータの量子化ビット数は、前記所定量子化ビット数とストークスパラメータ毎に設定された前記量子化レンジに基づいて算出する
    請求項1に記載の信号処理装置。
  6.  前記所定量子化ビット数に対する前記量子化ビット数の割合を示す圧縮率に基づいて分解能向上率を算出して、前記ストークスパラメータ毎の量子化ビット数を前記分解能向上率で拡張する
    請求項1に記載の信号処理装置。
  7.  前記ストークスパラメータ毎に前記量子化レンジを設定する量子化レンジ設定部を備え、
     前記処理部は、前記ストークスパラメータを、前記量子化レンジ設定部で設定された量子化レンジに応じた前記ストークスパラメータ毎の量子化ビット数として、量子化偏光情報を生成する
    請求項1に記載の信号処理装置。
  8.  前記処理部で前記量子化偏光情報の逆量子化処理を行うことにより得られたストークスパラメータに基づき、他のストークスパラメータの前記量子化レンジを設定する量子化レンジ設定部を備え、
     前記処理部は、前記量子化レンジ設定部で設定された量子化レンジを用いて前記他のストークスパラメータの逆量子化処理を行う
    請求項1に記載の信号処理装置。
  9.  量子化偏光情報から分解能向上率を算出する分解能判別部をさらに備え、
     前記処理部は、前記分解能判別部で算出された分解能向上率を用いて前記ストークスパラメータの逆量子化処理を行う
    請求項8に記載の信号処理装置。
  10.  ストークスパラメータに関する制約条件に基づいて前記ストークスパラメータ毎に設定された量子化レンジと、前記設定された量子化レンジに応じて前記ストークスパラメータ毎に算出した量子化ビット数に基づいて、前記ストークスパラメータの量子化処理、または前記量子化されている前記ストークスパラメータの逆量子化処理を処理部で行うこと
    を含む信号処理方法。
  11.  ストークスパラメータの量子化処理または逆量子化処理をコンピュータで実行させるプログラムであって、
     ストークスパラメータに関する制約条件に基づいて前記ストークスパラメータ毎に量子化レンジを設定する手順と、
     前記設定された量子化レンジに応じて前記ストークスパラメータ毎に量子化ビット数を算出する手順と、
     前記量子化レンジと前記量子化ビット数に基づいて、前記ストークスパラメータの量子化処理、または量子化されている前記ストークスパラメータの逆量子化処理を行う手順と
    を前記コンピュータで実行させるプログラム。
PCT/JP2020/044461 2019-12-17 2020-11-30 信号処理装置と信号処理方法およびプログラム WO2021124848A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/756,940 US20230003583A1 (en) 2019-12-17 2020-11-30 Signal processing device, signal processing method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019227285 2019-12-17
JP2019-227285 2019-12-17

Publications (1)

Publication Number Publication Date
WO2021124848A1 true WO2021124848A1 (ja) 2021-06-24

Family

ID=76478720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044461 WO2021124848A1 (ja) 2019-12-17 2020-11-30 信号処理装置と信号処理方法およびプログラム

Country Status (2)

Country Link
US (1) US20230003583A1 (ja)
WO (1) WO2021124848A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224959A (ja) * 1993-01-22 1994-08-12 N T T Idou Tsuushinmou Kk 軟判定情報伝送装置
JP2000205895A (ja) * 1999-01-18 2000-07-28 Unie Opt:Kk ベクトルデ―タの分布表示方法および方位デ―タの分布表示方法ならびにプログラムを記録した記録媒体
JP2005057738A (ja) * 2003-07-18 2005-03-03 Canon Inc 信号処理装置、信号処理方法及びプログラム
JP2006042234A (ja) * 2004-07-30 2006-02-09 Kddi Corp Osnr測定方法及び装置
JP2006226984A (ja) * 2005-01-21 2006-08-31 Hokkaido Technology Licence Office Co Ltd 分光偏光計測方法
JP2017067536A (ja) * 2015-09-29 2017-04-06 沖電気工業株式会社 偏波速度ベクトル測定装置及び偏波速度ベクトル測定方法
JP2019039881A (ja) * 2017-08-29 2019-03-14 沖電気工業株式会社 振動検知光ファイバセンサ及び振動検知方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224959A (ja) * 1993-01-22 1994-08-12 N T T Idou Tsuushinmou Kk 軟判定情報伝送装置
JP2000205895A (ja) * 1999-01-18 2000-07-28 Unie Opt:Kk ベクトルデ―タの分布表示方法および方位デ―タの分布表示方法ならびにプログラムを記録した記録媒体
JP2005057738A (ja) * 2003-07-18 2005-03-03 Canon Inc 信号処理装置、信号処理方法及びプログラム
JP2006042234A (ja) * 2004-07-30 2006-02-09 Kddi Corp Osnr測定方法及び装置
JP2006226984A (ja) * 2005-01-21 2006-08-31 Hokkaido Technology Licence Office Co Ltd 分光偏光計測方法
JP2017067536A (ja) * 2015-09-29 2017-04-06 沖電気工業株式会社 偏波速度ベクトル測定装置及び偏波速度ベクトル測定方法
JP2019039881A (ja) * 2017-08-29 2019-03-14 沖電気工業株式会社 振動検知光ファイバセンサ及び振動検知方法

Also Published As

Publication number Publication date
US20230003583A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
JP5775083B2 (ja) モード情報を符号化、復号化する方法及びその装置
US6205430B1 (en) Audio decoder with an adaptive frequency domain downmixer
US20090219994A1 (en) Scalable video coding and decoding with sample bit depth and chroma high-pass residual layers
US8054882B2 (en) Method and system for providing bi-directionally predicted video coding
WO2009093672A1 (ja) 符号化装置および方法、並びに復号装置および方法
JP5528445B2 (ja) 画像符号化装置、画像復号装置、画像符号化方法及び画像復号方法
JPWO2007114368A1 (ja) 画像符号化装置及び方法並びに画像復号化装置及び方法
KR20030043622A (ko) 좌표 인터폴레이터의 키 및 키 값 데이터의 부호화/복호화장치, 및 좌표 인터폴레이터를 부호화한 비트스트림을기록한 기록 매체
TW201537562A (zh) 將高階保真立體音響信號壓縮之方法,將已壓縮高階保真立體音響信號解壓縮之方法,將高階保真立體音響信號壓縮之裝置,以及將已壓縮高階保真立體音響信號解壓縮之裝置
JP2003255973A (ja) 音声帯域拡張システムおよび方法
KR100307596B1 (ko) 디지털 오디오 데이터의 무손실 부호화 및 복호화장치
JP2013013085A (ja) 高ビット深度画像の圧縮
JP4191706B2 (ja) データ符号化及び復号化方法、並びに装置
WO2021124848A1 (ja) 信号処理装置と信号処理方法およびプログラム
JPWO2019244439A1 (ja) 画像処理装置と画像処理方法
US6347151B2 (en) Image signal converting/encoding method and apparatus
JP2006013750A (ja) 映像処理方法及び装置
US20190214033A1 (en) Method and apparatus for decoding a bitstream including encoded higher order ambisonics representations
JP2899478B2 (ja) 画像符号化方法及び画像符号化装置
JP3063380B2 (ja) 高能率符号化装置
JP2012205058A (ja) 画像処理装置及び画像処理プログラム
JP2001069505A (ja) 画像符号化装置及び画像復号化装置
US8837844B2 (en) Image processing method and image processing apparatus using least significant bits
JP4639582B2 (ja) 符号化装置および符号化方法、復号装置および復号方法、並びにプログラムおよび記録媒体
JP2002223455A (ja) 画像符号化方法及び装置並びに画像復号化方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP